

Helping our members work together to keep the lights on... today and in the future

SPP's Operating Region

<u>Current</u>

- 77,366 MW of generating capacity
- 46,136 MW of peak demand
- 48,930 miles transmission:
 - 69 kV 12,569 miles
 - 115 kV 10,239 miles
 - 138 kV 9,691 miles
 - 161 kV 5,049 miles
 - 230 kV 3,889 miles
 - 345 kV 7,401 miles
 - 500 kV 93 miles

Future (October 2015)

- Adding 3 new members (WAPA, BEPC, and HCPD)
- + 5,000 MW of peak demand
- + 7,600 MW of generating capacity
- 50% increase in SPP's current hydro capacity

0-0-0

SPP's 2013 Energy Consumption and Capacity

Capacity		
	Gas	42.04%
	Coal	34.08%
	Wind	10.01%
	Hydro	4.55%
	Dual Fuel	4.06%
	Nuclear	3.34%
	Fuel Oil	1.83%
	Other	0.08%

Consumption

0-0-0

000000

Coal	61.2%
Gas	21.2%
Wind	10.8%
Nuclear	6.0%
Hydro	0.6%
Diesel Fuel Oil (DFO)	0.3%

13.6% annual reserve margin requirement

EPA's 2030 Goals for States in SPP

*Includes Future States with IS Generation in SPP (N. Dakota, S. Dakota, Montana, and Wyoming)

0-0-0

% Emission Reduction Goals for States in SPP

Total CO₂ Emission Reduction Goals (%)

*Includes Future States with IS Generation in SPP (N. Dakota, S. Dakota, Montana, and

0-0-0

SPP's CPP Impact Assessments

- SPP performed two types of assessments
 - Transmission system impacts
 - Reserve margin impacts
- Both assessments modeled EPA's projected EGU retirements within the SPP region and surrounding areas
- Transmission system impact assessment performed in two parts
 - Part 1 assumed unused capacity from generators currently available in SPP's models would be used to replace retired EGUs
 - Part 2 relied upon both currently available generation and new generation added to replace retired EGUs

0-0-0

EPA Projected 2016-2020 EGU Retirements

(For SPP and Select Neighboring States)

*Extracted from EPA IPM data **THESE RETIREMENTS ARE ASSUMED BY EPA – NOT SPP! 000000

EPA's Projected 2016-2020 EGU Retirements

0-0-0

New Generating Capacity Added in Part 2 of SPP's TSIA

000000

Transmission System Impact Assessment Results

- Part 1 "what happens if CPP compliance begins before generation and transmission infrastructure is added"
 - Extreme reactive deficiencies of approximately 5,200 MVAR across SPP system
 - Will result in significant loss of load and violations of NERC reliability standards
- Part 2 "what happens during CPP compliance without additional transmission infrastructure"
 - Loading on 38 facilities in SPP exceeds equipment ratings
 - Some overloads so severe that cascading outages would occur
 - Would result in violations of NERC reliability standards

0-0-0

Reactive Deficiencies Observed in Part 1 of TSIA

000000

Transmission Overloads Observed in Part 2 of TSIA

13

000000

SPP Reserve Margin Assessment

- Used current load forecasts supplied by SPP members, currently planned generator retirements, currently planned new generator capacity with GIAs, and EPA's assumed retirements
- SPP's minimum required reserve margin is 13.6%
- By 2020, SPP's anticipated reserve margin would be 4.7%, representing a capacity margin deficiency of approximately 4,600 MW
- By 2024, SPP's anticipated reserve margin would be -4.0%, representing a capacity margin deficiency of approximately 10,100 MW
- Out of 14 load serving members assessed, 9 would be deficient by 2020 and 10 by 2024

0-0-0

Impact of EPA's Retirements on Reserve Margin

*Includes current load forecasts, current planned generator additions and retirements, and EPA's projected retirements

15

• SPP

0-0-0

Transmission Build Cycle in SPP

Transmission Planning Process

GI and Transmission Service Process

0-0-0

Conclusions

- Significant new generating capacity not currently planned will be needed to replace EPA's projected retirements
 - EPA projects about 9,000 MW of retirements in the SPP region by
 2020 almost 6,000 MW more than SPP is currently expecting!
- New transmission infrastructure will be needed, both to connect new generation to grid and to deliver energy reliably
 - Up to 8.5 years required to study, plan, and construct transmission in SPP
 - Up to \$2.3 million per mile for 345 kV transmission construction
- More comprehensive reliability analysis is needed before final rules are adopted
- Sufficient time is needed to comply in a reliable fashion

0-0-0

Lanny Nickell Vice President, Engineering 501-614-3232 Inickell@spp.org

0-0-0