ADEQ Analysis of Clean Power Plan Building Blocks 2 & 3

Tricia Jackson Ecologist

Best System of Emissions Reductions: Four Building Blocks

Heat Rate Improvements at Coal-Fired EGUs

Increase utilization of existing <u>Natural Gas Combined Cycle</u> capacity by re-dispatching generation from higher-emitting sources including coal- and oil/gas-fired EGUs

Expanding renewable energy sources and maintaining nuclear generation

Historical Generation

- 2012 Unit-Level Data using eGRID Methodology
- Data Sources:
 - Air Markets Program Database (AMPD)
 - EIA 860
 - EIA 923

• Unit-Level Data not available for many generator units

- Data Priority according to Unit-Level Data using eGRID Methodology Technical Support Document:
 - Generator-Specific reported data (AMPD or EIA 923)
 - Calculated by distributing plant-level data to generators according to nameplate capacity based on prime mover classification
- Noted Deviation in EPA's data set from methodology as described in the Technical Support Document (TSD)
 - Treatment of Combined Cycle Steam (CA) and Combustion Turbine (CT) units from NGCC facilities

Historical Generation: Treatment of NGCC Units

- In EPA's data set
 - Units with CA or CT prime movers reclassified as Combined Cycle (CC)
 - EIA 923 prime mover-specific plant-level data aggregated then distributed across both CA and CT units
 - AMPD generator-specific emissions data added then distributed across all units; EIA fuel consumption estimated emissions were not included for CA units
- Effect of NGCC CA and CT treatment of data (Prime mover-specific vs CA+CT aggregated)

	CA + CT Aggregated	Prime-mover specific
NGCC Emissions (tons CO ₂)	7,015,577	7,239,688
NGCC Emissions rate (lb CO ₂ /MWh)	827	864
Other Generation (MWh)	1,310,917	1,108,853
Other Emissions (lb CO_2)	789,080,955	810,895,697
Final Goal (lb CO ₂ /MWh)	910	936

Department of Environmental Quality

ADE

Historical Generation: Treatment of Combined Heat and Power (CHP)

- In the goal computation, useful thermal output (UTO) from CHP facilities factors into emission rates, other generation, and other emissions
- Generation from UTO is not part of the re-dispatch formula
- One affected facility in Arkansas uses CHP, Pine Bluff Energy Center (PBEC)
 - PBEC has 2 NGCC units: CT01 and ST01
 - PBEC Emission Rate: 602 lb/MWh (with UTO) vs 1,132 lb/MWh (without UTO)
 - 2012 utilization rate for PBEC: 71.8%
 - PBEC not expected to ramp up under proposed BSER
- Effects of inclusion of UTO using EPA historical data:

	UTO (proposed)	No UTO
2012 NGCC Emissions Rate (lb CO ₂ /MWh)	827	896
Final Goal (Ib CO ₂ /MWh	910	960

Questions and Concerns with Historical Generation Data

- Why did EPA aggregate CA and CT data without indicating why this treatment of the data was appropriate in the TSD?
- Why is EPA redistributing generator-specific data from its sources among all units at a NGCC facility?
- Should useful thermal output from one facility be factored into a fleet-wide NGCC emission rate used for goal computation?

Department of Environmental Quality

Building Block 2

- Re-dispatch dependent on historical generation and NGCC capacity (existing and under construction)
- Arkansas NGCC Capacity Utilization:

2012	Proposed	Alternative
32%	70%	65%

Building Block 2: Generation Changes

Change in Generation due to Re-Dispatch (GWh)

Department of Environmental Quality

Building Block 2: Effect of Base Year Selection

- Single year: 2012 (proposed) or 2013 (most current)
- Multi-year 2009-2012 (considered, but dismissed by EPA)

Building Block 2: Effect of Base Year Selection

Baseline	Historical Fossil Emission Rate (lb CO ₂ /MWh)	Building Block 2 only (lb CO ₂ /MWh)	*Final Goal (lb CO ₂ /MWh)
2012	1,722	1,145	910
2009 - 2012	1,742	1,037	814
2013	1,793	1,101	871
		San antes 20	

*Calculated final goal assumes base year selection affects only blocks 1 and 2, no changes to building blocks 3 and 4.

- The goal rate decreases when other base years are selected, because redispatch is based on NGCC capacity and total generation.
- The generation mix during the base year only affects the proportion of generation remaining after re-dispatch for coal and oil and gas.

Building Block 2: Timeline

- Because building blocks 1 and 2 account for ~75 % of the reductions required for Arkansas, the interim goal, 968 lb CO₂/MWh, is very close to the final goal of 910 lb CO₂/MWh.
- As proposed, only <u>four years</u> are available to complete necessary transmission and pipeline infrastructure projects needed to ramp up NGCC utilization rate to 70%.

Building Block 2: Constraints to Re-dispatch

- Re-dispatch to NGCC is based on nameplate capacity, but temperature and humidity can affect actual capacity rating.
- Increased generation from NGCC may trigger permit updates and PSD review due to increased emissions of other pollutants.
- Infrastructure:
 - Natural Gas Availability
 - Pipelines
 - Storage
 - Transmission constraints:
 - Congestion points
 - Changes in transmission lines due to shift in generation

Building Block 2: Questions and Concerns

- Can the fleet of existing affected NGCC units ramp up to 70% of nameplate capacity?
- Is it reasonable to use nameplate capacity given the effects of temperature and humidity on operation or would summer capacity have been more appropriate?
- Which base year or multi-year period for historical generation is most appropriate?
- In the goal computation, should EPA phase in the building block 2 to allow for completion of transmission and pipeline infrastructure projects necessary to accommodate re-dispatch?

Building Block 3

Nuclear

- Under construction nuclear and ~5.8% existing nuclear considered "at-risk"
- Presumed to cancel out if included in both goal computation and compliance
- Use of net summer dependable capacity instead of nameplate capacity (why the switch?)

RE approach options

- Proposed RE Approach
- Alternate RE Approach
 - Benchmarking
 - Technical and Economic Potential

Building Block 3: Treatment of Hydropower

- Proposed RE Approach excludes hydropower
- Alternate RE Approach includes hydropower
- EPA seeks comments under both approaches as to whether hydropower should be included or excluded
 - Additional hydropower capacity
 - Expansion of capacity at current hydropower generators
 - Effect on potential new dams on navigation and other environmental parameters

Building Block 3: Proposed RE Approach

- AR in region with TX, NE, KS, OK, and LA
- Regional target: 20%, based on KS RPS
- Regional growth rate: ~8% annually
- <u>Proposed</u>: ramp up begins in 2017 and holds steady for 2029 and beyond
- <u>Alternative</u>: ramp up begins in 2017 and holds steady for 2024 and beyond

Building Block 3: Proposed RE Approach

Figure 4.3. Proposed Approach Regions

Building Block 3: Comparison of RE Technical Potential

RE Technical Potential (NREL)

80,000,000 70,000,000 60,000,000 50,000,000 GWh 40,000,000 30,000,000 20,000,000 10,000,000 AR LA OK KS TX NE AL FL GA KY MS NC SC TN

Building Block 3: Regional Proposed RE Growth Rates

• South Central including AR and LA

- Region target: 20%
- 2012 RE regional generation % of target: 35%
- Regional annual growth rate: 8%
- AR 2029 Existing and Incremental RE: 4,708,823 MWh (7.2%)
- Southeast if AR and LA were included
 - Region target: 10%
 - 2012 RE regional generation % of target : 19%
 - Regional annual growth rate: 13%
 - AR 2029 Existing and Incremental RE: 6,500,568 MWh (10%)

Growth rate applied as BSER is based on <u>regional growth needed</u> to achieve regional target, not state growth rate needed to achieve state target.

Building Block 3: Alternate RE Approaches

- Benchmarking Method
 - Based on deploying RE technical potential according to NREL based on a benchmark rate for each technology
 - Includes the full technical potential for hydropower, not a technical potential multiplied by the benchmark deployment rate
 - RE target generation for each technology was capped at the IPM-projected generation rate at a \$30/MWh discount, except for hydropower
 - AR 2029 Existing and Incremental RE: 6,255,165 MWh (10%)

Department of Environmental Quality

Building Block 3: Alternate RE Approaches

- Technical and Economic Potential Method
 - Compares cost of new renewable energy to avoided energy costs (fuel, operating costs, environmental costs, etc.) of the generation mix displaced by renewable energy
 - Estimates a cost-effective potential for each renewable energy technology
 - EPA has not fleshed out this methodology or calculated cost-effective potentials using this method

Building Block 3: Concerns

- Grouping of states into regions with varying RE technical potentials
- Regional RE target for South Central region based solely on Kansas RPS
- Historical RE progress (or lack thereof) from other states plays a strong role in developing a given state's annual RE growth rate
- Treatment of hydropower (exclude or include)
- Lack of development for Potential Alternative method using Technical and Economic Potential

Resources

- EPA Technical Support Documents
- <u>Air Markets Program Data</u>
- Form EIA-860 detailed data
- Form EIA 923 detailed data
- Form EIA 861 detailed data
- U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

Contact Information

Tricia Jackson Ecologist ADEQ 5301 Northshore Dr. North Little Rock, AR 72118

E-mail: jacksonp@adeq.state.ar.us

