Ozone Maxima (ppm_v) for Forecast Period Starting:

8-I	8-Hour Daily Maxima (ppm _v)									
Day	Date	PARR	NLRAP							
Monday	9/4/2017	0.041	0.043							
Tuesday	9/5/2017	0.023	0.031							
Wednesday	9/6/2017	0.037	0.037							
Thursday	9/7/2017	0.048	0.049							
Friday	9/8/2017	0.047	0.050							
Saturday	9/9/2017	0.044	0.047							
Sunday	9/10/2017	0.046	0.050							

Cells with the following shading represent new seasonal high 8-hour values for the most recent forecast week:

Cell with the following shading represent the monitoirng site that is currently the controlling monitor for attainment:

Four H	Four Highest 8-hour Ozone Concentrations for 2016 Season (ppm _v)							
PA	ARR	NL	RAP					
Conc.	Date	Conc.	Date					
0.069	6/9/2017	0.075	6/9/2017					
0.062	4/24/2017	0.065	5/14/2017					
0.060	5/14/2017	0.063	4/24/2017					
0.058	5/9/2017	0.060	4/8/2017					

Computation of Design Value for LR/NLR/Conway Arkansas MSA									
4th High Va	Maximum 4th	High 8hr Value To							
Year	PARR	NLRAP	Remain Below 2015 Standard (0.070 ppm) for 2017						
2014	0.066	0.065							
2015	0.061	0.065	PARR NLRAP						
2016	0.065	0.063	0.086	0.084					
3-Year Avg. 4th High	0.064	0.064							
2015	0.061	0.065							
2016	0.065	0.063							
2017	0.058	0.060	1						
Average	0.061	0.062							
New Running DV*	0.	062]						

*New Running DV tentative assuming that four high values for 2017 have already occurred.

Note: The 2017 information is "raw data" as automatically collected and reported by the monitoring stations and has not been QC-checked, analyzed, or verified.

Ozone Maxima (ppm_v) for Forecast Period Starting: 9/4/2017

	8-Hour Daily Maxima (ppm _v)											
Day	Date	Marion	Orgill	Frayser	Shelby Farms	Hernando						
Monday	9/4/2017	0.047	0.052	0.017	0.049	0.039						
Tuesday	9/5/2017	0.029	0.028	0.027	0.031	0.024						
Wednesday	9/6/2017	0.038	0.037	0.037	0.041	0.040						
Thursday	9/7/2017	0.044	0.038	0.041	0.045	0.047						
Friday	9/8/2017	0.046	0.040	0.042	0.045	0.043						
Saturday	9/9/2017	0.042	0.042	0.000	0.043	0.041						
Sunday	9/10/2017	0.048	0.045	0.000	0.050	0.046						

Cells with the following shading represent new seasonal high 8-hour values for the most recent forecast week:

Cell with the following shading represent the monitoirng site that is currently the controlling monitor for attainment:

	Four Highest 8-hour Ozone Concentrations for 2016 Season (ppm _v)											
Ma	rion		0	rgill		F	rayser		Shelby	Farms	Her	nando
Conc.	Date		Conc.	Date		Conc.	Date		Conc.	Date	Conc.	Date
0.082	6/9/2017		0.068	5/15/2017		0.090	6/9/2017		0.071	6/15/2017	0.070	7/17/2017
0.067	5/14/2017		0.068	6/9/2017		0.071	5/14/2017		0.071	7/24/2017	0.061	5/9/2017
0.067	8/29/2017		0.065	7/25/2017		0.064	6/15/2017		0.068	6/20/2017	0.061	6/19/2017
0.064	6/6/2017		0.064	5/8/2017		0.064	6/20/2017]	0.068	8/2/2017	0.060	4/9/2017

	Cor	nputation of 1	Design Valı	ies for Memp	his TN-MS-AR	MSA			
4th High Values (ppm _v)									
Frayser	Orgill	Marion	Shelby Farms	Hernando	Maximum 4th High 8hr Value To Remain Below 2015 Standard (0.070 ppm) for 2017				
0.067	0.065	0.067	0.066	0.067	Enougon	Ongill	Marian	Shelby	T
0.065	0.066	0.066	0.066	0.061	Flayser	Orgin	Marion	Farms	Hernando ¹
0.071	0.067	0.070	0.068	0.066	0.076	0.079	0.076	0.078	0.085
0.067	0.066	0.067	0.066	0.064					
0.065	0.066	0.066	0.066	0.061					
0.071	0.067	0.070	0.068	0.066					
0.064	0.064	0.064	0.068	0.060					
0.066	0.065	0.066	0.067	0.062					
		0.067							
	Frayser 0.067 0.065 0.071 0.067 0.065 0.071 0.065 0.071	4th High Values (Frayser Orgill 0.067 0.065 0.065 0.066 0.071 0.067 0.065 0.066 0.065 0.066 0.067 0.066 0.065 0.066 0.065 0.066 0.065 0.066 0.064 0.064	4th High Values (ppm,) Frayser Orgill Marion 0.067 0.065 0.067 0.065 0.066 0.066 0.071 0.067 0.070 0.067 0.066 0.067 0.065 0.066 0.067 0.067 0.066 0.066 0.071 0.066 0.066 0.065 0.066 0.066 0.071 0.067 0.070 0.064 0.064 0.064 0.066 0.065 0.066	4th High Values (ppm _v) Frayser Orgill Marion Shelby Farms 0.067 0.065 0.067 0.066 0.065 0.066 0.066 0.066 0.071 0.067 0.066 0.068 0.067 0.066 0.067 0.068 0.067 0.066 0.067 0.066 0.065 0.066 0.066 0.066 0.061 0.067 0.068 0.068 0.064 0.064 0.064 0.068 0.066 0.065 0.066 0.067	4th High Values (ppm,) Frayser Orgill Marion Shelby Farms Hernando 0.067 0.065 0.067 0.066 0.067 0.065 0.066 0.066 0.066 0.067 0.067 0.066 0.066 0.066 0.067 0.071 0.067 0.070 0.068 0.066 0.067 0.066 0.067 0.066 0.064 0.065 0.066 0.066 0.066 0.061 0.071 0.067 0.070 0.068 0.066 0.061 0.067 0.066 0.066 0.061 0.071 0.067 0.070 0.068 0.066 0.064 0.064 0.068 0.060 0.066 0.066 0.065 0.066 0.067 0.062	4th High Values (ppm,) Frayser Orgill Marion Shelby Farms Hernando 0.067 0.065 0.067 0.066 0.067 0.065 0.066 0.066 0.066 0.067 0.067 0.066 0.066 0.066 0.061 0.071 0.067 0.070 0.068 0.066 0.076 0.067 0.066 0.067 0.066 0.064 0.076 0.065 0.066 0.066 0.066 0.061 0.076 0.065 0.066 0.066 0.066 0.061 0.076 0.064 0.067 0.068 0.066 0.066 0.066 0.066 0.064 0.068 0.060 0.062 0.062	Frayser Orgill Marion Shelby Farms Hernando Maximum 4th Below 2015 Sta 0.067 0.065 0.067 0.066 0.067 Below 2015 Sta 0.065 0.066 0.066 0.066 0.067 Frayser Orgill 0.067 0.066 0.066 0.066 0.061 Frayser Orgill 0.071 0.067 0.066 0.066 0.064 0.079 0.079 0.065 0.066 0.066 0.066 0.061 0.079 0.079 0.065 0.066 0.066 0.068 0.061 0.079 0.079 0.064 0.064 0.068 0.066 0.061 0.079 0.062	4th High Values (ppm _v) Shelby Farms Hernando Maximum 4th High 8hr Value Below 2015 Standard (0.070 pp 0.067 0.065 0.067 0.066 0.067 0.066 0.067 0.065 0.066 0.066 0.066 0.061 Frayser Orgill Marion 0.067 0.066 0.066 0.066 0.067 Marion Marion 0.071 0.067 0.066 0.066 0.066 0.076 Marion 0.067 0.066 0.066 0.066 0.064 0.079 0.076 0.065 0.066 0.066 0.066 0.061 Marion Marion 0.065 0.066 0.066 0.066 0.064 0.079 0.076 0.071 0.067 0.068 0.066 0.066 0.066 0.066 0.064 0.064 0.068 0.060 0.062 V V V V V V V V V V V V V <t< td=""><td>4th High Values (ppm,) Maximum 4th High 8hr Value To Remain Below 2015 Standard (0.070 ppm) for 2017 Frayser Orgill Marion Shelby Farms Hernando Maximum 4th High 8hr Value To Remain Below 2015 Standard (0.070 ppm) for 2017 0.067 0.065 0.067 0.066 0.067 Below 2015 Standard (0.070 ppm) for 2017 0.065 0.066 0.066 0.066 0.067 Below 2015 Standard (0.070 ppm) for 2017 0.065 0.066 0.066 0.066 0.067 Below 2015 Standard (0.070 ppm) for 2017 0.067 0.066 0.066 0.066 0.061 Frayser Orgill Marion Shelby Farms 0.071 0.067 0.066 0.066 0.064 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.071 0.067 0.068 0.066 0.061 0.079 0.076 0.078 0.078 0.071 0.067 0.068 0.066 0.066 0.061 0.064 0.064 0.068 0.060</td></t<>	4th High Values (ppm,) Maximum 4th High 8hr Value To Remain Below 2015 Standard (0.070 ppm) for 2017 Frayser Orgill Marion Shelby Farms Hernando Maximum 4th High 8hr Value To Remain Below 2015 Standard (0.070 ppm) for 2017 0.067 0.065 0.067 0.066 0.067 Below 2015 Standard (0.070 ppm) for 2017 0.065 0.066 0.066 0.066 0.067 Below 2015 Standard (0.070 ppm) for 2017 0.065 0.066 0.066 0.066 0.067 Below 2015 Standard (0.070 ppm) for 2017 0.067 0.066 0.066 0.066 0.061 Frayser Orgill Marion Shelby Farms 0.071 0.067 0.066 0.066 0.064 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.071 0.067 0.068 0.066 0.061 0.079 0.076 0.078 0.078 0.071 0.067 0.068 0.066 0.066 0.061 0.064 0.064 0.068 0.060

*New Running DV tentative assuming that four high values for 2017 have already occurred. **Note:** The 2017 information is "raw data" as automatically collected and reported by the monitoring stations and has not been QC-checked, analyzed, or verified.

Ozone Maxima (ppm_v) for Forecast Period Starting:

8	8-Hour Daily Maxima (ppm _v)									
Day	Date	Springdale	Fayetteville							
Monday	9/4/2017	0.051	0.048							
Tuesday	9/5/2017	0.034	0.036							
Wednesday	9/6/2017	0.037	0.041							
Thursday	9/7/2017	0.046	0.044							
Friday	9/8/2017	0.047	0.046							
Saturday	9/9/2017	0.047	0.050							
Sunday	9/10/2017	0.050	0.052							

Cells with the following shading represent new seasonal high 8-hour values for the most recent forecast week:

9/4/2017

Cells with the following shading represent the monitoirng site that is currently the controlling monitor for attainment:

Fo	ur Highest 8-l	Concentration	ns for 2016 Sea
Spri	ngdale	Fay	etteville
Conc.	Date	Conc.	Date
0.063	5/8/2017	0.059	2/23/2017
0.062	5/6/2017	0.059	7/7/2017
0.061	4/8/2017	0.058	4/8/2017
0.061	5/7/2017	0.058	5/8/2017

Computation of Desig	Computation of Design Value for Fayetteville/Springdale/Rogers Arkansas MSA									
4th High V	Values (ppm _v)									
Year	Springdale	Fayetteville	Maximum 4th High 8hr Value To Ren Below 2015 Standard (0.070 ppm) for 2							
2014	0.061	0.062	below 2013 Standard (0.070 ppm) for 2							
2015	0.064	0.061	Springdale	Fayetteville						
2016	0.056	0.058	0.092	0.093						
3-year Avg. 4th High	0.060	0.060								
2015	0.064	0.061								
2016	0.056	0.058								
2017	0.061	0.058								
Average	0.060	0.059								
New Running DV*	0.0)60								

*New Running DV tentative assuming that four high values for 2017 have already occurred.

Note: The 2017 information is "raw data" as automatically collected and reported by the monitoring stations and has not been QC-checked, analyzed, or verified.

Ozone Maxima (ppm_v) for Forecast Period Starting:

	8-Hour Daily Maxima (ppm _v)										
Day	Date	Date Caddo Valley I		Eagle Mtn.							
Monday	9/4/2017	0.043	0.048	0.052							
Tuesday	9/5/2017	0.028	0.037	0.045							
Wednesday	9/6/2017	0.038	0.035	0.042							
Thursday	9/7/2017	0.040	0.044	0.042							
Friday	9/8/2017	0.043	0.045	0.045							
Saturday	9/9/2017	0.000	0.048	0.046							
Sunday	9/10/2017	0.000	0.049	0.051							

Cells with the following shading represent new seasonal high 8-hour values for the current forecast period:

Four Highest 8-hour Ozone Concentrations for 2016 Season (ppm _v)								
Cadd	o Valley		Ι	Deer		Eag	le Mtn.	
Conc.	Date		Conc.	Date		Conc.	Date	
0.062	4/8/2017		0.058	4/8/2017		0.062	5/8/20	
0.058	4/24/2017		0.057	4/24/2017		0.061	4/7/20	
0.058	6/20/2017		0.057	5/6/2017		0.060	4/4/20	
0.057	2/23/2017		0.057	5/9/2017		0.060	5/25/20	

	<u> </u>	0	Value for Nor	n-MSA Monitor	Ś	
4th H						
Year	Caddo Valley	Deer	Eagle Mtn.	Maximum 4th High 8hr Value To Remain Below 2015 Standard (0.070 ppm) for 2017		
2014	0.059	0.062	0.063	Caddo Valley	Deer	Eagle Mtn
2015	0.060	0.061	0.065	Caudo valley	Deer	Lagie Mith
2016	0.055	0.056	0.060	0.097	0.095	0.087
3-year Avg. 4th High	0.058	0.059	0.062			
2015	0.060	0.061	0.065			
2016	0.055	0.056	0.060			
2017	0.057	0.057	0.060			
Average	0.057	0.058	0.061			

Note: The 2017 information is "raw data" as automatically collected and reported by the monitoring stations and has not been QC-checked, analyzed, or verified.

9/4/2017