

## EPA's Proposed Clean Power Plan: Rate to Mass Conversion

JENNIFER MACEDONIA ARKANSAS STAKEHOLDER MEETING OCTOBER 1, 2014

WWW.BIPARTISANPOLICY.ORG

#### **EPA June Guidance on Rate to Mass Conversion**



\* Unit conversion: 1 ton/2000 lbs



#### Considerations: Rate to Mass Conversion of State Goals

# Adjusted Emission Rate\* Generation =Mass Emissions(state goal in lbs CO2/MWh)(MWh)(lbs CO2 \*1/2000 = short tons CO2)

- State goal is not a simple emission rate and includes adjustments to account for CO<sub>2</sub> mass reductions from EE, RE, some Nuclear
- Future generation is unknown: projected or historic
- New NGCC: states choose whether to include new NGCC under state goals
- Existing programs: states choose whether to include existing programs (e.g., RPS) in 111(d) state plan
  - EPA proposes that existing programs included in plan become federally enforceable
  - EPA proposes that such existing programs are excluded from the conversion scenario





#### **Example Projection Approaches**

IPM Projection Scenarios with load growth from AEO2014

Mass A: impose rate-based state goals

- with BSER level of EE
- economic decision to build RE or new nuclear
- existing nuclear units remain in operation
- existing programs (RPS, RGGI, AB32) turned off

**Mass B**: impose rate-based state goals

- with BSER level of EE and RE
- existing nuclear units remain in operation
- existing programs (RPS, RGGI, AB32) remain in scenario

Mass C: same as Mass B, except existing programs turned off



#### **Example Projection Approaches**



WWW.BIPARTISANPOLICY.ORG

#### Example Projection Approaches (same graph, zoomed in scale)



### **Example Historic Approaches**

#### **Rate-based State Goal \* ? Generation = Mass Goal**

#### Generation =

- ✤ 2012 fossil generation
  - For some states may be overly stringent (e.g., if already have RE in 2012)
  - Account for existing programs and clean generation?
- 2012 fossil generation [adjusted for block 3 and 4 existing] and adjusted for projected load growth





CO<sub>2</sub> Emissions for Existing Affected Units - AR

WWW.BIPARTISANPOLICY.ORG

| Historic or Projected? | Include new NGCC? | Exclude existing programs? |
|------------------------|-------------------|----------------------------|
| Historic               | No                | No                         |
| Historic               | No                | Yes                        |
| Historic w/load growth | Yes               | No                         |
| Historic w/load growth | Yes               | Yes                        |
| Projected              | No                | No                         |
| Projected              | No                | Yes                        |
| Projected              | Yes               | No                         |
| Projected              | Yes               | Yes                        |

### Potential Advantages of Mass-based State Goal

#### Simplifies linking with other states in multi-state approach

 Because mass-based state goals add up to a multi-state mass-based goal, a mass-based approach more readily accommodates on-ramps and offramps to a multi-state approach, with individual states retaining their individual mass-based state goals

#### Better accommodates compliance measures that result in mass emission reductions

- Anything that reduces CO<sub>2</sub> mass emissions at affected electric generating units will count towards compliance
- Simplifies evaluation, measurement and verification of end-use energy efficiency
- Doesn't require approved protocols to account for reductions from innovative measures (e.g., if energy storage allows for more renewable and/or nuclear power to serve peak demand)
- Accounts for coal plant retirements



### Key Take-Aways

- Magnitude of impacts from §111(d) is dependent on EPA & state interpretations & decisions, as well as market factors
- Predicting the least cost pathway to deliver energy services in compliance with §111(d) is challenging due to uncertainty over important variables, such as:
  - the price of natural gas,
  - the availability of demand-side energy efficiency, and
  - the implementation/policy decisions of other states
- This uncertainty increases the value of policy designs (such as market-based trading systems) that inherently create the incentives for implementing least cost compliance and allow affected companies flexibility to adapt to changing circumstances, rather than rely on upfront decisions about the least cost path



### Key Take-Aways (continued)

- Harmonizing policy design across states, particularly in the same power market, and
- Adopting policy designs that allow access to emission reduction opportunities in other states:
- AT CONSISTENCE CONTROL CONTROL

- Reduces costs
- Limits generation shifts and differences in compliance costs across states
- Regional collaboration reduces the cost of implementation
- The availability of demand-side energy efficiency is a key driver in determining the impacts of implementing §111(d)
- Coal is projected to remain key source of generation
  - Energy efficiency may displace coal, but also free up room under the standard to enable continued fossil generation





# Appendix: Reference





#### STATE BASELINE RATES, BUILDING BLOCKS, AND STATE GOALS (CONTINUED ON NEXT SLIDE)

| State         | 2012 Fossil<br>Emission Rate<br>(lb/MWh) | Adjusted Baseline<br>Rate<br>(lb/MWh) | Percent Reduction from<br>Baseline Rate by Building Block |      |      | n<br>Block | Total Reduction<br>from Baseline | 2030 Goal<br>(lb/MWh) |
|---------------|------------------------------------------|---------------------------------------|-----------------------------------------------------------|------|------|------------|----------------------------------|-----------------------|
|               |                                          |                                       |                                                           | 2    | 3    | 4*         |                                  |                       |
| Alabama       | 1,518                                    | 1,444                                 | -4%                                                       | -8%  | -9%  | -6%        | -27%                             | 1,059                 |
| Alaska        | 1,368                                    | 1,351                                 | -1%                                                       | -8%  | -3%  | -14%       | -26%                             | 1,003                 |
| Arizona       | 1,551                                    | 1,453                                 | -4%                                                       | -38% | -2%  | -8%        | -52%                             | 702                   |
| Arkansas      | 1,722                                    | 1,634                                 | -5%                                                       | -30% | -4%  | -5%        | -44%                             | 910                   |
| California    | 900                                      | 698                                   | 0%                                                        | -5%  | -7%  | -11%       | -23%                             | 537                   |
| Colorado      | 1,959                                    | 1,714                                 | -5%                                                       | -17% | -7%  | -7%        | -35%                             | 1,108                 |
| Connecticut   | 844                                      | 765                                   | 0%                                                        | -4%  | -12% | -13%       | -29%                             | 540                   |
| Delaware      | 1,255                                    | 1,234                                 | -2%                                                       | -17% | -8%  | -4%        | -32%                             | 841                   |
| Florida       | 1,238                                    | 1,199                                 | -3%                                                       | -24% | -6%  | -6%        | -38%                             | 740                   |
| Georgia       | 1,598                                    | 1,500                                 | -4%                                                       | -14% | -19% | -6%        | -44%                             | 834                   |
| Hawaii        | 1,783                                    | 1,540                                 | -2%                                                       | 0%   | -2%  | -12%       | -15%                             | 1,306                 |
| Idaho         | 858                                      | 339                                   | 0%                                                        | 0%   | -14% | -19%       | -33%                             | 228                   |
| Illinois      | 2,189                                    | 1,894                                 | -6%                                                       | -9%  | -7%  | -11%       | -33%                             | 1,271                 |
| Indiana       | 1,991                                    | 1,924                                 | -6%                                                       | -2%  | -3%  | -9%        | -20%                             | 1,531                 |
| Iowa          | 2,197                                    | 1,552                                 | -6%                                                       | -10% | 11%  | -11%       | -16%                             | 1,301                 |
| Kansas        | 2,320                                    | 1,940                                 | -6%                                                       | 0%   | -9%  | -8%        | -23%                             | 1,499                 |
| Kentucky      | 2,166                                    | 2,158                                 | -6%                                                       | -2%  | -1%  | -9%        | -18%                             | 1,763                 |
| Louisiana     | 1,533                                    | 1,455                                 | -4%                                                       | -25% | -4%  | -7%        | -39%                             | 883                   |
| Maine         | 873                                      | 437                                   | 0%                                                        | -3%  | 6%   | -17%       | -14%                             | 378                   |
| Maryland      | 2,029                                    | 1,870                                 | -5%                                                       | -3%  | -18% | -11%       | -37%                             | 1,187                 |
| Massachusetts | 1,001                                    | 925                                   | -1%                                                       | -10% | -17% | -9%        | -38%                             | 576                   |
| Michigan      | 1,814                                    | 1,690                                 | -5%                                                       | -12% | -4%  | -11%       | -31%                             | 1,161                 |
| Minnesota     | 2,013                                    | 1,470                                 | -6%                                                       | -27% | 3%   | -11%       | -41%                             | 873                   |
| Mississippi   | 1,140                                    | 1,093                                 | -2%                                                       | -24% | -5%  | -5%        | -37%                             | 692                   |
|               |                                          |                                       |                                                           |      |      |            |                                  |                       |

| State          | 2012 Fossil<br>Emission Rate<br>(lb/MWh) | Adjusted Baseline<br>Rate<br>(lb/MWh) | Percent Reduction from<br>Baseline Rate by Building Block |      |      | n<br>Block | Total Reduction<br>from Baseline | 2030 Goal<br>(lb/MWh) |
|----------------|------------------------------------------|---------------------------------------|-----------------------------------------------------------|------|------|------------|----------------------------------|-----------------------|
|                |                                          |                                       | 1                                                         | 2    | 3    | 4*         |                                  |                       |
| Missouri       | 2,010                                    | 1,963                                 | -6%                                                       | -5%  | -2%  | -9%        | -21%                             | 1,544                 |
| Montana        | 2,439                                    | 2,246                                 | -6%                                                       | 0%   | -8%  | -7%        | -21%                             | 1,771                 |
| Nebraska       | 2,162                                    | 2,009                                 | -6%                                                       | -4%  | -8%  | -9%        | -26%                             | 1,479                 |
| Nevada         | 1,091                                    | 988                                   | -2%                                                       | -17% | -8%  | -7%        | -35%                             | 647                   |
| New Hampshire  | 1,119                                    | 905                                   | -2%                                                       | -20% | -20% | -5%        | -46%                             | 486                   |
| New Jersey     | 1,035                                    | 928                                   | -1%                                                       | -11% | -21% | -9%        | -43%                             | 531                   |
| New Mexico     | 1,798                                    | 1,586                                 | -5%                                                       | -15% | -7%  | -7%        | -34%                             | 1,048                 |
| New York       | 1,096                                    | 978                                   | -1%                                                       | -15% | -18% | -11%       | -44%                             | 549                   |
| North Carolina | 1,772                                    | 1,647                                 | -5%                                                       | -19% | -7%  | -8%        | -40%                             | 992                   |
| North Dakota   | 2,368                                    | 1,994                                 | -6%                                                       | 0%   | -1%  | -4%        | -11%                             | 1,783                 |
| Ohio           | 1,897                                    | 1,850                                 | -5%                                                       | -4%  | -9%  | -9%        | -28%                             | 1,338                 |
| Oklahoma       | 1,562                                    | 1,387                                 | -4%                                                       | -20% | -6%  | -5%        | -35%                             | 895                   |
| Oregon         | 1,081                                    | 717                                   | -2%                                                       | -19% | -16% | -11%       | -48%                             | 372                   |
| Pennsylvania   | 1,627                                    | 1,531                                 | -5%                                                       | -4%  | -15% | -7%        | -31%                             | 1,052                 |
| Rhode Island   | 918                                      | 907                                   | 0%                                                        | 0%   | -4%  | -9%        | -14%                             | 782                   |
| South Carolina | 1,791                                    | 1,587                                 | -5%                                                       | -10% | -30% | -6%        | -51%                             | 772                   |
| South Dakota   | 2,256                                    | 1,135                                 | -6%                                                       | -30% | 15%  | -14%       | -35%                             | 741                   |
| Tennessee      | 2,015                                    | 1,903                                 | -6%                                                       | -5%  | -20% | -8%        | -39%                             | 1,163                 |
| Texas          | 1,420                                    | 1,284                                 | -4%                                                       | -20% | -9%  | -5%        | -38%                             | 791                   |
| Utah           | 1,874                                    | 1,813                                 | -6%                                                       | -11% | -3%  | -7%        | -27%                             | 1,322                 |
| Virginia       | 1,438                                    | 1,302                                 | -3%                                                       | -16% | -12% | -6%        | -38%                             | 810                   |
| Washington     | 1,379                                    | 756                                   | -4%                                                       | -38% | -19% | -11%       | -72%                             | 215                   |
| West Virginia  | 2,056                                    | 2,019                                 | -6%                                                       | 0%   | -10% | -3%        | -20%                             | 1,620                 |
| Wisconsin      | 1,988                                    | 1,827                                 | -5%                                                       | -13% | -6%  | -10%       | -34%                             | 1,203                 |
| Wyoming        | 2,331                                    | 2,115                                 | -6%                                                       | -1%  | -9%  | -3%        | -19%                             | 1,714                 |

#### WWW.BIPARTISANPOLICY.ORG

Reference case (no \* 111(d) policy) is largely based on **EIA Annual Energy** Outlook 2014



2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

U.S. Average Delivered Coal and Gas



**U.S. Generation Mix (Reference)** 

EIA: Energy Information Administration

#### KEY REFERENCE CASE MODELING ASSUMPTIONS

| Assumption                           | Sources                                                                                    | Description                                                                                                                                                                             |
|--------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electric and Peak Demand<br>Growth   | AEO 2014                                                                                   |                                                                                                                                                                                         |
| Capacity Build Costs                 | AEO 2014 & LBNL                                                                            | Costs for all technologies come from AEO 2014, except on-shore<br>wind capacity costs come from Lawrence Berkeley National<br>Laboratory's (LBNL) 2012 Wind Technologies Market Report. |
| Natural Gas Price                    | ICF Integrated Gas<br>Model                                                                | ICF estimate of the resource base serves as input to the model.                                                                                                                         |
| Coal Supply/Prices                   | AEO 2014                                                                                   | ICF coal supply is calibrated to AEO 2014 average minemouth prices.                                                                                                                     |
| Air Pollution Control Costs          | EPA, EIA, AEO 2014,<br>& AEO 2013 Early<br>Release                                         | Retrofit costs for most pollution control technologies come from EPA. DSI costs come from EIA. CCS retrofit costs for coal and gas come from AEO 2014 and AEO 2013 Early Release.       |
| Nuclear Power<br>Licensing/Operation | AEO 2014 & BPC                                                                             | Reference case retirements come from AEO 2014. Plants are able to relicense at 60 years.                                                                                                |
| Firm Builds and<br>Retirements       | Research by ICFI<br>using NEEDS and<br>other data sources,<br>and state (IN, IL)<br>input. |                                                                                                                                                                                         |





# www.BipartisanPolicy.org

Jennifer Macedonia jmacedonia@bipartisanpolicy.org

WWW.BIPARTISANPOLICY.ORG