Rineco 1007 Vulcan Road Haskell, Arkansas 72015 AFIN: 63-00094

Response to Comments on Draft Minor Source Air Permit 813-AR-11

The Draft mailed to the facility incorporated the following revision made by the Department to Permit #813-AR-11:

Comment 1:

Page 5, of the Draft Permit, Summary of Permit Activity, 1st paragraph, last sentence—"methanol (CH₃OH)" should be removed.

Response 1:

Methanol was part of Peagasus Unit emissions. The unit has been removed.

Comment 2:

Page 5, of the Draft Permit, Process Description, 2nd paragraph, the second sentence which reads as follows: "However, the overall operation will be expanded to include the use of the HW derived fuel as feedstock in a new gasification facility to be constructed on-site (Pegasus Unit)" should be removed.

Response 2:

The above sentence was specific to the Pegasus Unit.

Comment 3:

Page 7, of the Draft Permit, 2nd paragraph, which reads as follows, "The Pegasus unit includes a 213 MMBTU/Hr (HHV) high heat release boiler (SN-05) subject to 40 CFR 60, Subpart Db New Source Performance Standard. Fuel for the boiler will be natural gas, syngas and other process tail gases and process vents. The boiler is equipped with a low NO_x burner and flue gas recirculation" should be removed.

Response 3:

The paragraph removed was specific to the Pegasus Unit.

Comment 4:

Page 8, of the Draft Permit, under Regulations, The third sentence which reads as follows: "The methanol production facility is subject to 40 CFR 60, Subpart VV – Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industries, 40 CFR 60, Subpart NNN – Standards of Performance for Volatile Organic Compound (VOC) Emissions from Synthetic Organic Chemicals Manufacturing (SOCMI) Distillation Operations, and 40 CFR 60, Subpart RRR – Standards of Performance for Volatile Organic Compound (VOC) Emissions from Synthetic Organic Chemicals Manufacturing (SOCMI) Reactor

Processes" has been removed. Also, within the last sentence of this paragraph, "and methanol storage tanks" should be removed.

Response 4:

The sentence removed was specific to the Pegasus unit.

Comment 5:

Page 9, Total Allowable Emissions Table, Methanol has been removed, and further, the methanol pound per hour and ton per year emission rates should be subtracted from the VOC permitted emissions.

Response 5:

Methanol was a constituent of Pegasus Unit emissions.

Comment 6:

Page 15, VHAP Table, within Specific Condition 2, Methyl Ethyl Ketone should be removed.

Response 6:

Methyl Ethyl Ketone is not a HAP.

Comment 7:

Page 19, Specific Condition 25, the phrase "and methanol storage tanks" should be removed from the first sentence.

Response 7:

The phrase was specific to the Pegasus Unit.

Comment 8:

Page 20, Specific Condition 31 should be removed. The condition reads as follows: "The permittee shall maintain records in accordance with ADPC&E Regulation 23, Section 264.1064(m), and the Hazardous Waste Management Part B permit issued by the Arkansas Department of Pollution Control and Ecology. Compliance with this permit condition will assure that the facility is exempt from the provisions of 40 CFR Part 61 Subpart V – Equipment Leaks (Fugitive Emission Sources of VHAP). [Regulation 19, §19.304 and 40 CFR Part 52, Subpart E]"

Response 8:

The condition stated above was specific to the Pegasus Unit.

Comment 9:

Page 22, Section V: Insignificant Activities, Natural gas-fired carbon pelletizer with a maximum design rate of 1 million BTU/hr was added to the insignificant activities list.

Response 9:

In a letter from Mr. Larry D. Williams of Rineco, to Mr. Mike Bates, Chief of the Air Division, the above activity was requested as an addition to the insignificant activities list.

Comment 10:

40 CFR Part 60, Subpart D, VV, NNN and RRR have been removed from the Appendix list.

Response 10:

The subparts listed above were specific to the Pegasus Unit. As appendices, only the CEM, 40 CFR Part 60, Subpart Dc, Part 60, Subpart Kb and Part 61, Subpart V are included in the permit.

August 20, 2008

Larry D. Williams, Ph.D. Director of Regulatory Affairs Rineco PO Box 729 Benton, AR 72018-0729

Dear Dr. Williams:

The enclosed Permit No. 0813-AR-11 is your authority to construct, operate, and maintain the equipment and/or control apparatus as set forth in your application initially received on 9/21/2007.

After considering the facts and requirements of A.C.A. §8-4-101 et seq., and implementing regulations, I have determined that Permit No. 0813-AR-11 for the construction, operation and maintenance of an air pollution control system for Rineco be issued and effective on the date specified in the permit, unless a Commission review has been properly requested under §2.1.14 of Regulation No. 8, Arkansas Department of Pollution Control & Ecology Commission's Administrative Procedures, within thirty (30) days after service of this decision.

All persons submitting written comments during this thirty (30) day period, and all other persons entitled to do so, may request an adjudicatory hearing and Commission review on whether the decision of the Director should be reversed or modified. Such a request shall be in the form and manner required by §2.1.14 of Regulation No. 8.

Sincerely,

Mike Bates

Chief, Air Division

Enclosure

ADEQ MINOR SOURCE AIR PERMIT

Permit #: 813-AR-11

IS ISSUED TO:

Rineco 1007 Vulcan Road Haskell, AR 72015 Saline County AFIN: 63-00094

THIS PERMIT IS YOUR AUTHORITY TO CONSTRUCT, MODIFY, OPERATE, AND/OR MAINTAIN THE EQUIPMENT AND/OR FACILITY IN THE MANNER AS SET FORTH IN THE DEPARTMENT'S MINOR SOURCE AIR PERMIT AND YOUR APPLICATION. THIS PERMIT IS ISSUED PURSUANT TO THE PROVISIONS OF THE ARKANSAS WATER AND AIR POLLUTION CONTROL ACT (ARK. CODE ANN. SEC. 8-4-101 ET SEQ.) AND THE REGULATIONS PROMULGATED THEREUNDER, AND IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:

Mike Bates

Chief, Air Division

August 20, 2008

Date

Permit #: 813-AR-11 AFIN: 63-00094

Table of Contents

Section I: FACILITY INFORMATION	4
Section II: INTRODUCTION	5
Summary of Permit Activity	5
Process Description	
Regulations	
Total Allowable Emissions	
Section III: PERMIT HISTORY	
Section IV: EMISSION UNIT INFORMATION	
Section V: INSIGNIFICANT ACTIVITIES	
Section VI: GENERAL CONDITIONS	29
Appendix A	
Appendix B	

Permit #: 813-AR-11 AFIN: 63-00094

List of Acronyms and Abbreviations

A.C.A. Arkansas Code Annotated

AFIN ADEQ Facility Identification Number

CFR Code of Federal Regulations

CO Carbon Monoxide

HAP Hazardous Air Pollutant

lb/hr Pound Per Hour

No. Number

NO_x Nitrogen Oxide

PM Particulate Matter

PM₁₀ Particulate Matter Smaller Than Ten Microns

SO2 Sulfur Dioxide

Tpy Tons Per Year

UTM Universal Transverse Mercator

VOC Volatile Organic Compound

Permit #: 813-AR-11 AFIN: 63-00094

SECTION I: FACILITY INFORMATION

PERMITTEE:

Rineco

AFIN:

63-00094

PERMIT NUMBER:

813-AR-11

FACILITY ADDRESS:

1007 Vulcan Road

Haskell, AR 72015

COUNTY:

Saline

CONTACT POSITION:

Director of Regulatory Affairs -

Larry D. Williams, Ph. D.

TELEPHONE NUMBER:

(501) 778-6325

FAX NUMBER:

(501) 778-6412

TOST ID WITTO DITORIZED.

REVIEWING ENGINEER: Derrick Brown

UTM North-South (Y):

North 3819.3 km

UTM East-West (X):

East 533.9 km

Zone 15

Permit #: 813-AR-11 AFIN: 63-00094

SECTION II: INTRODUCTION

Summary of Permit Activity

Rineco Chemical Industries, Inc. (Rineco) owns and operates a facility located at 1007 Vulcan Road in Haskell, Arkansas. This facility processes spent solvents and other waste organic materials for resale as either fuel or recycled solvents. Some of the materials received for processing are regulated as hazardous wastes under the provisions of the federal Resource Conservation and Recovery Act (RCRA). Emissions regulated at this facility include particulate matter (PM), sulfur dioxide (SO₂), volatile organic compounds (VOC), carbon monoxide (CO), oxides of nitrogen (NO_X), hydrogen chloride (HCl), and small quantities of HAPs which pass through the thermal oxidizer units.

This modification includes the installation of a 21 million BTU/hr (SN-14) natural gas fired boiler for the facility's Wastewater Treatment System. There will be a slight increase in emissions associated with permitting this source at maximum capacity. Also, included in this action is an update of the vent flow estimates (Attachment H, Figure 7) arising from the operation of various devices being utilized at the facility that are controlled through the closed vent system and control devices. There are no emission or operational changes associated with the update of the vent system.

Also included this permit action is the removal of sources SN-05, SN-06, SN-07 and SN-09 (Pegasus Recycling Unit). Although construction of these sources was granted March 30, 1999, the unit has not been constructed.

Process Description

Rineco receives numerous types of hazardous waste (HW) as a commercial Part B permitted TSD facility. The full extent of HW that can be received are defined in Rineco HW management facility Part A application. Historically, the HW received has been processed into hazardous waste derived fuel to augment the use of natural gas in industrial furnaces and boiler, and primarily cement kilns. Emissions occurring from these operations are restricted to the extent that blended feedstock must meet stringent emissions standards under both the RCRA and air programs when burned as fuel. These restrictions, as they impact Rineco fuel blending operations, include limitations in metals and halogens content.

Upon issuance of this air permit, Rineco will continue HW operations which have been on-going since facility inception.

HW feedstocks will be received and unloaded at the various unload stations by railcar, tanker truck, dump truck, rolloff and van trucks delivering smaller containers. The feedstock can then undergo a variety of management means depending on the physical and chemical characteristics

Permit #: 813-AR-11 AFIN: 63-00094

of the waste present at the facility. These include pumping liquids out of containers, blending in tanks, mechanical shredding, re-containerization or simply placing in storage. Feedstock can be recycled or manifested off-site for use as industrial fuel. Other materials that are not suitable as feedstock are transported offsite for other disposal methods.

Descriptions of Individual Processes are as follows:

Thermal Oxidation Units -SN-01, SN-02, SN-08 and SN-10:

The thermal oxidation units are used to control VOC emissions from the storage tanks during pumping operations, the process vents, and the vapors that are not condensed from the distillation process overhead. Primary composition of the mixture fed is CO₂ and air with typically less than 0.5% VOC concentration. TOU#106 (SN-02) operates as the main unit rated at 900 cfm vent flow, and TOU#101 (SN-01) and TOU#103 (SN-08) are rated at 300 cfm vent flow each. All TOUs are permitted for continuous duty. The design, operation and maintenance of these are provided for compliance with 40 CFR Part 60, Subpart Kb. The thermal oxidation units will operate at a minimum of 1500 °F and a minimum residence time of 0.75 seconds. TOU #102 is utilized for VOC control from the ITD unit.

Container Decontamination Unit - SN-03

The CDU unit employs a thermal treatment process to remove residual materials from drum type containers. Natural gas burners first volatilize and then oxidize the residual material on the surface of "RCRA empty" containers. Containers are introduced through an air lock into a primary combustion zone, travel down a conveyer, and exit through a second air lock. The temperature in the primary combustion chamber is maintained at 1500 °F.

A secondary combustion chamber is located perpendicular to the Primary chamber. The temperature in the secondary chamber is maintained at 1800 °F by a natural gas burner.

Emissions from the secondary chamber are cooled by a water spray tower, treated with either aqueous ammonia or sodium hydroxide for removal of the HCl, and pass through a baghouse for particulate matter control. The drums can then be crushed for sale as salvaged metal or sent to a drum recycler.

Permit #: 813-AR-11 AFIN: 63-00094

Cryogenic Metal Cleaning System (SN-11)

A cartridge filter (SN-11) controls emissions from the cryogenic metal cleaning system.

Boiler

The facility has a 21 million BTU/hr natural gas fired boiler (SN-14) used to generate steam for the facility's Wastewater Treatment System.

Indirect Thermal Desorption Unit (SN-10 and SN-12)

This system is utilized at the facility in order to process the waste streams so that hydrocarbon liquids and metal solids can be recovered from these streams. The ITD system consists of a large, indirectly-heated rotating kiln in which the wastes are delivered for processing. Heat to the kiln is provided by natural-gas fired burner which is nominally rated at 8.0 MMBtu/hr. Exhaust gases from this combustion are vented directly to the atmosphere (SN-12).

This kiln is operated at temperatures up to 750°F. At these high temperatures, any volatile materials present in the waste stream are vaporized. These gases are routed through a system of two direct-contact condensers (V-1, V-2) in order to remove any condensables from the gas stream. The condensed liquids from these exchanges are either recycled back through the condensers as the cooling medium, or delivered to containers for shipment off-site. Uncondensable gases leave the final condenser (V-2) at an approximate temperature of 130°F and are then routed to a thermal oxidizer (SN-10, TOU-102) for VOC control prior to discharge to the atmosphere. This thermal oxidizer has been relocated within the facility in order to control emissions from the ITD system. The second condenser (V-2) is also operated as an acid-gas (HCl) scrubber and has been tested to demonstrate an HCl removal efficiency of 99.9%. A third condenser (HX-1) is installed downstream of the V-2 unit to further cool the exit gas stream if necessary.

The solid waste stream continues downward through the kiln until it reaches a discharge chute at the bottom of the kiln. After discharge from the kiln, the solid waste stream is passed over a powerful magnet in order to remove any iron or steel that may be present. This metal is collected and shipped off-site for further treatment and recycle. The remaining solid waste is retained on-site for blending into waste-derived fuels.

The ITD unit utilizes a fixed kiln containing a rotating screw which moves the wastes through the unit. This fixed kiln is heated by a combination of a heat exchange oil, and electrical power. An 8 MMBtu/hr natural gas burner is utilized to heat the heat exchange oil. Additionally, the unit utilizes 7 condensers for the purpose of removing

Permit #: 813-AR-11 AFIN: 63-00094

hydrocarbons from the gas stream exiting the kiln. The condensers are designated as V-1a, V-1b, V-1c, V-1d, V-1e, V-2, and HX-1. V-2 is served as a direct-contact water scrubber for the purpose of acid gas removal from the gas stream. The ITD unit has a total of three oil/water separators in operation in the ITD process. The ITD unit vented exhaust gas to TOU-102 (SN-10).

Regulations

This facility is currently subject to regulation under the Arkansas Air Pollution Control Code (Regulation 18), and the Arkansas State Implementation Plan for Air Pollution Control (Regulation 19). The Wastewater Treatment System boiler is subject to 40 CFR Part 60, Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units. The hazardous waste storage tanks are subject to 40 CFR 60, Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced aft July 23, 1984, and 40 CFR 61, Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources).

Permit #: 813-AR-11 AFIN: 63-00094

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

TOTAL ALLOWABLE EMISSIONS			
Pollutant	Emissi	on Rates	
	lb/hr	tpy	
PM	2.6	9.6	
PM_{10}	2.6	9.6	
SO_2	0.6	0.6	
VOC	1.3	4.8	
CO	3.3	12.9	
NO _x	8.1	34.9	
Lead	0.1	0.1	
HCl	0.83	3.64	
TOTAL Other VHAP*	1.73	7.52	
Mercury	0.17	0.72	

^{*} These HAPs are also VOCs and included in VOC limits

Permit #: 813-AR-11 AFIN: 63-00094

SECTION III: PERMIT HISTORY

Permit No. 813-A was issued to Production Fuels of Arkansas, Inc. on August 13, 1987. The permit contained no criteria pollutant emission limits. The permit listed a distillation system and tank farm both to be operated with carbon absorbers or other suitable control equipment.

Permit No. 813-AR-1 was issued on March 14, 1990 with the ownership changed from Production Fuels of Arkansas, Inc. to Rineco Chemical Industries, Inc. The permit contained no criteria pollutant emission limits. The permit listed a distillation unit (steam boiler listed as SN-02) and a closed vent system with thermal oxidation unit (SN-01) used as a control device on the tanks. The permit allowed the construction of the barrel decontamination unit (SN-03) and a new tank farm consisting of sixteen 30,000 gallon storage tanks. A performance test was required for the barrel decontamination unit (BDU) (SN-03) within 180 days of completion. The drum feed rate was restricted to 50 drums per hour.

Permit No. 813-AR-2 was issued to Rineco Chemical Industries, Inc. on October 23, 1992. The permit contained no criteria pollutant emission limits. This permit acknowledged that construction of the new tank farm authorized in the previous permit was delayed due to not receiving a RCRA Part B Permit.

Permit No. 813-AR-2 was issued to Rineco Chemical Industries, Inc. on September 3, 1997. Criteria pollutant emission limits were listed for the first time in this permit. Permit modifications consisted of adding a spray tower to the barrel decontamination unit to control emissions (principally HCl), increase the allowed barrel feed rate to 75 per hour, and authorized a standby thermal oxidation unit for use when the original unit is down. Emission limits were: $PM/PM_{10} - 1.3$ tpy, $SO_2 - 1.3$ tpy, VOC - 1.8 tpy, CO - 6.6 tpy, $NO_x - 25.4$ tpy and HCl - 0.9 tpy.

Permit No. 813-AR-4 was issued to Rineco Chemical Industries on March 30, 1999. The major change from the previous permit was the permit for the construction and operation of a new industrial recycling process (Pegasus) which converts industrial waste into carbon dioxide, ammonia and metal salts. Permit limits were: $PM/PM_{10} - 4.9$ tpy, $SO_2 - 3.0$ tpy, VOC - 6.2 tpy, CO - 22.4 tpy, $NO_x - 98.9$ tpy, and HCl - 2.2 tpy.

Permit No. 813-AR-5 was issued to Rineco Chemical Industries on November 15, 2000. This permit modification was issued to make the following changes to the air permit for this facility:

1. The addition of a third vapor incinerator – thermal oxidizer unit TOU #103, previously utilized strictly as a standby unit in case of failure of TOU #101 or TOU#102. This stack emission was noted as SN-08.

Permit #: 813-AR-11 AFIN: 63-00094

- 2. Changes to the previously permitted industrial process named Pegasus by Rineco, to allow for the production of methanol and carbon dioxide from hazardous waste feedstock rather than the previously permitted ammonia and carbon dioxide products. This process now incorporated four stack emissions, as follows:
 - a. SN-05 Pegasus Facility Plant Boiler Stack remains similar to previously proposed with modification to previously calculated emission values.
 - b. SN-06 Stack emissions from a thermal oxidation unit (TOU-104) utilized for the control of potential emissions from production facility feed systems and methanol product loading.
 - c. SN-07 Fugitive emissions, primarily methanol, from equipment utilized for the production of methanol.
 - d. SN-09 Stack emissions from an emergency thermal oxidation unit (TOU-105) utilized for control of potential emergency releases from the gasification unit. This device is being permitted due to the natural gas pilot maintained in case of the need for the device.
- 3. The Container Decontamination Unit (SN-04) was expected to remain in operation, rather than be closed. The facility remained a minor source with the CDU operating due to reductions in NO_x at the Pegasus facility stack.

Permit No. 813-AR-6 was issued to Rineco Chemical Industries on March 29,2000. This permit was issued because Permit No. 813-AR-5 was issued without a Response to Comments. Permit limits listed were: $PM/PM_{10} - 14.7$ tpy, $SO_2 - 5.5$ tpy, VOC - 30.3 tpy, CO - 63.0 tpy, $NO_x - 73.7$ tpy, HCl - 2.19 tpy, Methanol - 9.50 tpy, and other HAP - 6.25 tpy.

Permit No. 813-AR-7 was issued to Rineco on February 21, 2002. This modification to the permit was issued to incorporate the following changes to the permit:

- 1. Addition of SN-11, a vent off the cryogenic metal cleaning system with a proposed emission limit of 0.1 tpy PM/PM₁₀.
- 2. Make two changes in the process flow sheets which cause no increase in emission limits.
- 3. Add a fourth thermal oxidizer unit (TOU) (SN-10) to the facility.
- 4. Reduce the flow limit on water to the CDU spray tower.
- 5. Change the monitoring differential pressure limits on the CDU spray tower.
- 6. Remove the requirement for a HCl CEMS on the emissions from the CDU unit.

These changes resulted in increases in permitted emissions of: 1.6 tpy PM/PM10, 0.1 tpy SO2, 3.5 tpy VOC, 0.5 tpy CO, 2.2 tpy NOx, and 3.44 tpy of total HAPs.

Permit No. 813-AR-8 was issued to Rineco on July 19, 2004. This modification to the permit is issued in order to allow for the installation of the new Indirect Thermal Desorption (ITD) system for the processing of waste material at the facility. The addition of this new unit resulted in

Permit #: 813-AR-11 AFIN: 63-00094

increases in permitted emissions of: 0.3 tpy PM_{10} , 0.1 tpy SO_2 , 2.9 tpy CO, 3.5 tpy NO_x , 0.1 tpy lead, 0.72 tpy mercury, and 1.45 tpy hydrogen chloride (HCl). Due to changes in the method of calculation of methanol fugitive emissions, as well as changes to the useage of the SN-10 thermal oxidizer, permitted methanol emissions decreased by 2.5 tpy and emissions of VOC decreased by 4.0 tpy.

Permit No. 813-AR-9 was issued on August 2, 2005. This modification authorized changes to two specific conditions of the permit. These conditions were Specific Conditions #38 and #47. SC #38 addressed the operation of a continuous emissions monitoring (CEM) system in the exhaust stack of the container decontamination unit (CDU). This condition was modified to allow for this CEM system to be shut down during periods that the CDU is not in operation. SC #47 addressed the testing requirements for the indirect thermal desorption (ITD) unit thermal oxidizer (SN-10). This condition was modified to clarify how this testing is to be performed on the proposed re-designed ITD unit. This proposed ITD unit was finally installed in August 2004. The newly proposed condition specified the same tests and test intervals, but allowed for the relocation of the testing points to account for the increase in the number of condensers installed in the exhaust stream for emissions control. This modification also incorporated the emergency-use diesel generator for the ITD unit. There were no changes to any permitted emission limitations with this modification.

Permit No. 813-AR-10 was issued on October 16, 2006. This modification included the installation of a new fan to increase the flow rate to the closed vent system from 400 cfm to 700 cfm from the residual solids discharge unit of the Indirect Thermal Desorption Unit. There were no hourly or yearly emission rate changes as a result of this modification. This permitting action also added two laboratory hoods and a natural gas-fired heater to the insignificant activities list.

Permit #: 813-AR-11 AFIN: 63-00094

SECTION IV: EMISSION UNIT INFORMATION

Specific Conditions

1. The permittee shall not exceed the emission rates set forth in the following table. Hourly and yearly pollutant limits for the thermal oxidizer units (SN-01, SN-02, SN-08, and SN-10), the CDU (SN-03), the cryogenic metal cleaning system filter (SN-11), the Wastewater Treatment System Boiler (SN-14) and the vacuum truck (SN-04) are based on maximum capacity. [Regulation 19, §19.501 et seq., effective October 15, 2007 and A.C.A. §8-4-203 as referenced by A.C.A. §8 4 304 and §8 4 311]

SN	Description	Pollutant	lb/hr	tpy
01	Thermal Oxidation Unit	PM ₁₀	0.2	0.6
	(TOU-101)	SO_2	0.1	0.1
		VOC	0.3	1.2
		CO	0.1	0.3
		NO_x	0.3	1.1
02	Thermal Oxidation Unit	PM_{10}	0.4	1.5
	(TOU-106)	SO_2	0.1	0.1
		VOC	0.8	3.5
		CO	0.2	0.5
		NO _x	0.5	2.2
03	Container	PM_{10}	0.9	3.9
	Decontamination Unit	SO_2	0.1	0.1
		VOC	0.2	0.9
		CO	1.2	5.1
		NO_x	4.6	20.2
. 04	Vacuum Truck	VOC	0.2	0.5
08	Thermal Oxidation Unit	PM ₁₀	0.2	0.6
	(TOU-103)	SO_2	0.1	0.1
		VOC	0.3	1.2
		CO	0.1	0.3
		NO _x	0.3	1.1
10	ITD Unit Thermal	PM_{10}	0.4	1.5
	Oxidizer	SO_2	0.1	0.1
	(TOU-102)	VOC	0.3	1.3
		CO	0.2	0.5
		NO_x	0.5	2.2
		Lead	0.1	0.1
11	Cryogenic Metal	PM_{10}	0.1	0.1
	Cleaning System Filter			

Permit #: 813-AR-11 AFIN: 63-00094

SN	Description	Pollutant	lb/hr	tpy
12	Indirect Thermal	PM ₁₀	0.1	0.3
	Desorption (ITD) Unit -	SO_2	0.1	0.1
	Natural Gas Burner	VOC	0.1	0.2
	Exhaust	CO	0.7	2.9
		NO_x	0.8	3.5
14	Wastewater Treatment	PM ₁₀	0.3	1.1
	System Boiler	SO_2	0.1	0.1
		VOC	0.2	0.6
		СО	0.8	3.3
		NO_x	1.1	4.6

2. The permittee shall not exceed the emission rates set forth in the following table. Hourly and yearly pollutant limits for the thermal oxidizer units (SN-01, SN-02, SN-08, and SN-10), the CDU (SN-03), the cryogenic metal cleaning system filter (SN-11), the Wastewater Treatment System Boiler (SN-14) and the vacuum truck (SN-04) are based on maximum capacity. The Total HAP listed for each thermal oxidation assumes that all VOC (which is listed at maximum capacity) is HAP. [Regulation 18, §18.801, effective February 15, 1999, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

SN	Description	Pollutant	lb/hr	tpy
01	Thermal Oxidation Unit	PM	0.2	0.6
	(TOU-101)	TOTAL VHAP*	0.27	1.17
02	Thermal Oxidation Unit	PM	0.4	1.5
	(TOU-106)	TOTAL VHAP*	0.79	3.44
03	Container	PM	0.9	3.9
	Decontamination Unit	HCl	0.50	2.19
04	Vacuum Truck	TOTAL VHAP*	0.11	0.46
08	Thermal Oxidation Unit	PM	0.2	0.6
	(TOU-103)	TOTAL VHAP*	0.27	1.17
10	ITD Unit Thermal	PM	0.4	1.5
	Oxidizer	HCl	0.33	1.45
	(TOU-102)	TOTAL VHAP*	0.29	1.28
		Mercury	0.17	0.72
11	Cryogenic Metal	PM	0.1	0.1
	Cleaning System Filter			
12	Indirect Thermal	PM	0.1	0.3
Ì	Desorption (ITD) Unit -			
	Natural Gas Burner			
	Exhaust			

Permit #: 813-AR-11 AFIN: 63-00094

SN	Description	Pollutant	lb/hr	tpy
14	Wastewater treatment	PM	0.3	1.1
	System Boiler			

^{*} TOTAL VHAP can be a mixture of any of the following and other unlisted volatile organic HAPs if the product of multiplying the pound per hour rate times 4.38 is less than the listed relative toxicity for the unlisted HAP:

Pollutant	CAS No.	Relative Toxicity
Ethylbenzene	100-41-4	1.0
Methylene Chloride	75-09-2	1.0
Styrene	100-42-5	0.1
Toluene	108-88-3	1.0
Xylene	1330-20-7	1.0

3. Visible emissions shall not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

SN	Limit	Regulatory Citation
01, 02, 03, 08, 10, 11, 12 and 14	5%	§18.501

- 4. The permittee shall not cause or permit the emission of air contaminants, including odors or water vapor and including an air contaminant whose emission is not otherwise prohibited by Regulation #18, if the emission of the air contaminant constitutes air pollution within the meaning of A.C.A. §8-4-303. [Regulation 18, §18.801 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 5. The permittee shall not conduct operations in such a manner as to unnecessarily cause air contaminants and other pollutants to become airborne. [Regulation 18, §18.901 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 6. The permittee shall not burn more than 2,056,550 MCF of natural gas fuel per consecutive 12 month period. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 813-AR-11 AFIN: 63-00094

7. The permittee shall maintain monthly records which demonstrate compliance with Specific Condition No. 6. Records shall be updated by the fifteenth day of the month following the month to which the records pertain. These records shall be kept on site, and shall be made available to Department personnel upon request. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

SN-03 Conditions

- 8. Containers received for the purpose of processing in the CDU without other recovery processing shall be empty, as defined in 40 CFR 261.7 ("RCRA Empty") upon receipt. Only containers that are "RCRA empty", as defined in 40 CFR 261.7, shall be processed in the CDU. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 9. The CDU primary chamber temperature shall be maintained at, or above, a minimum temperature of 1500 ° F. The CDU secondary chamber temperature shall be maintained at, or above, a minimum temperature of 1800 ° F. The CDU secondary chamber temperature shall be monitored and continuously recorded at all times the CDU is in operation. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 10. A liquid flow measurement device shall be maintained at the liquid feed of the spray tower. The temperature of the gas exiting the CDU spray tower shall be maintained between 250° F and 550° F by controlling the liquid flow to the spray tower. This flow shall be maintained between two (2) and sixteen (16) gallons per minute. If the flow controller is unable to maintain a liquid flow rate of at least two (2) gallons per minute, the process must be shutdown and it shall be necessary to inspect the spray tower and the liquid feed system and make necessary repairs. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 11. The permittee shall install, maintain and operate a differential gas pressure measurement device on the spray tower. The differential pressure shall be maintained between zero (0) and five (5) inches of water (shall have a positive reading). The permittee shall read and record this differential pressure at least twice weekly while the CDU is in operation. These records shall be updated weekly for the previous week, maintained at the facility, and be made available to Department personnel upon request. [Regulation 19, §19.703 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 12. The permittee shall install, maintain and operate a differential gas pressure measurement device between the inlet and outlet of the CDU baghouse. The differential pressure measured across the baghouse shall be maintained between one (1) and (8) eight inches of water. The permittee shall read and record this differential pressure at least twice weekly while the CDU is in operation. These records shall be updated weekly for the previous

Permit #: 813-AR-11 AFIN: 63-00094

week, maintained at the facility, and be made available to Department personnel upon request. [Regulation 19, §19.703 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 13. The permittee shall maintain and operate a continuous stack gas analyzer system that measures the dry oxygen and carbon monoxide concentrations in the stack gas exiting the CDU. The stack gas analyzer shall prevent the introduction of containers to the primary chamber when: the oxygen concentration falls below 4% or; the carbon monoxide concentration exceeds 100 ppm. This system is only required to be in operation during those times that the CDU is in operation. The analyzer system shall be brought online prior to the introduction of any containers into the CDU, and shall remain in operation for a period of 8 hours after the CDU is no longer in operation. At no time shall the CDU be operated without a functional stack gas analyzer system. This system shall be maintained in accordance with Appendix A Continuous Emission Monitoring System Conditions. [Regulation 19, §19.703 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 14. The particulate emission rate from the CDU exhaust stack (SN-03) shall not exceed 0.08 grains of particulate matter per standard cubic foot of dry flue gas corrected to 7% oxygen. SN-03 will be stack tested using EPA Test Method 1 through 5 within 90 days of March 30, 2004 to reconfirm it meets this Specific Condition and shall be retested every 5 years thereafter. [Regulation 18, 18.1003 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 15. All bottom ash that is generated in the CDU shall be disposed of in a manner that is consistent with applicable solid waste management codes and regulations. Treated containers will be conditioned for reuse, recycled as scrap, or disposed of as solid waste. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Indirect Thermal Desorption System Requirements (SN-10 and SN-12)

- 16. The maximum solid waste feed rate to the ITD rotary kiln shall not exceed 16,000 lb/hr. [Regulation 18, §18.1004 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 17. The permittee shall maintain daily records of solid waste feed into the ITD unit which demonstrate compliance with Specific Condition #16. These records shall be updated daily, maintained on-site, and shall be made available to Department personnel upon request. [Regulation 18, §18.1004 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 18. The permittee shall maintain monthly records of the total mass (or volume) of hydrocarbons recovered from the ITD system. Each individual month's data as well as a rolling 12-month total shall be maintained on-site and shall be made available to Department personnel upon request. The Department reserves the right to determine whether this unit

Permit #: 813-AR-11 AFIN: 63-00094

qualifies as a recycling process based on this data. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 19. The monthly average total halogen content of the solid waste material fed into the ITD unit shall not exceed 2.0% by weight. The facility shall conduct testing on the solid waste material as it is received to determine total halogen content. The results of each individual test, as well as the monthly average total halogen content shall be maintained on-site and shall be made available to Department personnel upon request. [Regulation 18, §18.1004 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 20. The outlet temperature of the V-2 scrubber/condenser shall not exceed 130°F at any time. A continuous temperature recording device shall be used to maintain records of the operating temperature of this stream. These temperature readings shall be maintained onsite and shall be made available to Department personnel upon request. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 21. The ITD unit thermal oxidizer (SN-10) shall be operated at a temperature of at least 1500°F at all times. A continuous temperature recording device shall be used to maintain records of the operating temperature of this unit. These temperature readings shall be maintained on-site and shall be made available to Department personnel upon request. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 22. The permittee shall conduct performance testing on the scrubber/condenser system every three years. The next test shall be conducted no later than June 26, 2008, and shall be repeated every three years thereafter. This testing shall verify that the HCl removal efficiency of this unit remains at or above 99.9% by weight. The efficiency shall be determined by performing two US EPA Reference Method 26A tests, or other test method approved in advance by the Department. One test shall be sampled from a point upstream and as close as possible to the inlet of the first scrubber/condenser, and the other test shall be sampled from a point downstream and as close as possible to the outlet of the final scrubber/condenser. This testing shall be performed while the ITD unit is processing solid waste material with a known chlorine content of at least 1.0% by weight. The results of this test shall be maintained on-site, and shall be submitted to the Department in accordance with General Condition #6.

The permittee may elect to calculate the inlet mass flow rate of total chlorine instead of performing the inlet HCl testing. If this method is used, the permittee shall provide a copy of this calculation as well as any supporting information to the Department along with the testing report. If both inlet and outlet testing are performed, then the HCl removal efficiency shall be determined by equation (1) below. If the permittee elects to calculate the inlet mass loading of total chlorine instead of performing the inlet testing, then the HCl removal efficiency shall be determined by equation (2) below.

Permit #: 813-AR-11 AFIN: 63-00094

Equation 1:	(inlet HCl concentration – outlet HCl concentration)
	inlet HCl concentration
Equation 2:	(calculated inlet HCl mass flow rate - measured outlet HCl mass flow rate)
	calculated inlet HCl mass flow rate

[Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 23. Within 60 days of startup of the ITD unit the permittee shall conduct an initial performance test to measure VOC emissions from the ITD Unit Thermal Oxidizer (SN-10) exhaust stack. This test shall be conducted in accordance with US EPA Reference Method 25A. The results of this test shall be converted to a lb/hr emission rate for the purposes of determining compliance with the VOC emission limitations contained in Specific Condition #1. The results of this test shall be maintained on-site and shall be made available to Department personnel upon request. The results of this test shall be submitted to the ADEQ Air Division Enforcement Branch at the address listed in General Condition #6. This testing was performed by the facility in 2003. [Regulation 19, §19.702 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 24. Within 60 days of startup of the ITD unit the permittee shall conduct an initial performance test to determine if any dioxin and/or furan emissions are generated from the ITD Unit Thermal Oxidizer (SN-10) exhaust stack. This test shall be conducted in accordance with US EPA Reference Method 23. No detectable dioxin and/or furan emissions are permitted from this source. This testing shall be performed while the ITD unit is processing solid waste material with a known chlorine content of at least 1.0% by weight. The results of this test shall be maintained on-site and shall be made available to Department personnel upon request. The results of this test shall be submitted to the ADEQ Air Division Enforcement Branch at the address listed in General Condition #6. This testing was performed by the facility in 2003. [Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

NSPS Requirements

25. The permittee shall keep readily accessible records showing the dimensions of all storage tanks subject to 40 CFR 60, Subpart Kb (the eight (8) new tanks that will be installed in the new Building 200 Storage Facility, and an analysis showing the capacity of each storage tank. These records shall be maintained for the life of the facility. 40 CFR 60, Subpart Kb is attached as Appendix C. [Regulation 19, §19.304 and 40 CFR 60.116b(b)]

Permit #: 813-AR-11 AFIN: 63-00094

- 26. All VOC vapors and gases discharged from all regulated storage tanks (the eight (8) new tanks that will be installed in the new Building 200 Storage Facility, and the methanol storage tanks) shall be routed to the Thermal Oxidation Units via the closed vent system. Where referred to in this permit, *closed vent system* is defined as "the system composed of piping, connections, and flow inducing devices that are used to transport gas or vapor to the TOUs." [Regulation 19, §19.304 and 40 CFR 60.112b(3) (i)]
- 27. The permittee shall submit documentation that the TOUs operate with a minimum residence time of 0.75 seconds and a minimum temperature of 816° C (1500 °F). These temperatures shall be monitored and continuously recorded at all times the TOUs are in operation. [Regulation 19, §19.304 and 40 CFR 60.112b(a)(3) (ii)]
- 28. The permittee shall submit an operating plan that contains a description of the parameter or parameters to be monitored to ensure that the system will be operated in conformance with its design and an explanation of the criteria used for selection of that parameter (or parameters). A copy of the operating plan shall be kept on site by the Permittee for the life of the system. The operating plan must be approved by ADEQ and the Department reserves the right to make changes to the operating plan as indicated by facility operating history. [Regulation 19, §19.304 and 40 CFR 60.113bI(1) (ii)]
- 29. The permittee shall operate the closed vent system and TOUs in accordance with the operating plan submitted to the Department, unless the plan is modified by the Department during the review process. In that case, the modified plan would apply. [Regulation 19, §19.304 and 40 CFR 60.113bI(2)]
- 30. The permittee shall keep a record of the measured values of the parameters described in Specific Condition No. 29. The Permittee shall keep a copy of this record for a period of at least two years. [§19.304 of Regulation 19 and 40 CFR 60.115b]

NESHAP Requirements

- 31. The permittee shall not process wastes which contain in excess of 11.0 tons per rolling 12 month total of benzene. The permittee shall maintain records which document the actual amount of benzene waste processed each month. Compliance with this permit condition will assure that the facility is exempt from 40 CFR 61 Subpart FF (National Standard for Benzene Waste Operations). [Regulation 19, §19.304 and 40 CFR §61.340(b) and §61.342(a)]
- 32. The permittee shall not operate the facility such that any equipment contains or contacts a fluid (liquid or gas) with a benzene concentration equal to or greater than 10% by weight. Compliance with this permit condition will assure that the facility is exempt from 40 CFR

Permit #: 813-AR-11 AFIN: 63-00094

- 61 Subpart J (National Standard for Equipment Leaks (Fugitive Emission Sources) of Benzene. [Regulation 19, §19.304 and 40 CFR 61 Subpart J]
- 33. The permittee shall only combust pipeline quality natural gas at SN-14. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 34. The permittee shall maintain monthly records on the amount of natural gas fired at SN-14. [Regulation 19, §19.304 and 40 CFR Part 60, §60.48c(g)(2)]
- 35. Sources outlined in this permit for which construction has not commenced within eighteen (18) months from the date of issuance of this permit require written approval prior to commencement of construction. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 813-AR-11 AFIN: 63-00094

SECTION V: INSIGNIFICANT ACTIVITIES

The following types of activities or emissions are deemed insignificant on the basis of size, emission rate, production rate, or activity in accordance with Group A of the Insignificant Activities list found in Regulation 18 and 19 Appendix A. Insignificant activity emission determinations rely upon the information submitted by the permittee in an application dated September 20, 2007.

Description	Category
Start-up Boiler – 6000 lbs/hr	A-1
(approximately 7.5 MMBTU/hr)	
Laboratory Emergency Generator	A-13
(50 KW, diesel-fired)	
No more than 850 hours/year operation	
ITD Unit Emergency Generator	A-13
(230 KW, diesel-fired)	
No more than 850 hours/year operation	
Two (2) laboratory equipment/vents	A-5
Natural Gas-fired Heater (4.0 MM Btu/hr)	A-1
Natural gas-fired carbon pelletizer with a maximum design rate of 1 million BTU/hr	A-1

Permit #: 813-AR-11 AFIN: 63-00094

SECTION VI: GENERAL CONDITIONS

- 1. Any terms or conditions included in this permit that specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.). Any terms or conditions included in this permit that specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute.
- 2. This permit does not relieve the owner or operator of the equipment and/or the facility from compliance with all applicable provisions of the Arkansas Water and Air Pollution Control Act and the regulations promulgated under the Act. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 3. The permittee will notify the Department in writing within thirty (30) days after commencement of construction, completion of construction, first operation of equipment and/or facility, and first attainment of the equipment and/or facility target production rate. [Regulation 19, §19.704 and/or A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 4. Construction or modification must commence within eighteen (18) months from the date of permit issuance. [Regulation 19, §19.410(B) and/or Regulation 18, §18.309(B) and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 5. The permittee must keep records for five years to enable the Department to determine compliance with the terms of this permit such as hours of operation, throughput, upset conditions, and continuous monitoring data. The Department may use the records, at the discretion of the Department, to determine compliance with the conditions of the permit. [Regulation 19, §19.705 and/or Regulation 18, §18.1004 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 6. A responsible official must certify any reports required by any condition contained in this permit and submit any reports to the Department at the address below. [Regulation 19, §19.705 and/or Regulation 18, §18.1004 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

Arkansas Department of Environmental Quality Air Division

Permit #: 813-AR-11 AFIN: 63-00094

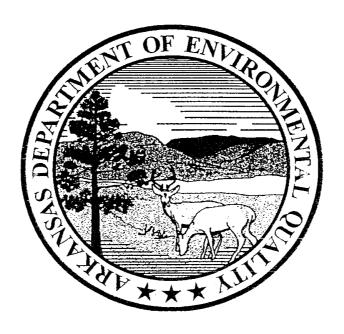
ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118

- 7. The permittee will test any equipment scheduled for testing, unless stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) newly constructed or modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) existing equipment already operating according to the time frames set forth by the Department. The permittee must notify the Department of the scheduled date of compliance testing at least fifteen (15) days in advance of such test. The permittee must submit compliance test results to the Department within thirty (30) days after the completion of testing. [Regulation 19, §19.702 and/or Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 8. The permittee will provide: [Regulation 19, §19.702 and/or Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
 - a. Sampling ports adequate for applicable test methods
 - b. Safe sampling platforms
 - c. Safe access to sampling platforms
 - d. Utilities for sampling and testing equipment
- 9. The permittee will operate equipment, control apparatus and emission monitoring equipment within their design limitations. The permittee will maintain in good condition at all times equipment, control apparatus and emission monitoring equipment. [Regulation 19, §19.303 and/or Regulation 18, §18.1104 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 10. If the permittee exceeds an emission limit established by this permit, the permittee will be deemed in violation of said permit and will be subject to enforcement action. The Department may forego enforcement action for emissions exceeding any limits established by this permit provided the following requirements are met: [Regulation 19, §19.601 and/or Regulation 18, §18.1101 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
 - a. The permittee demonstrates to the satisfaction of the Department that the emissions resulted from an equipment malfunction or upset and are not the result of negligence or improper maintenance, and the permittee took all reasonable measures to immediately minimize or eliminate the excess emissions.

Permit #: 813-AR-11 AFIN: 63-00094

- b. The permittee reports the occurrence or upset or breakdown of equipment (by telephone, facsimile, or overnight delivery) to the Department by the end of the next business day after the occurrence or the discovery of the occurrence.
- c. including, but not limited to, action to reduce the frequency of occurrence of such conditions, to minimize the amount by which said limits are exceeded, and to reduce the length of time for which said limits are exceeded. If the information is included in the initial report, the information need not be submitted again.
- 11. The permittee shall allow representatives of the Department upon the presentation of credentials: [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
 - a. To enter upon the permittee's premises, or other premises under the control of the permittee, where an air pollutant source is located or in which any records are required to be kept under the terms and conditions of this permit;
 - b. To have access to and copy any records required to be kept under the terms and conditions of this permit, or the Act;
 - c. To inspect any monitoring equipment or monitoring method required in this permit;
 - d. To sample any emission of pollutants; and
 - e. To perform an operation and maintenance inspection of the permitted source.
- 12. The Department issued this permit in reliance upon the statements and presentations made in the permit application. The Department has no responsibility for the adequacy or proper functioning of the equipment or control apparatus. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 13. The Department may revoke or modify this permit when, in the judgment of the Department, such revocation or modification is necessary to comply with the applicable provisions of the Arkansas Water and Air Pollution Control Act and the regulations promulgated the Arkansas Water and Air Pollution Control Act. [Regulation 19, §19.410(A) and/or Regulation 18, §18.309(A) and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 14. This permit may be transferred. An applicant for a transfer must submit a written request for transfer of the permit on a form provided by the Department and submit the disclosure statement required by Arkansas Code Annotated '8 1 106 at least thirty (30) days in advance of the proposed transfer date. The permit will be automatically transferred to the new permittee unless the Department denies the request to transfer within thirty (30) days of the receipt of the disclosure statement. The Department may deny a transfer on the basis of the information revealed in the disclosure statement or other investigation or, deliberate falsification or omission of relevant information. [Regulation 19, §19.407(B)

Permit #: 813-AR-11 AFIN: 63-00094


and/or Regulation 18, §18.307(B) and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

- 15. This permit shall be available for inspection on the premises where the control apparatus is located. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 16. This permit authorizes only those pollutant emitting activities addressed herein. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 17. This permit supersedes and voids all previously issued air permits for this facility. [Regulation 18 and 19 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 18. The permittee must pay all permit fees in accordance with the procedures established in Regulation No. 9. [A.C.A §8-1-105(c)]

APPENDIX A CONTINUOUS EMISSIONS MONITORING SYSTEMS CONDITIONS

,		

Arkansas Department of Environmental Quality

CONTINUOUS EMISSION MONITORING SYSTEMS CONDITIONS

PREAMBLE

These conditions are intended to outline the requirements for facilities required to operate Continuous Emission Monitoring Systems/Continuous Opacity Monitoring Systems (CEMS)/(COMS). Generally there are three types of sources required to operate CEMS/COMS:

- 1. CEMS/COMS required by 40 CFR Part 60 or 63,
- 2. CEMS required by 40 CFR Part 75,
- 3. CEMS/COMS required by ADEQ permit for reasons other that Part 60, 63 or 75.

These CEMS/COMS conditions are not intended to supercede Part 60, 63 or 75 requirements.

- Only CEMS/COMS in the third category (those required by ADEQ permit for reasons other than Part 60, 63 or 75) shall comply with SECTION II, <u>MONITORING REQUIREMENTS</u> and SECTION IV, <u>QUALITY ASSURANCE/QUALITY CONTROL</u>.
- All CEMS/COMS shall comply with Section III, NOTIFICATION AND RECORDKEEPING.

SECTION I

DEFINITIONS

Continuous Emission Monitoring System (CEMS) - The total equipment required for the determination of a gas concentration and/or emission rate so as to include sampling, analysis and recording of emission data.

Continuous Opacity Monitoring System (COMS) - The total equipment required for the determination of opacity as to include sampling, analysis and recording of emission data.

Calibration Drift (CD) - The difference in the CEMS output reading from the established reference value after a stated period of operation during which no unscheduled maintenance, repair, or adjustments took place.

Back-up CEMS (Secondary CEMS) - A CEMS with the ability to sample, analyze and record stack pollutant to determine gas concentration and/or emission rate. This CEMS is to serve as a back-up to the primary CEMS to minimize monitor downtime.

Excess Emissions - Any period in which the emissions exceed the permit limits.

Monitor Downtime - Any period during which the CEMS/COMS is unable to sample, analyze and record a minimum of four evenly spaced data points over an hour, except during one daily zero-span check during which two data points per hour are sufficient.

Out-of-Control Period - Begins with the time corresponding to the completion of the fifth, consecutive, daily CD check with a CD in excess of two times the allowable limit, or the time corresponding to the completion of the daily CD check preceding the daily CD check that results in a CD in excess of four times the allowable limit and the time corresponding to the completion of the sampling for the RATA, RAA, or CGA which exceeds the limits outlined in Section IV. Out-of-Control Period ends with the time corresponding to the completion of the CD check following corrective action with the results being within the allowable CD limit or the completion of the sampling of the subsequent successful RATA, RAA, or CGA.

Primary CEMS - The main reporting CEMS with the ability to sample, analyze and record stack pollutant to determine gas concentration and/or emission rate.

Relative Accuracy (RA) - The absolute mean difference between the gas concentration or emission rate determined by the CEMS and the value determined by the reference method plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the reference method tests of the applicable emission limit.

Span Value – The upper limit of a gas concentration measurement range.

SECTION II

MONITORING REQUIREMENTS

- A. For new sources, the installation date for the CEMS/COMS shall be no later than thirty (30) days from the date of start-up of the source.
- B. For existing sources, the installation date for the CEMS/COMS shall be no later than sixty (60) days from the issuance of the permit unless the permit requires a specific date.
- C. Within sixty (60) days of installation of a CEMS/COMS, a performance specification test (PST) must be completed. PST's are defined in 40 CFR, Part 60, Appendix B, PS 1-9. The Department may accept alternate PSTs for pollutants not covered by Appendix B on a case-by-case basis. Alternate PST's shall be approved, in writing, by the ADEQ CEM Coordinator prior to testing.
- D. Each CEMS/COMS shall have, as a minimum, a daily zero-span check. The zero-span shall be adjusted whenever the 24-hour zero or 24-hour span drift exceeds two times the limits in the applicable performance specification in 40 CFR, Part 60, Appendix B. Before any adjustments are made to either the zero or span drifts measured at the 24-hour interval the excess zero and span drifts measured must be quantified and recorded.
- E. All CEMS/COMS shall be in continuous operation and shall meet minimum frequency of operation requirements of 95% up-time for each quarter for each pollutant measured. Percent of monitor down-time is calculated by dividing the total minutes the monitor is not in operation by the total time in the calendar quarter and multiplying by one hundred. Failure to maintain operation time shall constitute a violation of the CEMS conditions.
- F. Percent of excess emissions are calculated by dividing the total minutes of excess emissions by the total time the source operated and multiplying by one hundred. Failure to maintain compliance may constitute a violation of the CEMS conditions.
- F. All CEMS measuring emissions shall complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive fifteen minute period unless more cycles are required by the permit. For each CEMS, one-hour averages shall be computed from four or more data points equally spaced over each one hour period unless more data points are required by the permit.
- H. All COMS shall complete a minimum of one cycle of sampling and analyzing for each successive 10-second period and one cycle of data recording for each successive 6-minute period.
- J. When the pollutant from a single affected facility is released through more than one point, a CEMS/COMS shall be installed on each point unless installation of fewer systems is approved, in writing, by the ADEQ CEM Coordinator. When more than one CEM/COM is used to monitor emissions from one affected facility the owner or operator shall report the results as required from each CEMS/COMS.

SECTION III

NOTIFICATION AND RECORD KEEPING

- A. When requested to do so by an owner or operator, the ADEQ CEM Coordinator will review plans for installation or modification for the purpose of providing technical advice to the owner or operator.
- B. Each facility which operates a CEMS/COMS shall notify the ADEQ CEM Coordinator of the date for which the demonstration of the CEMS/COMS performance will commence (i.e. PST, RATA, RAA, CGA). Notification shall be received in writing no less than 15 days prior to testing. Performance test results shall be submitted to the Department within thirty days after completion of testing.
- C. Each facility which operates a CEMS/COMS shall maintain records of the occurrence and duration of start up/shut down, cleaning/soot blowing, process problems, fuel problems, or other malfunction in the operation of the affected facility which causes excess emissions. This includes any malfunction of the air pollution control equipment or any period during which a continuous monitoring device/system is inoperative.
- D. Except for Part 75 CEMs, each facility required to install a CEMS/COMS shall submit an excess emission and monitoring system performance report to the Department (Attention: Air Division, CEM Coordinator) at least quarterly, unless more frequent submittals are warranted to assess the compliance status of the facility. Quarterly reports shall be postmarked no later than the 30th day of the month following the end of each calendar quarter. Part 75 CEMs shall submit this information semi-annually and as part of Title V six (6) month reporting requirement if the facility is a Title V facility.
- E. All excess emissions shall be reported in terms of the applicable standard. Each report shall be submitted on ADEQ Quarterly Excess Emission Report Forms. Alternate forms may be used with prior written approval from the Department.
- F. Each facility which operates a CEMS/COMS must maintain on site a file of CEMS/COMS data including all raw data, corrected and adjusted, repair logs, calibration checks, adjustments, and test audits. This file must be retained for a period of at least five years, and is required to be maintained in such a condition that it can easily be audited by an inspector.
- G. Except for Part 75 CEMs, quarterly reports shall be used by the Department to determine compliance with the permit. For Part 75 CEMs, the semi-annual report shall be used.

SECTION IV

QUALITY ASSURANCE/QUALITY CONTROL

- A. For each CEMS/COMS a Quality Assurance/Quality Control (QA/QC) plan shall be submitted to the Department (Attn.: Air Division, CEM Coordinator). CEMS quality assurance procedures are defined in 40 CFR, Part 60, Appendix F. This plan shall be submitted within 180 days of the CEMS/COMS installation. A QA/QC plan shall consist of procedure and practices which assures acceptable level of monitor data accuracy, precision, representativeness, and availability.
- B. The submitted QA/QC plan for each CEMS/COMS shall not be considered as accepted until the facility receives a written notification of acceptance from the Department.
- C. Facilities responsible for one, or more, CEMS/COMS used for compliance monitoring shall meet these minimum requirements and are encouraged to develop and implement a more extensive QA/QC program, or to continue such programs where they already exist. Each QA/QC program must include written procedures which should describe in detail, complete, step-by-step procedures and operations for each of the following activities:
 - Calibration of CEMS/COMS
 - a. Daily calibrations (including the approximate time(s) that the daily zero and span drifts will be checked and the time required to perform these checks and return to stable operation)
 - 2. Calibration drift determination and adjustment of CEMS/COMS
 - a. Out-of-control period determination
 - b. Steps of corrective action
 - 3. Preventive maintenance of CEMS/COMS
 - a. CEMS/COMS information
 - 1) Manufacture
 - 2) Model number
 - 3) Serial number
 - b. Scheduled activities (check list)
 - c. Spare part inventory
 - 4. Data recording, calculations, and reporting
 - 5. Accuracy audit procedures including sampling and analysis methods
 - 6. Program of corrective action for malfunctioning CEMS/COMS
 - D. A Relative Accuracy Test Audit (RATA), shall be conducted at least once every four calendar quarters. A Relative Accuracy Audit (RAA), or a Cylinder Gas Audit (CGA), may be conducted in the other three quarters but in no more than three quarters in succession. The RATA should be conducted in accordance with the applicable test procedure in 40 CFR Part 60 Appendix A and calculated in accordance with the applicable performance specification in 40 CFR Part 60 Appendix B. CGA's and RAA's should be conducted and the data calculated in accordance with the procedures outlined on 40 CFR Part 60 Appendix F.

If alternative testing procedures or methods of calculation are to be used in the RATA, RAA or CGA audits prior authorization must be obtained from the ADEQ CEM Coordinator.

E. Criteria for excessive audit inaccuracy.

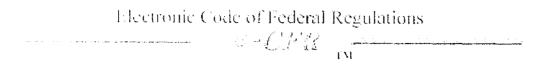
RATA

All Pollutants except Carbon Monoxide	> 20% Relative Accuracy			
Carbon Monoxide	> 10% Relative Accuracy			
All Pollutants except Carbon Monoxide	> 10% of the Applicable Standard			
Carbon Monoxide	> 5% of the Applicable Standard			
Diluent ($O_2 \& CO_2$)	> 1.0 % O2 or CO2			
Flow	> 20% Relative Accuracy			

CGA

Pollutant	> 15% of average audit value or 5 ppm difference		
Diluent (O ₂ & CO ₂)	> 15% of average audit value or 5 ppm difference		

RAA


Pollutant	> 15% of the three run average or $> 7.5%$ of the applicable standard
Diluent (O ₂ & CO ₂)	> 15% of the three run average or > 7.5 % of the applicable standard

- F. If either the zero or span drift results exceed two times the applicable drift specification in 40 CFR, Part 60, Appendix B for five consecutive, daily periods, the CEMS is out-of-control. If either the zero or span drift results exceed four times the applicable drift specification in Appendix B during a calibration drift check, the CEMS is out-of-control. If the CEMS exceeds the audit inaccuracies listed above, the CEMS is out-of-control. If a CEMS is out-of-control, the data from that out-of-control period is not counted towards meeting the minimum data availability as required and described in the applicable subpart. The end of the out-of-control period is the time corresponding to the completion of the successful daily zero or span drift or completion of the successful CGA, RAA or RATA.
- G. A back-up monitor may be placed on an emission source to minimize monitor downtime. This back-up CEMS is subject to the same QA/QC procedure and practices as the primary CEMS. The back-up CEMS shall be certified by a PST. Daily zero-span checks must be performed and recorded in accordance with standard practices. When the primary CEMS goes down, the back-up CEMS may then be engaged to sample, analyze and record the emission source pollutant until repairs are made and the primary unit is placed back in service. Records must be maintained on site when the back-up CEMS is placed in service, these records shall include at a minimum the reason the primary CEMS is out of service, the date and time the primary CEMS was placed back in service.

APPENDIX B NESHAP 40 CFR 61 SUBPART V

1941 (1924 (1924) (1924) (1925) Property School of Federal Regulations > Electronic Code of Federal Regulations

UFR Data is current as of November 28, 2007

Title 40: Protection of Environment

PARTONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Prove a Previous | Browse Next

Subpart V—National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

Source: 49 FR 23513, June 6, 1984, unless otherwise noted.

§ 61.240 Applicability and designation of sources.

- (a) The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart.
- (b) The provisions of this subpart apply to the sources listed in paragraph (a) after the date of promulgation of a specific subpart in part 61.
- (c) While the provisions of this subpart are effective, a source to which this subpart applies that is also subject to the provisions of 40 CFR part 60 only will be required to comply with the provisions of this subpart.
- (d) Alternative means of compliance —(1) Option to comply with part 65. Owners or operators may choose to comply with 40 CFR part 65 to satisfy the requirements of §§61.242—1 through 61.247 for equipment that is subject to this subpart and that is part of the same process unit. When choosing to comply with 40 CFR part 65, the requirements of §§61.245(d) and 61.246(i) and (j) still apply. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1.
- (2) Part 65, subpart C or F. For owners or operators choosing to comply with 40 CFR part 65, each surge control vessel and bottoms receiver subject to this subpart that meets the conditions specified in table 1 or table 2 of this subpart shall meet the requirements for storage vessels in 40 CFR part 65, subpart C; all other equipment subject to this subpart shall meet the requirements in 40 CFR part 65, subpart F.
- (3) Part 61, subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart C or F, must also comply with §§61.01, 61.02, 61.05 through 61.08, 61.10(b) through (d), 61.11, and 61.15 for that equipment. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph (d)(3) do not apply to owners or operators of equipment subject to this subpart complying with 40 CFR part 65, subpart C or F, except that provisions required to be met prior to implementing 40 CFR part 65 still apply. Owners and operators who choose to comply with 40 CFR part 65, subpart C or F, must comply with 40 CFR part 65, subpart A.
- (4) Rules referencing this subpart. Owners or operators referenced to this subpart from subpart F or J of

this part may choose to comply with 40 CFR part 65 for all equipment listed in paragraph (a) of this section.

[49 FR 23513, June 6, 1984, as amended at 65 FR 78280, Dec. 14, 2000]

§ 61.241 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act, in subpart A of part 61, or in specific subparts of part 61; and the following terms shall have specific meaning given them:

Bottoms receiver means a tank that collects distillation bottoms before the stream is sent for storage or for further downstream processing.

Closed-vent system means a system that is not open to atmosphere and that is composed of hard-piping, ductwork, connections, and, if necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device or back to a process.

Connector means flanged, screwed, welded, or other joined fittings used to connect two pipe lines or a pipe line and a piece of equipment. For the purpose of reporting and recordkeeping, connector means flanged fittings that are not covered by insulation or other materials that prevent location of the fittings.

Control device means an enclosed combustion device, vapor recovery system, or flare.

Double block and bleed system means two block valves connected in series with a bleed valve or line that can vent the line between the two block valves.

Duct work means a conveyance system such as those commonly used for heating and ventilation systems. It is often made of sheet metal and often has sections connected by screws or crimping. Hard-piping is not ductwork.

Equipment means each pump, compressor, pressure relief device, sampling connection system, openended valve or line, valve, connector, surge control vessel, bottoms receiver in VHAP service, and any control devices or systems required by this subpart.

First attempt at repair means to take rapid action for the purpose of stopping or reducing leakage of organic material to atmosphere using best practices.

In gas/vapor service means that a piece of equipment contains process fluid that is in the gaseous state at operating conditions.

Fuel gas means gases that are combusted to derive useful work or heat.

Fuel gas system means the offsite and onsite piping and flow and pressure control system that gathers gaseous stream(s) generated by onsite operations, may blend them with other sources of gas, and transports the gaseous stream for use as fuel gas in combustion devices or in-process combustion equipment, such as furnaces and gas turbines, either singly or in combination.

Hard-piping means pipe or tubing that is manufactured and properly installed using good engineering judgement and standards such as ASME B31.3, Process Piping (available from the American Society of Mechanical Engineers, PO Box 2900, Fairfield, NJ 07007–2900).

In liquid service means that a piece of equipment is not in gas/vapor service.

In-situ sampling systems means nonextractive samplers or in-line samplers.

In vacuum service means that equipment is operating at an internal pressure which is at least 5 kilopascals (kPa) (0.7 psia) below ambient pressure.

In VHAP service means that a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight a volatile hazardous air pollutant (VHAP) as determined according to the provisions of §61.245(d). The provisions of §61.245(d) also specify how to determine that a piece of equipment is not in VHAP service.

In VCC service means, for the purposes of this subpart, that (a) the piece of equipment contains or contacts a process fluid that is at least 10 percent VOC by weight (see 40 CFR 60.2 for the definition of volatile organic compound or VOC and 40 CFR 60.485(d) to determine whether a piece of equipment is not in VOC service) and (b) the piece of equipment is not in heavy liquid service as defined in 40 CFR 60.481.

Maximum true vapor pressure means the equilibrium partial pressure exerted by the total VHAP in the stored or transferred liquid at the temperature equal to the highest calendar-month average of the liquid storage or transfer temperature for liquids stored or transferred above or below the ambient temperature or at the local maximum monthly average temperature as reported by the National Weather Service for liquids stored or transferred at the ambient temperature, as determined:

- (1) In accordance with methods described in American Petroleum Institute Publication 2517, Evaporative Loss From External Floating-Roof Tanks (incorporated by reference as specified in §61.18); or
- (2) As obtained from standard reference texts; or
- (3) As determined by the American Society for Testing and Materials Method D2879–83, Standard Test Method for Vapor Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids by Isotoniscope (incorporated by reference as specified in §61.18); or
- (4) Any other method approved by the Administrator.

Open-ended valve or line means any valve, except pressure relief valves, having one side of the valve seat in contact with process fluid and one side open to atmosphere, either directly or through open piping.

Pressure release means the emission of materials resulting from the system pressure being greater than the set pressure of the pressure relief device.

Process unit means equipment assembled to produce a VHAP or its derivatives as intermediates or final products, or equipment assembled to use a VHAP in the production of a product. A process unit can operate independently if supplied with sufficient feed or raw materials and sufficient product storage facilities.

Process unit shutdown means a work practice or operational procedure that stops production from a process unit or part of a process unit. An unscheduled work practice or operational procedure that stops production from a process unit or part of a process unit for less than 24 hours is not a process unit shutdown. The use of spare equipment and technically feasible bypassing of equipment without stopping production are not process unit shutdowns.

Repaired means that equipment is adjusted, or otherwise altered, to eliminate a leak.

Sampling connection system means an assembly of equipment within a process unit used during periods of representative operation to take samples of the process fluid. Equipment used to take non-routine grab samples is not considered a sampling connection system.

Semiannual means a 6-month period; the first semiannual period concludes on the last day of the last month during the 180 days following initial startup for new sources; and the first semiannual period concludes on the last day of the last full month during the 180 days after the effective date of a specific subpart that references this subpart for existing sources.

Sensor means a device that measures a physical quantity or the change in a physical quantity, such as temperature, pressure, flow rate, pH, or liquid level.

Stuffing box pressure means the fluid (liquid or gas) pressure inside the casing or housing of a piece of equipment, on the process side of the inboard seal.

Surge control vessel means feed drums, recycle drums, and intermediate vessels. Surge control vessels are used within a process unit when in-process storage, mixing, or management of flow rates of volumes is needed on a recurring or ongoing basis to assist in production of a product.

Volatile hazardous air pollutant or VHAP means a substance regulated under this part for which a standard for equipment leaks of the substance has been proposed and promulgated. Benzene is a VHAP. Vinyl chloride is a VHAP.

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 51 FR 34915, Sept. 30, 1986; 54 FR 38076, Sept. 14, 1989; 65 FR 62158, Oct. 17, 2000; 65 FR 78280, Dec. 14, 2000]

§ 61.242-1 Standards: General.

- (a) Each owner or operator subject to the provisions of this subpart shall demonstrate compliance with the requirements of §§61.242–1 to 61.242–11 for each new and existing source as required in 40 CFR 61.05, except as provided in §§61.243 and 61.244.
- (b) Compliance with this subpart will be determined by review of records, review of performance test results, and inspection using the methods and procedures specified in §61.245.
- (c)(1) An owner or operator may request a determination of alternative means of emission limitation to the requirements of §§61.242–2, 61.242–3, 61.242–5, 61.242–6, 61.242–7, 61.242–8, 61.242–9 and 61.242–11 as provided in §61.244.
- (2) If the Administrator makes a determination that a means of emission limitation is at least a permissible alternative to the requirements of §61.242–2, 61.242–3, 61.242–5, 61.242–6, 61.242–7, 61.242–9 or 61.242–11, an owner or operator shall comply with the requirements of that determination.
- (d) Each piece of equipment to which this subpart applies shall be marked in such a manner that it can be distinguished readily from other pieces of equipment.
- (e) Equipment that is in vacuum service is excluded from the requirements of §61.242–2, to §61.242–11 if it is identified as required in §61.246(e)(5).

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984]

§ 61.242-2 Standards: Pumps.

- (a)(1) Each pump shall be monitored monthly to detect leaks by the methods specified in §61.245(b), except as provided in §61.242–1(c) and paragraphs (d), (e), (f) and (g) of this section.
- (2) Each pump shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal.
- (b)(1) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (2) If there are indications of liquids dripping from the pump seal, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (d) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is

exempt from the requirements of paragraphs (a) and (b) of this section, provided the following requirements are met:

- (1) Each dual mechanical seal system is:
- (i) Operated with the barrier fluid at a pressure that is at all times greater than the pump stuffing box pressure; or
- (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of §61.242-
- (iii) Equipped with a system that purges the barrier fluid into a process stream with zero VHAP emissions to almosphere.
- (2) The barrier fluid is not in VHAP service and, if the pump is covered by standards under 40 CFR part 60, is not in VOC service.
- (3) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
- (4) Each pump is checked by visual inspection each calendar week for indications of liquids dripping from the pump seal.
- (i) If there are indications of liquid dripping from the pump seal at the time of the weekly inspection, the pump shall be monitored as specified in §61.245 to determine the presence of VOC and VHAP in the barner fluid.
- (ii) If the monitor reading (taking into account any background readings) indicates the presence of VHAP, a leak is detected. For the purpose of this paragraph, the monitor may be calibrated with VHAP, or may employ a gas chromatography column to limit the response of the monitor to VHAP, at the option of the owner or operator.
- (iii) If an instrument reading of 10,000 ppm or greater (total VOC) is measured, a leak is detected.
- (5) Each sensor as described in paragraph (d)(3) of this section is checked daily or is equipped with an audible alarm.
- (6)(i) The owner or operator determines, based on design considerations and operating experience. criteria applicable to the presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or both.
- (ii) If indications of liquids dripping from the pump seal exceed the criteria established in paragraph (d)(6) (i) of this section, or if, based on the criteria established in paragraph (d)(6)(i) of this section, the sensor indicates failure of the seal system, the barrier fluid system, or both, a leak is detected.
- (iii) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after it is detected, except as provided in §61.242-10.
- (iv) A first attempt at repair shall be made no later than five calendar days after each leak is detected.
- (e) Any pump that is designated, as described in §61.246(e)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraphs (a), (c), and (d) if the pump:
- (1) Has no externally actuated shaft penetrating the pump housing,
- (2) Is demonstrated to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c), and

- (3) Is tested for compliance with paragraph (e)(2) initially upon designation, annually, and at other times requested by the Administrator.
- (f) If any pump is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal or seals to a process or fuel gas system or to a control device that complies with the requirements of §61.242–11, it is exempt from the requirements of paragraphs (a) through (e) of this section.
- (g) Any pump that is designated, as described in §61.246(f)(1), as an unsafe-to-monitor pump is exempt from the monitoring and inspection requirements of paragraphs (a) and (d)(4) through (6) of this section if:
- (1) The owner or operator of the pump demonstrates that the pump is unsafe-to-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and
- (2) The owner or operator of the pump has a written plan that requires monitoring of the pump as frequently as practicable during safe-to-monitor times but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in paragraph (c) of this section if a leak is detected.
- (h) Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (a)(2) and (d)(4) of this section, and the daily requirements of paragraph (d)(5) of this section, provided that each pump is visually inspected as often as practicable and at least monthly.

[49 FR 23513, June 6, 1984, as amended at 49 FR 38946, Oct. 2, 1984; 55 FR 28349, July 10. 1990; 65 FR 78281, Dec. 14, 2000]

§ 61.242-3 Standards: Compressors.

- (a) Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to atmosphere, except as provided in §61.242–1(c) and paragraphs (h) and (i) of this section.
- (b) Each compressor seal system as required in paragraph (a) shall be:
- (1) Operated with the barrier fluid at a pressure that is greater than the compressor stuffing box pressure; or
- (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of $\S61.242-11$; or
- (3) Equipped with a system that purges the barrier fluid into a process stream with zero VHAP emissions to almosphere.
- (c) The barrier fluid shall not be in VHAP service and, if the compressor is covered by standards under 40 CFR part 60, shall not be in VOC service.
- (d) Each barrier fluid system as described in paragraphs (a)–(c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both.
- (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped with an audible alarm unless the compressor is located within the boundary of an unmanned plant site.
- (2) The owner or operator shall determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.

- (f) If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined under paragraph (e)(2) of this section, a leak is detected.
- (g)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (2) A first attempt at repair shall be made no later than 5 calendar days after eack leak is detected.
- (h) A compressor is exempt from the requirements of paragraphs (a) and (b) of this section if it is equipped with a closed-vent system to capture and transport leakage from the compressor drive shaft back to a process or fuel gas system or to a control device that complies with the requirements of §61.242–11, except as provided in paragraph (i) of this section.
- (i) Any Compressor that is designated, as described in §61.246(e)(2), for no detectable emission as indicated by an instrument reading of less than 500 ppm above background is exempt from the requirements of paragraphs (a)-(h) if the compressor:
- (1) Is demonstrated to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c); and
- (2) Is tested for compliance with paragraph (i)(1) initially upon designation, annually, and at other times requested by the Administrator.
- [49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 65 FR 78281, Dec. 14, 2000]

§ 61.242-4 Standards: Pressure relief devices in gas/vapor service.

- (a) Except during pressure releases, each pressure relief device in gas/yapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c).
- (b)(1) After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §61.242-10.
- (2) No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c).
- (c) Any pressure relief device that is routed to a process or fuel gas system or equipped with a closedvent system capable of capturing and transporting leakage from the pressure relief device to a control device as described in §61.242-11 is exempt from the requirements of paragraphs (a) and (b) of this section.
- (d)(1) Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (a) and (b) of this section, provided the owner or operator complies with the requirements in paragraph (d)(2) of this section.
- (2) After each pressure release, a new rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §61.242-10.
- [49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 65 FR 78281, Dec. 14, 2000]

§ 61.242-5 Standards: Sampling connecting systems.

(a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed vent system, except as provided in §61.242–1(c). Gases displaced during filling of the sample container are

not required to be collected or captured.

- (b) Each closed-purge, closed-loop, or closed vent system as required in paragraph (a) of this section shall comply with the requirements specified in paragraphs (b)(1) through (4) of this section:
- (1) Return the purged process fluid directly to the process line; or
- (2) Collect and recycle the purged process fluid; or
- (3) Be designed and operated to capture and transport all the purged process fluid to a control device that complies with the requirements of §61.242–11; or
- (4) Collect, store, and transport the purged process fluid to any of the following systems or facilities:
- (i) A waste management unit as defined in 40 CFR 63.111 if the waste management unit is subject to and operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater streams; or
- (ii) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266; or
- (iii) A facility permitted, licensed, or registered by a State to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261.
- (c) In-situ sampling systems and sampling systems without purges are exempt from the requirements of paragraphs (a) and (b) of this section.

[65 FR 78281, Dec. 14, 2000]

§ 61.242-6 Standards: Open-ended valves or lines.

- (a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve, except as provided in §61.242–1(c).
- (2) The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring process fluid flow through the open-ended valve or line.
- (b) Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed.
- (c) When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) at all other times.
- (d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b) and (c) of this section.
- (e) Open-ended valves or lines containing materials which would autocatalytically polymerize or would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraphs (a) through (c) of this section.

[49 FR 23513, June 6, 1984, as amended at 65 FR 78282, Dec. 14, 2000]

§ 61.242-7 Standards: Valves.

(a) Each valve shall be monitored monthly to detect leaks by the method specified in §61.245(b) and

- shall comply with paragraphs (b)-(e), except as provided in paragraphs (f), (g), and (h) of this section, §61.243-1 or §61.243-2, and §61.242-1(c).
- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) Any valve for which a leak is not detected for 2 successive months may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected.
- (2) If a leak is detected, the valve shall be monitored monthly until a leak is not detected for 2 successive months.
- (d)(1) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in §61.242-10.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (e) First attempts at repair include, but are not limited to, the following best practices where practicable:
- (1) Tightening of bonnet bolts:
- (2) Elephoement of bonnet bolts
- (3) Lightening of packing gland nuts; and
- (4) Injection of lubricant into lubricated packing
- (f) Any valve that is designated, as described in §61.246(e)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraph (a) if the valve:
- (1) Has no external actuating mechanism in contact with the process fluid;
- (2) is operated with emissions less than 500 ppm above background, as measured by the method specified in §61.245(c); and
- (3) is tested for compliance with paragraph (f)(2) initially upon designation, annually, and at other times requested by the Administrator.
- (g) Any valve that is designated, as described in §61.246(f)(1), as an unsafe-to-monitor valve is exempt from the requirements of paragraph (a) if:
- (1) The owner or operator of the valve demonstrates that the valve is unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a); and
- (2) The owner or operator of the valve has a written plan that requires monitoring of the valve as frequent as practicable during safe-to-monitor times.
- (h) Any valve that is designated, as described in §61.246(f)(2), as a difficult-to-monitor valve is exempt from the requirements of paragraph (a) if:
- (1) The owner or operator of the valve demonstrates that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters above a support surface;
- (2) The process unit within which the valve is located is an existing process unit; and
- (3) The owner or operator of the valve follows a written plan that requires monitoring of the valve at least once per calendar year.

§ 61.242-8 Standards: Pressure relief services in liquid service and connectors.

- (a) If evidence of a potential leak is found by visual, audible, olfactory, or any other detection method at pressure relief devices in liquid service and connectors, the owner or operator shall follow either one of the following procedures, except as provided in §61.242–1(c):
- (1) The owner or operator shall monitor the equipment within 5 days by the method specified in §61.245
- (b) and shall comply with the requirements of paragraphs (b) through (d) of this section.
- (2) The owner or operator shall eliminate the visual, audible, olfactory, or other indication of a potential leak.
- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (2) The first attempt at repair shall be made no later than 5 calendar days after each leak is detected
- (d) First attempts at repair include, but are not limited to, the best practices described under §61.242–7 (e).

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 65 FR 78282, Dec. 14, 2000]

§ 61.242-9 Standards: Surge control vessels and bottoms receivers.

Each surge control vessel or bottoms receiver that is not routed back to the process and that meets the conditions specified in table 1 or table 2 of this subpart shall be equipped with a closed-vent system capable of capturing and transporting any leakage from the vessel back to the process or to a control device as described in §61.242–11, except as provided in §61.242–1(c); or comply with the requirements of 40 CFR 63.119(b) or (c).

[65 FR 78282, Dec. 14, 2000]

§ 61.242-10 Standards: Delay of repair.

- (a) Delay of repair of equipment for which leaks have been detected will be allowed if repair within 15 days is technically infeasible without a process unit shutdown. Repair of this equipment shall occur before the end of the next process unit shutdown.
- (b) Delay of repair of equipment for which leaks have been detected will be allowed for equipment that is isolated from the process and that does not remain in VHAP service.
- (c) Delay of repair for valves will be allowed if:
- (1) The owner or operator demonstrates that emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and
- (2) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with §61.242–11.
- (d) Delay of repair for pumps will be allowed if:
- (1) Repair requires the use of a dual mechanical seal system that includes a barrier fluid system, and
- (2) Repair is completed as soon as practicable, but not later than 6 months after the leak was detected.

(e) Delay of repair beyond a process unit shutdown will be allowed for a valve if valve assembly replacement is necessary during the process unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next process unit shutdown will not be allowed unless the next process unit shutdown occurs sooner than 6 months after the first process unit shutdown.

[49 FR 23513, June 6, 1984, as amended at 65 FR 78282, Dec. 14, 2000]

§ 61.242-11 Standards: Closed-vent systems and control devices.

- (a) Owners or operators of closed-vent systems and control devices used to comply with provisions of this subpart shall comply with the provisions of this section, except as provided in §61.242–1(c).
- (b) Vapor recovery systems (for example, condensers and absorbers) shall be designed and operated to recover the organic vapors vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, whichever is less stringent.
- (c) Enclosed combustion devices shall be designed and operated to reduce the VHAP emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by velume, on a dry basis, corrected to 3 percent oxygen, whichever is less stringent, or to provide a minimum residence time of 0.50 seconds at a minimum temperature of 760 °C.
- (d) Flares shall used to comply with this subpart shall comply with the requirements of §60.18.
- (e) Owners or operators of control devices that are used to comply with the provisions of this suppart shall monitor these control devices to ensure that they are operated and maintained in conformance with their design.
- (f) Except as provided in paragraphs (i) through (k) of this section, each closed vent system shall be inspected according to the procedures and schedule specified in paragraph (f)(1) or (2) of this section, as applicable
- (1) If the vapor collection system or closed vent system is constructed of hard-piping, the owner or operator shall comply with the following requirements:
- (i) Conduct an initial inspection according to the procedures in §61.245(b); and
- (ii) Conduct annual visual inspections for visible, audible, or olfactory indications of leaks.
- (2) If the vapor collection system or closed vent system is constructed of ductwork, the owner or operator shall:
- (i) Conduct an initial inspection according to the procedures in §61.245(b); and
- (ii) Conduct annual inspections according to the procedures in §61.245(b).
- (g) Leaks, as indicated by an instrument reading greater than 500 parts per million by volume above background or by visual inspections, shall be repaired as soon as practicable except as provided in paragraph (h) of this section.
- (1) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.
- (2) Repair shall be completed no later than 15 calendar days after the leak is detected.
- (h) Delay of repair of a closed vent system for which leaks have been detected is allowed if the repair is technically infeasible without a process unit shutdown, or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be complete by the end of the next process unit shutdown.

- (i) If a vapor collection system or closed vent system is operated under a vacuum, it is exempt from the inspection requirements of paragraphs (f)(1)(i) and (2) of this section.
- (j) Any parts of the closed vent system that are designated, as described in paragraph (l)(1) of this section, as unsafe-to-inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (2) of this section if they comply with the following requirements:
- (1) The owner or operator determines that the equipment is unsafe-to-inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraph (f)(1)(i) or (2) of this section; and
- (2) The owner or operator has a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.
- (k) Any parts of the closed vent system that are designated, as described in paragraph (I)(2) of this section, as difficult-to-inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (2) of this section if they comply with the following requirements:
- (1) The owner or operator determines that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface; and
- (2) The owner or operator has a written plan that requires inspection of the equipment at least once every 5 years. A closed vent system is exempt from inspection if it is operated under a vacuum.
- (I) The owner or operator shall record the following information:
- (1) Identification of all parts of the closed vent system that are designated as unsafe-to-inspect, an explanation of why the equipment is unsafe-to-inspect, and the plan for inspecting the equipment.
- (2) Identification of all parts of the closed vent system that are designated as difficult-to-inspect, an explanation of why the equipment is difficult-to-inspect, and the plan for inspecting the equipment.
- (3) For each inspection during which a leak is detected, a record of the information specified in §61.246 (c).
- (4) For each inspection conducted in accordance with §61.245(b) during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (5) For each visual inspection conducted in accordance with paragraph (f)(1)(ii) of this section during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (m) Closed vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.
- [49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 51 FR 2702, Jan. 21, 1986; 65 FR 62158, Oct. 17, 2000; 65 FR 78282, Dec. 14, 2000]

§ 61.243-1 Alternative standards for valves in VHAP service—allowable percentage of valves leaking.

- (a) An owner or operator may elect to have all valves within a process unit to comply with an allowable percentage of valves leaking of equal to or less than 2.0 percent.
- (b) The following requirements shall be met if an owner or operator decides to comply with an allowable percentage of valves leaking:
- (1) An owner or operator must notify the Administrator that the owner or operator has elected to have all

- valves within a process unit to comply with the allowable percentage of valves leaking before implementing this alternative standard, as specified in §61,247(d).
- (2) A performance test as specified in paragraph (c) of this section shall be conducted initially upon designation, annually, and at other times requested by the Administrator.
- (c) If a valve leak is detected, it shall be repaired in accordance with §61.242–7(d) and (e).
- (c) Performance tests shall be conducted in the following manner:
- (1) All valves in VHAP service within the process unit shall be monitored within 1 week by the methods specified in §61.245(b).
- (2) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (3) The leak percentage shall be determined by dividing the number of valves in VHAP service for which leaks are detected by the number of valves in VHAP service within the process unit.
- (d) Owner or operators who elect to have all valves comply with this alternative standard shall not have a products unit with a leak percentage greater than 2.0 percent.
- (e) If an owner or operator decides no longer to comply with §61.243-1, the owner or operator must notify the Administrator in writing that the work practice standard described in §61.242–7(a)-(e) will be followed.
- § \$1.243-2 Alternative standards for valves in VHAP service—skip period leak detection and repair.
- (a)(1) An owner or operator may elect for all valves within a process unit to comply with one of the alternative work practices specified in paragraphs (b)(2) and (3) of this section.
- (2) An owner or operator must notify the Administrator before implementing one of the alternative work practices, as specified in §61.247(d).
- (b)(1) An owner or operator shall comply initially with the requirements for valves, as described in \$61,242-7.
- (2) After 2 consecutive quarterly leak detection periods with the percentage of valves leaking equal to or less than 2.0, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves in VHAP service.
- (3) After five consecutive quarterly leak detection periods with the percentage of valves leaking equal to or less than 2.0, an owner or operator may begin to skip three of the quarterly leak detection periods for the valves in VHAP service.
- (4) If the percentage of valves leaking is greater than 2.0, the owner or operator shall comply with the requirements as described in §61.242-7 but may again elect to use this section.
- [49 FR 23513, June 6, 1984, as amended at 65 FR 62158, Oct. 17, 2000]
- § 61.244 Alternative means of emission limitation.
- (a) Permission to use an alternative means of emission limitation under section 112(e)(3) of the Clean Air Act shall be governed by the following procedures:
- (b) Where the standard is an equipment, design, or operational requirement:
- (1) Each owner or operator applying for permission shall be responsible for collecting and verifying test

data for an alternative means of emission limitation to test data for the equipment, design, and operational requirements.

- (2) The Administrator may condition the permission on requirements that may be necessary to assure operation and maintenance to achieve the same emission reduction as the equipment, design, and operational requirements.
- (c) Where the standard is a work practice:
- (1) Each owner or operator applying for permission shall be responsible for collecting and verifying test data for an alternative means of emission limitation.
- (2) For each source for which permission is requested, the emission reduction achieved by the required work practices shall be demonstrated for a minimum period of 12 months.
- (3) For each source for which permission is requested, the emission reduction achieved by the alternative means of emission limitation shall be demonstrated.
- (4) Each owner or operator applying for permission shall commit in writing each source to work practices that provide for emission reductions equal to or greater than the emission reductions achieved by the required work practices.
- (5) The Administrator will compare the demonstrated emission reduction for the alternative means of emission limitation to the demonstrated emission reduction for the required work practices and will consider the commitment in paragraph (c)(4).
- (6) The Administrator may condition the permission on requirements that may be necessary to assure operation and maintenance to achieve the same emission reduction as the required work practices of this subpart.
- (d) An owner or operator may offer a unique approach to demonstrate the alternative means of emission limitation.
- (e)(1) Manufacturers of equipment used to control equipment leaks of a VHAP may apply to the Administrator for permission for an alternative means of emission limitation that achieves a reduction in emissions of the VHAP achieved by the equipment, design, and operational requirements of this subpart.
- (2) The Administrator will grant permission according to the provisions of paragraphs (b), (c), and (d).

[49 FR 23513, June 6, 1984, as amended at 65 FR 62158, Oct. 17, 2000]

§ 61.245 Test methods and procedures.

- (a) Each owner or operator subject to the provisions of this subpart shall comply with the test methods and procedures requirements provided in this section.
- (b) Monitoring, as required in §§61.242, 61.243, 61.244, and 61.135, shall comply with the following requirements:
- (1) Monitoring shall comply with Method 21 of appendix A of 40 CFR part 60.
- (2) The detection instrument shall meet the performance criteria of Method 21.
- (3) The instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21.
- (4) Calibration gases shall be:

- (i) Zero air (less than 10 ppm of hydrocarbon in air); and
- (ii) A resolute of methane or in-hexage and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane.
- (5) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Method 21.
- (c) When equipment is tested for compliance with or monitored for no detectable emissions, the owner or operator shall comply with the following requirements:
- (1) The requirements of paragraphs (b) (1) through (4) shall apply.
- (2) The background level shall be determined, as set forth in Method 21.
- (3) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Method 21.
- (a) The authoretic difference between the maximum concentration indicated by the instrument and the so all operate lievel is compared with 500 ppm for determining compliance.
- title to footh piece of equipment within a process unit that can conceivably contain equipment in VHAP surveiens presumed to be in VHAP service unless an owner or operator demonstrates that the piece of requirement is not in VHAP service. For a piece of equipment to be considered not in VHAP service, it must be determined that the percent VHAP content can be reasonably expected never to exceed 10 agreent by weight. For purposes of determining the percent VHAP content of the process fluid that is contained in or contacts equipment, procedures that conform to the methods described in ASTM Method D=2267 (incorporated by the reference as specified in §61.18) shall be used.
- (2)(i) An owner or operator may use engineering judgment rather than the procedures in paragraph (d) (1) of this section to demonstrate that the percent VHAP content does not exceed 10 percent by weight. provided that the engineering judgment demonstrates that the VHAP content clearly does not exceed 10 percent by weight. When an owner or operator and the Administrator do not agree on whether a piece of equipment is not in VHAP service, however, the procedures in paragraph (d)(1) of this section shall be used to resolve the disagreement.
- (ii) If an owner or operator determines that a piece of equipment is in VHAP service, the determination can be revised only after following the procedures in paragraph (d)(1) of this section.
- (3) Samples used in determining the percent VHAP content shall be representative of the process fluid that is contained in or contacts the equipment or the gas being combusted in the flare.
- (e)(1) Method 22 of appendix A of 40 CFR part 60 shall be used to determine compliance of flares with the visible emission provisions of this subpart.
- (2) The presence of a flare pilot flame shall be monitored using a thermocouple or any other equivalent device to detect the presence of a flame.
- (3) The net heating value of the gas being combusted in a flare shall be calculated using the following ocuation:

$$H_{\tau} = K \left(\sum_{i=1}^{n} C_i H_i \right)$$

Where

H_x= Net heating value of the sample, MJ/scm (BTU/scf); where the net enthalpy per mole of

offgas is based on combustion at 25 °C and 760 mm Hg (77 °F and 14.7 psi), but the standard temperature for determining the volume corresponding to one mole is 20 °C (68 °F).

K = conversion constant, 1.740×10^7 (g-mole) (MJ)/(ppm-scm-kcal) (metric units); or 4.674×10^8 ((g-mole) (Btu)/(ppm-scf-kcal)) (English units)

Ci = Concentration of sample component "i" in ppm, as measured by Method 18 of appendix A to 40 CFR part 60 and ASTM D2504–67, 77, or 88 (Reapproved 1993) (incorporated by reference as specified in §61.18).

H_i= net heat of combustion of sample component "i" at 25 °C and 760 mm Hg (77 °F and 14.7 psi), kcal/g-mole. The heats of combustion may be determined using ASTM D2382–76 or 88 or D4809–95 (incorporated by reference as specified in §61.18) if published values are not available or cannot be calculated.

- (4) The actual exit velocity of a flare shall be determined by dividing the volumetric flowrate (in units of standard temperature and pressure), as determined by Method 2, 2A, 2C, or 2D, as appropriate, by the unobstructed (free) cross section area of the flare tip.
- (5) The maximum permitted velocity, V_{max}, for air-assisted flares shall be determined by the following equation:

$$V_{\rm max} = K_1 + K_2 H_T$$

Where:

V_{max}= Maximum permitted velocity, m/sec (ft/sec).

 H_T = Net heating value of the gas being combusted, as determined in paragraph (e)(3) of this section, MJ/scm (Btu/scf).

 $K_1 = 8.706$ m/sec (metric units)

= 28.56 ft/sec (English units)

 K_2 = 0.7084 m⁴ /(MJ-sec) (metric units)

= 0.087 ft⁴ /(Btu-sec) (English units)

[49 FR 23513, June 6, 1984, as amended at 49 FR 38946, Oct. 2, 1984; 49 FR 43647, Oct. 31, 1984; 53 FR 36972, Sept. 23, 1988; 54 FR 38077, Sept. 14, 1989; 65 FR 62158, Oct. 17, 2000]

§ 61.246 Recordkeeping requirements.

- (a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.
- (2) An owner or operator of more than one process unit subject to the provisions of this subpart may comply with the recordkeeping requirements for these process units in one recordkeeping system if the system identifies each record by each process unit.
- (b) When each leak is detected as specified in §§61.242–2, 61.242–3, 61.242–7, 61.242–8, and 61.135, the following requirements apply:

- (1) A weatherproof and readify visible identification, marked with the equipment identification number, shall be attached to the leaking equipment.
- (2) The identification on a valve may be removed after it has been monitored for 2 successive months as expedified in §61.242–7(c) and no leak has been detected during those 2 months.
- (3) The identification on equipment, except on a valve, may be removed after it has been repaired.
- (c) Witton each leak is detected as specified in §§61.242-2, 61.242-3, 61.242-7, 61.242-8, and 61.135, the following information shall be recorded in a log and shall be kept for 2 years in a readily accessible
- 41) The instrument and operator identification numbers and the equipment identification number.
- (2) The date the leak was detected and the dates of each attempt to repair the leak.
- (3) Repair methods applied in each attempt to repair the leak.
- 14 "7/boyo 10,000" if the maximum instrument reading measured by the methods specified in §61.245(a) and a achieopair attempt is equal to or greater than 10,000 ppm.
- this Expandoclayed" and the reason for the delay if a leak is not repaired within 15 calendar days after corrected of the leak
- 5.) The signature of the owner or operator (or designate) whose decision it was that repair could not be the cord without a process shutdown.
- (i) the expected date of successful repair of the leak if a leak is not repaired within 15 calendar days.
- (8) Dates of process unit shutdowns that occur while the equipment is unrepaired.
- (9) The date of successful repair of the leak.
- (d) The following information pertaining to the design requirements for closed-vent systems and control devices described in §61.242–11 shall be recorded and kept in a readily accessible location:
- (1) Detailed schematics, design specifications, and piping and instrumentation diagrams.
- (2) The dates and descriptions of any changes in the design specifications.
- (3) A description of the parameter or parameters monitored, as required in §61.242–11(e), to ensure that control devices are operated and maintained in conformance with their design and an explanation of why that parameter (or parameters) was selected for the monitoring.
- (i) Periods when the closed-vent systems and control devices required in §§61.242–2, 61.242–3, 61.242-4, 61.242-5 and 61.242-9 are not operated as designed, including periods when a flare pilot light does not have a flame
- (5) Dates of startups and shutdowns of the closed-vent systems and control devices required in §§61 242–2, 61.242–3, 61.242–4, 61.242–5 and 61.242–9.
- (e) The following information pertaining to all equipment to which a standard applies shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for equipment (except welded fittings) subject to the requirements of this subpart.
- (ii) (i) A list of identification numbers for equipment that the owner or operator elects to designate for no

detectable emissions as indicated by an instrument reading of less than 500 ppm above background.

- (ii) The designation of this equipment for no detectable emissions shall be signed by the owner or operator.
- (3) A list of equipment identification numbers for pressure relief devices required to comply with $\S61.242-4(a)$.
- (4)(i) The dates of each compliance test required in §§61.242–2(e), 61.242–3(i), 61.242–4, 61.242–7(f), and 61.135(g).
- (ii) The background level measured during each compliance test.
- (iii) The maximum instrument reading measured at the equipment during each compliance test.
- (5) A list of identification numbers for equipment in vacuum service.
- (f) The following information pertaining to all valves subject to the requirements of §61.242–7(g) and (h) and to all pumps subject to the requirements of §61.242–2(g) shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for valves and pumps that are designated as unsafe to monitor, an explanation for each valve or pump stating why the valve or pump is unsafe to monitor, and the plan for monitoring each valve or pump.
- (2) A list of identification numbers for valves that are designated as difficult to monitor, an explanation for each valve stating why the valve is difficult to monitor, and the planned schedule for monitoring each valve.
- (g) The following information shall be recorded for valves complying with §61.243–2:
- (1) A schedule of monitoring.
- (2) The percent of valves found leaking during each monitoring period
- (h) The following information shall be recorded in a log that is kept in a readily accessible location:
- (1) Design criterion required in §§61.242–2(d)(5), 61.242–3(e)(2), and 61.135(e)(4) and an explanation of the design criterion; and
- (2) Any changes to this criterion and the reasons for the changes.
- (i) The following information shall be recorded in a log that is kept in a readily accessible location for use in determining exemptions as provided in the applicability section of this subpart and other specific subparts:
- (1) An analysis demonstrating the design capacity of the process unit, and
- (2) An analysis demonstrating that equipment is not in VHAP service.
- (j) Information and data used to demonstrate that a piece of equipment is not in VHAP service shall be recorded in a log that is kept in a readily accessible location.
- [49 FR 23513, June 6, 1984, as amended at 49 FR 38946, Oct. 2, 1984; 54 FR 38077, Sept. 14, 1989; 65 FR 78283, Dec. 14, 2000]
- § 61.247 Reporting requirements.

- which an owner or operator of any piece of equipment to which this subpart applies shall submit a statement in writing notifying the Administrator that the requirements of §§61.242, 61.245, 61.246, and 64.247 are being implemented.
- (a) in the case of an existing source or a new source which has an initial startup date preceding the effective date, the statement is to be submitted within 90 days of the effective date, unless a waiver of compliance is granted under §61.11, along with the information required under §61.10. If a waiver of compliance is granted, the statement is to be submitted on a date scheduled by the Administrator.
- (3) in the case of new sources which did not have an initial startup date preceding December 14, 2000, the statement required under paragraph (a)(1) of this section shall be submitted with the application for approval of construction, as described in §61.07.
- (ii) For owners and operators complying with 40 CFR part 65, subpart C or F, the statement required under paragraph (a)(1) of this section shall notify the Administrator that the requirements of 40 CFR part 65, subpart C or F, are being implemented.
- (6) The platement is to contain the following information for each source:
- us Compresent identification number and process unit identification.
- என்ற சார் அயுமுன்றை (for example, a pump or pipeline valve).
- and the count by weight VHAP in the fluid at the equipment.
- and a repail held state at the equipment (gas/vapor or liquid).
- (y) 13-the dief compliance with the standard (for example, "monthly leak detection and repair" or equipped with dual mechanical seals").
- (b) A report shall be submitted to the Administrator semiannually starting 6 months after the initial report required in paragraph (a) of this section, that includes the following information:
- (1) Process unit identification.
- (2) For each month during the semiannual reporting period.
- (i) Number of valves for which leaks were detected as described in §61.242-7(b) of §61.243-2.
- (ii) Number of valves for which leaks were not repaired as required in §61.242-7(d).
- (iii) Number of pumps for which leaks were detected as described in §61.242-2 (b) and (d)(6).
- (iv) Mumber of pumps for which leaks were not repaired as required in §61.242–2 (c) and (d)(6).
- (v) Number of compressors for which leaks were detected as described in §61.242–3(f).
- (vi) Murature of compressors for which leaks were not repaired as required in §61.242–3(g).
- evil) The facts that explain any delay of repairs and, where appropriate, why a process unit shutdown was isobnically infeasible.
- (3) Ontes of process unit shutdowns which occurred within the semiannual reporting period.
- (4) Revisions to items reported according to paragraph (a) if changes have occurred since the initial report or subsequent revisions to the initial report.

Note: Compliance with the requirements of §61.10(c) is not required for revisions documented under this paragraph.

- (5) The results of all performance tests and monitoring to determine compliance with no detectable emissions and with §§61.243–1 and 61.243–2 conducted within the semiannual reporting period
- (c) In the first report submitted as required in paragraph (a) of this section, the report shall include a reporting schedule stating the months that semiannual reports shall be submitted. Subsequent reports shall be submitted according to that schedule, unless a revised schedule has been submitted in a previous semiannual report.
- (d) An owner or operator electing to comply with the provisions of §§61.243–1 and 61.243–2 shall notify the Administrator of the alternative standard selected 90 days before implementing either of the provisions.
- (e) An application for approval of construction or modification, §§61.05(a) and 61.07, will not be required it.—
- (1) The new source complies with the standard, §61.242;
- (2) The new source is not part of the construction of a process unit; and
- (3) In the next semiannual report required by paragraph (b) of this section, the information in paragraph (a)(5) of this section is reported.
- (f) For owners or operators choosing to comply with 40 CFR part 65, subpart C or F, an application for approval of construction or modification, as required under §§61.05 and 61.07 will not be required if:
- (1) The new source complies with 40 CFR 65.106 through 65.115 and with 40 CFR part 65, subpart C, for surge control vessels and bottoms receivers;
- (2) The new source is not part of the construction of a process unit; and
- (3) In the next semiannual report required by 40 CFR 65.120(b) and 65.48(b), the information in paragraph (a)(5) of this section is reported.

[49 FR 23513, June 6, 1984, as amended at 49 FR 38947, Oct. 2, 1984; 54 FR 38077, Sept. 14, 1989; 65 FR 78283, Dec. 14, 2000]

Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources

	Vapor
Vessel capacity (cubic meters)	pressure ¹ (kilopascals)
75 ≤ capacity < 151	≥ 13.1
151 ≤ capacity	≥ 5.2

¹Maximum true vapor pressure as defined in §61.241.

[65 FR 78283, Dec. 14, 2000]

Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources

Vessel capacity (cubic meters)	Vapor pressure ¹ (kilopascals)		
38 ⇔ capacity < 151	≥ 13.1		
151 capacity	≥ 0.7		

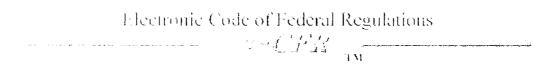
¹Maximum true vapor pressure as defined in §61.241.

[65 FB 78283, Dec. 14, 2000]

The Charle | Israelia Next

for questions or comments regarding e-CFR editorial content, features, or design, email edit@riara.gov.

For questions, concerning e-CFR programming and delivery issues, email webblook@cpo gov


John Black to Generally

			·
·			

APPENDIX B NSPS 40 CFR 60 SUBPART Dc

Here in Page > Error chain Branch > Code of Enderal Regulations > Electronic Code of Federal Regulations

us od bits is current as of November 28, 2007

Title 40: Protection of Environment

PART 60 - STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Browse Previous | Browse Next

Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Source: 72 FR 32759, June 13, 2007, unless otherwise noted.

§ 60.40c Applicability and delegation of authority.

- (a) Except as provided in paragraph (d) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).
- (b) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, §60.48c(a)(4) shall be retained by the Administrator and not transferred to a State.
- (c) Steam generating units that meet the applicability requirements in paragraph (a) of this section are not subject to the sulfur dioxide (SO₂) or particulate matter (PM) emission limits, performance testing requirements, or monitoring requirements under this subpart (§§60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during periods of combustion research, as defined in §60.41c.
- (d) Any temporary change to an existing steam generating unit for the purpose of conducting combustion research is not considered a modification under §60.14.
- (e) Heat recovery steam generators that are associated with combined cycle gas turbines and meet the applicability requirements of subpart GG or KKKK of this part are not subject to this subpart. This subpart will continue to apply to all other heat recovery steam generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only emissions resulting from combustion of fuels in the steam generating unit are subject to this subpart. (The gas turbine emissions are subject to subpart GG or KKKK, as applicable, of this part).
- (f) Any facility covered by subpart AAAA of this part is not covered by this subpart.
- (g) Any facility covered by an EPA approved State or Federal section 111(d)/129 plan implementing subpart BBBB of this part is not covered by this subpart.

§ 60.41c Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act and in subpart A of this part.

Annual capacity factor means the ratio between the actual heat input to a steam generating unit from an individual fuel or combination of fuels during a period of 12 consecutive calendar months and the potential heat input to the steam generating unit from all fuels had the steam generating unit been operated for 8,760 hours during that 12-month period at the maximum design heat input capacity. In the case of steam generating units that are rented or leased, the actual heat input shall be determined based on the combined heat input from all operations of the affected facility during a period of 12 consecutive calendar months.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17), coal refuse, and petroleum coke. Coal-derived synthetic fuels derived from coal for the purposes of creating useful heat, including but not limited to solvent refined coal, gasified coal, coal-oil mixtures, and coal-water mixtures, are also included in this definition for the purposes of this subpart.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (kJ/kg) (6,000 Btu per pound (Btu/lb) on a dry basis.

Cogeneration steam generating unit means a steam generating unit that simultaneously produces both electrical (or mechanical) and thermal energy from the same primary energy source.

Combined cycle system means a system in which a separate source (such as a stationary gas turbine, internal combustion engine, or kiln) provides exhaust gas to a steam generating unit.

Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient combustion or more effective prevention or control of air pollutant emissions from combustion, provided that, during these periods of research and development, the heat generated is not used for any purpose other than preheating combustion air for use by that steam generating unit (i.e. , the heat generated is released to the atmosphere without being used for space heating, process heating, driving pumps, preheating combustion air for other units, generating electricity, or any other purpose).

Conventional technology means wet flue gas desulfurization technology, dry flue gas desulfurization technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology.

Distillate oil means fuel oil that complies with the specifications for fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17).

Dry flue gas desulfurization technology means a SO₂control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution and forming a dry powder material. This definition includes devices where the dry powder material is subsequently converted to another form. Alkaline reagents used in dry flue gas desulfurization systems include, but are not limited to, lime and sodium compounds.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source (such as a stationary gas turbine, internal combustion engine, kiln, etc.) to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a steam generating unit.

Emerging technology means any SO₂control system that is not defined as a conventional technology under this section, and for which the owner or operator of the affected facility has received approval from the Administrator to operate as an emerging technology under §60.48c(a)(4).

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Fluidized bed combustion technology means a device wherein fuel is distributed onto a bed (or series of beds) of limestone aggregate (or other sorbent materials) for combustion; and these materials are forced

upward in the device by the flow of combustion air and the gaseous products of combustion. Fluidized bad combustion technology includes, but is not limited to, bubbling bed units and circulating bed units.

Fuel pretreatment means a process that removes a portion of the sulfur in a fuel before combustion of the fuel in a steam generating unit.

Heat input means heat derived from combustion of fuel in a steam generating unit and does not include the heat derived from preheated combustion air, recirculated flue gases, or exhaust gases from other sources (such as stationary gas turbines, internal combustion engines, and kilns).

Heat transfer medium means any material that is used to transfer heat from one point to another point.

Maximum design heat input capacity means the ability of a steam generating unit to combust a stated maximum amount of fuel (or combination of fuels) on a steady state basis as determined by the physical design and characteristics of the steam generating unit.

Natural gas means: (1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or (2) inquefied petroleum (LP) gas, as defined by the American Society for Testing and Materials in ASTM D1835 (incorporated by reference, see §60.17).

Moncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Oil recans crude oil or petroleum, or a liquid fuel derived from crude oil or petroleum, including distillate oil and residual oil.

Potential sulfur dioxide emission rate means the theoretical SO₂emissions (nanograms per joule (ng/J) or Ib/LAMBtu heat input) that would result from combusting fuel in an uncleaned state and without using emission control systems.

Process heater means a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17).

Steam generaling unit means a device that combusts any fuel and produces steam or heats water or any other heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart.

Steam generating unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam generating unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Wet flue gas desulfurization technology means an SO₂control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition includes devices where the liquid material is subsequently converted to another form. Alkaline reagents used in wet flue gas desulfurization systems include, but are not limited to, lime, limestone, and sodium compounds.

Wet scrubber system means any emission control device that mixes an aqueous stream or slurry with the exhaust gases from a steam generating unit to control emissions of PM or SO₂.

Wood means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including but not limited to sawdust, sanderdust, wood chips, scraps, slabs, millings, shavings, and processed pellets made from wood or other forest residues.

§ 60.42c Standard for sulfur dioxide (SO₂).

- (a) Except as provided in paragraphs (b), (c), and (e) of this section, on and after the date on which the performance test is completed or required to be completed under $\S60.8$, whichever date comes first, the owner or operator of an affected facility that combusts only coal shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO_2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO_2 emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO_2 in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO_2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO_2 emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO_2 in excess of the emission limit is determined pursuant to paragraph (e)(2) of this section.
- (b) Except as provided in paragraphs (c) and (e) of this section, on and after the date on which the performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator of an affected facility that:
- (1) Combusts only coal refuse alone in a fluidized bed combustion steam generating unit shall neither:
- (i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 20 percent (0.20) of the potential SO_2 emission rate (80 percent reduction); nor
- (ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of SO₂ in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility subject to paragraph (a) of this section. If oil or any other fuel (except coal) is fired with coal refuse, the affected facility is subject to the 87 ng/J (0.20 lb/MMBtu) heat input SO₂ emissions limit or the 90 percent SO₂ reduction requirement specified in paragraph (a) of this section and the emission limit is determined pursuant to paragraph (e)(2) of this section.
- (2) Combusts only coal and that uses an emerging technology for the control of SO₂emissions shall neither:
- (i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 50 percent (0.50) of the potential SO_2 emission rate (50 percent reduction); nor
- (ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 260 ng/J (0.60 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50 percent SO_2 reduction requirement specified in this paragraph and the emission limit determined pursuant to paragraph (e)(2) of this section.
- (c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, alone or in combination with any other fuel, and is listed in paragraphs (c)(1), (2), (3), or (4) of this section shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂in excess of the emission limit determined pursuant to paragraph (e)(2) of this section.

 Percent reduction requirements are not applicable to affected facilities under paragraphs (c)(1), (2), (3), or (4).
- (1) Affected facilities that have a heat input capacity of 22 MW (75 MMBtu/hr) or less.
- (2) Affected facilities that have an annual capacity for coal of 55 percent (0.55) or less and are subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for coal of 55 percent (0.55) or less.

- (3) Affected facilities located in a noncontinental area.
- (4) Affacted facilities that combust coal in a duct burner as part of a combined cycle system where 30 percent (0.30) or less of the heat entering the steam generating unit is from combustion of coal in the duct burner and 70 percent (0.70) or more of the heat entering the steam generating unit is from exhaust gases entering the duct burner.
- ad) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts oil shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂in excess of 215 ng/J (0.50 lb/MMBtu) heat input; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.
- (e) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂in excess of the following:
- (1) The concent of potential SO₂ emission rate or numerical SO₂ emission rate required under paragraph (a) (2002) of this section, ac applicable, for any affected facility that
- in Combasts coal in combination with any other fuel;
- (iii) Hor a heat input capacity greater than 22 MW (75 MMBtu/hr); and
- (iii) Has an annual capacity factor for coal greater than 55 percent (0.55); and
- (2) The emission limit determined according to the following formula for any affected facility that combusts coat, oil, or coal and oil with any other fuel:

$$\mathbb{E}_{r} = \frac{\left(\mathbb{K}_{s} \mathbb{H}_{s} + \mathbb{K}_{b} \mathbb{H}_{b} + \mathbb{K}_{c} \mathbb{H}_{c}\right)}{\left(\mathbb{H}_{s} + \mathbb{H}_{b} + \mathbb{H}_{c}\right)}$$

Where:

E_s= SO_pemission limit, expressed in ng/J or lb/MMBtu heat input;

 $K_a = 520 \text{ ng/J (1.2 lb/MMBtu)};$

 $K_b = 260 \text{ ng/J } (0.60 \text{ lb/MMBtu});$

 $K_{i} = 215 \text{ ng/J } (0.50 \text{ lb/MMBtu});$

H_n= Heat input from the combustion of coal, except coal combusted in an affected facility subject to paragraph (b)(2) of this section, in Joules (J) [MMBtu];

 H_b = Heat input from the combustion of coal in an affected facility subject to paragraph (b)(2) of this section, in J (MMBtu); and

H₂K₃H₂= Heat input from the combustion of oil, in J (MMBtu).

- (f) Reduction in the potential SO_2 emission rate through fuel pretreatment is not credited toward the percent reduction requirement under paragraph (b)(2) of this section unless:
- (1) Fuel pretreatment results in a 50 percent (0.50) or greater reduction in the potential SO₂emission rate; and
- (2) Emissions from the pretreated fuel (without either combustion or post-combustion SO₂control) are equal to or less than the emission limits specified under paragraph (b)(2) of this section.
- (g) Except as provided in paragraph (h) of this section, compliance with the percent reduction requirements, fuel oil sulfur limits, and emission limits of this section shall be determined on a 30-day rolling average basis.
- (h) For affected facilities listed under paragraphs (h)(1), (2), or (3) of this section, compliance with the emission limits or fuel oil sulfur limits under this section may be determined based on a certification from the fuel supplier, as described under §60.48c(f), as applicable.
- (1) Distillate oil-fired affected facilities with heat input capacities between 2.9 and 29 MW (10 and 100 MMBtu/hr).
- (2) Residual oil-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).
- (3) Coal-fired facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr)
- (i) The SO₂ emission limits, fuel oil sulfur limits, and percent reduction requirements under this section apply at all times, including periods of startup, shutdown, and malfunction.
- (j) Only the heat input supplied to the affected facility from the combustion of coal and oil is counted under this section. No credit is provided for the heat input to the affected facility from wood or other fuels or for heat derived from exhaust gases from other sources, such as stationary gas turbines, internal combustion engines, and kilns.

§ 60.43c Standard for particulate matter (PM).

- (a) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emission limits:
- (1) 22 ng/J (0.051 lb/MMBtu) heat input if the affected facility combusts only coal, or combusts coal with other fuels and has an annual capacity factor for the other fuels of 10 percent (0.10) or less.
- (2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal with other fuels, has an annual capacity factor for the other fuels greater than 10 percent (0.10), and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor greater than 10 percent (0.10) for fuels other than coal.
- (b) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts wood or combusts mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emissions limits:
- (1) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood greater than 30 percent (0.30); or

- (2) 130 ng/J (0.30 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood of 30 percent (0.30) or less and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for wood of 30 percent (0.30) or less.
- (c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, wood or oil and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity.
- (d) The PM and opacity standards under this section apply at all times, except during periods of startup, shutdown, or malfunction.
- (e)(1) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 13 ng/J (0.030 lb/MMBtu) heat input, except as provided in paragraphs (e)(2), (e)(3), and (e)(4) of this section.
- (2) As an alternative to meeting the requirements of paragraph (e)(1) of this section, the owner or operator of an affected facility for which modification commenced after February 28, 2005, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005 shall cause to be discharged actor the autosphere from that affected facility any gases that contain PM in excess of both:
- (i) 22 no.0 (0.051 lb/MMBtu) heat input derived from the combustion of coal, oil, wood, a mixture of these fixeds on a mixture of these fixeds and
- (ii) 0.2 percent of the combustion concentration (99.8 percent reduction) when combusting coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels.
- (3) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005, and that combusts over 30 percent wood (by heat input) on an annual basis and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 43 ng/J (0.10 lb/MMBtu) heat input.
- (4) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, an owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only eit that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under §60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO₂emissions is not subject to the PM limit in this section
- \S 60.44c. Compliance and performance test methods and procedures for sulfur dioxide.
- (a) Except as provided in paragraphs (g) and (h) of this section and §60.8(b), performance tests required under §60.8 shall be conducted following the procedures specified in paragraphs (b), (c), (d), (e), and (f) of this section, as applicable. Section 60.8(f) does not apply to this section. The 30-day notice required in §60.8(d) applies only to the initial performance test unless otherwise specified by the Administrator.
- (b) The initial performance test required under §60.8 shall be conducted over 30 consecutive operating days of the steam generating unit. Compliance with the percent reduction requirements and SO₂ emission limits under §60.42c shall be determined using a 30-day average. The first operating day

included in the initial performance test shall be scheduled within 30 days after achieving the maximum production rate at which the affect facility will be operated, but not later than 180 days after the initial startup of the facility. The steam generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but must be representative of future operating conditions.

- (c) After the initial performance test required under paragraph (b) of this section and $\S60.8$, compliance with the percent reduction requirements and SO_2 emission limits under $\S60.42c$ is based on the average percent reduction and the average SO_2 emission rates for 30 consecutive steam generating unit operating days. A separate performance test is completed at the end of each steam generating unit operating day, and a new 30-day average percent reduction and SO_2 emission rate are calculated to show compliance with the standard.
- (d) If only coal, only oil, or a mixture of coal and oil is combusted in an affected facility, the procedures in Method 19 of appendix A of this part are used to determine the hourly SO_2 emission rate (E_{ho}) and the 30-day average SO_2 emission rate (E_{ao}). The hourly averages used to compute the 30-day averages are obtained from the CEMS. Method 19 of appendix A of this part shall be used to calculate E_{ao} when using daily fuel sampling or Method 6B of appendix A of this part.
- (e) If coal, oil, or coal and oil are combusted with other fuels:
- (1) An adjusted $E_{ho}(E_{ho}o)$ is used in Equation 19–19 of Method 19 of appendix A of this part to compute the adjusted $E_{ao}(E_{ao}o)$. The $E_{ho}o$ is computed using the following formula:

$$E_{\mathbf{L}_{\mathbf{r}}} \circ = \frac{E_{\mathbf{L}_{\mathbf{r}}} - E_{\mathbf{w}} \left(1 - X_{\mathbf{r}}\right)}{X_{\mathbf{r}}}$$

Where

 E_{ho} o = Adjusted E_{ho} , ng/J (lb/MMBtu);

E_{ho}= Hourly SO₂emission rate, ng/J (lb/MMBtu);

 E_w = SO_2 concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 9 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume E_w = 0.

 X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

- (2) The owner or operator of an affected facility that qualifies under the provisions of $\S60.42c(c)$ or (d) (where percent reduction is not required) does not have to measure the parameters E_w or X_k if the owner or operator of the affected facility elects to measure emission rates of the coal or oil using the fuel sampling and analysis procedures under Method 19 of appendix A of this part.
- (f) Affected facilities subject to the percent reduction requirements under §60.42c(a) or (b) shall determine compliance with the SO₂emission limits under §60.42c pursuant to paragraphs (d) or (e) of this section, and shall determine compliance with the percent reduction requirements using the following procedures:
- (1) If only coal is combusted, the percent of potential SO₂ emission rate is computed using the following formula:

$$^{100}P_{c} = 100 \left(1 - \frac{96R_{c}}{100}\right) \left(1 - \frac{96R_{c}}{100}\right)$$

V/here

Potential SO_pemission rate, in percent;

 $\%R_0$ = SO₂removal efficiency of the control device as determined by Method 19 of appendix A of this part, in percent; and

GR₁= SO₂removal efficiency of fuel pretreatment as determined by Method 19 of appendix A of this part, in percent.

- (2) If coal, oil, or coal and oil are combusted with other fuels, the same procedures required in paragraph (f)(1) of this section are used, except as provided for in the following:
- ii) It compute the % $P_{\rm g}$, an adjusted % $R_{\rm g}$ (% $R_{\rm g}$ o) is computed from $E_{\rm ao}$ o from paragraph (e)(1) of this section adjusted average SO₂ inlet rate ($E_{\rm ao}$) using the following formula:

$$\mathcal{L}_{\mathcal{F}} = \operatorname{Conf}\left(1 - \frac{\widehat{F}_{\mathcal{M}}}{F_{\mathcal{G}}}\right)$$

Where:

 $\%R_a$ = Adjusted $\%R_a$, in percent;

E_{au}o = Adjusted E_{au}, ng/J (lb/MMBtu); and

E_mo = Adjusted average SO₂inlet rate, ng/J (lb/MMBtu).

(ii) To compute E_{ai} o, an adjusted hourly SO_2 inlet rate (E_{hi} o) is used. The E_{hi} o is computed using the following formula:

$$E_{\mathbf{h}} \circ = \frac{E_{\mathbf{h}} - E_{\mathbf{w}} (1 - X_{\mathbf{t}})}{X_{\mathbf{t}}}$$

Where:

 $E_{hi}o = Adjusted E_{hi}$, ng/J (lb/MMBtu);

E_{1,1}= Hourly SO₂inlet rate, ng/J (lb/MMBtu);

 $E_{\rm w}$ = SO_2 concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 19 of appendix A of this part, ng/J (lb/MMBtu). The value $E_{\rm w}$ for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure $E_{\rm w}$ if the owner or operator elects to assume $E_{\rm w}$ = 0; and

- X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.
- (g) For oil-fired affected facilities where the owner or operator seeks to demonstrate compliance with the fuel oil sulfur limits under §60.42c based on shipment fuel sampling, the initial performance test shall consist of sampling and analyzing the oil in the initial tank of oil to be fired in the steam generating unit to demonstrate that the oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or operator of the affected facility shall sample the oil in the fuel tank after each new shipment of oil is received, as described under §60.46c(d)(2).
- (h) For affected facilities subject to §60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO₂standards based on fuel supplier certification, the performance test shall consist of the certification, the certification from the fuel supplier, as described under §60.48c (f), as applicable.
- (i) The owner or operator of an affected facility seeking to demonstrate compliance with the SO₂standards under §60.42c(c)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.
- (j) The owner or operator of an affected facility shall use all valid SO_2 emissions data in calculating % P_s and E_{ho} under paragraphs (d), (e), or (f) of this section, as applicable, whether or not the minimum emissions data requirements under §60.46c(f) are achieved. All valid emissions data, including valid data collected during periods of startup, shutdown, and malfunction, shall be used in calculating % P_s or E_{ho} pursuant to paragraphs (d), (e), or (f) of this section, as applicable.

§ 60.45c Compliance and performance test methods and procedures for particulate matter.

- (a) The owner or operator of an affected facility subject to the PM and/or opacity standards under §60.43c shall conduct an initial performance test as required under §60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of this section.
- (1) Method 1 of appendix A of this part shall be used to select the sampling site and the number of traverse sampling points.
- (2) Method 3 of appendix A of this part shall be used for gas analysis when applying Method 5, 5B, or 17 of appendix A of this part.
- (3) Method 5, 5B, or 17 of appendix A of this part shall be used to measure the concentration of PM as follows:
- (i) Method 5 of appendix A of this part may be used only at affected facilities without wet scrubber systems.
- (ii) Method 17 of appendix A of this part may be used at affected facilities with or without wet scrubber systems provided the stack gas temperature does not exceed a temperature of 160 °C (320 °F). The procedures of Sections 8.1 and 11.1 of Method 5B of appendix A of this part may be used in Method 17 of appendix A of this part is used in conjunction with a wet scrubber system. Method 17 of appendix A of this part shall not be used in conjunction with a wet scrubber system if the effluent is saturated or laden with water droplets.
- (iii) Method 5B of appendix A of this part may be used in conjunction with a wet scrubber system.

- (4) The campling time for each run shall be at least 120 minutes and the minimum sampling volume shall be 1.7 dry standard cubic meters (dscm) [60 dry standard cubic feet (dscf)] except that smaller sampling times or volumes may be approved by the Administrator when necessitated by process variables or other factors.
- (5) For Method 5 or 5B of appendix A of this part, the temperature of the sample gas in the probe and filter holder shall be monitored and maintained at 160 ±14 °C (320±25 °F).
- (6) For determination of PM emissions, an oxygen (O₂) or carbon dioxide (CO₂) measurement shall be obtained simultaneously with each run of Method 5, 5B, or 17 of appendix A of this part by traversing the duct at the same sampling location.
- (7) For each run using Method 5, 5B, or 17 of appendix A of this part, the emission rates expressed in ng/J (lb/MMBtu) heat input shall be determined using:
- (i) The O_2 or O_2 measurements and PM measurements obtained under this section, (ii) The dry basis F factor, and
- (iii) The riry basis emission rate calculation procedure contained in Method 19 of appendix A of this part.
- (b) Motherd 9 of appendix A of this part (6-minute average of 24 observations) shall be used for the control of stack emissions.
- (b) The owner or operator of an affected facility seeking to demonstrate compliance with the PM standards under §60.43c(b)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit at this capacity for 24 hours. This demonstration this has made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.
- (c) In place of PM testing with EPA Reference Method 5, 5B, or 17 of appendix A of this part, an owner or operator may elect to install, calibrate, maintain, and operate a CEMS for monitoring PM emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor PM emissions instead of conducting performance testing using EPA Method 5, 5B, or 17 of appendix A of this part shall install, calibrate, maintain, and operate a CEMS and shall comply with the requirements specified in paragraphs (c)(1) through (c)(13) of this section.
- (1) Notify the Administrator 1 month before starting use of the system.
- (2) Notify the Administrator 1 month before stopping use of the system.
- (3) The monitor shall be installed, evaluated, and operated in accordance with §60.13 of subpart A of this part.
- (4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startus of the affected facility, as specified under §60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of CEMS if the owner or operator was previously determining compliance by Method 5, 5B, or 17 of appendix A of this part performance tests, whichever is later.
- (5) The owner or operator of an affected facility shall conduct an initial performance test for PM emissions as required under §60.8 of subpart A of this part. Compliance with the PM emission limit shall be determined by using the CEMS specified in paragraph (d) of this section to measure PM and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19 of appendix A of this part, section 4.1.
- (6) Compliance with the PM emission limit shall be determined based on the 24-hour daily (block)

average of the hourly arithmetic average emission concentrations using CEMS outlet data

- (7) At a minimum, valid CEMS hourly averages shall be obtained as specified in paragraph (d)(7)(i) of this section for 75 percent of the total operating hours per 30-day rolling average.
- (i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average
- (ii) [Reserved]
- (8) The 1-hour arithmetic averages required under paragraph (d)(7) of this section shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under §60.13(e)(2) of subpart A of this part.
- (9) All valid CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (d)(7) of this section are not met.
- (10) The CEMS shall be operated according to Performance Specification 11 in appendix B of this part
- (11) During the correlation testing runs of the CEMS required by Performance Specification 11 in appendix B of this part, PM and O_2 (or CO_2) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test includes specified in paragraph (d)(7)(i) of this section.
- (i) For PM, EPA Reference Method 5, 5B, or 17 of appendix A of this part shall be used.
- (ii) For O₂(or CO₂), EPA reference Method 3, 3A, or 3B of appendix A of this part, as applicable shall be used.
- (12) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit's must be performed annually and Response Correlation Audits must be performed every 3 years.
- (13) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, valid emissions data for a minimum of 75 percent of total operating hours on a 30-day rolling average.
- (d) The owner or operator of an affected facility seeking to demonstrate compliance under §60.43c(e)(4) shall follow the applicable procedures under §60.48c(f). For residual oil-fired affected facilities, fuel supplier certifications are only allowed for facilities with heat input capacities between 2.9 and 8.7 MW (10 to 30 MMBtu/hr).

§ 60.46c Emission monitoring for sulfur dioxide.

- (a) Except as provided in paragraphs (d) and (e) of this section, the owner or operator of an affected facility subject to the SO_2 emission limits under §60.42c shall install, calibrate, maintain, and operate a CEMS for measuring SO_2 concentrations and either O_2 or CO_2 concentrations at the outlet of the SO_2 control device (or the outlet of the steam generating unit if no SO_2 control device is used), and shall record the output of the system. The owner or operator of an affected facility subject to the percent reduction requirements under §60.42c shall measure SO_2 concentrations and either O_2 or CO_2 concentrations at both the inlet and outlet of the SO_2 control device.
- (b) The 1-hour average SO_2 emission rates measured by a CEMS shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the average emission rates under §60.42c. Each 1-hour average SO_2 emission rate must be based on at least 30 minutes of operation, and shall be

- restanced using the data points required under §60.13(h)(2). Hourly SO₂ emission rates are not counted in the affected facility is operated less than 30 minutes in a 1-hour period and are not counted decreased determination of a steam generating unit operating day.
- we first procedures under $\S60.13$ shall be followed for installation, evaluation, and operation of the 1.3548
- (1) AP CEMS shall be operated in accordance with the applicable procedures under Performance Specifications 1, 2, and 3 of appendix B of this part.
- (2) Oparticity accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of appendix F of this part.
- (3) For affected facilities subject to the percent reduction requirements under §60.42c, the span value of the SO₂CEMS at the inlet to the SO₂control device shall be 125 percent of the maximum estimated hourly potential SO₂emission rate of the fuel combusted, and the span value of the SO₂CEMS at the outlet from the SO₂control device shall be 50 percent of the maximum estimated hourly potential SO₂ is seen rate of the fuel combusted.
- All the literal facilities that are not subject to the percent reduction requirements of §60.42c, the span control of the COLCL MS at the outlet from the SO₂ control device (or outlet of the steam generating unit if the control device is used) shall be 125 percent of the maximum estimated hourly potential. The raw sometime of the fuel combusted.
- Chas we alternative to operating a CEMS at the inlet to the SO_2 control device (or outlet of the steam concerning unit if no SO_2 control device is used) as required under paragraph (a) of this section, an example of operator may elect to determine the average SO_2 emission rate by sampling the fuel prior to combustion. As an alternative to operating a CEMS at the outlet from the SO_2 control device (or outlet of the steam generating unit if no SO_2 control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO_2 emission rate by using Method 6B of appendix A of this part. Fuel sampling shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this section. Method 6B of appendix A of this part shall be conducted pursuant to paragraph (d)(3) of this section.
- (1) For affected facilities combusting coal or oil, coal or oil samples shall be collected daily in an as-fired condition at the inlet to the steam generating unit and analyzed for sulfur content and heat content according the Method 19 of appendix A of this part. Method 19 of appendix A of this part provides procedures for converting these measurements into the format to be used in calculating the average SO, input rate.
- (2) As an alternative fuel sampling procedure for affected facilities combusting oil, oil samples may be collected from the fuel tank for each steam generating unit immediately after the fuel tank is filled and before any oil is combusted. The owner or operator of the affected facility shall analyze the oil sample to determine the sulfur content of the oil. If a partially empty fuel tank is refilled, a new sample and analysis of the fuel in the tank would be required upon filling. Results of the fuel analysis taken after each new shipment of oil is received shall be used as the daily value when calculating the 30-day rolling average until the next shipment is received. If the fuel analysis shows that the sulfur content in the fuel tank is greater than 0.5 weight percent sulfur, the owner or operator shall ensure that the sulfur content of subsequent oil shipments is low enough to cause the 30-day rolling average sulfur content to be 0.5 weight percent sulfur or less.
- (3) Method 6B of appendix A of this part may be used in lieu of CEMS to measure SO_2 at the inlet or regard of the SO_2 control system. An initial stratification test is required to verify the adequacy of the Method 6B of appendix A of this part sampling location. The stratification test shall consist of three paired runs of a suitable SO_2 and CO_2 measurement train operated at the candidate location and a second similar train operated according to the procedures in §3.2 and the applicable procedures in section 7 of Performance Specification 2 of appendix B of this part. Method 6B of appendix A of this part,

Method 6A of appendix A of this part, or a combination of Methods 6 and 3 of appendix A of this part or Methods 6C and 3A of appendix A of this part are suitable measurement techniques. If Method 6B of appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of appendix A of this part 24-hour tests, the mean of the absolute difference between the three paired runs must be less than 10 percent (0.10).

- (e) The monitoring requirements of paragraphs (a) and (d) of this section shall not apply to affected facilities subject to $\S60.42c(h)$ (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO_2 standards based on fuel supplier certification, as described under $\S60.48c(f)$, as applicable.
- (f) The owner or operator of an affected facility operating a CEMS pursuant to paragraph (a) of this section, or conducting as-fired fuel sampling pursuant to paragraph (d)(1) of this section, shall obtain emission data for at least 75 percent of the operating hours in at least 22 out of 30 successive steam generating unit operating days. If this minimum data requirement is not met with a single monitoring system, the owner or operator of the affected facility shall supplement the emission data with data collected with other monitoring systems as approved by the Administrator.

§ 60.47c Emission monitoring for particulate matter.

- (a) Except as provided in paragraphs (c), (d), (e), and (f) of this section, the owner or operator of an affected facility combusting coat, oil, or wood that is subject to the opacity standards under §60.43c shall install, calibrate maintain, and operate a COMS for measuring the opacity of the emissions discharged to the atmosphere and record the output of the system.
- (b) All COMS for measuring opacity shall be operated in accordance with the applicable procedures under Performance Specification 1 of appendix B of this part. The span value of the opacity COMS shall be between 60 and 80 percent.
- (c) Affected facilities that burn only distillate oil that contains no more than 0.5 weight percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.06 lb/MMBtu) heat input or less and that do not use a post-combustion technology to reduce SO_2 or PM emissions are not required to operate a CEMS for measuring opacity if they follow the applicable procedures under $\S60.48c(f)$.
- (d) Owners or operators complying with the PM emission limit by using a PM CEMS monitor instead of monitoring opacity must calibrate, maintain, and operate a CEMS, and record the output of the system. for PM emissions discharged to the atmosphere as specified in §60.45c(d). The CEMS specified in paragraph §60.45c(d) shall be operated and data recorded during all periods of operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments.
- (e) An affected facility that does not use post-combustion technology (except a wet scrubber) for reducing PM, SO₂, or carbon monoxide (CO) emissions, burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur, and is operated such that emissions of CO to the atmosphere from the affected facility are maintained at levels less than or equal to 0.15 lb/MMBtu on a boiler operating day average basis is not required to operate a COMS for measuring opacity. Owners and operators of affected facilities electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (e)(1) through (4) of this section.
- (1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (e)(1)(i) through (iv) of this section.
- (i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(i)(3) of subpart Eb of this part.
- (ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).

- (iii) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. At least two data points per hour must be used to calculate each 1-hour average.
- (iv) Cuarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.
- (2) You must calculate the 1-hour average CO emissions levels for each steam generating unit operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat apput to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each steam generating unit operating day.
- (a) You must evaluate the preceding 24-hour average CO emission level each steam generating unit operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less.
- (4) (co most accord the CO measurements and calculations performed according to paragraph (e) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the effective, and description of the corrective action.
- distinct facility that burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 the control of suffer and operates according to a written site-specific monitoring plan approved by the hose conditional permitting authority is not required to operate a COMS for measuring opacity. The resentence plan must include procedures and criteria for establishing and monitoring specific extraorders for the affected facility indicative of compliance with the opacity standard.

\$ 60.48c. Reporting and recordkeeping requirements.

- (a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by §60.7 of this part. This notification shall include:
- (1) The design heat input capacity of the affected facility and identification of fuels to be combusted in the affected facility
- (2) If applicable, a copy of any federally enforceable requirement that limits the annual capacity factor for any fuel or mixture of fuels under §60.42c, or §60.43c.
- (3) The annual capacity factor at which the owner or operator anticipates operating the affected facility based on all fuels fired and based on each individual fuel fired.
- (4) Notification if an emerging technology will be used for controlling SO₂ emissions. The Administrator will examine the description of the control device and will determine whether the technology qualifies as an emerging technology. In making this determination, the Administrator may require the owner or operator of the affected facility to submit additional information concerning the control device. The affected facility is subject to the provisions of §60.42c(a) or (b)(1), unless and until this determination is made by the Administrator.
- (b) The owner or operator of each affected facility subject to the SO₂ emission limits of §60.42c, or the EM or opacity limits of §60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of this part.
- (c) The owner or operator of each coal-fired, oil-fired, or wood-fired affected facility subject to the opacity finite under $\S 60.43c(c)$ shall submit excess emission reports for any excess emissions from the affected

facility that occur during the reporting period.

- (d) The owner or operator of each affected facility subject to the SO₂emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall submit reports to the Administrator.
- (e) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall keep records and submit reports as required under paragraph (d) of this section, including the following information, as applicable.
- (1) Calendar dates covered in the reporting period.
- (2) Each 30-day average SO₂emission rate (ng/J or lb/MMBtu), or 30-day average sulfur content (weight percent), calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of corrective actions taken.
- (3) Each 30-day average percent of potential SO_2 emission rate calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of the corrective actions taken.
- (4) Identification of any steam generating unit operating days for which SO_2 or ciliuent $(O_2$ or SO_2) data have not been obtained by an approved method for at least 75 percent of the operating hours, justification for not obtaining sufficient data; and a description of corrective actions taken.
- (5) Identification of any times when emissions data have been excluded from the calculation of average emission rates; justification for excluding data; and a description of corrective actions taken if data have been excluded for periods other than those during which coal or oil were not combusted in the steam generating unit.
- (6) Identification of the F factor used in calculations, method of determination, and type of fuel combusted.
- (7) Identification of whether averages have been obtained based on CEMS rather than manual sampling methods.
- (8) If a CEMS is used, identification of any times when the pollutant concentration exceeded the full span of the CEMS.
- (9) If a CEMS is used, description of any modifications to the CEMS that could affect the ability of the CEMS to comply with Performance Specifications 2 or 3 of appendix B of this part.
- (10) If a CEMS is used, results of daily CEMS drift tests and quarterly accuracy assessments as required under appendix F, Procedure 1 of this part.
- (11) If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.
- (f) Fuel supplier certification shall include the following information:
- (1) For distillate oil:
- (i) The name of the oil supplier;
- (ii) A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in §60.41c; and

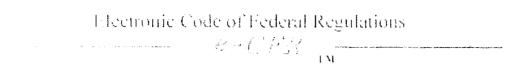
- (iii) The sulfur content of the oil.
- (2) Fer residual oil
- (a) The name of the oil supplier;
- (ii) The location of the oil when the sample was drawn for analysis to determine the sulfur content of the oil specifically including whether the oil was sampled as delivered to the affected facility, or whether the sample was drawn from oil in storage at the oil supplier's or oil refiner's facility, or other location;
- (iii) The sulful content of the oil from which the shipment came (or of the shipment itself); and
- 600 The method used to determine the sulfur content of the oil.
- (3) For coal
- (i) The name of the coal supplier;
- The character of the coal when the sample was collected for analysis to determine the properties of the coal in a coal coaling whether the coal was sampled as delivered to the affected facility or whether the coaling to analysis of the affected from coal in storage at the mine, at a coal preparation plant, at a coal coal in storage at the mine, at a coal preparation plant, at a coal coal in the coaling to a sample the coaling to a coaling the coaling to a coaling the coalin
- The Continuous after the construction of the coal from which the shipment came (or of the shipment itself) is the coal feet content, moisture content, ash content, and heat content; and
- and the methods used to determine the properties of the coal.
- all Formbar fuels:
- (i) The name of the supplier of the fuel;
- (ii) The potential sulfur emissions rate of the fuel in ng/J heat input; and
- (iii) The method used to determine the potential sulfur emissions rate of the fuel.
- (g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.
- to A can atternative to meeting the requirements of paragraph (g)(1) of this section, the owner or continuous at an affected facility that combusts only natural gas, wood, fuels using fuel certification in the section of the demonstrate compliance with the SO₂standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.
- (3) Ac an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or exercisor of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in §60.42C to use fuel certification to demonstrate compliance with the SO₂standard, and/or fuels, excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.
- (a) The awnor or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under §60.42c or §60.43c shall calculate the

annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.

- (i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.
- (j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

1500 Van Frevious | Browse Next

For questions or comments regarding e-CFR editorial content, features, or design, email ediffgram pos-


For questions concerning e-CFR programming and delivery issues, email webleam@ge.ge.

Section 508 / Accessibility

APPENDIX C NSPS 40 CFR 60 SUBPART Kb

	·

* Since a Shadde > Code of Federal Regulations > Electronic Code of Federal Regulations.

Till tibra is current as of November 28, 2007

Title 40: Protection of Environment

THE EAST STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

The Charles of Browse Next

Subpart 166—Standards of Performance for Volatile Organic Liquid Storage Vessels (Instituting Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, as it is inflation Commenced After July 23, 1984

Source: 52 FR 11429, Apr. 8, 1987, unless otherwise noted

§ 30 4405 Applicability and designation of affected facility.

- (a) For it as provided in paragraph (b) of this section, the affected facility to which this subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.
- (b) This subpart does not apply to storage vessels with a capacity greater than or equal to 151 m³ storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (kPa) or with a capacity greater than or equal to 75 m³ but less than 151 m³ storing a liquid with a maximum true vapor pressure less than 15.0 kPa.
- (c) [Reserved]
- (d) This subpart does not apply to the following:
- (1) Vessels at coke oven by-product plants.
- (2) Pressure vessels designed to operate in excess of 204.9 kPa and without emissions to the atmosphere.
- (3) Vessels permanently attached to mobile vehicles such as trucks, railcars, barges, or ships.
- (4) Messels with a design capacity less than or equal to 1,589.874 m³ used for petroleum or condensate stored, processed, or treated prior to custody transfer.
- (5) Messels located at bulk gasoline plants.
- (6) Storage vessels located at gasoline service stations.
- (7) Vessels used to store beverage alcohol.

- (8) Vessels subject to subpart GGGG of 40 CFR part 63.
- (e) Alternative means of compliance —(1) Option to comply with part 65. Owners or operators may choose to comply with 40 CFR part 65, subpart C, to satisfy the requirements of §§60.112b through 60.117b for storage vessels that are subject to this subpart that meet the specifications in paragraphs (e) (1)(i) and (ii) of this section. When choosing to comply with 40 CFR part 65, subpart C, the monitoring requirements of §60.116b(c), (e), (f)(1), and (g) still apply. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1.
- (i) A storage vessel with a design capacity greater than or equal to $151 \, \mathrm{m}^3$ containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than 5.2 kPa; or
- (ii) A storage vessel with a design capacity greater than 75 m³ but less than 151 m³ containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than 27.6 kPa.
- (2) Part 60, subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart C, must also comply with §§60.1, 60.2, 60.5, 60.6, 60.7(a)(1) and (4), 60.14, 60.15, and 60.16 for those storage vessels. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph (e)(2) do not apply to owners or operators of storage vessels complying with 40 CFR part 65, subpart C, except that provisions required to be met prior to implementing 40 CFR part 65 still apply. Owners and operators who choose to comply with 40 CFR part 65, subpart C, must comply with 40 CFR part 65, subpart A.
- (3) Internal floating roof report. If an owner or operator installs an internal floating roof and, at initial startup, chooses to comply with 40 CFR part 65, subpart C, a report shall be furnished to the Administrator stating that the control equipment meets the specifications of 40 CFR 65.43. This report shall be an attachment to the notification required by 40 CFR 65.5(b).
- (4) External floating roof report. If an owner or operator installs an external floating roof and, at initial startup, chooses to comply with 40 CFR part 65, subpart C, a report shall be furnished to the Administrator stating that the control equipment meets the specifications of 40 CFR 65.44. This report shall be an attachment to the notification required by 40 CFR 65.5(b).

[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989; 65 FR 78275, Dec. 14, 2000: 68 FR 59332, Oct. 15, 2003]

§ 60.111b Definitions.

Terms used in this subpart are defined in the Act, in subpart A of this part, or in this subpart as follows:

Bulk gasoline plant means any gasoline distribution facility that has a gasoline throughput less than or equal to 75,700 liters per day. Gasoline throughput shall be the maximum calculated design throughput as may be limited by compliance with an enforceable condition under Federal requirement or Federal, State or local law, and discoverable by the Administrator and any other person.

Condensate means hydrocarbon liquid separated from natural gas that condenses due to changes in the temperature or pressure, or both, and remains liquid at standard conditions.

Custody transfer means the transfer of produced petroleum and/or condensate, after processing and/or treatment in the producing operations, from storage vessels or automatic transfer facilities to pipelines or any other forms of transportation.

Fill means the introduction of VOL into a storage vessel but not necessarily to complete capacity.

Gasoline service station means any site where gasoline is dispensed to motor vehicle fuel tanks from stationary storage tanks.

Maximum true vapor pressure means the equilibrium partial pressure exerted by the volatile organic compounds (as defined in 40 CFR 51.100) in the stored VOL at the temperature equal to the highest calendar-month average of the VOL storage temperature for VOL's stored above or below the ambient

temp produce or at the local maximum monthly average temperature as reported by the National Weather Service for VOL's stored at the ambient temperature, as determined:

- (1) In accordance with methods described in American Petroleum institute Bulletin 2517, Evaporation Loss From External Floating Roof Tanks, (incorporated by reference—see §60.17); or
- (2) As obtained from standard reference texts; or
- (3) As determined by ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17);
- (4) Any other method approved by the Administrator.

Petroleum means the crude oil removed from the earth and the oils derived from tar sands, shale, and coal

Petroleum liquids means petroleum, condensate, and any finished or intermediate products manufactured in a petroleum refinery.

Crocess (anh. means a tank that is used within a process (including a solvent or raw material recovery process) to collect material discharged from a feedstock storage vessel or equipment within the process before the material is transferred to other equipment within the process, to a product or by-product storage vessel, or to a vessel used to store recovered solvent or raw material. In many process tanks, and operations such as reactions and blending are conducted. Other process tanks, such as surge central vessels, and bottoms receivers, however, may not involve unit operations.

Revi vapor pressure means the absolute vapor pressure of volatile crude oil and volatile nonviscous petroleum ficulds except liquified petroleum gases, as determined by ASTM D323–82 or 94 tipcorporated by reference—see §60.17).

Storage vessel means each tank, reservoir, or container used for the storage of volatile organic liquids but does not include:

- (1) Frames, housing, auxiliary supports, or other components that are not directly involved in the containment of liquids or vapors;
- (2) Subsurface caverns or porous rock reservoirs; or
- (3) Process tanks.

Volatile organic liquid (VOL) means any organic liquid which can emit volatile organic compounds (as defined in 40 CER 51.100) into the atmosphere.

Waste means any liquid resulting from industrial, commercial, mining or agricultural operations, or from community activities that is discarded or is being accumulated, stored, or physically, chemically, or biologically treated prior to being discarded or recycled.

[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989; 65 FR 61756, Oct. 17, 2000; 68 FR 59333, Oct. 15, 2003]

- § 39.112b Standard for volatile organic compounds (VOC).
- (a) The owner or operator of each storage vessel either with a design capacity greater than or equal to $151~\mathrm{m}^3$ containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than $5.2~\mathrm{kPa}$ but less than $76.6~\mathrm{kPa}$ or with a design capacity greater than or equal to $75~\mathrm{m}^3$ but less than $151~\mathrm{m}^3$ containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than $27.6~\mathrm{kPa}$ but less than $76.6~\mathrm{kPa}$, shall equip each storage vessel with one of the following:
- (1) A fixed roof in combination with an internal floating roof meeting the following specifications:

- (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in complete contact with it) inside a storage vessel that has a fixed roof. The internal floating roof shall be floating on the liquid surface at all times, except during initial fill and during those intervals when the storage vessel is completely emptied or subsequently emptied and refilled. When the roof is resting on the leg supports, the process of filling, emptying, or refilling shall be continuous and shall be accomplished as rapidly as possible.
- (ii) Each internal floating roof shall be equipped with one of the following closure devices between the wall of the storage vessel and the edge of the internal floating roof:
- (A) A foam- or liquid-filled seal mounted in contact with the liquid (liquid-mounted seal). A liquid-mounted seal means a foam- or liquid-filled seal mounted in contact with the liquid between the wall of the storage vessel and the floating roof continuously around the circumference of the tank.
- (B) Two seals mounted one above the other so that each forms a continuous closure that completely covers the space between the wall of the storage vessel and the edge of the internal floating roof. The lower seal may be vapor-mounted, but both must be continuous.
- (C) A mechanical shoe seal. A mechanical shoe seal is a metal sheet held vertically against the wall of the storage vessel by springs or weighted levers and is connected by braces to the floating roof. A flexible coated fabric (envelope) spans the annular space between the metal sheet and the floating roof
- (iii) Each opening in a noncontact internal floating roof except for automatic bleeder vents (vacuum breaker vents) and the rim space vents is to provide a projection below the liquid surface.
- (iv) Each opening in the internal floating roof except for leg sleeves, automatic bleeder vents, rim space vents, column wells, ladder wells, sample wells, and stub drains is to be equipped with a cover or lid which is to be maintained in a closed position at all times (i.e., no visible gap) except when the device is in actual use. The cover or lid shall be equipped with a gasket. Covers on each access hatch and automatic gauge float well shall be bolted except when they are in use.
- (v) Automatic bleeder vents shall be equipped with a gasket and are to be closed at all times when the roof is floating except when the roof is being floated off or is being landed on the roof leg supports.
- (vi) Rim space vents shall be equipped with a gasket and are to be set to open only when the internal floating roof is not floating or at the manufacturer's recommended setting.
- (vii) Each penetration of the internal floating roof for the purpose of sampling shall be a sample well. The sample well shall have a slit fabric cover that covers at least 90 percent of the opening.
- (viii) Each penetration of the internal floating roof that allows for passage of a column supporting the fixed roof shall have a flexible fabric sleeve seal or a gasketed sliding cover.
- (ix) Each penetration of the internal floating roof that allows for passage of a ladder shall have a gasketed sliding cover.
- (2) An external floating roof. An external floating roof means a pontoon-type or double-deck type cover that rests on the liquid surface in a vessel with no fixed roof. Each external floating roof must meet the following specifications:
- (i) Each external floating roof shall be equipped with a closure device between the wall of the storage vessel and the roof edge. The closure device is to consist of two seals, one above the other. The lower seal is referred to as the primary seal, and the upper seal is referred to as the secondary seal.
- (A) The primary seal shall be either a mechanical shoe seal or a liquid-mounted seal. Except as provided in §60.113b(b)(4), the seal shall completely cover the annular space between the edge of the floating roof and tank wall.
- (B) The secondary seal shall completely cover the annular space between the external floating roof and the wall of the storage vessel in a continuous fashion except as allowed in §60.113b(b)(4).

- (ii) Except for automatic bleeder vents and rim space vents, each opening in a noncontact external floating roof shall provide a projection below the liquid surface. Except for automatic bleeder vents, rim space vents, roof drains, and leg sleeves, each opening in the roof is to be equipped with a gasketed cover, seaf, or lid that is to be maintained in a closed position at all times (i.e., no visible gap) except when the device is in actual use. Automatic bleeder vents are to be closed at all times when the roof is licating except when the roof is being floated off or is being landed on the roof leg supports. Rim vents are to be set to open when the roof is being floated off the roof legs supports or at the manufacturer's recommended setting. Automatic bleeder vents and rim space vents are to be gasketed. Each emorgency roof drain is to be provided with a slotted membrane fabric cover that covers at least 90 percent of the area of the opening.
- (ii) The roof shall be floating on the liquid at all times (i.e., off the roof leg supports) except during initial fill until the roof is lifted off leg supports and when the tank is completely emptied and subsequently refilled. The process of filling, emptying, or refilling when the roof is resting on the leg supports shall be continuous and shall be accomplished as rapidly as possible.
- (3) A closed vent system and control device meeting the following specifications:
- (i) The closed vent system shall be designed to collect all VOC vapors and gases discharged from the stande vessel and operated with no detectable emissions as indicated by an instrument reading of less than 200 apm above background and visual inspections, as determined in part 60, subpart VV, §60,485
- and The control device shall be designed and operated to reduce inlet VOC emissions by 95 percent or mountain. If a flare is used as the control device, it shall meet the specifications described in the general control device requirements (§60.18) of the General Provisions.
- (4) A system equivalent to those described in paragraphs (a)(1), (a)(2), or (a)(3) of this section as provided in §60.114b of this subpart.
- (b) The owner or operator of each storage vessel with a design capacity greater than or equal to 75 m³ which contains a VOL that, as stored, has a maximum true vapor pressure greater than or equal to 76.6 kPa shall equip each storage vessel with one of the following:
- (1) A closed vent system and control device as specified in §60.112b(a)(3).
- (2) A system equivalent to that described in paragraph (b)(1) as provided in §60.114b of this subpart.
- (c) Site-specific standard for Merck & Co., Inc.'s Stonewall Plant in Elkton, Virginia. This paragraph applies only to the pharmaceutical manufacturing facility, commonly referred to as the Stonewall Plant, located at Route 340 South, in Elkton, Virginia ("site").
- (1) For any storage vessel that otherwise would be subject to the control technology requirements of paragraphs (a) or (b) of this section, the site shall have the option of either complying directly with the requirements of this subpart, or reducing the site-wide total criteria pollutant emissions cap (total emissions cap) in accordance with the procedures set forth in a permit issued pursuant to 40 CFR 52.2454. If the site chooses the option of reducing the total emissions cap in accordance with the procedures set forth in such permit, the requirements of such permit shall apply in lieu of the otherwise applicable requirements of this subpart for such storage vessel.
- (2) For any storage vessel at the site not subject to the requirements of 40 CFR 60.112b (a) or (b), the requirements of 40 CFR 60.116b (b) and (c) and the General Provisions (subpart A of this part) shall not apply

[52 FR 11429, Apr. 8, 1987, as amended at 62 FR 52641, Oct. 8, 1997]

§ 60.113b Testing and procedures.

The owner or operator of each storage vessel as specified in §60.112b(a) shall meet the requirements of paragraph (a), (b), or (c) of this section. The applicable paragraph for a particular storage vessel

depends on the control equipment installed to meet the requirements of §60.112b.

- (a) After installing the control equipment required to meet §60.112b(a)(1) (permanently affixed roof and internal floating roof), each owner or operator shall:
- (1) Visually inspect the internal floating roof, the primary seal, and the secondary seal (if one is in service), prior to filling the storage vessel with VOL. If there are holes, tears, or other openings in the primary seal, the secondary seal, or the seal fabric or defects in the internal floating roof, or both, the owner or operator shall repair the items before filling the storage vessel.
- (2) For Vessels equipped with a liquid-mounted or mechanical shoe primary seal, visually inspect the internal floating roof and the primary seal or the secondary seal (if one is in service) through manholes and roof hatches on the fixed roof at least once every 12 months after initial fill. If the internal floating roof is not resting on the surface of the VOL inside the storage vessel, or there is liquid accumulated on the roof, or the seal is detached, or there are holes or tears in the seal fabric, the owner or operator shall repair the items or empty and remove the storage vessel from service within 45 days. If a failure that is detected during inspections required in this paragraph cannot be repaired within 45 days and if the vessel cannot be emptied within 45 days, a 30-day extension may be requested from the Administrator in the inspection report required in §60.115b(a)(3). Such a request for an extension must document that alternate storage capacity is unavailable and specify a schedule of actions the company will take that will has the control equipment will be repaired or the vessel will be emptied as soon as possible.
- (3) For vessels equipped with a double-seal system as specified in §60.112b(a)(1)(ii)(D).
- (i) Visually inspect the vessel as specified in paragraph (a)(4) of this section at least every 5 years; or
- (ii) Visually inspect the vessel as specified in paragraph (a)(2) of this section.
- (4) Visually inspect the internal floating roof, the primary seal, the secondary seal (if one is in service), gaskets, slotted membranes and sleeve seals (if any) each time the storage vessel is empticed and degassed. If the internal floating roof has defects, the primary seal has holes, tears, or other openings in the seal fabric, or the seal fabric, or the secondary seal has holes, tears, or other openings in the seal or the seal fabric, or the gaskets no longer close off the liquid surfaces from the atmosphere, or the slotted membrane has more than 10 percent open area, the owner or operator shall repair the items as necessary so that none of the conditions specified in this paragraph exist before refilling the storage vessel with VOL. In no event shall inspections conducted in accordance with this provision occur at intervals greater than 10 years in the case of vessels conducting the annual visual inspection as specified in paragraphs (a)(2) and (a)(3)(ii) of this section and at intervals no greater than 5 years in the case of vessels specified in paragraph (a)(3)(i) of this section.
- (5) Notify the Administrator in writing at least 30 days prior to the filling or refilling of each storage vessel for which an inspection is required by paragraphs (a)(1) and (a)(4) of this section to afford the Administrator the opportunity to have an observer present. If the inspection required by paragraph (a)(4) of this section is not planned and the owner or operator could not have known about the inspection 30 days in advance or refilling the tank, the owner or operator shall notify the Administrator at least 7 days prior to the refilling of the storage vessel. Notification shall be made by telephone immediately followed by written documentation demonstrating why the inspection was unplanned. Alternatively, this notification including the written documentation may be made in writing and sent by express mail so that it is received by the Administrator at least 7 days prior to the refilling.
- (b) After installing the control equipment required to meet §60.112b(a)(2) (external floating roof), the owner or operator shall:
- (1) Determine the gap areas and maximum gap widths, between the primary seal and the wall of the storage vessel and between the secondary seal and the wall of the storage vessel according to the following frequency.
- (i) Measurements of gaps between the tank wall and the primary seal (seal gaps) shall be performed during the hydrostalic testing of the vessel or within 60 days of the initial fill with VOL and at least once every 5 years thereafter.

- (ii) Measurements of gaps between the tank wall and the secondary seal shall be performed within 60 days of the initial fill with VOL and at least once per year thereafter.
- (iii) If any source ceases to store VOL for a period of 1 year or more, subsequent introduction of VOL into the vessel shall be considered an initial fill for the purposes of paragraphs (b)(1)(i) and (b)(1)(ii) of this section.
- (2) Determine gap widths and areas in the primary and secondary seals individually by the following procedures:
- (i) Measure seal gaps, if any, at one or more floating roof levels when the roof is floating off the roof leg supports
- (ii) Measure seal gaps around the entire circumference of the tank in each place where a 0.32-cm diameter uniform probe passes freely (without forcing or binding against seal) between the seal and the wall of the storage vessel and measure the circumferential distance of each such location.
- (iii) The total surface area of each gap described in paragraph (b)(2)(ii) of this section shall be determined by using probes of various widths to measure accurately the actual distance from the tank wall to the read and multiplying each such width by its respective circumferential distance.
- (3) Actions that called area of each gap location for the primary seal and the secondary se
- 40 Mode processary repairs or empty the storage vessel within 45 days of identification in any inspection from ralls not meeting the requirements listed in (b)(4) (i) and (ii) of this section:
- (i) The accumulated area of gaps between the tank wall and the mechanical shoe or liquid-mounted primary seal shall not exceed 212 Cm² per meter of tank diameter, and the width of any portion of any gap shall not exceed 3.81 cm.
- (A) One end of the mechanical shoe is to extend into the stored liquid, and the other end is to extend a minimum vertical distance of 61 cm above the stored liquid surface.
- (B) There are to be no holes, lears, or other openings in the shoe, seal fabric, or seal envelope.
- (ii) The secondary seal is to meet the following requirements:
- (A) The secondary seal is to be installed above the primary seal so that it completely covers the space between the reof edge and the tank wall except as provided in paragraph (b)(2)(iii) of this section.
- (E) The accumulated area of gaps between the tank wall and the secondary seal shall not exceed 21.2 cm² per meter of tank diameter, and the width of any portion of any gap shall not exceed 1.27 cm.
- (C) There are to be no holes, tears, or other openings in the seal or seal fabric.
- (iii) If a failure that is detected during inspections required in paragraph (b)(1) of §60.113b(b) cannot be repaired within 45 days and if the vessel cannot be emptied within 45 days, a 30-day extension may be requested from the Administrator in the inspection report required in §60.115b(b)(4). Such extension request must include a demonstration of unavailability of alternate storage capacity and a specification of a schedule that will assure that the control equipment will be repaired or the vessel will be emptied as soon as possible.
- (5) Notify the Administrator 30 days in advance of any gap measurements required by paragraph (b)(1) of this section to afford the Administrator the opportunity to have an observer present.
- (6) Visually inspect the external floating roof, the primary seal, secondary seal, and fittings each time the vessel is emptied and degassed.

- (i) If the external floating roof has defects, the primary seal has holes, tears, or other openings in the seal or the seal fabric, or the secondary seal has holes, tears, or other openings in the seal fabric, the owner or operator shall repair the items as necessary so that none of the conditions specified in this paragraph exist before filling or refilling the storage vessel with VOL.
- (ii) For all the inspections required by paragraph (b)(6) of this section, the owner or operator shall notify the Administrator in writing at least 30 days prior to the filling or refilling of each storage vessel to afford the Administrator the opportunity to inspect the storage vessel prior to refilling. If the inspection required by paragraph (b)(6) of this section is not planned and the owner or operator could not have known about the inspection 30 days in advance of refilling the tank, the owner or operator shall notify the Administrator at least 7 days prior to the refilling of the storage vessel. Notification shall be made by telephone immediately followed by written documentation demonstrating why the inspection was unplanned. Alternatively, this notification including the written documentation may be made in writing and sent by express mail so that it is received by the Administrator at least 7 days prior to the refilling.
- (c) The owner or operator of each source that is equipped with a closed vent system and control device as required in §60.112b (a)(3) or (b)(2) (other than a flare) is exempt from §60.8 of the General Provisions and shall meet the following requirements.
- (1) Submit for approval by the Administrator as an attachment to the notification required by §60.7(a)(1) or, if the facility is exempt from §60.7(a)(1), as an attachment to the notification required by §60.7(a)(2), an operating plan containing the information listed below.
- (i) Documentation demonstrating that the control device will achieve the required control efficiency during maximum loading conditions. This documentation is to include a description of the gas stream which enters the control device, including flow and VOC content under varying liquid level conditions (dynamic and static) and manufacturer's design specifications for the control device. If the control device or the closed vent capture system receives vapors, gases, or liquids other than fuels from sources that are not designated sources under this subpart, the efficiency demonstration is to include consideration of all vapors, gases, and liquids received by the closed vent capture system and control device. If an enclosed combustion device with a minimum residence time of 0.75 seconds and a minimum temperature of 816 °C is used to meet the 95 percent requirement, documentation that those conditions will exist is sufficient to meet the requirements of this paragraph.
- (ii) A description of the parameter or parameters to be monitored to ensure that the control device will be operated in conformance with its design and an explanation of the criteria used for selection of that parameter (or parameters).
- (2) Operate the closed vent system and control device and monitor the parameters of the closed vent system and control device in accordance with the operating plan submitted to the Administrator in accordance with paragraph (c)(1) of this section, unless the plan was modified by the Administrator during the review process. In this case, the modified plan applies.
- (d) The owner or operator of each source that is equipped with a closed vent system and a flare to meet the requirements in §60.112b (a)(3) or (b)(2) shall meet the requirements as specified in the general control device requirements, §60.18 (e) and (f).

[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989]

§ 60.114b Alternative means of emission limitation.

- (a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in emissions at least equivalent to the reduction in emissions achieved by any requirement in §60.112b, the Administrator will publish in the Federal Registera notice permitting the use of the alternative means for purposes of compliance with that requirement.
- (b) Any notice under paragraph (a) of this section will be published only after notice and an opportunity for a hearing.
- (c) Any person seeking permission under this section shall submit to the Administrator a written application including:

- (1) An actual emissions test that uses a full-sized or scale-model storage vessel that accurately collects and measures all VOC emissions from a given control device and that accurately simulates wind and accounts for other emission variables such as temperature and barometric pressure.
- (2) An engineering evaluation that the Administrator determines is an accurate method of determining equivalence.
- (d) The Administrator may condition the permission on requirements that may be necessary to ensure experiation and maintenance to achieve the same emissions reduction as specified in §60.112b.

§ 60.115b Reporting and recordkeeping requirements.

The cwner or operator of each storage vessel as specified in §60.112b(a) shall keep records and furnish reports as required by paragraphs (a), (b), or (c) of this section depending upon the control equipment installed to meet the requirements of §60.112b. The owner or operator shall keep copies of all reports and records required by this section, except for the record required by (c)(1), for at least 2 years. The record required by (c)(1) will be kept for the life of the control equipment.

- (a) After installing control equipment in accordance with §60.112b(a)(1) (fixed roof and internal floating roof) the owner or operator shall meet the following requirements.
- (1) Furnish the Administrator with a report that describes the control equipment and certifies that the control equipment meets the specifications of §60.112b(a)(1) and §60.113b(a)(1). This report shall be an attachment to the notification required by §60.7(a)(3).
- (2) Keep a record of each inspection performed as required by §60.113b (a)(1), (a)(2), (a)(3), and (a)(4). Each record shall identify the storage vessel on which the inspection was performed and shall contain the date the vessel was inspected and the observed condition of each component of the control equipment (seats, internal floating roof, and fittings).
- (3) If any of the conditions described in §60.113b(a)(2) are detected during the annual visual inspection required by §60.113b(a)(2), a report shall be furnished to the Administrator within 30 days of the inspection. Each report shall identify the storage vessel, the nature of the defects, and the date the storage vessel was emptied or the nature of and date the repair was made.
- (4) After each inspection required by §60.113b(a)(3) that finds holes or tears in the seal or seal fabric, or defects in the internal floating roof, or other control equipment defects listed in §60.113b(a)(3)(ii), a report shall be furnished to the Administrator within 30 days of the inspection. The report shall identify the storage vessel and the reason it did not meet the specifications of §61.112b(a)(1) or §60.113b(a)(3) and list each repair made.
- (b) After installing control equipment in accordance with §61.112b(a)(2) (external floating roof), the owner or operator shall meet the following requirements.
- (1) Furnish the Administrator with a report that describes the control equipment and certifies that the control equipment meets the specifications of §60.112b(a)(2) and §60.113b(b)(2), (b)(3), and (b)(4). This report shall be an attachment to the notification required by §60.7(a)(3).
- (2) Within 60 days of performing the seal gap measurements required by §60.113b(b)(1), furnish the Administrator with a report that contains:
- (i) The date of measurement.
- (ii) The raw data obtained in the measurement.
- (iii) The calculations described in §60.113b (b)(2) and (b)(3).
- (3) Keep a record of each gap measurement performed as required by §60.113b(b). Each record shall identify the storage vessel in which the measurement was performed and shall contain:

- (i) The date of measurement.
- (ii) The raw data obtained in the measurement.
- (iii) The calculations described in §60.113b (b)(2) and (b)(3).
- (4) After each seal gap measurement that detects gaps exceeding the limitations specified by §60.113b (b)(4), submit a report to the Administrator within 30 days of the inspection. The report will identify the vessel and contain the information specified in paragraph (b)(2) of this section and the date the vessel was emptied or the repairs made and date of repair.
- (c) After installing control equipment in accordance with §60.112b (a)(3) or (b)(1) (closed vent system and control device other than a flare), the owner or operator shall keep the following records.
- (1) A copy of the operating plan.
- (2) A record of the measured values of the parameters monitored in accordance with §60.113b(c)(2).
- (d) After installing a closed vent system and flare to comply with §60.112b, the owner or operator shall meet the following requirements.
- (1) A report containing the measurements required by §60.18(f) (1), (2), (3), (4)–(5), and (6) shall be furnished to the Administrator as required by §60.8 of the General Provisions. This report shall be submitted within 6 months of the initial start-up date.
- (2) Records shall be kept of all periods of operation during which the flare pilot flame is absent.
- (3) Semiannual reports of all periods recorded under §60.115b(d)(2) in which the pilot flame was absent shall be furnished to the Administrator.

§ 60.116b Monitoring of operations.

- (a) The owner or operator shall keep copies of all records required by this section, except for the record required by paragraph (b) of this section, for at least 2 years. The record required by paragraph (b) of this section will be kept for the life of the source.
- (b) The owner or operator of each storage vessel as specified in §60.110b(a) shall keep readily accessible records showing the dimension of the storage vessel and an analysis showing the capacity of the storage vessel.
- (c) Except as provided in paragraphs (f) and (g) of this section, the owner or operator of each storage vessel either with a design capacity greater than or equal to 151 m³ storing a liquid with a maximum true vapor pressure greater than or equal to 3.5 kPa or with a design capacity greater than or equal to 75 m³ but less than 151 m³ storing a liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of the VOL stored, the period of storage, and the maximum true vapor pressure of that VOL during the respective storage period.
- (d) Except as provided in paragraph (g) of this section, the owner or operator of each storage vessel either with a design capacity greater than or equal to 151 $\rm m^3$ storing a liquid with a maximum true vapor pressure that is normally less than 5.2 kPa or with a design capacity greater than or equal to 75 $\rm m^3$ but less than 151 $\rm m^3$ storing a liquid with a maximum true vapor pressure that is normally less than 27.6 kPa shall notify the Administrator within 30 days when the maximum true vapor pressure of the liquid exceeds the respective maximum true vapor pressure values for each volume range.
- (e) Available data on the storage temperature may be used to determine the maximum true vapor pressure as determined below.
- (1) For vessels operated above or below ambient temperatures, the maximum true vapor pressure is

calculated based upon the highest expected calendar-month average of the storage temperature. For vessels operated at ambient temperatures, the maximum true vapor pressure is calculated based upon the maximum local monthly average ambient temperature as reported by the National Weather Service.

- (2) For crude oil or refined petroleum products the vapor pressure may be obtained by the following:
- (i) Available data on the Reid vapor pressure and the maximum expected storage temperature based on the highest expected calendar-month average temperature of the stored product may be used to determine the maximum true vapor pressure from nomographs contained in API Bulletin 2517 (incorporated by reference—see §60.17), unless the Administrator specifically requests that the liquid be sampled, the actual storage temperature determined, and the Reid vapor pressure determined from the sample(s).
- (ii) The true vapor pressure of each type of crude oil with a Reid vapor pressure less than 13.8 kPa or with physical properties that preclude determination by the recommended method is to be determined from available data and recorded if the estimated maximum true vapor pressure is greater than 3.5 kPa.
- (3) For other liquids, the vapor pressure:
- the the obtained from standard reference texts, or
- (in 15-45 mined by ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17); or
- (iii) Measured by an appropriate method approved by the Administrator; or
- (iii) Calculated by an appropriate method approved by the Administrator.
- (0.31 c. imperior operator of each vessel storing a waste mixture of indeterminate or variable compression shall be subject to the following requirements.
- (1) Prior to the initial filling of the vessel, the highest maximum true vapor pressure for the range of anticipated liquid compositions to be stored will be determined using the methods described in paragraph (e) of this section.
- (2) For vessels in which the vapor pressure of the anticipated liquid composition is above the cutoff for monitoring but below the cutoff for controls as defined in §60.112b(a), an initial physical test of the vapor pressure is required; and a physical test at least once every 6 months thereafter is required as determined by the following methods:
- (i) ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17); or
- (ii) ASTM D323-82 or 94 (incorporated by reference—see §60.17); or
- (iii) As measured by an appropriate method as approved by the Administrator.
- (g) The owner or operator of each vessel equipped with a closed vent system and control device meeting the specification of §60.112b or with emissions reductions equipment as specified in 40 CFR 65.42(b)(4), (b)(5), (b)(6), or (c) is exempt from the requirements of paragraphs (c) and (d) of this section.
- [52 FR 11429, Apr. 8, 1987, as amended at 65 FR 61756, Oct. 17, 2000; 65 FR 78276, Dec. 14, 2000; 68 FR 59333, Oct. 15, 2003]
- § 30.117b Delegation of authority.
- (a) In delegating implementation and enforcement authority to a State under section 111(c) of the Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State.

(b) Authorities which will not be delegated to States: §§60.111b(f)(4), 60.114b, 60.116b(e)(3)(iii). 60.116b(e)(3)(iv), and 60.116b(f)(2)(iii).

[52 FR 11429, Apr. 8, 1987, as amended at 52 FR 22780, June 16, 1987]

Browse Previous | Browse Next

For questions or comments regarding e-CFR editorial content, features, or design, email sch(g) is a genuined for the second of the second content.

For questions concerning e-CFR programming and delivery issues, email webteam@gpc.go...

Section 508 / Accessibility

CERTIFICATE OF SERVICE

I, Pam Owen, hereby certify that a copy of this permit has been mailed by	first class mail to
Rineco, PO Box 729, Benton, AR, 72018-0729, on this 20 ^{+h}	day of
August 2008.	
tan Owen	
Pam Owen AAII Air Division	