STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0287-AOP-R24 AFIN: 41-00002

1. PERMITTING AUTHORITY:

Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Domtar A.W. LLC—Ashdown Mill 285 Highway 71 South Ashdown, Arkansas 71822

3. PERMIT WRITER:

Christopher Riley

4. NAICS DESCRIPTION AND CODE:

NAICS Description: Paper (except Newsprint) Mills

NAICS Code: 322121

5. ALL SUBMITTALS:

The following is a list of ALL permit applications included in this permit revision.

Date of Application	Type of Application	Short Description of Any Changes
	(New, Renewal, Modification,	That Would Be Considered New or
	Deminimis/Minor Mod, or	Modified Emissions
	Administrative Amendment)	
4/29/2021	Minor Mod	SN-61 (Generator)
4/14/2021	Renewal With Mod	SN-05 Regional Haze Limits
8/21/2020	Mod	N/A
6/24/2020	AA	N/A
6/04/2020	Minor Mod	SN-54b increased usage

6. REVIEWER'S NOTES:

Domtar A.W. LLC. –Ashdown Mill (AFIN: 41-00002) operates a paper mill located at 285 Highway 71 South in Ashdown, Arkansas 71822. Domtar submitted one modification, Two Minor Modifications, an Administrative Amendment, and a Title V Renewal with Modification to do the following:

AFIN: 41-00002 Page 2 of 35

- Update multiple emission factors with new NCASI factors;
- Update the emission limits for SN-05 (Power Boiler #2) to reflect the limits in place due to Regional Haze (BART Alternative) requirements;
- Added a new Admin Bldg Generator to the permit (SN-61);
- Update conditions relating to Subpart MM, due to changes with the Subpart;
- Update multiple citations throughout the permit to more accurately reflect the appropriate citations;
- Modify the hours of operation limit for SN-54b (Lime Kiln Backup Motor #3) from 500 hours to 2000 hours;
- Update the Insignificant Activities List

The permitted emissions increases are 0.1 tpy PM, 0.07 tpy Acetone, 3.1 tpy CO and 0.21 tpy of H2S

The permitted emissions decreases are 1.7 tpy PM_{10} , 2404.5 tpy SO_2 , and 1227.1 tpy NO_X

This facility is considered an existing major source under 40 CFR §52.21, Prevention of Significant Deterioration (PSD) regulations because the facility is a Kraft Pulp Mill (one of the 28 listed industrial source categories) and has the potential to emit more than 100 tpy of a regulated New Source Review (NSR) pollutant.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

Last inspection dated September 03-04, 2020 with no violations found during the inspection

8. PSD/GHG APPLICABILITY:

- a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N/A
- b) Is the facility categorized as a major source for PSD? Y
- Single pollutant \geq 100 tpy and on the list of 28 or single pollutant \geq 250 tpy and not on list

If yes for 8(b), explain why this permit modification is not PSD. No significant emissions increases

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)	
Facility	40 CFR Part 60, Subpart A	General Provisions	

AFIN: 41-00002 Page 3 of 35

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
Facility	40 CFR §52.21	Prevention of Significant Deterioration
Facility	40 CFR 52, Subpart E	Prevention of Significant Deterioration
01	40 CFR Part 60, Subpart Db	Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units
02	40 CFR Part 60, Subpart BB	Standards of performance for Kraft Pulp Mills
02	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
05	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
05	40 CFR Part 60, Subpart D	Standards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced after August 17, 1971
06	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
06	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
08	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
08	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
09	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
09	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills

AFIN: 41-00002 Page 4 of 35

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
14	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
14	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
15	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
15	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
23	40 CFR Part 60, Subpart Kb	NSPS Standards of Performance for Volatile Organic Liquid Storage Vessels (including petroleum Liquid storage vessels) for which construction, reconstruction, or modification commenced after July 23, 1984
16, 17, 18, 46	40 CFR 63, Subpart S	NESHAPS from the pulp and paper industry
01, 03, and 05	40 CFR 63, Subpart DDDDD	NESHAPS for major sources: Industrial, Commercial, and Institutional Boilers and Process Heaters
50, 53, 54a, 54b, 57, 58, 59	40 CFR Part 63, Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines
58 and 59	40 CFR Part 60, Subpart IIII	Standards of Performance for stationary compression ignition internal combustion engines

10. UNCONSTRUCTED SOURCES:

Unconstructed	Permit	Extension	Extension	If Greater than 18 Months without
Source	Approval	Requested	Approval	Approval, List Reason for Continued
Source	Date	Date	Date	Inclusion in Permit

AFIN: 41-00002 Page 5 of 35

I In a an atmust a d	Permit	Extension Extension If Greater than 18		If Greater than 18 Months without
Unconstructed	Approval	Requested	Approval	Approval, List Reason for Continued
Source	Date	Date	Date	Inclusion in Permit
			N/A	

11. PERMIT SHIELD – TITLE V PERMITS ONLY:

Did the facility request a permit shield in this application? Y (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Regulation 18 requirement.)

If yes, are applicable requirements included and specifically identified in the permit? Y If not, explain why.

For any requested inapplicable regulation in the permit shield, explain the reason why it is not applicable in the table below.

Source	Inapplicable Regulation	Reason			
N/A Shield only lists applicable requirements					

12. COMPLIANCE ASSURANCE MONITORING (CAM) – TITLE V PERMITS ONLY:

List sources potentially subject to CAM because they use a control device to achieve compliance and have pre-control emissions of at least 100 percent of the major source level. List the pollutant of concern and a brief summary of the CAM plan (temperature monitoring, CEMs, opacity monitoring, etc.) and frequency requirements of § 64.

Source	Pollutant Controlled	Cite Exemption or CAM Plan Monitoring and Frequency		
01	PM/PM ₁₀	Opacity (COMS)		
05	PM/PM ₁₀ and SO ₂	Liquid Flow Rate and Gas Stream Pressure Drop, continuous monitor		
02	PM/PM ₁₀	Exempt, MACT MM		
06	PM/PM ₁₀	Exempt, MACT MM		
08	PM/PM_{10} , SO_2 , TRS	Exempt, MACT MM and NSPS BB		
09	PM/PM ₁₀ and SO ₂	Exempt, MACT MM		
14	PM/PM_{10}	Exempt, MACT MM		
15	PM/PM_{10} , SO_2 , TRS	Exempt, MACT MM and NSPS BB		
16. 17. 18	Cl ₂ and ClO ₂ Exempt, MACT S			
20	Cl ₂ and ClO ₂	Exempt, Not subject to an applicable "emission limitation or standard" as defined by rule.		

13. EMISSION CHANGES AND FEE CALCULATION:

AFIN: 41-00002 Page 6 of 35

See emission change and fee calculation spreadsheet in Appendix A.

14. AMBIENT AIR EVALUATIONS:

The following are results for ambient air evaluations or modeling.

a) NAAQS

A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the DEQ Air Permit Screening Modeling Instructions.

b) Non-Criteria Pollutants:

Based on Division of Environmental Quality procedures for review of non-criteria pollutants, emissions of non-criteria pollutants are below thresholds of concern.

c) H₂S Modeling:

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details.

Is the facility exempt from the H₂S Standards

Y

The facility is subject to and complies with 40 CFR Part 60, Subpart BB and is exempt pursuant to A.C.A. § 8-3-103-(d)(2)(B)(ii).

Pollutant	Threshold value	Modeled Concentration (ppb)	Pass?
	20 parts per million		
	(5-minute average*)		
	80 parts per billion		
H_2S	(8-hour average)		
1123	residential area		
	100 parts per billion		
	(8-hour average)		
	nonresidential area		

^{*}To determine the 5-minute average use the following equation

$$Cp = Cm \, \left(t_{\text{m}}/t_{\text{p}}\right)^{0.2} \ where$$

AFIN: 41-00002 Page 7 of 35

 $Cp = 5 \text{-minute average concentration} \\ Cm = 1 \text{-hour average concentration} \\ t_m = 60 \text{ minutes} \\ t_p = 5 \text{ minutes} \\$

CALCULATIONS: 15.

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
Source	SN-01 No. 3	Power Boiler (NCASI Facto	ors include a 20	% safety factor)
PM/PM ₁₀	NSPS and PSD	0.025 lb/MMBtu	ESP	98	Controlled Lb/hr based on 790 MMBtu/hr
SO_2	PSD BACT	0.1 lb/MMBtu (NSPS Limit)	N/A	-	PSD limit applied to unit with 620 MMBtu/hr of bark feed and 170 MMBtu/hr natural gas. (Permit 946-A)
VOC	PSD BACT	0.027 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of bark feed and natural gas
СО	PSD BACT	0.35 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of a combination of bark feed and natural gas
NO_X	PSD and NSPS Db	0.3 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of a combination of bark feed and natural gas
Lead	NCASI	5.20E-06 lb/MMBtu	ESP	N/A	790 MMBtu/hr Heat Input Design Capacity
Acetaldehyde	NCASI	2.80E-04 lb/MMBtu	N/A		
Acrolein	NCASI	2.60E-04 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Benzene	NCASI	3.30E-03 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Formaldehyde	NCASI	1.30E-03	N/A		790 MMBtu/hr Heat

AFIN: 41-00002 Page 8 of 35

	Emission				
	Factor	Emission			
	Source	Factor	Control	Control	
SN	(AP-42,	(lb/ton, lb/hr,		Equipment	Comments
	·		Equipment	Efficiency	
	testing,	etc.)		_	
	etc.)	11 /3 /3 /15/			I D C
TT 1	D '1	lb/MMBtu			Input Design Capacity
Hydrogen	Boiler	2.20E-02	N/A		790 MMBtu/hr Heat
Chloride	MACT	lb/MMBtu			Input Design Capacity
Hexane	NCASI	1.8	N/A		790 MMBtu/hr Heat
Пелине	1(01101	lb/MMscf	1 1/11		Input Design Capacity
Naphthalene	NCASI	6.10E-04	N/A		
rvapitiiaiciic	NCASI	lb/MMscf	14/74		
Phenol	NCASI	1.60E-04	N/A		790 MMBtu/hr Heat
FIICHOI	NCASI	lb/MMBtu	IN/A		Input Design Capacity
		2.000.05			790 MMBtu/hr Heat
Toluene	NCASI	2.90E-05	N/A		Input Design Capacity,
		lb/MMBtu			No SF
A	NCAGI	4.20E-07	0E-07		790 MMBtu/hr Heat
Antimony	NCASI	lb/MMBtu	N/A		Input Design Capacity
	NCASI	1.90E-06	27/4		790 MMBtu/hr Heat
Arsenic		lb/MMBtu	N/A		Input Design Capacity
- ···	3.7.0.1.0.7	4.00E-07			790 MMBtu/hr Heat
Beryllium	NCASI	lb/MMBtu	N/A		Input Design Capacity
G 1 :	MGAGI	1.10E-03	27/4		790 MMBtu/hr Heat
Cadmium	NCASI	lb/MMscf	N/A		Input Design Capacity
	NCASI	4.90E-07 lb/MMBtu N/A		790 MMBtu/hr Heat	
Chromium VI				Input Design Capacity	
~.	37.01.07	2.40E-06	27/1		790 MMBtu/hr Heat
Chromium	NCASI	lb/MMBtu	N/A		Input Design Capacity
	3.7.0.1.0.7	2.40E-06	27/4		790 MMBtu/hr Heat
Cobalt	NCASI	lb/MMBtu	N/A		Input Design Capacity
		9.10E-05			790 MMBtu/hr Heat
Manganese	NCASI	lb/MMBtu	N/A		Input Design Capacity
	Boiler	5.76E-6			input Besign Cupacity
Mercury	MACT	lb/MMBtu	N/A		
		3.50E-06			790 MMBtu/hr Heat
Nickel	NCASI	lb/MMBtu	N/A		Input Design Capacity
		3.30E-06			790 MMBtu/hr Heat
Selenium	NCASI	lb/MMBtu	N/A		Input Design Capacity
SN-02 No. 3 Lime Kiln (NCASI Factors include a 20% safety factor)					
					Stack Test
PM_{10}/PM	NSPS BB	0.066 gr/dscf	ESP	98	8.6 lb PM ₁₀ /hr
SO_2	PSD	0.727 lb/Ton			PSD limit applied to
SO 2	เงก	U.14/10/10fl			FSD mini applied to

AFIN: 41-00002 Page 9 of 35

	Eii				
SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
		CaO (13.3 lb/hr)			unit with 440 tons per day of lime (Permit 946-A) (0.727*440)/24= lb/hr tpy *8760
VOC	PSD	0.795 lb/ton of CaO			287-AR-7 cites AP-42, 4th Edition, current AP-42 does not have a factor. Calculation of lb/h and tpy same as SO2. The permit has as PSD limit but 946- A did not have in PSD. Picked up as a PSD cite in 287-AR-7.
СО	PSD	3.0 lb/ton CaO			PSD limit applied to unit with 440 tons per day of lime (Permit 946-A) (3.0*440)/24= lb/hr tpy *8760
NO_X	PSD	3.63 lb/ton CaO			PSD limit applied to unit with 440 tons per day of lime (Permit 946-A) (3.63*440)/24= lb/hr tpy *8760
TRS	NSPS BB	8 ppm			1.34 lb/hr CEMS
Lead	NCASI	2.10E-05 lb/ton			
Acetaldehyde	NCASI	9.70E-03 lb/ton			
Benzene	Stack Test	0.24 lb/hr			
Formaldehyde	NCASI	9.40E-03 lb/ton CaO			
Methanol	NCASI	9.30E-02 lbs/ton			
Toluene	NCASI	8.30E-03 lb/ton CaO			
Antimony	NCASI	2.60E-06			

AFIN: 41-00002 Page 10 of 35

	1	·	1	1	
	Emission				
	Factor	Emission		Control	
SN	Source	Factor	Control	Equipment	Comments
511	(AP-42,	(lb/ton, lb/hr,	Equipment	Efficiency	Comments
	testing,	etc.)		Efficiency	
	etc.)	,			
	,	lb/tons			
		1.20E-06			
Arsenic	NCASI	lb/tons			
		3.30E-06			
Beryllium	NCASI	lb/tons			
		1.30E-05			
Cadmium	NCASI	lb/tons			
		4.00E-05			
Chromium	NCASI	lb/tons			
		1.10E-05			
Cobalt	NCASI				
		lb/tons			
Manganese	NCASI	1.10E-04			
		lb/tons			
Mercury	NCASI	5.40E-06			
		lb/tons			
Nickel	NCASI	8.30E-05			
TVICKOI		lb/tons			
Selenium	NCASI	1.80E-06			
		lbs/tons			
Source	SN-05 No. 2	2 Power Boiler	(NCASI facto	ors include a 20	% safety factor)
DM	NSPS D	0.1	Venturi	98	820 MMBtu/hr Design
PM_{10}	NSF3 D	lb/MMBtu	Scrubber	90	Heat Input Capacity
0.0	NCDC D	1.2	Venturi	00	820 MMBtu/hr Design
SO_2	NSPS D	lb/MMBtu	Scrubber	98	Heat Input Capacity
VOC	Stack Test	92 lb/hr			1 1
CO	MAGE	000			820 MMBtu/hr Design
CO	MACT	900 ppmvd			Heat Input Capacity
		0.7			820 MMBtu/hr Design
NO_X	NSPS	lb/MMBtu			Heat Input Capacity
		3.60E-05			Treat input cupucity
Lead	NCASI	lb/MMBtu			
		2.80E-04			
Acetaldehyde	NCASI	lb/MMBtu	N/A		
		2.60E-04			820 MMBtu/hr Design
Acrolein	NCASI	lb/MMBtu	N/A		Heat Input Capacity
					1 1
Benzene	NCASI	3.3E-03	N/A		820 MMBtu/hr Design
HC	C41. TD - 1	lb/MMBtu	NT/A		Heat Input Capacity
HCl	Stack Test	5.75 lb/hr	N/A		

AFIN: 41-00002 Page 11 of 35

Remission Factor Control Control Equipment Efficiency Comments		Б	<u> </u>	<u> </u>		T .
Source Factor (AP-42, testing, etc.) Control Equipment Equipment Efficiency Comments			Emission		Control	
Hexane	SM	Source	Factor	Control		Comments
Hexane	511	(AP-42,	(lb/ton, lb/hr,	Equipment		Comments
Hexane		testing,	etc.)		Efficiency	
Naphthalene		etc.)				
Naphthalene	Heyane	NCASI	1.8	N/A		820 MMBtu/hr Design
Phenol NCASI 1.60E-04 Ib/MMBtu 2.9E-05 Ib/MMBtu Scrubber 98 800 tons coal/day Scrubber Scrubber Scrubber 98 800 tons coal/day Scrubber Scrubber 98 800 tons coal/day Scrubber Scrubber Scrubber 98 800 tons coal/day Scrubber Scrub						Heat Input Capacity
Phenol	Naphthalene	Stack Test		N/A		
Toluene	Phenol	NCASI		N/A		
NCASI	1 Hello1	1107151		1 1/2 1		
Antimony NCASI 16/MMBtu Scrubber 98 800 tons coal/day NCASI 1b/MMBtu Scrubber 98 800 tons coal/day NCASI 1b/ton coal Scrubber 98 800 tons coal/day NCASI 1b/ton coal Scrubber 98 800 tons coal/day NCASI 1b/ton coal Scrubber 98 800 tons coal/day NCASI 1b/MMBtu Scrubber 98 800 tons coal/day NCASI 1b/MMBtu Scrubber 98 820 MMBtu/hr Design Heat Input Capacity NCASI 1b/ton coal Scrubber Scrubber 98 800 tons coal/day NCASI 1b/ton coal Scrubber Scrubb	Toluene	NCASI		N/A		
Antimony NCASI lb/MMBtu Scrubber 98 800 tons coal/day	Toraciic	1101151				
Arsenic NCASI 1.1E-04 1.1E-0	Antimony	NCASI			98	800 tons coal/day
Reserve	- Tillimony	1101151			70	ooo tons cour day
Beryllium	Arsenic	NCASI			98	800 tons coal/day
NCASI		1101101			70	ooo tons cour au
Cadmium	Bervllium	NCASI			98	800 tons coal/day
Cadmium NCASI lb/MMBtu Scrubber 98 800 tons coal/day Chromium VI NCASI 6.1E-6 lb/MMBtu Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Chromium NCASI 2.6E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Cobalt NCASI 1.0E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Manganese NCASI 2.50E-04 lb/mMBtu Scrubber Venturi Scrubber 98 800 tons coal/day Mercury MACT 5.76E-06 lb/mMBtu Scrubber Venturi Scrubber 98 800 tons coal/day Nickel NCASI 1.3E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1b/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) 98 800 tons coal/day PM10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test<		1,01201			, ,	ooo tons coun au
Chromium VI NCASI 6.1E-6 lb/MMBtu scrubber Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Chromium NCASI 2.6E-04 lb/ton coal lb/ton coal scrubber Venturi Scrubber 98 800 tons coal/day Cobalt NCASI 1.0E-04 lb/ton coal scrubber Venturi Scrubber 98 800 tons coal/day Manganese NCASI 1.0E-04 lb/ton coal scrubber Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Mercury MACT 1b/MMBtu Scrubber 98 800 tons coal/day Nickel NCASI 1b/MMBtu Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-04 lb/ton coal lb/ton coal scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr	Cadmium	NCASI			98	800 tons coal/day
Chromium VI NCASI NCASI lb/MMBtu lb/ton between the procession of the procession						,
Chromium NCASI 2.6E-04 lb/ton coal lb/ton coal Venturi Scrubber 98 800 tons coal/day Cobalt NCASI 1.0E-04 lb/ton coal lb/ton coal Venturi Scrubber 98 800 tons coal/day Manganese NCASI 2.50E-04 lb/MMBtu Scrubber Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Mercury MACT 5.76E-06 lb/MMBtu Scrubber Venturi Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/mBtu Scrubber Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) 98 800 tons coal/day SO2 PSD 286 lb/hr ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 980 lb/hr PSD limit fond 287-AR-3	Chromium VI	NCASI			98	<u> </u>
Chromium NCASI lb/ton coal Scrubber 98 800 tons coal/day Cobalt NCASI 1.0E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Manganese NCASI 2.50E-04 lb/MMBtu Scrubber Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Mercury MACT 5.76E-06 lb/MMBtu Scrubber Venturi Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/mo coal Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM on the same safety factor PSD limit from 287-AR-3 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr CO PSD 16.8 lb/ADTP 16.8 lb/ADTP						Heat Input Capacity
Cobalt NCASI 1.0E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Manganese NCASI 2.50E-04 lb/MMBtu Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Mercury MACT 5.76E-06 lb/MMBtu Venturi Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM 10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr ESP 98 PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 980 lb/hr AR-3 AR-3	Chromium	NCASI			98	800 tons coal/day
Cobalt NCASI lb/ton coal Scrubber 98 800 tons coal/day Manganese NCASI 2.50E-04 lb/MMBtu Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Mercury MACT 5.76E-06 lb/MMBtu Venturi Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/mMBtu Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) 98 800 tons coal/day PM10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr AR-3 CO PSD 16.8 lb/ADTP Blb/ADTP						,
Manganese NCASI 2.50E-04 lb/MMBtu Scrubber Venturi Scrubber 98 820 MMBtu/hr Design Heat Input Capacity Mercury MACT 5.76E-06 lb/MMBtu Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/ton coal Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) 98 800 tons coal/day PM10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr AR-3 CO PSD 16.8 lb/ADTP BRO In AR-3	Cobalt	NCASI			98	800 tons coal/day
Manganese NCASI lb/MMBtu Scrubber 98 Heat Input Capacity Mercury MACT 5.76E-06 lb/MMBtu Venturi Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM 10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr AR-3 CO PSD 16.8 lb/ADTP BR 16.8 lb/ADTP						,
Mercury MACT 5.76E-06 lb/MMBtu Scrubber Venturi Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/ton coal Scrubber Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Scrubber Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr CO PSD 16.8 lb/ADTP	Manganese	NCASI			98	<u> </u>
Mercury MACT lb/MMBtu Scrubber 98 800 tons coal/day Nickel NCASI 2.8E-04 lb/ton coal Venturi Scrubber 98 800 tons coal/day Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM10 NSPS BB 0.044 gr/dscf ESP 98 SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr CO PSD 16.8 lb/ADTP 16.8 lb/ADTP						Heat Input Capacity
Nickel NCASI 2.8E-04 Venturi Scrubber 98 800 tons coal/day	Mercury	MACT			98	800 tons coal/day
Nickel NCASI Ib/ton coal Scrubber 98 800 tons coal/day	,					,
Selenium NCASI 1.3E-03 lb/ton coal Venturi Scrubber 98 800 tons coal/day Source SN-06 No. 2 Recovery Boiler (NCASI factors include a 20% safety factor) PM ₁₀ NSPS BB 0.044 gr/dscf ESP 98 SO ₂ PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr CO PSD 16.8 lb/ADTP 16.8 lb/ADTP	Nickel	NCASI			98	800 tons coal/day
Selenium						,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selenium	NCASI			98	800 tons coal/day
PM ₁₀ NSPS BB 0.044 gr/dscf ESP 98 SO ₂ PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr CO PSD 16.8 lb/ADTP	G (00/ 6 / 6 /)
SO2 PSD 286 lb/hr PSD limit from 287-AR-3 VOC Stack Test 46.7 lb/hr CO PSD 16.8 lb/ADTP			,			0% safety factor)
SO2 PSD 286 lb/hr AR-3 VOC Stack Test 46.7 lb/hr 46.7 lb/hr CO PSD 16.8 lb/ADTP 16.8 lb/ADTP	PW110	NOLO BR	0.044 gr/asci	ESP	98	DCD limit from 207
CO PSD 980 lb/hr 16.8 lb/ADTP	SO_2	PSD	286 lb/hr			
CO PSD 980 lb/hr 16.8 lb/ADTP	VOC	Stack Test	46.7 lb/hr			
CO PSD 16.8 lb/ADTP			980 lb/hr			
lb/ADTP	CO	PSD				
			lb/ADTP			
	NO_X	PSD	309.2 lb/hr			

AFIN: 41-00002 Page 12 of 35

	Emission Factor Source	Emission Factor	Control	Control	
SN	(AP-42,	(lb/ton, lb/hr,	Equipment	Equipment Efficiency	Comments
	testing,	etc.)		Zinciency	
15	etc.)	5.3 lb/ADTP			
	270107	2.30E-05			
Lead	NCASI	lb/ton BLS			
Sulfuric Acid	NCASI	3.22 lb/hr			
Acetaldehyde	NCASI	6.1E-03			2160 tons BLS/day
rectardenyde	1101151	lb/ton BLS			788,400 tons BLS/yr
Benzene	NCASI	5.0E-03			2160 tons BLS/day
		1.5E-02			788,400 tons BLS/yr
Formaldehyde	NCASI	lb/ton BLS			
		8.80E-04			
Styrene	NCASI	lb/ton BLS			
A	NGAGI	1.00E-06			
Antimony	NCASI	lb/ton BLS			
Arsenic	NCASI	1.47E-06			
Arsenic		lb/ton BLS			
Beryllium	NCASI	9.68E-07			
	1101101	lb/ton BLS			
Cadmium	NCASI	1.20E-05			
		lb/ton BLS			
Chromium	NCASI	4.49E-05 lb/ton BLS			
		1.60E-05			
Chromium VI	NCASI	lb/ton BLS			
G 1 1	NGAGI	3.20E-06			
Cobalt	NCASI	lb/ton BLS			
Managanaga	NCACI	9.98E-05			
Manganese	NCASI	lb/ton BLS			
Mercury	NCASI	5.46E-06			
Wicicary	NCASI	lb/ton BLS			
Nickel	NCASI	7.92E-05			
		lb/ton BLS			
Selenium	NCASI	5.35E-06			
Hydrogen		lb/ton BLS			
Chloride	Stack Test	51.20 lb/hr			
Methanol	NCASI	0.045 lb/ton			2160 tons BLS/day
Medianoi	110/101	BLS			788,400 tons BLS/yr

AFIN: 41-00002 Page 13 of 35

	ı	1	ı		
SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
TRS	NSPS BB	5 ppm			NSPS BB 5PPMV
			Tank (NCAS	SI factors have a	a 20% safety factor)
PM ₁₀ / PM	NSPS BB	0.2 lb/ton BLS	Scrubber	80	PM is a PSD limit from 287-AR-3 2160 tons BLS/day 788,400 tons BLS/yr
SO_2	PSD	10.6 lb/hr	Scrubber	80	SO ₂ is a PSD limit from 287-AR-3
VOC	NCASI	0.066 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Acetaldehyde	NCASI	1.6E-03 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Ammonia	NCASI	0.41E-03 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Formaldehyde	NCASI	3.5E-03 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Methanol	NCASI	0.087 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Beryllium	NCASI	2.50E-07 lb/ton BLS			
TRS	NSPS BB	0.033 lb/ton BLS	Scrubber	60	2160 tons BLS/day 788,400 tons BLS/yr
Sou	rce SN-09 N	o. 2 Lime Kiln	(NCASI facto	rs have a 20% s	safety factor)
PM/PM ₁₀	Stack Test NSPS MM	51.0 lb/hr 0.064 gr/dscf	Scrubber	85	PM is a PSD limit
SO_2	Permit 946A	0.727 lb/ton CaO			Based on BACT for Lime Kiln No. 3 18.33 tons CaO/hr 160571 tons CaO/yr
VOC	AP-42, 4th edition, 1985	17.1 lb/hr			18.33 tons CaO/hr 160571 tons CaO/yr
СО	BACT	3.0 lb/ton CaO			Based on BACT for Lime Kiln No. 3
NO_X	AP-42, 4th edition,	3.7411 lb/ton CaO			18.33 tons CaO/hr 160571 tons CaO/yr

AFIN: 41-00002 Page 14 of 35

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
	1985				
Lead	NCASI	6.20E-03 lb/ton BLS			
Acetaldehyde	NCASI	9.70E-03 lb/ton CaO			18.33 tons CaO/hr 160571 tons CaO/yr
Benzene	Stack Test	0.23			
Methanol	NCASI	9.30E-02 lb/ton BLS			
Formaldehyde	NCASI	9.40E-03 lb/ton CaO			
Toluene	NCASI	8.3E-03 lb/ton CaO			
Antimony	NCASI	3.70E-06 lb/tons BLS			
Arsenic	NCASI	1.30E-05 lb/tons BLS			
Beryllium	NCASI	1.19E-06 lb/tons BLS			
Cadmium	NCASI	2.60E-05 lb/tons BLS			
Chromium	NCASI	2.70E-04 lb/tons BLS			
Cobalt	NCASI	1.00E-05 lb.tons BLS			
Manganese	NCASI	1.70E-03 lb.tons BLS			
Mercury	NCASI	4.00E-06 lb.tons BLS			
Nickel	NCASI	3.10E-04 lb/tons BLS			
Selenium	NCASI	1.40E-05 lb.tons BLS			
TRS	NSPS BB	8.00 ppmvd @10% O ₂	Scrubber	25	CEMS
Source	SN-14 No. 3	Recovery Boil	er (NCASI fa	ctors have a 20	% safety factor)
PM ₁₀ /PM	PSD NSPS	93.5 lb/hr 0.044 gr/dscf	ESP	98	controlled
SO_2	PSD	425.0 lb/hr			287-AR had a PSD

AFIN: 41-00002 Page 15 of 35

SN	Emission Factor Source	Emission Factor	Control	Control Equipment	Comments
514	(AP-42, testing, etc.)	(lb/ton, lb/hr, etc.)	Equipment	Efficiency	Comments
		250 PPM			avoidance limit of the firing rate of BLS. CEMS can show
					compliance now. 1861.5 tpy
VOC	AP-42, 4th edition, 1985	0.8 lb/ADTP			INCOMPLETE Calculations
CO	CEMS	856 lb/hr			
NOx	CEMS	270 lb/hr			PSD Limit
A 4 11 1 1	NCAGI	4.2E-04			2,800 tons/day
Acetaldehyde	NCASI	lb/ton BLS			1,022,000 tons/yr
Benzene	NCASI	6.4E-04			2,800 tons/day
Belizelle	NCASI	lb/ton BLS			1,022,000 tons/yr
Formaldehyde	NCASI	6.6E-03 lb/ton BLS			2,800 tons/day 1,022,000 tons/yr
Hydrogen Chloride	Stack Test	54.50 lb/hr			
Methanol	NCASI	0.045 lb/ton BLS			2,800 tons/day 1,022,000 tons/yr
Styrene	NCASI	8.8E-04 lb/ton BLS			2,800 tons/day 1,022,000 tons/yr
Sulfuric Acid	Stack Test	4.20 lb/hr			
TRS	CEMS	6.6 lb/hr			PSD Limit
Source SN	-15 - No. 3 S	melt Dissolving	Tank (NCAS	I factors have a	a 20% safety factor)
PM ₁₀ /PM	PSD NSPS BB	18.7 lb/hr 0.1 g/kg BLS	Scrubber	90	
SO_2	PSD	5.1 lb/hr	Scrubber	10	
VOC	NCASI ⁷	0.066 lb/ton BLS			2800 tons/day 1,022,000 tons/year
TRS	PSD NSPS BB	1.6 lb/hr 0.0168 g/kg BLS	Scrubber	25	
Acetaldehyde	NCASI	1.6E-04 lb/ton BLS			
Ammonia	NCASI	0.41 lb/ton BLS			

AFIN: 41-00002 Page 16 of 35

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
Formaldehyde	Stack Test	0.58 lb/hr			
Methanol	NCASI	0.087 lb/ton BLS			
Beryllium	NCASI	2.5E-07 lb/ton BLS			
Sources SN-16		eachplant Vents ant Vents (NCA		-	t Vents and SN-18 - No. (r factor)
VOC	Stack Test	32.0 lb/hr			Bubbled Sources
CO	Stack Test	240.4 lb/hr			
Acetaldehyde	NCASI	0.0037 lb/ADTUBP			3,407 ADTUBP/day 1,234,555 ADTUBP/yr
Chlorine	Stack Test	6.00 lb/hr	Scrubber	99	
Chlorine Dioxide	Stack Test	4.00 lb/hr	Scrubber	99	
Chloroform	Stack Test	16.50 lb/hr			
Formaldehyde	NCASI	4.2E-4 lb/ADTUBP			3,407 ADTUBP/day 1,234,555 ADTUBP/yr
HCl	NCASI	0.022 lb/ADTUBP			3,407 ADTUBP/day 1,234,555 ADTUBP/yr
Methanol	NCASI	0.16 lb/ADTUBP			3,407 ADTUBP/day 1,234,555 ADTUBP/yr
TRS	NCASI	0.016 lb/ADTUBP			3,407 ADTUBP/day 1,234,555 ADTUBP/yr
		Source SN-20 -	ERCO ClO2	Generator	
Chlorine	Stack Test	0.30 lb/hr			
Chlorine Dioxide	Stack Test	3.00 lb/hr			
Source SN	V-21 - Effluen	t Treatment Lag	goons (NCAS	I factors have a	20% safety factor)
VOC	NCASI	248.9 lb/hr			Sum of methanol, formaldehyde, and chloroform estimates 75 Mgal/day effluent
Chloroform	NCASI	5E-03			3,770 ADTUBP/day

AFIN: 41-00002 Page 17 of 35

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
		lb/ADTUBP			1,376,050 ADTUBP/yr
Formaldehyde	NCASI	0.76 ppmw			3,770 ADTUBP/day 1,376,050 ADTUBP/yr
Methanol	NCASI	4.9 A 21.4 B 0.25 C 0.25 D			3,770 ADTUBP/day 1,376,050 ADTUBP/yr Contributions from sources: A: Bleach Plant [lb/ADTUBP] B: Condensates [lb/ADTUBP] C: Clarifier Effluent [ppmw] D: Clarifier Fugitive [ppmw]
Source SN-22	- No. 1A and	1B Brownstoc	k Washers (N	CASI factors h	ave a 20% safety factor)
VOC	stack test	1A 0.57 lb/ton pulp and No. 1B .06173 lb/ton pulp	wasiers (iv	C/AST factors in	59.2 lb/hr 259.3 tpy
Acetone	stack test	8.80 lb/hr			
Formaldehyde	stack test	0.2 lb/hr			
Methanol	stack test	59 lb/hr			
TRS	NCASI	0.23 lb/ADTUBP			1,152 ADTUBP/day 420,480 ADTUBP/yr
		irce SN-23 - Sto	orage Tank - N	Methanol Tank	
VOC	AP-42 Sec. 7.1.3.1	39.81 lb/hr			
Methanol	AP-42 Sec. 7.1.3.1	39.81 lb/hr			
SN-28 - Storage Tank	45.10	(() 1) "			
VOC	AP-42	6.62 lb/hr			

AFIN: 41-00002 Page 18 of 35

	· - · ·	ī	T	T	
	Emission				
	Factor	Emission		Control	
SN	Source	Factor	Control	Equipment	Comments
511	(AP-42,	(lb/ton, lb/hr,	Equipment	Efficiency	Comments
	testing,	etc.)		Efficiency	
	etc.)				
	Sec.				
	7.1.3.1				
	AP-42				
Formic Acid	Sec.	6.62 lb/hr			
	7.1.3.1				
Source	e SN-29 - Red	causticizer Vent	s (NCASI fac	ctors have a 20%	% safety factor)
		0.031			1,152 tons CaO/day
PM/PM_{10}	NCASI	lb/ton CaO			420,500 tons CaO/yr
MOC	NCAGI	2 (2 11 //			Sum of acetaldehyde
VOC	NCASI	3.62 lb/hr			and methanol
					Emission factor is
					from the previous
	NGAGI	2.1E-2 lb/ton			permit. Permittee
Acetaldehyde	NCASI	CaO			requested to keep
					existing emission limit
					of 0.51 lb/hr.
	3.50 1.05	0.46 lb/ton			1,152 tons CaO/day
Ammonia	NCASI	CaO			420,500 tons CaO/yr
	3.7.0.1.0.7	0.054 lb/ton			1,152 tons CaO/day
Methanol	NCASI	CaO			420,500 tons CaO/yr
Sources SN-3	0A. SN-30B.	SN-30C, SN-3	0D. SN-30E a	and SN-30E – F	PCC Carbonators Lime
		, ,	Silos		
PM_{10}	Stack test	4.8 lb/hr			
SO_2	Stack test	2.4 lb/hr			
VOC	Stack test	12.6 lb/hr			
CO	Stack test	54.6 lb/hr			
NO _X	Stack test	65.4 lb/hr			
TRS	Stack test	0.36 lb/hr			
	Source SN-36		Liquor Tanks	(Tanks #1 thro	ugh #10)
		0.713	Liquoi Tunks	(1mms //1 mic	
VOC	NCASI	lb/hr/tank			
		0.016			
Acetone	NCASI	lb/hr/tank			
		0.0032			
Acetaldehyde	NCASI	lb/hr/tank			
		0.71			
Methanol	NCASI	lb/hr/tank			
TRS (#1-#9)	Stack test	0.1 lb/hr			PSD limit
ΙΚΟ (π1-π/)	Diack icst	U.1 IU/III			

AFIN: 41-00002 Page 19 of 35

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
TRS (#10)	Stack test	0.0531			PSD limit
	Source S	SN-37 - Pulp D1	yer Hood and	l Vacuum Exha	
VOC	Stack test	4.7 lb/hr			R0 Application: production rate 37.5 tph finished pulp @7% moisture which is 34.875 tph bone dry pulp
					900 air dried tons per day finished product Permitted 8,760 hours (328,500 ADTFP/yr)
Acetaldehyde	NCASI	0.033 lb/ADTFP			See comment for VOC. Permit limit includes 20% safety factor
Methanol	NCASI	0.071 lb/ADTFP			See comment for VOC. Permit limit includes 20% safety factor
	So	urce SN-38 - No	o. 2 and No. 3	Wood Yards	
PM	AP-42 Section 13.2.4	5.6 lb/hr			Bark, Chips, Wind Erosion, and Jet Screen
PM ₁₀	AP-42 Section 13.2.4	4.14 lb/hr			Bark, Chips, Wind Erosion, and Jet Screen
VOC	NCASI	2.16 lb/hr			Assumes 50% moisture, 100% softwood PSD Limit
	So	urce SN-39 – H	ligh Density S	Storage Tanks	
VOC Acetaldehyde	NCASI	0.151 lb/hr/tank			11 tanks Sum of acetaldehyde, chloroform, and methanol 20% SF
Acetaldehyde	NCASI	0.02			

AFIN: 41-00002 Page 20 of 35

	T	T	T	T	<u> </u>
	Emission Factor	Emission			
	Source	Factor	Control	Control	
SN			Control	Equipment	Comments
	(AP-42,	(lb/ton, lb/hr,	Equipment	Efficiency	
	testing,	etc.)		J	
	etc.)				
		lb/hr/tank			20% SF
Chloroform	NCASI	0.011			11 tanks
Cinorororiii	1107151	lb/hr/tank			20% SF
Methanol	NCASI	0.12			11 tanks
Wiethanor	NCASI	lb/hr/tank			20% SF
TRS	NCASI	0.349			11 tanks
IKS	NCASI	lb/hr/tank			20% SF
Agatoma	NCACI	0.027			11 tanks
Acetone	NCASI	lb/hr/tank			20% SF
	Source SN-	40 - No. 1A and	No. 1B Dige	ster Chip Fill E	Exhausts
					Compliance
					demonstrated by
					limiting time between
		2.09 lb/fill			blows
VOC	Stack Test				Sum of Methanol and
,					Ethanol
					Max 4.8 fills/hr
					2,304 ADTP/day
					840,960 ADTP/yr
					Compliance
					demonstrated by
Methanol	Stack Test	5.75 lbs/hr			limiting time between
					blows
					Max 4.8 fills/hr
					Compliance
					demonstrated by
					limiting time between
TRS	NCASI	2.02 lb/hr			blows
1110	1,01101	2.02 10/111			Max 4.8 fills/hr
					2,304 ADTP/day
					840,960 ADTP/yr
	<u> </u>	Source SN-	<u>1 </u>	andfill	0 10,200 111/yl
	AP-42	1.36E-3	.i Sidage L		344,000 yd ³ /yr
PM	Section	lb/ton			170 yd ³ /hr
1111	13.2.4	Sludge			947.7 lb/yd^3
	AP-42	<u> </u>			344,000 yd ³ /yr
PM_{10}	Section	6.5E-4 lb/ton			170 yd ³ /hr
1 1/11()	13.2.4	Sludge			947.7 lb/yd ³
VOC	LandGEM	63.15 lb/hr			2 17 10/ Ju
		00.10 10/111		l	

AFIN: 41-00002 Page 21 of 35

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
(as NMOC)					
СО	LandGEM	4.8 lb/hr 1.8 tpy			
HAPS	LandGEM				See Permit For Emission Rates
		Source SN	I-42 - No. 2 D	Decker	
VOC	Stack Test	5.6 lb/hr			Sum of acetaldehyde, formaldehyde, methanol, and terpenes (0.48 lb terpenes/ADTUBP)
Acetaldehyde	NCASI	5.9E-03 lb/ADTUBP			1,100 ADTUBP/day 401,500 ADTUBP/yr 20% SF
Acetone	Stack Test	7.52 lb/hr			
Formaldehyde	NCASI	3.3E-03 lb/ADTUBP			1,100 ADTUBP/day 401,500 ADTUBP/yr 20% SF
Methanol	Stack Test	3.3 lb/hr			
TRS	NCASI	0.044 lb/ADTUBP			1,100 ADTUBP/day 401,500 ADTUBP/yr 20% SF
		Source SN	N-43 - Tub Gr	inder	
PM ₁₀ /PM	AP-42 Table 3.3-	0.31 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
SO_2	AP-42 Table 3.3-	0.29 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
VOC	AP-42 Table 3.3-	0.36 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
СО	AP-42 Table 3.3-	0.95 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
NO_X	AP-42 Table 3.3-	4.41 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
HAPs	AP-42				4 MMBtu/hr

AFIN: 41-00002 Page 22 of 35

I r.					
SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
	Table 3.3-				258,000 gallon/yr
	2				0.13 MMBtu/gal
	Sources SN-	44a, SN-44b, S	N-44c and SN	V-44d - Paper M	
VOC	Testing	44A: 2.0 44B: 4.7 44C: 5.6 44D: 10.3			Emission factors are in 1b/hr by machine.
Acetaldehyde	NCASI	0.033 lb/ADTFP			SN-44A 19.1 ADTFP/hr 167,316 ADTFP/yr SN-44B &C 30.77 ADTFP/hr 269,553 ADTFP/yr SN-44D 79.92 ADTFP/hr 700,070 ADTFP/yr ADTFP – air dried tons of finished product 20% SF
Acrolein	NCASI	1.6E-3 lb/ADTFP			See Comments for Acetaldehyde 20% SF
Formaldehyde	NCASI	6.4E-3 lb/ADTFP			See Comments for Acetaldehyde 20% SF
Methanol	Testing	44A: 2.00 44B: 4.70 44C: 5.60 44D: 6.80			Limited by VOC and Methanol in shower water Emission factors are in lb/hr by machine.
Source SN-4	45 - Oxygen 1	Delignification (System (NCA	SI factors have	a 20% safety factor)
VOC	Stack Test	9.1 lb/hr			1,100 ADTUBP/day
СО	Stack Test	16.5 lb/hr			1,100 ADTUBP/day

AFIN: 41-00002 Page 23 of 35

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments	
Acetaldehyde	NCASI	0.034 lb/ADTP			1,100 ADTUBP/day	
Formaldehyde	NCASI	0.0017 lb/ADTP			1,100 ADTUBP/day	
Methanol	Stack Test	9.11 lb/hr			1,100 ADTUBP/day	
TRS	Stack Test	2 lb/hr			1,144 ADTUBP/day	
		SN-4	6 – Haul road	S	•	
PM/PM ₁₀	Estimate	0.16 lb/VMT		Subject to road maintenance plan	Overall lb/VMT for both paved/undpaved with controls included	
SN-50	, SN-53, SN-	54a, SN-54b, S	N-57, SN-58,	and SN-59 - S	tationary RICE	
PM/PM ₁₀	AP-42 Table 3.3-					
SO_2	AP-42 Table 3.3-					
VOC	AP-42 Table 3.3-					
СО	AP-42 Table 3.3-					
NO_X	AP-42 Table 3.3-					
НАР	AP-42 Table 3.3-					
SN-55 – Paper Additive Silos						
PM/PM ₁₀	Mass Balance	0.03 gr/dscf	Fabric filter			
		SN-56 -	- Dye Operati	ion		
VOC	Mass Balance				Emission factor varies by MSDS for each product used.	

AFIN: 41-00002 Page 24 of 35

16. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
01	PM	5	Every 5 years	§19.702
01	PM_{10}	201A or 5 and 202	Every 5 years	§19.702
01	VOC	Method 25A	Every 5 years	§19.702
01	Filterable PM	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
01	HCl	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
01	Mercury	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
02	PM/PM_{10}	5 or 29	Initial test	§63.865
02	O_2	3, 3A or 3B	Initial test	§63.865
02	PM	5	Every five years	§18.1002
02	PM_{10}	201A or 5 and 202	Every five years	§19.702
02	VOC	25A	Every five years	§19.702
05	PM	5	Every five years	§18.1002
05	PM_{10}	201A or 5 and 202	Every five years	§19.705
05	VOC	25A	Every five years	§19.705
05	HC1	26A	Every five years	§18.1002
05	Filterable PM	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
058	HCl	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
05	Mercury	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
06	VOC	25A	Every five years	§19.705

AFIN: 41-00002 Page 25 of 35

SN	Pollutants	Test Method	Test Interval	Justification
06	PM	5 and 202	Every five years	§19.705
06	PM ₁₀	201A or 5 and 202	Every five years	§19.705
08	TRS	16	Every five years	§18.1002
08	VOC	25A	Every five years	§19.705
08	O_2	3A or 3B	Once	§63.865
08	PM	5	Every five years	§19.705
08	PM ₁₀	201A or 5 and 202	Every five years	§19.705
08	Ammonia	Method 206	Every five years	§18.1002
09	PM	5 or 29	Once	§63.865
09	O_2	3A or 3B	Once	§63.865
09	NO_X	7E	Every five years	§19.705
14	PM ₁₀	201A or 5 and 202	Every five years	§19.702
14	VOC	25A	Every five years	§19.702
15	TRS	16	Annual	§19.804
15	Ammonia	206	Every five years	§19.703
15	PM	5 or 29	Initial	63.865
15	O_2	3 or 3A	Initial	63.865
15	VOC	Method 25A	Every five years	§19.702
16, 17,18	Pressure differential	Pressure transmitter	Yearly	63.453(a)(1)
16, 17,18	Cl ₂ , ClO ₂	NCASI Special Report Number 91-07	Every five years	18.1002
16,17,18	СО	10B	Every five years	§19.703
16,17,18	VOC	25A	Every five years	§19.703
20	Cl ₂ , ClO ₂	NCASI Special Report Number 91-07	Every five years	18.1002
21	COD	Water Test	Daily	63.453(j)
21	Horsepower of Aerator units	Observation	Daily	63.453(j)
21	Inlet liquid flow	Flow Meter	Daily	63.453(j)
21	Liquid Temperature	Thermocouple	Daily	63.453(j)
21	BOD ₅ percent reduction	BOD_5	Quarterly	63.453(j)
22	Methanol	25D	Yearly	§18.1003
22	Acetone	25D	Yearly	§18.1003
30	PM	5	Every five years	§19.702
30	PM/PM_{10}	201A or 5 and	Every five years	§19.702

AFIN: 41-00002 Page 26 of 35

SN	Pollutants	Test Method	Test Interval	Justification
		202		
30	SO_2	6C	Every five years	§19.702
30	VOC	25A	Every five years	§19.702
30	NO_X	7E	Every five years	§19.702
30	СО	Method 10B	Every five years	§19.702
37	VOC	25D	Yearly	§19.702
45	VOC	25A	Every 5 years	§19.705
45	CO	10	Every 5 years	§19.705
54a	Formaldehyde	Method 320 or 323 of 40 CFR Part 63, App A	Initial	§63.6620 One test per engine
54b	Formaldehyde	Method 320 or 323 of 40 CFR Part 63, App A	Initial	§63.6620 One test per engine

17. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
01	CO, NO _X	CEM	Every 15 minutes; Average once/ hour	N
01	Opacity	COM	Six-minute average	N
02	TRS	CEM	12-hour Average	N
02	CO, O_2	CEM	Every 15 minutes; Average once/ hour	N
02	Opacity	COM	Six-minute average	N
05	SO_2 , CO , NO_X , O_2	CEM	Every 15 minutes; Average once/ hour	N
05	Temperature Scrubbing Liquid Flow rate Pressure Drop of Gas Stream	CPMS	Continuous	N
06	SO_2 , CO , NO_X TRS, O_2	CEM	Every 15 minutes; Average once/ hour	N
06	Opacity	COM	Six-minute average	N
06	Floor Tube	CPMS	Continuous	N

AFIN: 41-00002 Page 27 of 35

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
08	Temperature Pressure Drop of gas stream Pressure of liquid supply Scrubbing liquor flow rate	CPMS	Continuous	Y
09	CO, TRS, O_2	CEM	Every 15 minutes; Average once/ hour	N
09	Scrubbing liquid flow rate Air pressure drop across scrubber Temperature of lime kiln	CPMS	Continuous	N
14	Opacity	COM	Six-minute average	N
14	CO, NO _X , TRS, O ₂	CEM	Every 15 minutes; Average once/ hour	N
14	SO_2	CEM	Every 15 minutes; Average once/ hour	Y
14	Temperature	CPMS	Continuous	N
15	Scrubber gas pressure drop Scrubber Liquid Pressure	CPMS	Continuous	Y
15	Scrubbing liquid flow rate	CPMS	Every 8 hours – average the three daily readings	N
16	Inlet air flow rate Scrubbing liquid flow rate Inlet pH of Scrubber Liquid	CPMS	Continuous	N
17	Inlet air flow rate Scrubbing liquid flow rate Inlet pH of Scrubber Liquid	CPMS	Continuous	N
18	Inlet air flow rate Scrubbing liquid flow rate Inlet pH of Scrubber Liquid	CPMS	Continuous	N

AFIN: 41-00002 Page 28 of 35

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
20	Absorption Water Temperature	Thermocouple	Once per shift	N
36	Temperature	CPMS	Continuous	N

18. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
01	Fuel Usage	Recording of pounds of fuel used	Daily	N
01	Fuel Usage	Recording of pounds of fuel used	Monthly Average	Y
01	Fuel Usage	Recording of pounds of fuel used	12-month Rolling Average	Y
01	Hourly NO _X Emission Rate	237 lb/hr	Hourly	Y
01	30-day average NO _X emission rates	0.3 lb/MMBtu	30-day rolling average	Y
01	30-day average CO emission rates	0.35 lb/MMBtu	30-day rolling average	Y
01	Moisture Content of Biomass Fuel	Must exceed 40% by weigh on an as fired annual heat input basis	Monthly	Y
01	HCl and Mercury content per fuel analysis	No standard – Boiler MACT	Concurrently with performance testing, annually	Y
01	Type of fuel and amount during Startup/Shutdown	No standard – Boiler MACT	Per Event	Y
01	BTU Loading	790 MMBTU/hr	Daily	Y

AFIN: 41-00002 Page 29 of 35

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
02	TRS		Twelve-hour	Y
02	Concentration		Average	1
02	O_2		Twelve-hour	N
02			Average	11
02	Period pre-coat	75% feed		N
02	filter isolated	capacity for kiln		
02	CO and NO _X	240.9 tpy CO	30-day rolling	N
02	CO una Trox	291.3 tpy NO_{X}	averages	
	%Solids of lime	65%		
02	mud feed	30-day rolling	Daily	N
		average		
02	CaO Production	Ton/d	daily	Y
05	Fuel Usage	tpd	daily	Y
05	Fuel Usage	tpd	Month	Y
		Must exceed		
2.5	Moisture Content	40% by weight		
05	of Biomass Fuel	on an as fired	Monthly	Y
		annual heat input		
		basis	G 1	
	HCl and Mercury	NT 4 1 1	Concurrently	
05	content per fuel	No standard –	with	Y
	analysis	Boiler MACT	performance	
	Tyma of fuel and		testing, annually	
05	Type of fuel and amount during	No standard –	Per Event	Y
03	Startup/Shutdown	Boiler MACT	rei Event	1
	Startup/Silutuowii	Must be 10% or		
	Biomass heat	greater on an	Monthly	
05	input	annual heat input		Y
	mput	basis		
06	TRS emission	12-hour average	Daily	N
06	O ₂ Concentration	12-hour average	Daily	N
	Hourly HCl	One-hour	•	
06	Emissions	average	Hourly	N
_	Floor Tube			
06	Temperature	3-hour average	Hourly	Y
0 -	Floor Tube			
06	Temperature	monthly average	monthly	Y
0.0	Black Liquor	D'1 C 1	Б.11	3.7
06	Solids Rate	Daily feed	Daily	N
000	Pressure Drop of	T	0 110) T
08	gas stream	Instantaneous	Once per shift	N
08	Pressure of liquid	Instantaneous	Once per shift	N

AFIN: 41-00002 Page 30 of 35

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
	supply			
08	Scrubbing Liquor flow Rate	Flow Meter	Hourly	Y
08	Pressure Drop of gas stream	Pressure Drop	Once Every 15- minutes	Y
08	Scrubbing Liquor flow Rate	Flow Meter	Once Every 15- minutes	Y
09	TRS Concentration	CEMS	12-hour average	N
09	O ₂ Concentration	CEMS	12-hour average	N
09	Pressure Drop of gas stream	Instantaneous	Once per shift	N
09	Pressure of liquid supply	Instantaneous	Once per shift	N
09	Temperature	1-hour Rolling average	hourly	N
09	%Solids of lime mud feed	65% 30-day rolling average	Daily	N
09	CaO Production Rate	daily	daily	
09	Liquid Flow rate	Daily		N
09	Gas pressure drop	CEMs	Daily	N
12	Fuel Usage		Daily	Y
12	Fuel Usage		Monthly	Y
12	Hours of Operation		Hour	Y
12	Steam Loading		Hourly	N
14	TRS concentration		12-hour average	N
14	Black Liquor Firing Rate		Time below 1.5 MMlbs/day	N
14	HCl emissions	54.5 lb/hr and 238.71 tpy	Hourly	Y
14	BLS firing rate	1 4	Daily	Y
15	Scrubber Gas Pressure drop		Once per shift/ once every 15 minutes	Y
15	Scrubber Liquid Supply Pressure		Once per shift	Y
15	Scrubber Liquid flow Rate	175 gpm	Once per shift/ once every 15 minutes	Y

AFIN: 41-00002 Page 31 of 35

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
16	Fan Amperage	65 -105 amperes	Once per shift	Y
16	Scrubber Liquid flow Rate	300 gallons/minute	Once per shift	
17	Scrubber Liquid flow Rate	300 gallons/minute	Once per shift	
17	Fan Amperage	50 -105 amperes	Once per shift	Y
18	Scrubber Liquid flow Rate	350 gallons/minute	Once per shift	
18	350 gallons/minute	30 -80 amperes	Once per shift	Y
20	Scrubber Water Temperature		Once per shift	N
23	Tank Dimensions			N
23	Methanol Throughput	18,850,000 lbs/12 months	Monthly	Y
28	Formic Acid throughput	5,336,000 lbs/12 months	Monthly	Y
29	Lime processed	420,500 tons/12 months	Monthly	Y
36 Tank #10	Weak Black Liquor Throughput	2,018,304,000 gallon/12 months	Monthly	Y
37	Finished Product (Pulp)	328,500 tons of air dried pulp	Monthly	Y
38	Woodchips processed	4,320,000 tons/12 months	Monthly	Y
40	Time sample port is opened	Only when retrieving sample	Daily	N
40	Spacing of digester blows	Minimum of 25 minutes	Daily	N
41	Sludge put in landfill	163,000 tons/12 months	Monthly	Y
42, 45	Unbleached Pulp	535,090 tons of air dried unbleached pulp	Monthly	Y
43	Fuel Consumption	258,000 gallons/12 months	Monthly	Y
44A	Finished Product	167,316 tons air dried paper/12 months	Monthly	Y
44B	Finished Product	269,553 tons air dried	Monthly	Y

AFIN: 41-00002 Page 32 of 35

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)	
		paper/12 months			
		269,553 tons			
44C	Finished Product	air dried	Monthly	Y	
		paper/12 months			
		700,070 tons			
44D	Finished Product	air dried	Monthly	Y	
440	Tillislied Froduct	product/12	Wioning	1	
		months			
01,03,05	Tire derived fuel	220 tons/24-	Daily	Y	
01,03,03	The derived ruer	hours	Daily	1	
	Units Operating				
ALL	at less than 25%		Yearly	Y	
	capacity				
RICE	Hours of	500 hrs / 12	Per event	Y	
KICE	Operation	months	1 Ci event	1	
56	Dye Usage	12.8 tons/12	Monthly	Y	
30	Dye Usage	months	wioning	1	

19. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
01	20	Boiler fired with many different fuels	COMS - submittals in accordance with CEM standards
01	10	Boiler MACT	COMS operated according to Boiler MACT
02	20	This is a lime kiln. Particulate emissions are present which are not entirely caused by fuel combustion.	COMS - submittals in accordance with CEM standards
03	5	Fires only natural gas.	Fires only natural gas
05	20	This is a boiler which is fired with many different types of fuel.	Scrubber parameters - no submittal of records required.
06	20	Recovery boiler. The highest allowable under the NSPS is 35%. The boiler is limited to 20% because of Department	COMS - submittals in accordance with COM standards

AFIN: 41-00002 Page 33 of 35

SN	Opacity	Justification for limit	Compliance Mechanism
		regulations.	
08	20	Smelt tank with 18 lb/hr of particulate matter emissions.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
09	20	This is a lime kiln which has particulate matter emissions from fuel combustion as well as from proper operation of the kiln.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
14	20	Recovery boiler. The highest allowable under the NSPS is 35%. The boiler is limited to 20% because of Department regulations.	COMS - submittals in accordance with CEM standards
15	20	Smelt tank with PM emissions of 18.7 lb/hr.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
43	5	Tub grinder fired with diesel fuel.	Weekly observations - no submittal of records required
RICE	20 – Diesel 5 – Propane/Nat Gas	Regulation 19.501	Daily for events lasting more than 24 hours and annual check

20. DELETED CONDITIONS:

Former SC	Justification for removal
	N/A

AFIN: 41-00002 Page 34 of 35

21. GROUP A INSIGNIFICANT ACTIVITIES:

The following is a list of Insignificant Activities including revisions by this permit.

	G A			Emissi	ions (tpy	7)		
Source Name	Group A	DM/DM	0.2	VOC	СО		HA	.Ps
	Category	PM/PM ₁₀	SO_2	VOC CO NO	NO_x	Single	Total	
250 gal								
lubricating/hydraulic	A2			5E-05				
oil tanks (5,000 gal	112			3L 03				
site wide)								
Used Oil Storage	A3			8E-05				
Tank (10,000 gal)								
Woodyard Diesel Tank (9,425 gal)	A3			0.014				
Woodyard								
Hydraulic Oil Tank	A3			9E-05				
(9,425 gal)	113)L 03				
Medium Diesel								
Tanks (<10,000 gal	A3			0.014				
site wide)								
Small Diesel Tanks	A3			0.01				
(<1,000 gal each)	AS			0.01				
Paper Machine	A3			0.01				
Portable Tote Bins	115			0.01				
Caustic Storage	A4							
Tanks	٨٥			0.21				0.21
Laboratory Hoods Mill Services	A5			0.21				0.21
(storeroom) gasoline	A13			1.65				
tank (130,000 gal)	AIS			1.03				
Brock Services								
Gasoline Tank (552	A13			0.27				
gal)								
Coal Pile	A13	0.03						
Turpentine Storage	A13			0.546				
Tank (18,612 gal)				0.540				
Cooling Tower ^a #1	A13	0.05						
Cooling Tower ^a #2	A13	0.02						
Cooling Tower ^a #3	A13	0.03						
Cooling Tower ^a #4	A13	0.05						
Cooling Tower a #5	A13	0.11						
Cooling Tower a #6	A13	0.04						
Cooling Tower ^a #7	A13	0.005						

AFIN: 41-00002 Page 35 of 35

Cooling Tower ^a #8	A13	0.060			
Cooling Tower ^a #9	A13	0.008			
Cooling Tower ^a #10	A13	0.053			
Cooling Tower ^a #11	A13	0.025			
Cooling Tower ^a #12	A13	0.454			
Cooling Tower ^a #13	A13	0.329			
Cooling Tower ^a #14	A13	0.350			
Cooling Tower ^a #15	A13	0.387			
Converting Area	A13		0.26		0.26
Mobile Wood	A13	0.31			
Chipper	AIS	0.31			
Materials Mixer #1	A13	0.15			
Materials Mixer #2	A13	0.15			

22. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
0287-AOP-R23	

Facility Name: Domtar (Ashdown) Permit Number: 0287-AOP-R24

AFIN: 41-00002

\$/ton factor	25.13	Annual Chargeable Emissions (tpy)	15741.43
Permit Type	Modification	Permit Fee \$	1000
			-
Minor Modification Fee \$	500		
Minimum Modification Fee \$	1000		
Renewal with Minor Modification \$	500		
Check if Facility Holds an Active Minor Source	e or Minor		
Source General Permit			
If Hold Active Permit, Amt of Last Annual Air Permit Invo	pice \$ 0		
Total Permit Fee Chargeable Emissions (tpy)	0.38		
Initial Title V Permit Fee Chargeable Emission	s (tpy)		

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
PM		2100.63	2100.73	0.1	0.1	2100.73
PM_{10}		1799.73	1798.03	-1.7		
PM _{2.5}		0	0	0		
SO_2		7887.91	5483.41	-2404.5	0	4000
VOC		5669.21	5669.31	0.1	0	4000
со		12052.58	12058.58	6		
NO_X		6776	5548.9	-1227.1	0	4000
Lead		0.82	0.82	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
1,1,1- Trichloroethane		0	0	0	0	0
Acetone		73.56	73.63	0.07	0.07	73.63
Ammonia		493.24	493.24	0	0	493.24
Chlorine		8.78	8.78	0	0	8.78
Chlorine Dioxide		30.66	30.66	0	0	30.66
Dichloromethane		0.02	0.02	0	0	0.02
H2S		0.34	0.55	0.21	0.21	0.55
HCl		634.55	634.55	0	0	634.55
Perchloroethylene		0	0	0	0	0
Sulfuric Acid		32.5	32.5	0	0	32.5
TRS		366.77	366.77	0	0	366.77