|                        |      | Aquatic Live | Aquatic Live  | WS-001<br>4/19/2013<br>0<br>WS-<br>001(SURFA<br>CE)041913 |         |           |                |                |      |
|------------------------|------|--------------|---------------|-----------------------------------------------------------|---------|-----------|----------------|----------------|------|
|                        | Unit | Freshwater   |               | Human Health<br>Consumption for                           | Organ   |           | Min Detection  | Max Detection  |      |
| Chemical               | S    |              | CCC - Chronic |                                                           | Effects |           | (ignore if ND) | (ignore if ND) |      |
| FIELD                  | 5    | onio neute   |               | organishi only                                            | LIICOUS |           |                |                |      |
| Dissolved Oxygen       | ug/l |              |               |                                                           |         |           | 30             | 650            | 9540 |
| Metals                 | - g. |              |               |                                                           |         |           |                |                |      |
| Barium                 | ug/l |              |               |                                                           |         | 53.2      | 16.8           | 71.5           |      |
| Cadmium                | ug/l | 2            | 0.25          |                                                           |         | < 5.0 U   | 0.72           | 0.72           |      |
| Calcium                | ug/l |              |               |                                                           |         | 3800      | 2820           | 3630           |      |
| Chromium               | ug/l | 570          | 74            |                                                           |         | 4.6 J     | 1.3            | 8.8            |      |
| Lead                   | ug/l | 65           | 2.5           |                                                           |         | < 15.0 U  | 8.7            | 8.7            |      |
| Magnesium              | ug/l |              |               |                                                           |         | 2040      | 1340           | 2270           |      |
| Nickel                 | ug/l | 470          | 52            | 4600                                                      |         | 4.6 J     | 1.2            | 7              |      |
| Vanadium               | ug/l |              |               |                                                           |         | 4.8 J     | 1.3            | 12.8           |      |
| Other                  |      |              |               |                                                           |         |           |                |                |      |
| Hardness (as CaCO3)    | ug/l |              |               |                                                           |         | 17900     | 12600          | 18300          |      |
| SVOC SIM               |      |              |               |                                                           |         |           | -              |                |      |
| Naphthalene            | ug/l |              |               |                                                           |         |           | 0.035          | 0.067          |      |
| Pyrene                 | ug/l |              |               | 4000                                                      |         | < 0.052 U | 0.016          | 0.016          |      |
| ТРН                    |      |              |               |                                                           |         |           |                |                |      |
| VOCs                   | 1    |              |               |                                                           |         | 1         | 1              |                |      |
| 1,3,5-Trimethylbenzene | ug/l |              |               |                                                           |         |           | 0.1            | 0.1            |      |
| Benzene                | ug/l |              |               | 51                                                        |         | < 0.5 U   | 5.8            | 7              |      |
| Toluene                | ug/l |              |               | 15000                                                     |         | < 0.5 U   | 5.2            | 6.5            |      |
| Total Xylenes          | ug/l |              |               |                                                           |         | < 0.5 U   | 0.2            | 0.4            |      |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.

7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.





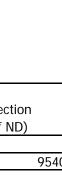
Surface Water WS-001 Deep

|                        |      |              |               |                 | ocation   |            |                |                |
|------------------------|------|--------------|---------------|-----------------|-----------|------------|----------------|----------------|
|                        |      |              |               |                 | oths (ft) |            |                |                |
|                        |      |              |               |                 |           |            |                |                |
|                        |      |              |               |                 |           | WS-001(0.5 |                |                |
|                        |      |              |               |                 |           | 1.0)041913 |                |                |
|                        |      | Aquatic Live |               | Human Health    | Organ     |            |                |                |
|                        | Unit | Freshwater   | Freshwater    | Consumption for |           |            | Min Detection  | Max Detection  |
| Chemical               | S    | CMC - Acute  | CCC - Chronic | Organism Only   | Effects   |            | (ignore if ND) | (ignore if ND) |
| FIELD                  |      | 1            |               |                 |           | •          | •              |                |
| Dissolved Oxygen       | ug/l |              |               |                 |           |            | 36             | 9540           |
| Metals                 |      |              |               |                 |           |            | •              |                |
| Barium                 | ug/l |              |               |                 |           | 56.9       | 16.8           | 173            |
| Cadmium                | ug/l | 2            | 0.25          |                 |           | < 5.0 U    | 0.49           | 0.55           |
| Calcium                | ug/l |              |               |                 |           | 3620       | 2840           | 7010           |
| Chromium               | ug/l |              | 74            |                 |           | 5.2 J      | 1.1            | 21.3           |
| Lead                   | ug/l | 65           | 2.5           |                 |           | < 15.0 U   | 8.3            | 18.1           |
| Magnesium              | ug/l |              |               |                 |           | 1980       | 1350           | 3930           |
| Nickel                 | ug/l | 470          | 52            | 4600            |           | 5.3 J      | 1.2            | 16.6           |
| Vanadium               | ug/l |              |               |                 |           | 6.5        | 1.7            | 32.2           |
| Other                  |      |              |               |                 |           |            |                |                |
| Hardness (as CaCO3)    | ug/l |              |               |                 |           | 17200      | 12700          | 33700          |
| SVOC SIM               |      |              |               |                 |           |            |                |                |
| 2-Methylnaphthalene    | ug/l |              |               |                 |           | < 0.051 U  | 0.012          | 0.012          |
| Benzo(b)fluoranthene   | ug/l |              |               | 0.018           |           | < 0.051 U  | 0.011          | 0.015          |
| Chrysene               | ug/l |              |               | 0.018           |           | < 0.051 U  | 0.012          | 0.012          |
| Fluoranthene           | ug/l |              |               | 140             |           | < 0.051 U  | 0.019          | 0.019          |
| Naphthalene            | ug/l |              |               |                 |           | < 0.051 U  | 0.031          | 0.036          |
| Pyrene                 | ug/l |              |               | 4000            |           | < 0.051 U  | 0.016          | 0.017          |
| ТРН                    |      |              |               |                 |           |            |                |                |
| VOCs                   |      |              |               |                 |           |            |                |                |
| 1,3,5-Trimethylbenzene | ug/l |              |               |                 |           | < 0.5 U    | 0.1            | 0.1            |
| Toluene                | ug/l |              |               | 15000           |           | < 0.5 U    | 0.8            | 0.8            |
| Total Xylenes          | ug/l |              |               |                 |           | < 0.5 U    | 0.2            | 0.4            |

Notes

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration


3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/I = micrograms per liter (parts per billion)

- 6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.
- 7 Freshwater CMC Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.





|                        | Location WS-002<br>Sample Date 4/19/2013<br>Depths (ft) 0<br>WS-<br>002(SURFA<br>Sample ID CE)041913 |              |               |                 |         |           |                |              |  |  |
|------------------------|------------------------------------------------------------------------------------------------------|--------------|---------------|-----------------|---------|-----------|----------------|--------------|--|--|
|                        |                                                                                                      | Aquatic Live | Aquatic Live  | Human Health    | Organ   |           |                |              |  |  |
|                        | Unit                                                                                                 | Freshwater   | Freshwater    | Consumption for | oleptic |           | Min Detection  | Max Detec    |  |  |
| Chemical               | S                                                                                                    | CMC - Acute  | CCC - Chronic | Organism Only   | Effects |           | (ignore if ND) | (ignore if I |  |  |
| FIELD                  |                                                                                                      |              |               |                 |         |           |                |              |  |  |
| Dissolved Oxygen       | ug/l                                                                                                 |              |               |                 |         |           | 4400           |              |  |  |
| Metals                 |                                                                                                      |              |               |                 |         |           |                |              |  |  |
| Barium                 | ug/l                                                                                                 |              |               |                 |         | 19.2      | 14.6           | 20.4         |  |  |
| Cadmium                | ug/l                                                                                                 | 2            | 0.25          |                 |         | < 5.0 U   | 0.37           | 0.5          |  |  |
|                        | ug/l                                                                                                 |              |               |                 |         | 3260      | 2550           | 3220         |  |  |
| Chromium               | ug/l                                                                                                 | 570          | 74            |                 |         | < 15.0 U  | 1.1            | 1.8          |  |  |
| Magnesium              | ug/l                                                                                                 |              |               |                 |         | 1610      | 1330           | 1610         |  |  |
| Nickel                 | ug/l                                                                                                 | 470          | 52            | 4600            |         | 1.1 J     | 1.1            | 2.4          |  |  |
| Other                  |                                                                                                      |              |               |                 |         |           |                |              |  |  |
| Hardness (as CaCO3)    | ug/l                                                                                                 |              |               |                 |         | 14800     | 12000          | 14700        |  |  |
| SVOC SIM               |                                                                                                      |              |               |                 |         |           |                |              |  |  |
| 1-Methylnaphthalene    | ug/l                                                                                                 |              |               |                 |         | < 0.051 U | 0.023          | 0.023        |  |  |
| 2-Methylnaphthalene    | ug/l                                                                                                 |              |               |                 |         | < 0.051 U | 0.02           | 0.02         |  |  |
| Acenaphthene           | ug/l                                                                                                 |              |               | 990             | 20      | < 0.051 U | 0.033          | 0.033        |  |  |
| Acenaphthylene         | ug/l                                                                                                 |              |               |                 |         | < 0.051 U | 0.032          | 0.032        |  |  |
| Anthracene             | ug/l                                                                                                 |              |               | 40000           |         | < 0.051 U | 0.042          | 0.042        |  |  |
| Benzo(a)Anthracene     | ug/l                                                                                                 |              |               | 0.018           |         | < 0.051 U | 0.048          | 0.048        |  |  |
| Benzo(a)Pyrene         | ug/l                                                                                                 |              |               | 0.018           |         | < 0.051 U | 0.045          | 0.045        |  |  |
| Benzo(b)fluoranthene   | ug/l                                                                                                 |              |               | 0.018           |         | < 0.051 U | 0.043          | 0.043        |  |  |
| Benzo(g,h,i)Perylene   | ug/l                                                                                                 |              |               |                 |         | < 0.051 U | 0.037          | 0.037        |  |  |
| Benzo(k)Fluoranthene   | ug/l                                                                                                 |              |               | 0.018           |         | < 0.051 U | 0.044          | 0.044        |  |  |
|                        | ug/l                                                                                                 |              |               | 0.018           |         | < 0.051 U | 0.043          | 0.043        |  |  |
|                        | ug/l                                                                                                 |              |               | 0.018           |         | < 0.051 U | 0.039          | 0.039        |  |  |
|                        | ug/l                                                                                                 |              |               | 140             |         | < 0.051 U | 0.046          | 0.046        |  |  |
|                        | ug/l                                                                                                 |              |               | 5300            |         |           | 0.037          | 0.037        |  |  |
| Indeno(1,2,3-cd)Pyrene | ug/l                                                                                                 |              |               | 0.018           | 1       |           | 0.038          | 0.038        |  |  |
| Naphthalene            | ug/l                                                                                                 |              |               |                 | 1       |           | 0.031          | 0.06         |  |  |
|                        | ug/l                                                                                                 |              | ×             |                 | 1       | < 0.051 U | 0.042          | 0.042        |  |  |
|                        | ug/l                                                                                                 |              |               | 4000            | 1       | < 0.051 U | 0.045          | 0.045        |  |  |
| ТРН                    |                                                                                                      | •            | -             | •               | -       | -         | •              | •            |  |  |
|                        | ug/l                                                                                                 |              |               |                 |         |           | 1500           |              |  |  |
| VOCs                   |                                                                                                      | -            | -             | -               | -       | -         | •              | -            |  |  |
| Toluene                | ug/l                                                                                                 |              |               | 15000           |         | < 0.5 U   | 0.1            | 0.1          |  |  |
| Total Xylenes          | ug/l                                                                                                 |              |               |                 | İ       | < 0.5 U   | 0.2            | 0.2          |  |  |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)





Surface Water WS-002 Shallow

|  | Aquatic Live | Aquatic Live |           |         | 02/041713 |  |
|--|--------------|--------------|-----------|---------|-----------|--|
|  | A 11 1 1     | A            |           |         | CE)041913 |  |
|  |              |              |           |         | 002(SURFA |  |
|  |              |              |           |         | WS-       |  |
|  |              | 0            |           |         |           |  |
|  |              |              | 4/19/2013 |         |           |  |
|  |              |              | L         | ocation | WS-002    |  |

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.

7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (SeO4) which would result in the lowest comparison criteria concentration.

8 Results have not been validated. Preliminary data is presented for discussion purposes only.



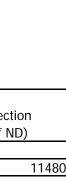
## ection if ND) n a nded

|                        |          |              |               | ا<br>Samı<br>Dej | 0       |                  |                |                |
|------------------------|----------|--------------|---------------|------------------|---------|------------------|----------------|----------------|
|                        |          |              |               | 60               | mpla ID | WS-<br>003(SURFA |                |                |
|                        |          | A            |               |                  | 1       | CE)041913        |                |                |
|                        | 1.1.4.14 | Aquatic Live |               | Human Health     | Organ   |                  |                | May Datastian  |
|                        |          | Freshwater   | Freshwater    | Consumption for  |         |                  | Min Detection  | Max Detection  |
| Chemical               | S        | CIMC - Acute | CCC - Chronic | Organism Only    | Effects |                  | (ignore if ND) | (ignore if ND) |
| FIELD                  |          |              |               |                  |         |                  |                | 11.400         |
| Dissolved Oxygen       | ug/l     |              |               |                  |         |                  | 50             | 020 11480      |
| Metals                 |          |              |               |                  |         | 10.7             |                |                |
| Barium                 | ug/l     |              | 0.05          |                  |         | 19.7             | 15.4           | 26.3           |
| Cadmium                | ug/l     | 2            | 0.25          |                  |         | < 5.0 U          | 0.4            | 0.43           |
| Calcium                | ug/l     |              |               |                  |         | 3100             | 2930           | 3360           |
| Chromium               |          | 570          | 74            |                  |         | < 15.0 U         | 1.2            | 1.5            |
| Magnesium              | ug/l     |              |               |                  |         | 1550             | 1400           | 1710           |
| Nickel                 | <u> </u> | 470          | 52            | 4600             |         | < 10.0 U         | 1.1            | 2.7            |
| Silver                 | ug/l     | 3.2          |               |                  |         | < 5.0 U          | 1.3            | 1.3            |
| Vanadium               | ug/l     |              |               |                  |         | 1.5 J            | 1.4            | 2.5            |
| Other                  |          |              |               |                  |         |                  |                |                |
| Hardness (as CaCO3)    | ug/l     |              |               |                  |         | 14100            | 13100          | 15400          |
| SVOC SIM               |          |              |               |                  |         |                  |                |                |
| Fluoranthene           | ug/l     |              |               | 140              |         | < 0.051 U        | 0.012          | 0.012          |
| Naphthalene            | ug/l     |              |               |                  |         | < 0.051 U        | 0.04           | 0.076          |
| TPH                    |          |              |               |                  |         | •                |                |                |
| VOCs                   |          |              |               |                  |         |                  |                |                |
| 1,2,4-Trimethylbenzene | ug/l     |              |               |                  |         | < 0.5 U          | 0.1            | 0.1            |
| Benzene                | ug/l     |              |               | 51               |         |                  | 0.1            | 0.1            |
| Ethylbenzene           | ug/l     |              |               | 2100             |         | < 0.5 U          | 0.1            | 0.1            |
| Toluene                | ug/l     |              |               | 15000            |         | < 0.5 U          | 0.2            | 0.4            |
| Total Xylenes          | ug/l     |              |               |                  |         | < 0.5 U          | 0.3            | 0.8            |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

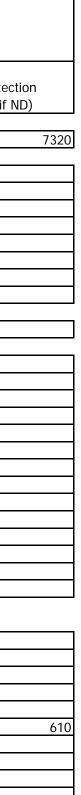
2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration


4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.


7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.





|                            |       |                            |                             | Sam                             | Location<br>ple Date<br>pths (ft) | 4/19/2013<br>0<br>WS-  |                |              |
|----------------------------|-------|----------------------------|-----------------------------|---------------------------------|-----------------------------------|------------------------|----------------|--------------|
|                            |       |                            |                             | 0                               |                                   | 004(SURFA              |                |              |
|                            |       |                            | A                           |                                 |                                   | CE)041913              |                |              |
|                            | Unit  | Aquatic Live<br>Freshwater |                             | Human Health<br>Consumption for | Organ                             |                        | Min Detection  | Max Detec    |
| Chamical                   |       |                            | Freshwater<br>CCC - Chronic |                                 | Effects                           |                        |                |              |
| Chemical<br>FIELD          | S     | CIVIC - Acute              |                             | Organism Only                   | Enects                            |                        | (ignore if ND) | (ignore if N |
|                            | 110/1 |                            |                             |                                 |                                   |                        | 700            |              |
| Dissolved Oxygen<br>Metals | ug/l  |                            |                             |                                 |                                   |                        | /00            | J            |
| Barium                     | ug/l  |                            | 1                           |                                 |                                   | 294                    | 17.8           | 106          |
| Cadmium                    | ug/l  |                            | 0.25                        |                                 |                                   | 294<br>0.52 J          | 0.71           | 0.94         |
| Calcium                    | ug/l  | 2                          | 0.25                        |                                 |                                   | 0.52 J<br>7170         | 3160           | 4680         |
| Chromium                   | ug/l  | 570                        | 74                          |                                 |                                   | 32.5                   | 1.5            | 13.5         |
| Lead                       | ug/l  |                            | 2.5                         |                                 |                                   | 36.9                   | 5.3            | 11.6         |
| Magnesium                  | ug/l  | 05                         | 2.0                         |                                 |                                   | 5160                   | 1460           | 2690         |
| Nickel                     |       | 470                        | 52                          | 4600                            |                                   | 29.3                   | 1.5            | 10           |
| Vanadium                   | ug/l  |                            | 52                          | 4000                            | -                                 | 46.1                   | 2              | 18.4         |
| Other                      | uy/i  |                            |                             |                                 |                                   | 40.1                   | Z              | 10.4         |
| Hardness (as CaCO3)        | ug/l  |                            |                             |                                 |                                   | 39100                  | 14000          | 22800        |
| SVOC SIM                   | uy/i  |                            |                             |                                 |                                   | 37100                  | 14000          | 22000        |
| 1-Methylnaphthalene        | ug/l  |                            |                             |                                 |                                   | < 0.052 U              | 0.013          | 0.39         |
| 2-Methylnaphthalene        | ug/l  |                            |                             |                                 |                                   | < 0.052 U<br>< 0.052 U | 0.013          | 0.39         |
| Acenaphthene               | ug/l  |                            |                             | 990                             | 20                                | < 0.052 U<br>< 0.052 U | 0.017          | 0.27         |
| Benzo(a)Anthracene         | ug/l  |                            |                             | 0.018                           | 20                                | < 0.052 U              | 0.014          | 0.023        |
| Benzo(a)Pyrene             | ug/l  |                            |                             | 0.018                           |                                   | < 0.052 U              | 0.011          | 0.034        |
| Benzo(b)fluoranthene       | ug/l  |                            |                             | 0.018                           |                                   | < 0.052 U              | 0.012          | 0.019        |
| Benzo(g,h,i)Perylene       | ug/l  |                            |                             | 0.010                           |                                   | < 0.052 U              | 0.015          | 0.015        |
| Chrysene                   | ug/l  |                            |                             | 0.018                           |                                   | < 0.052 U              | 0.013          | 0.013        |
| Fluoranthene               | ug/l  |                            |                             | 140                             |                                   | < 0.052 U              | 0.013          | 0.013        |
| Fluorene                   | ug/l  |                            |                             | 5300                            |                                   | < 0.052 U              | 0.014          | 0.057        |
| Indeno(1,2,3-cd)Pyrene     | ug/l  |                            |                             | 0.018                           |                                   |                        | 0.017          | 0.017        |
| Naphthalene                | ug/l  |                            |                             | 0.010                           |                                   |                        | 0.034          | 0.93         |
| Phenanthrene               | ug/l  |                            |                             |                                 |                                   | < 0.052 U              | 0.039          | 0.042        |
| Pyrene                     | ug/l  |                            |                             | 4000                            |                                   | < 0.032 0<br>0.013 J   | 0.011          | 0.042        |
| TPH                        | uy/i  |                            |                             | 4000                            |                                   | 0.013 5                | 0.011          | 0.017        |
| VOCs                       |       |                            |                             |                                 |                                   |                        |                |              |
| 1,2,4-Trimethylbenzene     | ug/l  |                            |                             |                                 |                                   | 0.8                    | 1.2            | 5.9          |
| 1,3,5-Trimethylbenzene     | ug/l  |                            |                             |                                 |                                   | 0.8                    | 0.3            | 4.2          |
| Acetone                    | ug/l  |                            |                             |                                 |                                   | 3.4 J                  | 3.1            | 18.5         |
| Benzene                    | ug/l  |                            |                             | 51                              |                                   | 0.3 J                  | 0.1            | 10:5         |
| Ethylbenzene               | ug/l  |                            |                             | 2100                            |                                   | 0.3 J                  | 2.3            | 6            |
| Gasoline Range Organics    | ug/l  |                            |                             |                                 |                                   |                        | 610            |              |
| Isopropylbenzene           | ug/l  |                            |                             |                                 |                                   | 0.1 J                  | 0.1            | 1.1          |
| N-Propylbenzene            | ug/l  |                            |                             |                                 |                                   | 0.1 J                  | 0.3            | 0.3          |
| Toluene                    | ug/l  |                            |                             | 15000                           |                                   | 1.8                    | 1.1            | 77.7         |
| Total Xylenes              | ug/l  |                            |                             |                                 | 1                                 | 3.4                    | 0.2            | 59.2         |
|                            | ug/1  | 1                          | L                           | L                               | 1                                 | <b>U</b> . 1           | 12.2           | 57.2         |





Surface Water WS-004 Shallow

|               |               | 1                        | ocation                                                                    |                                                                                                                                             |                                                                                                     |                                                                                                                                                                                  |
|---------------|---------------|--------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |               |                          |                                                                            |                                                                                                                                             |                                                                                                     |                                                                                                                                                                                  |
|               |               | Samp                     | ole Date                                                                   | 4/19/2013                                                                                                                                   |                                                                                                     |                                                                                                                                                                                  |
|               |               | Dep                      | oths (ft)                                                                  | 0                                                                                                                                           |                                                                                                     |                                                                                                                                                                                  |
|               |               |                          |                                                                            | WS-                                                                                                                                         |                                                                                                     |                                                                                                                                                                                  |
|               |               |                          |                                                                            | 004(SURFA                                                                                                                                   |                                                                                                     |                                                                                                                                                                                  |
|               |               | Sai                      | mple ID                                                                    | CE)041913                                                                                                                                   |                                                                                                     |                                                                                                                                                                                  |
| Aquatic Live  | Aquatic Live  | Human Health             | Organ                                                                      |                                                                                                                                             |                                                                                                     |                                                                                                                                                                                  |
| it Freshwater | Freshwater    | Consumption for          | oleptic                                                                    |                                                                                                                                             | Min Detection                                                                                       | Max Detec                                                                                                                                                                        |
| CMC - Acute   | CCC - Chronic | Organism Only            | Effects                                                                    |                                                                                                                                             | (ignore if ND)                                                                                      | (ignore if                                                                                                                                                                       |
|               | it Freshwater | it Freshwater Freshwater | Samp<br>Dep<br>Samp<br>Samp<br>Samp<br>Samp<br>Samp<br>Samp<br>Samp<br>Sam | Sample Date<br>Depths (ft)<br>Sample ID<br>Aquatic Live Aquatic Live Human Health Organ<br>it Freshwater Freshwater Consumption for oleptic | 004(SURFA         Sample ID         CE)041913         Aquatic Live       Human Health         Organ | kSample Date4/19/2013Depths (ft)0Depths (ft)0WS-004(SURFA)Sample IDCE)041913Aquatic LiveHuman HealthOrganFreshwaterFreshwaterConsumption forolepticImage: Sample IDMin Detection |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

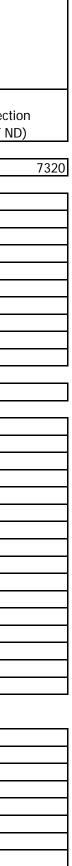
2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

- 6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.
- 7 Freshwater CMC Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.




| ection |  |
|--------|--|
| ND)    |  |

Surface Water WS-004 Deep

|                        |        |              |               |                 | Location  | WS-004     |                |              |
|------------------------|--------|--------------|---------------|-----------------|-----------|------------|----------------|--------------|
|                        |        |              |               |                 | ple Date  |            |                |              |
|                        |        |              |               | De              | pths (ft) | 0.5-1      |                |              |
|                        |        |              |               |                 |           | WS-004(0.5 |                |              |
|                        |        |              |               | Sa              | mnla ID   | 1.0)041913 |                |              |
|                        |        | Aquatic Live | Aquatic Live  | Human Health    | Organ     | 1.0/041713 |                |              |
|                        | Unit   | Freshwater   | Freshwater    | Consumption for |           |            | Min Detection  | Max Detect   |
| Chemical               | S      |              | CCC - Chronic |                 | Effects   |            | (ignore if ND) | (ignore if N |
| FIELD                  |        |              | 000 01101110  |                 | 2.10010   |            | (.ge. e        | (.g          |
| Dissolved Oxygen       | ug/l   |              |               |                 |           |            | -              | /00          |
| Metals                 |        |              |               |                 |           |            |                |              |
| Arsenic                | ua/l   | 340          | 150           | 0.14            |           | 14.7 J     | 8.9            | 8.9          |
| Barium                 | ug/l   |              |               |                 |           | 293        | 21.8           | 180          |
| Cadmium                | ug/l   |              | 0.25          |                 |           | < 5.0 U    | 0.69           | 1.1          |
| Calcium                | ug/l   |              |               |                 |           | 7500       | 3250           | 7270         |
| Chromium               |        | 570          | 74            |                 |           | 34.3       | 1.2            | 24.3         |
| Lead                   | ug/l   |              | 2.5           |                 |           | 38.2       | 5.7            | 19.2         |
| Magnesium              | ug/l   |              |               |                 |           | 5560       | 1430           | 4180         |
| Nickel                 |        | 470          | 52            | 4600            |           | 30.7       | 2.4            | 17.8         |
| Silver                 | ug/l   |              | -             |                 |           | < 5.0 U    | 1.4            | 1.4          |
| Vanadium               | ug/l   | 0.1          |               |                 |           | 46.3       | 2              | 35.6         |
| Other                  | 1-3.   |              |               |                 |           | 1.2.2      |                |              |
| Hardness (as CaCO3)    | ug/l   |              |               |                 |           | 41600      | 14000          | 35400        |
| SVOC SIM               |        |              |               |                 |           |            |                |              |
| 1-Methylnaphthalene    | ug/l   |              |               |                 |           | 0.012 J    | 0.017          | 0.36         |
| 2-Methylnaphthalene    | ug/l   |              |               |                 |           | 0.017 J    | 0.011          | 0.23         |
| Acenaphthene           | ug/l   |              |               | 990             | 20        | < 0.055 U  | 0.014          | 0.024        |
| Benzo(a)Anthracene     | ug/l   |              |               | 0.018           |           | < 0.055 U  | 0.013          | 0.014        |
| Benzo(a)Pyrene         | ug/l   |              |               | 0.018           |           | < 0.055 U  | 0.021          | 0.021        |
| Benzo(b)fluoranthene   | ug/l   |              |               | 0.018           |           | < 0.055 U  | 0.012          | 0.028        |
| Benzo(g,h,i)Perylene   | ug/l   |              |               |                 |           | < 0.055 U  | 0.019          | 0.019        |
| Benzo(k)Fluoranthene   | ug/l   |              |               | 0.018           |           | < 0.055 U  | 0.022          | 0.022        |
| Chrysene               | ug/l   |              |               | 0.018           |           | 0.012 J    | 0.011          | 0.027        |
| Dibenzo(a,h)Anthracene | ug/l   |              |               | 0.018           |           | < 0.055 U  | 0.021          | 0.021        |
| Fluoranthene           | ug/l   |              |               | 140             |           | < 0.055 U  | 0.011          | 0.02         |
| Fluorene               | ug/l   |              |               | 5300            |           | < 0.055 U  | 0.014          | 0.057        |
| Indeno(1,2,3-cd)Pyrene | ug/l   |              |               | 0.018           |           | < 0.055 U  | 0.023          | 0.023        |
| Naphthalene            | ug/l   |              |               |                 |           | 0.049 J    | 0.033          | 0.22         |
| Phenanthrene           | ug/l   |              |               |                 |           | < 0.055 U  | 0.038          | 0.038        |
| Pyrene                 | ug/l   |              |               | 4000            |           | 0.015 J    | 0.011          | 0.02         |
| TPH                    | 1 ' J' |              |               |                 |           |            |                |              |
| VOCs                   |        |              |               |                 |           |            |                |              |
| 1,2,4-Trimethylbenzene | ug/l   |              |               |                 |           | 0.8        | 2.6            | 2.6          |
| 1,3,5-Trimethylbenzene | ug/l   |              |               |                 |           | 0.9        | 0.1            | 2            |
| Acetone                | ug/l   |              |               |                 |           | < 5.0 U    | 4.4            | 4.4          |
| Benzene                | ug/l   |              |               | 51              |           | 0.3 J      | 0.1            | 3.4          |
| Ethylbenzene           | ug/l   |              |               | 2100            | 1         | 0.3 J      | 2.8            | 2.8          |
| Isopropylbenzene       | ug/l   |              |               |                 |           | 0.1 J      | 0.1            | 0.1          |
| N-Propylbenzene        | ug/l   |              |               |                 |           | 0.1 J      | 0.3            | 0.3          |
| Toluene                | ug/l   |              | i             | 15000           | 1         | 1.8        | 0.8            | 5.1          |





Surface Water WS-004 Deep

|               |             |              |               | L               | ocation | WS-004     |                |              |  |
|---------------|-------------|--------------|---------------|-----------------|---------|------------|----------------|--------------|--|
|               | Sample Date |              |               |                 |         |            |                |              |  |
|               | Depths (ft) |              |               |                 |         |            |                |              |  |
|               |             |              |               |                 |         |            |                |              |  |
|               |             |              |               |                 |         | WS-004(0.5 |                |              |  |
|               |             |              |               | Sa              | mple ID | 1.0)041913 |                |              |  |
|               |             | Aquatic Live | Aquatic Live  | Human Health    | Organ   |            |                |              |  |
|               | Unit        | Freshwater   | Freshwater    | Consumption for | oleptic |            | Min Detection  | Max Detec    |  |
| Chemical      | S           | CMC - Acute  | CCC - Chronic | Organism Only   | Effects |            | (ignore if ND) | (ignore if N |  |
| Total Xylenes | ug/l        |              |               |                 |         | 3.4        | 0.2            | 20           |  |

Notes

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.

7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (SeO4) which would result in the lowest comparison criteria concentration.



| ection |  |
|--------|--|
| ND)    |  |
|        |  |

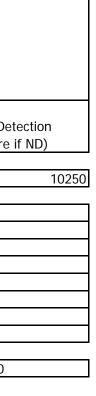
|      |                                                                   |                 | l                                                                                         | ocation                                                                    | WS-005                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                   |                 | Samp                                                                                      | ole Date                                                                   | 4/19/2013                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                   |                 | Dej                                                                                       | oths (ft)                                                                  | 0                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                   |                 |                                                                                           |                                                                            | WS-                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                   |                 |                                                                                           |                                                                            | 005(SURFA                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                   |                 | Sa                                                                                        | mple ID                                                                    | CE)041913                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | Aquatic Live                                                      | Aquatic Live    | Human Health                                                                              | Organ                                                                      |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit | Freshwater                                                        | Freshwater      | Consumption for                                                                           | oleptic                                                                    |                                                                                                                                                                                                                                                                                                    | Min Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| S    | CMC - Acute                                                       | CCC - Chronic   | Organism Only                                                                             | Effects                                                                    |                                                                                                                                                                                                                                                                                                    | (ignore if ND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ignore if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ug/l |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ug/l |                                                                   |                 |                                                                                           |                                                                            | 17.4                                                                                                                                                                                                                                                                                               | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ug/l | 2                                                                 | 0.25            |                                                                                           |                                                                            | < 5.0 U                                                                                                                                                                                                                                                                                            | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ug/l |                                                                   |                 |                                                                                           |                                                                            | 3230                                                                                                                                                                                                                                                                                               | 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ug/l | 570                                                               | 74              |                                                                                           |                                                                            | < 15.0 U                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ug/l |                                                                   |                 |                                                                                           |                                                                            | 1580                                                                                                                                                                                                                                                                                               | 1470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ug/l | 470                                                               | 52              | 4600                                                                                      |                                                                            | 1.5 J                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ug/l | 3.2                                                               |                 |                                                                                           |                                                                            | < 5.0 U                                                                                                                                                                                                                                                                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ug/l |                                                                   |                 |                                                                                           |                                                                            | < 5.0 U                                                                                                                                                                                                                                                                                            | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ug/l |                                                                   |                 |                                                                                           |                                                                            | 14600                                                                                                                                                                                                                                                                                              | 13700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ug/l |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                   |                 |                                                                                           |                                                                            |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ug/l |                                                                   |                 |                                                                                           |                                                                            | < 0.5 U                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | s<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | Unit Freshwater | Unit         Freshwater<br>CMC - Acute         Freshwater<br>CCC - Chronic           ug/l | Samp<br>Dep<br>Samp<br>Samp<br>Samp<br>Samp<br>Samp<br>Samp<br>Samp<br>Sam | Sample Date Depths (ft)         Sample ID         Aquatic Live       Aquatic Live       Human Health       Organ         Unit       Freshwater       Freshwater       Consumption for       oleptic         S       CMC - Acute       CCC - Chronic       Organism Only       Effects         ug/l | Sample Date<br>Depths (ft)       4/19/2013<br>0<br>WS-<br>005(SURFA<br>Sample ID         Linit<br>s       Aquatic Live<br>Freshwater<br>s       Human Health<br>CCC - Chronic       Organ<br>oleptic<br>Organism Only         Unit<br>s       CCC - Acute       CCC - Chronic       Organ<br>oleptic<br>Organism Only       Effects         Ug/l       17.4       3230         Ug/l       17.4       3230         Ug/l       3230       3230         Ug/l       1580       1580         Ug/l       152       4600       1.5 J         Ug/l       1       14600         Ug/l       14600       14600 | Sample Date<br>Depths (ft)       4/19/2013<br>0<br>WS-<br>005(SURFA<br>CE)041913         Aquatic Live<br>Freshwater<br>s       Aquatic Live<br>Freshwater<br>CCC - Chronic       Human Health<br>Consumption for<br>Organism Only       Organ<br>effects       Min Detection<br>(ignore if ND)         ug/l        17.4       14.6         ug/l        17.4       14.6         ug/l        3230       3050         ug/l        3230       3050         ug/l        1580       1470         ug/l         1580       1470         ug/l         1580       1470         ug/l         1580       1470         ug/l         1580       1470         ug/l         1580       1470         ug/l          50.0       1.7         ug/l           1.4         ug/l          1.600       13700         ug/l           114600       13700 |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)


5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.

7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (SeO4) which would result in the lowest comparison criteria concentration.

8 Results have not been validated. Preliminary data is presented for discussion purposes only.



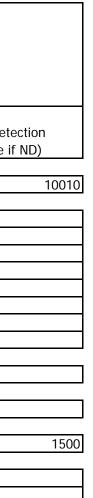


2600

|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                | l                                                                                                                                                                                                                                                                                                                                                                                                                       | ocation                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                | Samp                                                                                                                                                                                                                                                                                                                                                                                                                    | ole Date                                                                                                                                                               | 4/19/2013                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                | De                                                                                                                                                                                                                                                                                                                                                                                                                      | oths (ft)                                                                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | WS-                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 006(SURFA                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                | Sa                                                                                                                                                                                                                                                                                                                                                                                                                      | mple ID                                                                                                                                                                | CE)041913                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aquatic Live  | Aquatic Live   | Human Health                                                                                                                                                                                                                                                                                                                                                                                                            | Organ                                                                                                                                                                  |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| it Freshwater | Freshwater     | Consumption for                                                                                                                                                                                                                                                                                                                                                                                                         | oleptic                                                                                                                                                                |                                                                                                                                                                                                                                                                   | Min Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max Dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CMC - Acute   | CCC - Chronic  | Organism Only                                                                                                                                                                                                                                                                                                                                                                                                           | Effects                                                                                                                                                                |                                                                                                                                                                                                                                                                   | (ignore if ND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ignore if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /1            |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   | 4330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4             |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 52.5                                                                                                                                                                                                                                                              | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /1 2          | 0.25           |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | < 5.0 U                                                                                                                                                                                                                                                           | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 4000                                                                                                                                                                                                                                                              | 3020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /I 570        | 74             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 4.7 J                                                                                                                                                                                                                                                             | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 2140                                                                                                                                                                                                                                                              | 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /I 1.4        | 0.77           |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | < 0.20 U                                                                                                                                                                                                                                                          | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /I 470        | 52             | 4600                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                        | 4.3 J                                                                                                                                                                                                                                                             | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| /1            |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 5.8                                                                                                                                                                                                                                                               | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4             |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | 18800                                                                                                                                                                                                                                                             | 14100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /1            |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | < 0.051 U                                                                                                                                                                                                                                                         | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /1            |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /             |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                        | < 0.5 U                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| /1            |                | 15000                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                        | < 0.5 U                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | nit Freshwater | Freshwater       Freshwater         CMC - Acute       CCC - Chronic         //       //         //       0.25         //       0.25         //       //         //       0.74         //       0.77         //       470         //       52         //       -         //       -         //       -         //       -         //       -         //       -         //       -         //       -         //       - | Samp<br>Dep<br>Sa<br>Sa<br>Aquatic Live Aquatic Live Freshwater<br>CMC - Acute CCC - Chronic Organism Only<br>/I<br>/I<br>/I<br>/I<br>/I<br>/I<br>/I<br>/I<br>/I<br>/I | Depths (ft)         Sample ID         Aquatic Live       Aquatic Live       Human Health       Organ         Freshwater       Freshwater       Consumption for       oleptic         CMC - Acute       CCC - Chronic       Organism Only       Effects         // | Sample Date<br>Depths (ft)       4/19/2013<br>0<br>WS-<br>006(SURFA<br>Sample ID         Aquatic Live<br>Freshwater       Aquatic Live<br>Freshwater       Human Health<br>Consumption for<br>Organism Only       Organ<br>oleptic         //       CCC - Chronic       Organism Only       Effects         //        52.5         //        52.5         //        4000         //        4000         //        2140         //        5.8         //        5.8         //           //        5.8 | Sample Date Depths (ft) $4/19/2013$ $0$ Note the depth of the dep |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration


3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

- 6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.
- 7 Freshwater CMC Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.





Surface Water WS-006 Deep

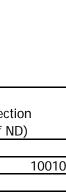
|                     |                   |               |               |                 | ocation | WS-006     |                |                |
|---------------------|-------------------|---------------|---------------|-----------------|---------|------------|----------------|----------------|
|                     |                   |               |               |                 |         | 4/19/2013  |                |                |
|                     | Depths (ft) 0.5-1 |               |               |                 |         |            |                |                |
|                     |                   |               |               | 00              |         | 0.0 1      |                |                |
|                     |                   |               |               |                 |         | WS-006(0.5 |                |                |
|                     |                   |               |               | Sa              |         | 1.0)041913 |                |                |
|                     |                   | Aquatic Live  | Aquatic Live  | Human Health    | Organ   |            |                |                |
|                     | l Init            | Freshwater    | Freshwater    | Consumption for |         |            | Min Detection  | Max Detection  |
| Chemical            | S                 |               | CCC - Chronic | •               | Effects |            | (ignore if ND) | (ignore if ND) |
| FIELD               | 3                 | civic - Acute |               |                 | LITECIS |            |                |                |
| Dissolved Oxygen    | ug/l              |               |               |                 |         |            | /              | 10010          |
| Metals              | uy/i              |               |               |                 |         |            | 2              | 10010          |
| Arsenic             | ug/l              | 240           | 150           | 0.14            |         | < 20.0 U   | 7.5            | 7.5            |
| Barium              |                   | 340           | 150           | 0.14            |         |            | 16.3           | 40.5           |
|                     | ug/l              | 0             | 0.05          |                 |         |            |                |                |
| Cadmium             | ug/l              | 2             | 0.25          |                 |         |            | 0.53           | 0.65           |
| Calcium             | ug/l              |               |               |                 |         |            | 3010           | 4050           |
| Chromium            | ug/l              | 570           | 74            |                 |         |            | 1.1            | 4.2            |
| Magnesium           | ug/l              |               |               |                 |         | 2170       | 1450           | 1910           |
| Mercury             | ug/l              | 1.4           | 0.77          |                 |         | < 0.20 U   | 0.083          | 0.083          |
| Nickel              | ug/l              | 470           | 52            | 4600            |         | 4.9 J      | 1.2            | 3.4            |
| Silver              | ug/l              | 3.2           |               |                 |         | < 5.0 U    | 1.4            | 1.4            |
| Vanadium            | ug/l              |               |               |                 |         | 5.4        | 1.4            | 4.9            |
| Other               |                   |               |               |                 |         |            |                |                |
| Hardness (as CaCO3) | ug/l              |               |               |                 |         | 19200      | 13600          | 17800          |
| SVOC SIM            |                   |               |               |                 |         |            |                |                |
| Naphthalene         | ug/l              |               |               |                 |         | < 0.052 U  | 0.053          | 0.053          |
| ТРН                 | 3.1               |               |               |                 |         |            |                |                |
| VOCs                |                   |               |               |                 |         |            |                |                |
| Cymene              | ug/l              |               |               |                 |         | < 0.5 U    | 0.2            | 0.2            |
| Toluene             | ug/l              |               |               | 15000           |         | < 0.5 U    | 0.1            | 0.1            |

Notes

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration


4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.

7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.





|                        |              |              |               |                 | Location | WS-007                 |                |                |
|------------------------|--------------|--------------|---------------|-----------------|----------|------------------------|----------------|----------------|
|                        |              |              |               |                 | ole Date |                        |                |                |
| Depths (ft) 0          |              |              |               |                 |          |                        |                |                |
|                        |              |              |               | 20              |          | WS-                    |                |                |
|                        |              |              |               |                 |          | 007(SURFA              |                |                |
|                        |              |              |               | Sa              | mple ID  | CE)041913              |                |                |
|                        |              | Aquatic Live | Aquatic Live  | Human Health    | Organ    |                        |                |                |
|                        | Unit         | Freshwater   | Freshwater    | Consumption for |          |                        | Min Detection  | Max Detection  |
| Chemical               | S            |              | CCC - Chronic |                 | Effects  |                        | (ignore if ND) | (ignore if ND) |
| FIELD                  | 5            | omo nouto    |               | organishi only  | Encots   | 1                      |                |                |
| Dissolved Oxygen       | ug/l         |              |               |                 |          |                        | 214            | 0 6880         |
| Metals                 | ugri         |              |               |                 |          | 1                      | 217            | 0000           |
| Arsenic                | ug/l         | 340          | 150           | 0.14            |          | < 20.0 U               | 9.3            | 9.3            |
| Barium                 | ug/l         | 540          | 150           | 0.14            |          | 172                    | 23.1           | 131            |
| Cadmium                | ug/l         | 2            | 0.25          |                 |          |                        | 0.65           | 0.91           |
| Calcium                | ug/l         | <u> </u>     | 0.20          |                 | 1        | < <u>3.0</u> 0<br>6390 | 3130           | 6170           |
| Chromium               | ug/l         | 570          | 74            |                 |          | 12.2 J                 | 1.7            | 18.1           |
| Lead                   | ug/l         |              | 2.5           |                 |          |                        | 6.5            | 16.1           |
| Magnesium              |              | 05           | 2.0           |                 |          | 3260                   | 1500           | 3350           |
|                        | ug/l<br>ug/l | 1 /          | 0.77          |                 |          |                        | 0.074          | 0.085          |
| Mercury                |              |              |               | 4/00            |          |                        |                |                |
| Nickel                 | ug/l         | 470          | 52            | 4600            |          | 12.9                   | 2.1            | 15.5           |
| Vanadium               | ug/l         |              |               |                 |          | 17.5                   | 1.6            | 26.4           |
| Other                  | 1            |              |               |                 |          | 00400                  | 4 4 9 9 9      |                |
| Hardness (as CaCO3)    | ug/l         |              |               |                 |          | 29400                  | 14000          | 26000          |
| SVOC SIM               |              |              |               |                 |          | 0.050.11               |                |                |
| 1-Methylnaphthalene    | ug/l         |              |               |                 |          |                        | 0.068          | 0.39           |
| 2-Methylnaphthalene    | ug/l         |              |               |                 |          |                        | 0.011          | 0.27           |
| Acenaphthene           | ug/l         |              |               | 990             | 20       |                        | 0.014          | 0.041          |
| Acenaphthylene         | ug/l         |              |               |                 |          |                        | 0.014          | 0.036          |
| Anthracene             | ug/l         |              |               | 40000           |          |                        | 0.027          | 0.13           |
| Benzo(a)Anthracene     | ug/l         |              |               | 0.018           |          |                        | 0.011          | 0.29           |
| Benzo(a)Pyrene         | ug/l         |              |               | 0.018           |          |                        | 0.085          | 0.085          |
| Benzo(b)fluoranthene   | ug/l         |              |               | 0.018           |          |                        | 0.011          | 0.43           |
| Benzo(g,h,i)Perylene   | ug/l         |              |               |                 |          |                        | 0.012          | 0.081          |
| Benzo(k)Fluoranthene   | ug/l         |              |               | 0.018           |          |                        | 0.011          | 0.16           |
| Chrysene               | ug/l         |              |               | 0.018           |          |                        | 0.011          | 0.77           |
| Dibenzo(a,h)Anthracene | ug/l         |              |               | 0.018           |          |                        | 0.019          | 0.019          |
| Fluoranthene           | ug/l         |              |               | 140             |          |                        | 0.011          | 3              |
| Fluorene               | ug/l         |              |               | 5300            |          |                        | 0.027          | 0.065          |
| Indeno(1,2,3-cd)Pyrene | ug/l         |              |               | 0.018           |          |                        | 0.011          | 0.11           |
| Naphthalene            | ug/l         |              |               |                 |          |                        | 0.034          | 0.16           |
| Phenanthrene           | ug/l         |              |               |                 |          | < 0.052 U              | 0.034          | 0.64           |
| Pyrene                 | ug/l         |              |               | 4000            |          | 0.080                  | 0.013          | 2              |
| ТРН                    |              |              |               |                 |          |                        |                |                |
| VOCs                   |              |              |               |                 |          |                        |                |                |
| 1,3,5-Trimethylbenzene | ug/l         |              |               |                 |          | 0.2 J                  | 0.1            | 1.6            |
| 2-Butanone             | ug/l         |              |               |                 |          | < 5.0 U                | 1              | 1              |
| Acetone                | ug/l         |              |               |                 |          | < 5.0 U                | 3.4            | 24             |
| Benzene                | ug/l         |              |               | 51              |          |                        | 0.1            | 2              |
| Toluene                | ug/l         |              |               | 15000           |          | < 0.5 U                | 0.1            | 0.1            |
| Total Xylenes          | ug/l         |              |               |                 |          |                        | 0.1            | 6.4            |



Surface Water WS-007 Shallow

|          |      |              |               | Dep             | oths (ft) |           |                |            |
|----------|------|--------------|---------------|-----------------|-----------|-----------|----------------|------------|
|          |      |              |               |                 |           | WS-       |                |            |
|          |      |              |               |                 |           | 007(SURFA |                |            |
|          |      |              |               |                 | mple ID   | CE)041913 |                |            |
|          |      | Aquatic Live | •             |                 | Organ     |           |                |            |
|          | Unit | Freshwater   | Freshwater    | Consumption for | oleptic   |           | Min Detection  | Max Deteo  |
| Chemical | S    | CMC - Acute  | CCC - Chronic | Organism Only   | Effects   |           | (ignore if ND) | (ignore if |

Notes

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/I = micrograms per liter (parts per billion)

- 6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.
- 7 Freshwater CMC Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.



| ection |  |
|--------|--|
| ND)    |  |

Surface Water WS-007 Deep

|                        |          |              |               |                 | Location  | WS-007     |                |                |
|------------------------|----------|--------------|---------------|-----------------|-----------|------------|----------------|----------------|
|                        |          |              |               | Sam             | ple Date  | 4/19/2013  |                |                |
|                        |          |              |               |                 | pths (ft) |            |                |                |
|                        |          |              |               |                 |           |            |                |                |
|                        |          |              |               |                 |           | WS-007(0.5 |                |                |
|                        |          |              |               |                 |           | 1.0)041913 |                |                |
|                        |          | Aquatic Live | Aquatic Live  | Human Health    | Organ     |            |                |                |
|                        |          | Freshwater   | Freshwater    | Consumption for |           |            | Min Detection  | Max Detection  |
| Chemical               | S        | CMC - Acute  | CCC - Chronic | Organism Only   | Effects   |            | (ignore if ND) | (ignore if ND) |
| FIELD                  |          | r            | r             |                 | -         | 1          |                | 4.0            |
| Dissolved Oxygen       | ug/l     |              |               |                 |           |            | 21             | 40 688         |
| Metals                 |          |              | 150           |                 |           |            |                |                |
| Arsenic                |          | 340          | 150           | 0.14            |           | 7.3 J      | 7.8            | 9.6            |
| Barium                 | ug/l     |              | 0.05          |                 |           | 201        | 23.7           | 160            |
| Cadmium                | ug/l     | 2            | 0.25          |                 |           | < 5.0 U    | 0.43           | 0.77           |
| Calcium                | ug/l     |              |               |                 | -         | 6630       | 3330           | 5410           |
| Chromium               | ug/l     |              | 74            |                 |           | 18.2       | 1.8            | 20.3           |
| Lead                   | ug/l     | 65           | 2.5           |                 |           | 21.3       | 5.3            | 38.8           |
| Magnesium              | ug/l     |              |               |                 |           | 3910       | 1560           | 3720           |
| Nickel                 | <u> </u> | 470          | 52            | 4600            |           | 17.3       | 1.7            | 17.4           |
| Vanadium               | ug/l     |              |               |                 |           | 24.6       | 2.4            | 30.8           |
| Other                  |          |              |               |                 |           |            |                |                |
| Hardness (as CaCO3)    | ug/l     |              |               |                 |           | 32600      | 14700          | 28900          |
| SVOC SIM               |          |              |               |                 |           |            | 1              |                |
| 1-Methylnaphthalene    | ug/l     |              |               |                 |           | 0.038 J    | 0.012          | 0.5            |
| 2-Methylnaphthalene    | ug/l     |              |               |                 |           | 0.051 J    | 0.013          | 0.33           |
| Acenaphthene           | ug/l     |              |               | 990             | 20        | 0.022 J    | 0.012          | 0.038          |
| Acenaphthylene         | ug/l     |              |               |                 |           |            | 0.016          | 0.04           |
| Anthracene             | ug/l     |              |               | 40000           |           | 0.024 J    | 0.012          | 0.15           |
| Benzo(a)Anthracene     | ug/l     |              |               | 0.018           |           | 0.022 J    | 0.018          | 0.22           |
| Benzo(a)Pyrene         | ug/l     |              |               | 0.018           |           |            | 0.012          | 0.07           |
| Benzo(b)fluoranthene   | ug/l     |              |               | 0.018           |           | 0.025 J    | 0.012          | 0.42           |
| Benzo(g,h,i)Perylene   | ug/l     |              |               |                 |           |            | 0.011          | 0.075          |
| Benzo(k)Fluoranthene   | ug/l     |              |               | 0.018           |           |            | 0.015          | 0.13           |
| Chrysene               | ug/l     |              |               | 0.018           |           | 0.042 J    | 0.012          | 0.61           |
| Dibenzo(a,h)Anthracene | ug/l     |              |               | 0.018           |           | < 0.053 U  | 0.012          | 0.017          |
| Fluoranthene           | ug/l     |              |               | 140             |           | 0.11       | 0.013          | 2.5            |
| Fluorene               | ug/l     |              |               | 5300            |           | 0.043 J    | 0.012          | 0.07           |
| Indeno(1,2,3-cd)Pyrene | ug/l     |              |               | 0.018           |           | < 0.053 U  | 0.014          | 0.099          |
| Naphthalene            | ug/l     |              |               |                 |           | 0.064      | 0.042          | 0.19           |
| Phenanthrene           | ug/l     |              |               |                 |           | 0.18       | 0.035          | 0.71           |
| Pyrene                 | ug/l     |              |               | 4000            |           | 0.098      | 0.012          | 1.7            |
| TPH                    |          |              |               |                 |           |            |                |                |
| VOCs                   |          |              |               |                 |           |            |                |                |
| 1,3,5-Trimethylbenzene | ug/l     |              |               |                 |           | 0.2 J      | 0.2            | 1.9            |
| Acetone                | ug/l     |              |               |                 |           | 3.1 J      | 3.4            | 5.1            |
| Benzene                | ug/l     |              |               | 51              | 1         | < 0.5 U    | 0.2            | 1.9            |
| Toluene                | ug/l     |              |               | 15000           |           | < 0.5 U    | 0.1            | 0.3            |
| Total Xylenes          | ug/l     |              |               |                 |           |            | 0.2            | 6.8            |

Notes



Surface Water WS-007 Deep

|          |      |              |               |                 | ocation   | WS-007     |                |              |
|----------|------|--------------|---------------|-----------------|-----------|------------|----------------|--------------|
|          |      |              |               |                 |           |            |                |              |
|          |      |              |               | Samp            | ole Date  | 4/19/2013  |                |              |
|          |      |              |               | Dep             | oths (ft) | 0.5-1      |                |              |
|          |      |              |               |                 | • •       |            |                |              |
|          |      |              |               |                 |           | WS-007(0.5 |                |              |
|          |      |              |               | Sai             | mple ID   | 1.0)041913 |                |              |
|          |      | Aquatic Live | Aquatic Live  | Human Health    | Organ     |            |                |              |
|          | Unit | Freshwater   | Freshwater    | Consumption for | oleptic   |            | Min Detection  | Max Detec    |
| Chemical | S    | CMC - Acute  | CCC - Chronic | Organism Only   | Effects   |            | (ignore if ND) | (ignore if I |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

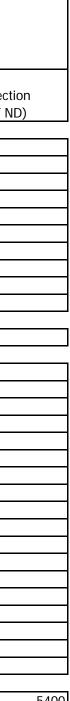
2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.


7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (Se04) which would result in the lowest comparison criteria concentration.



| ection |  |
|--------|--|
| ND)    |  |

|                        |              |                            |               |                    | location             | MC 000              |                |                |
|------------------------|--------------|----------------------------|---------------|--------------------|----------------------|---------------------|----------------|----------------|
|                        |              |                            |               |                    | Location<br>ple Date | WS-008<br>4/19/2013 |                |                |
|                        |              |                            |               | •                  | pths (ft)            | 4/19/2013           |                |                |
|                        |              |                            |               | De                 | puis (ii)            | WS-                 |                |                |
|                        |              |                            |               |                    |                      | 008(SURFA           |                |                |
|                        |              |                            |               | C.                 |                      | CE)041913           |                |                |
|                        |              | Aquatic Livo               | Aquatic Live  | Sa<br>Human Health | · ·                  | CE)041913           |                |                |
|                        | Unit         | Aquatic Live<br>Freshwater | Freshwater    |                    | Organ                |                     | Min Detection  | Max Detection  |
| Chamiaal               |              |                            |               | Consumption for    | Effects              |                     | (ignore if ND) |                |
| Chemical               | S            | CIVIC - ACULE              | CCC - Chronic | Organism Only      | Enects               |                     |                | (ignore if ND) |
| Metals                 | ug/l         | 240                        | 150           | 0.14               |                      |                     | 0.4            | 11 /           |
| Arsenic                |              | 340                        | 150           | 0.14               |                      | < 20.0 U<br>83.1    | 9.4<br>28.8    | 11.6<br>182    |
| Barium                 | ug/l<br>ug/l | 2                          | 0.25          |                    |                      |                     | 28.8<br>0.37   | 182            |
| Cadmium                |              | 2                          | 0.25          |                    |                      |                     |                | 7400           |
| Calcium                | ug/l         | 570                        | 7 4           |                    |                      | 4790                | 2930           | 7490           |
| Chromium               | ug/l         |                            | 74            |                    |                      | 9.5 J               | 1.9            | 30.8           |
| Lead                   | ug/l         | CO                         | 2.5           |                    | -                    | 8.0 J               | 14.2<br>2100   | 30.2<br>5310   |
| Magnesium              | ug/l         | 1 4                        | 0.77          |                    |                      | 3310                |                |                |
| Mercury                | ug/l         |                            | 0.77          | 4(00               |                      |                     | 0.076          | 0.082          |
| Nickel                 | ug/l         | 470                        | 52            | 4600               | · · · ·              | 8.8 J               | 2.6            | 26.5           |
| Vanadium               | ug/l         |                            |               |                    |                      | 12.3                | 2.9            | 32.7           |
| Other                  |              | r                          |               |                    |                      | 05/00               | 4 / 000        | 05700          |
| Hardness (as CaCO3)    | ug/l         |                            |               |                    |                      | 25600               | 16000          | 35700          |
| SVOC SIM               |              |                            |               |                    |                      |                     |                |                |
| 1-Methylnaphthalene    | ug/l         |                            |               |                    |                      |                     | 0.022          | 5.5            |
| 2-Methylnaphthalene    | ug/l         |                            |               |                    |                      |                     | 0.02           | 7.2            |
| Acenaphthene           | ug/l         |                            |               | 990                | 20                   |                     | 0.013          | 0.3            |
| Acenaphthylene         | ug/l         |                            |               |                    |                      |                     | 0.011          | 0.22           |
| Anthracene             | ug/l         |                            |               | 40000              |                      |                     | 0.018          | 0.24           |
| Benzo(a)Anthracene     | ug/l         |                            |               | 0.018              |                      |                     | 0.014          | 0.31           |
| Benzo(a)Pyrene         | ug/l         |                            |               | 0.018              |                      |                     | 0.011          | 0.23           |
| Benzo(b)fluoranthene   | ug/l         |                            |               | 0.018              |                      |                     | 0.011          | 0.52           |
| Benzo(g,h,i)Perylene   | ug/l         |                            |               |                    |                      |                     | 0.011          | 0.31           |
| Benzo(k)Fluoranthene   | ug/l         |                            |               | 0.018              |                      |                     | 0.024          | 0.075          |
| Chrysene               | ug/l         |                            |               | 0.018              |                      |                     | 0.015          | 0.78           |
| Dibenzo(a,h)Anthracene | ug/l         |                            |               | 0.018              |                      |                     | 0.031          | 0.06           |
| Fluoranthene           | ug/l         |                            |               | 140                |                      |                     | 0.013          | 0.21           |
| Fluorene               | ug/l         |                            |               | 5300               |                      |                     | 0.021          | 0.93           |
| Indeno(1,2,3-cd)Pyrene | ug/l         |                            |               | 0.018              |                      |                     | 0.014          | 0.11           |
| Naphthalene            | ug/l         |                            |               |                    |                      |                     | 0.032          | 2.5            |
| Phenanthrene           | ug/l         |                            |               |                    |                      |                     | 0.059          | 1.8            |
| Pyrene                 | ug/l         |                            |               | 4000               |                      | 0.029 J             | 0.016          | 0.82           |
| ТРН                    |              |                            |               |                    |                      |                     |                |                |
| Oil & Grease           | ug/l         |                            |               |                    |                      |                     | 170            | 5400           |
| VOCs                   |              |                            |               |                    |                      |                     |                |                |
| 1,2,4-Trimethylbenzene | ug/l         |                            |               |                    |                      | 0.5 J               | 0.2            | 29             |
| 1,3,5-Trimethylbenzene | ug/l         |                            |               |                    |                      | 0.3 J               | 0.1            | 13             |
| 2-Phenylbutane         | ug/l         |                            |               |                    |                      | < 0.5 U             | 0.1            | 1.5            |
| Acetone                | ug/l         |                            |               |                    |                      | < 5.0 U             | 3.5            | 8.9            |
| Benzene                | ug/l         |                            |               | 51                 |                      | 2.6                 | 0.5            | 30             |
| Bromodichloromethane   | ug/l         |                            |               | 17                 |                      | 0.2 J               | 0.1            | 0.8            |
| Chloroform             | ug/l         |                            |               | 470                |                      | 0.9                 | 0.6            | 2.9            |





|                  |      |              |               | l               | ocation   | WS-008    |                |            |
|------------------|------|--------------|---------------|-----------------|-----------|-----------|----------------|------------|
|                  |      |              |               | Samp            | ole Date  | 4/19/2013 |                |            |
|                  |      |              |               | De              | oths (ft) | 0         |                |            |
|                  |      |              |               |                 |           | WS-       |                |            |
|                  |      |              |               |                 |           | 008(SURFA |                |            |
|                  |      |              |               | Sa              | mple ID   | CE)041913 |                |            |
|                  |      | Aquatic Live | Aquatic Live  | Human Health    | Organ     |           |                |            |
|                  | Unit | Freshwater   | Freshwater    | Consumption for | oleptic   |           | Min Detection  | Max Detec  |
| Chemical         | S    | CMC - Acute  | CCC - Chronic | Organism Only   | Effects   |           | (ignore if ND) | (ignore if |
| Chloromethane    | ug/l |              |               |                 |           | < 0.5 U   | 1.6            | 1.6        |
| Cymene           | ug/l |              |               |                 |           | < 0.5 U   | 0.2            | 1.8        |
| Ethylbenzene     | ug/l |              |               | 2100            |           | 0.3 J     | 0.2            | 18         |
| Isopropylbenzene | ug/l |              |               |                 |           | < 0.5 U   | 0.1            | 3.7        |
| N-Butylbenzene   | ug/l |              |               |                 |           | < 0.5 U   | 0.2            | 1.6        |
| N-Propylbenzene  | ug/l |              |               |                 |           | < 0.5 U   | 0.1            | 5.3        |
| Toluene          | ug/l |              |               | 15000           |           | 3.5       | 0.7            | 93         |
| Total Xylenes    | ug/l |              |               |                 |           | 3.8       | 0.9            | 130        |

1 All surface water criteria are from current USEPA National Recommended Surface Waste Quality Criteria.

2 CMC - Acute = Criteria Maximum Concentration

3 CCC - Chronic = Criteria Continuous Concentration

4 mg/l = milligrams per liter (parts per million)

5 ug/l = micrograms per liter (parts per billion)

6 Where hardness results are available, freshwater aquatic life criteria for Cadmium, Chromium, Lead, Nickel, Silver, and Zinc are adjusted on a sample-specific basis for comparison with sampling results using the conversion factors presented in Appendix B to the National Recommended Surface Water Quality Criteria. Where hardness results are not available, comparison criteria are based on a conservative hardness value of ppm.

7 Freshwater CMC - Acute criteria for Selenium is calculated on a sample-specific basis based on the fractions of Selenite (SeO3) and Selenate (SeO4) in the sample. Samples were analyzed for total Selenium only. Criteria in table conservatively assumes that all of the measured Selenium is Selenate (SeO4) which would result in the lowest comparison criteria concentration.



| ection<br>ND) |  |
|---------------|--|
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |