

Entergy Services LLC on behalf of Entergy Arkansas LLC

Response to January 8, 2020 Regional Haze Four-Factor Analysis Information Collection Request

Prepared By:

Jeremy Jewell - Principal Consultant

TRINITY CONSULTANTS

5801 E. 41st St. Suite 450 Tulsa, OK 74135 (918) 622-7111

April 7, 2020

Project 203702.0049

EHS solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	1-1
2. SO ₂ EMISSIONS REDUCTIONS OPTIONS	2-1
2.1. Technical Feasibility	2-1
2.2. Control Effectiveness	2-1
2.2.1. WFGD	2-2
2.2.2. DFGD or SDA	2-2
2.2.3. DSI and Enhanced DSI	2-2
2.3. Emissions Reductions	2-3
2.4. Time Necessary for Implementation	2-4
2.5. Remaining Useful Life	2-4
2.6. Energy and Non-air Quality Environmental Impacts	2-4
2.6.1. WFGD	2-4
2.6.2. DFGD	2-5
2.6.3. DSI and Enhanced DSI	2-5
2.7. Costs	2-6
2.7.1. WFGD	2-7
2.7.2. DFGD	2-7
2.7.3. DSI and Enhanced DSI	2-7
3. NO _X EMISSIONS REDUCTIONS OPTIONS	3-1
3.1. Technical Feasibility	3-1
3.2. Control Effectiveness	3-1
3.3. Emissions Reductions	3-1
3.4. Time Necessary for Implementation	3-2
3.5. Remaining Useful Life	
3.6. Energy and Non-air Quality Environmental Impacts	3-3
3.7. Costs	3-3
4. UPDATED IMPROVE MONITORING DATA	4-1
APPENDIX A: 1PP SO ₂ CONTROLS STUDIES	A-1
APPENDIX B: 1PP NO _X CONTROLS STUDIES	B-1

LIST OF FIGURES

Figure 4-1. CACR Monitored Observations Compared to Uniform Rate of Progress	4-2
Figure 4-2. UPBU Monitored Observations Compared to Uniform Rate of Progress	4-3

LIST OF TABLES

Table 2-1. Control Effectiveness of SO_2 Emissions Reduction Options	2-2
Table 2-2. Baseline Emission Rates (Maximum Month Basis) and Controlled Emission Rates of SO_2 Emission Reduction Options	s 2-3
$\label{thm:controlled} Table\ 2-3.\ Baseline\ Emission\ Rates\ (Average\ Month\ Basis)\ and\ Controlled\ Emission\ Rates\ of\ SO_2\ Emissions\ Reduction\ Options$	2-4
Table 2-4. Estimated Costs (\$2018) of SO ₂ Emissions Reduction Options	2-6
Table 3-1. Control Effectiveness of NO_X Emissions Reduction Options	3-1
Table 3-2. Baseline Emission Rates (Maximum Month Basis) and Controlled Emission Rates of NOX Emission Reduction Options	ns 3-2
$Table \ 3-3. \ Baseline \ Emission \ Rates \ (Average \ Month \ Basis) \ and \ Controlled \ Emission \ Rates \ of \ NO_X \ Emissions \ Reduction \ Options$	3-2
Table 3-4. Estimated Costs ($$2018$) of NO $_X$ Emissions Reduction Options	3-4
Table 4-1. Summary of Annual-Average Haze Index Values from 2002 through 2018	4-1

In order of reference in this report:

Entergy's October 2013 Revised BART Five Factor Analysis for White Bluff Steam Electric Station ("Entergy's October 2013 White Bluff BART report")

Entergy's August 18, 2017 *Updated BART Five-Factor Analysis for SO*₂ *for Unit 1 and 2* ("Entergy's August 2017 White Bluff BART report")

Sargent & Lundy's (S&L's) August 3, 2017 White Bluff Dry FGD Cost Estimate and Technical Basis, SL-012831 ("S&L's August 2017 DFGD White Bluff Report")

S&L's January 31, 2018 *Independence Dry FGD Cost Estimate and Technical Basis*, SL-014308 ("S&L's January 2018 DFGD Independence Report")

S&L's August 3, 2017 White Bluff DSI Cost Estimate Basis Document, SL-014000, and White Bluff Enhanced DSI Cost Estimate Basis Document, SL-014001 (together: "S&L's August 2017 DSI White Bluff Reports")

Entergy's February 2, 2018 Supplemental Information – Analysis of Reasonable Progress – Arkansas Regional Haze Program First Planning Period report ("Entergy's February 2018 Independence report")

Entergy's September 27, 2017 Analysis of Reasonable Progress Arkansas Regional Haze Program First Planning Period ("Entergy's September 2017 RP Report")

S&L's May 16, 2013 NO_x Control Technology Cost and Performance Study, Entergy Services, Inc. – White Bluff and Lake Catherine, SL-011439 ("S&L's May 2013 NO_x Study")

Entergy's August 7, 2015 Comments on the Proposed Regional Haze and Interstate Visibility Transport Federal Implementation Plan for Arkansas ("Entergy's August 2015 FIP comments")

S&L's July 14, 2015 *Review of EPA's Cost Analysis for Arkansas Regional Haze Proposed Federal Implementation Plan*, SL-012913 ("S&L's July 2015 FIP comments")

This report was prepared on behalf of Entergy Services LLC and Entergy Arkansas LLC (together: "Entergy") in response to the January 8, 2020 Regional Haze Four-Factor Analysis Information Collection Request ("the ICR") from the Arkansas Department of Energy and Environment, Division of Environmental Quality, Office of Air Quality ("the DEQ").

Per the ICR, this report provides information related to the following sulfur dioxide (SO₂) and nitrogen oxides (NO_X) emissions reduction options for Unit 1 and Unit 2 at Entergy's Independence Steam Electric Station (Independence):

SO₂ Emissions Reduction Options:

- Fuel switching from subbituminous coal to natural gas
- Lime Spray Dryer System
- Limestone Forced Oxidation System
- **In-Duct Dry Sorbent Injection**

NO_X Emissions Reduction Options:

- Selective Catalytic Reduction
- Selective Non-Catalytic Reduction

The following specific technical and economic information, where applicable, is provided in this report for each emissions reduction option considered, in accordance with instructions in the ICR:

- Technical feasibility
- Control effectiveness
- **Emissions reductions**
- Time necessary for implementation¹
- Remaining useful life¹
- Energy and non-air quality environmental impacts¹
- Costs of implementation¹

Most of the information requested by the ICR is available in the record prepared by the DEQ for the regional haze rule (RHR) first planning period (1PP) state implementation plan (SIP). The DEQ prepared the original 1PP SIP in 2008,² it was partially approved and partially disapproved in 2012,³ and revisions were submitted in three phases in 2017 ("Phase I of the 1PP SIP revisions"), 2018 ("Phase II of the 1PP SIP revisions"), and 2019 ("Phase III of the 1PP SIP revisions").

Entergy Arkansas | Jan. 8, 2020 ICR Response

Trinity Consultants

¹ These are the four factors that must be included in evaluating emission reduction measures necessary to make reasonable progress determinations. See 40 CFR § 308(f)(2)(i).

² State of Arkansas Regional Haze Rule State Implementation Plan, available online as of February 11, 2020 at http://www.adeq.state.ar.us/air/planning/sip/pdfs/regional-haze/arkansas-regional-haze-sip.pdf, appendices available at http://www.adeq.state.ar.us/air/planning/sip/regional-haze.aspx.

³ 77 Fed. Reg. 14604 (Mar. 12, 2012).

Phase I of the 1PP SIP revisions addressed NO_X emissions from several electric generating units (EGUs), including Independence.⁴ It was submitted to the U.S. Environmental Protection Agency (EPA) on October 24, 2017 and approved by the EPA on February 12, 2018.⁵ Concurrently, the EPA also withdrew its federal implementation plan (FIP) provisions for NO_X from EGUs in Arkansas.⁶

Phase II of the 1PP SIP revisions primarily addressed SO₂ emissions from several EGUs, including Independence.⁷ It was submitted to the EPA on August 8, 2018 and approved by the EPA on September 27, 2019.⁸ Concurrently, the EPA also withdrew its corresponding FIP provisions for EGUs in Arkansas.⁹

To the extent possible, information developed for the 1PP analyses – a "reasonable progress" analysis for Independence and a Best Available Retrofit Technology (BART) analysis for White Bluff Steam Electric Station (White Bluff) 10 – is presented in this report with updates regarding baseline emissions (per the ICR) and costs escalation. Section 2 of this report presents information for the SO_2 emissions reduction options, and Section 3 presents information for the NO_X emissions reduction options.

In addition to the information requested by the ICR, Section 4 of this report provides a summary of the most recent Interagency Monitoring of Protected Visual Environments (IMPROVE) network monitoring data for the two Class I areas in Arkansas: Caney Creek Wilderness Area (CACR) and Upper Buffalo Wilderness Area (UPBU). This information is an update to the report that Entergy originally submitted on August 7, 2015 and updated previously on November 15, 2016, September 27, 2017, and February 2, 2018. The previous reports should be reviewed for explanations of how the raw data were summarized, how the deciview metric is calculated, and other background information.

⁴ Revisions to the Arkansas State Implementation Plan – Regional Haze SIP Revision for 2008-2018 Planning Period. Available online as of April 6, 2020 at http://www.adeq.state.ar.us/air/planning/sip/pdfs/regional-haze/final-package.pdf.

⁵ 83 Fed. Reg. 5927 (Feb. 12, 2018).

⁶ 83 Fed. Reg. 5915 (Feb. 12, 2018).

⁷ Phase II of the 1PP SIP revisions is available online at http://www.adeq.state.ar.us/air/planning/sip/regional-haze.aspx as of April 6, 2020 under the heading "2018 Arkansas Phase II Regional Haze SIP Revision."

^{8 84} Fed. Reg. 51033 (Sept. 27, 2019).

⁹⁸⁴ Fed. Reg. 51056 (Sept. 27, 2019).

¹⁰ The units at White Bluff are similar in size, design, and operation to the units at Independence, and information related to controls for the White Bluff units is reasonably representative of the Independence units.

The ICR specifically listed the following four SO_2 emissions reduction options for consideration: (a) Fuel switching from subbituminous coal to natural gas, (b) Lime Spray Dryer System, (c) Limestone Forced Oxidation System, and (d) In-Duct Dry Sorbent Injection.

The fuel switch (a.k.a. "repowering") option must be considered independently of the other options, which involve installing post-combustion air pollution controls on the existing units. Switching the two (2) 880 megawatt (MW) (nominal) units from coal to natural gas would be a significant and fundamental change to the plant. Entergy is not aware of any previous coal-to-gas repowering projects for units of similar size to the Independence units. Switching the units to burn natural gas would involve significant modifications to the units. which were originally designed to only burn coal for electrical generation. Such a conversion would result in gas units which are less efficient than units that were originally designed to burn gas. Such a conversion would impact the heat rate of the units and could reduce their maximum generating capacity. Either of these changes would impact the manner and frequency with which the units are dispatched by the Midcontinent Independent System Operator (MISO). This recategorization would fundamentally change the Independence facility, and all co-owners would need to be involved in such a decision. Moreover, a switch to natural gas at Independence could not be achieved without building a new gas supply pipeline. A sufficiently sized natural gas pipeline currently does not serve the site. The nearest pipelines of sufficient capacity are more than five (5) miles away and are located on the other side of the White River. Constructing a new pipeline to bring adequate natural gas capacity to the Independence site could negatively impact streams and wetlands along the pipeline route, and would require significant environmental assessment to determine an appropriate route and mitigation measures. The change in source design, and the other considerations (e.g., the environmental impacts of building a pipeline) taken together render the fuel switch option profoundly infeasible. Accordingly, it is not considered further in this report. Should ADEO believe that further evaluation of a fuel-switching option is appropriate, it would be necessary to conduct a detailed site-specific engineering study in order to determine the necessary modifications, costs, and the expected changes to unit operating characteristics following the switch.

Lime spray dryer systems (SDA) are generically referred to as dry flue gas desulfurization (DFGD) and limestone forced oxidation systems are generically referred to as wet flue gas desulfurization (WFGD). Both FGD options include in their design the installation of a fabric filter. An in-duct dry sorbent injection system (DSI) can be installed with or without a fabric filter; thus, the DSI option is split into two options: (1) DSI without a fabric filter (for this option, rebuilds of the existing electrostatic precipitators [ESPs] are considered), referred to as DSI, and (2) DSI with a fabric filter, referred to as Enhanced DSI.

2.1. Technical Feasibility

WFGD, DFGD, DSI, and Enhanced DSI are technically feasible for Unit 1 and Unit 2.

2.2. Control Effectiveness

Table 2-1 summarizes the control emission rates for the technically feasible SO_2 emissions reduction options for Unit 1 and Unit 2.

Table 2-1. Control Effectiveness of SO₂ Emissions Reduction Options

SO ₂ Reduction Option	Controlled Emission Rate (lb/MMBtu)
WFGD	0.04
DFGD	0.06
Enhanced DSI	0.15
DSI	0.35

2.2.1. WFGD

The controlled emission rate of 0.04 pounds per million British thermal units (lb/MMBtu) for WFGD is based on information presented in Entergy's October 2013 *Revised BART Five Factor Analysis for White Bluff Steam Electric Station* ("Entergy's October 2013 White Bluff BART report"), at 5-3 – 5-4, included in Appendix D of Phase II of the 1PP SIP revisions. As discussed in Entergy's October 2013 White Bluff BART report, the 0.04-lb/MMBtu emission rate for WFGD does not represent a guarantee but is merely an estimate. If the DEQ anticipates requiring WFGD at Independence, Entergy would need an opportunity to conduct a site-specific study to determine the emission rate that could be achieved at Independence.

2.2.2. DFGD or SDA

The controlled emission rate for DFGD is based on information presented in the following 1PP documents:

- ➤ Entergy's August 18, 2017 *Updated BART Five-Factor Analysis for SO₂ for Unit 1 and 2* ("Entergy's August 2017 White Bluff BART report"), at 4-1 4-3, included in Appendix D of Phase II of the 1PP SIP revisions;
- > Sargent & Lundy's (S&L's) August 3, 2017 White Bluff Dry FGD Cost Estimate and Technical Basis, SL-012831 ("S&L's August 2017 DFGD White Bluff Report"), which is included in Appendix A of this report; 11 and
- > S&L's January 31, 2018 *Independence Dry FGD Cost Estimate and Technical Basis*, SL-014308 ("S&L's January 2018 DFGD Independence Report"), which is included in Appendix A of this report.¹²

2.2.3. DSI and Enhanced DSI

The controlled emission rates for DSI and Enhanced DSI are based on information presented in the following 1PP documents:

Entergy's August 2017 White Bluff BART report, at 4-1 – 4-3;

¹¹ S&L's August 2017 DFGD White Bluff Report was included in Appendix A in Entergy's August 2017 White Bluff BART report.

¹² S&L's January 2018 DFGD Independence Report was included as Appendix B of Entergy's February 2, 2018 Supplemental Information – Analysis of Reasonable Progress – Arkansas Regional Haze Program First Planning Period report ("Entergy's February 2018 Independence report"), and is included in Appendix F of Phase II of the 1PP SIP revisions.

> S&L's August 3, 2017 White Bluff DSI Cost Estimate Basis Document, SL-014000, and White Bluff Enhanced DSI Cost Estimate Basis Document, SL-014001 (together: "S&L's August 2017 DSI White Bluff Reports"), which are included in Appendix A of this report.¹³

As discussed in Entergy's August 2017 White Bluff BART report, DSI and Enhanced DSI have not been demonstrated on units the size of those at Independence. If the DEQ anticipates requiring DSI or Enhanced DSI at Independence, Entergy would need an opportunity to conduct a site-specific study to determine the emission rates that could be achieved at Independence with those technologies.

2.3. Emissions Reductions

Table 2-2 summarizes the baseline and controlled emission rates and emission reduction potentials, all in tons per year (tpy), for the technically feasible SO_2 reduction options for Unit 1 and Unit 2. Per the ICR, the baseline actual emission rate for each unit is taken as the maximum monthly value (annualized, i.e., multiplied by 12) from the EPA's Air Markets Program Data (AMPD)¹⁴ from November 1, 2018 to December 31, 2019 for Unit 1 and from January 1, 2018 to December 31, 2019 for Unit 2 (i.e., the baseline periods). The controlled emission rate for each unit is based on the lb/MMBtu emission rates presented in Table 2-1 and each unit's baseline actual heat input in MMBtu/yr, which is determined in the same manner as the baseline emission rates. The emission reductions are the difference between the baseline and controlled emission rates.

Table 2-2. Baseline Emission Rates (Maximum Month Basis) and Controlled Emission Rates of SO₂ Emissions Reduction Options

Emissions Unit	SO ₂ Reduction Option	Baseline Emission Rate (tpy)	Controlled Emission Rate (tpy)	Emissions Reduction (tpy)
Unit 1	WFGD		1,341	14,126
	DFGD	15 467	2,011	13,455
	Enhanced DSI	15,467	4,693	10,773
	DSI		11,398	4,069
	WFGD		1,451	16,744
Unit 2	DFGD	10 105	2,177	16,018
	Enhanced DSI	18,195	5,079	13,116
	DSI		12,334	5,861

Table 2-3 provides the same information but based on the average, rather than the maximum, monthly values (annualized, i.e., multiplied by 12) from the baseline periods. Average monthly values are more commonly used for control cost analyses because maximum monthly values result in much higher annual baseline emission rates than have actually occurred in the recent past (or than are expected to occur in the future). Control cost calculations presented later in this report are completed using both the maximum-monthly and averagemonthly baseline emission rates.

¹³ S&L's August 2017 DSI White Bluff Reports were included in Appendix A in Entergy's August 2017 White Bluff BART report.

¹⁴ https://ampd.epa.gov/ampd, queried on February 10, 2020.

Table 2-3. Baseline Emission Rates (Average Month Basis) and Controlled Emission Rates of SO₂ Emissions Reduction Options

Emissions Unit	SO ₂ Reduction Option	Baseline Emission Rate (tpy)	Controlled Emission Rate (tpy)	Emissions Reduction (tpy)
II '4 4	WFGD		841	9,104
	DFGD	0.045	1,261	8,684
Unit 1	Enhanced DSI	9,945	3,153	6,792
	DSI		7,358	2,587
	WFGD		887	9,786
Unit 2	DFGD	10.672	1,330	9,342
	Enhanced DSI	10,672	3,325	7,347
	DSI		7,759	2,914

2.4. Time Necessary for Implementation

A minimum of five (5) years, counting from the effective date of an approved determination, would be needed for implementing either the WFGD or DFGD options. This is consistent with the EPA's determination in the now-withdrawn FIP.¹⁵ Three (3) years would be needed for implementing either DSI or Enhanced DSI.

2.5. Remaining Useful Life

Assuming an EPA review and approval period of one (1) year following the second planning period (2PP) SIP proposal deadline of July 31, 2021, the earliest effective date for any control requirements would be July 31, 2022. Thus, based on the times necessary for implementing the various controls, WFGD or DFGD could be implemented by July 31, 2027, and DSI or Enhanced DSI could be implemented by July 31, 2025.

Entergy plans to cease coal-fired operations of Unit 1 and Unit 2 at Independence by December 31, 2030, as the DEQ noted in Phase II of the 1PP SIP revisions. Entergy has entered into a proposed settlement agreement with Sierra Club and National Parks Conservation Association that is currently pending before the U.S. District Court for the Eastern District of Arkansas (*Sierra Club, et al. v. Entergy Arkansas, LLC, et al.*, No 4:18-cv-00854 -KGB (E.D. Ark.)). If the court approves the settlement, the cessation of coal-fired operation at the Independence units will become an enforceable commitment. Therefore, for costing purposes, the remaining useful life (RUL) of the Independence units is 3.42 years for WFGD and DFGD and 5.42 years for DSI and Enhanced DSI.

2.6. Energy and Non-air Quality Environmental Impacts

2.6.1. WFGD

As addressed in Entergy's October 2013 White Bluff BART report, at 5-7, WFGD has the following non-air quality environmental impacts:

¹⁵ 81 Fed. Reg. 66336 (Sept. 27, 2016).

...wet scrubbing is expected to achieve approximately the same level of visibility improvement as the proposed dry scrubbing technology. However, the negative non-air quality environmental impacts are greater with wet scrubbing systems. Such impacts include a potential increase in particulate and sulfuric acid (H_2SO_4) mist emissions. In addition, wet scrubbers require increased water use and generate large volumes of wastewater and solid waste/sludge that must be managed and/or treated. This places additional burdens on the wastewater treatment and solid waste management capabilities. Moreover, if wet scrubbing produces calcium sulfite sludge, the sludge will be water-laden, and it must be stabilized for landfilling. Wet scrubbing systems require increased power requirements and increased reagent usage over dry scrubbers. Thus, from an overall environmental perspective, dry scrubbing is superior to wet scrubbing.

2.6.2. DFGD

Per Phase II of the 1PP SIP revisions, DEQ recognized the following non-air quality environmental impacts for DFGD:

DFGD utilizes lime slurry to remove SO_2 from flue gas. In the process, particulate matter is generated that must be controlled through use of a baghouse or electrostatic precipitator. Once collected, the waste material is disposed of through landfilling. Costs associated with control of particulate matter and additional power requirements were factored into the cost estimates calculated by Entergy and EPA. Entergy has not indicated unusual circumstances that would create greater problems than experienced elsewhere that Dry FGD was utilized as BART. 16

Additionally, per Entergy's September 27, 2017 *Analysis of Reasonable Progress Arkansas Regional Haze Program First Planning Period* ("Entergy's September 2017 RP Report"), at 6-2, which is included in Appendix F of Phase II of the 1PP SIP revisions:

Non-air quality environmental impacts of SDA primarily relate to available water resources and waste byproducts. SDA systems consume a significant quantity of water, and the required water must be relatively clean. In addition, SDA systems also generate a large waste byproduct stream, containing calcium salts, which must be landfilled. If not fixated during the disposal process, the calcium salts are soluble and may dissolve and appear in the landfill leachate.

2.6.3. DSI and Enhanced DSI

As addressed in Entergy's August 2017 White Bluff BART report, at 4-6, DSI and Enhanced DSI have the following energy and non-air quality environmental impacts:

...(a) the need for substantial storage and transportation – both delivery via rail and conveyance on site – of Trona, (b) the forced abandonment of the beneficial re-use of fly ash, and (c) potential negative impacts on the PM control device.

Additionally, per S&L's August 2017 DSI White Bluff Reports:

The DSI process produces a dry byproduct which can be landfilled. The waste products will contain sodium sulfate and sulfite (NaSO₃/NaSO₄) along with the unused sorbent and the

¹⁶ This discussion can be found in "rh-phase-ii-sip-narrative-final.pdf" at 52.

normal fly ash. These wastes will be collected in the ESP and can be transported with conventional pneumatic fly ash handling equipment. The waste from sodium-based sorbents will have relatively high concentrations of soluble salts, which may affect the byproduct handling. With the addition of dry sorbent byproducts fly ash cannot be sold for reuse.

...The sodium byproducts (salts) that are produced when Trona reacts with SO_2 and other acid gases, along with the unreacted sorbent are soluble in water. The resulting waste collected in the particulate collection device will need to be disposed of in a landfill that is lined and has a leachate collection system. With the addition of DSI, White Bluff will no longer be able to sell their fly ash for beneficial re-use due to the solubility of the sodium salts which would be present in the waste

2.7. Costs

Table 2-4 summarizes the estimated costs, including total and annualized capital costs, ¹⁷ annual operations and maintenance (0&M) costs, and cost effectiveness based on the emission reduction values from Table 2-2 (Maximum Month Basis) and Table 2-3 (Average Month Basis) for the technically feasible SO₂ reduction options.

Table 2-4. Estimated Costs (\$2018) of SO₂ Emissions Reduction Options

			Annualized		Total	Cost Effectiveness	Cost Effectiveness
	SO_2	Capital	Capital	Annual	Annual	(\$/ton)	(\$/ton)
Emissions	Reduction	Costs	Costs	O&M Costs	Costs	Maximum	Average
Unit	Option	(\$MM)	(\$MM/year)	(\$MM/year)	(\$/year)	Month Basis	Month Basis
	WFGD	401.82	136.18	36.55	172.73	12,228	18,972
	DFGD	377.69	128.00	9.36	137.36	10,209	15,818
Unit 1	Enhanced DSI	335.58	76.51	29.16	105.67	10,123	15,558
	DSI	175.00	39.90	16.60	56.50	15,135	21,837
	WFGD	401.82	136.18	36.55	172.73	10,316	17,651
	DFGD	377.69	128.00	9.36	137.36	8,575	14,703
Unit 2	Enhanced DSI	335.58	76.51	29.16	105.67	8,285	14,382
	DSI	175.00	39.90	16.60	56.50	10,277	19,392

¹⁷ Capital cost values presented in this report omit the costs known as Allowance for Funds Used During Construction (AFUDC) and Owner's Costs as these costs, despite being significant for long-term projects such as considered in this report, are excluded by EPA's preferred "overnight" costing methodology. This issue is described in detail in multiple previous submittals:

⁽¹⁾ the Q&A document provided with Entergy's October 2013 White Bluff BART report in response to EPA's August 21, 2013 comments on the previously submitted BART report;

⁽²⁾ Entergy's August 2017 White Bluff BART report, at 4-4;

⁽³⁾ Entergy's August 7, 2015 Comments on the Proposed Regional Haze and Interstate Visibility Transport Federal Implementation Plan for Arkansas, at 10 - 11; and

⁽⁴⁾ S&L's July 14, 2015 Review of EPA's Cost Analysis for Arkansas Regional Haze Proposed Federal Implementation Plan, SL-012913.

2.7.1. WFGD

Costs for WFGD are based on information presented in Entergy's October 2013 White Bluff BART report, at 5-6). The WFGD capital costs were based on a 2012 dollar value (\$2012) and the 0&M costs were based on \$2011. These values are escalated to 2018 (the latest final information available as of February 2020) using the Chemical Engineering Plant Cost Index (CEPCI) values.¹⁸

2.7.2. DFGD

The capital and annual O&M costs for DFGD are based on information presented in Entergy's February 2018 Independence report, at 3-1, and S&L's January 2018 DFGD Independence report, which is included in Appendix A of this report. All costs for DFGD were based on \$2017 and have been escalated to \$2018.

2.7.3. DSI and Enhanced DSI

Costs for DSI and Enhanced DSI are based on information presented in Entergy's August 2017 White Bluff BART report, at 4-5, and S&L's August 2017 DSI White Bluff Reports, which are included in Appendix A of this report. The referenced costs for DSI and Enhanced DSI were based on \$2016 and have been escalated to \$2018.

¹⁸ From https://www.chemengonline.com/pci-home, accessed on February 10, 2020:

Year:	2011	2012	2013	2014	2015	2016	2017	2018
CEPCI:	585.7	584.6	567.3	576.1	556.8	541.7	567.5	603.1

The ICR specifically listed for consideration the following two NO_X emissions reduction options: Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR).

3.1. Technical Feasibility

Both SCR and SNCR are technically feasible NO_X emissions reduction options for Independence Unit 1 and Unit 2.

3.2. Control Effectiveness

Table 3-1 summarizes and ranks the control emission rates for the technically feasible NO_X emissions reduction options for Unit 1 and Unit 2. The controlled emission rates are based on information presented in Entergy's October 2013 White Bluff BART report, at 6-3 – 6-4, and S&L's May 16, 2013 NO_X Control Technology Cost and Performance Study, Entergy Services, Inc. – White Bluff and Lake Catherine, SL-011439 ("S&L's May 2013 NO_X Study"), which is included in Appendix B of this report.¹⁹

Table 3-1. Control Effectiveness of NO_X Emissions Reduction Options

NO _X Reduction Option	Controlled Emission Rate (lb/MMBtu)
SCR	0.055
SNCR	0.13

3.3. Emissions Reductions

Table 3-2 summarizes the baseline and controlled emission rates and emission reduction potentials, all in tpy, for the technically feasible NO_X reduction options for Unit 1 and Unit 2. Per the ICR, the baseline actual emission rate for each unit is taken as the maximum monthly value (annualized, i.e., multiplied by 12) from the EPA's AMPD²⁰ from November 1, 2018 to December 31, 2019 for Unit 1 and from January 1, 2018 to December 31, 2019 for Unit 2 (i.e., the baseline periods). The controlled emission rate for each unit is based on the lb/MMBtu emission rates presented in Table 3-1 and each unit's baseline actual heat input in MMBtu/yr, which is determined in the same manner as the baseline emission rates. The emission reductions are the difference between the baseline and controlled emission rates.

¹⁹ S&L's May 2013 NOx Study had been included as Appendix E of Entergy's October 2013 White Bluff BART report.

²⁰ https://ampd.epa.gov/ampd, queried on February 10, 2020.

Table 3-2. Baseline Emission Rates (Maximum Month Basis) and Controlled Emission Rates of NO_X Emissions Reduction Options

Emissions Unit	NO_X Reduction Option	Baseline Emission Rate (tpy)	Controlled Emission Rate (tpy)	Emissions Reduction (tpy)
Unit 1	SCR	5,450	1,844	3,606
UIIIL I	SNCR	5,450	4,358	1,092
IInit 2	SCR	5,077	1,995	3,082
Unit 2	SNCR	5,077	4,716	361

Table 3-3 provides the same information but based on the average, rather than the maximum, monthly values (annualized, i.e., multiplied by 12) from the baseline periods. Average monthly values are more commonly used for control cost analyses because maximum monthly values result in much higher annual baseline emission rates than have actually occurred in the recent past (and that are expected to occur in the future). Control cost calculations presented later in this report are completed using both the maximum-monthly and averagemonthly baseline emission rates.

Table 3-3. Baseline Emission Rates (Average Month Basis) and Controlled Emission Rates of NO_X Emissions Reduction Options

Emissions Unit	NO_X Reduction Option	Baseline Emission Rate (tpy)	Controlled Emission Rate (tpy)	Emissions Reduction (tpy)
IInit 1	SCR	3,423	1,156	2,267
Unit 1	SNCR	3,423	2,733	690
IImit 2	SCR	2 100	1,219	1,961
Unit 2	SNCR	3,180	2,882	298

3.4. Time Necessary for Implementation

A minimum of five (5) years, counting from the effective date of an approved determination, would be needed to implement either SCR or SNCR. This is consistent with the EPA's determinations in the North Dakota FIP and Utah FIP. 21

3.5. Remaining Useful Life

Assuming an EPA review and approval period of one (1) year following the 2PP SIP proposal deadline of July 31, 2021, the earliest effective date for any control requirements would be July 31, 2022. Thus, based on the time necessary for implementing the control options, SCR or SNCR could be implemented by July 31, 2027.

Entergy plans to cease coal-fired operations of Unit 1 and Unit 2 at Independence by December 31, 2030, as the DEQ noted in Phase II of the 1PP SIP revisions. Entergy has entered into a proposed settlement agreement with

²¹ 77 Fed. Reg. 20944 (April 6, 2012) and 81 Fed. Reg. 43907 (July 5, 2016), respectively.

Sierra Club and National Parks Conservation Association that is currently pending before the U.S. District Court for the Eastern District of Arkansas (*Sierra Club, et al. v. Entergy Arkansas, LLC, et al.,* No 4:18-cv-00854 -KGB (E.D. Ark.)). If the court approves the settlement, the cessation of coal-fired operation at the Independence units will become an enforceable commitment. Therefore, for costing purposes, the remaining useful life (RUL) of the Independence units is 3.42 years for SCR and SNCR.

3.6. Energy and Non-air Quality Environmental Impacts

Per Entergy's October 2013 White Bluff BART report, at 6-9, SCR and SNCR have the following impacts:

SCR and SNCR systems require electricity to operate the ancillary equipment. The need for electricity to help power some of the ancillary equipment creates a demand for energy that currently does not exist.

SCR and SNCR can potentially cause significant environmental impacts. The primary avenue is related to the storage of ammonia. The storage of aqueous ammonia above 10,000 lbs is regulated by a risk management program (RMP), since the accidental release of ammonia has the potential to cause serious injury and death to persons in the vicinity of the release. Additionally, SCR and SNCR will likely also cause the release of unreacted ammonia to the atmosphere. This is referred to as ammonia slip. Ammonia slip from SCR and SNCR systems occurs either from ammonia injection at temperatures too low for effective reaction with NO_X , leading to an excess of unreacted ammonia, or from over injection of reagent leading to uneven distribution; which also leads to an excess of unreacted ammonia. Ammonia released from SCR and SNCR systems will react with sulfates and nitrates in the atmosphere to form ammonium sulfate and ammonium nitrate. Together, ammonium sulfate and ammonium nitrate are the predominant sources of regional haze.

Another environmental impact associated with SCR is the disposal of catalyst waste. To maintain NO_X-removal effectiveness, the catalyst in an SCR system must periodically be cleaned, regenerated, or replaced. Cleaning and regeneration are preferred, but eventually the catalyst reaches the end of its useful life and must be replaced. Ideally the exhausted catalyst can be recycled for reuse, however, if the condition of the spent catalyst does not warrant recycling or a market is unavailable, the old catalyst must be disposed of. Current regulatory interpretations indicate spent SCR catalysts are exempted from hazardous waste regulation via 40 CFR § 261.4(b)(4) (Bevill Exemption) as flue gas emission control wastes. However, ongoing efforts by EPA to increase regulatory oversight of coal combustion residuals could alter that exemption, and create the potential that spent SCR catalysts would be characterized as hazardous wastes, hence increasing the cost of disposal. Regardless of the regulatory treatment of the waste, the disposal creates additional potential financial and environmental impacts associated with an SCR system.

3.7. Costs

Table 3-4 summarizes the estimated costs, including total and annualized capital costs, annual 0&M costs, and cost effectiveness based on the emission reduction values from Table 3-2 (Maximum Month Basis) and Table 3-3 (Average Month Basis), for the technically feasible NO_X reduction options.

The cost values are based on information presented in S&L's May 2013 NO_X Study, which is included in Appendix E of Entergy's October 2013 White Bluff BART report, in Appendix D of Phase II of the 1PP SIP

revisions, and in Appendix B of this report. The average of cost values for White Bluff's two units was taken to be representative of both Independence units. All costs were based on \$2012 and have been escalated to \$2018.

Table 3-4. Estimated Costs (\$2018) of NO_X Emissions Reduction Options

Emissions Unit	NO _X Reduction Option	Capital Costs (\$)	Annualized Capital Costs (\$/year)	Annual O&M Costs (\$/year)	Total Annual Costs (\$/year)	Cost Effectiveness (\$/ton) Maximum Month Basis	Cost Effectiveness (\$/ton) Average Month Basis
IIi. 1	SCR	186.32	63.14	3.42	66.56	18,458	29,361
Unit 1	SNCR	8.75	2.97	6.53	9.50	8,702	13,763
IIi. 2	SCR	186.32	63.14	3.42	66.56	21,595	33,946
Unit 2	SNCR	8.75	2.97	6.53	9.50	26,286	31,860

As stated in Section 1, following is a summary of the most recent IMPROVE network monitoring data for the two Class I areas in Arkansas: Caney Creek Wilderness Area (CACR) and Upper Buffalo Wilderness Area (UPBU). This information is an update to that which was originally submitted on August 7, 2015 and updated previously on November 15, 2016, September 27, 2017, and February 2, 2018. The previous reports should be reviewed for explanations of how the raw data was summarized, how the deciview (dv) metric is calculated, and other background information. The only difference is that now, per EPA guidance, ²² all dv values have been recalculated as the 20 percent most impaired and 20 percent least impaired values, based on anthropogenic (manmade) impairment only, rather than the 20 percent worst and 20 percent best values, which were based on both anthropogenic and biogenic (natural) impairment.

The most recent summary of annual IMPROVE monitoring data available for CACR and UPBU has been completed through the year 2018. As of February 14, 2020, no raw (non-summarized) data is available for 2019. Table 4-1 presents a summary of the annual-average haze index values for each year from 2002 to 2018.

Table 4-1. Summary of Annual-Average Haze Index Values from 2002 through 2018

	Average of 20 F Impaired		Average of 20 Percent Least Impaired Days	
Year	CACR	UPBU	CACR	UPBU
2002	25.15	24.97	13.45	14.86
2003	23.61	24.66	13.64	14.22
2004	23.21	24.11	13.33	13.81
2005	28.37	29.29	14.99	14.62
2006	23.77	23.54	15.01	16.13
2007	A	24.04	A	15.77
2008	22.06	22.80	10.33	12.46
2009	22.48	21.29	8.39	11.35
2010	21.52	A	12.69	A
2011	20.83	21.19	13.30	13.73
2012	21.04	20.12	10.37	12.69
2013	19.46	19.29	9.76	9.58
2014	19.37	18.68	9.65	9.58
2015	18.17	17.84	8.94	8.65
2016	18.04	18.29	11.58	11.14
2017	18.57	17.92	9.67	9.84
2018	17.29	17.01	9.21	10.64

^A Summarized data are not available for CACR for 2007 and UPBU for 2010.

²² Technical Guidance on Tracking Visibility Progress for the Second Implementation Period of the Regional Haze Program, December 20, 2018.

⁽https://www.epa.gov/sites/production/files/2018-12/documents/technical_guidance_tracking_visibility_progress.pdf)

Figure 4-1 and Figure 4-2 present, for CACR and UPBU, respectively, comparisons of the annual-average haze index values from Table 4-1 to the Uniform Rate of Progress (URP) line (i.e., "glidepath") established for each area. The glidepaths presented are based on information published by EPA: 2000-2004 averages (starting points) and default, minimum alternative, and maximum alternative 2064 (end point) values.²³ As seen in the figures, the actual observed visibility impairment at these Class I areas has declined sharply overall, continues to trend downward, and has remained below the glidepaths since 2008.

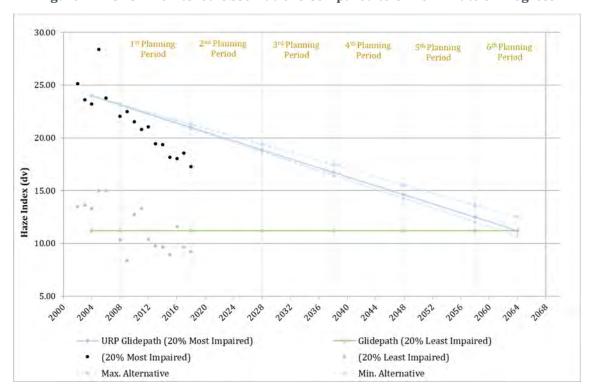


Figure 4-1. CACR Monitored Observations Compared to Uniform Rate of Progress

²³ Availability of Modeling Data and Associated Technical Support Document for the EPA's Updated 2028 Visibility Air Quality Modeling, September 19, 2019

 $⁽https://www.epa.gov/sites/production/files/2019-10/documents/updated_2028_regional_haze_modeling-tsd-2019_0.pdf)$

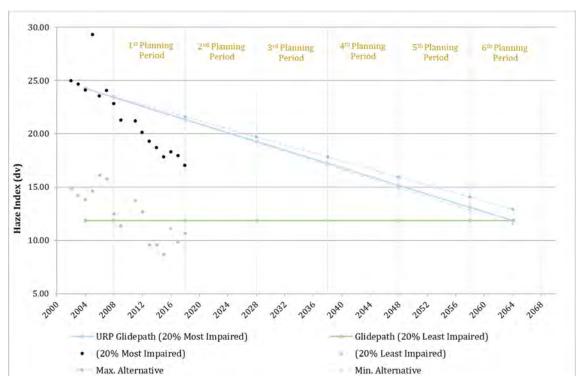


Figure 4-2. UPBU Monitored Observations Compared to Uniform Rate of Progress

APPENDIX A: 1PP SO₂ CONTROLS STUDIES

- > S&L's August 3, 2017 White Bluff Dry FGD Cost Estimate and Technical Basis, SL-012831
- S&L's January 31, 2018 Independence Dry FGD Cost Estimate and Technical Basis, SL-014308
- S&L's August 3, 2017 White Bluff DSI Cost Estimate Basis Document, SL-014000
- > S&L's August 3, 2017 White Bluff Enhanced DSI Cost Estimate Basis Document, SL-014001

WHITE BLUFF DRY FGD COST ESTIMATE AND TECHNICAL BASIS

SL-012831 Final, Rev. 1 August 3, 2017 Project 13027-002

Prepared by

55 East Monroe Street • Chicago, IL 60603 USA • 312-269-2000

ii.

Final, Rev. 1

CONTENTS

Sec	<u>ection</u>	<u>Page</u>
Exi	KECUTIVE SUMMARY	1
1.	Purpose	1
2.	APPROACH	1
2.1	TECHNOLOGY SELECTION	1
2.2	CONTRACTING APPROACH	1
2.3	CAPITAL COST DEVELOPMENT	2
3.	DRY FGD CONCEPTUAL DESIGN AND SYSTEM COMPONENTS	5
3.1	DRY FGD ISLAND	5
3.2	REAGENT HANDLING SYSTEM	7
3.3	BYPRODUCT HANDLING SYSTEM	7
3.4	Flue Gas Handling System	8
3.5	ELECTRICAL BOP SYSTEM	8
3.6	5 I&C BOP System	8
4.	CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS	10
4.1	EPC CONTRACT PRICE	10
4.2	OVERALL PROJECT COSTS FOR CAPITAL ESTIMATE	19
4.3	3 VARIABLE OPERATING AND MAINTENANCE COSTS	24
4.4	FIXED OPERATING AND MAINTENANCE COSTS	25
4.5	SULFUR DESIGN BASIS SENSITIVITY	25
5.	SUMMARY	27
6.	ATTACHMENTS	28

ES-1.

EXECUTIVE SUMMARY

The purpose of this study is to estimate the total capital investment and operating and maintenance (O&M) costs associated with installing dry flue gas desulfurization (FGD) technology on White Bluff Units 1&2 using an Engineer, Procure, Construct (EPC) contracting strategy. A preliminary conceptual design was developed for implementation of dry FGD technology at the White Bluff station to serve as the technical basis of the capital and O&M estimates.

The capital cost estimate includes the following components which comprise the total cost the Owner will incur to install dry FGD technology at White Bluff:

- FGD Island Cost supplied by a Dry FGD System Supplier including the main process equipment
- Balance of Plant Cost including auxiliary equipment and systems, foundations and buildings, site work, demolition and relocation
- Other Direct and Construction Indirect Costs including labor premiums, freight, contractor's G&A and profit
- Indirect Costs including engineering, startup spare parts, technical field advisors, and the additional fee associated with an EPC contracting strategy
- Escalation and Interest During Construction associated with the project duration for implementation of a large air quality control technology
- Owner's Costs including internal labor, insurance, and initial lime reagent fill
- Third Party Services including construction management oversight, start-up and commissioning oversight, Owner's Engineer services, and performance testing
- Project Contingency to cover unknown and undefined scope associated with the project which would result in additional cost to the Owner

The total capital investment to install dry FGD on White Bluff Units 1 and 2 was estimated to be \$991,489,000. The project definition and accuracy of the individual components included in this estimate result in an overall accuracy of ± 20 -25%. In addition, the O&M costs were estimated to be approximately \$8,132,000 per year per unit and include the cost of lime (reagent), byproduct disposal, auxiliary power, water, replacement bags and cages, maintenance costs, and operating labor.

iai, Kev. 1

1.

1. PURPOSE

The purpose of this study is to estimate the total capital investment and operating and maintenance costs associated with installing dry flue gas desulfurization (FGD) technology on White Bluff Units 1&2. This report documents the conceptual design and technical basis for the dry FGD cost estimate.

2. APPROACH

2.1 TECHNOLOGY SELECTION

Sargent & Lundy (S&L) previously performed an evaluation of wet and dry FGD technology for Entergy's White Bluff Station. The evaluation included development of a preliminary conceptual design for both wet and dry FGD systems at the White Bluff station. The preliminary designs were used as the basis of an evaluation which compared the overall economics of each system, including capital and operating costs. The study concluded that a dry FGD system had an economic advantage over wet FGD when the design coal sulfur is below 3 lb SO₂/MMBtu. Based on the current market and potential future regulations, dry FGD technology would have an economic advantage over wet FGD for SO₂ reduction at the White Bluff station.

2.2 CONTRACTING APPROACH

Many utilities elect to utilize a one contract engineer-procure-construct (EPC) approach for major retrofit projects, such as large FGD projects. The EPC approach allows the Owner to contract with one entity which then manages the overall project. The EPC Contractor procures the material, equipment and services needed to complete the project and the EPC Contractor takes full responsibility for the equipment and work supplied by each of its subcontractors.

With this approach the Owner takes on less risk in the overall management and coordination of the project. However, shifting this risk to the EPC Contractor increases the total price for the EPC contract; "Whilst there are... numerous advantages to using an EPC contract, there are some disadvantages. These include the fact that it can result in a higher contract price than alternative contractual structures. This higher price is a result of a number of factors not least of which is the allocation of almost all the

construction risk to the contractor." The additional cost due to an EPC contracting approach is represented in our cost estimate as an EPC Risk Fee.

The Owner's control over design details of the system is limited, using this contracting strategy, to the requirements specified in the contract. This results in an additional upfront effort for the Owner and the Owner's Engineer to thoroughly define the project in the specification. Whatever is not defined will be excluded from the EPC Contractor's scope resulting in potential change orders. The Owner and Owner's Engineer are also responsible for reviewing the EPC Contractor's submitted design drawings and schedules to ensure what has been agreed upon in the final contract is included.

2.3 CAPITAL COST DEVELOPMENT

The capital cost estimate is based on project-specific information, including:

- A preliminary conceptual design developed for implementation of dry FGD technology at the White Bluff station.
- An engineer-procure-construct (EPC) contracting strategy.
- A Dry FGD System Supplier, subcontracted by the EPC Contractor, providing the main process equipment as a complete FGD Island.
- The FGD Island equipment and installation cost is based on a budgetary proposal received from Alstom in September 2013. The budgetary proposal is based on installing SDA technology on both of the White Bluff units.

The capital cost estimate includes the following components which comprise the total price of the EPC Contract to complete the work:

- Equipment and material
- Installation labor
- Demolition and Relocation work
- Indirect field costs and BOP engineering
- Freight on Materials
- General and Administration
- Erection contractor profit

¹ "EPC Contracts in the Power Sector", prepared by DLA Piper, 2011, page 6. See: https://www.dlapiper.com/

Final, Rev. 1

3.

- Engineering, Procurement and Project Services
- Spare parts
- EPC Fee
- Escalation

The equipment design basis is summarized in Section 3 of this report and the scope of the estimate is summarized in Section 4. The project definition and accuracy of the individual components included in this estimate result in an overall accuracy of ± 20 -25%. The costs provided in this report are in 2015 dollars.

In order to estimate the total plant capital cost for installation of FGD at White Bluff, the following costs which would be incurred outside of the scope of the EPC contract were included:

- Owner's Costs
- Third Party Services Construction Management Oversight
- Third Party Services Startup and Commissioning Oversight
- Third Party Services Owner's Engineer
- Third Party Services Performance Testing
- **Project Contingency**
- Interest During Construction or Allowance for Funds Used During Construction

The cash flow provided in Attachment 2 is based on a monthly progress payment schedule developed using the preliminary execution schedule included in Attachment 3. Specific details regarding the milestones making up the payment schedule are listed in Attachment 4. Below is a summary of those activities that represent major or large payment milestones based on a project start date of January 2015.

Month	Date	Milestone
1	February 2017	Award EPC Contract Execution
5	June 2017	EPC Contractor Procures Major Equipment
7	August 2017	EPC Contractor Procures Major Equipment
10	November 2017	Flue Gas Ductwork Procurement Initiated by EPC Contractor
13	February 2018	SDA and Fabric Filter Design Drawings
15	April 2018	Award Fabric Filter Bags and Cages Flue Gas Ductwork Start of Fabrication

Month	Date	Milestone	
17	June 2018	Physical Flow Model Completed	
19	August 2018	Mobilize On-Site	
20-38	September 2018 to March 2020	Construction Activities	
41	June 2020	Unit 1 Substantial Completion	
45	October 2020	Unit 2 Substantial Completion	
		Demobilization Complete	
46	November 2020	Unit 1 Final Acceptance	
47	December 2020	Unit 2 Final Acceptance	

Each monthly cash outlay in the cash flow is broken down by category (labor, equipment and materials, and indirect costs).

Final, Rev. 1

3. DRY FGD CONCEPTUAL DESIGN AND SYSTEM COMPONENTS

A conceptual design for the implementation of Dry FGD at the White Bluff station was developed by Sargent & Lundy LLC (S&L) as a precursor to the development of the cost estimate. A general arrangement drawing showing the conceptual design is included in Attachment 7. The dry FGD conceptual design was developed for each of the following subsystems:

3.1 DRY FGD ISLAND

3.1.1 Reagent Preparation System

Lime will be supplied to the lime day bins from the long-term storage silo located in the Reagent Handling Area and supplied by the EPC Contractor. The lime day bins, located in the Reagent Preparation Area and provided by the Dry FGD System Supplier, will each have a storage capacity to supply the plant with lime reagent for 24 hours when firing 1.2 lb SO₂/mmBtu coal.

Lime from the day bin will be gravity-fed through feeders to a lime slaker, where the lime will be slaked (mixed with low pressure service water and converted from calcium oxide to calcium hydroxide slurry). The plant will have a total of two lime slaking trains (2 x 100%), each sized to process enough lime slurry to supply the entire plant. Each lime slaker will discharge to a lime slurry transfer tank, which is equipped with two lime slurry transfer pumps which will feed into the lime slurry storage tanks. The common lime slurry storage tanks will each be sized for 12 hours of storage for the entire plant when burning a 1.2 lb SO₂/mmBtu coal. The lime day bin, slaking trains, and lime slurry tanks are sized to provide the necessary reagent slurry to both units simultaneously. The lime slurry tanks are built with cross-ties such that either slurry tank can feed either the Unit 1 or Unit 2 FGD systems.

A total of four lime slurry feed pumps (two per unit), each sized for 100% flow to one unit, will pump the lime slurry from the storage tanks to the SDAs through one of 2 x 100% piping loops, and return unused slurry back to the lime slurry storage tank. The closed-loop reagent supply line requires a flow velocity between 4-10 fps to avoid any solids buildup in the piping. Because of this, the pumping requirement is higher than the actual SDA requirement and must be sufficiently greater than the slurry flow that is pumped into the absorbers to allow the returning flow to remain above 4 fps.

Final, Rev. 1

3.1.2 Absorbers

Three absorbers, each treating 331/3% of the flue gas are provided for each unit. Depending on the supplier and the type of atomizer normally used, there may be one rotary atomizer per absorber with a shared spare (B&W), three rotary atomizers per absorber with one or more shared spares (Alstom, basis of the estimate), or multiple dual-fluid atomizers with 15% shared spares (Siemens). The cost estimate includes contingency to capture the possibility of any of these designs.

3.1.3 **Baghouse**

Each SDA will be paired with a pulse-jet baghouse with a gross air-to-cloth ratio of approximately 3.2-3.4 ft/min. The filter bags in each baghouse are cleaned by pulses of compressed air. The air compressors will be 4 x 33% for the station and are included in the scope of the baghouse supplier.

3.1.4 **Byproduct Recycle System**

The reaction byproducts from the absorbers will be collected in the baghouses and a portion of the collected material will be recycled. The baghouse hoppers will be emptied through air lock feeders and pneumatically conveyed to two recycle day bins located in the Byproduct Recycle Area and supplied by the Dry FGD System Supplier, which are common for both units. The air-lock feeders are installed without a spare. One recycle day bin is located in the recycle train for each unit. The common byproduct recycle day bins (one per unit) provide 8-hours of storage when burning 1.2 lb SO₂/mmBtu coal.

Each byproduct recycle day bin is equipped with two recycle slurry preparation systems. The byproduct in each recycle day bin is gravimetrically conveyed to one of two systems where the byproduct is slurried with water (cooling tower blowdown). The byproduct recycle slurry is stored in one of four plant wide recycle slurry tanks, two per unit (combined 4-hour storage capacity).

Two recycle water make-up tanks are located in the recycle area with a capacity of 250,000 gallons (to be supplied by the EPC Contractor). The recycled by-product slurry will be combined with fresh lime slurry for feed to the SDA atomizers. Recycle feed slurry pumps (4 x 100%, two installed per unit) will be used to transfer the recycle slurry from the recycle slurry tanks to the atomizers. In addition, all recycle feed lines are provided in a loop configuration as with the reagent system, with a complete redundant loop to allow unhindered operation due to any pluggage of pumps or feed piping.

Final, Rev. 1

3.2 REAGENT HANDLING SYSTEM

As part of the conceptual design, several lime delivery methods were evaluated and it was determined that rail delivery provided the best alternative for White Bluff based on ease of implementation, overall plant interface, and lowest evaluated cost (in terms of required capital investment and delivered cost of lime). Therefore, the basis of the estimate is delivery of lime via hopper-bottom railcars with truck unloading as a backup. In order to accommodate rail delivery to the site, a new rail spur will be constructed from the existing track bordering the west side of the plant. Lime trains will enter and exit the station from this spur. A trackmobile car positioner will position railcars, two at a time, in the enclosed delivery shed for unloading. The cost estimate includes the capital cost associated with railcar unloading, including the new rail spur and the renovation of the existing rail spur to handle lime delivery. A vacuum pneumatic system will unload the railcars into either of the two (2) lime storage silos. The lime storage silos will be sized for supply of reagent for 14 days of storage at full load when firing 1.2 lb SO2/mmBtu coal. Lime from the long-term storage silos will be pneumatically transferred to two lime day bins located in the Reagent Preparation Area and supplied by the Dry FGD System Supplier.

3.3 BYPRODUCT HANDLING SYSTEM

Excess FGD byproduct from the recycle system will be pneumatically conveyed to either of the two common long- term FGD byproduct storage silos. The two long-term FGD byproduct storage silos are each sized to handle the byproduct for a total of 7 days of storage when firing the 1.2 lb SO₂/mmBtu coal. The byproduct will be mixed with a small amount of fly ash and water to form a final product which contains approximately 65% FGD byproduct, 5% fly ash, and 30% water. In order to achieve this mixture, a common fly ash blending bin (7-day storage) will be located near the new byproduct silos. The feed rate of fly ash discharged from the blending bin is controlled to maintain the ratio of byproduct to fly ash. A pneumatic airslide conveyor will discharge fly ash directly into an unloading conditioner, simultaneously mixing fly ash with the proper ratios of water and FGD byproduct (discharged from the silo). The wetted byproduct/fly ash mixture is then loading into dump trucks, which will deposit the FGD byproduct in a final storage location in the landfill. A bulldozer will maintain the landfill pile. The capital cost for the silos, conveying system and byproduct/fly ash blending system is included in the cost estimate. As part of the conceptual design, the existing landfill was evaluated and was determined to have sufficient capacity to accommodate the addition of FGD byproduct. Therefore no costs were

Final, Rev. 1

included in the capital estimate for the (existing) landfill. In addition, it was assumed that the existing haul trucks would be used to transport the FGD byproduct.

3.4 FLUE GAS HANDLING SYSTEM

The flue gas from the existing ID fans will be ducted to the absorbers. The gases from the absorbers will be ducted to the baghouses to collect the reaction by-products and residual fly ash. Two axial booster fans (2 x 50% for each unit) will be located downstream of the absorbers and baghouse; the booster ID fans can be provided by the Dry FGD System Supplier or the EPC Contractor. Due to the dry condition of the scrubbed flue gas, the existing stack and liners will be used for the retrofit case.

The existing chimney and carbon steel liners were evaluated as part of the conceptual design and were deemed to be suitable for a dry FGD application. In addition, the top 50 feet of the existing chimney liners are constructed of 316 stainless steel so an acid resistant coating on the liner is not required. However, downwash may result in acid attack and discoloration on the outer concrete shell of the chimney; it was determined that an acid resistant coating to the top 100 feet of the concrete shell is recommended; therefore, the cost estimate includes the coating of the top 100 feet of the chimney's outer concrete shell.

3.5 ELECTRICAL BOP SYSTEM

The existing auxiliary power system was evaluated as part of the conceptual design for the White Bluff dry FGD system. In order to feed the new dry FGD and other BOP equipment, significant modifications and additions to the existing power system are required. These include installation of new auxiliary transformers, medium- and low-voltage switchgear buses, motor control centers (MCCs) and upgrades to the isolated phase tap-off buses.

3.6 **I&C BOP SYSTEM**

As part of the conceptual design, the existing control system was evaluated to determine the required modifications necessary to implement dry FGD technology at the White Bluff station. The dry FGD system will be controlled using a new Foxboro I/A system which will integrate with the existing power block Foxboro I/A system. The control processors, I/O cabinets, and other system components will be located in the new electrical equipment building (EEB) for each unit. Two HMIs will be installed in the

WHITE BLUFF DRY FGD

COST ESTIMATE AND TECHNICAL BASIS

9.

new EEB for each unit to provide any local controls for the lime preparation and byproduct recycle systems provided by the Dry FGD System Supplier. The baghouse will be controlled through the Allen-Bradley ControlLogix PLC and the ID booster fans will be controlled through the existing Foxboro I/A system controller(s), which are used to control boiler air and furnace pressure.

4. CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS

The following summarizes the design inputs used as the basis for the White Bluff dry FGD Systems:

- Design SO₂ inlet concentration of 1.2 lb SO₂/MMBtu for equipment design, based on the current coal contract sulfur limit.
- SO₂ inlet concentration of 0.57 lb SO₂/MMBtu for annual operating costs, based on the annual heat input weighted average emission from 2009 through 2013.
- Design SO₂ outlet concentration of 0.06 lb SO₂/MMBtu.
- Annual capacity factor of 72.1% (annual average capacity factor for White Bluff Units 1 and 2 based on historical heat input from 2009 through 2013).
- Compliance deadline of December 2020, based on a project start date of January 2015.

4.1 EPC CONTRACT PRICE

The Dry FGD System Supplier will provide all of the equipment within the FGD Island. The FGD Island will include the Reagent Preparation Equipment, Absorber Area Equipment, Baghouse Area Equipment and the Byproduct Recycle Equipment. The booster ID fans could be provided by either the Dry FGD System Supplier or the EPC Contractor; the basis of this estimate is supply of the booster fans by the Dry FGD System Supplier. The EPC Contractor will provide the remaining BOP scope in order to provide a complete and operable FGD system. In addition, the EPC Contractor will install/construct the entire system including the equipment provided by the DFGD supplier.

The scope of work for the cost estimate is broken out by area below:

1. Dry FGD Island

- a. Reagent Preparation System, common to both units:
 - Two lime day bins, 24-hours storage each
 - Two detention lime slakers at 100% capacity, each with a grit screen, gravimetric feeder
 - Two lime slurry transfer tanks
 - Four slurry transfer centrifugal pumps
 - Two lime slurry storage tanks
 - Four slurry feed centrifugal pumps

- Cost estimate based on budgetary proposal from Alstom; the budgetary proposal is based on
 a design sulfur of 2.0 lb/MMBtu, cost adjustments were included in the estimate for a lower
 design sulfur of 1.2 lb/MMBtu. These cost adjustments were developed by estimating the
 differential equipment cost for the reagent preparation and waste handling equipment. The
 impacted equipment is identified in Section 4.5 which discusses the sulfur design basis
 sensitivity.
- b. Absorber Area, per unit
 - Three absorber vessels per unit, with access doors
 - Rotary atomizers, two spare atomizers included
 - Vessel material carbon steel, ½ in. ½ in. carbon steel
 - Heating and ventilation
 - Vacuum piping
 - SDA Superstructure
 - Cost estimate based on budgetary proposal from Alstom
- c. Baghouse Area, per unit
 - New baghouse, including pulse jet cleaning system and all appurtenances
 - Cost estimate based on budgetary proposal from Alstom
- d. Byproduct Recycle System, per unit (located remotely in common location for both units)
 - One recycle silo with bin vent filter per unit, 8-hour total capacity
 - Two recycle mix tanks per unit
 - Two recycle slurry tanks per unit, with two recycle slurry centrifugal pumps per unit
 - Agitators for each tank
 - Baghouse ash handling system common to both units
 - Rotary air-lock valves from baghouse hopper outlets to pressure pneumatic conveying system (60-degree typical)
 - Pneumatic pressure blowers (8 x 33½ %)
 - Cost estimate based on budgetary proposal from Alstom
- e. ID Booster Fans, per unit
 - Two approximately 5,200 hp axial booster fans per unit sized to overcome pressure drop associated with FGD and baghouse
 - Includes motors no spare motor included
 - Cost estimate based on budgetary proposal from Alstom
 - Dampers from ID fan to booster fans (cost estimated separately, not included in Alstom budgetary proposal)

- f. Interconnecting Ductwork, per unit
 - ID fan outlet to absorber inlet ductwork and supports; carbon steel, ¼ in, design velocity, 3,600 fpm
 - Absorber outlet to baghouse inlet ductwork and supports; carbon steel, ½ in, design velocity, 3,600 fpm
 - Baghouse outlet to new booster fans and fan outlet to the stack inlet ductwork and supports; carbon steel, ½ in, design velocity, 3,600 fpm

2. FGD Island Foundations and Enclosures

- a. Absorber tower foundations including caissons
- b. Baghouse area foundations including 18" auger cast piles 60' long
- c. Booster fan area foundations
- d. 6" insulation with lagging for Absorbers and Baghouses (cost estimated separately, not included in Alstom budgetary proposal)
- e. Penthouse enclosure for Absorbers located in FGD Island (cost estimated separately, not included in Alstom budgetary proposal)
- f. Two elevators (one for each unit) to provide maintenance access to Absorber and Baghouse Areas
- g. Enclosure around hoppers for Baghouses located in FGD Island (cost estimated separately, not included in Alstom budgetary proposal)
- h. Lime preparation building for Reagent Preparation Area in FGD Island, 50' x 50' x 50', including substructure and superstructure (cost estimated separately, not included in Alstom budgetary proposal)
- i. Byproduct recycle building for Byproduct Recycle Area in FGD Island, 60' x 60' x 60', including substructure and superstructure (cost estimated separately, not included in Alstom budgetary proposal)

3. Reagent Storage and Handling, common to both units:

- a. Lime rail car unloader:
 - Lime delivery via 25-car unit train
 - System consists of mobile receiving pan and associated vacuum pneumatic equipment to unload railcar through railcar bottom hoppers
 - Enclosed railcar unloading building
 - One vacuum pneumatic system operating to unload a car
 - Pneumatic vacuum exhausters (2 x 100%)
 - Filter separator with vacuum-to-pressure transfer hopper and valves
 - One lot of pneumatic conveying piping located on an above-grade sleeper pipe rack

• Cost estimate based on vendor quote from United Conveyor Corporation (UCC) for a similar unit

b. Lime storage silos:

- Two silos, 14-days storage and capable of storing a train load of lime, 2,400-tons storage total, including substructure and superstructure
- 32' diameter and 95' height to top
- 1,200-tons storage, each
- Continuous level detection systems
- Bin vent filters
- Live bottom hopper outlets
- Rotary airlock assemblies
- Lime transfer systems:
 - Pressure pneumatic conveying system from lime storage silos to lime day bins
 - Pneumatic pressure blowers (3 x 100%)
 - One lot of pneumatic conveying piping located on an elevated pipe rack
- c. Concrete foundations including caissons for all material silos
- d. Concrete foundations for pneumatic conveying blowers and exhausters

4. Byproduct Handling System, common to both units

- a. Two FGD by-product storage silos (7-day capacity each, common to both units) with bin vent filter, fluidizing system, and two unloading conditioners (one operating, one spare per silo)
- b. One common fly ash blending, 7-day storage bin with bin vent filter, fluidizing system, and four pneumatic airslide conveyors
- c. Water pumps and associated piping for unloading conditioners (pin mixers) at both silos
- d. Compressed air system for air operated valves
- e. Storage silo substructure and superstructure
- f. Continuous level detection system
- g. One lot pneumatic conveying piping located on an above grade pipe rack
- h. Two truck scales and substructure
- i. Existing road improvements for truck haulage to existing landfill
- j. Cost estimate based on budgetary proposal from UCC for similar project
- k. Concrete foundations including caissons for all material silos

1. Concrete foundations for pneumatic conveying blowers and exhausters

5. Flue Gas Handling BOP, per unit

- a. ID fan outlet to absorber inlet ductwork insulation; 6" with lagging6" insulation with lagging
- b. Absorber outlet to baghouse inlet ductwork insulation; 6" with lagging
- c. Baghouse outlet to new booster fans and fan outlet to the stack inlet ductwork insulation; 6" with lagging
- d. Concrete foundations for all flue gas ductwork
- e. Epoxy trowel coating on top 100 feet of outside of chimney shell

6. Civil BOP

- a. Roadwork
- b. Site grading
- c. Soil removal earthwork
- d. Excavation, backfill, and compaction for all foundations
- e. Storm sewer work
- f. Two-cell pond for wastewater storage of process water/slurry
- g. Laydown Area
 - Development of a new laydown area, approximately 10 acres, including site preparation, fencing, and temporary power. It was assumed that this area would be located on existing plant property, and does not required land to be purchased.
- h. Highway Intersection Upgrade to provide sufficient plant access for construction period
 - New Bypass Lane on Westside of Highway 365
 - New Southbound Left Turn Lane on Highway 365
 - New Northbound Merge Lane on Highway 365
 - New Northbound Right Turn Lane on Highway 365
 - Extension and upgrade of existing Contractor Haul Road (Highway 46 Spur) to Highway 365
 - Widening of the existing Main Plant Road from the Contractor Haul Road (Highway 46 Spur) to Main Guard House
 - Track crossing signal system at Haul Road (Highway 46 Spur) track crossing
- i. New warehouse building 200' x 75' x 15', including substructure and superstructure.

7. Mechanical BOP System

- a. Interconnecting piping, above-ground and buried
- b. Valves for interconnecting piping, above-ground and buried
- c. Lime slaking water storage tank, 115,000-gallon capacity

COST ESTIMATE AND TECHNICAL BASIS

15.

- d. Slaker water 3" in-line heaters, 475 kW each
- e. Recycle make-up water tanks, 2 x 250,000-gallon capacity
- f. Pipe Racks, common to both units
 - Between lime railcar unloading enclosure and lime silos
 - Between lime silos and lime day bins
 - From baghouse hoppers to recycle silos and FGD by-product silo
 - From lime slurry storage tanks to absorber
 - From recycle slurry storage tank to absorber
 - Concrete foundations including caissons for all pipe racks
 - Shallow concrete foundations for other miscellaneous structures

g. BOP Pumps

- Three by-product recycle water forwarding pumps to recycle slurry, 1000 gpm @ 150' TDH
- Four reagent prep/recycle sump pumps, 120 gpm @ 150' TDH
- Two lime silo and unloading area sump pumps, 120 gpm @ 150' TDH
- Two by-product ash silo area sump pumps, 120 gpm @ 150' TDH
- Two by-product recycle make-up water tank supply pumps, 2600 gpm @ 200' TDH
- Two lime slaking water pumps, 750 gpm @ 100' TDH
- One new Low Pressure Service Water (LPSW) pump, 20,000 gpm @ 100' TDH, including new intake structure, piping and valves
- Two leachate pumps, 50 hp
- h. Instrument Air System, common to both units
 - Air compressors; 2 x 100%, 250 scfm each @ 100 psig
 - IA dryers w/filters; 2 x 100%, 250 net scfm each
 - Air receivers; 2 x 100%
 - Instrument air piping to every silo or day bin, bin vent and reagent preparation/recycle area
 - Heat-traced piping
- Service Air System, common to both units
 - Air compressors; 2 x 100%
 - Air receivers; 2 x 100%
- j. Field painting
 - Multiple coat system used for exposed ductwork only
 - Inorganic zinc primer and polyurethane system used for steel

16.

• Allowance for underground piping shop coatings built into piping cost

8. Demolition and Relocation

- a. Hazardous material accumulation building
- b. Ash handling maintenance building
- c. Drainage ditch
- d. Pipe trench
- e. Fabrication shop
- f. Existing contractor electrical hook up
- g. Existing drainage ditches, rerouted with new concrete trenches
- h. Relocation of ACI injection location from the air heater inlet to upstream of the DFGD
- i. Rail Yard Extension, common to both units
 - Extend rail spur to north to allow lime train to be unloaded and cars to be stored on site, designed for 136 lb rail to be consistent with existing coal spurs
- j. Fire Protection System Modifications
 - Deluge system has been included for the new transformers
 - Allowances have been included for fire protection in all of the new buildings; including piping and post indicator valves
 - The new fire protection systems will tie-in to the existing system on-site. It was assumed that the current capacity of the plant fire protections system is sufficient to accommodate the new systems; an evaluation of the current system capacity was not performed.

9. Electrical BOP System

- a. One 115-kV, 1200A isolation disconnect switch
- b. One startup transformer
- c. Two unit auxiliary transformers (UAT)
- d. Three medium-voltage (6.9-kV) switchgear buses (outdoor walk-in type)
- e. Two medium-voltage (6.9-kV) double ended switchgear per unit (total of two)
- f. Two 480-V double ended switchgear buses per unit (total of four)
- g. Six 480-V motor control centers per unit (total of twelve)
- h. Four 6.9-kV/480-V step-down transformers per unit (total of eight)
- i. Two isolated phase UAT tap bus extensions

- Non-segregated phase bus
- k. Medium-voltage cable
- 1. Low voltage, control and instrumentation cable, as necessary
- m. Two electrical equipment buildings

10. Instrumentation and Controls BOP System

- a. Controls System based on an estimated number of I/O points:
 - Approximately 1,000 I/O points are required for each unit's DFGD system (including reagent preparation), for a total of 2,000 I/O points the cost of which is included in Alstom budgetary proposal pricing.
 - Approximately 2,000 I/O points for the common areas at the station, located outside of the DFGD Island.

b. CEMS, per unit

Existing CEMS analyzers for both units will be recalibrated and recertified; if the existing CEMS analyzers cannot be recalibrated for lower SO₂ emission, new CEMS analyzers will be installed

11. Labor Costs

Installation/labor costs were included in the base estimate under the direct costs. Manhours are estimated for each item in the base estimate and are based on the type of work and typical estimates for similar work. The labor costs are based on the labor wage rates and labor crews developed by S&L.

Labor Wage Rates

Crew labor rates were developed using prevailing craft rates, fringe benefits and state specific worker's compensation rates as published in the 2015 edition of R.S. Means Labor Rates for Pine Bluff, Arkansas area. Costs were added to cover FICA, workers compensation, all applicable taxes, small tools, incidentals, construction equipment, and contractor's overhead. A 1.15 geographic labor productivity multiplier is included based on the Compass International Construction Yearbook for Arkansas. The crew rates do not include an allowance for weather related delays.

b. Labor crews

Construction/erection labor cost is based on the use of applicable construction crews typically required for projects of this type. The construction crew costs were specifically developed for utility industry and are proprietary to S&L. The prevailing craft rates are incorporated into work crews appropriate for the activities, and include costs for small tools, construction equipment, insurance, and site overheads.

12. Other Direct and Construction Indirect Costs

In addition to the base labor costs, other construction indirect costs for the project were broken out in the estimate as well as other contractor direct costs. The following items were included as other direct and construction indirect costs.

- a. Scaffolding and Consumables
- b. Premiums and per diems (\$10 per hour)
- c. Overtime is included based on five 10-hour shifts per week work schedule
- d. Freight on construction materials
- e. Contractor's General & Administration Fees (included at 10% of total direct and construction indirect costs)
- f. Contractor's Profit (included at 5% of total direct and construction indirect costs)

13. EPC Indirect Costs

The final contribution to the overall EPC project price are the EPC Contractor's indirect costs; these include the EPC engineering services, startup spare parts and initial fills, technical field advisors, and the EPC risk fee.

a. EPC Engineering Services

The EPC engineering services was estimated based on recent projects with similar scopes and schedules. The total cost of the EPC engineering services was estimated to be \$23,000,000 without escalation.

b. Startup Spare Parts and Initial Fills

An allowance has been included for initial fills for equipment, including first fills for lubrication of any motorized equipment. The initial fill of pebble lime was not included in the EPC Contractor's scope, as this is considered to be an operating cost rather than a capital expense. The initial fill of pebble lime is included in the Owner's costs.

c. Technical Field Advisors (Vendors)

Allowances were included for equipment supplier's technical field advisory services based on an estimated 300 man-days. The estimate includes technical field advisors for the FGD system supplier (including FGD system subcontractors) and the DCS supplier.

d. EPC Risk Fee

An EPC approach provides an alternative which is expected to reduce risk for Entergy by placing the responsibility for the project on a single entity, the EPC Contractor. The EPC Risk Fee is a premium included by the contractor which accounts for the additional coordination and management of the project as well as the additional risk assumed by the contractor (See Section 2.2 for a discussion on the contracting strategy and the EPC Risk Fee). Based on S&L's experience with recent EPC projects, an EPC Risk Fee was included at 10% of the total EPC project costs.

19.

Final, Rev. 1

14. Escalation

Escalation was included in the estimate based on the preliminary execution schedule at an escalation rate of 2.15% on equipment and materials and 3.35% on labor and indirects. These escalation rates were developed by S&L based on recent pricing and in-house escalation projections.

For commodities and equipment related to power plant construction, S&L tracks over 200 U.S. indices from major industrial sources such as BLS, Chemical Engineering, Handy Whitman, and Engineering News Records, S&L reviews the various indices in order to develop an overall average and then evaluates the change in the indices over the last three years and the last five years. Based on this analysis, an annual rate of 2.15%/year escalation is projected for commodities and equipment for the time frame for the project.

S&L uses RS Means as the basis for estimating labor craft rates. In order to project the escalation rate for the estimate, S&L reviewed five major craft labor types typically used in the power plant industry over the last five years using the average cost of craft labor. Based on this information, S&L projected an annual rate of 3.35%/year escalation on labor and indirects.

15. Sales Tax

Sales Tax is included in the estimate, and was applied at a rate of 8.125% on all material costs.

4.2 OVERALL PROJECT COSTS FOR CAPITAL ESTIMATE

Outside of the EPC Contractor's total cost, Entergy will incur other costs associated with the project, such as Owner's costs, services procured from third parties (including Owner's engineer, construction management support, startup and commissioning support and performance testing), and other project related costs. The following summarizes the additional project costs to Entergy associated with installing dry FGD at the White Bluff Station:

1. Owner's Costs (by Entergy)

Owner's Costs are direct costs that the Owner incurs over the life of the project. Entergy estimated the cost for the following items which would be real costs Entergy would incur based on the scope and schedule of this project:

- Internal Labor For all major projects, Entergy assigns internal resources to manage the project from initiation through development, contracting, installation, and commissioning. Internal labor includes personnel from several departments including Capital Project Management & Technology, Engineering, Fossil Operations, Legal, Environmental Services, Supply Chain, Risk Management, Finance, Regulatory, and the Operating Company. The internal labor is estimated based on a proposed staffing plan, developed from the project scope and preliminary schedule using average wage rates. Costs are based on the following anticipated staffing levels:
 - Project Development (through EPC Award) 25 months, equivalent of 10 people

- Project Execution (beginning at EPC Award) 53 months, equivalent of 22 people
- b. Internal Indirects Indirect costs incurred by Entergy include a payroll allocation, materials and supplies allocation, a depreciation allocation, and capital suspense allocation. The payroll allocation includes payroll overhead costs for items such as employee benefits. The materials and supplies allocation is used to distribute the overhead costs of managing storerooms that are used to procure, track, and issue material and supplies. The depreciation allocation distributes depreciation and amortization expenses for the new assets. Capital suspense is a distribution of overhead costs associated with administrators, engineers, and supervisors and includes function specific rates and A&G (Corporate Accounting) rates.
- c. Travel Expenses –Travel expenses are included to support the oversight of the project, including travel for site-visits, monthly status meetings, critical design reviews, etc. Travel expenses are estimated based on projects with similar schedules and scope.
- d. Legal Services Legal services are contracted from external law firms. These services include contract and regulatory compliance support. Entergy estimated the cost of the legal services based on recent EPC projects.
- e. Builders Risk Insurance Builder's Risk Insurance is included in the estimate and covers the materials, equipment, and labor associated with a large scale construction project in case of physical loss or damage. The estimated is based on estimated project value and schedules.
- f. Initial Fills Entergy will procure a supply contract for pebble lime to the station. Under this contract, Entergy will arrange to provide the initial fill of pebble lime to the station for startup, commissioning, and performance testing. A 120 day supply of pebble lime for both units has been included in the estimate based on the reagent pricing identified in Section 4.3.

2. Third Party Services - Construction Management Oversight

The construction management support was estimated based on the proposed staffing plan shown below, developed from the overall project scope and the preliminary schedule. It was assumed that Entergy will not have the internal support personnel required to perform this task, and therefore it will be outsourced. The cost of labor is based on present day cost, without escalation. Travel and living expenses are based on the current per diem rate for the White Bluff area of \$129/day. Costs are based on the following anticipated staffing levels:

- a. Home Office Support 15 months, 1 person
- b. On-Site Construction Manager 35 months, 1 person
- c. On-Site Construction Admin/Project Controls Engineer 35 months, 1 person
- d. Construction Field Engineers 31.5 months, 2 people

The total cost of the Construction Management Support was estimated to be \$4,969,000 without escalation.

WHITE BLUFF DRY FGD

COST ESTIMATE AND TECHNICAL BASIS

21.

3. Third Party Services – Startup and Commissioning Oversight

The startup and commissioning support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform this task, and therefore it will be outsourced. Costs are based on the following anticipated staffing levels:

a. Commissioning Support Specialists – 8 months, 2 people

The total cost of the startup and commissioning support was estimated to be \$550,000 without escalation.

4. Third Party Services – Owner's Engineer

The Owner's Engineer cost includes scope as summarized below and was estimated based on the preliminary project schedule, including assumptions on manpower requirements, as well as a comparison cost to other projects with similar scope.

The cost of labor is based on present day cost, without escalation. Costs are based on the following scope for the Owner's Engineer work:

- a. Conceptual Study Support
- b. EPC Specification Supporting Documents
- c. Project Schedule Development
- d. EPC Specification Development
- e. EPC Bid Evaluation and Contract Conformance
- f. General Project Support
 - Monthly Project Status Meetings
 - Weekly Teleconferences
 - Overall Coordination
 - Project Administration
 - Site Visits and Travel
- g. Permitting (Construction Permits and Modification to Title V and Solid Waste Permits)
- h. Design Review of Drawing Submittals
- i. Technical support during design, fabrication, construction, commissioning, and testing
- j. Equipment vendor QA/QC audits

The total cost of the Owner's Engineer was estimated to be \$6,750,000 without escalation.

5. Third Party Services – Performance testing

The cost for performance testing was developed as a factored estimate using costs from projects of similar scope. This cost includes the testing, performed by a third-party contractor hired by the Owner, and also includes the cost for S&L's assistance in the following tasks:

COST ESTIMATE AND TECHNICAL BASIS

22.

- a. Development of the test protocol
- b. Procuring the services of the testing contractor
- c. Overseeing the performance test campaign
- d. Evaluating the results of the testing with respect to guarantee compliance

The estimate for the third party testing contractor is based on the assumption that the contractor would be onsite for up to 3 days for each unit.

The total cost of the Performance Testing was estimated to be \$275,000 without escalation.

6. Project Contingency

Project contingency is included in the estimate to cover the uncertainty associated with the project costs, and was developed utilizing Entergy's procedure for developing a project's contingency. The process includes developing three components of contingency:

- a. Risk Contingency: This category of contingency is developed with the use of a Risk Register that is used to identify risks that may impact the project. Each risk in the Risk Register is analyzed to determine the probability of the risk and the impacts of the risk to the project.
- b. Estimate Uncertainty: This category of contingency uses the estimate accuracy classifications to develop an appropriate level of contingency. Entergy has adopted expected accuracy ranges for estimates with upper and lower boundaries for each class of costs estimate. These ranges recognize the uncertainty that exists in the technical engineering and project management deliverables that define scope.
- c. Unknown/Emergent Risks: This category of contingency is used to account for any issues that arise during the project that are not contained within the risk register or to cover any costs associated with unanticipated changes in project scope.

A cost qualitative risk assessment (QRA) was performed using Palisade Corporation's @RISK software. ORAs are used to validate the reasonableness of cost estimates, provide confidence for cost projections, and help establish a reasonable level of contingency based on risk-weighted estimates and project risk profiles. The QRA identifies various confidence levels that the contingency amount is sufficient for the project. For this estimate's cost ORA, an 80% confidence level was selected which means the project is 80% likely to be completed at or below the calculated value. The 80% confidence level results in a contingency value of 15% of the total project cost before escalation and IDC. This level of contingency is within Entergy's guidelines for target contingency range for this class of estimate. The contingency estimate is included in Attachment 8.

7. Escalation on Owner's Costs

Escalation was included in the estimate at an escalation rate 3.35% on the Owner's costs. This escalation rate is based on the rate developed by S&L for labor and indirects above.

8. Interest During Construction

Interest during construction (IDC) accounts for the time value of money associated with the distribution of construction cash flows over the construction period. IDC was applied to the total EPC project costs including contingency. The IDC was calculated based on the milestone payment

WHITE BLUFF DRY FGD
COST ESTIMATE AND TECHNICAL BASIS

schedule included in Attachment A and a typical interest rate of 7.0% per year which was assumed

schedule included in Attachment 4 and a typical interest rate of 7.0% per year which was assumed based on a low interest market environment.

SL-012831 Final, Rev. 1

23.

4.3 VARIABLE OPERATING AND MAINTENANCE COSTS

The following unit costs were used to develop the variable Operating and Maintenance (O&M) costs. All of these values, with the exception of the reagent costs, were provided by Entergy and are consistent with typical industry values. The reagent costs are based on recent supplier quotes received for White Bluff.

Table 4-1: Unit Pricing for Utilities (Provided by Entergy)

Unit Cost	Units	Value		
Pebble Lime	\$/ton	\$130.0		
High Quality Water	\$/1000 gal	\$2.00		
Low Quality Water	\$/1000 gal	\$0.53		
Byproduct Disposal	\$/ton	\$7.50		
Aux Power Cost ¹	\$/MWh	\$43.35		

Note 1: Entergy provided auxiliary power costs for the first year of operation.

Table 4-2 below summarizes the consumption rates estimated as well as the first year variable O&M costs for the Dry FGD system.

Table 4-2: Variable O&M Rates and First Year Costs, per Unit

	Units	Value
Dry FGD System Parameters		
Reagent Consumption	lb/hr	5,900
Byproduct Waste Production	lb/hr	13,000
Aux Power Consumption	kW	11,000
High Quality Water Consumption	gpm	65
Low Quality Water Consumption	gpm	775
First Year ¹ Variable O&M Costs (@CF ²)		
Reagent Cost	\$/year	\$2,422,000
Byproduct Waste Disposal Cost	\$/year	\$308,000
Aux Power Cost	\$/year	\$3,012,000
Water Cost	\$/year	\$205,000
Bag and Cage Replacement Cost	\$/year	\$372,000
Total First Year Variable O&M Cost	\$/year	\$6,319,000

Note 1: First year costs are provided in \$2015.

Note 2: The first year costs are calculated using an annual capacity factor of 72.1%.

4.4 FIXED OPERATING AND MAINTENANCE COSTS

The fixed O&M costs for the systems consist of operating personnel as well as maintenance costs (including material and labor). Based on the conceptual design for the dry FGD system, the estimated staffing additions are 28 personnel for two systems on adjacent units.

The annual maintenance costs are estimated as a percentage of the total capital equipment cost, based on the amount of operating equipment which will require routine maintenance. For this evaluation, the maintenance costs (maintenance and labor) were estimated to be approximately 1.3% of the project capital. This is a lower value than typical because items such as track work and civil work are high capital cost items with little to no maintenance.

Table 4-3 below summarizes the first year fixed O&M costs for the design and typical cases.

Table 4-3: First Year Fixed O&M Costs for Dry FGD, per Unit

First Year ¹ Fixed O&M Costs	Units	Value
Operating Labor ²	\$/year	\$1,660,000
Maintenance Material	\$/year	\$975,000
Maintenance Labor	\$/year	\$650,000
Total First Year Fixed O&M Cost	\$/year	\$3,285,000

Note 1: First year costs are provided in \$2015.

Note 2: Operating labor costs are based on a labor rate of \$56.95, which was provided by Entergy.

Note 3: Installation of systems on both units would require 28 operators total. For accounting purposes, this is considered 14 operators per unit.

4.5 SULFUR DESIGN BASIS SENSITIVITY

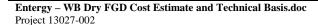
The average sulfur content of coal received at the White Bluff station is 0.57 lb SO₂/MMBtu; however, the White Bluff station has the ability to receive coal with sulfur content up to 1.2 lb SO₂/MMBtu. In order to provide a system which is capable of meeting the design SO₂ emission rate on a continuous basis through the range of coals delivered to site, the FGD equipment must be designed for the maximum coal sulfur which could be burned in the units.

S&L evaluated the incremental cost impact of designing the FGD system for an inlet sulfur of 1.2 lb SO₂/MMBtu versus a lower inlet sulfur of 0.57 lb SO₂/MMBtu. It is important to note that the majority of the components within the FGD Island are designed to accommodate the maximum volumetric flue gas flowrate from the unit. The size and cost of these components, primarily the absorber vessels, baghouses,

26.

E DLUFF DRY FUD

and ID fans, remains the same regardless of the inlet design sulfur. In addition, the majority of the BOP scope items which have been included in the capital cost estimate would remain constant regardless of the inlet design sulfur.


The primary equipment which is impacted by the design inlet sulfur would be the reagent handling, reagent preparation, and the waste handling systems. The inlet sulfur has a direct impact on the quantity of SO₂ which is being removed in the FGD system, and therefore a direct impact on the required lime (reagent) consumption rate as well as the quantity of byproduct produced. The following areas and associated equipment are impacted by adjusting the design inlet sulfur:

- a. Reagent Storage and Handling System:
 - Two long-term storage silos
- b. Reagent Preparation System (FGD Island):
 - Two lime day bins
 - Two detention lime slakers
 - Two lime slurry storage tanks
- c. By-product Handling System:
 - Two FGD by-product storage silos

The quantity of byproduct which is recycled through the system to achieve the required performance will remain relatively constant regardless of inlet design sulfur and is therefore not impacted. In addition, the lime slurry and byproduct recycle are continuously circulated in a loop to the units and back to the storage tanks; therefore, a variation in the design sulfur would not significantly impact the sizing of the recycle storage equipment, pumps or piping systems.

The cost differential was determined by vendor quotes who were requested to provide equipment costs for design capacities at each of the design sulfur levels; this is the same approach used to adjust the Alstom budgetary proposal from a design sulfur of 2.0 lb/MMBtu to 1.2 lb/MMBtu for the cost estimate. The following table summarizes the cost differential for the equipment identified above that is impacted by the sulfur design basis:

Equipment	Design Capacity @ 1.2 lb/MMBtu	Design Capacity @ 0.57 lb/MMBtu	Cost Reduction for 1.2 to 0.57 lb/MMBtu ¹		
Two long-term storage silos	2,200 tons each	1,000 tons each	- \$4,717,000		
Two lime day bins	650 tons each	300 tons each	- \$321,000		
Two detention lime slakers	13 tons/hour each	6 tons/hour each	- \$134,000		
Two lime slurry storage tanks	2,000 tons each	1,000 tons each	- \$472,000		

WHITE BLUFF DRY FGD

COST ESTIMATE AND TECHNICAL BASIS

391,000	

27.

Two FGD by-product storage silos	3,000 tons each	1,200 tons each	- \$3,391,000
One lime slaking water storage tank	175,000 gallons	100,000 gallons	-\$34,000
		TOTAL Differential	- \$9,069,000

Note 1: Cost Reduction shows the reduction in direct installed capital cost including reductions associated with BOP, i.e. reduced foundation sizes.

The reduction in the total direct installed costs associated with reducing the design sulfur level from 1.2 lb $SO_2/MMBtu$ to 0.57 lb $SO_2/MMBtu$ is approximately \$9M.

5. SUMMARY

The cost estimate for the White Bluff Units 1&2 Dry FGD systems is based on the addition of two SDA FGD systems for SO₂ removal. The attached capital estimate for the White Bluff Dry FGD system is based on this technical basis.

Final, Rev. 1

28.

6. **ATTACHMENTS**

- 1. White Bluff DFGD Project Units 1 and 2 Conceptual Capital Cost Estimate, Sargent & Lundy Estimate No. 33387A
- 2. White Bluff DFGD Project Units 1 and 2 Conceptual Cost Estimate Cash Flow, Sargent & Lundy Estimate No. 33387A
- 3. White Bluff DFGD Project Units 1 and 2 Level 1 Preliminary Execution Schedule
- 4. Monthly Progress Payment Schedule for White Bluff DFGD Project
- 5. S&L Estimating Documentation: Indirects and Construction Equipment included in Crew Rates
- 6. S&L Estimating Documentation: Escalation Projections
- 7. White Bluff DFGD Project Units 1 and 2 Conceptual General Arrangement Drawing
- 8. Entergy Basis of Contingency

Attachment 1

ATTACHMENT 1

Conceptual Capital Cost Estimate

ENTERGY ARKANSAS WHITE BLUFF STATION SDA EPC CONCEPTUAL COST ESTIMATE

Estimator A. KOCI

Labor rate table 15ARPBL

Project No. 13027-002

Client ENTERGY ARKANSAS

Station Name WHITE BLUFF

Unit 1 & 2

Estimate Date 12/18/2015

Reviewed By BA
Approved By MNO
Estimate No. 33387B

Cost index ARPBL

Estimate No.: 33387B Project No.: 13027-002 Estimate Date: 12/18/2015 Prep/Rev/App: A. KOCI/BA/MNO

ENTERGY ARKANSAS WHITE BLUFF STATION SDA EPC CONCEPTUAL COST ESTIMATE

Estimate Totals

	Description	Amount	Totals	Hours
Direct Costs:				
Labor		83,083,008		1,085,764
Material		50,642,339		
Subcontract		313,285,100		
Process Equipment		23,037,000		
		470,047,447	470,047,447	
Other Direct & Construction				
Indirect Costs: 91-1 Scaffolding		5,816,000		
91-2 Cost Due To OT 5-10's		11,616,000		
91-4 Per Diem		10,858,000		
91-5 Consumables		831,553		
91-6 Freight on Material		2,532,000		
91-8 Sales Tax		7,821,000		
91-9 Contractors G&A		16,696,000		
91-10 Contractors Profit				
91-10 Contractors Front		8,348,000	E24 E66 000	
		64,518,553	534,566,000	
Indirect Costs:				
93-1 Engineering Services		23,000,000		
93-4 SU/S Parts/ Initial Fills		300,000		
93-5 Technical Field Advisors		600,000		
93-8 EPC Fee		55,847,000		
		79,747,000	614,313,000	
Escalation: 96-1 Escalation on Material		6,012,000		
96-2 Escalation on Labor		18,769,000		
96-3 Escalation on Subcontract		37,429,000		
96-4 Escalation on Process Eq		2,115,000		
96-5 Escalation on Indirects		11,600,000		
90-3 Escalation on muliects		75,925,000	690,238,000	
		73,923,000	030,230,000	
Total EPC Cost			690,238,000	
Owner's Costs:				
99-1 Owner's Costs		58,546,000		
		58,546,000	748,784,000	
Third Party Services:				
100 CM Oversight		4,969,000		
102 Start-up Oversight		550,000		
103 Owner's Engineer		6,750,000		
104 Performance Testing		275,000		
· ·		12,544,000	761,328,000	
Project Contingency :		402.040.000		
110 Project Contingency	_	102,810,000		
		102,810,000	864,138,000	
Escalation Addition:				
120 Escalation on Lines 99-110		2,273,000		
		2,273,000	866,411,000	
Interest During Construction				
Interest During Construction: 130 Interest During Constr.		125,078,000		
100 interest burning Consti.	_		004 490 000	
		125,078,000	991,489,000	
Total			991,489,000	
			, ,	

Estimate No.: 33387B Project No.: 13027-002 Estimate Date: 12/18/2015 Prep/Rev/App: A. KOCI/BA/MNO

ENTERGY ARKANSAS WHITE BLUFF STATION SDA EPC CONCEPTUAL COST ESTIMATE

Area	Description	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Labor Cost	Total Cost
10	FGD ISLAND	297,904,000	(1,649,000)		-7,814	(680,533)	295,574,467
	FGD ISLAND FOUNDATIONS AND ENCLOSURES	297,904,000	(1,049,000)	14,838,628	254,893	18,939,033	33,777,661
	REAGENT HANDLING SYSTEM	6,000,000	2,046,000	3,162,954	59,192	4,646,650	15,855,604
	BYPRODUCT HANDLING SYSTEM	7,713,100	6,872,000	1,089,675	107,800	7,935,771	23,610,546
111	FLUE GAS SYSTEM	1,110,110	5,51 =,511	3,267,828	113,961	7,898,036	11,165,864
121	CIVIL BOP	570,000		8,073,474	106,878	11,535,049	20,178,523
151	MECHANICAL BOP	998,000	1,969,000	6,882,913	115,659	9,189,021	19,038,934
190	DEMOLITION / RELOCATION	100,000		1,578,182	33,735	2,546,302	4,224,484
201	ELECTRICAL BOP SYSTEM		12,299,000	10,665,684	290,576	20,231,688	43,196,372
211	INSTRUMENTATION AND CONTROLS BOP SYSTEM		1,500,000	1,083,000	10,884	841,993	3,424,993
	TOTAL DIRECT	313,285,100	23,037,000	50,642,339	1,085,764	83,083,008	470,047,447

Note: Negative costs included in the cost estimate are due to adjustments to the FGD Budgetary Proposal which was based on a design sulfur of 2.0 lb/MMBTU.

Cost adjustments are included to adjust the design sulfur basis to 1.2 lb/MMBTU.

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
10			FGD ISLAND									
	23.00.00	23.13.75	STEEL SILO									
		23.13.73	SILO - LIME DAY BINS 650 TONS - EQUIPMENT ONLY	CREDIT FOR REDUCTION FROM 1200 TONS	-2.00 LS		(273,000)			73.12 /MH		(273,000)
			SILO - LIME DAY BINS 650 TONS - LABOR ONLY SILO	CREDIT FOR REDUCTION FROM 1200 TONS	-2.00 LS	=	(273,000)		-690 - 690	73.12 /MH	(50,428) (50,428)	(50,428) (323,428)
			STEEL				(273,000)		-690		(50,428)	(323,428)
	31.00.00	31.45.00	MECHANICAL EQUIPMENT FGD EQUIPMENT									
		31.43.00	DRY FGD -UNITS 1 & 2 FGD ISLAND - EQUIPMENT	BASED ON ALSTOM BUDGETARY	1.00 LS	152,030,000		-		97.28 /MH		152,030,000
			DRY FGD -UNITS 1 & 2 FGD ISLAND - INSTALLATION COST		1.00 LS	145,874,000		-		97.28 /MH		145,874,000
			DRY FGD - INLUDES ABSORBERS	PROPOSAL AUGUST 8, 2013 BASED ON ALSTOM BUDGETARY	1.00 LS	-		-		/MH		
			DRY FGD - INCLUDES BAGHOUSES	PROPOSAL AUGUST 8, 2013 BASED ON ALSTOM BUDGETARY	1.00 LS					/MH		
				PROPOSAL AUGUST 8, 2013		-	-	-				
			DRY FGD - INCLUDES REGEANT PREP EQUIPMENT FROM DAY SILOS	BASED ON ALSTOM BUDGETARY PROPOSAL AUGUST 8, 2013	1.00 LS	-	-	-		/MH		
			DRY FGD - INCLUDES BYPRODUCT RECYCLE PREPARATION EQUIPMENT	BASED ON ALSTOM BUDGETARY PROPOSAL AUGUST 8, 2013	1.00 LS	-	-	-		/MH		
			DRY FGD - INCLUDES ID BOOSTER FANS	BASED ON ALSTOM BUDGETARY PROPOSAL AUGUST 8, 2013	1.00 LS	-	-	-		/MH		
			DRY FGD - INCLUDES PROCESS INSTRUMENTATION AND DCS	BASED ON ALSTOM BUDGETARY	1.00 LS	-	-	-		/MH		
			DRY FGD - INCLUDES INTERCONNECTING WIRING,	PROPOSAL AUGUST 8, 2013 BASED ON ALSTOM BUDGETARY	1.00 LS	-	-	-		/MH		
			PIPING ETC WITHIN FGD ISLAND DRY FGD - INCLUDES DUCTWORK FROM INLET FLANGE	PROPOSAL AUGUST 8, 2013 BASED ON ALSTOM BUDGETARY	1.00 LS	-	-	-		/MH		
			TO OUTLET BOOSTER FAN FLANGE FLOW MODEL	PROPOSAL AUGUST 8, 2013 INCLUDED WITH ALSTOM PROPOSAL	1.00 LT	_		-		/MH		
			REAGENT PREPARATION - LIME SLURRY FEED TANKS - EQUIPMENT ONLY	REDUCTION IN SIZE TO 2000 TON FROM 3900 TONS BASED ON ALSTOM SDA	-2.00 LT	-	(1,300,000)	-		90.81 /MH		(1,300,000)
			REAGENT PREPARATION - LIME SLURRY FEED TANKS -	BUDGETARY PROPOSAL 8/2013 REDUCTION IN SIZE TO 2000 TON FROM	-2.00 LT				-6,370	90.81 /MH	(578,470)	(578,470)
			LABOR	3900 TONS BASED ON ALSTOM SDA	-2.00 L1	-		-	-6,370	90.61 /WIT	(576,470)	(576,470)
			FGD EQUIPMENT	BUDGETARY PROPOSAL 8/2013		297,904,000	(1,300,000)		-6,370		(578,470)	296,025,530
			MECHANICAL EQUIPMENT			297,904,000	(1,300,000)		-6,370		(578,470)	296,025,530
	33.00.00		MATERIAL HANDLING EQUIPMENT									
		33.14.00	MATERIAL HANDLING EQUIPMENT	ODEDIT DAGED ON ALGTON ODA	0.00 54		(70,000)			00.40 (0.41)		(70,000)
			MATERIAL HANDLING SYSTEM - LIME SLAKING TRAIN - REDUCTION FROM 25 TPH TO 13 TPH - EQUIPMENT ONLY	CREDIT BASED ON ALSTOM SDA BUDGETARY PROPOSAL 8/2013	-2.00 EA	-	(76,000)	-		68.48 /MH		(76,000)
			MATERIAL HANDLING SYSTEM - LIME SLAKING TRAIN - REDUCTION FROM 25 TPH TO 13 TPH - LABOR ONLY	CREDIT BASED ON ALSTOM SDA BUDGETARY PROPOSAL 8/2013	-2.00 EA	-		-	-754	68.48 /MH	(51,635)	(51,635)
			MATERIAL HANDLING EQUIPMENT				(76,000)		-754		(51,635)	(127,635)
			MATERIAL HANDLING EQUIPMENT 10 FGD ISLAND			297,904,000	(76,000) (1,649,000)		-754 -7,814		(51,635) (680,533)	(127,635) 295,574,467
							(1,010,000)		.,		(,,	
101			FGD ISLAND FOUNDATIONS AND ENCLOSURES									
	21.00.00		CIVIL WORK									
		21.53.00	PILING									
			PILE - 18" AUGER CAST X 60' LONG PILE - 18" AUGER CAST X 60' LONG	UNIT 1 BAGHOUSE FDN UNIT 2 BAGHOUSE FDN	252.00 EA 252.00 EA	-	-	480,816 480,816	6,662 6,662	108.46 /MH 108.46 /MH	722,568 722,568	1,203,384 1,203,384
			PILING					961,632	13,324		1,445,136	2,406,768
		21.54.00	CAISSON									
			2.5 FT DIA X 30 FT DEEP CAISSON	ABSORBER TOWERS FOUNDATIONS	180.00 EA	-	-	334,260	4,552	108.46 /MH	493,680	827,940
			2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	ABSORBER TOWERS FOUNDATIONS REAGENT PREP ENCLOSURE 50'X50'	180.00 EA 50.00 EA	-	-	334,260 92,850	4,552 1,264	108.46 /MH 108.46 /MH	493,680 137,133	827,940 229,983
			2.5 FT DIA X 30 FT DEEP CAISSON	SUBSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG	72.00 EA			133,704	1.821	108.46 /MH	197,472	331,176
				60' X 60' SUBSTRUCTURE		-	-		.,,			
			2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	UNIT 1 BOOSTER FAN FOUNDATION UNIT 2 BOOSTER FAN FOUNDATION	40.00 EA 40.00 EA	-	-	74,280 74,280	1,011 1,011	108.46 /MH 108.46 /MH	109,707 109,707	183,987 183,987
			CAISSON					1,043,634	14,211		1,541,379	2,585,013

22.00.00	22.13.00	CONCRETE CONCRETE CONCRETE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION SESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	REAGENT PREP ENCLOSURE 50'X50' SUBSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG 60' X 60' SUBSTRUCTURE UNIT 1 BOOSTER FAN FOUNDATION UNIT 2 BOOSTER FAN FOUNDATION ABSORBER TOWERS FOUNDATION ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	300.00 CY 432.00 CY 600.00 CY 1.300.00 CY		- - -	2,005,266 69,000 99,360 138,000	27,536 2,414 3,476 4,828	59.71 /MH 59.71 /MH	2,986,515 144,128 207,544	4,991 ,7 213, 306,
	22.13.00	CONCRETE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	SUBSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG 60' X 60' SUBSTRUCTURE UNIT 1 BOOSTER FAN FOUNDATION UNIT 2 BOOSTER FAN FOUNDATION ABSORBER TOWER FOUNDATION ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	432.00 CY 600.00 CY 600.00 CY 1,300.00 CY		- - -	99,360	3,476	59.71 /MH		
	22.13.00	MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	SUBSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG 60' X 60' SUBSTRUCTURE UNIT 1 BOOSTER FAN FOUNDATION UNIT 2 BOOSTER FAN FOUNDATION ABSORBER TOWER FOUNDATION ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	432.00 CY 600.00 CY 600.00 CY 1,300.00 CY		- - -	99,360	3,476	59.71 /MH		
		MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	BYPRODUCTS RECYCLE EQUIPMENT BLDG 60' X 60' SUBSTRUCTURE UNIT 1 BOOSTER FAN FOUNDATION UNIT 2 BOOSTER FAN FOUNDATION ABSORBER TOWER FOUNDATION ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	600.00 CY 600.00 CY 1,300.00 CY	-	-				207,544	306
		MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	UNIT 1 BOOSTER FAN FOUNDATION UNIT 2 BOOSTER FAN FOUNDATION ABSORBER TOWER FOUNDATION ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	600.00 CY 1,300.00 CY	-	-	138,000	4 828	E0 C : C :		
		COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	ABSORBER TOWER FOUNDATION ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	1,300.00 CY	-			4,020	59.71 /MH	288,255	42
		CONCRETE FOUNDATIONS - COMPOSITE RATE	ABSORBER TOWERS FOUNDATIONS LIME SLURRY FEED TANKS	.,		-	138,000	4,828	59.71 /MH	288,255	42
		CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	LIME SLURRY FEED TANKS		-	-	299,000	10,460	59.71 /MH	624,553	9:
		CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE		1,300.00 CY		-	299,000	10,460	59.71 /MH	624,553	9:
		CONCRETE FOUNDATIONS - COMPOSITE RATE		400.00 CY	-	-	92,000	3,218	59.71 /MH	192,170	28
			UNIT 1 BAGHOUSE FDN 3 FDNS 83'X63'X3'	1,743.00 CY	-	-	400,890	14,024	59.71 /MH	837,381	1,23
			8' X 10' UNIT 1 BAGHOUSE AREA, COMPRESSOR BLDG	6.00 CY	-	-	1,380	48	59.71 /MH	2,883	
		CONCRETE FOUNDATIONS - COMPOSITE RATE	UNIT 2 BAGHOUSE FDN 3 FDNS 83'X63'X3'	1,743.00 CY	-	-	400,890	14,024	59.71 /MH	837,381	1,2
		CONCRETE FOUNDATIONS - COMPOSITE RATE	8' X 10' UNIT 2 BAGHOUSE AREA, TRUCK SCALE HOUSE	6.00 CY	-	-	1,380	48	59.71 /MH	2,883	
		CONCRETE					1,938,900	67,828		4,049,985	5,98
		CONCRETE					1,938,900	67,828		4,049,985	5,98
23.00.00	23.17.00	STEEL GALLERY									
•	23.17.00	GALVANIZED GRATING, 1 1/4" DEEP x 3/16" BEARING BAR WITH HOLD DOWN CLIPS	REAGENT PREP ENCLOSURE 50'X50' SUPERSTRUCTURE	4,000.00 SF	-	-	60,000	460	66.07 /MH	30,377	
		GALVANIZED GRATING, 1 1/4" DEEP x 3/16" BEARING BAR WITH HOLD DOWN CLIPS	BYPRODUCTS RECYCLE EQUIPMENT BLDG	5,760.00 SF	-	-	86,400	662	66.07 /MH	43,743	1
		3" HEAVY DUTY GRATING	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	200.00 SF	-	-	11,200	39	66.07 /MH	2,582	
		DOUBLE PIPE HANDRAIL WITH POSTS AND GUARD PLATES. PAINTED	REAGENT PREP ENCLOSURE 50'X50' SUPERSTRUCTURE	3,000.00 LF	-	-	159,000	621	66.07 /MH	41,009	2
		DOUBLE PIPE HANDRAIL WITH POSTS AND GUARD PLATES, PAINTED	BYPRODUCTS RECYCLE EQUIPMENT BLDG	4,320.00 LF	-	-	228,960	894	66.07 /MH	59,053	2
		SELF CLOSING SWING GATE - USER DEFINED	REAGENT PREP ENCLOSURE 50'X50' SUPERSTRUCTURE	40.00 EA	-	-	11,200	184	66.07 /MH	12,151	
		SELF CLOSING SWING GATE - USER DEFINED	BYPRODUCTS RECYCLE EQUIPMENT BLDG	58.00 EA	-	-	16,240	267	66.07 /MH	17,619	
		LADDER	REAGENT PREP ENCLOSURE 50'X50' SUPERSTRUCTURE	800.00 LF	-	-	40,000	368	66.07 /MH	24,302	
		LADDER	BYPRODUCTS RECYCLE EQUIPMENT BLDG	1,100.00 LF	-	-	55,000	506	66.07 /MH	33,415	
		STAIR SYSTEM	REAGENT PREP ENCLOSURE 50'X50' SUPERSTRUCTURE	2,400.00 SF	-	-	218,400	3,172	66.07 /MH	209,601	4
		STAIR SYSTEM GALLERY	BYPRODUCTS RECYCLE EQUIPMENT BLDG	3,500.00 SF	-	-	318,500 1,204,900	4,626 11,798	66.07 /MH	305,669 779,520	1,98
:	23.25.00	ROLLED SHAPE									
		LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, TWO COAT PAINT	REAGENT PREP ENCLOSURE 50'X50' GALLERY SUPPORT	200.00 TN	-	-	716,000	5,057	92.62 /MH	468,423	1,1
		LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, TWO COAT PAINT	BYPRODUCTS RECYCLE EQUIPMENT BLDG	288.00 TN	-	-	1,031,040	7,283	92.62 /MH	674,529	1,7
		LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, GALVANIZED	U1 BAGHOUSE SKIRTS STEEL GIRTS	36.00 TN	-	-	138,240	910	92.62 /MH	84,316	2
		LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, GALVANIZED	U2 BAGHOUSE SKIRTS STEEL GIRTS	36.00 TN	-	-	138,240	910	92.62 /MH	84,316	2
		BUILDING MIX, TWO COAT PAINTED		50.00 TN	-	-	128,000	920	92.62 /MH	85,168	2
		BUILDING MIX, TWO COAT PAINTED		50.00 TN		-	128,000	920	92.62 /MH	85,168	2
		BUILDING MIX, TWO COAT PAINTED	REAGENT PREP ENCLOSURE SUPERSTRUCTURE	500.00 TN	-	-	1,280,000	9,195	92.62 /MH	851,678	2,1
		BUILDING MIX, TWO COAT PAINTED ROLLED SHAPE	BYPRODUCTS RECYCLE EQUIPMENT BLDG	720.00 TN	-		1,843,200 5,402,720	13,241 38,437	92.62 /MH	1,226,417 3,560,015	3,0 8,9 6
		STEEL					6,607,620	50,235		4,339,534	10,94
24.00.00	24.17.00	ARCHITECTURAL ELEVATOR									
*	24.17.00	PASSENGER, TRACTION, 4 STOPS, 3500LB, 350 FT/MIN	SCHINDLER ELEVATOR BUDGET	1.00 LS			159,350	943	106.04 /MH	99.946	2
		PASSENGER, TRACTION, 4 STOPS, 3500LB, 350 FT/MIN PASSENGER, TRACTION, 4 STOPS, 3500LB, 350 FT/MIN	SCHINDLER ELEVATOR BUDGET SCHINDLER ELEVATOR BUDGET	1.00 LS 1.00 LS	-	-	159,350	943	106.04 /MH 106.04 /MH	99,946	2:

ENTERGY ARKANSAS WHITE BLUFF STATION SDA EPC CONCEPTUAL COST ESTIMATE

Gro	ıp Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		ELEVATOR					318,700	1,885		199,892	518,5
	24.35.00	PRE-ENGINEERED BUILDING									
		PRE-ENGINEERED BUILDING	8' X 10' UNIT 1 BAGHOUSE AREA, COMPRESSOR BLDG	1.00 LT	-		20,000	115	92.62 /MH	10,646	30,6
		PRE-ENGINEERED BUILDING	8' X 10' UNIT 2 BAGHOUSE AREA, TRUCK SCALE HOUSE	1.00 LT	-		10,000	115	92.62 /MH	10,646	20,6
		PRE-ENGINEERED BUILDING	SCALE HOUSE				30,000	230		21,292	51,2
	24.37.00	ROOFING									
	2.101.00	METAL, INSULATED, 2 IN GALVANIZED, PAINTED, 22 GA	U1 SDA TOP ENCLOSURE ROOF	3,318.00 SF	-		54,946	339	35.02 /MH	11,887	66
		METAL, INSULATED, 2 IN GALVANIZED, PAINTED, 22 GA	U2 SDA TOP ENCLOSURE ROOF	3,318.00 SF	-		54,946	339	35.02 /MH	11,887	66
		METAL, INSULATED- USER DEFINED	REAGENT PREP ENCLOSURE SUPERSTRUCTURE	2,500.00 SF	-		19,425	862	35.02 /MH	30,190	49
		METAL, INSULATED- USER DEFINED	BYPRODUCTS RECYCLE EQUIPMENT BLDG	3,600.00 SF	-		27,972	1,241	35.02 /MH	43,473	71
		ROOFING					157,289	2,782		97,436	254,
	24.41.00	SIDING METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	U1 SDA TOP ENCLOSURE SIDING	2,450.00 SF	_		40,572	251	79.59 /MH	19,948	60
		GALVANIZED PAINTED METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	U2 SDA TOP ENCLOSURE SIDING	2,450.00 SF	_		40,572	251	79.59 /MH	19,948	60.
		GALVANIZED PAINTED METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	REAGENT PREP ENCLOSURE	10,000.00 SF	_		165,600	1,023	79.59 /MH	81,420	247.
		GALVANIZED PAINTED METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	BYPRODUCTS RECYCLE EQUIPMENT BLDG	14,400.00 SF	-		238,464	1,473	79.59 /MH	117,244	355
		GALVANIZED PAINTED METAL, UNINSULATED, 24 GA, GALVANIZED CORROGATED		26.260.00 SF	_		85,345	1,238	79.59 /MH	98.496	183
		METAL, UNINSULATED, 24 GA, GALVANIZED CORROGATED		26,280.00 SF	-		85,410	1,238	79.59 /MH	98,571	183
		SIDING					655,963	5,473		435,626	1,091,
	24.99.00	ARCHITECTURAL, MISCELLANEOUS									
		PENTHOUSE HEATING	U1 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	64.10 /MH	4,715	68
		PENTHOUSE LIGHTING PENTHOUSE FIRE PROTECTION	U1 SDA SUPERSTRUCTURE U1 SDA SUPERSTRUCTURE	6,400.00 SF 6,400.00 SF	-		64,000 32,000	74 37	82.05 /MH 82.05 /MH	6,036 3,018	70 35
		PENTHOUSE HEATING	U2 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	64.10 /MH	4,715	68
		PENTHOUSE LIGHTING	U2 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	82.05 /MH	6,036	70
		PENTHOUSE FIRE PROTECTION	U2 SDA SUPERSTRUCTURE	6,400.00 SF	-		32,000	37	82.05 /MH	3,018	35
		ARCHITECTURAL, MISCELLANEOUS - USER DEFINED	U1 BAGHOUSE SKIRTS MANDOORS	3.00 EA	-		1,500	28	51.10 /MH	1,410	2
		ARCHITECTURAL, MISCELLANEOUS - USER DEFINED ARCHITECTURAL, MISCELLANEOUS	U2 BAGHOUSE SKIRTS MANDOORS	3.00 EA	-		1,500 323,000	28 423	51.10 /MH	1,410 30,358	353,
		ARCHITECTURAL					1,484,952	10,794		784,604	2,269,
31.00.0	0	MECHANICAL EQUIPMENT									
	31.41.00	FIRE PROTECTION EQUIPMENT & SYSTEM									
		FIRE PROTECTION EQUIPMENT & SYSTEM - USER DEFINED	REAGENT PREP ENCLOSURE 50'X50' FIRE PROTECTION ALLOWANCE	5,000.00 SF	-		27,500	385	68.48 /MH	26,369	53
		FIRE PROTECTION EQUIPMENT & SYSTEM - USER DEFINED	BYPRODUCTS RECYCLE EQUIPMENT BLDG' FIRE PROTECTION ALLOWANCE	10,800.00 SF	-		59,400	832	68.48 /MH	56,956	116
		FIRE PROTECTION EQUIPMENT & SYSTEM	THE THOTES HOLVILLES WHOL				86,900	1,217		83,325	170,
	31.83.00	TANK									
		TANK - MOVE OIL TANK FROM USED OIL SHED AND	WASTE MANAGEMENT FACILITY (1.00 EA	-		-	345	90.81 /MH	31,314	31
		REINSTALL AT WASTE MANAGEMENT FACILITY TANK	REPLACES HAZMAT BLDG)					345		31,314	31,
		MECHANICAL EQUIPMENT					86,900	1,562		114,639	201,
34.00.0	0	HVAC									
	34.99.00	HVAC, MISCELLANEOUS HVAC, MISCELLANEOUS - HVAC ALLOWANCE	REAGENT PREP ENCLOSURE 50'X50'	5,000.00 SF	_		55,000	57	64.10 /MH	3,684	58
		HVAC, MISCELLANEOUS - HVAC ALLOWANCE	LIGHTING ALLOWANCE BYPRODUCTS RECYCLE EQUIPMENT BLDG	10,800.00 SF	_		118,800	124	64.10 /MH	7,957	126
		-,	LIGHTING ALLOWANCE	.,							
		HVAC, MISCELLANEOUS					173,800	182		11,641	185,4

36.00.00

36.13.00 DUCT

INSULATION

ea Gro	oup Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	36.13.00	DUCT MINERAL WOOL INSULATION, 4 IN THICK, 8 LB/CF	U1 BAGHOUSE INSUILATION TOP, SIDES	141.831.00 SF	_		- 850,986	35,050	68.76 /MH	2,410,051	3.261.03
		DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE MINERAL WOOL INSULATION, 4 IN THICK, 8 LB/CF	AND HOPPERS U2 BAGHOUSE INSULATIOIN - TOPS, SIDES	141,831.00 SF	-		- 850,986	35,050	68.76 /MH	2,410,051	3,261,03
		DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF	AND HOPPERS SDA SHELL INSULATION	40,167.00 SF	-		- 261,086	10,388	68.76 /MH	714,280	975,36
		DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF	SDA ROOF INSULATION	11,019.00 SF	÷		- 71,624	2,850	68.76 /MH	195,948	267,57
		DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF	SDA SHELL INSULATION	40,167.00 SF	-		- 261,086	10,388	68.76 /MH	714,280	975,36
		DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	SDA ROOF INSULATION	11,019.00 SF	-		- 71,624	2,850	68.76 /MH	195,948	267,57
		DUCT					2,367,390	96,576		6,640,559	9,007,94
		INSULATION					2,367,390	96,576		6,640,559	9,007,94
41.00		ELECTRICAL EQUIPMENT									
	41.37.00	LIGHTING ACCESSORY (FIXTURE) LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	REAGENT PREP ENCLOSURE 50'X50' LIGHTING ALLOWANCE	5,000.00 SF	-		- 55,000	57	63.63 /MH	3,657	58,65
		LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	BYPRODUCTS RECYCLE EQUIPMENT BLDG LIGHTING ALLOWANCE	10,800.00 SF	-		- 118,800	124	63.63 /MH	7,899	126,69
		LIGHTING ACCESSORY (FIXTURE)					173,800	182		11,556	185,35
		101 FGD ISLAND FOUNDATIONS AND					173,800 14,838,628	182 254,893			185,35 33,777,66
102		ENCLOSURES REAGENT HANDLING SYSTEM					. 1,000,020	20 1,000		10,000,000	00,111,00
21.00		CIVIL WORK									
	21.53.00	PILING PILE - 18" AUGER CAST X 60' LONG	UNLOADING SHED 200' X 75 WIDE	63.00 EA			120 204	1.666	100.46 (MI	100.642	200.0
		PILING	UNLOADING SHED 200 X 75 WIDE	63.00 EA	-		- <u>120,204</u> 120,204	1,666 1,666		180,642	300,84 300,84
	21.54.00	CAISSON									
		2.5 FT DIA X 30 FT DEEP CAISSON	SUBSTRUCTURE 2200 TON LIME STORAGE SILOS	100.00 EA	-		- 185,700	2,529	108.46 /MH	274,267	459,9
		CAISSON					185,700	2,529		274,267	459,96
	21.71.00										
		RAIL, TIE & BALLAST - 136 LB/YD	REAGENT HANDLING SYSTEM UPGRADE AND EXTEND LIME RAIL TRACK TO AVOID BLOCKING ACCESS BY 150 CAR COAL TRAINS	9,060.00 TF	-		- 1,540,200	15,621	81.27 /MH	1,269,493	2,809,6
		TRACKWORK - EXTEND LIME RAIL SPUR AND RELOCATE SWITCH 2060 FT	RELOCATE COAL TRACK SWITCH TO WEST TO AVOID INTERFERENCE WITH 150 CAR COAL TRAINS	1.00 LS	-		- 374,000	7,989	81.27 /MH	649,226	1,023,2
		TRACKWORK					1,914,200	23,609		1,918,719	3,832,9
		CIVIL WORK					2,220,104	27,803		195,948 6,640,559 6,640,559 3,657 7,899 11,556 11,556 18,939,033 180,642 274,267 274,267 1,269,493	4,593,73
22.00	.00 22.13.00	CONCRETE CONCRETE									
		MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE	SUBSTRUCTURE 2-2200 TON LIME STORAGE SILOS	600.00 CY	-		- 138,000	4,828	59.71 /MH	288,255	426,2
		FOUNDATION, 4500 PSI - COMPOSITE RATE CONCRETE	UNLOADING SHED 200' X 75 WIDE	925.00 CY	-		- 212,750 350,750	7,443 12,270	59.71 /MH		657,1 1,083,3
		CONCRETE					350,750	12,270			1,083,3
24.00	.00 24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING									
	24.35.00	SHELL ONLY, STEEL UNINSULATED 22 GA,	UNLOADING SHED 200' X 75 WIDE x15' TALL	15,000.00 SF	-		- 525,000	4,828	92.62 /MH	447,131	972,1
		PRE-ENGINEERED BUILDING ARCHITECTURAL					525,000 525,000	4,828 4,828			972,13 972,13
26.00	.00	MISCELLANEOUS STRUCTURAL ITEM					525,000	.,520		,101	V. 2, IV
	26.13.00	CONCRETE SILO CONCRETE SILO - 2200 TON LIME STORAGE SILO	ERECTED - 46' DIA X 154' TALL EA - OPTION	2.00 LS	6,000,000				59.71 /MH		6,000,0
			2	Page 7							
				rage /							

Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	26.13.00	CONCRETE SILO CONCRETE SILO - BIN VENT FILTERS	INCLUDED W/ SILO	1.00 LS	_	_		0	/MH		
		CONCRETE SILO - LEVEL INDICATOR	INCLUDED W/ SILO	1.00 LS	-	-		0	/MH		
		CONCRETE SILO - VACUUM PRESSURE RELIEF VALVE CONCRETE SILO - MANHOLE	INCLUDED W/ SILO INCLUDED W/ SILO	1.00 LS 1.00 LS		-		0			
		CONCRETE SILO			6,000,000			0			6,000,000
		MISCELLANEOUS STRUCTURAL ITEM			6,000,000			0			6,000,000
31.00.00	31.25.00	MECHANICAL EQUIPMENT CRANES & HOISTS									
	01120100	CRANES & HOISTS - & TROLLEYS ALLOWANCE	REAGENT HANDLING SYSTEM	1.00 LT		275,000	-		68.48 /MH		275,00
		CRANES & HOISTS MECHANICAL EQUIPMENT				275,000 275,000					275,00 275,00
		WECHANICAL EQUIPMENT				275,000					275,00
33.00.00		MATERIAL HANDLING EQUIPMENT									
	33.14.00	MATERIAL HANDLING EQUIPMENT LIME HANDLING SYSTEM - 25 TPH PNEUMATIC TRAIN		1.00 LS	-	500,000	-	3,306	68.48 /MH	226,378	726,37
		UNLOADING SYSTEM	INCLUDED WITH 25 THE DISCUMATIC TRAIN			,		.,	/MH	-1-	-,-
		LIME HANDLING SYSTEM - VACUUM EXHAUSTER WITH SOUND ENCLOSURES	INCLUDED WITH 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM	2.00 LS	-		-				
		LIME HANDLING SYSTEM - RECEIVING PANS UNDER RAIL CARS	INCLUDED WITH 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM	1.00 LS	-	-	-		/MH		
		LIME HANDLING SYSTEM - FILTER SEPARATORS ON TOP OF SILO	INCLUDED WITH 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM	1.00 LS	-	-	-		/MH		
		LIME HANDLING SYSTEM - 25 TPH PNEUMATIC TRANSPORT SYSTEM		1.00 LS	-	500,000	-	3,306	68.48 /MH	226,378	726,37
		LIME HANDLING SYSTEM - PRESSURE BLOWERS WITH	INCLUDED WITH 25 TPH PNEUMATIC TRANSPORT SYSTEM	3.00 LS	-		-		/MH		
		SOUND ENCLOSURES LIME HANDLING SYSTEM - PRESSURE FEEDERS	INCLUDED WITH 25 TPH PNEUMATIC	1.00 LS	-	-	-		/MH		
		LIME HANDLING SYSTEM - SPARE PARTS FOR STARTUP	TRANSPORT SYSTEM	1.00 LS	-	8,000	-		68.48 /MH		8,00
		AND SPECIAL TOOLS LIME HANDLING SYSTEM - FREIGHT		1.00 LS		50,000	-		68.48 /MH		50,00
		MATERIAL HANDLING EQUIPMENT				1,058,000		6,611		452,755	1,510,755
	33.41.00	MOBILE YARD EQUIPMENT									
		MOBILE YARD EQUIPMENT - TRACKMOBILE MOBILE YARD EQUIPMENT	REAGENT HANDLING SYSTEM	1.00 EA		225,000 225,000	-		68.48 /MH		225,000 225,000
		WOBILE TARD EQUIPMENT				223,000					223,000
	33.51.00	RAIL CAR UNLOADER	IN THE CADING SHED SOONES WIDE	400 17		205 200		0.400	00.00 ##!	007.444	540.44
		RAIL CAR UNLOADER - RAIL CAR UNLOADER	IN UNLOADING SHED 200'X75' WIDE	1.00 LT		225,000 225,000	-	3,103 3,103	92.62 /MH	287,441 287,441	512,44 512,44
		MATERIAL HANDLING EQUIPMENT				1,508,000		9,715		740,197	2,248,19
34.00.00		HVAC									
	34.99.00	HVAC, MISCELLANEOUS									
		HVAC, MISCELLANEOUS - HVAC ALLOWANCE HVAC, MISCELLANEOUS	2-2200 TON LIME STORAGE SILOS	3,600.00 SF	-	-	39,600 39,600	41 41	64.10 /MH	2,652 2,652	42,25 42,25
		HVAC					39,600	41		2,652	42,25
35.00.00		PIPING									
55.00.00	35.14.10	CARBON STEEL, STRAIGHT RUN									
		8 IN DIA, SCH 40, 8" VACUUM CONVEY PIPING WITH 4 ELBOWS	TO SUPPORT 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM	500.00 LF	-	38,000		540	77.36 /MH	41,792	79,79
		12 IN DIA, 3/8 IN STD- 2500 LF OF 10"/12" TRANSPORT	TO SUPPORT 25 TPH PNEUMATIC	2,500.00 LF	-	225,000		3,966	77.36 /MH	306,772	531,77
		PRESSURE PIPING W 8 ELBOWS CARBON STEEL, STRAIGHT RUN	TRANSPORT SYSTEM		-	263,000		4,506		348,565	611,565
		PIPING				263,000		4,506		348,565	611,56
41.00.00		ELECTRICAL EQUIPMENT									
	41.37.00	LIGHTING ACCESSORY (FIXTURE)									
		LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE LIGHTING ACCESSORY (FIXTURE)	4200 TON LIME STORAGE SILO	2,500.00 SF	-	-	27,500 27,500	29 29		1,828 1,828	29,328 29,328
		ELECTRICAL EQUIPMENT					27,500	29		1,828	29,328
		102 REAGENT HANDLING SYSTEM			6,000,000	2,046,000	3,162,954	59,192		4,646,650	15,855,604

G	roup	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
21.0	00.00	21.54.00	CIVIL WORK CAISSON									
			2.5 FT DIA X 30 FT DEEP CAISSON	ASH SILO AND FGD BYPRODUCT SILOS	125.00 EA	-	-	232,125	3,161	108.46 /MH	342,833	574,958
			CAISSON CIVIL WORK					232,125 232,125	3,161 3,161		342,833 342,833	574,958 574,958
								232,123	3,101		342,033	374,330
22.0	00.00	22.13.00	CONCRETE CONCRETE									
			MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE	FGD BYPRODUCT SILOS	614.00 CY	-	-	141,220	4,940	59.71 /MH	294,981	436,20
			MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE	FLY ASH BLENDING SILO	67.00 CY	-	-	15,410	539	59.71 /MH	32,188	47,598
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	FOR TRUCK SCALES	144.00 CY	-	-	33,120	1,159	59.71 /MH	69,181	102,301
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	MISC	100.00 CY	-	-	23,000	805	59.71 /MH	48,043	71,043
			CONCRETE					212,750	7,443		444,393	657,143
			CONCRETE					212,750	7,443		444,393	657,143
23.0	00.00		STEEL									
		23.13.75	SILO									
			NEW 250 TON FLYASH BLENDING BIN SILO - 24FT DIA X 72 FT HIGH - ERECTION AND FREIGHT INCLUDED	SILO	1.00 EA		275,000		2,839	73.12 /MH	207,594	482,594
			SILO STEEL				275,000 275,000		2,839 2,839		207,594 207,594	482,594 482,594
							213,000		2,000		201,004	402,00
26.0	00.00	26.13.00	MISCELLANEOUS STRUCTURAL ITEM CONCRETE SILO									
			CONCRETE SILO - 3000 TON FGD BYPRODUCT SILO	ERECTED - 52' DIA X 162' TALL EA	2.00 LS	7,600,000				59.71 /MH		7,600,000
			CONCRETE SILO - BIN VENT FILTERS	INCLUDED W/ SILO	1.00 LS	-	-		0	/MH /MH		
			CONCRETE SILO - LEVEL INDICATOR CONCRETE SILO - VACUUM PRESSURE RELIEF VALVE	INCLUDED W/ SILO INCLUDED W/ SILO	1.00 LS 1.00 LS	-	-		0			
			CONCRETE SILO - MANHOLE	INCLUDED W/ SILO	1.00 LS	-	-		0	/MH		
			CONCRETE SILO - SPARE PARTS FOR STARTUP AND SPECIAL TOOLS		1.00 LS	-	10,000			73.12 /MH		10,000
			CONCRETE SILO - FREIGHT CONCRETE SILO		1.00 LS	7,600,000	70,000 80,000		0	73.12 /MH		70,000 7,680,00 0
			MISCELLANEOUS STRUCTURAL ITEM			7,600,000	80,000		0			7,680,000
33.0	00.00		MATERIAL HANDLING EQUIPMENT									
		33.13.00	BYPRODUCT HANDLING EQUIPMENT	50UBUSUS W.O. UBSO 50510US								
			PNEUMATIC ASH CONVEYORS PNEUMATIC ASH CONVEYORS	EQUIPMENT INCLUDES FREIGHT INSTALLATION COST	1.00 LS 1.00 LT	-	5,655,000	-	79,293	73.12 /MH 73.12 /MH	5,797,912	5,655,000 5,797,912
			BLOWERS, PRESSURE FEEDERS, TRANSPORT PIPING	INCLUDED ABOVE	1.00 LT	-		-	70,200	73.12 /MH	0,707,012	0,707,012
			AND VACUUM / PRESSURE RELIEF VALVES									
			-FOUR PIN MIXERS BELOW CONCRETE SILOS INCL ALL VALVES AND ACCESSORIES		1.00 LT	-	540,000	-	3,347	73.12 /MH	244,742	784,742
			-DRY UNLOADING SPOUT BELOW THE PRODUCT SILO		2.00 EA	-	60,000	-	258	73.12 /MH	18,877	78,877
			AIRSLIDE CONVEYORS FROM BLENDING BIN MIXER/PIPE CONVEYOR, INCL ALL VALVES AND ACCESSORIES		4.00 EA	-	80,000	-	688	73.12 /MH	50,327	130,327
			BYPRODUCT HANDLING EQUIPMENT			=	6,335,000		83,587		6,111,857	12,446,857
		33.57.00	SCALE									
			SCALE - NEW TRUCK SCALES	BYPRODUCT HANDLING SYSTEM	2.00 EA		182,000		460	68.48 /MH	31,485	213,485
			SCALE MATERIAL HANDLING EQUIPMENT				182,000 6,517,000		460 84,046		31,485 6,143,342	213,485 12,660,342
24.0	00.00		HVAC									
34.0	0.00	34.37.00	DUST COLLECTOR									
			DUST COLLECTOR - INSTALLED COST DUST COLLECTOR		1.00 LS	113,100 113,100	-			64.10 /MH		113,100 113,100
			HVAC			113,100						113,100
35.0	00.00		PIPING									
,		35.14.10	CARBON STEEL, STRAIGHT RUN									
			12 IN DIA, 3/8 IN STD 12 IN DIA, 3/8 IN STD	CONVEYOR PIPING 12" TIE IN PIPING TO BYPRODUCT SILO	5,000.00 LF 1,500.00 LF	-	-	496,000 148,800	7,931 2,379	77.36 /MH 77.36 /MH	613,545 184,063	1,109,545 332,863
			12 NA DIA, 3/0 NA 31D	12 TIE IN FIFING TO BYPKUDUCT SILO		-	-	148,800	2,379	11.36 /MH	184,063	332,863
					Page 9							

ENTERGY ARKANSAS WHITE BLUFF STATION SDA EPC CONCEPTUAL COST ESTIMATE

Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	35.14.10	CARBON STEEL, STRAIGHT RUN 12 IN DIA, 3/8 IN STD	FROM THE EXISTING 50 TPH FLY ASH PRESSURE SYSTEM	1,500.00 LF	-	-	148,800	2,379	77.36 /MH	184,063	332,863
		CARBON STEEL, STRAIGHT RUN					644,800	10,310		797,608	1,442,408
		PIPING					644,800	10,310		797,608	1,442,408
		105 BYPRODUCT HANDLING SYSTEM			7,713,100	6,872,000	1,089,675	107,800		7,935,771	23,610,540
1		FLUE GAS SYSTEM									
21.00.00		CIVIL WORK									
	21.53.00	PILING									
		PILE - 18" AUGER CAST X 60' LONG PILE - 18" AUGER CAST X 60' LONG	UNIT 1 FLUE GAS SYSTEM UNIT 2 FLUE GAS SYSTEM	138.00 EA 138.00 EA	-	-	263,304 263,304	3,648 3,648	108.46 /MH 108.46 /MH	395,692 395,692	658,99 658,99
		PILING	UNIT 2 PLUE GAS STSTEM	136.00 EA	-	-	526.608	7.297	106.46 /WIFI	791,384	1,317,99
		CIVIL WORK					526,608	7,297		791,384	1,317,992
22.00.00	22.13.00	CONCRETE CONCRETE									
	22.13.00	SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, -	UNIT 1 FLUE GAS SYSTEM	966.00 CY	-	-	222,180	7,772	59.71 /MH	464,091	686,27
		COMPOSITE RATE									
		SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	UNIT 2 FLUE GAS SYSTEM	966.00 CY	-	-	222,180	7,772	59.71 /MH	464,091	686,27
		CONCRETE					444.360	15.545		928.182	1.372.54
		CONCRETE					444,360	15,545		928,182	1,372,542
23.00.00	23.15.00	STEEL DUCTWORK									
	23.13.00	PANEL CONSTRUCTION, DUCT PLATE WITH STIFFENERS,	UNIT 1 FLUE GAS SYSTEM - INCLUDED IN	TN	-	-			97.25 /MH		
		INTERNAL TRUSSES, AND TURNING VANES	ALSTOM'S QUOTE								
		PANEL CONSTRUCTION, DUCT PLATE WITH STIFFENERS, INTERNAL TRUSSES, AND TURNING VANES	UNIT 2 FLUE GAS SYSTEM - INCLUDED IN ALSTOM'S QUOTE	TN	-	-			97.25 /MH		
	23.21.00	GIRDER ROLLED SHAPE GIRDER - USER DEFINED	UNIT 1 FLUE GAS SYSTEM - INCLUDED IN	TN					92.62 /MH		
		ROLLED SHAPE GIRDER - USER DEFINED	ALSTOM'S QUOTE	IIN	-	-			92.02 /WIFI		
		ROLLED SHAPE GIRDER - USER DEFINED	UNIT 2 FLUE GAS SYSTEM - INCLUDED IN ALSTOM'S QUOTE	TN	-	-			92.62 /MH		
27.00.00	27.17.00	PAINTING & COATING PAINTING									
	27.17.00	PAINTING - CHIMNEY	UNIT 1 FLUE GAS SYSTEM	1.00 LT	-	-	110,000	4,109	47.61 /MH	195,639	305,639
		PAINTING					110,000	4,109		195,639	305,639
		PAINTING & COATING					110,000	4,109		195,639	305,639
31.00.00		MECHANICAL EQUIPMENT									
31.00.00	31.27.00	DAMPERS & ACCESSORIES									
		DAMPERS & ACCESSORIES	UNIT 1 FLUE GAS SYSTEM - INCLUDED IN	SF	-				97.25 /MH		
		DAMPERS & ACCESSORIES	ALSTOM'S QUOTE UNIT 2 FLUE GAS SYSTEM - INCLUDED IN	SF	_				97.25 /MH		
		SAME ENGLANCES	ALSTOM'S QUOTE	3.					07.20 7		
	31.33.00	EXPANSION JOINT									
	31.33.00	EXPANSION JOINT	UNIT 1 FLUE GAS SYSTEM - INCLUDED IN	LF	-				97.25 /MH		
		EVELVICION ICHT	ALSTOM'S QUOTE								
		EXPANSION JOINT	UNIT 2 FLUE GAS SYSTEM - INCLUDED IN ALSTOM'S QUOTE	LF	-				97.25 /MH		
36.00.00		INSULATION									
30.00.00	36.13.00	DUCT									
	50	MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF	UNIT 1 FLUE GAS SYSTEM	168,220.00 SF	-	-	1,093,430	43,505	68.76 /MH	2,991,416	4,084,846
		DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	LINIT 2 FLUE CAS SYSTEM	169 220 00 25			1 002 400	42.505	68.76 /MH	2.004.442	4.004.04
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	UNIT 2 FLUE GAS SYSTEM	168,220.00 SF	-	-	1,093,430	43,505	00./0 /MH	2,991,416	4,084,84
		DUCT					2,186,860	87,010		5,982,831	8,169,691
		INSULATION					2,186,860	87,010		5,982,831	8,169,691
		111 FLUE GAS SYSTEM					3,267,828	113,961		7,898,036	11,165,86

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	21.00.00	21.14.00	CIVIL WORK STRIP & STOCKPILE TOPSOIL STRIP & STOCKPILE TOPSOIL - 12" STRIP & STOCKPILE TOPSOIL - 0NSITE STRIP & STOCKPILE TOPSOIL - 12" STRIP & STOCKPILE TOPSOIL - 10*	SITE GRADING SITE GRADING	300,000.00 SF 40,000.00 CY 600,000.00 SF 160,000.00 CY	:		-	690 5,287 1,379 21,149	182.33 /MH 182.33 /MH 182.33 /MH 182.33 /MH	125,745 964,044 251,490 3,856,175	125,745 964,044 251,490 3,856,175
			STRIP & STOCKPILE TOPSOIL						28,506		5,197,453	5,197,453
		21.17.00	EXCAVATION MASS EXCAVATION, COMMON EARTH USING 1.5 CY BACKHOE AND (6) 12 CY DUMP TRUCKS, 4 MI ROUNDTRIP	2 CELL PROCESS WATER RETENTION POND, 220' X 150' X 7'9"	7,000.00 CY	-		-	523	182.33 /MH	95,356	95,356
			EXCAVATION - EXCAVATION , BACKFILL & COMPACT ALL FOUNDATIONS EXCAVATION		12,600.00 CY	-		-	4,345 4,868	79.31 /MH	344,588 439,945	344,588 439,945
		21.19.00	DISPOSAL DISPOSAL OF EXCESS MATERIAL USING DUMP TRUCK, 4 MI ROUND TRIP DISPOSAL	2 CELL PROCESS WATER RETENTION POND, 220' X 150' X 7'9"	7,000.00 CY	-		-	483 483	79.31 /MH	38,288	38,288
		21.20.00	BACKFILL FOUNDATION BACKFILL, PREVIOUSLY EXCAVATED	2 CELL PROCESS WATER RETENTION	1,000.00 CY	-		-	172	79.31 /MH	13,674	13,674
			MATERIAL BACKFILL	POND, 220' X 150' X 7'9"					172		13,674	13,674
		21.39.00	STORM DRAINAGE UTILITIES STORM SEWER WORK STORM DRAINAGE UTILITIES	SITE GRADING	1.00 LT	-		- <u>110,000</u> 110,000	2,299 2,299	72.14 /MH	165,839 165,839	275,839 275,839
		21.41.00	EROSION AND SEDIMENTATION CONTROL CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK EROSION AND SEDIMENTATION CONTROL	SITE GRADING	33,334.00 SY 66,667.00 SY	:	:	355,007 710,004 1,065,011	1,149 2,299 3,448	97.31 /MH 97.31 /MH	111,853 223,702 335,555	466,860 933,706 1,400,566
		21.57.00	ROAD, PARKING AREA, & SURFACED AREA BITUMINOUS ROAD - ROAD UPGRADE	BYPRODUCT HAUL ROAD - EAST OF COAL PILE	10,000.00 LF	-		500,000	8,046	78.37 /MH	630,563	1,130,563
			BITUMINOUS ROAD - ELIMINATE CHICANE CURVES AT LOW PRESSURE SERVICE WATER PUMPS		1.00 LT	-	-	500,000		78.37 /MH		500,000
			BITUMINOUS ASPHALT (10,000 - 49,999 SF) ROADWORK 24' WIDE 4" ASPHALT BITUMINOUS ASPHALT (200,000 SF AND ABOVE)	SITE GRADING HWY 365, NEW BYPASS LANE (ON WEST	1,668.00 LF 9,000.00 LF	-		201,828	2,013 1,655	78.37 /MH 78.37 /MH	157,767 129,716	359,595 732,716
			BITUMINOUS ASPHALT (200,000 SF AND ABOVE)	SIDE) HWY 365, NEW LEFT TURN LANE (SOUTH BOUND)	3,000.00 LF	-	-	201,000	552	78.37 /MH	43,239	244,239
			BITUMINOUS ASPHALT (200,000 SF AND ABOVE)	HWY 365, NEW MERGE LANE (NORTH BOUND)	4,175.00 LF	-	-	270,720	768	78.37 /MH	60,174	339,899
			BITUMINOUS ASPHALT (200,000 SF AND ABOVE) BITUMINOUS ASPHALT (200,000 SF AND ABOVE)	HWY 365, NEW RIGHT TURN LANE (NORTH BOUND) CONTRACTOR HAUL ROAD (HWY 46 SPUR), UPGRADE, REMOVE EXISTING ASPHALT,	4,000.00 LF 4,250.00 LF	-		- 268,000 - 514,250	736 3,126	78.37 /MH 78.37 /MH	57,651 245,019	325,651 759,269
			BITUMINOUS ASPHALT (200,000 SF AND ABOVE)	SUBGRADE PREP NEW BASE AND NEW ASPHALT CONTRACTOR HAUL ROAD (HWY 46 SPUR),	580.00 LF	-		- 84,100	907	78.37 /MH	71,055	155,155
			BITUMINOUS ASPHALT (200,000 SF AND ABOVE)	EXTENSION, 24' WIDE WIDENING OF EXISTING MAIN PLANT ROAD FROM CONTRACTOR HAUL ROAD (HWY 46	2,900.00 LF			194,300	1,767	78.37 /MH	138,454	332,754
			ROAD, PARKING AREA, & SURFACED AREA	SPUR) TO MAIN GUARD HOUSE				3,346,203	19,569		1,533,638	4,879,841
		21.71.00	TRACKWORK SIGNAL SYSTEM - RR CROSSING SIGNALS AND GATES	CONTRACTOR HAUL ROAD (HWY 46 SPUR) CROSSING	1.00 LS	220,000		-		/MH		220,000
			TRACKWORK			220,000						220,000
		21.99.00	CIVIL WORK, MISCELLANEOUS CIVIL WORK - CONSTRUCTION LAYDOWN AREAS	FENCING, POWER ETC	10.00 AC	-		780,000	9,195	79.31 /MH	729,287	1,509,287

31.00.00

MECHANICAL EQUIPMENT

Grou	p Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		CIVIL WORK, MISCELLANEOUS					780,000	9,195		729,287	1,509,2
		CIVIL WORK			220,000		5,301,214	68,540		8,453,679	13,974,8
22.00.00		CONCRETE									
	22.13.00	CONCRETE SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, -	NEW ASH HANDLING MAINT BLDG	75.00 CY	-	-	17,250	603	59.71 /MH	36,032	53,
		COMPOSITE RATE SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	45'X45'X18' TALL NEW WAREHOUSE BUILDING 200'X75'X15' TALI	555.00 CY	-	-	127,650	4,466	59.71 /MH	266,636	394,
		CONCRETE FOUNDATIONS - COMPOSITE RATE	8' X 10' BYPRODUCT AREA, TRUCK SCALE HOUSE	6.00 CY	-	-	1,380	48	59.71 /MH	2,883	4,
		CONCRETE FOUNDATIONS	2 CELL PROCESS WATER RETENTION POND, 220' X 150' X 7'9"	1,800.00 CY	-	-	216,000	2,586	59.71 /MH	154,422	370
		CONCRETE	FOND, 220 X 150 X 79				362,280	7,703		459,973	822
	22.15.00	EMBEDMENT									
		EMBEDMENTS, CARBON STEEL	2 CELL PROCESS WATER RETENTION POND, 220' X 150' X 7'9"	10,000.00 LB	-	-	30,000	575	51.10 /MH	29,368	59
		EMBEDMENT					30,000	575		29,368	59
	22.17.00	FORMWORK BUILT UP INSTALL & STRIP	2 CELL PROCESS WATER RETENTION	11,000.00 SF			27,500	2,529	81.61 /MH	206,370	233
		FORMWORK	POND, 220' X 150' X 7'9"	11,000.00 31			27,500	2,529	OT.OT /WIT	206,370	233
							27,500	2,529		206,370	233
	22.25.00	REINFORCING UNCOATED A615 GR60	2 CELL PROCESS WATER RETENTION	135.00 TN	-	-	138,375	2,793	56.35 /MH	157,391	29
		REINFORCING	POND, 220' X 150' X 7'9"				138,375	2,793		157,391	295
		CONCRETE					558,155	13,600		853,102	1,411
24.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING									
		SHELL ONLY, STEEL UNINSULATED 22 GA, 45 FT X 45 FT	NEW ASH HANDLING MAINT BLDG 45'X45'X18' TALL	2,025.00 SF	-	-	56,700	791	92.62 /MH	73,298	12
		SHELL ONLY, STEEL UNINSULATED 22 GA, 200 FT X 75 FT x 15' TALL	NEW WAREHOUSE BUILDING 200'X75'X15' TALL	15,000.00 SF	-	-	420,000	5,862	92.62 /MH	542,945	963
		PRE-ENGINEERED BUILDING	8' X 10' BYPRODUCT AREA, TRUCK SCALE HOUSE	1.00 LT	-	-	10,000	115	92.62 /MH	10,646	2
		PRE-ENGINEERED BUILDING					486,700	6,768		626,888	1,113
	24.41.00	SIDING									
		INSULATION, 2 IN THICK FIBERGLASS,	NEW ASH HANDLING MAINT BLDG 45'X45'X18' TALL	3,240.00 SF	-	-	3,888	37	79.59 /MH	2,964	
		INSULATION, 2 IN THICK FIBERGLASS,	NEW WAREHOUSE BUILDING 200'X75'X15' TALL	8,250.00 SF	-	-	9,900	95	79.59 /MH	7,547	1
		SIDING ARCHITECTURAL					13,788 500,488	6,900		10,511 637,400	1,137
26.00.00		MISCELLANEOUS STRUCTURAL ITEM									
26.00.00	26.99.00	MISCELLANEOUS STRUCTURAL ITEM,									
		MISCELLANEOUS MISCELLANEOUS STRUCTURAL ITEM - WATER INTAKE		1.00 LS	-	-	1,110,000	15,537	92.62 /MH	1,439,017	2,54
		PUMP STRUCTURE - ONE BAY MISCELLANEOUS STRUCTURAL ITEM,					1,110,000	15,537		1,439,017	2,549
		MISCELLANEOUS MISCELLANEOUS STRUCTURAL ITEM					1,110,000	15,537		1,439,017	2,549
27.00.00		PAINTING & COATING					.,,	.0,507		.,,	2,070
27.00.00	27.17.00	PAINTING									
		PAINTING - ALLOWANCE	NEW WAREHOUSE BUILDING 200'X75'X15'	15,000.00 SF	-	-	15,000	172	47.61 /MH	8,209	23
			TALL								

### HAC, MISCELLANEOUS - HAC ALLOWANCE NEW WAREHOUSE BUILDING 200X757X15 15,000.00 SF . 165,000 172 ### HVAC, MISCELLANEOUS 157,275 196 ### HVAC	68.48 /MH 1 1 23 64.10 /MH 72 64.10 /MH 66 23 51.10 /MH	1,155 68.48 /MH 1,311 1,311 23 64.10 /MH 172 64.10 /MH 196 23 51.10 /MH 172 51.10 /MH 196 196	10,679 79,106 89,786 89,786 1,492 11,052 12,544 12,544 1,189 8,810 10,000 10,000	21,817 161,606 183,423 183,423 23,767 176,052 199,819 199,819 3,619 26,810 30,430
RIFE PROTECTION EQUIPMENT SYSTEM	1 1 23 64.10 /MH 22 64.10 /MH 66 51.10 /MH 72 51.10 /MH	1,311 1,311 23 64.10 /MH 172 64.10 /MH 196 196 23 51.10 /MH 172 51.10 /MH 196 196	1,492 11,052 12,544 12,544 1,189 8,810	183,423 183,423 23,767 176,052 199,819 199,819 3,619 26,810
FIRE PROTECTION EQUIPMENT 93,638 1,311	1 64.10 /MH 72 64.10 /MH 66 6 51.10 /MH	1,311 23 64.10 /MH 172 64.10 /MH 196 196 23 51.10 /MH 172 51.10 /MH 196	1,492 11,052 12,544 12,544 1,189 8,810	183,423 23,767 176,052 199,819 199,819 3,619 26,810 30,430
### A4.00.00 ##	1 64.10 /MH 72 64.10 /MH 66 6 51.10 /MH	1,311 23 64.10 /MH 172 64.10 /MH 196 196 23 51.10 /MH 172 51.10 /MH 196	1,492 11,052 12,544 12,544 1,189 8,810	183,423 23,767 176,052 199,819 199,819 3,619 26,810 30,430
14.00.00 14.00.00	72 64.10 /MH 16 16 23 51.10 /MH 172 51.10 /MH	172 64.10 /MH 196 196 23 51.10 /MH 172 51.10 /MH 196	11,052 12,544 12,544 1,189 8,810	176,052 199,819 199,819 3,619 26,810
HYAC, MISCELLANEOUS - HYAC ALLOWANCE NEW ASH HANDLING MAINT BLDG 2,025.00 SF . 22.275 23 45/45/82/18 TALL NEW WARRHOUSE BUILDING 2007/57/15 15,000.00 SF . 165,000 172 1741. HYAC, MISCELLANEOUS TALL OWANCE NEW WARRHOUSE BUILDING 2007/57/15 15,000.00 SF . 165,000 172 1741. HYAC, MISCELLANEOUS TALL OWANCE NEW WARRHOUSE BUILDING 2007/57/15 15,000.00 SF . 185,000 172 187,275 196 196 197,275 196 196 197,275 197 196 197,275 197 197 197 197 197 197 197 197 197 197	72 64.10 /MH 16 16 23 51.10 /MH 172 51.10 /MH	172 64.10 /MH 196 196 23 51.10 /MH 172 51.10 /MH 196	11,052 12,544 12,544 1,189 8,810	176,052 199,819 199,819 3,619 26,810
## HVAC, MISCELLANEOUS - HVAC ALLOWANCE NEW YARRHOUSE BUILDING 200X75X15* 15,000.00 SF . 165,000 172 ## HVAC, MISCELLANEOUS	72 64.10 /MH 16 16 23 51.10 /MH 172 51.10 /MH	172 64.10 /MH 196 196 23 51.10 /MH 172 51.10 /MH 196	11,052 12,544 12,544 1,189 8,810	176,052 199,819 199,819 3,619 26,810
HVAC, MISCELLANEOUS 187,275 198	23 51.10 /MH 72 51.10 /MH	196 196 23 51.10 /MH 172 51.10 /MH 196	12,544 12,544 1,189 8,810	199,819 199,819 3,619 26,810
## HVAC 187,275 196 196,99.00 198	23 51.10 /MH 72 51.10 /MH	196 23 51.10 /MH 172 51.10 /MH 196 196	12,544 1,189 8,810 10,000	3,619 26,810 30,430
1.00.00 NSULATION NSULATION NEW ASH HANDLING MAINT BLDG 2.025.00 SF - 2.430 2.33 2	23 51.10 /MH /2 51.10 /MH	23 51.10 /MH 172 51.10 /MH 196 196	1,189 8,810 10,000	3,619 26,810 30,430
INSULATION NEW WAREHOUSE BUILDING 200X75X15 15,000.00 SF 18,000.00 SF 18,000.00 SF 18,000.00 SF 18,000.00 SF 18,000.00 SF 18,000.00 SF 19,000.00 SF 1	16	196 196	10,000	30,430
185ULATION, MISCELLANEOUS 196 185ULATION 20,430 196		196		
### ### ##############################	06		10,000	30,430
41.37.00 LIGHTING ACCESSORY (FIXTURE) LIGHTING ACCESSORY (FIXTURE) ALLOWANCE NEW ASH HANDLING MAINT BLDG 2,025.00 SF - 22,275 23 23 45 24 25 24 25 25 25 25		00 00 00 00		
A5X45X18*TALL NEW WAREHOUSE BUILDING 200X75X15* 15,000.00 SF - 165,000 172				
TALL, LIGHTING ALCOWANCE 187,275 196	3 63.63 /MH	23 63.63 /MH	1,481	23,756
LIGHTING ACCESSORY (FIXTURE) 187,275 196	2 63.63 /MH	172 63.63 /MH	10,971	175,971
ELECTRICAL EQUIPMENT, MISCELLANEOUS - FOR 3RD PUMP 100,000 230 2	6	196	12,452	199,727
FLECTRICAL EQUIPMENT, MISCELLANEOUS 100,000 230	i0 82.05 /MH	230 82.05 /MH	18,862	118,862
71.00.00 PROJECT INDIRECT 71.25.00 CONSULTANT, THIRD PARTY CONSULTANT - SUBSURFACE INVESTIGATION 1.00 LS 200,000 CONSULTANT - GEOTECHNICAL 1.00 LS 150,000 CONSULTANT, THIRD PARTY 350,000 PROJECT INDIRECT 350,000 121 CIVIL BOP 570,000 8,073,474 106,878			18,862	118,862
71.25.00 CONSULTANT, THIRD PARTY CONSULTANT - SUBSURFACE INVESTIGATION CONSULTANT - GEOTECHNICAL CONSULTANT, THIRD PARTY PROJECT INDIRECT 350,000 121 CIVIL BOP 570,000 8,073,474 106,878	6	426	31,314	318,589
CONSULTANT - GEOTECHNICAL 1.00 LS 150,000 -	/MH	/MH		200,000
PROJECT INDIRECT 350,000 121 CIVIL BOP 570,000 8,073,474 106,878		/MH	-	150,000
121 CIVIL BOP 570,000 8,073,474 106,878				350,000 350,000
454 MECHANICAL DOD	8	106,878	11,535,049	20,178,523
151 MECHANICAL BOP 11.00.00 DEMOLITION				
11.21.00 CIVIL WORK CIVIL WORK - DIG AND REFILL PIPE TRENCH BYPRODUCT PIPE FROM RACK 100.00 LF 172	'2 79.31 /MH	172 79.31 /MH	13,674	13,674
CIVIL WORK - DIG AND REFILL PIPE TRENCH REAGENT UNLOADING PIPE FROM RACK 200.00 LF 345 CIVIL WORK 517		345 79.31 /MH	27,348 41,022	27,348 41,022
DEMOLITION 517			41,022	41,022
21.00.00 CIVIL WORK				
21.17.00 EXCAVATION EXCAVATION - 6* PIPE 4* DEEP PIPE TRENCH & BEDDING 1,430.00 LF - - 8,680 526		526 79.31 /MH	41,715	50,395
EXCAVATION - 6" PIPE 4" DEEP PIPE TRENCH & BEDDING 750.00 LF 4,553 276	6 70.31 /ML	276 79.31 /MH	21,879	26,431
EXCAVATION - 3" PIPE 4" DEEP PIPE TRENCH & BEDDING 3,000.00 LF - 12,750 966			76,575	89,325
	76 79.31 /MH 66 79.31 /MH		25,525	29,775
	76 79.31 /MH 66 79.31 /MH 22 79.31 /MH		134,262 42,754	156,617 52,684
EXCAVATION - 36* PIPE 4* DEEP PIPE TRENCH & BEDDING RIVER WATER PIPE TIE IN 20.00 LF 733 2.1	76 79.31 /MH 66 79.31 /MH 22 79.31 /MH 33 79.31 /MH			2,411
EXCAVATION - 32" PIPE 4" DEEP PIPE TRENCH & BEDDING	76 79.31 /MH 66 79.31 /MH 22 79.31 /MH 93 79.31 /MH 39 79.31 /MH	539 79.31 /MH	1,677	207,782

ENTERGY ARKANSAS WHITE BLUFF STATION SDA EPC CONCEPTUAL COST ESTIMATE

	Phase	Description	Notes	Quantity	Subcontract Cost	Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	21.17.00	EXCAVATION EXCAVATION - 10" PIPE 4' DEEP PIPE TRENCH & BEDDING	RECYCLE ASH WATER PIPE DISCHARGE BURIED	1,800.00 LF	-	-	15,930	786	79.31 /MH	62,354	78,284
		EXCAVATION - 4" PIPE 4' DEEP PIPE TRENCH & BEDDING	LEACHATE PIPING	3,500.00 LF	-	-	16,905	1,167	79.31 /MH	92,528	109,433
		EXCAVATION					156,460	8,154		646,677	803,138
	21.54.00	CAISSON	TANK FOUNDATIONS	70.00 54			141.132	1.000	108.46 /MH	208.443	349,575
		2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	COMMON PIPE RACK FOUNDATIONS	76.00 EA 186.00 EA	-	-	141,132 345,402	1,922 4,703		208,443 510,136	349,575 855,538
		2.5 FT DIA X 30 FT DEEP CAISSON	BYPRODUCT PIPE RACK FOUNDATIONS	94.00 EA	-	-	174,558	2,377	108.46 /MH	257,811	432,369
		2.5 FT DIA X 30 FT DEEP CAISSON	REAGENT UNLOADING PIPE RACK FOUNDATIONS	16.00 EA	-	-	29,712	405	108.46 /MH	43,883	73,595
		CAISSON					690,804	9,407		1,020,272	1,711,076
		CIVIL WORK					847,264	17,561		1,666,949	2,514,214
22.00.00	22.13.00	CONCRETE									
		SPREAD FOOTING FOUNDATION, 4500 PSI - COMPOSITE RATE	3X 35' DIA TANK FDN	81.00 CY	-	-	18,630	652	59.71 /MH	38,914	57,54
		CONCRETE FOUNDATIONS - COMPOSITE RATE	COMMON PIPE RACK FOUNDATIONS	207.00 CY	-	-	47,610	1,666		99,448	147,058
		CONCRETE FOUNDATIONS - COMPOSITE RATE	BYPRODUCT PIPE RACK FOUNDATIONS	105.00 CY	-	-	24,150	845		50,445	74,595
		CONCRETE FOUNDATIONS - COMPOSITE RATE	REAGENT UNLOADING PIPE RACK FOUNDATIONS	18.00 CY	-	-	4,140	145	59.71 /MH	8,648	12,788
		CONCRETE					94,530	3,307		197,455	291,985
		CONCRETE					94,530	3,307		197,455	291,98
23.00.00	00.04.00	STEEL									
	23.21.00	GIRDER ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20#	COMMON 500'LX20'W, 400'Lx15'W,400'Lx9'W,	196.00 TN			531,160	3,830	92.62 /MH	354,724	885,88
		TO 40# / LF, 2 COAT PAINTED ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20#	ALL 20' HIGH BYPRODUCT PIPE RACK, 650LF X6 WIDE X	39.00 TN			105,690	762	92.62 /MH	70,583	176,27
		TO 40# / LF, 2 COAT PAINTED ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20#	20' HIGH REAGENT UNLOADING PIPE RACK, 100LF X	6.00 TN		_	16,260	117	92.62 /MH	10.859	27.11
		TO 40# / LF, 2 COAT PAINTED	6' WIDE X 20' HIGH	0.00					02.02 /////		
		GIRDER STEEL					653,110 653,110	4,709 4,709		436,166 436,166	1,089,276
27.00.00		PAINTING & COATING									
27.00.00	27.13.00	COATING									
	21110100	COATING - CHIMNEY - ACID RESISTANT COATING TOP 100 FT OUTSIDE SHELL		1.00 LS	270,000	-			47.61 /MH		270,000
		COATING			270,000						270,000
		PAINTING & COATING			270,000						270,000
31.00.00		MECHANICAL EQUIPMENT									
	31.17.00	COMPRESSOR & ACCESSORIES AIR COMPRESSOR, CENTRIFUGAL - 250 SCFM EA @ 200	SERVICE AIR	2.00 EA	-	310,000	-	92	68.48 /MH	6,297	316,297
		PSIG AIR COMPRESSOR, CENTRIFUGAL - 250 SCFM EA @ 200 PSIG	INSTRUMENT AIR	2.00 EA	-	310,000	-	92	68.48 /MH	6,297	316,297
		AIR DRYER - W/FILTERS, 250 NET SCFM EA	SERVICE AIR	2.00 EA	-	33,400	-	74	68.48 /MH	5,038	38,438
		AIR DRYER - W/FILTERS, 250 NET SCFM EA	INSTRUMENT AIR	2.00 EA	-	33,400		74		5,038	38,438
		AIR RECEIVER - 1,000 GALLON EA	SERVICE AIR	2.00 EA	-	11,200		37	68.48 /MH	2,519	13,719
		AIR RECEIVER - 1,000 GALLON EA COMPRESSOR & ACCESSORIES	INSTRUMENT AIR	2.00 EA	-	11,200 709,200		37 405	68.48 /MH	2,519 27,707	736,907
	31.41.00	FIRE PROTECTION EQUIPMENT & SYSTEM									
		DELUGE - POWER TRANSFORMERS FIRE PROTECTION EQUIPMENT & SYSTEM		3.00 EA	-	-	127,500 127,500	1,959 1,959	77.36 /MH	151,519 151,519	279,019 279,019
	31.65.00	HEAT EXCHANGER									
		HEAT EXCHANGER - SLAKER WATER HEATER 3" IN-LINE, 475 KW		4.00 EA	-	220,000	-	368	63.63 /MH	23,404	243,404
		HEAT EXCHANGER				220.000		368		23.404	243.404

							Droces					
Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		31.75.00	PUMP CENTRIFUGAL, HORIZONTAL, SINGLE STAGE - MAKEUP		2.00 EA	_	96,000	_	577	68.48 /MH	39,514	135,514
			WATER PUMPS, 2600 GPM, 200 TDH CENTRIFUGAL, HORIZONTAL, SINGLE STAGE - RECYCLE		3.00 EA	-	72,000	-	221	68.48 /MH	15,113	87,113
			ASH WATER PUMP, 50 HP CENTRIFUGAL, HORIZONTAL, SINGLE STAGE - LIME		2.00 EA	-	48,000	-	147	68.48 /MH	10,075	58,075
			SLAKING WATER PIUMPS, 50 HP CENTRIFUGAL, VERTICAL, CANNED - LEACHATE PUMPS, 50 HP		2.00 EA	-	134,000	-	828	68.48 /MH	56,673	190,673
			CENTRIFUGAL, VERTICAL, WET PIT - LPSW PUMP, 650 HP SUMP, CENTRIFUGAL, WET BEARING - REGENT		1.00 EA 4.00 EA	-	188,000 220,000	-	690 276	68.48 /MH 68.48 /MH	47,228 18,891	235,228 238,89°
			PREP/RECYCLE SUMP, 120GPM, 150 TDH SUMP, CENTRIFUGAL, WET BEARING - LIME SILO &		2.00 EA	-	88,000	-	138	68.48 /MH	9,446	97,446
			UNLOADING AREA SUMP 120 GPM @ 150 TDH SUMP, CENTRIFUGAL, WET BEARING - WASTE ASH SILO AREA SUMP 120GPM @150 TDH		2.00 EA	-	88,000	-	138	68.48 /MH	9,446	97,446
			SUMP, CENTRIFUGAL, WET BEARING - WASTEWATER FORWARDING PUMP TO RECYCLED SLURRY, 100 GPM@150 TDH		4.00 EA	-	28,800	-	294	68.48 /MH	20,150	48,950
			SUMP, SUBMERSIBLE - RECYCLE ASH WATER TANK SUPPLY PUMP, 100 HP		2.00 EA	-	77,000	-	690	68.48 /MH	47,228	124,228
			PUMP				1,039,800		3,998		273,763	1,313,563
		31.83.00	TANK ATMOSPHERIC, FIELD FABRICATED - LIME SLAKING WATER TANK, 175,000 GALLON	35' DIA X 24' HIGH	1.00 EA	220,000		-		90.81 /MH		220,000
			ATMOSPHERIC, FIELD FABRICATED - RECYCLE ASH WATER TANK, 250,000 GALLON	35' DIA X 36' HIGH	2.00 EA	508,000		-		90.81 /MH		508,000
			TANK MECHANICAL EQUIPMENT			728,000 728,000	1,969,000	127,500	6,729		476,392	728,000 3,300,892
	35.00.00		PIPING									
		35.13.01	SS 304, ABOVE GROUND, PROCESS AREA 1 IN DIA, SCH 40S		1,520.00 LF	_	_	32,832	1,974	77.36 /MH	152,728	185,560
			1.5 IN DIA, SCH 40S		1,380.00 LF	-	-	52,302	2,094	77.36 /MH	161,976	214,278
			2 IN DIA, SCH 40S SS 304, ABOVE GROUND, PROCESS AREA		2,070.00 LF	-	-	113,022 198,156	3,426 7,494	77.36 /MH	265,051 579,755	378,073 777,911
		35.13.10	CARBON STEEL, ABOVE GROUND, PROCESS AREA									
			1 IN DIA, SCH 80		260.00 LF	-	-	2,314 48,138	305	77.36 /MH	23,581 253,207	25,895
			2 IN DIA, SCH 80 2.5 IN DIA, SCH 40		2,260.00 LF 1,000.00 LF	-	-	15,400	3,273 1,437	77.36 /MH 77.36 /MH	111,149	301,345 126,549
			3 IN DIA, SCH 40		7,160.00 LF	-	-	125,300	11,028	77.36 /MH	853,130	978,430
			3 IN DIA, SCH 80		1,760.00 LF	-	-	38,720	3,055	77.36 /MH	236,313	275,033
			4 IN DIA, SCH 40		1,000.00 LF	-	-	22,600	1,701	77.36 /MH	131,601	154,201
			6 IN DIA, SCH 40		880.00 LF	-	-	28,248	1,629	77.36 /MH	125,981	154,229
			6 IN DIA, SCH 40 VACUUM PIPE		2,260.00 LF	-	-	72,546	4,182	77.36 /MH	323,543	396,089
			8 IN DIA, SCH 80 CARBON STEEL, ABOVE GROUND, PROCESS AREA		3,520.00 LF	-	-	256,608 609,874	9,832 36,441	77.36 /MH	2,819,087	1,017,190 3,428,961
		35.13.36	DUCTILE IRON, ABOVE GROUND, PROCESS AREA									
			12 IN DIA, - ASHCOLITE PIPE DUCTILE IRON, ABOVE GROUND, PROCESS AREA		1,620.00 LF	-	-	162,000 162,000	3,594 3,594	72.14 /MH	259,256 259,256	421,256 421,25 6
		35.14.10	CARBON STEEL, STRAIGHT RUN	LIME OF VALUE OF TANK WAYEND	4,000,00,15			07.400	4.044	77.00 8411	20.000	404.070
			6 IN DIA, SCH 40, LIME SLAKING TANK MAKEUP 8 IN DIA, SCH 40, LIME SLAKING TANK MAKEUP	LIME SLAKING TANK MAKEUP LIME SLAKING TANK MAKEUP	1,200.00 LF 450.00 LF	-	-	27,480 13,905	1,214 486	77.36 /MH 77.36 /MH	93,899 37,613	121,379 51,518
			8 IN DIA, SCH 40, RECYCLE ASH WATER PIPING	RECYCLE ASH WATER PIPING	2,000.00 LF	-	-	61,800	2,161	77.36 /MH	167,169	228,969
			10 IN DIA, SCH 40, RECYCLE ASH TANK MAKEUP CARBON STEEL, STRAIGHT RUN	RECYCLE ASH TANK MAKEUP	450.00 LF	-	-	24,660 127,845	610 4,471		47,216 345,897	71,876 473,742
		35.15.10	CARBON STEEL, BURIED									
			3 IN DIA, SCH 40, WRAPPED		3,000.00 LF	-	-	51,000	2,241	77.36 /MH	173,393	224,393
			4 IN DIA, SCH 40, WRAPPED, LEACHATE PIPING	LEACHATE PIPING	3,500.00 LF	-	-	72,800	2,856		220,965	293,765
			6 IN DIA, SCH 40, WRAPPED 10 IN DIA, SCH 40, WRAPPED, RECYCLE ASH WATER PIPE		750.00 LF 1,800.00 LF	-	-	23,925 119,700	776 2,441	77.36 /MH 77.36 /MH	60,021 188,865	83,946 308,565
			DISCHARGE BURIED 32 IN DIA, 3/8 IN STD, WRAPPED - LPSW PIPE	BURIED LPSW PIPE	2,100.00 LF	-	-	638,610	11,079	77.36 /MH	857,095	1,495,705
					Page 15							

Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	35.15.10	CARBON STEEL, BURIED 36 IN DIA, 3/8 IN STD, WRAPPED - RIVER WATER PIPE	RIVER WATER PIPE - TIE IN	20.00 LF	-	-	6,772	138	77.36 /MH	10,706	17,47
		CARBON STEEL, BURIED					912,807	19,533		1,511,045	2,423,85
	35.15.25	FRP, BURIED									
		3 IN DIA, TAPER		1,000.00 LF	-	-	14,800	460	77.36 /MH	35,568	50,36
		3 IN DIA, TAPER FRP/HDPE PIPE FRP, BURIED		2,380.00 LF	-	-	35,224 50,024	1,094 1,554	77.36 /MH	84,651 120,219	119,87 170,24
		TH, BONES					30,024	1,004		120,213	170,24
	35.15.30	HDPE, BURIED									
		6 IN DIA, DR 9 8 IN DIA, DR 9		1,430.00 LF 1,340.00 LF	-	-	12,870 20,770	1,134 1,278	77.36 /MH 77.36 /MH	87,737 98,896	100,60 119,66
		HDPE, BURIED		1,340.00 Er	•		33,640	2,413	77.30 /WIT	186,633	220,27
	35.36.00	PIPE SUPPORTS, RACK									
	33.30.00	SUPPORT SLEEPERS	BYPRODUCT PIPE, 1750LF	125.00 EA	-	-	43,750	575	77.36 /MH	44,460	88,2
		SUPPORT SLEEPERS	REAGENT UNLOADING PIPE, 1500LF	108.00 EA	-	-	37,800	497	77.36 /MH	38,413	76,2
		PIPE SUPPORTS, RACK					81,550	1,071		82,873	164,42
	35.45.00	VALVES									
		VALVE - 36" 150 LB CS BUTTERFLY, FLANGED		2.00 EA	-	-	79,920	96	77.36 /MH	7,398	87,3
		VALVE - 12" 150 LB CS KNIFE GATE, FLANGED		6.00 EA	-	-	20,160	195	77.36 /MH	15,099	35,25
		VALVE - 12" 150 LB CS GATE VALVE, FLANGED		2.00 EA	-	-	8,920	65	77.36 /MH	5,033	13,9
		VALVE - 10" 150 LB CS SWING CHECK, FLANGED VALVE - 10" 150 LB CS BUTTERFLY, FLANGED		2.00 EA 5.00 EA	-	-	9,200 22,200	55 138	77.36 /MH	4,268	13,4 32,8
		VALVE - 10" 150 LB CS BOTTERFLY, FLANGED VALVE - 8" 150 LB CS GATE, FLANGED		20.00 EA	-	_	100,000	425	77.36 /MH 77.36 /MH	10,670 32,900	32,8 132,9
		VALVE - 6" 150 LB CS GATE, FLANGED		6.00 EA	_	_		110	77.36 /MH	8,536	28,3
		VALVE - 6" 150 LB CS AIR OPERATED GATE, FLANGED		4.00 EA	-	-	20,400	74	77.36 /MH	5,691	26,09
		VALVE - 6" 150 LB CS AIR OPERATED GLOBE, FLANGED		4.00 EA	-	-	20,400	74	77.36 /MH	5,691	26,09
		VALVE - 6" 150 LB CS SWING CHECK, FLANGED		2.00 EA	-	-	3,400	37	77.36 /MH	2,845	6,24
		VALVE - 4" 150 LB CS GATE, FLANGED VALVE - 3" AND BELOW CS FOR SERVICE WATER		3.00 EA 120.00 EA	-	-	3,825 1,224,000	25 1,076	77.36 /MH 77.36 /MH	1,921 83,229	5,74 1,307,22
		ISOLATION		120.00 EA	_	-	1,224,000		77.30 /WIT		
		VALVE - 3" AND BELOW CS FOR SERVICE AIR ISOLATION		120.00 EA	-	-	.,==.,	1,076	77.36 /MH	83,229	1,307,22
		VALVE - 3" 150 LB CS GATE, FLANGED VALVE - 3" CS PST IND FOR FP 250 LB		20.00 EA 6.00 EA	-	-	15,000 6,600	179 54	77.36 /MH 77.36 /MH	13,871 4.161	28,8
		VALVE - 2" AND ABOVE BRONZE VALVES FOR		600.00 EA	-	-	78,000	501	77.36 /MH	38,787	116,78
		INSTRUMENT AIR ISOLATION									
		VALVE - 1" CS FLANGED VALVE - 6" CI POST INDICATOR 250 LB., MECHANICAL		4.00 EA 6.00 EA	-	-	000	21 28	77.36 /MH 77.36 /MH	1,636 2,134	2,5 6,2
		JOINT WITH BOXES BURIED VALVE		0.00 2.1					77.00 7		
		VALVES PIPING					2,860,785 5,036,681	4,228 80,799		327,099 6,231,866	3,187,88 11,268,54
							3,202,021	,		5,201,000	,,
36.00.00	36.17.01	INSULATION PIPE, CALCIUM SILICATE W/ALUMINUM									
	00.17.01	JACKETING									
		CALCIUM SILICATE W/ALUMINUM JACKETING - 8" PIPE 1.5" THICK		2,520.00 LF	-	-	16,380	487	68.76 /MH	33,460	49,84
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 3" PIPE		1,260.00 LF	-	-	3,591	155	68.76 /MH	10,655	14,24
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 3" PIPE		5,660.00 LF	-	-	16,131	696	68.76 /MH	47,865	63,99
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 2.5" PIPE		380.00 LS	-	-	1,083	47	68.76 /MH	3,214	4,29
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 2.0" PIPE PIPE, CALCIUM SILICATE W/ALUMINUM		4,140.00 LS	-	-	10,309 47,494	476 1,860	68.76 /MH	32,720 127,914	43,02 175,40
		JACKETING					41,434	1,000		121,514	173,40
		INSULATION					47,494	1,860		127,914	175,40
		ELECTRICAL EQUIPMENT									
41.00.00		HEAT TRACING									
41.00.00	41.33.00			2,520.00 LS	-	-	18,749	43	63.63 /MH	2,765	21,5
41.00.00	41.33.00	HEAT TRACING - 8" PIPE				_	9,374	22	63.63 /MH		
41.00.00	41.33.00	HEAT TRACING - 3" PIPE		1,260.00 LF	-					1,382	
41.00.00	41.33.00	HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE		5,660.00 LF	-	-	42,110	98	63.63 /MH	6,209	48,32
41.00.00	41.33.00	HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE		5,660.00 LF 380.00 LS	- - -	-	42,110 2,827		63.63 /MH 63.63 /MH	6,209 417	48,32 3,24
41.00.00	41.33.00	HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE		5,660.00 LF	- - -	- - -	42,110 2,827 3,274	98 7 8	63.63 /MH	6,209 417 483	48,32 3,24 3,75
41.00.00	41.33.00	HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE		5,660.00 LF 380.00 LS	-	- - -	42,110 2,827	98 7	63.63 /MH 63.63 /MH	6,209 417	10,75 48,32 3,24 3,75 87,59

rea	Group	Phase	Description	Notes	Quantity	Subcontract	Process Equipment	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
ea	Group	Phase	Description	Notes	Quantity	Cost	Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
190	11 00 00		DEMOLITION / RELOCATION									
	11.00.00	11.21.00	DEMOLITION CIVIL WORK									
		11.21.00	CIVIL WORK - REMOVE FENCING & GATES	HAZARDOUS MATERIAL ACCUMULATION	1,133.00 LF	-			91	107.10 /MH	9,763	9,763
			CIVIL WORK - DIG AND REFILL PIPE TRENCH	BLDG TRENCH N.1784.33 FROM E905' TO 1180' DRAINAGE DITCH FOZO FROM NOSES TO	550.00 LF	-			948	79.31 /MH	75,208	75,208
			CIVIL WORK - REMOVE DRAINAGE DITCH	DRAINAGE DITCH E970 FROM N2055 'TO N1350'	705.00 LF	-		•	1,216		96,403	96,403
			CIVIL WORK - REMOVE DRAINAGE DITCH CIVIL WORK - DEMO AREA PAVEMENT	DRAINAGE DITCH e1350 from n970' to n1180' ASH HANDLING / ELECT BLDG	210.00 LF 1.00 LS	-		•	362 115		28,716 12,310	28,716 12,310
			CIVIL WORK	ASTITIANDEING/ ELECT BEDG	1.00 L3				2,732		222,400	222,400
		11.22.00	CONCRETE									
			CONCRETE FOUNDATION - HAZARDOUS MATERIAL ACCUMULATION BLDG	HAZARDOUS MATERIAL ACCUMULATION BLDG, 50'X50'X20'	80.00 CY	-		-	230	107.10 /MH	24,621	24,621
			CONCRETE FOUNDATION - HAZARDOUS MATERIAL ACCUMULATION BLDG	HAZARDOUS MATERIAL ACCUMULATION BLDG, HAZMAT PAVEMENT DEMO	12.00 CY	-		-	61	107.10 /MH	6,574	6,574
			CONCRETE FOUNDATION - ASH HANDLING MAINT BLDG	ASH HANDLING / ELECT BLDG FDN	225.00 CY	-			647	107.10 /MH	69,246	69,246
				FLOURESCENT LIGHT TUBE DISPOSAL SHED FDN	2.00 CY	-			10		1,096	1,096
				USED OIL SHED DEMO	35.00 CY	-		•	101	107.10 /MH	10,772	10,772
			CONCRETE						1,049		112,307	112,307
		11.23.00	STEEL STRUCTURAL STEEL DISASSEMBLE BLDG STEEL & TOOL	ASH HANDLING / ELECT BLDG	52.00 TN	_			359	107.10 /MH	38,408	38,408
			CRIB FOR RELOCATION STEEL	NOTITION DE LE CONTRACTOR DE LA CONTRACT	02.00				359	107.10 /1111	38,408	38,408
									333		30,400	30,400
		11.24.00	ARCHITECTURAL ARCHITECTURAL - HAZARDOUS MATERIAL	HAZARDOUS MATERIAL ACCUMULATION	50,000.00 CF	-		-	632	107.10 /MH	67,707	67,707
			ACCUMULATION BLDG 50'X50'X20' ARCHITECTURAL - HAZARDOUS MATERIAL	BLDG, 50'X50'X20' HAZARDOUS MATERIAL ACCUMULATION	1.00 LT	_			287	107.10 /MH	30,776	30,776
			ACCUMULATION BLDG 50'X50'X20' ARCHITECTURAL - DEMO EXISTING INSULATED SIDING &	BLDG, CONTAINER DISPOSAL AREA ASH HANDLING / ELECT BLDG	15,000.00 CF	_			862	107.10 /MH	92,328	92,328
			ROOFING , DEMO INTERIOR OFFICES ARCHITECTURAL - BLDG DEMO	COAL DUMPER AIR COMPRESSOR	100.00 SF	_			11		1,231	1,231
			ARCHITECTURAL - BLDG DEMO	DEMOLITION USED OIL SHED DEMO	600.00 SF	_				107.10 /MH	812	812
			ARCHITECTURAL ARCHITECTURAL	OSED GIE STIED DEMO	000.00 31				1,801	107.10 /1011	192,854	192,854
		11.31.00	MECHANICAL EQUIPMENT									
			MECHANICAL EQUIPMENT - DEMOLISH SEPTIC TANKS	ASH HANDLING / ELECT BLDG	2.00 EA	-		-	0	107.10 /MH	25	25
			MECHANICAL EQUIPMENT - REMOVE 15 TN BRIDGE CRANE (50 FT SPAN) , CRANE SUPPORT STEEL AND 3 JIB	ASH HANDLING / ELECT BLDG	21.00 TN	-			290	92.62 /MH	26,828	26,828
			CRANES FGOR RELOCATION MECHANICAL EQUIPMENT						290		26,852	26,852
		11.35.00	PIPING									
			PIPING - REMOVE 12" BA PIPE IN PIPE TRENCH	TRENCH N.1784.33 FROM E905' TO 1180'	550.00 LF	-		-	87	107.10 /MH	9,276	9,276
			PIPING - REMOVE 10" FA PIPE PIPING	TRENCH N.1784.33 FROM E905' TO 1180'	550.00 LF	-		-	76 1 62		8,125 17,401	8,125 17,401
		11.99.00	DEMOLITION, MISCELLANEOUS									
		11.33.00	DEMOLITION - MISC	ALLOWANCE	1.00 LT	-			2,299	92.62 /MH	212,920	212,920
			DEMOLITION, MISCELLANEOUS						2,299		212,920	212,920
			DEMOLITION						8,691		823,142	823,142
	21.00.00		CIVIL WORK									
		21.16.00	GENERAL EARTHWORK EARTHWORK - COVER AREA WITH BACKFILL AND GRADE		300.00 CY			4,800	138	182.33 /MH	25,149	29,949
			EARTHMORK COVER AREA WITH BACKETT AND THE	BLDG	1.000.00					400.00 7		
			EARTHWORK - COVER AREA WITH BACKFILL AND GRADE EARTHWORK - COVER AREA WITH BACKFILL AND GRADE	ASH HANDLING / ELECT BLDG WASTE MANAGEMENT FACILITY (1,000.00 CY 5,000.00 CY	-		- 16,000 - 80,000	460 259	182.33 /MH 182.33 /MH	83,830 47,154	99,830 127,154
			250'X250'X2'	REPLACES HAZMAT BLDG) AREA FILL	3,000.00 01					102.00 /WIT		
			GENERAL EARTHWORK					100,800	856		156,133	256,933
		21.17.00	EXCAVATION EXCAVATION - ALLOWANCE FOR NEW DITCHES	WASTE MANAGEMENT FACILITY (1,200.00 CY	_			276	79.31 /MH	21,879	21,879

Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	21.17.00	EXCAVATION EXCAVATION - ALLOWANCE FOR NEW DITCHES EXCAVATION	REPLACES HAZMAT BLDG) AREA FILL	1,200.00 CY	-		-	276 276	79.31 /MH	21,879 21,879	21,87 21,87
	21.20.00	BACKFILL FOUNDATION BACKFILL, PREVIOUSLY EXCAVATED MATERIAL, ALLOWANCE FOR OLD DITCHES	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG) AREA FILL	100.00 CY	-		-	17	79.31 /MH	1,367	1,36
	21.21.00	BACKFILL MASS FILL						17		1,367	1,36
		MASS FILL, COMMON EARTH USING DUMP TRUCK, 2 MI ROUND TRIP, ALLWANCE FOR MISC ADDITIONAL FILL MASS FILL	RELOCATED BLDGS	1.00 LT	-		30,000	345 345	79.31 /MH	27,348	57,3
	21.39.00	STORM DRAINAGE UTILITIES EXTEND CULVERTS UNDER ROAD	WASTE MANAGEMENT FACILITY (48.00 LF	-		- 4,800	166	79.31 /MH	13,127	17,9
		STORM DRAINAGE UTILITIES	REPLACES HAZMAT BLDG) AREA FILL				4,800	166		13,127	17,9
	21.41.00	EROSION AND SEDIMENTATION CONTROL EROSION AND SEDIMENTATION CONTROL - ALLOWANCE EROSION AND SEDIMENTATION CONTROL	RELOCATED BLDGS	1.00 LS	-		- <u>20,000</u> 20,000	345 345	36.12 /MH	12,455 12,455	32,45 32,45
	21.43.00	FENCEWORK FABRIC, WIRE & POSTS, CHAIN LINK FENCE, GALVANIZED, 6 FT TALL, 6 GAGE 3 STRANDS OF BARB	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	800.00 FT	-		- 18,880	92	36.12 /MH	3,321	22,2
		WIRE, 2 IN POST AT 10 FT O.C. VEHICLE GATE, 14 FT WIDE BY 7 FT TALL	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	4.00 EA	-		- 4,000	110	36.12 /MH	3,986	7,
		FENCEWORK					22,880	202		7,307	30,1
	21.47.00	LANDSCAPING LANDSCAPING - ALLOWANCE FOR PAVING GRADING & SEEDING	RELOCATED BLDGS	1.00 LS	-		- 40,000	460	36.12 /MH	16,607	56,6
		LANDSCAPING					40,000	460		16,607	56,6
	21.57.00	ROAD, PARKING AREA, & SURFACED AREA BITUMINOUS ASPHALT (10,000 - 49,999 SF) ASHPALT PAVING FOR TRUCK TURNAROUND, DRIVEWAY AND AROUND BLDG	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	43,000.00 SF	-		- 216,720	1,236	78.37 /MH	96,836	313,5
		ROAD, PARKING AREA, & SURFACED AREA CIVIL WORK					216,720 435,200	1,236 3,902		96,836 353,060	313,55 788,20
22.00.00		CONCRETE									
	22.13.00	CONCRETE SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	320.00 CY	-		- 73,600	2,575	59.71 /MH	153,736	227,3
		SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)- CONTAINER DISPOSAL SLAB & APRON	550.00 CY	-		- 126,500	4,425	59.71 /MH	264,234	390,7
		CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE	ACI PORT STAIRTOWER FDNS	60.00 CY	-		- <u>13,800</u> 213,900	483 7,483	59.71 /MH	28,826 446,796	42,6 660,6
		CONCRETE					213,900	7,483		446,796	660,6
23.00.00	23.17.00	STEEL GALLERY GALVANIZED GRATING, 1 1/4" DEEP x 3/16" BEARING BAR	ACI PORT STAIR TOWERS AND PLATFORMS	728.00 SF			- 10,920	84	66.07 /MH	5,529	16,4
		WITH HOLD DOWN CLIPS DOUBLE PIPE HANDRAIL WITH POSTS AND GUARD	ACI PORT STAIR TOWERS AND PLATFORMS	436.00 LF	-		- 23,108	90	66.07 /MH	5,960	29,0
		PLATES, PAINTED STAIR SYSTEM GALLERY	ACI PORT STAIR TOWERS AND PLATFORMS	896.00 SF	-		- <u>81,536</u> 115,564	1,184 1,358	66.07 /MH	78,251 89,740	159,7 205 ,3
	23.21.00	GIRDER					110,004	1,356		69,740	200,30
		ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20# TO 40# / LF, 2 COAT PAINTED	UNIT 2 ACI PIPE RACK OVER ROADWAY, 35LF X 23 WIDE X 20' HIGH	1.26 TN	-		- 3,415	25	92.62 /MH	2,280	5,6

Gro	ıp Phase	i i	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		GIRDER					3,415	25		2,280	5,699
	23.25.00	ROLLED SHAPE LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, TWO COAT PAINT	ACI PORT STAIRTOWER FRAMING - 2 TOWERS	4.40 TN	-		15,752	111	92.62 /MH	10,305	26,05
		REASSEMBLE ASH HANDLING/ELEC BLDG METAL FRAME, PURLINS & GIRTS AS NEW LABOR SHOP	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	50.00 TN	-		-	1,379	92.62 /MH	127,752	127,75
		ROLLED SHAPE STEEL					15,752 134,731	1,491 2,873		138,057 230,077	153,80 364,80
24.00.0	24.15.00	ARCHITECTURAL DOOR (INCL. FRAME & HARDWARE) DOOR (INCL. FRAME & HARDWARE) - ROLL UP DOOR MAN DOOR ETC	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	1.00 LS	-		- 5,000	92	51.10 /MH	4,699	9,69
		DOOR (INCL. FRAME & HARDWARE)	TIANDLING / ELECTRICAL BEDG)				5,000	92		4,699	9,69
	24.27.00	MASONRY BLOCK, CONCRETE, 8 IN, HOLLOW REINFORCED, ALTERNATE COURSES	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	850.00 SF	-		4,242	106	53.08 /MH	5,601	9,84
	04.05.00	MASONRY PRE-ENGINEERED BUILDING					4,242	106		5,601	9,84
	24.35.00	SHELL ONLY, STEEL UNINSULATED 22 GA,	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	5,000.00 SF	-		140,000	1,954	92.62 /MH	180,982	320,98
		PRE-ENGINEERED BUILDING					140,000	1,954		180,982	320,98
	24.37.00	ROOFING METAL, INSULATED- NEW INSULATED SIDING & ROOFING	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	6,500.00 SF	-		50,505	2,241	35.02 /MH	78,493	128,9
		ROOFING					50,505	2,241		78,493	128,99
	24.41.00	SIDING METAL, INSULATED, NEW INSULATED SIDING & ROOFING	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	8,500.00 SF	-		140,760	870	79.59 /MH	69,207	209,96
		SIDING					140,760	870		69,207	209,96
	24.99.00	ARCHITECTURAL, MISCELLANEOUS ARCHITECTURAL, MISCELLANEOUS - OFFICE ALLOWANCE	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	1.00 LS	-		100,000	2,299	51.10 /MH	117,471	217,47
		ARCHITECTURAL, MISCELLANEOUS - TOOL CRIB	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	1.00 LS	-		5,000	92	51.10 /MH	4,699	9,69
		ARCHITECTURAL, MISCELLANEOUS ARCHITECTURAL					105,000 445,507	2,391 7,653		122,170 461,151	227,17 906,65
27.00.0	0 27.17.00	PAINTING & COATING PAINTING									
		PAINTING - ALLOWANCE	NEW ASH HANDLING MAINT BLDG 45'X45'X18' TALL	2,025.00 SF	-		2,025	23		1,108	3,13
		PAINTING & COATING					2,025 2,025	23		1,108 1,108	3,13 3,13
31.00.0	0 31.25.00	MECHANICAL EQUIPMENT CRANES & HOISTS BRIDGE CRANE - INSTALL SALVAGED 15 TN BRIDGE	NEW LABOR SHOP METAL BLDG (WAS ASH	21.00 TN				290	92.62 /MH	26,828	26,8
		CRANE AND 2 JIB CRANES WITH EXISTING SUPPORT STEEL	HANDLING / ELECTRICAL BLDG)								
		BRIDGE CRANE - LOAD TEST & CERTIFY BRIDGE CRANE MOTORIZED HOIST - 1 TON	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG) RELOCATED FROM PRESENT PORT	1.00 EA 2.00 EA	-			230 138		21,292 9,446	21,29 9,44
		CRANES & HOISTS	LOCATIOIN					657		57,565	57,56
	31.41.00	FIRE PROTECTION EQUIPMENT & SYSTEM FIRE PROTECTION EQUIPMENT & SYSTEM - USER	NEW LABOR SHOP METAL BLDG (WAS ASH	1.00 LT	-		10,000	138	68.48 /MH	9,446	19,44
		DEFINED FIRE PROTECTION EQUIPMENT & SYSTEM - USER	HANDLING / ELECTRICAL BLDG) WASTE MANAGEMENT FACILITY (5,000.00 SF	-		27,500	385	68.48 /MH	26,369	53,86
		DEFINED		Page 19							

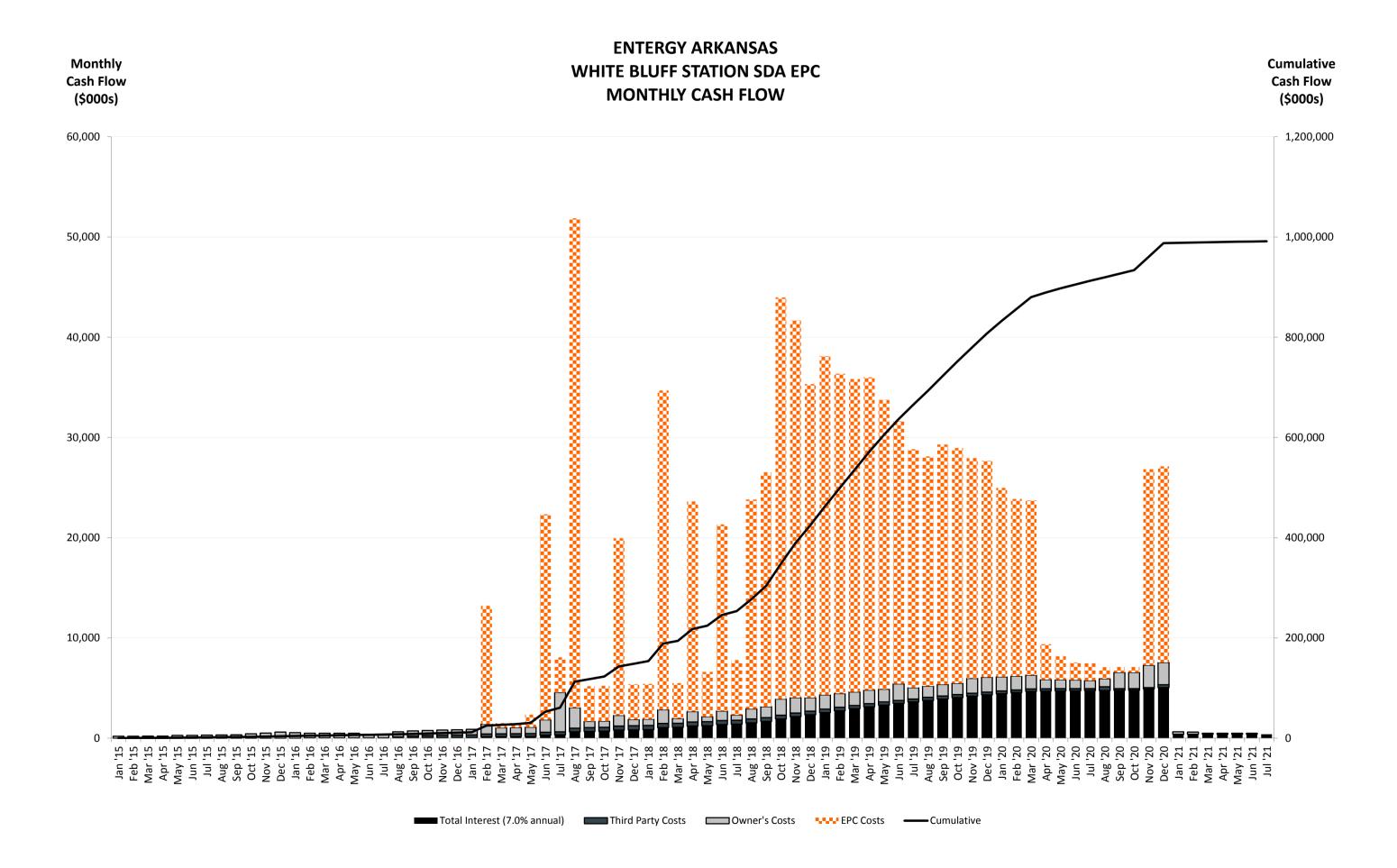
							Process					
Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		31.41.00	FIRE PROTECTION EQUIPMENT & SYSTEM FIRE PROTECTION EQUIPMENT & SYSTEM - USER DEFINED	REPLACES HAZMAT BLDG)	5,000.00 SF	-		27,500	385	68.48 /MH	26,369	53,869
			FIRE PROTECTION EQUIPMENT & SYSTEM					37,500	523		35,814	73,314
		31.51.00	MERCURY REMOVAL EQUIPMENT ACTIVATED CARBON INJECTION (ACI) - LANCE	RELOCATED FROM PRESENT PORT	32.00 EA	-			368	68.48 /MH	25,188	25,188
			RELOCATIONS ACTIVATED CARBON INJECTION (ACI) - 40 HP BLOWERS ACTIVATED CARBON INJECTION (ACI) - REMOVE	LOCATIOIN (16 PER UNIT) NEW BLOWERS (2 PER UNIT) REMOVE EXISTING	4.00 EA 2.00 EA	-		80,000	184 23	68.48 /MH 68.48 /MH	12,594 1,574	92,594 1,574
			EXISTING 20 HP BLOWERS MERCURY REMOVAL EQUIPMENT					80,000	575		39,356	119,356
			MECHANICAL EQUIPMENT					117,500	1,755		132,736	250,236
	34.00.00	34.99.00	HVAC HVAC, MISCELLANEOUS									
		0 1100100	HVAC, MISCELLANEOUS - HVAC ALLOWANCE	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	2,100.00 SF	-	-	23,100	24	64.10 /MH	1,547	24,647
			HVAC, MISCELLANEOUS - HVAC ALLOWANCE	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	2,100.00 SF	-		23,100	24	64.10 /MH	1,547	24,647
			HVAC, MISCELLANEOUS					46,200	48		3,094	49,294
			HVAC					46,200	48		3,094	49,294
	35.00.00	35.13.25	PIPING FRP, ABOVE GROUND, PROCESS AREA									
		33.13.23	1.5 IN DIA, TAPER	INJECTION PORTS	12.00 LF	-	-	353	6	77.36 /MH	437	790
			2 IN DIA, TAPER	INJECTION PORTS	16.00 LF	-	-	421	9	77.36 /MH	697	1,118
			3 IN DIA, TAPER FRP, ABOVE GROUND, PROCESS AREA	INJECTION PORTS	40.00 LF	-	•	1,032	31 45	77.36 /MH	2,383 3,518	3,415 5,323
		35.14.25	FRP, STRAIGHT RUN									
			4 IN DIA, TAPER	NEW ACI PIPING	600.00 LF	-	-	12,660	400		30,944	43,604
			FRP, STRAIGHT RUN					12,660	400		30,944	43,604
		35.36.00	PIPE SUPPORTS, RACK U-BOLT FOR 4 IN PIPE	ACI PIPE	27.00 FA			- 81	62	77.36 /MH	4.802	4.883
			SUPPORT SLEEPERS	ACI PIPE 330 LF	17.00 EA	-		5,950	78		6,047	11,997
			SUPPORT FOR 4 IN DIA PIPE - USER DEFINED		2.00 EA	-		306	18		1,423	1,729
			SUPPORT FOR 3 IN DIA PIPE - USER DEFINED PIPE SUPPORTS, RACK		4.00 EA	-	-	6,913	32 191	77.36 /MH	2,490 14,761	3,066 21,674
		35.45.00	VALVES									
			VALVE - 4" 150 LB CS GATE, FLANGED	ACI AUTO MATIC ISOLATION VALVES (RELOCATE 4 PER UNIT)	8.00 EA	-	-	160	66	77.36 /MH	5,122	5,282
			VALVES					160	66		5,122	5,282
			PIPING					21,539	702		54,344	75,883
	41.00.00	41.37.00	ELECTRICAL EQUIPMENT LIGHTING ACCESSORY (FIXTURE)									
		41.07.00	LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	NEW LABOR SHOP METAL BLDG (WAS ASH HANDLING / ELECTRICAL BLDG)	6,500.00 SF	-		71,500	75	63.63 /MH	4,754	76,254
			LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	WASTE MANAGEMENT FACILITY (REPLACES HAZMAT BLDG)	5,000.00 SF	-	-	55,000	57	63.63 /MH	3,657	58,657
			LIGHTING ACCESSORY (FIXTURE)					126,500	132		8,411	134,911
		41.46.00	MOTOR CONTROL CENTER (MCC), COMPONENT FVN STARTER - #4,	NEW BLOWERS	3.00 EA	_		14,700	55	63.63 /MH	3,511	18,211
			MOTOR CONTROL CENTER (MCC), COMPONENT	NEW BEOWERO	3.00 EA			14,700	55	00.03 /WIII	3,511	18,211
			ELECTRICAL EQUIPMENT					141,200	187		11,921	153,121
	42.00.00	42.15.23	RACEWAY, CABLE TRAY & CONDUIT									
		42.13.23	CONDUIT, FLEXIBLE SEALTIGHT ASSEMBLY 1-1/2 IN DIA, 3 FT LONG INCLUDING (2) CONNECTORS	NEW BLOWERS	3.00 EA	-		258	4	61.79 /MH	266	524
			CONDUIT, FLEXIBLE SEALTIGHT ASSEMBLY					258	4		266	524
		42.15.37	CONDUIT, RGS									

rea G	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		42.15.37	CONDUIT, RGS 3/4 IN DIA INCLUDING ELBOWS, UNISTRUT SUPPORTS, AND MISC HARDWARE	HOIST	450.00 LF	-		1,319	100	61.79 /MH	6,200	7,51
			1-1/2 IN DIA INCLUDING ELBOWS, UNISTRUT SUPPORTS, AND MISC HARDWARE	NEW BLOWERS	400.00 LF	-	-	2,688	131	61.79 /MH	8,068	10,75
			CONDUIT, RGS RACEWAY, CABLE TRAY & CONDUIT					4,007 4,264	231 235		14,269 14,535	18,27 18,79
43.0	.00.00	43.10.00	CABLE CONTROL/INSTRUMENTATION/COMMUNICATION CABLE & TERMINATION CONTROLINSTRUMENTATION/COMMUNICATION	ACI RELOCATION	600.00 LF			1,920	55	82.05 /MH	4,527	6,44
			TERMINATION - MISC CONTROL/INSTRUMENTATION/COMMUNICATION CABLE & TERMINATION					1,920	55		4,527	6,44
		43.20.00	600V CABLE & TERMINATION 600V #8 3/C CU EPR TS-CPE 600V #4/0 3/C W/G CU EPR TS-CPE TERMINATION - COMPRESSION LUG, #8, 2 HOLE, COPPER TERMINATION - COMPRESSION LUG, #4, 2 HOLE, COPPER 600V CABLE & TERMINATION CABLE		500.00 LF 450.00 LF 12.00 EA 12.00 EA	:		3,280 10,728 78 111 14,197	14 72 4 7 98 153	82.05 /MH 82.05 /MH 82.05 /MH 82.05 /MH	1,179 5,942 340 566 8,026	4,45 16,67 41 67 22,22 28,67
44.0	.00.00	44.21.00	CONTROL & INSTRUMENTATION INSTRUMENT ACCOUSTIC MONITOR	RELOCATE TO NEW INJECTION LANCES	6.00 EA			10,117	28	64.68 /MH	1,784	1,78
			INSTRUMENT CONTROL & INSTRUMENTATION	NEEDOALE TO NEW INDESTIGN EAROES	0.00 EA				28 28	04.00 /WIT	1,784 1,784	1,78 1,78
71.0	.00.00	71.25.00	PROJECT INDIRECT CONSULTANT, THIRD PARTY COMPUTATIONAL FLUID DYNAMIC ANALYSIS (CFD) CONSULTANT, THIRD PARTY PROJECT INDIRECT	ACI SYSTEM	1.00 LS	100,000 100,000 100,000				/МН		100,00 100,00 100,00
			190 DEMOLITION / RELOCATION			100,000		1,578,182	33,735		2,546,302	4,224,48
201 21.0	.00.00	21.54.00	ELECTRICAL BOP SYSTEM CIVIL WORK CAISSON									
			2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	U1 MAIN ELECT BLDG 40'X100' 2 UAT AND 1 SST TRANSFORMER	23.00 EA 36.00 EA	-		42,711 66,852	582 910	108.46 /MH 108.46 /MH	63,081 98,736	105,79 165,58
				SUBSTRUCTURE								
			2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	SUBSTRUCTURE BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION	167.00 EA 10.00 EA	-		310,119 - 18,570	4,223 253	108.46 /MH 108.46 /MH	458,025 27,427	
			2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON CAISSON	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV		-	:	- 18,570 - <u>42,711</u> 480,963	253 582 6,549		27,427 63,081 710,351	45,99 105,79 1,191,31
22.(.00.00	22.13.00	2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION	10.00 EA			18,570	253 582	108.46 /MH	27,427 63,081	45,99 105,79 1,191,31
22.0		22.13.00	2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON CAISSON CIVIL WORK CONCRETE CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION U2 MAIN ELECT BLDG 40'X100' U1 MAIN ELECT BLDG 40'X100' 2 UAT AND 1 SST TRANSFORMER SUBSTRUCTURE	10.00 EA 23.00 EA 300.00 CY 600.00 CY	:		42,711 480,963 480,963 - 69,000 138,000	253 582 6,549 6,549 2,414 4,828	108.46 /MH 108.46 /MH 59.71 /MH 59.71 /MH	27,427 63,081 710,351 710,351 144,128 288,255	45,95 105,75 1,191,31 1,191,31 213,12 426,25
22.0		22.13.00	2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON CAISSON CIVIL WORK CONCRETE CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION U2 MAIN ELECT BLDG 40'X100' U1 MAIN ELECT BLDG 40'X100' 2 UAT AND 1 SST TRANSFORMER SUBSTRUCTURE BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL	300.00 CY 600.00 CY 333.00 CY 50.00 CY	:		42,711 480,963 480,963 69,000 138,000 76,590	253 582 6,549 6,549 2,414 4,828 2,679 402	108.46 /MH 108.46 /MH 59.71 /MH 59.71 /MH 59.71 /MH	27,427 63,081 710,351 710,351 144,128 288,255 159,982 24,021	45,96 105,75 1,191,31 1,191,31 213,12 426,25 236,51 35,52
22.0		22.13.00	2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON CAISSON CIVIL WORK CONCRETE CONCRETE CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION U2 MAIN ELECT BLDG 40'X100' U1 MAIN ELECT BLDG 40'X100' 2 UAT AND 1 SST TRANSFORMER SUBSTRUCTURE BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE	10.00 EA 23.00 EA 300.00 CY 600.00 CY 333.00 CY	:		42,711 480,963 480,963 - 69,000 - 138,000	253 582 6,549 6,549 2,414 4,828 2,679	108.46 /MH 108.46 /MH 59.71 /MH 59.71 /MH	27,427 63,081 710,351 710,351 144,128 288,255 159,982	45,98 105,78 1,191,31 1,191,31 213,12 426,28 236,57 35,52 213,12 1,124,60
	.00.00		2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON CAISSON CIVIL WORK CONCRETE CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE CONCRETE STEEL	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION U2 MAIN ELECT BLDG 40'X100' U1 MAIN ELECT BLDG 40'X100' 2 UAT AND 1 SST TRANSFORMER SUBSTRUCTURE BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL	300.00 CY 600.00 CY 333.00 CY 50.00 CY	:		42,711 480,963 480,963 69,000 138,000 76,590 11,500 69,000 364,090	253 582 6,549 6,549 2,414 4,828 2,679 402 2,414 12,737	108.46 /MH 108.46 /MH 59.71 /MH 59.71 /MH 59.71 /MH	27,427 63,081 710,351 710,351 144,128 288,255 159,982 24,021 144,128 760,513	768,14 45,95 105,75 1,191,31 1,191,31 213,12 426,25 236,57 35,52 213,12 1,124,60 1,124,60
	.00.00	22.13.00	2.5 FT DIA X 30 FT DEEP CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON CAISSON CIVIL WORK CONCRETE CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE CONCRETE	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL - INCLUDES 115 KV DISCONNECT SWITCH FOUNDATION U2 MAIN ELECT BLDG 40'X100' U1 MAIN ELECT BLDG 40'X100' 2 UAT AND 1 SST TRANSFORMER SUBSTRUCTURE BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE STRUCTURAL	300.00 CY 600.00 CY 333.00 CY 50.00 CY	:		42,711 480,963 480,963 69,000 138,000 76,590 11,500 69,000 364,090	253 582 6,549 6,549 2,414 4,828 2,679 402 2,414 12,737	108.46 /MH 108.46 /MH 59.71 /MH 59.71 /MH 59.71 /MH	27,427 63,081 710,351 710,351 144,128 288,255 159,982 24,021 144,128 760,513	45, 105, 1,191, 1,191, 213, 426, 236, 35, 213, 1,124,

a Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	23.99.00	STEEL, MISCELLANEOUS STEEL, MISCELLANEOUS - STEEL, MISCELLANEOUS -	BUS DUCT SUPPORTS OVERHEAD TRANSMISSION LINE	167.00 TN 15.00 TN	-	-	452,570 40,650	3,263 293	92.62 /MH 92.62 /MH	302,239 27,147	754,8 67,7
		STEEL, MISCELLANEOUS	STRUCTURAL				764,220	5,510		510,368	1,274,5
		STEEL					764,220	5,510		510,368	1,274,5
24.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING									
	2 1100100	PRE-ENGINEERED BUILDING - MAIN ELECT BLDG 40'X100'	U1 MAIN ELECT BLDG 40'X100' FURNISH ONLY	1.00 EA	-	504,000		4,598	51.10 /MH	234,943	738,9
		PRE-ENGINEERED BUILDING - MAIN ELECT BLDG 40'X100'	U1 MAIN ELECT BLDG 40'X100' INSTALLATION	1.00 EA	-			414	92.62 /MH	38,326	38,
		PRE-ENGINEERED BUILDING - MAIN ELECT BLDG 40'X100'	U2 MAIN ELECT BLDG 40'X100' FURNISH ONLY	1.00 EA	-	504,000		4,598	51.10 /MH	234,943	738,
		PRE-ENGINEERED BUILDING - MAIN ELECT BLDG 40'X100'	U2 MAIN ELECT BLDG 40'X100' INSTALLATION	1.00 EA	-			414	92.62 /MH	38,326	38,
		PRE-ENGINEERED BUILDING				1,008,000		10,023		546,536	1,554,
		ARCHITECTURAL				1,008,000		10,023		546,536	1,554,5
41.00.00	41.13.00	ELECTRICAL EQUIPMENT BUS DUCT									
	41.10.00	ISO PHASE, SELF COOLED	TAP BUS EXTENSIONS	200.00 LF	-	315,000		4,828	63.63 /MH	307,179	622,
		NON SEGREGATED - (600V) (2000A) FGD ONLY		800.00 LF	-	588,000		5,517	63.63 /MH	351,062	939
		BUS DUCT				903,000		10,345		658,241	1,561,
	41.45.00	MOTOR CONTROL CENTER (MCC), COMPLETE									
		MOTOR CONTROL CENTER (MCC), COMPLETE - 480V FGD		12.00 EA	-	636,000		5,931	63.63 /MH	377,392	1,013
		MOTOR CONTROL CENTER (MCC), COMPLETE				636,000		5,931		377,392	1,013
	41.51.00	POWER TRANSFORMER STARTUP, RESERVE AUXILIARY (RAT) - 36/48 MVA	LABOR INCLUDES DRESS OUT AND FILL	1.00 EA		875,000		1,379	63.63 /MH	87,766	962
		115/6.9/6.9 KV	HEAVY HAUL FROM RAIL TO PAD	1.00 EA				1,379	/MH	67,700	
		STARTUP, RESERVE AUXILIARY (RAT) - 36/48 MVA 115/6.9/6.9 KV			-	95,000					95
		UNIT AUXILIARY - 36/48 MVA 25/6.9/6.9 KV UNIT AUXILIARY - 36/48 MVA 25/6.9/6.9 KV	LABOR INCLUDES DRESS OUT AND FILL HEAVY HAUL FROM RAIL TO PAD	2.00 EA 2.00 EA	-	1,700,000 190,000		2,759	63.63 /MH /MH	175,531	1,875
		POWER TRANSFORMER - 6.948 kV UNIT SUBSTATION X	HEAVITIAGE TROMINALE TO TAD	4.00 EA	-	360,000		667	63.63 /MH	42,420	402
		FMRS - 2000 KVA POWER TRANSFORMER - 6.948 KV UNIT SUBSTATION X FMRS - 1500 KVA		4.00 EA	-	300,000		598	63.63 /MH	38,032	338
		POWER TRANSFORMER				3,520,000		5,402		343,748	3,863,
	41.55.00	SWITCHGEAR, COMPLETE									
		480 V - REAGENT SWITCHGEAR		4.00 EA	-	212,000		1,977	63.63 /MH	125,797	337
		480 V - 480V FGD SWITCHGEAR		4.00 EA	-	840,000		4,138	63.63 /MH	263,297	1,103
		6.9 KV - SWITCHGEAR FGD 6.9 KV - SWITCHGEAR WALK IN TYPE		4.00 EA 3.00 EA	-	1,680,000 660,000		14,713 5,810	63.63 /MH 63.63 /MH	936,166 369,712	2,616
		SWITCHGEAR, COMPLETE		3.00 EA		3,392,000		26,638	00.00 /WIII	1,694,972	5,086
	41.99.00	ELECTRICAL EQUIPMENT, MISCELLANEOUS									
		ELECTRICAL EQUIPMENT, MISCELLANEOUS AUX POWER EQUIPMENT		1.00 LT	-	2,840,000		11,494	63.63 /MH	731,379	3,571
		ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT				2,840,000 11,291,000		11,494 59,810		731,379 3,805,732	3,571 15,096
						11,231,000		33,010		3,003,732	13,030
42.00.00	42.42.00	RACEWAY, CABLE TRAY & CONDUIT CABLE TRAY									
	42.13.00	CABLE TRAY CABLE TRAY - ALLOTMENT		1.00 LT	=	-	505,000	33,333	61.79 /MH	2,059,667	2,564
		CABLE TRAY		1.00 E1			505,000	33,333	01.73 /WIII	2,059,667	2,564
	42.15.37	CONDUIT, RGS									
		XX IN DIA - CONDUIT ALLOTMENT		1.00 LT	-	-	90,000	74,138	61.79 /MH	4,580,983	4,670
		CONDUIT, RGS					90,000	74,138		4,580,983	4,670,

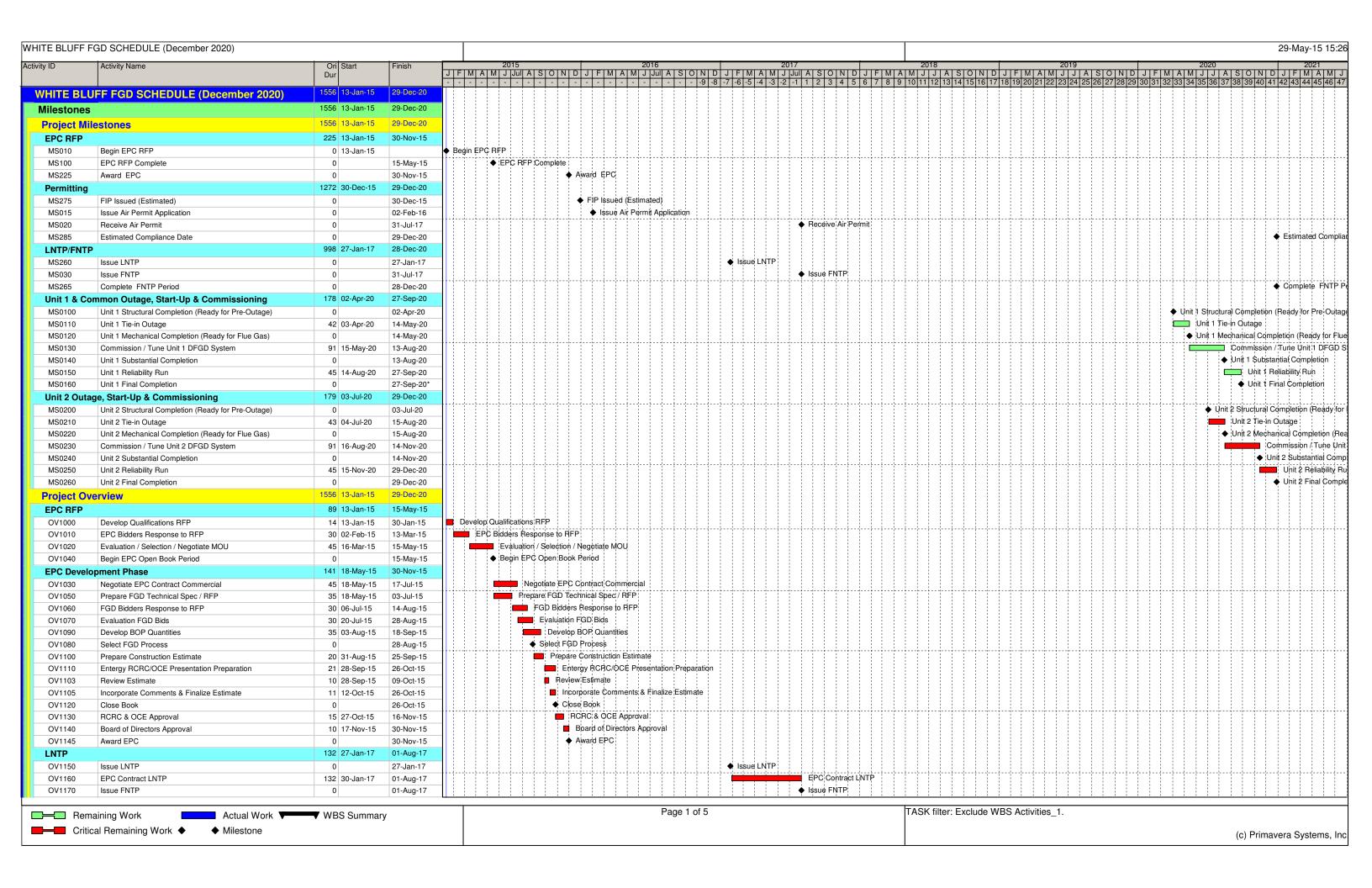
ALIGNO COMPANIES COMPANI								D					
MICHINANI- AUGINISTICAL PROTECTION DICT INVESTIGATION 10 10 10 10 10 10 10 1	Area	Group	Phase	Description	Notes	Quantity		Equipment	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
ALTERNATION			42.18.00	DUCT BANK - UNDERGROUND DUCT BANKS NOT		LT	-	-			61.79 /MH		
CONTROLINSTRUMENTATION COMMUNICATION 1000 100									595,000	107,471		6,640,649	7,235,649
42.000 GOV CABLE A TERMINATION		43.00.00	43.10.00	CONTROL/INSTRUMENTATION/COMMUNICATION CABLE & TERMINATION CONTROL/INSTRUMENTATION/COMMUNICATION TERMINATION - MISC		201,600.00 LF	-				82.05 /MH		2,166,157 2,166,157
MOY CABLE A TERMINATION 2000 OF				CABLE & TERMINATION									
SMM - 178 KOME NOT CABLE A TERMINATION 29,000 0 F 1,415.70 20,00			43.20.00	600V CABLE - MISC		218,000.00 LF	-	-			82.05 /MH		4,348,499 4,348,499
Serv MISC 40,000 LF 277,000 10,000 20,000 10,			43.40.00			225,000.00 LF	-	-	5,415,750	23,276	82.05 /MH	1,909,784	7,325,534
43.000 15KV CABLE & TERMINATION 22,300.0 LF 200,721 5,885 80.6 MH 482.718 690.438 150.0000 150.0000 150.0000 150.0000 150.0000 150.0000 150.0000 150.0000						40,200.00 LF	-	-	297,480	10,628	82.05 /MH	871,993	1,169,473
150 COARLE MOST CABLE 150 MOST CAB				5/8KV CABLE & TERMINATION					5,713,230	33,903		2,781,778	8,495,008
CABLE			43.50.00	15KV CABLE - MISC		22,300.00 LF	-	-			82.05 /MH		690,439
S115.27 CIRCUIT BREAKER CIRCUIT BREAKER SWITCHYARD BAY AND 3 BREAKERS ADDITION OF A SWITCHYARD BAY IS AVOIDED BY PLACING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE NEW SST NEXT TO THE EXISTING SST AND USING THE PROPERTY OF THE PROPERTY										-,			690,439 15,700,103
CIRCUIT BREAKER - SWITCH/YARD BAY AND SREAKER ADDITION OF A SWITCH/YARD BAY SAN CAUGHDER YELD AND IS AND USING THE NEW SST NEXT TO THE EXSTRANCE ST NAIL USING THE NEW SST NEXT TO THE EXSTRANCE ST NAIL USING THE NEW SST NATURE NAIL USING THE NAIL ATTOR RACLIDING GROUND SWITCH WITH INSULATORS AND ASSETT OF THE PROPERTY OF		51.00.00											
115KV, 1200A, VERTICAL BREAK SWITCH WITH INSULATIONS ORD STATE AND SUBSTATION OF RAT 1.00 EA 15,000 69 55.78 /MH 3,847 18,847 18,847 18,94			51.15.27		AVOIDED BY PLACING THE NEW SST NEXT TO THE EXISTING SST AND USING THE	0.00 LT	-				55.78 /MH		
DISCONNECT SWTCH 15,000 69 3,847 18,84			51.15.53	115KV, 1200A, VERTICAL BREAK SWITCH WITH INSULATORS,INCLUDING GROUND SWITCH AND	FOR ISOLATION OF RAT	1.00 EA	-	-	15,000	69	55.78 /MH	3,847	18,847
LINE 201 ELECTRICAL BOP SYSTEM 12,299,000 10,665,684 290,576 20,231,688 43,196,372 211 INSTRUMENTATION AND CONTROL & INSTRUMENTATION CONTROL & INSTRUMENTATION CONTROL & INSTRUMENTATION CONTROL & INSTRUMENTATION CONTROL SYSTEM CONTROL				DISCONNECT SWITCH									18,847
211 INSTRUMENTATION AND CONTROLS BOP SYSTEM 44.00.00 CONTROL & INSTRUMENTATION 44.13.00 CONTROL SYSTEM DISTRIBUTED CONTROL SYSTEM (DCS) - I/O POINTS ESTIMATED BOP 2000 I/O POINTS 1.00 LT 1,500,000 2,299 64.68 /MH 148,690 1,648,690 (ANOTHER 1000 POINTS PER UNIT ARE INCLUDED IN THE D'FGD PROPOSAL PRICES AND ARE NOT INCLUDED HERE) CONTROL SYSTEM 44.21.00 INSTRUMENT BOP INSTRUMENTS INSTRUMENTS INSTRUMENT HERMOCOUPLES IN STACK ENTRANCE WALARM INSTRUMENT - THERMOCOUPLES IN STACK ENTRANCE WALARM INSTRUMENT - THERMOCOUPLES IN STACK ENTRANCE WALARM INSTRUMENT CONTINUOUS BMISSION MONITORING SYSTEM (CEMS) - 2.00 EA - 460,000 625 64.68 /MH 40,444 500,444 500,444 100,44				LINE				42 200 000					
A4.00.00 CONTROL & INSTRUMENTATION								12,299,000	10,005,004	290,576		20,231,000	43,190,372
CONTROL SYSTEM	211	44.00.00	44.13.00	SYSTEM CONTROL & INSTRUMENTATION CONTROL SYSTEM	FETHATED POD 2000 NO DOINTS	100 IT		4 500 000		2 200	ea eo (hall	149 600	1.049.000
CONTROL SYSTEM				DISTRIBUTED CONTROL SYSTEM (DCS) - 1/0 POINTS	(ANOTHER 1000 POINTS PER UNIT ARE INCLUDED IN THE DFGD PROPOSAL PRICES	1.00 LI	-	1,500,000		2,299	64.68 /MH	148,690	1,648,690
INSTRUMENT - BOP INSTRUMENTS 1.00 LT - 478,000 7,946 82.05 MH 651,967 1,129,967 1,12				CONTROL SYSTEM	· · · · · · · · · · · · · · · · · · ·			1,500,000		2,299		148,690	1,648,690
INSTRUMENT 578,000 7,946 651,967 1,229,967 44.25.00 MONITORING EQUIPMENT CONTINUOUS EMISSION MONITORING SYSTEM (CEMS) - 2.00 EA 460,000 625 64.68 MH 40,444 500,444 REFURBISHING			44.21.00	INSTRUMENT - BOP INSTRUMENTS INSTRUMENT - THERMOCOUPLES IN STACK ENTRANCE W			- -	-		7,946		651,967	1,129,967 100,000
CONTINUOUS EMISSION MONITORING SYSTEM (CEMS) - 2.00 EA 460,000 625 64.68 /MH 40,444 500,444 REFURBISHING									578,000	7,946		651,967	1,229,967
			44.25.00	CONTINUOUS EMISSION MONITORING SYSTEM (CEMS) -		2.00 EA	-	-	460,000	625	64.68 /MH	40,444	500,444
						3.00 EA	-	-	45,000	14	64.68 /MH	892	45,892

Estimate No.:: 33387B Project No.: 13027-002 Estimate Date: 12/18/2015 Prep/Rev/App: A. KOCI/BA/MNO



ı	Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
				MONITORING EQUIPMENT					505,000	639		41,336	546,336
				CONTROL & INSTRUMENTATION				1,500,000	1,083,000	10,884		841,993	3,424,993
				211 INSTRUMENTATION AND CONTROLS				1,500,000	1,083,000	10,884		841,993	3,424,993
				BOP SYSTEM									

ATTACHMENT 2


Conceptual Capital Cost Estimate Cash Flow

ATTACHMENT 3

Level 1 Preliminary Execution Schedule

· ID	Activity Name	Ori Start	Finish	2015 2016 2017 2018 2019 2020 2021
	, same	Dur		F M A M J J J A S O N D J F M A M J J A S O N D J T T T T T T T T T
FNTP		890 02-Aug-17	29-Dec-20	
OV1180	EPC Contract FNTP Period	889 02-Aug-17	28-Dec-20	EPC Contra
OV1230	Compliance Deadline	0	29-Dec-20*	◆ Compliance
PC Miles		1292 30-Nov-15		
Engineerin	<u> </u>	308 07-Sep-17	26-Nov-18	
EPC325	Common Sitework Dwg IFC	0	07-Sep-17	
EPC345 EPC340	U1 SDA Foundation IFC Common Freeze General Arrangements	0	20-Oct-17 13-Nov-17	◆ Common Freeze General Arrangements
EPC510	U2 SDA Foundation IFC	0	16-Jan-18	♦ U2 SDA Foundation iFC
EPC350	U1 ID Fan Foundation IFC	0	03-Apr-18	♦ U1 ID Fan Foundation IFC
EPC320	Common Electrical Single Lines IFC	0	13-Apr-18	◆ Common Electrical Single Lines IFC
EPC485	U2 ID Fan Foundation IFC	0	22-Jun-18	◆ U2 ID:Fan Foundation IFC
EPC355	ALL P&IDs IFC	0	18-Jul-18	◆ ALL P&IDs IFC
EPC240	All Master Schematics IFC	0	26-Nov-18	◆ All Master Schematics IFC
Procureme	ent	858 30-Nov-15	19-Apr-19	
EPC010	Award EPC	0	30-Nov-15	♦ Award EPC
EPC100	Award Dry FGD System	0	27-Jan-17	♦ Award Dry FGD System
EPC110	Award ID Fans	0	09-Aug-17	♦ Award D Fans
EPC335	Award DCS	0	08-Dec-17	◆ Award DC\$
EPC315	Award Transformers	0	15-Jan-18	
EPC545 EPC535	Award ID Fore Delivery Complete	0	30-Nov-18	→ Award Transformers Delivery Complete Award ID Fans Delivery Complete
EPC535	Award ID Fans Delivery Complete Common DCS FAT Complete	0	07-Jan-19 18-Mar-19	
EPC540	Award DCS Delivery Complete	0	15-Mar-19	◆ Award DCS Delivery Complete
EPC530	Dry FGD System Delivery Complete	0	19-Apr-19	◆ Dry FGD System Delivery Complete
	ommon Construction & Commissioning	677 30-Jan-18	28-Sep-20	
EPC425	Common ALL U/G Piping Installation Complete	0	30-Jan-18	♦ Common Al-L U/G Piping Installation Complete
EPC370	U1 Fabric Filter Foundation Installation Complete	0	01-Jun-18	♦ U1 Fabric Filter Foundation Installation Complete
EPC360	U1 SDA Foundation Installation Complete	0	05-Jun-18	U1 \$DA Foundation Installation Complete
EPC365	U1 ID Fan Foundation Installation Complete	0	30-Oct-18	U1 ID Fan Foundation Installation Complete
EPC395	Common Electrical Equipment Bldg Foundation Complete	0	16-Nov-18	Common Electrical Equipment Bldg Foundation Complete
EPC405	Common Transformers Foundation Complete	0	14-Dec-18	◆ Common Transformers Foundation Complete
EPC460	Common Pipe Rack FoundationComplete	0	17-Dec-18	◆ Common Pipe Rack FoundationComplete
EPC400	Common Electrical Equipment Bldg Erection Complete	0	11-Jan-19	◆ Common Electrical Equipment Bldg Erection Complete
EPC390	Common Pipe Rack Erection Complete	0	11-Feb-19	◆ Common Pipe Rack Erection Complete
EPC310	U1 All Foundations Installation Complete	0	02-Apr-19	♦ U1 All Foundations Installation Complete ♦ Common Transformers Erection Complete
EPC410 EPC435	Common Transformers Erection Complete Common Ready for Aux Power Backfeed	0	05-Jun-19 02-Jul-19	
EPC435	U1 ID Fan Installation Complete	0	25-Jul-19	◆ U1 ID Fan Installation Complete
EPC420	Common Training Plan Ready for Start of Training	0	29-Aug-19	♦ Common Training Plan Ready for Start of Training
EPC385	U1 Fabric Filter Erection Complete	0	09-Sep-19	◆ U1 Fabric Filter Erection Complete
EPC375	U1 SDA Erection Complete	0	28-Nov-19	♦ U1 SDA Erection Complete
EPC440	U1 Structural Completion (Ready for Outage)	0	02-Apr-20	♦ U1 Structural Completion [Ready for Outage
EPC445	U1 Mechanical Completion	0	14-May-20	◆ JU1 Mechanical Completion
EPC450	U1 Substantial Completion	0	13-Aug-20	◆ Ju1 Substantia) Completion
EPC455	U1 Final Completion	0	28-Sep-20	◆ U1 Final Completion
	struction & Commissioning	593 31-Aug-18	29-Dec-20	
EPC475	U2 Fabric Filter Foundation Installation Complete	0	31-Aug-18	♦ U2 Fabric Filter Foundation Installation Complete
EPC515	U2 SDA Foundation Installation Complete	0	04-Sep-18	♦ U2 SDA Foundation Installation Complete
EPC490	U2 ID Fan Foundation Installation Complete	0	29-Jan-19	♦ U2 ID Fan Foundation Installation Complete ↓ U2 All Foundations Installation Complete
EPC465	U2 All Foundations Installation Complete	0	02-Apr-19	♦ U2 All Foundations Installation Complete ♦ U2:ID Fan Installation Complete
EPC495	U2 ID Fan Installation Complete	0	16-Sep-19	◆ U2/ID Fan Installation Complete ◆ U2 Fabric Filter Erection Complete
EPC470 EPC505	U2 Fabric Filter Erection Complete U2 SDA Erection Complete	0	09-Dec-19 28-Feb-20	
EPC505 EPC520	U2 Structural Completion (Ready for Outage)	0	03-Jul-20	
EPC500	U2 Mechanical Completion	0	17-Aug-20	
EPC525	U2 Substantial Completion	0	16-Nov-20	. ↓ U2/Substantial C
EPC480	U2 Final Completion	0	29-Dec-20	♦ U½ Final;Co
	· · · · · · · · · · · · · · · · · · ·			
= Ren	naining Work Actual Work	■ WBS Summar	y	Page 2 of 5 TASK filter: Exclude WBS Activities_1.

)	Activity Name	Ori Start	Finish		2015				2016	Telole		ET MAT AT NAT	2017	ALC:C	INI	115184		018 	OLMI	DILLET	NAI A I NA	2019	ALCIC	TNIE	11-1-	MIA	2020	20	SIGH		2
		Dur		J F M A M		S O N D						6 -5 -4 -3																			
yment N	ilestones	1401 28-Feb-17	29-Dec-20																												
nit 1 & Co	mmon	1308 28-Feb-17	27-Sep-20																		1 1						:				
AY001	Payment 001 - DFGD Award	1 28-Feb-17	28-Feb-17									Payment	001 - DI	FGD Awa	ard																
AY002	Payment 002 - Initial Design Info from DFGD Supplier - Flow	1 29-Mar-17	29-Mar-17									l Paym	ent 002	- Initial D	esign In	fo from D	FGD Supp	lier - Flow D	Diagrams	, Mass Ba	alances										
AY003	Payment 003 - Parent Company Guarantee Document	1 30-Mar-17	30-Mar-17									l Paym	ent 003	- Parent	Compa	ny Guarar	itee Docu	ment				111.					1İİ.				
Y004	Payment 004 - Initial Design Info from DFGD Supplier - P&IDs	1 28-Apr-17	28-Apr-17											1 1	1 1 7	1 1 1	1 1 1	upplier - P&	IDs for C	Owner Rv	N						:				
Y006	Payment 006 - NTE Load Diagrams for SDA & FF	1 28-Apr-17	28-Apr-17										11 1	- 1 - 1	: : :	Diagrams	1 1 1	1 1 1 1													
Y008	Payment 008 - Initial Design Info from DFGD Supplier - 1st Iss	1 28-Apr-17	28-Apr-17									1 1 1 1	11 1	1 1	: : 7	1 1 1	1 1 1	upplier - 1st	1 1	f 3D CAD	Model Iss	ued for C	Owner Rv	/W							
Y005	Payment 005 - Project Specific GA's - Issued for Owner Rvw	1 25-May-17	25-May-17									- i - i - i	i i i	i i	i i i	i' i i	i i i	d for Owner	i i												
Y013	Payment 013 - Initial Design Info from DFGD Supplier - Projec	1 25-May-17	25-May-17								111-							Supplier -		Specific E	quipment	List		ļļ	<u> </u>		4				
Y009	Payment 009 - FERC Retirement Information - Preliminary	1 30-Jun-17	30-Jun-17												1 1 1	1 1 1	1 1 1	nation - Preli	iminary												
Y011	Payment 011 - Award Atomizers	1 31-Jul-17	31-Jul-17										: !	1 1	; ; ;	Award Ato	1 1 1	1									1 1				
Y007	Payment 007 - Award ID Booster Fans	1 22-Aug-17	22-Aug-17											1 1	: : :	- Award I	1 1 1	1 1 1 1		D 0							:				
Y015	Payment 015 - NTE Load Diagrams - Lime Storage & Prep Sy	1 22-Aug-17	22-Aug-17											1 1	i i i	i i i	i i ii	ns - Lime St	1 1	1 1 1	i i	i i i	i i	i i				0			
Y027	Payment 027 - Receive Permits for Construction - Req'd Tier	1 25-Aug-17	25-Aug-17										 -			¦ 		or Construc	tion - Re	eqorier 2	Reports (AR DOE	IVI) - AIr S	Space C	ostructio	on Peri	mit for Ci	rane			
Y028	Payment 010 Average Line Systems	1 26-Aug-17	26-Aug-17											1 1	1 1 1	B - Mobilize	1 1 1										1				1 1
Y012	Payment 012 - Award Lime System Payment 014 - Flue Gos Ductwork Progurament Initiated - PO	1 28-Aug-17	28-Aug-17											1 17	: : :	2 - Award	1 1 7	1 1 1 1	irement	Initiated	PO for ST	YA Shall	Calcind								
Y014	Payment 030 - Office Complex & Feb Areas Set Lip. Office Tr	1 28-Sep-17	28-Sep-17											1 1	17 1 1	1 1 1	1 1 1	twork Procu	1 1	1 1 1	1 1	1 1 1	1 1	nabin~							
Y030	Payment 030 - Office Complex & Fab Areas Set-Up - Office Tr Payment 016 - Initial El&C Design Info - Project Specific Proc	1 28-Sep-17	28-Sep-17 24-Oct-17											i i	i i i	i i i	i i i	ex & Fab Are Design Info	i i	*i i i	i i	i i i	i i	1 1	ind for A	Jurgara	By				
Y016	Payment 010 - Initial Et&C Design Info - Project Specific Proc Payment 010 - NTE Load Diagrams - ID Booster Fans	1 24-Oct-17 1 22-Nov-17	24-Oct-17 22-Nov-17															ad Diagram				COTILION					11444				
Y010 Y017	Payment 010 - NTE Load Diagrams - ID Booster Fans Payment 017 - Flue Gas Ductwork Procurement Initiated - U1	1 22-Nov-17 1 28-Nov-17	22-Nov-17 28-Nov-17											1 1		ć i i	1 1 1	as Ductwork	1 1	1 1 1	1 1	SDA Inl	et Duct P	- - -							
Y018	Payment 018 - Structural Steel Procurement - SDA Support St	1 26-Dec-17	27-Dec-17												1 1 1	1 1 1	1 1 1	uctural Steel	1 1	1 1 1	1 1	1 1 1	1 1								
Y022	Payment 022 - Award DCS	1 26-Dec-17	27-Dec-17												!!!!	Paymen	!!!	1 1 1 1	i i i ocuit		DAIGUPPO	l Olecin	$\tilde{}$								
Y024	Payment 024 - Flue Gas Ductwork Start Fab - Ductwork	1 26-Dec-17	27-Dec-17												1 1 1	i i* i	i i i	e Gas Ductv	vork Sta	rt Fab - D	uctwork										
Y019	Payment 019 - Strucutural Steel Fab Sched - Schedule for Fa	1 26-Jan-18	26-Jan-18															Strucutural:				for Fab	- Issued	for Owr	ter Byw		1				
Y020	Payment 020 - SDA Design Dwgs - SDA Access Steel Dwgs (1 28-Feb-18	28-Feb-18														1 1 1	20 - SDA De	1 1	1 1 1	1 1	1 1 1	1 1	1 1							
Y021	Payment 021 - Fabric Filter Design Dwgs - Fabric Filter Acces	1 28-Feb-18	28-Feb-18													: : :	17 1 1	21 - Fabric F	-	-	1 1	1 1 7	1 1	1 11	(Rel for F	Fab)					
Y023	Payment 023 - Award Fabric Filter Bags & Cages	1 30-Apr-18	30-Apr-18														11 1 1	ment 023 - A	1 1	-1 1 -1	1 1	1 1 1									
Y025	Payment 025 - Structural Steel Start Fab - Steel Members	1 30-May-18	30-May-18														i i i*	Payment 028	i i	i i i		i * i	Members	3	1		. ! !				
Y026	Payment 026 - Design Info from DFGD Supplier - Physical Flo	1 30-Jun-18	30-Jun-18								1							Payment	026 - D	esign Info	fram DF0	3D Suppl	lier - Phys	sical Flo	w Mode!	el Com	pleted + I	Issued	for Own	iers Rvv	v
Y033	Payment 033 - U1 Fabric Filter Delivery - FF Plenum Walls &	1 30-Jun-18	30-Jun-18															Payment	!!!	17 1 1	1 1	1 1 1	1 1 1	1 1	1 1 1	1 (:				
Y034	Payment 034 - U1 SDA Structural Steel Delivery	1 30-Jun-18	30-Jun-18															Payment	034 - U	1 SDA Sti	ructural St	eel Deliv	ery		1 1 1						
Y035	Payment 035 - U1 Duct Delivery (50% On-Site)	1 25-Jul-18	25-Jul-18															I Payme	ent 035	- U1 Duct	Delivery (50% On-	Site)				1 I I				
Y032	Payment 032 - Lime Storage & Prep Sys Delivery - Silos, Tan	1 23-Aug-18	23-Aug-18															I Pa	yment 0	32 - Lime	Storage 8	Prep \$	s Delive	ry - \$ilo	s, Tanks	s, Slakr	ers & Pur	ımps			
Y029	Payment 029 - U1 SDA Delivery - Ring Girder & Cone Section	1 28-Sep-18	28-Sep-18								1 1 1								Payme	ent 029 - L	J1 SDA D	elivery - I	Ring Gird	der & Co	ıne Secti	iion	1 []				
Y036	Payment 036 - U1 SDA - A Support Steel Erection Complete	1 28-Nov-18	28-Nov-18																	Payment	036 - U1	SDA - A	Support :	Şteel Eı	ection C	Jomple	ete :				
Y042	Payment 042 - U1 SDA - C Support Steel Erection Complete	1 28-Nov-18	28-Nov-18																ı	Payment	042 - U1	SDA - C	Support	\$teel E	rection C	Jomple .	≱te				
Y037	Payment 037 - U1 SDA - A Duct Support Steel Complete	1 28-Dec-18	28-Dec-18																	Paym	ent 037 -	U1 SDA	- A Duct	\$uppor	t Steel C	Comple	te				
Y038	Payment 038 - U1 Fabric Filter Struct Steel Delivery - Grid Ste	1 28-Dec-18	28-Dec-18																1 1	Paym	ent 038 -	U1 Fabri	c Filter S	struct Ste	≱el Deliv∈	/ery - G	arid Steel	el & Stru	uctural S	support ?	Steel
Y031	Payment 031 - U1 & U2 Booster Fan Delivery - Fans-Motors-L	1 26-Jan-19	26-Jan-19																	I Pa	yment 03	1 - U1 &	U2 Boos	ter Fan	Delivery	y - Fan	s-Motors	s-Lube	Oil On S	ite	
Y041	Payment 041 - U1 SDA - A Inlet Duct Erection Complete	1 30-Apr-19	30-Apr-19																		I F	ayment (041 - U1	\$DA - A	λ Inlet Dι	uct Ere	ection Co	omplete	ə		
Y043	Payment 043 - U1 SDA - A Outlet Duct Erection Complete	1 30-May-19	30-May-19																			1 15 1	1 1	1 1	1 1 1	1 1	ct Erection	1 1	nplete		
Y054	Payment 054 - DCS Equipment Delivery	1 28-Jun-19	28-Jun-19																			1 7 1	' i i	i i	\$ Equipm	- 1 1	1 11	- 1 1			
Y044	Payment 044 - U1 SDA - A Vessel Shell/Roof Complete	1 29-Jun-19	29-Jun-19													 	ļ. ļ. ļ.					+	 				el Shell/R				
/047	Payment 047 - U1 SDA - B Inlet Duct Erection Complete	1 29-Jun-19	29-Jun-19																			1 1 1	· i i	1 1	i i i	1 1	Duct Erec	i i	7 1	1 1	
Y049	Payment 049 - U1 SDA - B Outlet Duct Erection Complete	1 31-Jul-19	31-Jul-19																			1 1 1	11	1 1	1 1 1	- 1 1	utlet Duct	- 1 1	- 1 1	plete	1 1
Y057	Payment 057 - U1 Booster Fans Erection Complete	1 01-Aug-19	01-Aug-19																				1.7.1	1 1	1 1 1	1 1	ans Erecti	1 1	3 1		
/051	Payment 051 - U1 SDA - C Inlet Duct Erection Complete	1 28-Aug-19	28-Aug-19																				1 11	i i	1 1 1	- 1 1	Inlet Du	- 1 1	1 1	- i - i -	
/052	Payment 052 - U1 SDA - C Outlet Duct Erection Complete	1 28-Aug-19	28-Aug-19												ļļļ	ļ <u>ļ</u> ļ	ļļļ	.							444		C Outlet D				
048	Payment 048 - U1 SDA - B Vessel Shell/Roof Complete	1 27-Sep-19	27-Sep-19																				1 1	17 1	1 1 1	1 1	A - B Vess	1 1	1 1	1 1	1 1
′050	Payment 050 - U1 Fabric Filter - B Hoppers/Wall/Roof Complete	1 27-Sep-19	27-Sep-19																				i i	1 1	i i i	i i	ric Filter -	1 1		i i	1 1
′059	Payment 059 - U1 Fabric Filter - C Hoppers/Wall/Roof Complete	1 27-Sep-19	27-Sep-19																				1 1	111	1 1 1	1 1	ric Filter -	1 1	111	1 1	omp
/064 /050	Payment 064 - Operating & Maintenance Manuals	1 28-Sep-19	28-Sep-19																				P	1 1	1 1 1	1 1	ing & Maii	1 1	1 1	i i	0
Y053	Payment 053 - U1 SDA - C Vessel Shell/Roof Complete	1 28-Nov-19	28-Nov-19														ļļļ					ļ		+ + P	ayment 0		U1 \$DA -				
Y074	Payment 074 - U1 Structural Completion	1 02-Apr-20	02-Apr-20																							1 1	Payment (1 1	1 1	1 1	100
Y077	Payment 077 - U1 Duct Tie-In Complete	1 29-Apr-20	29-Apr-20																							1	Payme	- 1 1	1 1	1 1	- i - i - i
Y078	Payment 078 - U1 Mechanical Completion	1 15-May-20	15-May-20																								ı Paym	1 1	78 - U1 N	1 1	1 1
Y080	Payment 080 - U1 Substantial Completion	1 13-Aug-20	13-Aug-20		<u> </u>	لللل		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u>i i </u>	<u> </u>		<u> </u>		Payment	you + U	SUBS
- D	aining Work Actual Work	MDC Cummor	,	ĺ					Pa	age 3 of 5	5						TAS	く filter: Ex	clude '	WBS Ac	ctivities	1.									

		Dur		JFIMI	Almilal	Juil A S	OINID	<u> </u>	$M \mid A \mid M \mid$	J Jul	ASO	N D	JFN	A M	J Jul	A S		JF	M A M	JJ	AS	ONI	JF	MAN	/ J .	I A S C	ז אוכ	<u> </u>	M [/	A M J	J J J /	ASI	ON	ר וט	FM	021 A
PAY079	Payment 079 - U1 Performance Test Report	1 14-Aug-20	14-Aug-20									-9 -8	-7 -6 -5	5 -4 -3	-2 -1	1 2 :	3 4 5	6 7	8 9 10	11 12	13 14	15 16 1	7 18 19	20 21 22	2 23 2	4 25 26 2	27 28 2	9 30 31	1 32 3	3 34 35	5 36 3				2 43 44 I1 Perfo	
PAY082	Payment 082 - U1 FERC Retirement Information	1 27-Aug-20	27-Aug-20	++																													īi	i i	U1 FEF	-ii-
PAY089	Payment 089 - U1 Final Completion	1 27-Sep-20	27-Sep-20																													1 1	17 1	: :	39 - U1 I	1 1
Unit 2		830 22-Sep-18	29-Dec-20																																	
PAY046	Payment 046 - U2 SDA Structural Steel Delivery	1 22-Sep-18	22-Sep-18																		1	Paymen	t 046 - L	2 SDA S	tructura	l Steel De	livery					.				
PAY045	Payment 045 - U2 Fabric Filter Delivery - FF Plenum Walls &	1 27-Oct-18	27-Oct-18																			I Pay	ment 04	- U2 Fa	bric Filt	er Delivery	y - FF F	lenum V	Walls 8	∡ Норре	ers					
PAY040	Payment 040 - U2 SDA Delivery - Ring Girder & Cone Section	1 28-Nov-18	28-Nov-18												1-1-1-							ı	Paymen	040 - U2	SDA I	Delivery - F	Ring Gi	rder & C	Cone S	ection						
PAY039	Payment 039 - U2 Duct Delivery (50% On-Site)	1 28-Dec-18	28-Dec-18																				Payn	ent 039 ·	- U2 Dı	ot Delivery	y (50%	On-Site)))							
PAY056	Payment 056 - U2 SDA - A Support Steel Complete	1 28-Dec-18	28-Dec-18																				7 17	1 1	i i	A - A Sup	1 1	i i '	- i					;		
PAY063	Payment 063 - U2 SDA - B Support Steel Complete	1 28-Jan-19	28-Jan-19																				P	7 1 1	1 1	SDA - BS	7.7	1 1	1 1	1 1				. !		1
PAY067	Payment 067 - U2 SDA - C Support Steel Complete	1 30-Mar-19	30-Mar-19					¦¦¦-							ļļļ-						ļļļ.			l Pay	- + !	67 - U2 SI	!!		-44-	42			ļ	<u> </u>	- 	
PAY062	Payment 062 - U2 SDA - A Inlet Duct Erection Complete	1 29-Jun-19	29-Jun-19																						1 1	Payment 0	i i	i i	i i	i i	i i	1 1	i' i			
PAY055	Payment 055 - U2 SDA - A Inlet Duct Support Steel Complete	1 30-Jun-19	30-Jun-19																							Payment 0	- : :	- 1 1	- 1 1	1 1	11.1		1 1 1	: :		
PAY058	Payment 058 - U2 SDA - B Inlet Duct Support Steel Complete	1 31-Jul-19	31-Jul-19																							1 1 1	i i	- U2 SD. 060 - U2	i i	i i	1 7 1		i i	1 1	i i	
PAY060	Payment 060 - U2 SDA - C Inlet Duct Support Steel Complete	1 28-Aug-19	28-Aug-19																							1 1 1	1	υου - ψ∠ : 066 - U2 :	- 1 - 1	- 1 - 1	1 1		: :	1 1 .	iete	
PAY066 PAY061	Payment 066 - U2 SDA - B Inlet Duct Erection Complete Payment 061 - U2 SDA - A Vessel Shell/Roof Complete	1 28-Aug-19	28-Aug-19 29-Aug-19																									061 - U2	-44-				5	S		
PAY068	Payment 068 - U2 SDA - A Vessel Shell/hoof Complete	1 29-Aug-19 1 27-Sep-19	29-Aug-19 27-Sep-19																							-i -i -i *	* i i	ent 068 - I	i i	i i	i i		i i '	i i	lete:	
PAY072	Payment 072 - U2 SDA - B Support Steel Complete	1 27-Sep-19	27-Sep-19 27-Sep-19																							1 1 1	17 1	ent 072 -	1 1	- 1 1	- 1 1		1 1	1 1 1	icic	
PAY065	Payment 065 - U2 SDA - B Vessel Shell/Roof Complete	1 29-Oct-19	29-Oct-19																								12 1	yment 06	i i	i i	7.1		i i '	i i	nolete	1 1
PAY076	Payment 076 - U2 Booster Fans Erection Complete	1 29-Oct-19	29-Oct-19																								1 1	vment 07	- 1	1 1	- 1		1 1	1 1 '	7 1	1 1
PAY069	Payment 069 - U2 Fabric Filter - A Hoppers/Wall/Roof Complete	1 28-Nov-19	28-Nov-19	+				 							†			+			 -							Paymen				بأنائب لانائانا	12222		Dunntan	Con
PAY071	Payment 071 - U2 SDA - C Inlet Duct Erection Complete	1 28-Nov-19	28-Nov-19																									Paymen	nt 071	- U2 \$D	DA - C	, Inlet Γ	uct Er	ection (Comple	te
PAY075	Payment 075 - U2 SDA - C Outlet Duct Erection Complete	1 28-Nov-19	28-Nov-19																								i	Paymen	nt 075	- U2 \$D	DÁ - Ċ	Outlet	Duct F	rectior	n Camp	lete
PAY073	Payment 073 - U2 Fabric Filter - B Hoppers/Wall/Roof Complete	1 27-Dec-19	27-Dec-19																									l Payr	/ment C	07β - ψ2	2 Fabrir	ic Filte	r - B H	ppers/	/Wall/R	oof (
PAY070	Payment 070 - U2 SDA - C Vessel Shell/Roof Complete	1 28-Dec-19	28-Dec-19																									I Payr	ment C	070 - U2	2 \$DA -	- C V∈	ssel S	ıell/Ro	of Com	plet
PAY081	Payment 081 - U2 Structural Completion	1 04-Jul-20	04-Jul-20												1-1-1-											- [] [-					l Pa	aymen	t 081 -	U2 Str	ructural	Con
PAY084	Payment 084 - U2 Duct Tie-In Complete	1 16-Aug-20	16-Aug-20																													I Pay	/ment /	184 - U	J2 Duct	Tie-
PAY085	Payment 085 - U2 Mechanical Completion	1 16-Aug-20	16-Aug-20																													I Pay	/ment (/85 - U	J2 Mech	iani¢
PAY087	Payment 087 - Demobilization Complete	1 28-Oct-20	28-Oct-20																														; ;	17 1	nt 087 - 1	1 1
PAY088	Payment 088 - U2 FERC Retirement Information	1 28-Oct-20	28-Oct-20					-						.	ļļļ.		-11								1								11	44	nt 088 -	4
PAY086	Payment 086 - U2 Substantial Completion	1 15-Nov-20	15-Nov-20																														i i .	1 7	ent 086	i i
PAY083	Payment 083 - Removal of Fabrication Tables Complete	1 28-Nov-20	28-Nov-20																														. '	1 1	ment 08	1
PAY090	Payment 090 - U2 Final Completion	1 29-Dec-20	29-Dec-20																														:	P	Paymen	1091
Permitting		949 29-Sep-15	27-Jun-19																																	
Air Permit		465 29-Sep-15	31-Jul-17				1 1		: ': :					1 1	•	Riedow	neriAReV	e ew itPerio	d :																	
Title V Op	erating Permit	310 09-Apr-18	27-Jun-19																	•		!!!	1 111		-	RideeW@dīi	itheit VR€V	eew itPeri	riod							
TRAX Boil	er Pressure Analysis	81 16-Mar-15	08-Jul-15	•			بسروسي	Harring and the second	أحبينه متحر	يسس	بم بجروب		101141745Tx40	Reference (e. te	p)roval																			: !		
U1 Engine	· ·	540 30-Jan-17	15-Mar-19																															,		
		507 30-Jan-17	29-Jan-19											relim HI	JUD SYNTAR	a I Implat					Abellenie	w Meetii	Vender	Adresis de la constante	et slivensk	Minnhelina										
	al Engineering & Design												1 1	1 1	1 1 1	1 1	1 1	1 1 1	91615-000-00		guaring ic	W NCC	CITO CIE	DEP TOTAL	usigua.	ad up in ig								: !		
	Engineering and Design	500 30-Jan-17	18-Jan-19					ļļi.						- 4 4															Mesental table	-issue			<u> </u>		1	1
U1 Mecha	nical Engineering	364 13-Feb-17	18-Jul-18											1 1	بالترب	- 1	7-7	T 11 17		100				Hadisti k dens	st Issue	'i i i								: !		
U1 Mecha	nical Design	309 01-May-17	18-Jul-18											<u> </u>		++					D TOD MO			Abstrates 8.8	e ue											
U1 Electri	cal Engineering	344 30-Jan-17	05-Jun-18											i jim									-		i	-	عونس	Alies Be ri	vintervieli8t	as & Re-	-Issue					
U1 Electric		520 27-Feb-17	15-Mar-19										00	عنص		1 1												سنبيني		ønst Iss	sue	. 1	: 1			
U1 I&C En		368 06-Apr-17	17-Sep-18											1	1 11 1			E E E E										Ballisseurlesse (sweRe-	Issue				: !		
		·	<u> </u>					ļ -							ļļ <u>ļ</u> -						J 1 1 -												 			
U2 Engine		630 30-Jan-17	28-Jun-19																																	
U2 Genera	al Engineering & Design	590 30-Jan-17	03-May-19											: :		1 1	1 1	1 1 1	: :	1 1	1 1 1	1 1	1 1	1 1	i i	neral Engir	1 1	i i								
U2 C/S/A	Engineering and Design	587 30-Jan-17	30-Apr-19												1 1 1										U2 C/S	Engineeri	ing & D	esign								-
U2 Mecha	nical Engineering	455 30-Jan-17	26-Oct-18																			🔲 : U2 I	/lechani	al Engine	eering											-
	nical Design	389 02-May-17	26-Oct-18																			🔲 i U2 I	/echani	al Design	n											-
	cal Engineering	434 30-Jan-17	27-Sep-18												1							U2 Elec	trical Fn	gineering												
																1.1	1.1					J		,yoning	i i	In Electric	001 D	ian								1
U2 Electric		610 27-Feb-17												1 1	1 1 1	1 1	1 1	1 1 1	1 1				1		1 1	J2 Electric	ai, Desi	yņ								
U2 I&C En	gineering	460 24-Mar-17	27-Dec-18											1 1	1 1 1	1 1	1 1	1 1 1	1 1	1 1	1 1 1	1 1	U2 18	C Engine	ering		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u>. l</u>	<u>. L</u>	<u> </u>	1
									-	-			-																							
⊢ Rer	naining Work Actual Work	▼ WBS Summar							_	F	Page 4 o	of 5	_						TA	ASK fil	ter: Ex	clude V	VBS A	ctivities	_1.			_								

Section Sect	Signature	/S/A Procurement echanical Procur		Dur	Finish	JIFIMIAI	2015 M I .I I.Iull A I	SIOINIDIJ	TELMIALM	2016 A	SIOINID	JIFIMIAI	2017 M I .I .I.Jull A I	SIOINIDI.	TELMIAIM	2018 / A	ISIOINI	1) I J I F I IVI							MIAI
SA Procurement	September Sept	/S/A Procurement echanical Procur			20 101 20						9 -8	-7 -6 -5 -4	3 -2 -1 1	2 3 4 5 6	7 8 9 10	0 11 12 13	14 15 16	17 18 19 20	21 22 23 2	24 25 26 27	28 29 30 31 32	33 34 35 3	36 37 38 39 4	0 41 42 43	44 45 4
Section Procurement 157 50-16-73 5	School Procurement	echanical Procur										DOI TO TTO ASS				aidfor Rid									
Construction	Construction							V LCONORD C			Mid a ekid	ļ <u>. []</u>					ļļļļ					<u> </u>	TO AND DEPOSIT	olikalik/Dotit/	Abota Sk
Construction 25 10 20 20 20 27 12 25 25 25 25 25 25 25 25 25 25 25 25 25	Construction 240, 104, 104, 104, 104, 104, 104, 104, 1	lectrical Procuren						in in the second of			nyambia				Control va	aives or			Was pad		Piper de la la la la la la la la la la la la la		helinke at outh	Administration in complete	angria on
Construction 72	Construction		nent											1 1 1							Dalina in the same of the same				
Sitework 150 52 Aug 17 27 Feb 18	Silework													<u> </u>	4 57		March Const.		NAMES OF TAXABLE PARTY.	BE ALIBONOMEN	ebelivery				
Railroad Track & Switch Mods	Railroad Track & Switch Modes			, i											1 101-1010		O Manadaisa		Della abtich						
Highway Mods	Highway Mode									ļļļļ		ļļļļļ				1 1 1	1 1 1 1 1			S ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		. -			,
SDA	SDA		& Switch Mods												1 1 1 1			1 1 1	allons						
Field Fabricated Tanks	Field Fabric Filter														CON Highwa										.
Fabric Filter	Fabric Filter															1 :						ection			
Decision Commission Construction Constructi	1 De Booster Fans / Ductwork		d Tanks																U1 Waste As		1 1 1 1				
Lime Sturry	Lime Sturry																ļ <u>-</u>		<u> </u>						
Recycle Sturry 37 29 Man-18 12-Jul-19 39 19 Part of the control o	1 Recycle Sturry		s / Ductwork																U1 ID Boo	oste Un audithum		Biologica Brection	ort lie ins		
Auxiliary Power	1 Auxiliary Power															1 1 1		1 1 1	1 1 1 1			1 1 1 1			
Auxiliary Power	1 Auxiliary Power															U	RSPB/H				BESIKOLOGITYSSE ET BEFOT GEOCOLIC	mpment: Insta	allation		
Balance of Plant 390 07-Nov-18 05-May-20 1 1 1 1 1 1 1 1 1	Balance of Plant 390 07-Nov-18 05-May-20															<u> </u>	1 1 1 1	1 1 1	1 1 1 1		- 1 1 1 1	1 1 1 1			_
Construction 686 01-Nov-17 17-Jun-20 20-May-18 28-Feb-20 28-F	2 Construction 686 01-Nov-17 17-Jun-20 12 Sitework 150 01-Nov-17 29-May-18 28-Feb-20 2 SDA 458 30-May-18 28-Feb-20 2 Field Fabricated Tanks 170 15-Oct-18 07-Jun-19 2 Fabric Filter 419 02-May-18 09-Dec-19 12 ID Booster Fans / Ductwork 268 28-Nov-18 07-Dec-19 12 Lime Slurry 343 30-May-18 20-Sep-19 12 Recycle Slurry 337 28-Jun-18 11-Oct-19									ļļļļ							1		1		7 1 1 1	1 1 1 7	1~1 1 1	1 1 1 1	
Construction 686 01-Nov-17 17-Jun-20 20-May-18 28-Feb-20 28-F	2 Construction 15 01-Nov-17 17-Jun-20 12 Sitework 150 01-Nov-17 29-May-18 12 Sitework 150 01-Nov-17 29-May-18 15		<u>- </u>																<u> U1 </u>		ntU	nstate en	pinnoney Top Co	ating	
2 Sitework 150 01-Nov-17 29-May-18 28-Feb-20	2 Sitework		and Commissioning																		1 1 1 1				(Dictional of the control of the con
2 Field Fabricated Tanks 170 15-Oct-18 07-Jun-19 2 Fabric Filter 419 02-May-18 09-Dec-19 2 ID Booster Fans / Ductwork 2 Lime Slurry 343 30-May-18 20-Sep-19 2 Recycle Slurry 37 28-Jun-18 11-Oct-19 2 Recycle Slurry 38 39-Jun-18 11-Oct-19 39 29-Jun-18 11-Oct-19 39 29-Jun-18 11-Oct-19 30 30-May-18 07-Oct-19 30 30-May-18 07-Oct-19 30 30-May-18 07-Oct-19 31 30-May-18 07-Oct-19 32 Recycle Slurry 33 30-May-18 07-Oct-19 34 30-May-18 07-Oct-19 35 Recycle Slurry 36 Recycle Slurry 37 28-Jun-18 11-Oct-19 38 Recycle Slurry 38 Recycle Slurry 39 Recycle Slurry 30 30-May-18 07-Oct-19 30 30 30-May-18 07-Oct-19 30 30 30-May-18 07-Oct-19 30 30 30-May-18 07-Oct-19 30 30 30 30 30 30 30 30 30 30 30 30 30 3	2 SDA																								
2 Field Fabricated Tanks 2 Field Fabricated Tanks 3 170 15-Oct-18 07-Jun-19 2 Fabric Filter 4 19 02-May-18 09-Dec-19 2 ID Booster Fans / Ductwork 3 18 28-Nov-18 07-Dec-19 3 18 30-May-18 20-Sep-19 3 19 28-Jun-18 11-Oct-19 2 Recycle Slurry 3 28-Jun-18 11-Oct-19 3 28-Jun-18 11-Oct-19 3 3 3 14 25-Jul-18 07-Oct-19 3 4 Auxiliary Power 4 76 22-Aug-18 17-Jun-20	2 Field Fabricated Tanks 170 15-Oct-18 07-Jun-19 2 Fabric Filter 419 02-May-18 09-Dec-19 2 ID Booster Fans / Ductwork 2 ID Booster Fans / Ductwork 3 43 30-May-18 20-Sep-19 2 Lime Slurry 3 7 Becycle Slurry 3 88-3 In-0st 1998 Bin													• 4	1 1 1 1	_12 1 02 ≥Ride3	phistadtation	& LiterydpinerdA	reas / Utility I	Relocations					
2 Fabric Filter 2 ID Booster Fans / Ductwork 3 Lime Slurry 3 As 3 Nay-18 20-Sep-19 2 Recycle Slurry 3 Recycle Slurry 3 Supermodulate State	2 Fabric Filter 2 ID Booster Fans / Ductwork 343 30-May-18 09-Dec-19 2 Lime Slurry 343 30-May-18 20-Sep-19 344 United States of the state of the sta																		<u> </u>				ction		
2 ID Booster Fans / Ductwork 2 Lime Slurry 343 30-May-18 20-Sep-19 2 Recycle Slurry 375 28-Jun-18 11-Oct-19 2 Byproduct Handling 314 25-Jul-18 07-Oct-19 315 29-Jul-18 07-Oct-19 316 22-Aug-18 17-Jun-20	2 ID Booster Fans / Ductwork 2 In Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 2 Lime Slurry 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 3 US 10 Booster Fans / Ductwork 4 US 10 Booster Fans /		d Tanks																Ų2	2 Waste Ash I					
2 Lime Slurry 2 Recycle Slurry 337 28-Jun-18 11-Oct-19 2 Byproduct Handling 348 25-Jul-18 07-Oct-19 359 29-Jul-18 07-Oct-19 369 29-Jul-18 07-Oct-19 370 29-Jul-18 07-Oct-19 371 25-Jul-18 07-Oct-19 372 Auxiliary Power 373 28-Jun-18 07-Oct-19 374 25-Jul-18 07-Oct-19 375 29-Jul-18 07-Oct-19 375 29-Jul-18 07-Oct-19 375 29-Jul-18 07-Oct-19 375 29-Jul-18 07-Oct-19	Company Com															1 1 1		1 1 1	1 1 1 1	1 1 1 1	U2 Fabric	1 1 1 1			
2 Recycle Slurry 337 28-Jun-18 11-Oct-19	12 Recycle Slurry U2 RSPB / FL. U2 RSPB / F		s / Ductwork	268 28-Nov-18	07-Dec-19												: : : :					1 11 1 1			
2 Recycle Slurry 337 28-Jun-18 11-Oct-19	12 Recycle Slurry U2 RSPB / FL			343 30-May-18													i vi				distribution Si	ifici (Excitation) : I hass	ttællættæm		.
2 Auxiliary Power 476 22-Aug-18 17-Jun-20				337 28-Jun-18													: 112	RSPR/F		72	DDDDDD Princeto dRilltorio	@Parkentidentiiniin	mbnt: Inctallat	on	
																-				i cunt			tipolielirits vilanisti täidvari		
007 00 Ech 10 01 May 00 11 11 11 11 11 11 11 11 11 11 11 11		2 Auxiliary Power	<u> </u>	476 22-Aug-18	17-Jun-20												1 1 1 1	- 1 1 1		1 1 1 1	- 1 1 1 1		- 1 - 1 - 1	~	out - Pre
																				1 1 1 1	1 1 1 1	1 1 1 1		1 1 1 1	
System Testing and Commissioning 301 05-Nov-19 29-Dec-20	J2 Balance of Plant 337 06-Feb-19 21-May-20	System Testing	and Commissioning	301 05-Nov-19	29-Dec-20															1					pugg
	J2 Auxiliary Power 476 22-Aug-18 17-Jun-20	2 ID Booster Fans 2 Lime Slurry 2 Recycle Slurry 2 Byproduct Hand 2 Auxiliary Power 2 Balance of Plan	dling r	268 28-Nov-18 343 30-May-18 337 28-Jun-18 314 25-Jul-18 476 22-Aug-18 337 06-Feb-19	07-Dec-19 20-Sep-19 11-Oct-19 07-Oct-19 17-Jun-20 21-May-20												U ₂	RSPB/H	U21	D Booster Fa	T VEHERODEFUE DESEMBLEFUE DE SOUD DESEMBLE SOUD SOUD DESEMBLE SOUD SOUD	Biskel öjödint St Kiriskilöint: Ihad Setellijätiskilöinio Laigolliskilöintiolio Laigolliskilö Laigolliskilö Laigolliskilöintiolio Laigolliskilö Laigolliskilö Laigolliskilö Lai	eel: Erection ttallattion ment: Installat infolinistalistica infolinistalistica Radates Piping	tion Tystesta@atiwoko	
) LUMB			Lipole irits ulan ist ti dan		
007 00 Eph 10 01 May 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		- 1 1 1		1 1 1 1	- 1 1 1 1		- 1 - 1 - 1	~	out - Pre
		Balance of Plan	it	337 06-Feb-19	21-May-20														į į į į	U2 U		ntUad	Radates Piping	1 1 1 1	
	Balance of Plant 337 06-Feb-19 21-May-20 mitUlasRadetebs Piping			301 05-Nov-19	29-Dec-20															1 1 1 1	1 1 1 1	1 1 1 1		1 1 1 1	وتوسي
																				1 1 1 1	1 1 1 1	1 1 1 1		1 1 1 1	puga

ATTACHMENT 4

Milestone Progress Payment Schedule

MONTHLY PROGRESS PAYMENT SCHEDULE

Month	Date	Milestone	Individual Payment (%)	Cumulative Payment (%)
1	Feb-17	Award Dry FGD Contract Execution	1.51	1.51
2	Mar-17	DFGD Supplier - Process Flow Diagrams and Mass	0.06	1.57
		Balances		
3	Apr-17	DFGD Supplier - P&ID Drawings	0.06	1.63
4	May-17	DFGD Supplier - General Arrangement Drawings	0.16	1.79
		NTE Load Diagrams		
5	Jun-17	DFGD Supplier - Preliminary 3D CAD Model	2.62	4.41
		Award Booster Fans		
6	Jul-17	NTE Load Diagrams	0.45	4.86
		Award Atomizers		
7	Aug-17	DFGD Supplier - Equipment Lists	6.24	11.10
		Award Lime System		
8	Sep-17	Flue Gas Ductwork Procurement Initiated	0.45	11.55
9	Oct-17	Initial EI&C Design Information	0.45	12.00
		NTE Load Diagrams		
10	Nov-17	Flue Gas Ductwork Procurement Initiated	2.26	14.26
11	Dec-17	Structural Steel Procurement Initiated	0.45	14.71
12	Jan-18	Structural Steel Fabrication Schedule Complete	0.45	15.16
13	Feb-18	SDA and Fabric Filter Design Drawings	4.07	19.23
14	Mar-18	Award DCS	0.45	19.68
15	Apr-18	Award Fabric Filter Bags and Cages	2.68	22.36
		Flue Gas Ductwork Start of Fabrication		
16	May-18	Structural Steel Start of Fabrication	0.57	22.93
17	Jun-18	Physical Flow Model Completed	2.38	25.31
18	Jul-18	Receive Permits for Construction	0.70	26.01
19	Aug-18	Mobilize On-Site	2.67	28.68
20	Sep-18	Unit 1 SDA Delivery	2.99	31.67
		Office Complex and Fabrication Areas Set-Up		
21	Oct-18	Unit 1 and Unit 2 Booster Fan Delivery	5.12	36.79
		Lime Storage and Preparation System Delivery		
		Unit 1 Fabric Filter Delivery		
22	Nov-18	Unit 1 SDA Structural Steel Delivery	4.81	41.60
		Unit 1 Duct Delivery		
	- 40	Unit 1 SDA-A Support Steel Erection Complete	4.00	4.5.00
23	Dec-18	Unit 1 SDA-A Inlet Duct Support Steel Complete	4.00	45.60
		Unit 1 Fabric Filter Structural Steel Delivery		
24	I 10	Unit 2 Duct Delivery	4.22	40.02
24	Jan-19	Unit 2 SDA Delivery	4.32	49.92
		Unit 1 SDA-G Support Steel Freetien Complete		
25	Eab 10	Unit 1 SDA-C Support Steel Erection Complete Unit 1 SDA-A Outlet Duct Erection Complete	4.09	54.00
25	Feb-19	•	4.08	54.00
		Unit 1 SDA-A Vessel Shell/Roof Complete Unit 2 Fabric Filter Delivery		
26	Mar-19	•	3.99	57.99
20	iviai-17	Unit 2 Structural Steel Delivery Unit 1 SDA-B Inlet Duct Erection Complete	3.77	31.77
		Unit 1 Fabric Filter-B Hoppers/Wall/Roof Complete		
		om i raone i mer-b rioppers/ wan/koor complete		

MONTHLY PROGRESS PAYMENT SCHEDULE

Month	Date	Milestone	Individual Payment (%)	Cumulative Payment (%)
27	Apr-19	Unit 1 SDA-B Vessel Shell/Roof Complete	3.99	61.98
	•	Unit 1 SDA-B Outlet Duct Erection Complete		
		Unit 1 Fabric Filter-B Hoppers/Wall/Roof Complete		
28	May-19	Unit 1 SDA-C Inlet Duct Erection Complete	3.69	65.67
	,	Unit 1 SDA-C Outlet Duct Erection Complete		
29	Jun-19	Unit 1 SDA-C Vessel Shell/Roof Complete	3.35	69.02
		DCS Equipment Delivery		
		Unit 2 SDA-A Inlet Duct Support Steel Complete		
		Unit 2 SDA-A Support Steel Complete		
30	Jul-19	Unit 1 Booster Fans Erection Complete	3.04	72.06
		Unit 2 SDA-B Inlet Duct Support Steel Complete		
		Unit 1 Fabric Filter-C Hoppers/Wall/Roof Complete		
31	Aug-19	Unit 2 SDA-C Inlet Duct Support Steel Complete	2.93	74.99
	C	Unit 2 SDA-A Vessel Shell/Roof Complete		
		Unit 2 SDA-A Inlet Duct Erection Complete		
32	Sep-19	Unit 2 SDA-B Support Steel Complete	3.06	78.05
	•	Operating and Maintenance Manuals		
33	Oct-19	Unit 2 SDA-B Vessel Shell/Roof Complete	3.00	81.05
		Unit 2 SDA-B Inlet Duct Erection Complete		
		Unit 2 SDA-C Support Steel Complete		
34	Nov-19	Unit 2 SDA-A Outlet Duct Erection Complete	2.81	83.86
		Unit 2 Fabric Filter-A Hoppers/Wall/Roof Complete		
35	Dec-19	Unit 2 SDA-C Vessel Shell/Roof Complete	2.76	86.62
		Unit 2 SDA-C Inlet Duct Erection Complete		
36	Jan-20	Unit 2 SDA-B Outlet Duct Erection Complete	2.41	89.03
		Unit 2 Fabric Filter-B Hoppers/Wall/Roof Complete		
		Unit 1 Structural Completion		
37	Feb-20	Unit 2 SDA-C Outlet Duct Erection Complete	2.26	91.29
		Unit 2 Booster Fans Erection Complete		
38	Mar-20	Unit 1 Duct Tie-In Complete	2.23	93.52
39	Apr-20	Unit 1 Mechanical Completion	0.45	93.97
40	May-20	Unit 1 Performance Test Report	0.30	94.27
41	Jun-20	Unit 1 Substantial Completion	0.22	94.49
		Unit 2 Structural Completion		
42	Jul-20	Removal of Fabrication Tables Complete	0.22	94.71
43	Aug-20	Unit 2 Duct Tie-In Complete	0.15	94.86
44	Sep-20	Unit 2 Mechanical Completion	0.07	94.93
45	Oct-20	Unit 2 Substantial Completion	0.07	95.00
		Demobilization Complete		
46	Nov-20	Unit 1 Final Acceptance	2.50	97.50
47	Dec-20	Unit 2 Final Acceptance	2.50	100.00

ATTACHMENT 5

S&L Estimating Documentation:

Indirects and Construction Equipment included in Crew Rates

Indirects and Construction Equipment included in Crew Rates

Typical Construction Equipment included in our Crew Rates

- Air compressor
- Air tugger
- Crane, 5 ton
- Crane, 15 ton mobile
- Crane, 35 ton
- Crane, 50 ton
- Crane, 60 ton
- Dozer
- Finishing machine
- Flat bed trailer
- Fork lift
- Front end loader
- Generator
- Grader
- Pickup truck
- Powdered riding buggy
- Roller, sheepsfoot
- Roller, vibratory
- Radial saw
- Scraper
- Stress relieving machine
- Tremie
- Truck mounted concrete pump
- Vibrator
- Water wagon
- Welding machine
- Wire puller

Site Indirects included in Crew Rates

- Job Supervision-Field Staff
- Administration-Field Staff
- Personnel Hiring
- Craft Superintendents
- Safety / Purchasing/Expediting-Field Staff
- Material Control-Field Staff
- **Engineering Liaison-Field Staff**
- Project Controls-Field Staff
- Cost/Schedule Controls-Field Staff
- Quality Control Inspection-Field Staff
- Project Office Supplies-Field Staff
- Computer Expenses
- Service Trucks/Supplies
- Field and Shop Mechanics and Supplies
- **Subcontract Administration**
- Warehousing-Field Staff
- Field Surveying
- Water & Ice
- Sanitation and Cleanup
- Move In/Move Out
- Detours/Barricades/Flags
- Security
- Temp. Utilities/Distr/Hookup
- Temporary Site Improvement
- Temporary Facilities/Buildings
- **Utilities Consumption**
- **Employee Expenses**
- Legal Expenses/Claims
- Permits and Fees
- Timekeeping

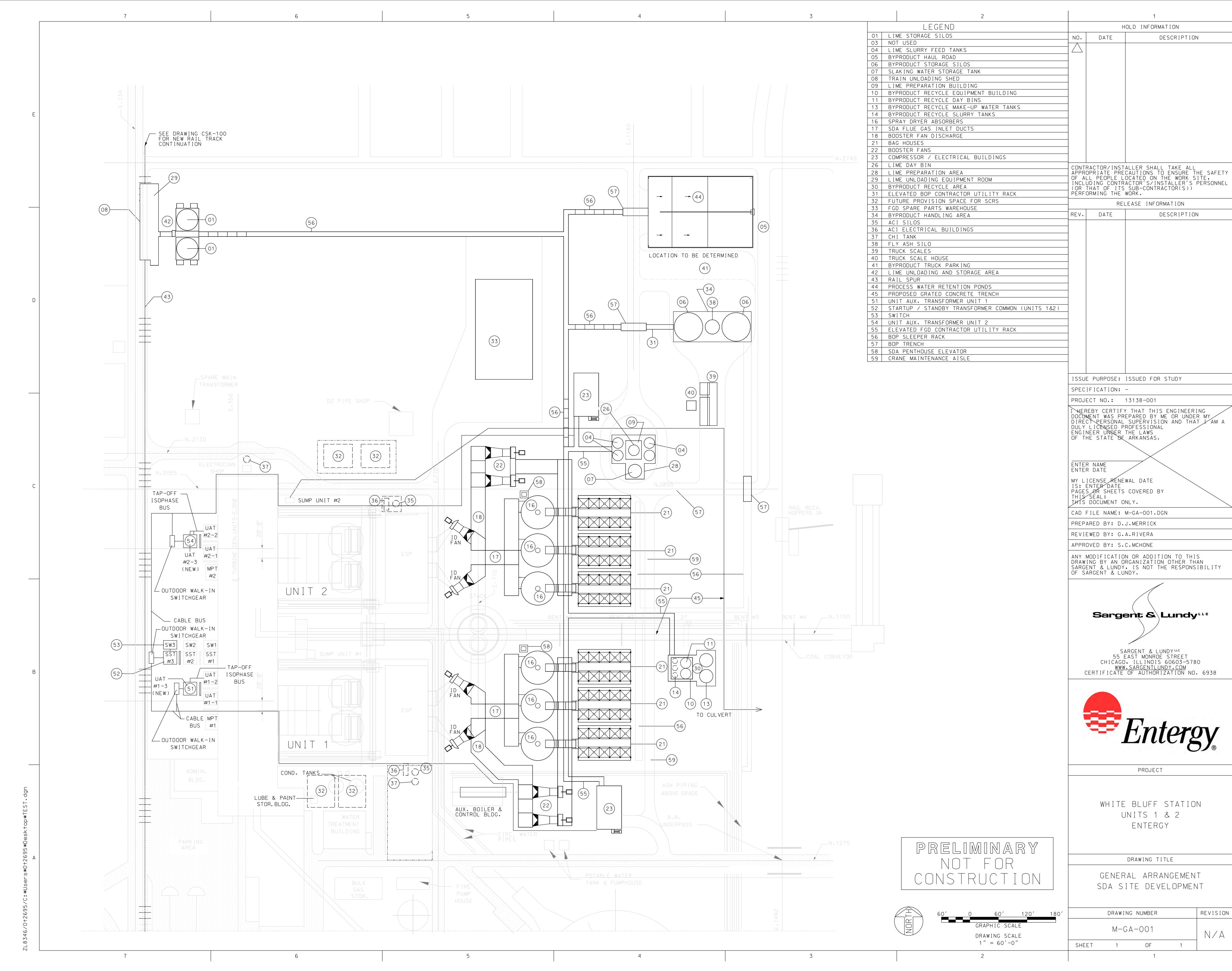
ATTACHMENT 6

S&L Estimating Documentation:

Escalation Projections

White Bluff DGFD Project Escalation Projections

Basis: Pine Bluff Arkansas Labor rates as published in RS Means		Yea	arly Base R	ates + Frinç	ges						
Craft Description	2009	2010	2011	2012	2013	2014	% increase in past 1 year	% increase in past 2 years	% increase in past 3 years	% increase in past 5 years	Projected Potential overall % labor increase next 5 years.
Boilermaker	\$38.59	\$41.59	\$41.59	\$41.59	\$43.10	\$44.39	2.99%	6.73%	6.73%	15.03%	
Iron worker	\$28.06	\$30.44	\$30.44	\$30.44	\$32.05	\$34.00	6.08%	11.70%	11.70%	21.17%	
Pipe Fitter	\$25.28	\$31.65	\$31.65	\$31.65	\$35.56	\$35.56	0.00%	12.35%	12.35%	40.66%	
Electrician	\$35.74	\$35.74	\$35.74	\$35.74	\$36.95	\$36.95	0.00%	3.39%	3.39%	3.39%	
Common Laborer	\$16.83	\$17.47	\$17.47	\$17.47	\$17.47	\$17.47	0.00%	0.00%	0.00%	3.80%	
Average increase in five major crafts							1.82%	6.83%	6.83%	16.81%	18%


Misc Material and Equipment (Please	see Note 1)				% increase in past 5 years	Projected Potential overall % increase next 5 years.
Construction & Building Index				8%	15%	17.00%
Material Price, Construction Mat.				8%	7%	10.00%
Plant Cost Index				no increase	slightly negative	5.00%
Civil Work				8%		
Steel - ductwork				no increase	slightly negative	8.00%
Steel - rolled shape					no increase	10.00%
Architectural				5%		8.00%
Overall mechanical equipment				4%	1%	7.00%
Overall piping				6%	11%	12.00%
Overall electrical equipment				9%		18.00%
Raceway, Cable Tray, & Conduit				8%	slightly negative	10.00%
Electrical cable				14%	7%	15.00%
Controls & Instrumentation			_	1%	1%	5.00%
Average overall increase for Power back-fit projects				7%	9%	11%

Note 1: From major industrial sources such as BLS, Chemical Engineering, Handy Whitman, ENR Commodity pricing (20 city average),

ATTACHMENT 7

Conceptual General Arrangement Drawing

REVISION N/A

ATTACHMENT 8

Entergy Basis of Contingency

Risk Register

		Contin	ge	ency Estin	na	te		
Estimate Total w/o Contingency,	•	740,000,000						
IDC, Escalation	\$	740,968,200 P90		P80		P70	P60	P50
Risk Contingency	\$	35,870,000	\$	27,220,000	\$	20,550,000	\$ 16,210,000	\$ 13,090,000
Estimate Uncertainty Contingency	\$	95,350,000	\$	66,600,000	\$	41,540,000	\$ 21,330,000	\$ (290,000)
Unknown Risk Contingency	\$	18,560,000	\$	17,380,000	\$	16,450,000	\$ 15,610,000	\$ 14,810,000
Total Contingency	\$	149,780,000	\$	111,200,000	\$	78,540,000	\$ 53,150,000	\$ 27,610,000
Percentage of Total		20%		15%		11%	7%	4%
								·
Total Estimate w/ Contingency	\$	890,748,200	\$	852,168,200	\$	819,508,200	\$ 794,118,200	\$ 768,578,200

Project Delivery Standard

	•	imate Characteris		Resultin	g Range
Estimate class	Maturity level of project definition expressed as % of complete engineering	End usage typical purpose of estimate	Methodology	Estimate accuracy range typical variation in low & high ranges	Target contingency range
Class 5	0 to 2%	Rough Order of Magnitude (ROM)	Capacity factored, parametric models, judgment, or analogy	-50 to +100%	30 to 50%
Class 4	1 to 15%	Feasibility	Equipment factored or parametric models	-30 to +50%	25 to 40%
Class 3	10 to 50%	Funding Authorization	Semi-detailed unit costs with assembly level line items	-20 to +30%	15 to 30%
Class 2	30 to 90%	Control	Detailed unit costs with forced detailed take-off	-15 to +20%	5 to 20%
Class 1	50 to 100%	Check Estimate	Detailed unit cost with detailed take off		2 to 7%

Risk Register

			ESTI	MATE UNCE			
Risk Category	Description of Risk	Estimate Total w/out Contingency	Min (\$)	Quantitative Risk Expected	Max (\$)	QRA Comments	Status / Comments
Estimate Uncertainty	EPC Contract	\$ 752,912,300	(\$188,228,075)	\$0	\$188,228,075	From S&L estimate report, the project definition and accuracy of the individual components in this estimate result in an overall accuracy of +/- 25%.	
Estimate Uncertainty	Owner's Costs	\$ 58,546,000	(\$11,709,200)	\$0	\$17,563,800	Estimate from Entergy, estimate is considered a Class 3 (+30% to -20%).	Entergy Indirects were calculated utilizing the Entergy FVET tool. The risk associated with the individual rates will be included in the estimate uncertainty of the internal loaders estimate.
Estimate Uncertainty	Third Party Services	\$ 12,544,000	(\$3,136,000)	\$0	\$3,136,000	From S&L estimate report, estimate is considered a Class 3 (+25% to -25%)	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 2 of 16

Risk Register

			UNK	NOWN RI	SK		
Risk Category	Description of Risk	Estimate Total w/out Contingency	Qu Min (\$)	Expected	Analysis Max (\$)	QRA Comments	Status / Comments
Unknown Risks	UNKNOWN RISKS: This is part of the calculation for the overall contingency to include in the project budget.	\$ 740,968,200	\$ 7,409,682	\$ 14,819,364	\$ 22,229,046	Estimating standard	Due to lack of historical data and current project development, there are a range of potential impacts from unknown risks not yet captured in the estimate uncertainty and identified risks, Entergy contingency guidance is to use 1% - 3% of the total estimate without contingency. This item can be captured in the risk register and modeled with the identified risks when estimating contingency.

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 3 of 16

									IDE	NTIFIED RISKS							
							SCO	ORING					Quantitat	tive Risk Analy	ysis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-007	Budget	PROJECT BUDGET - CRAFT LABOR - PER DIEM RATE RISK: This risk is related to the required craft labor per diem increasing due to the high demand of craft labor, at a percentage greater than the estimated rate.	ALL	3	2	0	0	6	Low	An increase to per diem to attract labor will increase the project total estimate.	45%	\$0	\$0	\$4,290,000	Yes	The estimated Per Diem is \$13M. Assume a 33% increase as a max.	
2014-002	Budget	PROJECT BUDGET - CRAFT LABOR - WAGE RATE ESCALATION: This risk is related to wage rates rising, at a rate greater than the rate used in the estimate, due to the high demand for craft labor.	ALL	3	3	0	0	9	Low	Received rates over 10- year period from S&L. Range has fluctuated from 0% to 21.23% during that period. Current economic conditions indicate a high probability of craft labor rates increasing beyond the current projection of 3.35% provided by S&L.	45%	(\$19,700,000)	\$0	\$42,300,000	Yes	Received rates over 10- year period from S&L. Looked at range and average high and low rates. Expected escalation rate is 3.35%. Assumed Min rate of 1.675% and Max rate of 6.7%. Results in potential increase of \$42.3M over current escalation estimate and potential decrease of \$19.7M.	
2014-001	Budget	PROJECT BUDGET - IDC: This risk is related to the cost of capital increasing over the life of the project, at a rate different than the current estimated escalation rate.	ALL	1	5	0	2	7	Low	The EPA Cost Control Manual uses a rate of 7% which was used for the estimate. Historical EAI AFUDC rates have been under 7%.	5%	\$0	\$0	\$25,000,000	Yes	Assumes an index rate of 7.5%; this results in an increase of ~\$25M over current IDC estimate.	
2014-006	Budget	PROJECT BUDGET - CAPITAL SUSPENSE ADJUSTMENTS: The risk is related to Capital Suspense increasing over the life of the project from the current Entergy forecasted rate.	ALL	2	3	1	1	10	Low	Adjustment of rates impact the project total estimate.	25%	\$0	\$0	\$0	No	Entergy Indirects will be calculated utilizing the Entergy FVET tool. The risk associated with the individual rates will be included in the estimate uncertainty of the internal loaders estimate.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 4 of 16

Risk Register

							SC	ORING					Quantit	ative Risk Analy	ysis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-005	Budget	PROJECT BUDGET - EPC MATERIAL ESCALATION: Project material cost may be subject to escalation	ALL	1	3	0	1	4	Low	Material escalation is included in the project estimate.	5%	\$0	\$0	\$0	No	Material escalation is included in the project estimate. The estimate uncertainty addresses the risk of the amount of material and the material escalation rate being different than the current forecasted rates.	
2014-003	Budget	PROJECT BUDGET - LIME ESCALATION: Project lime cost may be subject to escalation different than the estimated rate.	ALL	3	1	0	0	3	Low	Assume that lime escalation rate will increase during project.	45%	\$0	\$0	\$0	No	Budgeted Lime escalation rate is 2.15%. The estimate uncertainty addresses the risk of the amount of material and the escalation rate being different than the current forecasted escalation rate.	
2014-005	Budget	PROJECT BUDGET - MATERIAL LOADER ADJUSTMENTS: The risk is related to the material loaders increasing over the life of the project from the current Entergy forecasted loaders.	ALL	4	1	0	0	4	Low	Probability that Material Loaders will change over life of the project.	20%	\$0	\$0	\$0	No	Entergy Indirects will be calculated utilizing the Entergy FVET tool. The risk associated with the individual rates will be included in the estimate uncertainty of the internal loaders estimate.	
2014-004	Budget	PROJECT BUDGET - PAYROLL LOADER ADJUSTMENTS: The fisk is related to the payroll loaders increasing over the life of the project from the current Entergy forecasted loaders.	ALL	4	2	0	0	8	Low	Probability that Payroll Loaders will change over the life of the project.	70%	\$0	\$0	\$0	No	Entergy Indirects will be calculated utilizing the Entergy FVET tool. The risk associated with the individual rates will be included in the estimate uncertainty of the Entergy Payroll estimate.	
2014-006	Budget	SALES TAX: Risk that the sales tax rate will change and add additional costs to the project.	ALL	2	1	0	0	2	Low	Probability that the Sales Tax will change order the life of the project.	20%	\$0	\$0	\$0	No	The risk associated with a Sales Tax change will be included in the estimate uncertainty, which also includes the risk of the quantity of materials subject to sales tax.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 5 of 16

Risk Register

							SC	ORING					Quantita	tive Risk Anal	ysis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-010	Eng	DESIGN CRITERIA: Design criteria is missing information, or information is incorrect resulting in changes to the technical specifications and requirements during the project. The risk would result in re-engineering / re-work.	ALL	2	3	3	1	14	Medium Low	The Owner's Engineer (S&L) has performed Engineering Studies in 2009 and 2013. The revised Design Criteria document reflects the current project requirements.	20%	\$0	\$5,000,000	\$25,000,000	Yes	Assumption that the design criteria accurately reflects the requirements of the project, any corrections will have minimal impact to detailed design. Min is 0%, Expected is 1%, Max is 5% of EPC Direct Costs \$500M.	
2014-011	Eng	ENGINEERING SUPPORT: Inadequate support to review EPC contractor's design to ensure it meets Entergy requirements. The risk would result in re- engineering / re-work.	ALL	1	3	3	2	8	Low	The Project will use an Owner's Engineer to augment staff requirements to mitigate this risk. This risk is the potential for redesign based on inadequate reviews.	5%	\$0	\$5,000,000	\$25,000,000	Yes	Assumption that there will be minimal rework based on inadequate Entergy review of EPC contractor design. Min is 0%, Expected is 1%, Max is 5% of EPC Direct Costs \$500M.	
2014-012	Eng	SCOPE GAP OR CHANGES: Work scope not defined in EPC contract, and not identified/unforeseen conditions in project budget. Risk would result in additional scope to EPC contract.	ALL	2	4	3	2	18	Medium Low	Low probability due to 2009 and 2013 studies. BOP scope not as defined as FGD island. There is only minimal engineering complete at this stage. Also, risk covers the potential for additional design requirements over base FGD design to meet Entergy standard designs.	20%	\$5,000,000	\$15,000,000	\$45,000,000	Yes	Assumption that any missed scope will not be significant, there is an Open Book period for development. Assume minimum of 1% of the \$500M FGD direct costs, 3% expected, 9% max.	
2014-013	Eng	TECHNOLOGY - BAGHOUSE: The baghouse on each of the units fails to meet the PM emissions limits.	ALL	1	3	5	5	13	Medium Low	Low probability due to proven technologies will be specified, and EPC contract will have vendor guarantees.	5%	\$0	\$0	\$0	No	Not included in QRA. Final payment of EPC contract will be based on successful demonstration of performance.	
2014-014	Eng	TECHNOLOGY - Dry FGD: The selection of the technology to meet the emission limits with margin is insufficient to meet the required limits.	ALL	1	3	5	5	13	Medium Low	Low probability due to proven technologies will be specified, and EPC contract will have vendor guarantees.	5%	\$0	\$0	\$0	No	Not included in QRA. Final payment of EPC contract will be based on successful demonstration of performance.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 6 of 16

Risk Register

							SC	ORING					Quantit	ative Risk Anal	ysis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-015	Env	AIR PERMIT (AR) - DELAY: Delay in receiving the permit, for an additional 6 months (24 total).	ALL	1	2	3	3	8	Low	Cost impact to expedite project to stay on schedule as a result in the delay. The current timeline of 18 months accounts for some expected delay.	5%	\$0	\$0	\$3,000,000	Yes	Assume \$500k/month for up to 6 mo of delay. This would be prior to FNTP.	In the current timeline, there is some schedule float that could be used. Entergy could release FNTP prior to receipt of the air permit.
2014-016	Env	ASH DISPOSAL: EPA determines that combustion byproducts are a hazardous waste resulting in need to utilize other material to stabilize scrubber byproduct.	ALL	1	1	0	3	4	Low	Cost impact: possible HAZMAT training and treatment of ash. Still would landfill on site. Loss of ash sales.	5%	\$0	\$0	\$150,000	Yes	Assume some additional training, and minimal equipment modifications	Most ash will be collected in the ESP. This risk would be addressed by a separate project.
2014-018	Env	COMPLIANCE RULE - Vacated or Delayed: If the rule is vacated or delayed, what is the impact?	ALL	1	2	0	0	2	Low	Assume delay prior to project approval but same compliance period to comply. Cost impact: engineering, payroll, AFUDC during delay period.	5%	\$0	\$0	\$3,000,000	Yes	Project delayed prior to LNTP. Assume \$500k/month for 6 months.	
2014-017	Env	ASH DISPOSAL: The ADEQ might impose the same permit restriction as it did at the Flint Creek Plant and not allow WB to route landfill leachate directly to the surge pond.	ALL	3	0	0	1	3	Low	Project will not increase probability to occurrence; plant O&M risk. Cost impact: treatment of leachate prior to sending to surge pond.	45%	\$0	\$0	\$0	No	Plant O&M risk.	
2014-019	EPC	CONSTRUCTION DELAYS: Construction delays could negatively affect the project and ability to meet a compliance date target. It includes the following contractor identified risks: 1) Damage or late delivery of equipment and materials 2) Weather impact to craft productivity and full or partial site shutdown 3) Craft productivity 4) Labor availability of pipefitters, welders, and electricians	WB1	2	2	3	2	14	Medium Low	The contracting strategy will use schedule incentives to maintain the schedule. The labor availability risk will be shared with the contractor, craft labor escalation is a separate risk item.	20%	\$0	\$4,000,000	\$16,000,000	Yes	These delay estimates represent Owner's costs due to the delay (AFUDC, labor) 0-8 mo delay at \$2M/month. Current schedule reflects adequate available time for the EPC contractor to account for these delays. Escalation is a separate risk.	Identified risks will be assigned to the EPC contractor.

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 7 of 16

Risk Register

							SC	ORING					Quantitat	ive Risk Analy	ysis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-021	EPC	Delay in FNTP: Delay in Entergy issuing FNTP	ALL	2	2	2	3	14	Medium Low	Delay in issuing FNTP. Delays for receipt of the air permit or regulatory approval are separately identified risks.	20%	\$0	\$3,000,000	\$6,000,000	Yes	Assume EPC contractor request compensation for the FNTP delay (equipment contracts, etc). (\$1M/month delay)	
2014-022	EPC	Delay in LNTP: Delay in Entergy issuing LNTP	ALL	2	2	2	3	14	Medium Low	Delay in receiving internal approvals.	20%	\$0	\$1,500,000	\$3,000,000	Yes	Assume EPC contractor request compensation for the LNTP delay (etc.) (\$0.5M/month delay)	
2014-023	EPC	EPC CONTRACT EQUIPMENT VALUE: Equipment estimate uncertainty during the period from when the contract price is developed to the LNTP.	ALL	2	4	0	1	10	Low	The time between the Open Book Period and LNTP is approximately 14 months.	20%	\$0	\$8,000,000	\$20,000,000	Yes	Risk of price changes for \$400M of the EPC contract, subject to 14 months between negotiation and award. Min = 0%, Exp = 2%, Max = 5%	
2014-024	EPC	EPC CONTRACT: Negotiated EPC fee	ALL	2	4	0	2	12	Medium Low	EPC Fee assumed to be in the 8%-15% range.	20%	(\$12,000,000)	\$0	\$12,000,000	Yes	Estimate includes a 10% fee or ~\$60M. Min = 8% fee, Max = 12% fee.	
2014-069	EPC	EPC CREDIT RISK: EPC contractor default on contractor (EPC procurement costs)	ALL	1	1	1	3	5	Low	Entergy will work with qualified vendors that have had a credit risk review.	5%	\$0	\$0	\$7,500,000	Yes	Estimate of EPC procurement costs, negotiating, and potential incrase on contract value. To account for procurement activities, Max 1% of EPC value	

Printed 4:15 PM 7/9/2015 WB FGD Risk Register 2015-07-01 Page 8 of 16

Risk Register

							SC	ORING					Quantita	ative Risk Analy	/sis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-070	EPC	EPC CREDIT RISK: EPC contractor default on contractor (schedule delay)	ALL	1	5	5	5	15	Low	Entergy will work with qualified vendors that have had a credit risk review.	5%	\$0	\$0	\$36,000,000	Yes	Default of the EPC contractor would result in delay of project to procure and onboard a new contractor. For this calculation, the EPC contractor is assumed to default during construction. Apply amount of IDC (\$4M/mo) plus carrying costs of Entergy costs (\$500k/mo) at this date through end of project to the expected delays (max: 8 mo).	
2014-032	EPC	SCHEDULE - Delayed: Change in project schedule due to longer compliance timeline.	ALL	1	1	1	1	3	Low	Assume that, if compliance date is delayed, then all costs will shift accordingly. Incremental costs would be maintaining internal staff in the interim, IDC.	5%	\$0	\$0	\$12,000,000	Yes	Assume delay would be known before contract award, when the FIP or SIP is issued. Delay of min = 0 mo, exp = 0 mo, max = 24 mo @ \$500k/mo	
2014-033	EPC	SCHEDULE - Shorter Compliance Timeline: Change in project schedule that shortens compliance timeline.	ALL	1	4	0	3	7	Low	Assume that labor costs and costs to expidite equipment would increase to comply with earlier timeline.	5%	\$0	\$0	\$30,000,000	Yes	Assumption that current schedule has some float, add \$ for premium time, less IDC costs. Assume 15% increase of estimated craft labor of ~\$200M.	
2014-035	EPC	UN-IDENTIFIED UNDERGROUND OBSTRUCTION: Claims for extra work for un-identified underground pipe, etc.	ALL	2	3	2	2	14	Medium Low	Project plans to perform exploration work to identify unknown underground obstructions during the Open Book period. This risk if realized will increase the EPC contract price.	20%	\$0	\$500,000	\$3,000,000	Yes	Assumption that any missed scope will not be significant. Schedule delays of \$500k/month.	

Printed 4:15 PM 7/9/2015 WB FGD Risk Register 2015-07-01 Page 9 of 16

Risk Register

				SCORING								Quantitative Risk Analysis						
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$) Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments		
2014-036	EPC	WEATHER-RELATED DELAYS: Extreme weather can greatly affect craft productivity and result in partial or complete site shutdown. Such weather conditions can increase the risk and provide the basis for a contractor claim for a change order.	ALL	1	1	3	2	6	Low	The project is subject to extreme weather events. This risk will be further developed during the Open Book period.	5%	\$0 \$4,000,00	0 \$12,000,000	Yes		plan is to perform a majority of the construction prior to any outage. Weather risks will be assigned to the EPC contractor.		
2014-020	EPC	CONSTRUCTION DELAYS: Construction delays could negatively affect the project and ability to meet a compliance date target. It includes the following contractor identified risks: 1) Damage or late delivery of equipment and materials 2) Weather impact to craft productivity and full or partial site shutdown 3) Craft productivity 4) Labor availability of pipefitters, welders, and electricians	WB2	2	2	3	2	14	Medium Low	The contracting strategy will use schedule incentives to maintain the schedule. The labor availability risk will be shared with the contractor, craft labor escalation is a separate risk item.	20%	\$0 \$	0 \$0	No	Risk QRA combined with EPC Construction Delays for WB1. Current schedule reflects adequate available time for the EPC contractor to account for these delays. Escalation is a separate risk.	Identified risks will be assigned to the EPC contractor.		
2014-008	EPC	LABOR: Schedule delays due to union labor disputes.	ALL	1	2	2	2	6	Low	Using non-union labor.	5%	\$0 \$	0 \$0	No	Using non-union labor.			

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 10 of 16

Risk Register

				SC	ORING			Quantitative Risk Analysis									
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-027	EPC	OPEN BOOK PERIOD: Change in contract terms (Limitiation of Liability) during EPC contract negotiations.	ALL	1	3	0	1	4	Low	The RFP process to select the EPC contractor will require the contractor to state required terms for an EPC contractor prior to their selection. The Open Book period should not increase their project risk profile, which would be a driver for a change in their terms.	5%	\$0	\$0	\$0	No	Not included in QRA. Project estimate includes estimate uncertainty for this risk.	
2014-028	EPC	OPEN BOOK PERIOD: Change in rates from EPC contractor during open book period.	ALL	1	1	0	1	2	Low	The EPC contractor's labor and equipment rates will be negotiated during the Open Book period to develop the contract price.	5%	\$0	\$0	\$0	No	Not included in QRA. Project estimate includes estimate uncertainty for this risk.	
2014-029	EPC	OPEN BOOK PERIOD: Unable to negotiate a fixed price contract.	ALL	1	0	0	0	0	Low	The scope and schedule of this project are sufficient to meet the project goals. There is no indication that this risk is probable.	5%	\$0	\$0	\$0	No	Not included in QRA.	
2014-030	EPC	POOR PERFORMANCE BY CONTRACTOR ON PROJECT: Risk of claims and change orders increases if contractor expects and/or experiences loss on the project.	ALL	1	1	2	1	4	Low	Risk exists for contractor claims, project controls will be in-place to support Entergy. Risk is for total claims greater than the amount of contingency.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	
2014-031	EPC	POOR QUALITY OF CONTRACTOR WORK: Schedule impact due to rework and adverse affect on long-term plant operation.	ALL	1	1	2	1	4	Low	EPC bidders will be selected based on Entergy experience and previous work experience.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 11 of 16

Risk Register

				SCORING								Quantitative Risk Analysis						
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments	
2014-034	EPC	SCOPE OR DESIGN PROBLEMS: Poor scope, technical design, or unclear technical requirements could result in change orders with added cost and/or schedule delay or an end product that does meet customer needs	ALL	3	3	3	2	24	Medium Low	Complicated project with many interfaces to exisitng facility. Assume multiple small change orders.		\$0	\$0	\$0	No	Not included in QRA. This risk is similar to Engineering risks. Project estimate includes estimate uncertainty for this risk.		
2014-037	EPC	POOR PERFORMANCE: Contractor does not meet schedule or performance requirements.	ALL	2	1	2	1	8	Low	Risk exists for contractor claims, project controls will be in-place to support Entergy.	20%	\$0	\$0	\$12,000,000	Yes	These delay estimates represent Owner's costs due to the delay (AFUDC, labor) 0-6 mo delay at \$2M/month.		
2014-038	Goal	COMPLIANCE - NON- COMPLIANCE: The new emission standards cannot be met by the units.	ALL	1	5	5	5	15	Medium Low	Industry information shows that the emission compliance levels can be met with the available tecnologies.	5%	\$0	\$0	\$0	No	Cost estimate is beyond project value.		
2014-053	Ops	LONG TERM OPERATION - CAPACITY: Unit derate or capacity restriction resulting from control technologies.	ALL	1	1	1	1	3	Low	Unit capacity will be affected by this project. It will be defined and a guarantee will be negotiated with the EPC contractor.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	Review this risk after Open Book Period to determine capacity impact of project.	
2014-054	Ops	LONG TERM OPERATION - INCREASED O&M: Increases to the unit's O&M due to control technology.	ALL	1	1	1	1	3	Low	Additional O&M will be required by this project. It will be defined when the technology is selected during the Open Book period.	5%	\$0	\$0	\$0	No	Not a project risk.	Review this risk after Open Book Period to determine O&M impact of project.	
2014-055	Ops	LONG TERM OPERATION - OPERATOR INTERFACE: An increase in training requirements due to control technology.	ALL	1	1	1	1	3	Low	Additional Operator interface will be required by this project.	5%	\$0	\$0	\$0	No	Not a project risk.	Additional Operations staff is included in the project estimate. Review this risk after Open Book Period to determine impact of project.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 12 of 16

WB FGD Project

Risk Register

							SC	ORING					Quantitativ	ve Risk Analy	ysis	T	
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-056	Ops	LONG TERM OPERATION - RELIABILITY: Impacts to the unit's reliability.	ALL	1	1	1	1	3	Low	The EPC contract will require equipment guarantees and system redundancy to provide reliability.	5%	\$0	\$0	\$0	No	Not a project risk.	Review this risk after Open Book Period to determine O&M impact of project.
2014-057	Permiting	Department of Transportation: Impact of schedule delay due to permitting the road modification.	ALL	1	1	1	0	2	Low	Unable to determine risk until Open Book Period to understand permit time required and date when road modification must be in place.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	Review this risk after Open Book Period to determine O&M impact of project.
2014-058	Permitting	REGULATION CHANGE: Change in future regulation to lower emission limits or 30-day rolling average.	ALL	1	1	0	0	1	Low	Need additional information, this would be a future project. Technology for FGD has not been determined	5%	\$0	\$0	\$0	No	Risk will be mitigated during technology selection.	
2014-040	РМ	INTERNAL APPROVALS: Possible delays due to delay of internal approval of contracts	ALL	2	1	1	2	8	Low	Risk exists with the challenges of obtaining internal approvals.	20%	\$0	\$0	\$1,500,000	Yes	Assume internal project team continues to support Board approval during the regulatory and permitting periods. (Assume \$500k/mo).	
2014-041	РМ	ISSUE RESOLUTION: Possible schedule delays due to non- resolution of issues as they arise.	ALL	2	2	3	2	14	Medium Low	Risk exists for undefined issues.	20%	\$4,500,000	\$9,000,000	\$13,500,000	Yes	Undefined issues may impact schedule & project scope. (Assume AFUDC (\$4M) + Owner's costs (\$500k) per month) Min = 1 mo, expected = 2 mo, max = 3 mo)	
2014-039	PM	COMMUNICATIONS: Possible schedule delays and costs increases due to poor communication between all parties	ALL	1	1	2	2	5	Low	Risk exists for contractor claims. The contracting strategy using only one EPC contractor should minimize this risk.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$. Adequate staffing of project is a separate risk.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 13 of 16

WB FGD Project

Risk Register

							SC	ORING			Quantitative Risk Analysis						
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-042	РМ	MANAGEMENT - INSUFFICIENT INTERNAL PROJECT STAFF: Insufficient Internal project resources - unable to meet schedule. Project costs increase.	ALL	2	2	0	2	8	Low	Internal labor costs would be higher than budgeted.	20%	\$0	\$0	\$0	No	Project will plan to use outside contractors to staff project.	
2014-043	РМ	MANAGEMENT - PRUDENCY DETERMINATION: The project team is unable to justify and document project decisions and the related costs to defend decisions as prudent in future rate cases. Mitigation includes processes for contemporaneous documentation.	ALL	1	1	1	3	5	Low	The project will follow project delivery standards, risk should be minimal.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	
2014-044	РМ	PROJECT CONTROLS: Project has insufficient project controls / oversight / documentation to manage and control cost.	ALL	1	3	0	4	7	Low	Stage Gate process requires project controls. Generic project costs would be higher than budgeted.	5%	\$0	\$0	\$0	No	Additional staff included in the project estimate to cover PEI oversight of project.	
2014-045	РМ	RECORDS MANAGEMENT: Document control is insufficient leading to inability to support Regulatory Recovery	ALL	1	1	1	3	5	Low	The project will follow project delivery standards, risk should be minimal.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	
2014-048	PM	SCOPE CHANGES: Possible delays or increased cost due to improperly managed project scope changes.	ALL	1	2	2	2	6	Low	Potential delays due to internal decisions in a timely manner.	5%	\$0	\$0	\$0	No	Not included in QRA. Missed scope part of the Engineering risks.	

Printed 4:15 PM 7/9/2015
WB FGD Risk Register 2015-07-01
Page 14 of 16

WB FGD Project

Risk Register

							SC	ORING					Quantit	ative Risk Analy	ysis		
Risk ID	Risk Category	Description of Risk	Unit	Prob. Rating & History	Cost Impact Rating	Schedule Impact Rating	Other Impact Rating	Total Risk Score	Risk Rating	Justification of Ratings	Probabil ity	Min (\$)	Expected	Max (\$)	Include in QRA	QRA Comments	Status / Comments
2014-059	Reg	REGULATORY - DELAY: Regulatory delays could negatively affect the project schedule. The expected duration is estimated to be 18 months.	ALL	2	2	5	4	22	Medium Low	Project schedule assumes 18 mo to receive approval. If additional time is required, Entergy may choose to issue FNTP prior to receipt to avoid potential costs.	20%	\$0	\$0	\$3,000,000	Yes	Assumption that current schedule has some float, add \$ for premium time, less AFUDC costs. (\$0.5M/month delay)	
2014-068	Schedule	SCHEDULE - FORCE MAJEURE - Increase in cost of project due to force majeure	ALL	1	1	1	1	3	Low	BAR insurance will be in place.	5%	\$0	\$0	\$10,000,000	Yes	Insurance deductible is expected to be structured similar to other projects. \$500,000 deductible for flood, 5% of insured value for Named Windstorm with min of \$1,000,000 and max of \$10,000,000.	
2014-062	Schedule	COMPLIANCE - DEADLINE: Risk that the project will not meet the deadline?	ALL	1	3	4	3	10	Low	Current timeline has sufficient time to develop project.	5%	\$0	\$0	\$0	No	Current schedule reflects adequate available time to complete the project. EPC contract will include schedule requirements.	
2014-063	Schedule	OUTAGE SCHEDULE: Outage schedule moves from current schedule dates.	WB1	2	1	1	1	6	Low	Project expects the current scheduled outages to move to meet project requirements.	20%	\$0	\$0	\$0	No	Schedule flexibility is expected.	
2014-064	Schedule	OUTAGE SCHEDULE: Outage schedule moves from current schedule dates.	WB2	2	1	1	1	6	Low	Project expects the current scheduled outages to move to meet project requirements.	20%	\$0	\$0	\$0	No	Schedule flexibility is expected.	
2014-066	Schedule	SCHEDULE INSUFFICIENT: EPC Contractor does not provide schedule with sufficient level of detail to coordinate activities	ALL	1	1	1	1	3	Low	EPC contract will require detailed project schedule. Entergy project controls will be inplace to support schedule development and maintenance.		\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	
2014-067	Supply Chain	LIME AVAILABILITY: Will the required lime for the long term operation be available?	ALL	1	1	1	1	3	Low	S&L study did not identify lime availability concerns.	5%	\$0	\$0	\$0	No	Insufficient information to provide QRA risk \$.	

Printed 4:15 PM 7/9/2015 Page 15 of 16

	Probability and Impact Definition						
Probability	Probability Definition	Discreet Value for					
Rating 1	(Likelihood of Occurrence) Less than or equal to 10 % Probability of Occurrence	QRA 5%					
2	Greater than 10% but less that 30 % Probability of Occurrence	20%					
3	Greater than 30% but less that 60 % Probability of Occurrence	45%					
4	Greater than 60% but less that 80 % Probability of Occurrence	70%					
5	Greater than 80% Probability of Occurrence	90%					

Cost Impact Rating	Cost Impact Value (Impact to Entergy Cost only) (Project Cost = \$500M)		n Cost Impact (QRA)	ost Likely Cost mpact (QRA)	Max Cost Impact (QRA)	
1	(<0.5% of project cost)	\$	100,000	\$ 1,000,000	\$	2,500,000
2	(0.5% - 1.4% of project cost)	\$	2,500,000	\$ 4,750,000	\$	7,000,000
3	(1.5% - 2.9% of project cost)	\$	7,000,000	\$ 11,000,000	\$	15,000,000
4	(3% - 4.9% of project cost)	\$	15,000,000	\$ 20,000,000	\$	25,000,000
5	(>5% of project cost)	\$	25,000,000	\$ 37,500,000	\$	50,000,000

Schedule Impact Rating	Schedule Impact Value (Impact to Affected Summary Activity)		Most Likely Schedule Impact (QRA)	Max Schedule Impact (QRA)
1	Less than 30 days	0	15	30
2	Between 30 and 60 Calendar days	30	45	60
3	Between 60 and 90 Calendar days	60	75	90
4	Between 90 and 150 calendar days	90	120	150
5	Between 150 and 210 calendar days	150	180	210

Other Impact Rating	Other Effect on Project (Regulatory/Legal, Safety, Company Reputation and Quality) - more details below
1	No impact
2	Minimal Impact
3	Moderate Impact
4	Significant Impact
5	Severe Impact

Other Impact	IMPACT
Value	(Effect on Project)
	Has no impact on (Company Reputation)
1	Has no impact on quality (Quality)
1	Not likely to result in injury or illness (Safety)
	No impact on timely CPCN or full cost recovery (Regulatory/Legal)
	Has limited impact on (Company Reputation)
2	Quality issue has minimal impact on project (Quality)
2	Has a direct, minor impact on a near miss driver, an OSHA RA driver, or human error mechanism. Is an emerging
	CPCN delayed by less than 1 month and/or cost disallowance up to \$7,500,000 (Regulatory/Legal)
	Has moderate impact on (Company Reputation)
3	Quality issue affects work activities and requires application of the corrective action program (Quality)
3	Will create a near miss driver, an OSHA RA driver, or human error mechanism. An emerging safety issue where a
	CPCN delayed between 1-3 months and/or cost disallowance between \$7,500,000 and \$12,500,000
	Has significant impact on (Company Reputation)
4	Quality issue requires immediate management attention (Quality)
4	Will create a near miss driver, an OSHA RA driver, or human error mechanism. No workaround is present.
	CPCN delayed between 3-5 months and/or cost disallowance between \$12,500,000 and \$20,000,000
	Has severe impact on (Company Reputation)
5	Quality issue requires work stoppage (Quality)
Э	Likely to cause one or more deaths (Safety)
	CPCN delayed more than 5 months and/or cost disallowance greater than \$20,000,000 (Regulatory/Legal)

^{*} The Project manager should establish clear thresholds for financial impact at the outset of the project. These should be articulated in the Project Execution Plan and be approved in accordance with the provisions of the Project Management Manual.

INDEPENDENCE DRY FGD COST ESTIMATE AND TECHNICAL BASIS

SL-014308 Final, Rev. 0 January 31, 2018 Project 13027-004

Prepared by

55 East Monroe Street • Chicago, IL 60603 USA • 312-269-2000

ii.

CONTENTS

Section	$\underline{\mathbf{P}}$	age
1. Pu	RPOSE	1
2. TE	CHNOLOGY DESCRIPTION	1
2.1.1.	REAGENT PREPARATION SYSTEM	1
2.1.2.	Absorbers	2
2.1.3.	Baghouse	2
2.1.4.	BYPRODUCT RECYCLE SYSTEM	2
2.1.5.	REAGENT HANDLING SYSTEM	3
2.1.6.	BYPRODUCT HANDLING SYSTEM	3
2.1.7.	Flue Gas Handling System	
2.1.8.	ELECTRICAL BOP SYSTEM	4
2.1.9.	<u>I&C BOP System</u>	4
3. AP	PROACH	4
4. CA	PITAL AND O&M COST ESTIMATE TECHNICAL BASIS	6
4.1. DE	SIGN INPUTS AND ASSUMPTIONS	6
4.2. To	TAL INSTALLED CAPITAL INVESTMENT	7
4.2.1.	Dry FGD Island	7
4.2.2.	FGD ISLAND BOP	8
4.2.3.	REAGENT STORAGE AND HANDLING, COMMON TO BOTH UNITS:	9
4.2.4.	BYPRODUCT HANDLING SYSTEM, COMMON TO BOTH UNITS	.10
4.2.5.	<u>CIVIL BOP</u>	.10
4.2.6.	MECHANICAL BOP SYSTEM	.10
4.2.7.	DEMOLITION AND RELOCATION.	.10
4.2.8.	ELECTRICAL BOP SYSTEM	.11
4.2.9.	INSTRUMENTATION AND CONTROLS BOP SYSTEM	.11
4.2.10.	LABOR COSTS	.12

ii.

Final, Rev. 0

CONTENTS

Sect	<u>tion</u>	Page
4.2.1	1. OTHER DIRECT AND CONSTRUCTION INDIRECT COSTS	12
4.2.1	2. <u>EPC Indirect Costs</u>	13
4.2.1	3. OWNER'S COSTS AND SERVICES	13
4.3.	VARIABLE OPERATING AND MAINTENANCE COSTS	16
4.4.	FIXED OPERATING AND MAINTENANCE COSTS	17
5.	SUMMARY	18
6.	ATTACHMENTS	10

Final, Rev. A

1. PURPOSE

The purpose of this study is to estimate the total capital investment and operating and maintenance costs associated with installing dry flue gas desulfurization (FGD) technology on Independence Units 1&2. This report documents the conceptual design and technical basis for the dry FGD cost estimate.

2. TECHNOLOGY DESCRIPTION

2.1.1. Reagent Preparation System

Lime will be supplied to the lime day bins from the long-term storage silo located in the Reagent Handling Area and supplied by the EPC Contractor. The lime day bins, located in the Reagent Preparation Area and provided by the Dry FGD System Supplier, will each have a storage capacity to supply the plant with lime reagent for 24 hours when firing 1.2 lb SO₂/mmBtu coal.

Lime from the day bin will be gravity-fed through feeders to a lime slaker, where the lime will be slaked (mixed with low pressure service water and converted from calcium oxide to calcium hydroxide slurry). The plant will have a total of two lime slaking trains (2 x 100%), each sized to process enough lime slurry to supply the entire plant. Each lime slaker will discharge to a lime slurry transfer tank, which is equipped with two lime slurry transfer pumps which will feed into the lime slurry storage tanks. The common lime slurry storage tanks will each be sized for 12 hours of storage for the entire plant when burning a 1.2 lb SO₂/mmBtu coal. The lime day bin, slaking trains, and lime slurry tanks are sized to provide the necessary reagent slurry to both units simultaneously. The lime slurry tanks are built with cross-ties such that either slurry tank can feed either the Unit 1 or Unit 2 FGD systems.

A total of four lime slurry feed pumps (two per unit), each sized for 100% flow to one unit, will pump the lime slurry from the storage tanks to the SDAs through one of 2 x 100% piping loops, and return unused slurry back to the lime slurry storage tank. The closed-loop reagent supply line requires a flow velocity between 4-10 fps to avoid any solids buildup in the piping. Because of this, the pumping requirement is higher than the actual SDA requirement and must be sufficiently greater than the slurry flow that is pumped into the absorbers to allow the returning flow to remain above 4 fps.

Final, Rev. A

2.1.2. Absorbers

Three absorbers, each treating 331/3% of the flue gas are provided for each unit. Depending on the supplier and the type of atomizer normally used, there may be one rotary atomizer per absorber with a shared spare (B&W), three rotary atomizers per absorber with one or more shared spares (Alstom, basis of the estimate), or multiple dual-fluid atomizers with 15% shared spares (Siemens). The cost estimate includes contingency to capture the possibility of any of these designs.

2.1.3. Baghouse

Each SDA will be paired with a pulse-jet baghouse with a gross air-to-cloth ratio of approximately 3.2-3.4 ft/min. The filter bags in each baghouse are cleaned by pulses of compressed air. The air compressors will be 4 x 33% for the station and are included in the scope of the baghouse supplier.

2.1.4. Byproduct Recycle System

The reaction byproducts from the absorbers will be collected in the baghouses and a portion of the collected material will be recycled. The baghouse hoppers will be emptied through air lock feeders and pneumatically conveyed to two recycle day bins located in the Byproduct Recycle Area and supplied by the Dry FGD System Supplier, which are common for both units. The air-lock feeders are installed without a spare. One recycle day bin is located in the recycle train for each unit. The common byproduct recycle day bins (one per unit) provide 8-hours of storage when burning 1.2 lb SO₂/mmBtu coal.

Each byproduct recycle day bin is equipped with two recycle slurry preparation systems. The byproduct in each recycle day bin is gravimetrically conveyed to one of two systems where the byproduct is slurried with water (cooling tower blowdown). The byproduct recycle slurry is stored in one of four plant wide recycle slurry tanks, two per unit (combined 4-hour storage capacity).

Two recycle water make-up tanks are located in the recycle area. The recycled by-product slurry will be combined with fresh lime slurry for feed to the SDA atomizers. Recycle feed slurry pumps (4 x 100%, two installed per unit) will be used to transfer the recycle slurry from the recycle slurry tanks to the atomizers. In addition, all recycle feed lines are provided in a loop configuration as with the reagent

system, with a complete redundant loop to allow unhindered operation due to any pluggage of pumps or feed piping.

2.1.5. Reagent Handling System

The basis of the estimate is delivery of lime via hopper-bottom railcars with truck unloading as a backup. In order to accommodate rail delivery to the site, a new rail spur will be constructed from the existing track on the plant site for unloading. A trackmobile car positioner will position railcars, two at a time, in the enclosed delivery shed for unloading. A vacuum pneumatic system will unload the railcars into either of the two (2) lime storage silos. The lime storage silos will be sized for supply of reagent for 14 days of storage at full load when firing 1.2 lb SO2/mmBtu coal. Lime from the long-term storage silos will be pneumatically transferred to two lime day bins located in the Reagent Preparation Area and supplied by the Dry FGD System Supplier.

2.1.6. <u>Byproduct Handling System</u>

Excess FGD byproduct from the recycle system will be pneumatically conveyed to either of the two common long- term FGD byproduct storage silos. The two long-term FGD byproduct storage silos are each sized to handle the byproduct for a total of 7 days of storage when firing the 1.2 lb SO₂/mmBtu coal. The byproduct will be mixed with a small amount of fly ash and water to form a final product which contains approximately 65% FGD byproduct, 5% fly ash, and 30% water. In order to achieve this mixture, a common fly ash blending bin (7-day storage) will be located near the new byproduct silos. The wetted byproduct/fly ash mixture is then loading into dump trucks, which will deposit the FGD byproduct in a final storage location in the landfill. It is assumed that the existing landfill will have sufficient capacity to accommodate the addition of FGD byproduct. Therefore no costs were included in the capital estimate for the (existing) landfill.

2.1.7. Flue Gas Handling System

The flue gas from the existing ID fans will be ducted to the absorbers. The gases from the absorbers will be ducted to the baghouses to collect the reaction by-products and residual fly ash. Two axial booster fans (2 x 50% for each unit) will be located downstream of the absorbers and baghouse; the booster ID

,

4.

fans can be provided by the Dry FGD System Supplier or the EPC Contractor. Due to the dry condition of the scrubbed flue gas, the existing stack and liners will be used for the retrofit case.

2.1.8. Electrical BOP System

In order to feed the new dry FGD and other BOP equipment, significant modifications and additions to the existing power system would be required. These include, at a minimum, installation of new auxiliary transformers, medium- and low-voltage switchgear buses, motor control centers (MCCs) and upgrades to the isolated phase tap-off buses. As a detailed conceptual design was not developed an allowance was included for the Electrical BOP Scope.

2.1.9. I&C BOP System

The dry FGD system will be integrated into the existing DCS system. The baghouse will be controlled through a PLC and the ID booster fans will be integrated into the existing DCS system. As a detailed conceptual design was not developed an allowance was included for the I&C BOP Scope.

3. APPROACH

The project capital and O&M cost estimates are based on project-specific information, including:

- An engineer-procure-construct (EPC) contracting strategy with the Dry FGD technology supplier providing the main process equipment as a complete FGD Island.
- On-site disposal of Dry FGD byproduct using new ash handling equipment. The byproduct will be collected in the new fabric filter and blended with fly ash prior to disposal.
- Reagent injection rates based on achieving an outlet SO₂ emission rate of 0.06 lb SO₂/MMBtu from a design inlet concentration of 1.20 lb SO₂/MMBtu, based on the sulfur limit in the fuel supply contracts.
 - Annual operating costs will be based on an uncontrolled SO₂ rate of 0.49 lb SO₂/MMBtu, based on the annual heat input weighted average emission from 2009 through 2013.
 - The system will be designed to control emissions to meet a permit limit of 0.06 SO₂/MMBtu, based on the required permit limits in the EPA Arkansas FIP.

- A high level conceptual system design was used as input to the Dry FGD cost estimate. The following were estimated based on previous projects and scaled for the predicted dry sorbent injection rate for Independence:
 - Auxiliary power consumption
 - Annual reagent consumption
 - Equipment Sparing and Quantities
 - BOP Allowances (Mechanical, Electrical and I&C)

The total plant capital cost estimate includes the following:

- Equipment and material
- Installation labor
- Demolition and Relocation work
- Indirect field costs and BOP engineering
- Freight on Materials
- General and Administration
- Erection contractor profit
- Engineering, Procurement and Project Services
- Spare parts/initial fills (other than reagent)
- EPC Fee

As part of this project, S&L estimated the costs for Owner's services and costs outside of the EPC contract including the following:

- Owner's Costs
- Owner's Engineer
- Construction Management Support
- Startup and Commissioning Support
- Performance Testing
- Contingency
- Escalation
- Interest During Construction

Cost Estimate 34261 provided in Attachment 1 represents the total cost to Entergy to install Dry FGD technology on both units at Independence (Unit 1 and 2) including the EPC Contract price and all additional Owner's costs and third party services.

The total unit O&M cost estimate includes the following:

- Waste disposal (Dry FGD waste)
- Reagent consumption
- Auxiliary power consumption
- Water consumption for reagent and byproduct handling
- Operating labor
- Maintenance material
- Maintenance labor

The O&M Cost Estimate and Capital Cost Estimate were developed using the assumptions and scope provided in this document. The project definition and accuracy corresponds to a study level estimate as defined in U.S.EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual. The costs provided in this report are in 2017 dollars.

4. CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS

4.1. DESIGN INPUTS AND ASSUMPTIONS

The following summarizes the design inputs used as the basis for the Independence dry FGD Systems:

- Design SO₂ inlet concentration of 1.2 lb SO₂/MMBtu for equipment design, based on the current coal contract sulfur limit.
- SO₂ inlet concentration of 0.49 lb SO₂/MMBtu for annual operating costs, based on the annual heat input weighted average emission from 2009 through 2013.
- Design SO₂ outlet concentration of 0.06 lb SO₂/MMBtu.
- Annual capacity factor of 75.0% (annual average capacity factor for Independence Units 1 and 2 based on historical heat input from 2009 through 2013).
- Project duration of five years.

Final, Rev. A

4.2. TOTAL INSTALLED CAPITAL INVESTMENT

The Dry FGD System Supplier will provide all of the equipment within the FGD Island. The FGD Island will include the Reagent Preparation Equipment, Absorber Area Equipment, Baghouse Area Equipment and the Byproduct Recycle Equipment. The booster ID fans could be provided by either the Dry FGD System Supplier or the EPC Contractor; the basis of this estimate is supply of the booster fans by the Dry FGD System Supplier. The EPC Contractor will provide the remaining BOP scope in order to provide a complete and operable FGD system. In addition, the EPC Contractor will install/construct the entire system including the equipment provided by the DFGD supplier. The scope of work for the cost estimate is broken out by the following areas:

4.2.1. <u>Dry FGD Island</u>

- a. Reagent Preparation System, common to both units:
 - Two lime day bins, 24-hours storage each
 - Two detention lime slakers at 100% capacity, each with a grit screen, gravimetric feeder
 - Two lime slurry transfer tanks
 - Four slurry transfer centrifugal pumps
 - Two lime slurry storage tanks
 - Four slurry feed centrifugal pumps
 - Cost estimate based on budgetary proposal from Alstom; the budgetary proposal is based on
 a design sulfur of 2.0 lb/MMBtu, cost adjustments were included in the estimate for a lower
 design sulfur of 1.2 lb/MMBtu. These cost adjustments were developed by estimating the
 differential equipment cost for the reagent preparation and waste handling equipment. The
 impacted equipment is identified in Section 4.5 which discusses the sulfur design basis
 sensitivity.
- b. Absorber Area, per unit
 - Three absorber vessels per unit, with access doors
 - Rotary atomizers, two spare atomizers included
 - Vessel material carbon steel, \(\frac{1}{4} \) in. \(-\frac{5}{8} \) in. carbon steel
 - Heating and ventilation
 - Vacuum piping
 - SDA Superstructure
 - Cost estimate based on budgetary proposal from Alstom

- c. Baghouse Area, per unit
 - New baghouse, including pulse jet cleaning system and all appurtenances
 - Cost estimate based on budgetary proposal from Alstom
- d. Byproduct Recycle System, per unit (located remotely in common location for both units)
 - One recycle silo with bin vent filter per unit, 8-hour total capacity
 - Two recycle mix tanks per unit
 - Two recycle slurry tanks per unit, with two recycle slurry centrifugal pumps per unit
 - Agitators for each tank
 - Baghouse ash handling system common to both units
 - Rotary air-lock valves from baghouse hopper outlets to pressure pneumatic conveying system (60-degree typical)
 - Pneumatic pressure blowers (8 x 33½ %)
 - Cost estimate based on budgetary proposal from Alstom
- e. ID Booster Fans, per unit
 - Two approximately 5,200 hp axial booster fans per unit sized to overcome pressure drop associated with FGD and baghouse
 - Includes motors no spare motor included
 - Cost estimate based on budgetary proposal from Alstom
 - Dampers from ID fan to booster fans (cost estimated separately, not included in Alstom budgetary proposal)
- f. Interconnecting Ductwork, per unit
 - ID fan outlet to absorber inlet ductwork and supports; carbon steel, ¼ in, design velocity, 3,600 fpm
 - Absorber outlet to baghouse inlet ductwork and supports; carbon steel, ¼ in, design velocity, 3,600 fpm
 - Baghouse outlet to new booster fans and fan outlet to the stack inlet ductwork and supports; carbon steel, ¼ in, design velocity, 3,600 fpm

4.2.2. FGD Island BOP

- a. Absorber tower foundations including caissons
- b. Baghouse area foundations including 18" auger cast piles 60' long
- c. Booster fan area foundations
- d. Concrete foundations for all flue gas ductwork

- 6" insulation with lagging for Absorbers, Baghouses and Ductwork
- Penthouse enclosure for Absorbers located in FGD Island
- Two elevators (one for each unit) to provide maintenance access to Absorber and Baghouse Areas
- h. Enclosure around hoppers for Baghouses located in FGD Island
- Lime preparation building for Reagent Preparation Area in FGD Island, including substructure and superstructure
- Byproduct recycle building for Byproduct Recycle Area in FGD Island, including substructure and superstructure

4.2.3. Reagent Storage and Handling, common to both units:

- a. Lime rail car unloader:
 - Lime delivery via 25-car unit train
 - System consists of mobile receiving pan and associated vacuum pneumatic equipment to unload railcar through railcar bottom hoppers
 - Enclosed railcar unloading building
 - One vacuum pneumatic system operating to unload a car
 - Pneumatic vacuum exhausters (2 x 100%)
 - Filter separator with vacuum-to-pressure transfer hopper and valves
 - Cost estimate based on vendor quote for a similar unit

b. Lime storage silos:

- Two lime storage silos, (14-day capacity each, common to both units) with bin vent filter, including substructure and superstructure
- 1,000-tons storage, each
- Continuous level detection systems
- Live bottom hopper outlets
- Rotary airlock assemblies
- Lime transfer systems:
 - Pressure pneumatic conveying system from lime storage silos to lime day bins
 - Pneumatic pressure blowers
 - One lot of pneumatic conveying piping located on an elevated pipe rack
- Concrete foundations including caissons for all material silos
- Concrete foundations for pneumatic conveying blowers and exhausters

4.2.4. Byproduct Handling System, common to both units

- a. Two FGD by-product storage silos (7-day capacity each, common to both units) with bin vent filter, fluidizing system, and two unloading conditioners (one operating, one spare per silo), including substructure and superstructure
- b. One common fly ash blending, 7-day storage bin with bin vent filter, fluidizing system, and four pneumatic airslide conveyors
- c. Water pumps and associated piping for unloading conditioners (pin mixers) at both silos
- d. Continuous level detection system
- e. Two truck scales and substructure
- f. Concrete foundations including caissons for all material silos
- g. Concrete foundations for pneumatic conveying blowers and exhausters
- h. Allowance for existing road improvements for truck haulage to existing landfill

4.2.5. Civil BOP

- a. Site grading
- b. Soil removal earthwork
- c. Excavation, backfill, and compaction for all foundations
- d. Development of a new laydown area, approximately 10 acres, including site preparation, fencing, and temporary power. It was assumed that this area would be located on existing plant property, and does not require land to be purchased.

4.2.6. Mechanical BOP System

- a. Interconnecting piping, above-ground and buried
- b. Valves for interconnecting piping, above-ground and buried
- c. Lime slaking water storage tank, 175,000-gallon capacity
- d. Recycle make-up water tanks, 2 x 200,000-gallon capacity
- e. Pipe Racks, common to both units
 - Between lime railcar unloading enclosure and lime silos
 - Between lime silos and lime day bins
 - From baghouse hoppers to recycle silos and FGD by-product silo
 - From lime slurry storage tanks to absorber
 - From recycle slurry storage tank to absorber
 - Concrete foundations including caissons for all pipe racks
 - Shallow concrete foundations for other miscellaneous structures

f. BOP Pumps

- Three by-product recycle water forwarding pumps to recycle slurry
- Four reagent prep/recycle sump pumps
- Two lime silo and unloading area sump pumps
- Two by-product ash silo area sump pumps
- Two by-product recycle make-up water tank supply pumps
- Two lime slaking water pumps
- g. Instrument Air System, common to both units
 - Air compressors; 2 x 100%,
 - IA dryers w/filters; 2 x 100%,
 - Air receivers; 2 x 100%
 - Instrument air piping to every silo or day bin, bin vent and reagent preparation/recycle area
 - Heat-traced piping
- h. Service Air System, common to both units
 - Air compressors; 2 x 100%
 - Air receivers; 2 x 100%

i. Field painting

- Multiple coat system used for exposed ductwork only
- Inorganic zinc primer and polyurethane system used for steel
- Allowance for underground piping shop coatings built into piping cost

4.2.7. Demolition and Relocation

a. Allowance of \$1,800,000, plus labor costs, is included for demolition and relocation of existing equipment and infrastructure which may interfere with the new Dry FGD system. This allowance is based on recent in-house cost estimates for similar projects.

4.2.8. Electrical BOP System

a. Allowances of \$13,900,000, \$8,500,000 and \$1,400,000, plus labor costs, are included for electrical equipment upgrades and modifications, cables and conduits/raceway, respectively. These allowances are based on recent in-house cost estimates for similar projects.

4.2.9. Instrumentation and Controls BOP System

a. Allowance of \$1,585,000, plus labor costs, is include for DCS upgrades and added instrumentation. This allowance is based on recent in-house cost estimates for similar projects.

Final, Rev. A

4.2.10. Labor Costs

Installation/labor costs were included in the base estimate under the direct costs. Manhours are estimated for each item in the base estimate and are based on the type of work and typical estimates for similar work. The labor costs are based on the labor wage rates and labor crews developed by S&L.

a. Labor Wage Rates

Crew labor rates were developed using prevailing craft rates, fringe benefits and state specific worker's compensation rates as published in the 2017 edition of R.S. Means Labor Rates for Pine Bluff, Arkansas area. Costs were added to cover FICA, workers compensation, all applicable taxes, small tools, incidentals, construction equipment, and contractor's overhead. A 1.15 geographic labor productivity multiplier is included based on the Compass International Construction Yearbook for Arkansas. The crew rates do not include an allowance for weather related delays.

b. Labor crews

Construction/erection labor cost is based on the use of applicable construction crews typically required for projects of this type. The construction crew costs were specifically developed for utility industry and are proprietary to S&L. The prevailing craft rates are incorporated into work crews appropriate for the activities, and include costs for small tools, construction equipment, insurance, and site overheads.

4.2.11. Other Direct and Construction Indirect Costs

In addition to the base labor costs, other construction indirect costs for the project were broken out in the estimate as well as other contractor direct costs. The following items were included as other direct and construction indirect costs.

- a. Scaffolding and Consumables
- b. Premiums and per diems (\$10 per hour)
- c. Overtime is included based on five 10-hour shifts per week work schedule
- d. Freight on construction materials
- e. Contractor's General & Administration Fees (included at 10% of total direct and construction indirect costs)
- f. Contractor's Profit (included at 5% of total direct and construction indirect costs)

INDEPENDENCE DRY FGD

COST ESTIMATE AND TECHNICAL BASIS

13.

4.2.12. EPC Indirect Costs

The final contribution to the overall EPC project price are the EPC Contractor's indirect costs; these include the EPC engineering services, startup spare parts and initial fills, technical field advisors, and the EPC risk fee.

a. EPC Engineering Services

The EPC engineering services was estimated based on recent projects with similar scopes and schedules. The total cost of the EPC engineering services was estimated to be \$23,000,000.

b. Startup Spare Parts and Initial Fills

An allowance has been included for initial fills for equipment, including first fills for lubrication of any motorized equipment. The initial fill of pebble lime was not included in the EPC Contractor's scope, as this is considered to be an operating cost rather than a capital expense. The initial fill of pebble lime is included in the Owner's costs. The total cost of the initial fills was estimated to be \$300,000.

c. Technical Field Advisors (Vendors)

Allowances were included for equipment supplier's technical field advisory services based on an estimated 600 man-days. The estimate includes technical field advisors for the FGD system supplier (including FGD system subcontractors) and the DCS supplier. The total cost of the technical field advisors was estimated to be \$600,000.

d. EPC Risk Fee

An EPC approach provides an alternative which is expected to reduce risk for Entergy by placing the responsibility for the project on a single entity, the EPC Contractor. The EPC risk fee is a premium charged by the contractor which accounts for the additional coordination and management of the project as well as the additional risk assumed by the contractor. Based on S&L's experience with recent EPC projects, an EPC risk fee was included at 10% of the total EPC project costs.

4.2.13. Owner's Costs and Services

Outside of the EPC Contractor's total cost, Entergy will incur other costs associated with the project, such as services procured from third parties (including Owner's engineer, construction management support, startup and commissioning support and performance testing), and other project related costs.

a. Owner's Costs

Owner's Costs are direct costs that the Owner incurs over the life of the project. The following items are real costs Entergy will incur to install DSI at Independence based on the scope and schedule of this project:

- Internal Labor
- Internal Indirects

- Travel Expenses
- Legal Services
- Builders Risk Insurance
- Initial Fills (Reagent)

Owner's costs were included in the estimate at 8% of the total project cost.

b. Construction Management Support

The construction management support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform the tasks, and therefore it will be outsourced. The cost of labor is based on present day cost. The total cost of the construction management support was estimated to be \$4,969,000.

c. Startup and Commissioning Support

The startup and commissioning support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform the tasks, and therefore it will be outsourced. The total cost of the startup and commissioning support was estimated to be \$550,000.

d. Owner's Engineer

The Owner's Engineer cost was developed as a high level estimate based on a typical scope for Owner's Engineer work for this type of project; including the following tasks:

- Conceptual Study Support
- EPC Specification Supporting Documents
- Project Schedule Development
- EPC Specification Development
- EPC Bid Evaluation and Contract Conformance
- General Project Support
 - Monthly Project Status Meetings
 - Weekly Teleconferences
 - Overall Coordination
 - Project Administration
 - Site Visits and Travel
- Permitting Support
- Design Review of Drawing Submittals
- Technical support during design, fabrication, construction, commissioning, and testing

COST ESTIMATE AND TECHNICAL BASIS

15.

• Equipment vendor QA/QC audits

The total cost of the Owner's Engineer was estimated to be \$6,500,000.

e. Performance testing

The cost for performance testing was developed as a factored estimate using costs from projects of similar scope. This cost includes the testing, performed by a third-party contractor hired by the Owner, and also includes the cost for S&L's assistance in the following tasks:

- Development of the test protocol
- Procuring the services of the testing contractor
- Overseeing the performance test campaign
- Evaluating the results of the testing with respect to guarantee compliance

The estimate for the third party testing contractor is based on the assumption that the contractor would be onsite for up to 5 days. The total cost of the Performance Testing was estimated to be \$275,000.

f. Contingency

Contingency is included in the estimate to cover the uncertainty associated with the project costs. The cost estimate includes a recommended contingency of 15% (due to a greater extent of project definition), which is consistent with cost estimating guidelines for a conceptual design and the current level of project definition. Contingency was applied to the total project costs before escalation.

g. Escalation

Escalation was included in the estimate based on a typical schedule for implementation of a Dry FGD system at an escalation rate of 2.15% on equipment and materials and 3.35% on labor and indirects. These escalation rates were developed by S&L based on recent pricing and in-house escalation projections.

h. Interest During Construction

Interest during construction (IDC) accounts for the time value of money associated with the distribution of construction cash flows over the construction period. IDC was applied to the total EPC project costs including contingency. The IDC was calculated based on a typical schedule for implementation of a DSI system and a typical interest rate of 7.8% per year which was assumed based on a low interest market environment.

4.3. VARIABLE OPERATING AND MAINTENANCE COSTS

The following unit costs were used to develop the variable Operating and Maintenance (O&M) costs. All of these values, with the exception of the reagent costs, were provided by Entergy or are typical industry values confirmed by Entergy. The reagent costs are based on recent supplier quotes for the area.

Table 4-1: Unit Pricing for Utilities (Provided by Entergy)

Unit Cost	Units	Value
Pebble Lime	\$/ton	\$130.0
High Quality Water	\$/1000 gal	\$2.00
Low Quality Water	\$/1000 gal	\$0.50
Byproduct Disposal	\$/ton	\$7.50
Aux Power Cost ¹	\$/MWh	\$43.35

Note 1: Entergy provided auxiliary power costs for the first year of operation.

Table 4-2 below summarizes the consumption rates estimated as well as the first year variable O&M costs for the Dry FGD system.

Table 4-2: Variable O&M Rates and First Year Costs, per Unit

	Units	Value
Dry FGD System Parameters		
Reagent Consumption	lb/hr	4,800
Byproduct Waste Production	lb/hr	10,600
Aux Power Consumption	kW	10,000
High Quality Water Consumption	gpm	50
Low Quality Water Consumption	gpm	880
First Year ¹ Variable O&M Costs (@CF ²)		
Reagent Cost	\$/year	\$2,050,000
Byproduct Waste Disposal Cost	\$/year	\$261,000
Aux Power Cost	\$/year	\$2,628,000
Water Cost	\$/year	\$213,000
Bag and Cage Replacement Cost	\$/year	\$372,000
Total First Year Variable O&M Cost	\$/year	\$5,524,000

Note 1: First year costs are provided in \$2017.

Note 2: The first year costs are calculated using an annual capacity factor of 75.0%.

Sargent & Lundy

4.4. FIXED OPERATING AND MAINTENANCE COSTS

The fixed O&M costs for the systems consist of operating personnel as well as maintenance costs (including material and labor). Based on the conceptual design for the dry FGD system, the estimated staffing additions are 28 personnel for two systems on adjacent units.

The annual maintenance costs are estimated as a percentage of the total capital equipment cost, based on the amount of operating equipment which will require routine maintenance. For this evaluation, the maintenance costs (maintenance and labor) were estimated to be approximately 1.3% of the project capital. This is a lower value than typical because items such as track work and civil work are high capital cost items with little to no maintenance.

Table 4-3 below summarizes the first year fixed O&M costs for the design and typical cases.

Table 4-1: First Year Fixed O&M Costs for Dry FGD, per Unit

First Year ¹ Fixed O&M Costs	Units	Value
Operating Labor ²	\$/year	\$1,660,000
Maintenance Material	\$/year	\$975,000
Maintenance Labor	\$/year	\$650,000
Total First Year Fixed O&M Cost	\$/year	\$3,285,000

Note 1: First year costs are provided in \$2017.

Note 2: Operating labor costs are based on a labor rate of \$56.95, which was provided by Entergy.

Note 3: Installation of systems on both units would require 28 operators total. For accounting purposes, this is considered 14 operators per unit.

Final, Rev. A

5. SUMMARY

The cost estimate for the Independence Units 1&2 Dry FGD systems is based on the addition of two SDA FGD systems for SO₂ removal. The attached capital estimate for the Independence Dry FGD system is based on this technical basis and is presented in 2017 dollars.

Final, Rev. A

6. ATTACHMENTS

1. Independence DFGD Project Units 1 and 2 Conceptual Capital Cost Estimate, Sargent & Lundy Estimate No. 34261

Estimator A. KOCI

Labor rate table 17ARPBL

Project No. 13027-004 **Estimate Date** 10/04/2017

Reviewed By GA Approved By BA Estimate No. 34261A

Cost index ARPBL

Estimate No.: 34261A Project No.: 13027-004 Estimate Date: 10/04/2017 Prep/Rev/App: A. KOCI/GA/BA

Area	Description		Process Equipment Cost	Material Cost	Man Hours	Labor Cost	Total Cost
404	500 101 4110	4.47.000.000	450 000 000	40.500.040	0.40 770	00 550 044	
101	FGD ISLAND	147,908,000	150,000,000	16,508,216	343,779	26,553,044	340,969,260
102	REAGENT HANDLING SYSTEM	5,830,400	2,591,000	1,325,175	39,706	3,315,997	13,062,572
105	BYPRODUCT HANDLING SYSTEM	6,120,000	6,810,000	792,075	103,041	8,417,500	22,139,575
121	CIVIL BOP	350,000		3,731,841	63,706	8,336,292	12,418,133
151	MECHANICAL BOP	720,000	1,647,000	5,962,113	88,963	8,343,711	16,672,824
190	DEMOLITION / RELOCATION			1,800,000	33,333	3,276,667	5,076,667
201	ELECTRICAL BOP SYSTEM		12,300,000	11,500,000	284,184	22,691,518	46,491,518
211	INSTRUMENTATION AND CONTROLS BOP SYSTEM		1,500,000	1,085,000	10,920	789,374	3,374,374
	TOTAL DIRECT	160,928,400	174,848,000	42,704,420	967,632	81,724,103	460,204,922

Estimate No.: 34261A Project No.: 13027-004 Estimate Date: 10/04/2017 Prep/Rev/App: A. KOCI/GA/BA

ENTERGY ARKANSAS INDEPENDENCE STATION DRY (SDA) FGD CONCEPTUAL COST ESTIMATE

Estimate Totals

	Description	Amount	Totals	Hours
Direct Costs:				
Labor		81,724,103		967,632
Material		42,704,420		
Subcontract		160,928,400		
Process Equipment		174,848,000		
	_	460,204,923	460,204,923	
Other Direct & Construction				
Indirect Costs:				
91-1 Scaffolding		5,721,000		
91-2 Cost Due To OT 5-10's		11,337,000		
91-4 Per Diem		9,676,000		
91-5 Consumables		817,077		
91-6 Freight on Material		2,135,000		
91-8 Sales Tax		7,566,000		
91-9 Contractors G&A 91-10 Contractors Profit		15,776,000		
91-10 Contractors Profit	_	7,888,000	521,121,000	
		60,916,077	521,121,000	
Indirect Costs:				
93-1 Engineering Services		23,000,000		
93-4 SU/S Parts/ Initial Fills 93-5 Technical Field Advisors		300,000 600,000		
93-8 EPC Fee		54,502,000		
93-0 EFC Fee		78,402,000	599,523,000	
		70,402,000	333,323,000	
Escalation:				
96-1 Escalation on Material		5,731,000		
96-2 Escalation on Labor		20,520,000		
96-3 Escalation on Subcontract		26,919,000		
96-4 Escalation on Process Eq		17,974,000		
96-5 Escalation on Indirects		12,802,000 83,946,000	683,469,000	
		33,013,000		
Total EPC Cost			683,469,000	
Owner's Costs:				
99-1 Owner's Costs		47,962,000		
		47,962,000	731,431,000	
Third Party Services:				
100 CM Oversight		4,969,000		
102 Start-up Oversight		550,000		
103 Owner's Engineer		6,500,000		
104 Performance Testing		275,000		
		12,294,000	743,725,000	
Project Contingency :				
110 Project Contingency		98,966,000		
		98,966,000	842,691,000	
Escalation Addition:				
120 Escalation on Lines 99-110		8,897,000		
		8,897,000	851,588,000	
Interest During Construction:				
130 Interest During Construction.		132,199,000		
		132,199,000	983,787,000	
Tatal				
Total			983,787,000	

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
101			FGD ISLAND				000.					
	21.00.00		CIVIL WORK									
		21.53.00	PILING									
			PILE - MOB/DEMOB		1.00 LS	100,000				115.48 /MH		100,000
			PILE - 18" AUGER CAST X 60' LONG	UNIT 1 DUCTWORK (NOT INCLUDED IN FGD ISLAND SCOPE)	138.00 EA	496,800		-		115.48 /MH		496,800
			PILE - 18" AUGER CAST X 60' LONG	UNIT 2 DUCTWORK (NOT INCLUDED IN FGD ISLAND SCOPE)	138.00 EA	496,800				115.48 /MH		496,800
			PILE - 18" AUGER CAST X 60' LONG	UNIT 1 BAGHOUSE FDN	252.00 EA	907,200				115.48 /MH		907,200
			PILE - 18" AUGER CAST X 60' LONG	UNIT 2 BAGHOUSE FDN	252.00 EA	907,200		-		115.48 /MH		907,200
			PILING			2,908,000						2,908,000
		21.54.00	CAISSON									
			2.5 FT DIA X 30 FT DEEP CAISSON	ABSORBER TOWERS FOUNDATIONS	180.00 EA	-		334,260	4,552		525,633	859,893
			2.5 FT DIA X 30 FT DEEP CAISSON	ABSORBER TOWERS FOUNDATIONS	180.00 EA	-		334,260	4,552		525,633	859,893
			2.5 FT DIA X 30 FT DEEP CAISSON	REAGENT PREP ENCLOSURE 50'X50' SUBSTRUCTURE	50.00 EA	-		92,850	1,264	115.48 /MH	146,009	238,859
			2.5 FT DIA X 30 FT DEEP CAISSON	BYPRODUCTS RECYCLE EQUIPMENT BLDG 60' X 60' SUBSTRUCTURE	72.00 EA	-		133,704	1,821	115.48 /MH	210,253	343,957
			2.5 FT DIA X 30 FT DEEP CAISSON	UNIT 1 BOOSTER FAN FOUNDATION	40.00 EA	-		74,280	1,011	115.48 /MH	116,807	191,087
			2.5 FT DIA X 30 FT DEEP CAISSON	UNIT 2 BOOSTER FAN FOUNDATION	40.00 EA	-		74,280	1,011	115.48 /MH	116,807	191,087
			CAISSON					1,043,634	14,211		1,641,143	2,684,777
			CIVIL WORK			2,908,000		1,043,634	14,211		1,641,143	5,592,777
	22.00.00		CONCRETE									
		22.13.00	CONCRETE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI -	REAGENT PREP ENCLOSURE 50'X50'	300.00 CY	-		69,000	2,414	68.52 /MH	165,393	234,393
			COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI -	SUBSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG	432.00 CY	-		99,360	3,476	68.52 /MH	238,166	337,526
			COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE	60' X 60' SUBSTRUCTURE UNIT 1 BOOSTER FAN FOUNDATION	600.00 CY	-		138,000	4,828	68.52 /MH	330,786	468,786
			MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE	UNIT 2 BOOSTER FAN FOUNDATION	600.00 CY	-		138,000	4,828	68.52 /MH	330,786	468,786
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	UNIT 1 DUCTWORK (NOT INCLUDED IN FGD ISLAND SCOPE)	966.00 CY	-		222,180	7,772	68.52 /MH	532,566	754,746
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	UNIT 2 DUCTWORK (NOT INCLUDED IN FGD ISLAND SCOPE)	966.00 CY	-	,	222,180	7,772	68.52 /MH	532,566	754,746
			CONCRETE FOUNDATIONS - COMPOSITE RATE	ABSORBER TOWER FOUNDATION	1,300.00 CY	-		299,000	10,460	68.52 /MH	716,703	1,015,703
			CONCRETE FOUNDATIONS - COMPOSITE RATE	ABSORBER TOWERS FOUNDATIONS	1,300.00 CY	-		299,000	10,460		716,703	1,015,703
			CONCRETE FOUNDATIONS - COMPOSITE RATE	LIME SLURRY FEED TANKS	400.00 CY	-		92,000	3,218		220,524	312,524
			CONCRETE FOUNDATIONS - COMPOSITE RATE	UNIT 1 BAGHOUSE FDN 3 FDNS 83'X63'X3'	1,743.00 CY	-		400,890	14,024		960,934	1,361,824
			CONCRETE FOUNDATIONS - COMPOSITE RATE	8' X 10' UNIT 1 BAGHOUSE AREA, COMPRESSOR BLDG	6.00 CY	-	,	1,380	48		3,308	4,688
			CONCRETE FOUNDATIONS - COMPOSITE RATE	UNIT 2 BAGHOUSE FDN 3 FDNS 83'X63'X3'	1,743.00 CY	-		400,890	14,024		960,934	1,361,824
			CONCRETE FOUNDATIONS - COMPOSITE RATE	8' X 10' UNIT 2 BAGHOUSE AREA, TRUCK SCALE HOUSE	6.00 CY	-		1,380	48	68.52 /MH	3,308	4,688
			CONCRETE					2,383,260	83,372		5,712,678	8,095,938
			CONCRETE					2,383,260	83,372		5,712,678	8,095,938
	23.00.00		STEEL									
		23.17.00	GALLERY GALVANIZED GRATING, 1 1/4" DEEP x 3/16" BEARING BAR	REAGENT PREP ENCLOSURE 50'X50'	4,000.00 SF	-		60,000	460	72.48 /MH	33,324	93,324
			WITH HOLD DOWN CLIPS GALVANIZED GRATING, 1 1/4" DEEP x 3/16" BEARING BAR	SUPERSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG	5,760.00 SF	-		86,400	662	72.48 /MH	47,987	134,387
			WITH HOLD DOWN CLIPS 3" HEAVY DUTY GRATING	WASTE MANAGEMENT FACILITY (200.00 SF	-		11,200	39	72.48 /MH	2,833	14,033
			DOUBLE PIPE HANDRAIL WITH POSTS AND GUARD	REPLACES HAZMAT BLDG) REAGENT PREP ENCLOSURE 50'X50'	3,000.00 LF	-		159,000	621	72.48 /MH	44,988	203,988
			PLATES, PAINTED DOUBLE PIPE HANDRAIL WITH POSTS AND GUARD	SUPERSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG	4,320.00 LF	-		228,960	894	72.48 /MH	64,782	293,742
			PLATES, PAINTED SELF CLOSING SWING GATE - USER DEFINED	REAGENT PREP ENCLOSURE 50'X50'	40.00 EA	-		11,200	184	72.48 /MH	13,330	24,530
			SELF CLOSING SWING GATE - USER DEFINED	SUPERSTRUCTURE BYPRODUCTS RECYCLE EQUIPMENT BLDG	58.00 EA			16.240	267	72.48 /MH	19.328	35.568
			LADDER	REAGENT PREP ENCLOSURE 50'X50'	800.00 LF	-		40,000	368		26,659	66,659
				SUPERSTRUCTURE								
			LADDER	BYPRODUCTS RECYCLE EQUIPMENT BLDG	1,100.00 LF	-		55,000	506	72.48 /MH	36,657	91,657
			STAIR SYSTEM	REAGENT PREP ENCLOSURE 50'X50' SUPERSTRUCTURE	2,400.00 SF	-	,	218,400	3,172	72.48 /MH	229,937	448,337
					Page 4							

rea	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		23.17.00	GALLERY STAIR SYSTEM	BYPRODUCTS RECYCLE EQUIPMENT BLDG	3,500.00 SF	-		318,500	4,626	72.48 /MH	335,324	653,82
			GALLERY					1,204,900	11,798		855,147	2,060,04
		23.25.00	ROLLED SHAPE									
			LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, TWO COAT PAINT	REAGENT PREP ENCLOSURE 50'X50' GALLERY SUPPORT	200.00 TN	-		716,000	5,057	98.30 /MH	497,149	1,213,14
			LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, TWO COAT PAINT	BYPRODUCTS RECYCLE EQUIPMENT BLDG	288.00 TN	-		1,031,040	7,283	98.30 /MH	715,895	1,746,93
			LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, GALVANIZED	U1 BAGHOUSE SKIRTS STEEL GIRTS	36.00 TN	-		138,240	910	98.30 /MH	89,487	227,72
			LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, GALVANIZED	U2 BAGHOUSE SKIRTS STEEL GIRTS	36.00 TN	-		138,240	910	98.30 /MH	89,487	227,72
			BUILDING MIX, TWO COAT PAINTED		50.00 TN	-		128,000	920	98.30 /MH	90,391	218,3
			BUILDING MIX, TWO COAT PAINTED		50.00 TN	-		128,000	920	98.30 /MH	90,391	218,3
			BUILDING MIX, TWO COAT PAINTED	REAGENT PREP ENCLOSURE SUPERSTRUCTURE	500.00 TN	-		1,280,000	9,195	98.30 /MH	903,908	2,183,9
			BUILDING MIX, TWO COAT PAINTED ROLLED SHAPE	BYPRODUCTS RECYCLE EQUIPMENT BLDG	720.00 TN	-		1,843,200 5,402,720	13,241 38,437	98.30 /MH	1,301,628 3,778,336	3,144,8 9,181,0
			STEEL					6,607,620	50,235		4,633,483	11,241,1
	24.00.00		ARCHITECTURAL									
		24.17.00	ELEVATOR									
			PASSENGER, TRACTION, 4 STOPS, 3500LB, 350 FT/MIN ELEVATOR	SCHINDLER ELEVATOR BUDGET	2.00 LS	-		318,700 318,700	1,885 1,885	114.46 /MH	215,764 215,764	534,4 534,4
									1,000		,	,
		24.35.00	PRE-ENGINEERED BUILDING PRE-ENGINEERED BUILDING	8' X 10' UNIT 1 BAGHOUSE AREA,	1.00 LT	-		20,000	115	98.30 /MH	11,299	31,:
				COMPRESSOR BLDG 8' X 10' UNIT 2 BAGHOUSE AREA, TRUCK	1.00 LT			10,000	115	98.30 /MH	11,299	21,2
				SCALE HOUSE	1.00 21					00.00 /////		
			PRE-ENGINEERED BUILDING					30,000	230		22,598	52,5
		24.37.00	ROOFING									
				U1 SDA TOP ENCLOSURE ROOF	3,318.00 SF	-		54,946	339	60.10 /MH	20,400	75,
			METAL, INSULATED, 2 IN GALVANIZED, PAINTED, 22 GA METAL, INSULATED- USER DEFINED	U2 SDA TOP ENCLOSURE ROOF REAGENT PREP ENCLOSURE	3,318.00 SF 2,500.00 SF	-		54,946 19,425	339 862	60.10 /MH 60.10 /MH	20,400 51,810	75, 71,
				SUPERSTRUCTURE								
			METAL, INSULATED- USER DEFINED ROOFING	BYPRODUCTS RECYCLE EQUIPMENT BLDG	3,600.00 SF	-		27,972 157,289	1,241 2,782	60.10 /MH	74,607 167,216	102, 324,5
		24.41.00	SIDING									
		24.41.00	METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	U1 SDA TOP ENCLOSURE SIDING	2,450.00 SF	-		40,572	251	87.92 /MH	22,036	62,
			GALVANIZED PAINTED METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	U2 SDA TOP ENCLOSURE SIDING	2,450.00 SF	-		40,572	251	87.92 /MH	22,036	62,6
			GALVANIZED PAINTED METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	REAGENT PREP ENCLOSURE	10,000.00 SF	-		165,600	1,023	87.92 /MH	89,941	255,
			GALVANIZED PAINTED METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA,	BYPRODUCTS RECYCLE EQUIPMENT BLDG	14,400.00 SF	_		238,464	1,473	87.92 /MH	129,515	367,9
			GALVANIZED PAINTED METAL, UNINSULATED, 24 GA, GALVANIZED CORROGATED		26,260.00 SF			85,345	1.238	87.92 /MH	108,805	194,
			METAL, UNINSULATED, 24 GA, GALVANIZED CORROGATED METAL, UNINSULATED, 24 GA, GALVANIZED CORROGATED		26,280.00 SF 26,280.00 SF	-		85,410	1,238	87.92 /MH	108,887	194,
			SIDING	02 BAGHOUGE SKIKTS (0x(65+65) x30 tail	20,200.00 31			655,963	5,473	07.92 /WIT	481,220	1,137,1
		24.99.00	ARCHITECTURAL, MISCELLANEOUS									
				U1 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	73.32 /MH	5,394	69,
				U1 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	84.60 /MH	6,223	70,2
				U1 SDA SUPERSTRUCTURE	6,400.00 SF	-		32,000	37	84.60 /MH	3,112	35,
				U2 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	73.32 /MH	5,394	69,
				U2 SDA SUPERSTRUCTURE	6,400.00 SF	-		64,000	74	84.60 /MH	6,223	70,
				U2 SDA SUPERSTRUCTURE	6,400.00 SF	-		32,000	37	84.60 /MH	3,112	35,
				U1 BAGHOUSE SKIRTS MANDOORS	3.00 EA	-		1,500	28	58.15 /MH	1,604	3,1
			ARCHITECTURAL, MISCELLANEOUS - USER DEFINED ARCHITECTURAL, MISCELLANEOUS - USER DEFINED ARCHITECTURAL, MISCELLANEOUS	U2 BAGHOUSE SKIRTS MANDOORS U2 BAGHOUSE SKIRTS MANDOORS	3.00 EA 3.00 EA	-		1,500	28 28 423	58.15 /MH 58.15 /MH	1,604 1,604 32,666	3, 3, 355,6

31.00.00

MECHANICAL EQUIPMENT

31.41.00 FIRE PROTECTION EQUIPMENT & SYSTEM

ea Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cos
	31.41.00	FIRE PROTECTION EQUIPMENT & SYSTEM FIRE PROTECTION EQUIPMENT & SYSTEM - USER	REAGENT PREP ENCLOSURE 50'X50' FIRE	5,000.00 SF		_	27,500	385	75.53 /MH	29,083	56,
		DEFINED FIRE PROTECTION EQUIPMENT & SYSTEM - USER	PROTECTION ALLOWANCE BYPRODUCTS RECYCLE EQUIPMENT BLDG'	10,800.00 SF	-	-	59,400	832	75.53 /MH	62,820	122
		DEFINED FIRE PROTECTION EQUIPMENT & SYSTEM	FIRE PROTECTION ALLOWANCE				86,900	1,217		91,904	178,
	31.45.00	FGD EQUIPMENT									
		DRY FGD ISLAND -UNITS 1 & 2 FGD SYSTEMS	INCLUDES ABSORBERS, BAGHOUSES, REAGENT PREP, BYPRODUCT RECYCLE, ID BOOSTER FANS, CONTROLS, PIPING, DUCTWORK, AND WIRING WITHIN FGD ISLAND (BASED ON RECENT BUDGETARY QUOTE FROM SIMILARLY SIZED PROJECT)	1.00 LS		150,000,000	-		100.38 /MH		150,00
		DRY FGD ISLAND -UNITS 1 & 2 FGD SYSTEMS	INSTALLATION COST FOR DRY FGD ISLAND INCLUDING ITEMS LISTED ABOVE	1.00 LS	145,000,000		-		100.38 /MH		145,00
		FGD EQUIPMENT			145,000,000	150,000,000					295,000
		MECHANICAL EQUIPMENT			145,000,000	150,000,000	86,900	1,217		91,904	295,178
34.00.00	34.99.00	HVAC HVAC, MISCELLANEOUS									
		HVAC, MISCELLANEOUS - HVAC ALLOWANCE	REAGENT PREP ENCLOSURE 50'X50' LIGHTING ALLOWANCE	5,000.00 SF	-	-	55,000	57	73.32 /MH	4,214	5
		HVAC, MISCELLANEOUS - HVAC ALLOWANCE	BYPRODUCTS RECYCLE EQUIPMENT BLDG LIGHTING ALLOWANCE	10,800.00 SF	-	-	118,800	124	73.32 /MH	9,102	12
		HVAC, MISCELLANEOUS					173,800	182		13,316	18
		HVAC					173,800	182		13,316	18
36.00.00	00.40.00	INSULATION									
	36.13.00	DUCT MINERAL WOOL INSULATION, 4 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	U1 BAGHOUSE INSUILATION TOP, SIDES	141,831.00 SF	-	-	850,986	35,050	73.69 /MH	2,582,848	3,4
		MINERAL WOOL INSULATION, 4 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	U2 BAGHOUSE INSULATIOIN - TOPS, SIDES AND HOPPERS	141,831.00 SF	-	-	850,986	35,050	73.69 /MH	2,582,848	3,43
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	SDA SHELL INSULATION	40,167.00 SF	-	-	261,086	10,388	73.69 /MH	765,493	1,02
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	SDA ROOF INSULATION	11,019.00 SF	-	-	71,624	2,850	73.69 /MH	209,997	28
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	SDA SHELL INSULATION	40,167.00 SF	-	-	261,086	10,388	73.69 /MH	765,493	1,02
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	SDA ROOF INSULATION	11,019.00 SF	-	-	71,624	2,850	73.69 /MH	209,997	2
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	UNIT 1 DUCTWORK (NOT INCLUDED IN FGD ISLAND SCOPE)	168,220.00 SF	-	-	1,093,430	43,505	73.69 /MH	3,205,896	4,2
		MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	UNIT 2 DUCTWORK (NOT INCLUDED IN FGD ISLAND SCOPE)	168,220.00 SF	-	-	1,093,430	43,505	73.69 /MH	3,205,896	4,29
		DUCT INSULATION					4,554,250 4,554,250	183,586 183,586		13,528,470 13,528,470	18,08 18,08
							4,004,200	100,000		10,020,410	10,00
41.00.00	41.37.00	ELECTRICAL EQUIPMENT LIGHTING ACCESSORY (FIXTURE)									
		LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	REAGENT PREP ENCLOSURE 50'X50' LIGHTING ALLOWANCE	5,000.00 SF	-	-	55,000	57	69.31 /MH	3,983	:
		LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	BYPRODUCTS RECYCLE EQUIPMENT BLDG LIGHTING ALLOWANCE	10,800.00 SF	-	-	118,800	124	69.31 /MH	8,604	12
		LIGHTING ACCESSORY (FIXTURE)					173,800	182		12,587	18
		101 FGD ISLAND			147,908,000	150,000,000	173,800 16,508,216	182 343,779		12,587 26,553,044	340,969
102		REAGENT HANDLING SYSTEM									
21.00.00	21.14.00	CIVIL WORK STRIP & STOCKPILE TOPSOIL									
	21.14.00	STRIP & STOCKPILE TOPSOIL STRIP & STOCKPILE TOPSOIL - 12"	EXTEND REAGENT RAIL TRACK	22,500.00 SF	-	-		52	185.95 /MH	9,618	
								52		9,618	
		STRIP & STOCKPILE TOPSOIL						32		9,010	
	21.41.00	STRIP & STOCKPILE TOPSOIL EROSION AND SEDIMENTATION CONTROL CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK	EXTEND REAGENT RAIL TRACK	2,500.00 SY	_	_	26,625	86	103.37 /MH	8,911	

Gro	ıp Phase	Description	Notes	Quantity	Subcontract	Process Equipment	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		· ·		•	Cost	Cost					
		EROSION AND SEDIMENTATION CONTROL					26,625	86		8,911	35,536
	21.53.00	PILING									
		PILE - 18" AUGER CAST X 60' LONG	UNLOADING SHED 200' X 75 WIDE	64.00 EA	230,400	-			115.48 /MH		230,400
		PILING			230,400						230,400
	21.54.00	CAISSON									
		2.5 FT DIA X 30 FT DEEP CAISSON	SUBSTRUCTURE 2200 TON LIME STORAGE SILOS	100.00 EA	-	-	185,700	2,529	115.48 /MH	292,018	477,718
		CAISSON					185,700	2,529		292,018	477,718
	21.71.00	TRACKWORK									
		LIME RAILCAR UNLOADING SPUR	ALLOWANCE	1,000.00 LF	-	-	170,000	1,724	87.32 /MH	150,552	320,552
		TRACKWORK CIVIL WORK			230,400		170,000 382,325	1,724 4,391		150,552 461,099	320,552 1,073,824
22.00.0	22.13.00	CONCRETE CONCRETE									
	22.10.00	MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI -	SUBSTRUCTURE 2-2,000 TON LIME	600.00 CY	-	-	138,000	4,828	68.52 /MH	330,786	468,786
		COMPOSITE RATE FOUNDATION, 4500 PSI - COMPOSITE RATE	STORAGE SILOS UNLOADING SHED 200' X 75 WIDE	925.00 CY	-		212,750	7,443	68.52 /MH	509,962	722,712
		CONCRETE					350,750	12,270		840,748	1,191,498
		CONCRETE					350,750	12,270		840,748	1,191,498
24.00.0		ARCHITECTURAL									
	24.35.00	PRE-ENGINEERED BUILDING SHELL ONLY, STEEL UNINSULATED 22 GA,	UNLOADING SHED 200' X 75 WIDE x15' TALL	15.000.00 SF	-		525,000	4.828	98.30 /MH	474,552	999,552
		PRE-ENGINEERED BUILDING					525,000	4,828		474,552	999,552
		ARCHITECTURAL					525,000	4,828		474,552	999,552
26.00.0	0	MISCELLANEOUS STRUCTURAL ITEM									
	26.13.00	CONCRETE SILO CONCRETE SILO - 2,000 TON LIME STORAGE SILO	SUBCONTRACT - ERECTED	2.00 LS	5,600,000				68.52 /MH		5,600,000
		CONCRETE SILO - BIN VENT FILTERS CONCRETE SILO - LEVEL INDICATOR	INCLUDED W/ SILO	1.00 LS 1.00 LS	-	-		0	/MH /MH		-,,
		CONCRETE SILO - VACUUM PRESSURE RELIEF VALVE	INCLUDED W/ SILO	1.00 LS	-	-		0	/MH		
		CONCRETE SILO - MANHOLE CONCRETE SILO	INCLUDED W/ SILO	1.00 LS	5,600,000	-		0 0	/MH		5,600,000
		MISCELLANEOUS STRUCTURAL ITEM			5,600,000			0			5,600,000
31.00.0	0	MECHANICAL EQUIPMENT									
	31.25.00	CRANES & HOISTS									
		CRANES & HOISTS & TROLLEYS CRANES & HOISTS	REAGENT HANDLING SYSTEM ALLOWANCE	1.00 LT		275,000 275,000			75.53 /MH		275,000 275,000
		MECHANICAL EQUIPMENT				275,000					275,000
33.00.0	0	MATERIAL HANDLING EQUIPMENT									
	33.14.00	MATERIAL HANDLING EQUIPMENT									=
		LIME HANDLING SYSTEM - 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM		1.00 LS	-	500,000	-	3,306	75.53 /MH	249,683	749,683
		LIME HANDLING SYSTEM - VACUUM EXHAUSTER WITH SOUND ENCLOSURES	INCLUDED WITH 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM	2.00 LS	-	-	-		/MH		
		LIME HANDLING SYSTEM - RECEIVING PANS UNDER RAIL CARS	INCLUDED WITH 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM	1.00 LS	-	-	-		/MH		
		LIME HANDLING SYSTEM - FILTER SEPARATORS ON TOP	INCLUDED WITH 25 TPH PNEUMATIC TRAIN	1.00 LS	-	-	-		/MH		
		OF SILO LIME HANDLING SYSTEM - 25 TPH PNEUMATIC	UNLOADING SYSTEM	2.00 LS	-	1,000,000	-	6,611	75.53 /MH	499,366	1,499,366
		TRANSPORT SYSTEM LIME HANDLING SYSTEM - PRESSURE BLOWERS WITH	INCLUDED WITH 25 TPH PNEUMATIC	3.00 LS	_				/MH		
		SOUND ENCLOSURES	TRANSPORT SYSTEM		-		-				
		LIME HANDLING SYSTEM - PRESSURE FEEDERS	INCLUDED WITH 25 TPH PNEUMATIC	1.00 LS	-	-	-		/MH		
			TRANSPORT SYSTEM								
		LIME HANDLING SYSTEM - SPARE PARTS FOR STARTUP AND SPECIAL TOOLS	TRANSPORT SYSTEM	1.00 LS	-	8,000	-		75.53 /MH		8,000
		LIME HANDLING SYSTEM - SPARE PARTS FOR STARTUP AND SPECIAL TOOLS LIME HANDLING SYSTEM - FREIGHT MATERIAL HANDLING EQUIPMENT	TRANSPORT SYSTEM	1.00 LS 1.00 LS		8,000 50,000 1,558,000		9,917	75.53 /MH 75.53 /MH	749,049	50,000 2,307,049

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		33.41.00	MOBILE YARD EQUIPMENT MOBILE YARD EQUIPMENT - TRACKMOBILE MOBILE YARD EQUIPMENT	REAGENT HANDLING SYSTEM	1.00 EA	-	225,000 225,000	-		75.53 /MH		225,000 225,000
		33.51.00	RAIL CAR UNLOADER RAIL CAR UNLOADER - RAIL CAR UNLOADER MATERIAL HANDLING EQUIPMENT	IN UNLOADING SHED 200'X75' WIDE	2.00 LT	-	270,000 270,000 2,053,000	-	3,724 3,724 13,641	98.30 /MH	366,083 366,083 1,115,132	636,083 636,083 3,168,132
	34.00.00	34.99.00	HVAC HVAC, MISCELLANEOUS				2,033,000		13,041		1,113,132	3,100,132
			HVAC, MISCELLANEOUS - HVAC ALLOWANCE HVAC, MISCELLANEOUS HVAC	2-2000 TON LIME STORAGE SILOS	3,600.00 SF	-	-	39,600 39,600 39,600	41 41 41	73.32 /MH	3,034 3,034 3,034	42,634 42,634 42,634
	35.00.00	35.14.10	PIPING CARBON STEEL, STRAIGHT RUN	TO CURROOT OF THE DAFF HAT O TO AN	500.00 15		22.222		540	00.00 444	50.000	99.000
			8 IN DIA, SCH 40, 8" VACUUM CONVEY PIPING WITH 4 ELBOWS 12 IN DIA, 3/8 IN STD- 2500 LF OF 10"/12" TRANSPORT	TO SUPPORT 25 TPH PNEUMATIC TRAIN UNLOADING SYSTEM TO SUPPORT 25 TPH PNEUMATIC	500.00 LF 2,500.00 LF	-	38,000 225,000		3,966	93.09 /MH 93.09 /MH	50,290 369,150	88,290 594,150
			PRESSURE PIPING W 8 ELBOWS CARBON STEEL, STRAIGHT RUN PIPING	TRANSPORT SYSTEM			263,000 263,000		4,506 4,506		419,440 419,440	682,440 682,440
	41.00.00	41.37.00	ELECTRICAL EQUIPMENT LIGHTING ACCESSORY (FIXTURE)									
			LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE LIGHTING ACCESSORY (FIXTURE) ELECTRICAL EQUIPMENT	2-2000 TON LIME STORAGE SILO	2,500.00 SF	-	-	27,500 27,500 27,500	29 29 29	69.31 /MH	1,992 1,992 1,992	29,492 29,492 29,492
			102 REAGENT HANDLING SYSTEM			5,830,400	2,591,000	1,325,175	39,706		3,315,997	13,062,572
105	21.00.00	21.54.00	BYPRODUCT HANDLING SYSTEM CIVIL WORK CAISSON									
		2.10.100	2.5 FT DIA X 30 FT DEEP CAISSON CAISSON CIVIL WORK	ASH SILO AND FGD BYPRODUCT SILOS	125.00 EA	-	-	232,125 232,125 232,125	3,161 3,161 3,161	115.48 /MH	365,023 365,023 365,023	597,148 597,148 597,148
	22.00.00		CONCRETE					232,123	3,101		303,023	337,140
		22.13.00	CONCRETE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE	FGD BYPRODUCT SILOS	614.00 CY	-	-	141,220	4,940	68.52 /MH	338,505	479,725
			MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, -	FLY ASH BLENDING SILO FOR TRUCK SCALES	67.00 CY 144.00 CY	-	-	15,410 33,120	539 1,159	68.52 /MH 68.52 /MH	36,938 79,389	52,348 112,509
			COMPOSITE RATE SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	MISC	100.00 CY	-	-	23,000	805	68.52 /MH	55,131	78,131
			CONCRETE					212,750 212,750	7,443 7,443		509,962 509,962	722,712 722,712
	23.00.00	23.13.75	STEEL SILO NEW 250 TON FLYASH BLENDING BIN SILO - 24FT DIA X 72 FT HIGH - ERECTION AND FREIGHT INCLUDED	SILO	1.00 EA		275,000		2,839	80.89 /MH	229,653	504,653
			SILO STEEL				275,000 275,000		2,839 2,839		229,653 229,653	504,653 504,653
	26.00.00	26.13.00	MISCELLANEOUS STRUCTURAL ITEM CONCRETE SILO CONCRETE SILO - 2-2,200 TON FGD BYPRODUCT SILO	SUBCONTRACTED - ERECTED	2.00 LS	6,000,000				68.52 /MH		6,000,000
			CONCRETE SILO - BIN VENT FILTERS CONCRETE SILO - LEVEL INDICATOR CONCRETE SILO - VACUUM PRESSURE RELIEF VALVE CONCRETE SILO - MANHOLE	INCLUDED W/ SILO INCLUDED W/ SILO INCLUDED W/ SILO INCLUDED W/ SILO	1.00 LS 1.00 LS 1.00 LS 1.00 LS	- - -	-		0 0 0	/MH /MH /MH /MH		

_												
Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			CONCRETE SILO			6,000,000			0			6,000,000
			MISCELLANEOUS STRUCTURAL ITEM			6,000,000			0			6,000,000
	33.00.00	33.13.00	MATERIAL HANDLING EQUIPMENT BYPRODUCT HANDLING EQUIPMENT PNEUMATIC ASH CONVEYORS PNEUMATIC ASH CONVEYORS BLOWERS, PRESSURE FEEDERS, TRANSPORT PIPING AND VACUUM / PRESSURE RELIEF VALVES -FOUR PIN MIXERS BELOW CONCRETE SILOS INCL ALL VALVES AND ACCESSORIES -PSY UNLOADING SPOUT BELOW THE PRODUCT SILO	EQUIPMENT INCLUDES FREIGHT INSTALLATION COST INCLUDED ABOVE	1.00 LS 1.00 LT 1.00 LT 1.00 LT 2.00 EA	-	5,655,000 540,000 60,000		79,293 3,347 258	80.89 /MH 80.89 /MH	6,414,019 270,749 20,883	5,655,000 6,414,019 810,749 80,883
			AIRSLIDE CONVEYORS FROM BLENDING BIN MIXER/PIPE		4.00 EA	-	80,000		688	80.89 /MH	55,675	135,675
			CONVEYOR, INCL ALL VALVES AND ACCESSORIES BYPRODUCT HANDLING EQUIPMENT				6,335,000		83,587		6,761,325	13,096,325
		33.57.00	SCALE									
			SCALE - NEW TRUCK SCALES	BYPRODUCT HANDLING SYSTEM	2.00 EA	-	200,000	-	460	75.53 /MH	34,726	234,726
			SCALE MATERIAL HANDLING EQUIPMENT				200,000 6,535,000		460 84,046		34,726 6,796,052	234,726 13,331,052
	34.00.00		HVAC				0,333,000		04,040		0,730,002	10,001,002
		34.37.00	DUST COLLECTOR DUST COLLECTOR - INSTALLED COST		1.00 LS	120,000	-			73.32 /MH		120,000
			DUST COLLECTOR HVAC			120,000 120,000						120,000 120,000
			HVAC			120,000						120,000
	35.00.00		PIPING									
		35.14.10	CARBON STEEL, STRAIGHT RUN	COLUMBIA DE DIDINO								
			12 IN DIA, 3/8 IN STD 12 IN DIA, 3/8 IN STD	CONVEYOR PIPING 12" TIE IN PIPING TO BYPRODUCT SILO FROM THE EXISTING 50 TPH FLY ASH	2,000.00 LF 1,500.00 LF	-		198,400 148,800	3,172 2,379		295,320 221,490	493,720 370,290
			CARBON STEEL, STRAIGHT RUN	PRESSURE SYSTEM				347,200	5,552		516,810	864,010
			PIPING					347,200	5,552		516,810	864,010
			105 BYPRODUCT HANDLING SYSTEM			6,120,000	6,810,000	792,075	103,041		8,417,500	22,139,575
121	21.00.00	21.14.00	CIVIL BOP CIVIL WORK STRIP & STOCKPILE TOPSOIL									
			STRIP & STOCKPILE TOPSOIL - 12"		300,000.00 SF	-	-		690		128,241	128,241
			STRIP & STOCKPILE TOPSOIL - ONSITE STRIP & STOCKPILE TOPSOIL - 12"	SITE GRADING	40,000.00 CY 600,000.00 SF	-	-		5,287 1,379		983,184 256,483	983,184 256,483
			STRIP & STOCKPILE TOPSOIL - ONSITE	SITE GRADING	160,000.00 CY	-	-		21,149		3,932,736	3,932,736
			STRIP & STOCKPILE TOPSOIL						28,506		5,300,644	5,300,644
		21.17.00	EXCAVATION EXCAVATION - EXCAVATION , BACKFILL & COMPACT	ALL FOUNDATIONS	12,600.00 CY	-	-		4,345	84.40 /MH	366,703	366,703
			EXCAVATION						4,345		366,703	366,703
		21.39.00	STORM DRAINAGE UTILITIES STORM SEWER WORK	SITE GRADING	1.00 LT			110,000	2,299	86.33 /MH	198,460	308,460
			STORM DRAINAGE UTILITIES	SITE GRADING	1.00 LI	-	-	110,000	2,299 2,299		198,460	308,460
		21.41.00	EROSION AND SEDIMENTATION CONTROL CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK EROSION AND SEDIMENTATION CONTROL	SITE GRADING	33,334.00 SY 66,667.00 SY	-	- -	355,007 710,004 1,065,011	1,149 2,299 3,448		118,818 237,633 356,452	473,826 947,637 1,421,462
		21.57.00	ROAD, PARKING AREA, & SURFACED AREA ONSITE ROAD UPGRADES	ALLOWANCE	1.00 LS	-	-	700,000	3,483	86.08 /MH	299,796	999,796
		21.99.00	ROAD, PARKING AREA, & SURFACED AREA CIVIL WORK, MISCELLANEOUS CIVIL WORK - CONSTRUCTION LAYDOWN AREAS	FENCING, POWER ETC	10.00 AC	_	_	700,000 842,400	3,483 9,195	84.40 /MH	299,796 776,092	999,796 1,618,492
				**************************************	.0.00 710			3.2,700	5,755	210 /14111	,	1,010,102

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			CIVIL WORK, MISCELLANEOUS					842,400	9,195		776,092	1,618,492
	22.00.00	22.13.00	CIVIL WORK CONCRETE CONCRETE					2,717,411	51,276		7,298,147	10,015,557
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE CONCRETE FOUNDATIONS - COMPOSITE RATE	NEW WAREHOUSE BUILDING 200'X75'X15' TALL 8' X 10' BYPRODUCT AREA, TRUCK SCALE	555.00 CY 6.00 CY	-		127,650	4,466 48	68.52 /MH 68.52 /MH	305,977 3,308	433,627 4,688
			CONCRETE FOUNDATIONS - COMPOSITE RATE	HOUSE	6.00 CY			1,380	4,514	68.52 /MH	3,308	438,315
			CONCRETE					129,030	4,514		309,285	438,315
	24.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING SHELL ONLY, STEEL UNINSULATED 22 GA, 200 FT X 75 FT x 15' TALL	NEW WAREHOUSE BUILDING 200'X75'X15'	15,000.00 SF	-		- 420,000	5,862	98.30 /MH	576,241	996,241
			PRE-ENGINEERED BUILDING	8' X 10' BYPRODUCT AREA, TRUCK SCALE HOUSE	1.00 LT	-		10,000	115	98.30 /MH	11,299	21,299
			PRE-ENGINEERED BUILDING					430,000	5,977		587,540	1,017,540
		24.41.00	SIDING INSULATION, 2 IN THICK FIBERGLASS,	NEW WAREHOUSE BUILDING 200'X75'X15'	8,250.00 SF	-		9,900	95	87.92 /MH	8,337	18,237
			SIDING	TALL				9,900	95		8,337	18,237
			ARCHITECTURAL					439,900	6,072		595,877	1,035,777
	27.00.00	27.17.00	PAINTING & COATING PAINTING									
	21		PAINTING - ALLOWANCE	NEW WAREHOUSE BUILDING 200'X75'X15' TALL	15,000.00 SF	-		15,000	172	64.47 /MH	11,116	26,116
			PAINTING & COATING					15,000 15,000	172 172		11,116 11,116	26,116 26,116
	31.00.00	31.41.00	MECHANICAL EQUIPMENT FIRE PROTECTION EQUIPMENT & SYSTEM FIRE PROTECTION EQUIPMENT & SYSTEM FIRE PROTECTION EQUIPMENT & SYSTEM	NEW WAREHOUSE BUILDING 200'X75'X15' TALL, FIRE PROTECTION ALLOWANCE	15,000.00 SF	-		82,500	1,155 1,155	75.53 /MH	87,250	169,750
			MECHANICAL EQUIPMENT					82,500	1,155		87,250	169,750
	34.00.00	34.99.00	HVAC, MISCELLANEOUS HVAC, MISCELLANEOUS - HVAC ALLOWANCE HVAC, MISCELLANEOUS	NEW WAREHOUSE BUILDING 200'X75'X15' TALL	15,000.00 SF	-		165,000	172 172	73.32 /MH	12,641	177,641
	36.00.00	36.99.00	HVAC INSULATION INSULATION, MISCELLANEOUS					165,000	172		12,641	177,641
			INSULATION - ROOF INSULATION	NEW WAREHOUSE BUILDING 200'X75'X15' TALL	15,000.00 SF	-		18,000	172	58.15 /MH	10,026	28,026
			INSULATION, MISCELLANEOUS INSULATION					18,000	172 172		10,026 10,026	28,026 28,026
	41.00.00	41.37.00	ELECTRICAL EQUIPMENT LIGHTING ACCESSORY (FIXTURE) LIGHTING ACCESSORY (FIXTURE) - ALLOWANCE	NEW WAREHOUSE BUILDING 200'X75'X15'	15,000.00 SF	-		18,000	172	69.31 /MH	11,950	176,950
			LIGHTING ACCESSORY (FIXTURE)	TALL, LIGHTING ALLOWANCE				165,000	172		11,950	176,950
			ELECTRICAL EQUIPMENT					165,000	172		11,950	176,950
	71.00.00	71.25.00	PROJECT INDIRECT CONSULTANT, THIRD PARTY CONSULTANT - SUBSURFACE INVESTIGATION CONSULTANT - GEOTECHNICAL		1.00 LS 1.00 LS	200,000 150,000		<u>-</u>		/MH /MH		200,000 150,000
					Dogg 10							

Estimate No..: 34261A Project No.: 13027-004 Estimate Date: 10/04/2017 Prep/Rev/App: A. KOCI/GA/BA

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			CONSULTANT, THIRD PARTY			350,000						350,000
			PROJECT INDIRECT			350,000						350,000
			121 CIVIL BOP			350,000		3,731,841	63,706		8,336,292	12,418,133
151			MECHANICAL BOP									
	21.00.00		CIVIL WORK									
		21.54.00	CAISSON									
			2.5 FT DIA X 30 FT DEEP CAISSON	TANK FOUNDATIONS	76.00 EA	-	-	141,132	1,922	115.48 /MH	221,934	363,066
			2.5 FT DIA X 30 FT DEEP CAISSON	COMMON PIPE RACK FOUNDATIONS	223.00 EA	-		414,111	5,639	115.48 /MH	651,201	1,065,312
			2.5 FT DIA X 30 FT DEEP CAISSON	BYPRODUCT PIPE RACK FOUNDATIONS	57.00 EA	-	-	105,849	1,441	115.48 /MH	166,450	272,299
			2.5 FT DIA X 30 FT DEEP CAISSON	REAGENT UNLOADING PIPE RACK	32.00 EA	-	-	59,424	809	115.48 /MH	93,446	152,870
				FOUNDATIONS								
			CAISSON					720,516	9,811		1,133,031	1,853,547
			CIVIL WORK					720,516	9,811		1,133,031	1,853,547
	22.00.00		CONCRETE									
	22.00.00	00 40 00	CONCRETE									
		22.13.00	CONCRETE SPREAD FOOTING FOUNDATION, 4500 PSI - COMPOSITE	3X 35' DIA TANK FDN	81.00 CY			18,630	652	68.52 /MH	44,656	63,286
			RATE	3A 35 DIA TANK PDIN	81.00 C1	-	-	10,030	652	00.52 /WITI	44,000	03,200
			CONCRETE FOUNDATIONS - COMPOSITE RATE	COMMON PIPE RACK FOUNDATIONS	250.00 CY	-	-	57,500	2,011	68.52 /MH	137,828	195,328
			CONCRETE FOUNDATIONS - COMPOSITE RATE	BYPRODUCT PIPE RACK FOUNDATIONS	65.00 CY	-		14,950	523		35,835	50,785
			CONCRETE FOUNDATIONS - COMPOSITE RATE	REAGENT UNLOADING PIPE RACK	36.00 CY	-	-	8,280	290	68.52 /MH	19,847	28,127
				FOUNDATIONS								
			CONCRETE					99,360	3,476		238,166	337,526
			CONCRETE					99,360	3,476		238,166	337,526
	23.00.00		STEEL									
	23.00.00	23.21.00	GIRDER									
		23.21.00	ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20#	COMMON 750'LX20'W, 550'Lx15'W, ALL 20'	235.00 TN		_	636,850	4,592	98.30 /MH	451,389	1,088,239
			TO 40# / LF. 2 COAT PAINTED	HIGH	233.00 TN			030,030	4,332	90.30 /WIT	451,369	1,000,239
			ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20#	BYPRODUCT PIPE RACK, 200'LX12'W X 20'	24.00 TN	-	-	65,040	469	98.30 /MH	46,099	111,139
			TO 40# / LF, 2 COAT PAINTED	HIGH								
			ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20#	REAGENT UNLOADING PIPE RACK, 200'LX6'	12.00 TN	-	-	32,520	234	98.30 /MH	23,050	55,570
			TO 40# / LF, 2 COAT PAINTED	WIDE X 20' HIGH				704 440	F 00F			4.054.040
			GIRDER STEEL					734,410	5,295 5,295		520,538 520,538	1,254,948 1,254,948
			STEEL					734,410	3,293		520,536	1,234,946
	31.00.00		MECHANICAL EQUIPMENT									
		31.17.00	COMPRESSOR & ACCESSORIES									
			AIR COMPRESSOR, CENTRIFUGAL - 250 SCFM EA @ 200	SERVICE AIR	2.00 EA	-	310,000	_	92	75.53 /MH	6,945	316,945
			PSIG									
			AIR COMPRESSOR, CENTRIFUGAL - 250 SCFM EA @ 200	INSTRUMENT AIR	2.00 EA	-	310,000	-	92	75.53 /MH	6,945	316,945
			PSIG									
			AIR DRYER - W/FILTERS, 250 NET SCFM EA	SERVICE AIR	2.00 EA	-	33,400	-	74		5,556	38,956
			AIR DRYER - W/FILTERS, 250 NET SCFM EA AIR RECEIVER - 1,000 GALLON EA	INSTRUMENT AIR SERVICE AIR	2.00 EA 2.00 EA	-	33,400 11,200	-	74 37	75.53 /MH 75.53 /MH	5,556 2,778	38,956 13,978
			AIR RECEIVER - 1,000 GALLON EA	INSTRUMENT AIR	2.00 EA	-	11,200	-	37	75.53 /MH	2,778	13,978
			COMPRESSOR & ACCESSORIES	THE THE STATE OF T	2.00 271		709,200		405	70.00 /////	30,559	739,759
		31.41.00	FIRE PROTECTION EQUIPMENT & SYSTEM									
			DELUGE - POWER TRANSFORMERS		3.00 EA	-	-	127,500	1,959	93.09 /MH	182,328	309,828
			FIRE PROTECTION EQUIPMENT & SYSTEM					127,500	1,959		182,328	309,828
		31.65.00	HEAT EXCHANGER									
			HEAT EXCHANGER - SLAKER WATER HEATER 3" IN-LINE,		4.00 EA	-	220,000	-	368	69.31 /MH	25,493	245,493
			475 KW HEAT EXCHANGER				220,000		368		25 402	245 402
			HEAT EXCHANGER				220,000		300		25,493	245,493
		31.75.00	PUMP									
		01.10.00	CENTRIFUGAL, HORIZONTAL, SINGLE STAGE - MAKEUP		2.00 EA	-	96,000	-	577	75.53 /MH	43,582	139,582
			WATER PUMPS, 2600 GPM, 200 TDH				,				,	,
			CENTRIFUGAL, HORIZONTAL, SINGLE STAGE - RECYCLE		3.00 EA	-	72,000	-	221	75.53 /MH	16,669	88,669
			ASH WATER PUMP, 50 HP									
			CENTRIFUGAL, HORIZONTAL, SINGLE STAGE - LIME		2.00 EA	-	48,000	-	147	75.53 /MH	11,112	59,112
			SLAKING WATER PIUMPS, 50 HP SUMP, CENTRIFUGAL, WET BEARING - REGENT		4.00 EA	_	220,000	_	276	75.53 /MH	20,836	240,836
			PREP/RECYCLE SUMP, 120GPM, 150 TDH		7.00 LA	-	220,000	-	276	73.33 /WIT	20,030	240,030
			SUMP, CENTRIFUGAL, WET BEARING - LIME SILO &		2.00 EA	-	88,000	-	138	75.53 /MH	10,418	98,418
			UNLOADING AREA SUMP 120 GPM @ 150 TDH									
					Page 11							

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		31.75.00	PUMP SUMP, CENTRIFUGAL, WET BEARING - WASTE ASH SILO		2.00 EA	-	88,000	-	138	75.53 /MH	10,418	98,418
			AREA SUMP 120GPM @150 TDH SUMP, CENTRIFUGAL, WET BEARING - WASTEWATER FORWARDING PUMP TO RECYCLED SLURRY, 100		4.00 EA	-	28,800	-	294	75.53 /MH	22,225	51,025
			GPM@150 TDH SUMP, SUBMERSIBLE - RECYCLE ASH WATER TANK		2.00 EA	-	77,000	-	690	75.53 /MH	52,090	129,090
			SUPPLY PUMP, 100 HP PUMP				717,800		2,480		187,349	905,149
		31.83.00	TANK ATMOSPHERIC, FIELD FABRICATED - LIME SLAKING	35' DIA X 24' HIGH	1.00 EA	220,000				94.32 /MH		220,000
			WATER TANK, 175,000 GALLON		2.00 EA					94.32 /MH		
			ATMOSPHERIC, FIELD FABRICATED - RECYCLE ASH WATER TANK, 200,000 GALLON TANK	35' DIA X 30' HIGH	2.00 EA	720,000		-		94.32 /MH		720,000
			MECHANICAL EQUIPMENT			720,000	1,647,000	127,500	5,211		425,730	2,920,230
	35.00.00		PIPING									
		35.13.01	SS 304, ABOVE GROUND, PROCESS AREA 1 IN DIA, SCH 40S		1,520.00 LF		_	32,832	1,974	93.09 /MH	183,783	216,615
			1.5 IN DIA, SCH 40S		1,380.00 LF	-	-		2,094	93.09 /MH	194,911	247,213
			2 IN DIA, SCH 40S		2,070.00 LF	-	-	113,022	3,426	93.09 /MH	318,946	431,968
			SS 304, ABOVE GROUND, PROCESS AREA					198,156	7,494		697,640	895,796
		35.13.10	CARBON STEEL, ABOVE GROUND, PROCESS AREA									
			1 IN DIA, SCH 80 2 IN DIA, SCH 80		260.00 LF 2,260.00 LF	-	-	2,314 48,138	305 3,273	93.09 /MH 93.09 /MH	28,376 304,693	30,690 352,831
			2.5 IN DIA, SCH 40		1,000.00 LF		-	15,400	1,437	93.09 /MH	133,750	149,150
			3 IN DIA, SCH 40		7,160.00 LF	-	-		11,028	93.09 /MH	1,026,601	1,151,901
			3 IN DIA, SCH 80		1,760.00 LF	-	-	38,720	3,055	93.09 /MH	284,363	323,083
			4 IN DIA, SCH 40 6 IN DIA, SCH 40		1,000.00 LF 880.00 LF	-	-	22,600 28,248	1,701 1,629	93.09 /MH 93.09 /MH	158,360 151,598	180,960 179,846
			6 IN DIA, SCH 40 VACUUM PIPE		2,260.00 LF	-	-		4,182	93.09 /MH	389,330	461,876
			8 IN DIA, SCH 80		3,520.00 LF	-	-	256,608	9,832	93.09 /MH	915,235	1,171,843
			CARBON STEEL, ABOVE GROUND, PROCESS AREA					609,874	36,441		3,392,307	4,002,181
		35.14.10	CARBON STEEL, STRAIGHT RUN									
			6 IN DIA, SCH 40, LIME SLAKING TANK MAKEUP 8 IN DIA, SCH 40, LIME SLAKING TANK MAKEUP	LIME SLAKING TANK MAKEUP LIME SLAKING TANK MAKEUP	1,200.00 LF 450.00 LF	-	-	27,480 13,905	1,214 486	93.09 /MH 93.09 /MH	112,992 45,261	140,472 59,166
			8 IN DIA, SCH 40, RECYCLE ASH WATER PIPING	RECYCLE ASH WATER PIPING	2.000.00 LF	-	-		2,161	93.09 /MH	201,160	262,960
			10 IN DIA, SCH 40, RECYCLE ASH TANK MAKEUP	RECYCLE ASH TANK MAKEUP	450.00 LF	-	-	24,660	610	93.09 /MH	56,817	81,477
			CARBON STEEL, STRAIGHT RUN					127,845	4,471		416,230	544,075
		35.15.10	CARBON STEEL, BURIED									
			3 IN DIA, SCH 40, WRAPPED		3,000.00 LF	-	-	51,000	2,241	93.09 /MH	208,650	259,650
			6 IN DIA, SCH 40, WRAPPED 10 IN DIA, SCH 40, WRAPPED, RECYCLE ASH WATER PIPE	RECYCLE ASH WATER PIPE DISCHARGE	750.00 LF 1,800.00 LF	-	-	23,925 119,700	776 2,441	93.09 /MH 93.09 /MH	72,225 227,268	96,150 346,968
			DISCHARGE BURIED CARBON STEEL, BURIED	BURIED	.,			194,625	5,459		508,143	702,768
			•					101,020	0,100		000,110	. 02,1 00
		35.15.25	FRP, BURIED 3 IN DIA, TAPER		1,000.00 LF		_	14,800	460	93.09 /MH	42,800	57,600
			3 IN DIA, TAPER FRP/HDPE PIPE		2,380.00 LF	-	-	35,224	1,094	93.09 /MH	101,864	137,088
			FRP, BURIED		,			50,024	1,554		144,664	194,688
		35.15.30	HDPE, BURIED									
			6 IN DIA, DR 9		1,430.00 LF	-	-	12,870	1,134	93.09 /MH	105,577	118,447
			8 IN DIA, DR 9 HDPE, BURIED		1,340.00 LF	-	-	20,770 33,640	1,278 2,413	93.09 /MH	119,005 224,582	139,775 258,222
		35.36.00	PIPE SUPPORTS, RACK									
		33.30.00	SUPPORT SLEEPERS	BYPRODUCT PIPE, 1750LF	125.00 EA	-	-	43,750	575	93.09 /MH	53,500	97,250
			SUPPORT SLEEPERS	REAGENT UNLOADING PIPE, 1500LF	108.00 EA	-	-	37,800	497	93.09 /MH	46,224	84,024
			PIPE SUPPORTS, RACK					81,550	1,071		99,724	181,274
		35.45.00	VALVES									

ea Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	35.45.00	VALVES VALVE - 36" 150 LB CS BUTTERFLY, FLANGED		2.00 EA			79.920	96	00.00 ##!	8.902	88.82
		VALVE - 36* 150 LB CS BUTTERFLY, FLANGED VALVE - 12" 150 LB CS KNIFE GATE, FLANGED		6.00 EA	-	-	79,920 20,160	195	93.09 /MH 93.09 /MH	8,902 18.169	38,32
		VALVE - 12" 150 LB CS GATE VALVE, FLANGED		2.00 EA	-	-	8.920	65	93.09 /MH	6,056	14.97
		VALVE - 10" 150 LB CS SWING CHECK, FLANGED		2.00 EA	-	_	9,200	55	93.09 /MH	5,136	14,33
		VALVE - 10" 150 LB CS BUTTERFLY, FLANGED		5.00 EA	-	-	22,200	138	93.09 /MH	12,840	35,04
		VALVE - 8" 150 LB CS GATE, FLANGED		20.00 EA	-	-	100,000	425	93.09 /MH	39,590	139,5
		VALVE - 6" 150 LB CS GATE, FLANGED		6.00 EA	-	-	19,800	110	93.09 /MH	10,272	30,0
		VALVE - 6" 150 LB CS AIR OPERATED GATE, FLANGED		4.00 EA	-	-	20,400	74	93.09 /MH	6,848	27,2
		VALVE - 6" 150 LB CS AIR OPERATED GLOBE, FLANGED		4.00 EA	-	-	20,400	74	93.09 /MH	6,848	27,2
		VALVE - 6" 150 LB CS SWING CHECK, FLANGED VALVE - 4" 150 LB CS GATE, FLANGED		2.00 EA 3.00 EA	-	-	3,400 3,825	37 25	93.09 /MH 93.09 /MH	3,424 2.311	6,8 6,1
		VALVE - 3" AND BELOW CS FOR SERVICE WATER		120.00 EA	-	-	1,224,000	1,076	93.09 /MH	100,152	1,324,1
		ISOLATION		120.00 LA			1,224,000	1,070	93.09 /WIII	100,132	1,324,1
		VALVE - 3" AND BELOW CS FOR SERVICE AIR ISOLATION		120.00 EA	-	-	1,224,000	1,076	93.09 /MH	100,152	1,324,1
		VALVE - 3" 150 LB CS GATE, FLANGED		20.00 EA	-	-	15,000	179	93.09 /MH	16,692	31,6
		VALVE - 3" CS PST IND FOR FP 250 LB		6.00 EA	-	-	6,600	54	93.09 /MH	5,008	11,€
		VALVE - 2" AND ABOVE BRONZE VALVES FOR		600.00 EA	-	-	78,000	501	93.09 /MH	46,673	124,6
		INSTRUMENT AIR ISOLATION									
		VALVE - 1" CS FLANGED		4.00 EA	-	-	880	21	93.09 /MH	1,969	2,8
		VALVE - 6" CI POST INDICATOR 250 LB., MECHANICAL		6.00 EA	-	-	4,080	28	93.09 /MH	2,568	6,6
		JOINT WITH BOXES BURIED VALVE VALVES					2,860,785	4,228		393,610	3,254,3
		PIPING					4,156,499	63,131		5,876,900	10,033,3
							1,100,100	30,101		3,01 3,000	10,000,0
36.00.00		INSULATION									
	36.17.01	PIPE, CALCIUM SILICATE W/ALUMINUM									
		JACKETING									
		CALCIUM SILICATE W/ALUMINUM JACKETING - 8" PIPE 1.5"		2,520.00 LF	-	-	16,380	487	73.69 /MH	35,859	52,
		THICK 1" CALCIUM SILICATE W/ALUMINUM JACKETING - 3" PIPE		1,260.00 LF			3,591	155	73.69 /MH	11,419	15,0
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 3" PIPE		5,660.00 LF	-	-	16,131	696	73.69 /MH	51,297	67,4
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 2.5" PIPE		380.00 LS	-	-	1,083	47	73.69 /MH	3,444	4,5
		1" CALCIUM SILICATE W/ALUMINUM JACKETING - 2.0" PIPE		4,140.00 LS	-	-	10,309	476	73.69 /MH	35,066	45,3
		PIPE, CALCIUM SILICATE W/ALUMINUM					47,494	1,860		137,085	184,5
		JACKETING									Ť
		INSULATION					47,494	1,860		137,085	184,5
41.00.00		ELECTRICAL EQUIPMENT									
	41.33.00										
		HEAT TRACING									
		HEAT TRACING - 8" PIPE		2,520.00 LS	-	-	18,749	43	69.31 /MH	3,011	
		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE		1,260.00 LF	- -		9,374	22	69.31 /MH	1,506	10,8
		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE		1,260.00 LF 5,660.00 LF	- - - -	-	9,374 42,110	22 98	69.31 /MH 69.31 /MH	1,506 6,764	10, 48,
		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE		1,260.00 LF 5,660.00 LF 380.00 LS			9,374 42,110 2,827	22	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454	10,8 48,8 3,2
		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE		1,260.00 LF 5,660.00 LF		: : : :	9,374 42,110 2,827 3,274	22 98 7 8	69.31 /MH 69.31 /MH	1,506 6,764 454 526	10,8 48,8 3,2 3,7
		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING		1,260.00 LF 5,660.00 LF 380.00 LS	- - - -	: : : :	9,374 42,110 2,827 3,274 76,334	22 98 7 8 177	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261	10,8 48,8 3,7 3,7
		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE		1,260.00 LF 5,660.00 LF 380.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274	22 98 7 8	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526	10,4 48,4 3,7 88,5
400		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP		1,260.00 LF 5,660.00 LF 380.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334	22 98 7 8 177	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261	10,48,48,43,3,3,48,58,588,5
190		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING - EDUPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION		1,260.00 LF 5,660.00 LF 380.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334	22 98 7 8 177	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261	10,4 48,4 3,7 88,5
190	44.00.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION		1,260.00 LF 5,660.00 LF 380.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334	22 98 7 8 177	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261	10,8 48,8 3,2 3,7 88,5
	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION DEMOLITION, MISCELLANEOUS	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711	10,6 48,6 3,2 3,7 88,5 88,5 16,672,8
	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION, MISCELLANEOUS DEMOLITION - MISCELLANEOUS	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711	10,6 48,6 3,2 3,7 88,5 88,5 16,672,8
	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711	10.6 48.6 3.2 3.7 88.5 88.5 16,672,8
	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION, MISCELLANEOUS DEMOLITION - MISCELLANEOUS	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711	10, 48, 3, 3, 88,5 88,5 16,672,8 5,076,5
11.00.00	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION MISCELLANEOUS DEMOLITION - MISC DEMOLITION, MISCELLANEOUS DEMOLITION 190 DEMOLITION / RELOCATION	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667	10, 48, 3, 3, 88, 88, 16,672,8 5,076, 5,076,
11.00.00	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION DEMOLITION, MISCELLANEOUS DEMOLITION - MISC DEMOLITION 190 DEMOLITION / RELOCATION 190 DEMOLITION / RELOCATION ELECTRICAL BOP SYSTEM	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667	10, 48, 3, 3, 88, 88, 16,672,8 5,076, 5,076,
11.00.00		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION 190 DEMOLITION / RELOCATION ELECTRICAL BOP SYSTEM ELECTRICAL EQUIPMENT	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667	10, 48, 3, 3, 88, 88, 16,672,8 5,076, 5,076,
11.00.00	11.99.00	HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION MISCELLANEOUS DEMOLITION - MISC DEMOLITION MISCELLANEOUS DEMOLITION 190 DEMOLITION / RELOCATION ELECTRICAL BOP SYSTEM ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT, MISCELLANEOUS		1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000		9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963 33,333 33,333 33,333 33,333 33,333	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667	10, 48, 3, 3, 3, 88, 48, 48, 48, 48, 48, 48, 48, 48, 48
11.00.00		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION MISCELLANEOUS DEMOLITION - MISC DEMOLITION - MISC DEMOLITION / RELOCATION 190 DEMOLITION / RELOCATION ELECTRICAL BOP SYSTEM ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000	1,647,000	9,374 42,110 2,827 3,274 76,334 76,334 5,962,113	22 98 7 8 177 177 88,963	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667	10,48,48,48,48,48,48,48,48,48,48,48,48,48,
11.00.00		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION 190 DEMOLITION / RELOCATION ELECTRICAL BOP SYSTEM ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS		1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000		9,374 42,110 2,827 3,274 76,334 76,334 5,962,113 1,800,000 1,800,000 1,800,000 1,800,000	22 98 7 8 177 177 88,963 33,333 33,333 33,333 33,333	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH 98.30 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667 3,276,667	10.6 48.6 3.2 3.7 88.5 88.5 16,672,8 5.076,6 5,076,6 5,076,6
11.00.00		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION, MISCELLANEOUS DEMOLITION 190 DEMOLITION / RELOCATION ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT AND MISCELLANEOUS COMPONENTS ELECTRICAL COMMODITIES - CABLE	ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS 1.00 LT	720,000		9,374 42,110 2,827 3,274 76,334 5,962,113 1,800,000 1,800,000 1,800,000 1,800,000 1,800,000 8,500,000	22 98 7 8 177 177 88,963 33,333 33,333 33,333 33,333 88,322	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667 3,276,667	10,6 48,6 3,2 3,7 88,5 88,5 16,672,8 5,076,6 5,076,6 20,021,6
11.00.00		HEAT TRACING - 8" PIPE HEAT TRACING - 3" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.5" PIPE HEAT TRACING - 2.0" PIPE HEAT TRACING ELECTRICAL EQUIPMENT 151 MECHANICAL BOP DEMOLITION / RELOCATION DEMOLITION MISCELLANEOUS DEMOLITION - MISC DEMOLITION, MISCELLANEOUS DEMOLITION 190 DEMOLITION / RELOCATION ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL EQUIPMENT AND MISCELLANEOUS ELECTRICAL COMMODITIES - CABLE	ALLOWANCE ALLOWANCE	1,260.00 LF 5,660.00 LF 380.00 LS 440.00 LS	720,000		9,374 42,110 2,827 3,274 76,334 76,334 5,962,113 1,800,000 1,800,000 1,800,000 1,800,000	22 98 7 8 177 177 88,963 33,333 33,333 33,333 33,333	69.31 /MH 69.31 /MH 69.31 /MH 69.31 /MH 98.30 /MH	1,506 6,764 454 526 12,261 12,261 8,343,711 3,276,667 3,276,667 3,276,667 3,276,667	21,7 10,8 48,8 3,2 3,7 88,5 16,672,8 5,076,6 5,076,6 5,076,6 20,021,5

Estimate No..: 34261A Project No.: 13027-004 Estimate Date: 10/04/2017 Prep/Rev/App: A. KOCI/GA/BA

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			201 ELECTRICAL BOP SYSTEM				12,300,000	11,500,000	284,184		22,691,518	46,491,518
211			INSTRUMENTATION AND CONTROLS BOP									
			SYSTEM									
	44.00.00		CONTROL & INSTRUMENTATION									
		44.99.00	CONTROL & INSTRUMENTATION, MISCELLANEOUS									
			CONTROL & INSTRUMENTATION - MISC	ALLOWANCE	1.00 LT	-	1,500,000	1,085,000	10,920	72.29 /MH	789,374	3,374,374
			CONTROL & INSTRUMENTATION,				1,500,000	1,085,000	10,920		789,374	3,374,374
			MISCELLANEOUS									
			CONTROL & INSTRUMENTATION				1,500,000	1,085,000	10,920		789,374	3,374,374
			211 INSTRUMENTATION AND CONTROLS				1,500,000	1,085,000	10,920		789,374	3,374,374
			BOP SYSTEM									

WHITE BLUFF **DSI COST ESTIMATE BASIS DOCUMENT**

SL-014000 Final, Rev. 0 August 3, 2017 Project 13027-002

Prepared by

55 East Monroe Street • Chicago, IL 60603 USA • 312-269-2000

ii.

CONTENTS

Sec	<u>ction</u>	<u>Page</u>
1.	PURPOSE	1
2.	TECHNOLOGY DESCRIPTION	1
3.	PURPOSE TECHNOLOGY DESCRIPTION APPROACH CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS DESIGN INPUTS AND ASSUMPTIONS ESP/Ash Handling Modifications Landfill Modifications TOTAL INSTALLED CAPITAL INVESTMENT DSI Area (Single Unit) Reagent Handling System ESP/Ash Handling Modifications Civil Work Mechanical Work Demolition/Relocation Electrical Instrumentation Labor Costs Other Direct and Construction Indirect Costs EPC Indirect Costs Owner's Costs and Services VARIABLE OPERATING AND MAINTENANCE COSTS FIXED O&M COSTS	2
4.	CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS	5
4.1	DESIGN INPUTS AND ASSUMPTIONS	5
4.1.	1 <u>ESP/Ash Handling Modifications</u>	5
4.1.2	2 Landfill Modifications	7
4.2	TOTAL INSTALLED CAPITAL INVESTMENT	9
4.2.	1 <u>DSI Area (Single Unit)</u>	9
4.2.2	2 <u>Reagent Handling System</u>	10
4.2.3	3 <u>ESP/Ash Handling Modifications</u>	11
4.2.4	4 <u>Civil Work</u>	11
4.2.	5 <u>Mechanical Work</u>	11
4.2.6	6 <u>Demolition/Relocation</u>	11
4.2.	7 <u>Electrical</u>	11
4.2.8	8 <u>Instrumentation</u>	11
4.2.9	9 <u>Labor Costs</u>	11
4.2.	10 Other Direct and Construction Indirect Costs	12
4.2.	11 <u>EPC Indirect Costs</u>	12
4.2.	12 Owner's Costs and Services	13
4.3	VARIABLE OPERATING AND MAINTENANCE COSTS	16
4.4	FIXED O&M COSTS	17
5.	ATTACHMENTS	18

1. PURPOSE

Entergy has requested that Sargent & Lundy (S&L) evaluate installation of a new dry sorbent injection (DSI) system on the units at White Bluff to control sulfur dioxide (SO₂) emissions. The purpose of this document is to define the project scope and identify the assumptions that were used as the basis for the operating and maintenance (O&M) and the capital cost estimates.

2. TECHNOLOGY DESCRIPTION

DSI is a proven technology, which has only recently been implemented, for moderate removal of SO₂ and other acid gases from coal-fired power plants. It involves injection of sodium-based sorbents into the ductwork after the boiler and prior to the particulate collection device. DSI is a relatively low capital cost, moderate SO₂ removal alternative to wet or dry FGD systems. No slurry equipment or separate reactor vessel is required with a DSI system. With the proper temperature profile and stoichiometry, the sorbent can effectively react with SO₂ and other acid gases in the flue gas. The resulting particulate matter is removed from the flue gas by a particulate collection device, typically an existing electrostatic precipitator (ESP).

The typical DSI sorbents include sodium bicarbonate (NaHCO₃) and Trona (Na₂CO₃·NaHCO₃·2H₂O). Sorbent injection into the ductwork (downstream of the boiler and upstream of the ESP) has been tested in the industry using sodium-based sorbents. The process works through neutralization of SO₂ and other acid gases with the caustic sorbent; the neutralization occurs as long as the sorbent remains in contact with the gas. Sorbent injection has been proven effective on a variety of pulverized coal-fired boilers using a range of low to high sulfur coals. It is considered a commercial technology although with a limited supplier base due to the historically limited interest.

The DSI process produces a dry byproduct which can be landfilled. The waste products will contain sodium sulfate and sulfite (NaSO₃/NaSO₄) along with the unused sorbent and the normal fly ash. These wastes will be collected in the ESP and can be transported with conventional pneumatic fly ash handling equipment. The waste from sodium-based sorbents will have relatively high concentrations of soluble salts, which may affect the byproduct handling. With the addition of dry sorbent byproducts fly ash cannot be sold for reuse.

3. APPROACH

The project capital and O&M cost estimates are based on project-specific information, including:

- An engineer-procure-construct (EPC) contracting strategy with the DSI technology supplier
 providing the main process equipment, including reagent storage, milling, conveyance, and
 injection lances.
- Reagent injection at the air preheater (APH) outlet, upstream of the existing ESP. The cost to rebuild/upgrade the ESP was included to ensure there is no increase in PM emissions as a significant quantity of reagent will be added upstream of the existing ESP.
- On-site disposal of DSI byproduct using upgraded ESP ash handling equipment. The byproduct will be collected in the existing ESP in conjunction with the fly ash from the units; no additional blending equipment is required.
- Reagent injection rates based on 50% SO₂ removal from a design inlet concentration of 0.76 lb SO₂/MMBtu, based on the highest 5% of SO₂ emissions from 2009 through 2013.
 - Annual operating costs will be based on 50% SO₂ removal from an uncontrolled SO₂ rate of 0.57 lb SO₂/MMBtu, based on the annual heat input weighted average emission from 2009 through 2013.
 - The system will be designed to control emissions to meet a permit limit of 0.35 lb/MMBtu on a 30-boiler day rolling average, based on a maximum 30-day average SO₂ emission rate of 0.66 lb/MMBtu from 2014 through 2016.
- Trona was used as the DSI reagent for the purposes of this estimate.
- Increase in carbon consumption by 1 lb/mmacf to mitigate any impacts on mercury performance associated with ACI/DSI interference and mitigate potential for a brown plume.
- A high level conceptual system design, based on the estimated injection rate, was used as input to the DSI cost estimate. The following were estimated based on previous projects and scaled for the predicted dry sorbent injection rate for White Bluff:
 - Auxiliary power consumption
 - Annual reagent consumption
 - Additional carbon consumption
 - Additional water consumption
 - Additional waste production
 - Reagent storage silos
 - Quantity of mills
 - Quantity of blower trains

DSI COST ESTIMATE BASIS DOCUMENT

3.

The total plant capital cost estimate includes the following:

- Equipment and material
- Installation labor
- Indirect field costs
- Freight
- General and Administration
- Erection contractor profit
- Engineering, Procurement and Project Services
- Spare parts/initial fills (other than reagent)
- **EPC** Fee

As part of this project, S&L estimated the costs for Owner's services and costs outside of the EPC contract including the following:

- Owner's Costs
- Owner's Engineer
- Construction Management Support
- Startup and Commissioning Support
- Performance Testing
- Contingency
- Escalation
- **Interest During Construction**

Cost Estimate 34018A provided in Attachment 1 represents the total cost to Entergy to install DSI technology on a single unit at White Bluff (Unit 1 or 2) including the EPC Contract price and all additional Owner's costs and third party services.

The total unit O&M cost estimate includes the following:

- Waste disposal (DSI waste + increased carbon + unsold fly ash)
- Loss of revenue from fly ash sales
- Reagent consumption (including increased carbon consumption)
- Auxiliary power consumption
- Low quality water consumption for mill cleaning
- Operating labor
- Maintenance material
- Maintenance labor

DSI COST ESTIMATE BASIS DOCUMENT

4.

The O&M Cost Estimate and Capital Cost Estimate 34018A were developed using the assumptions and scope provided in this document. The project definition and accuracy corresponds to a study level estimate as defined in U.S.EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual. The costs provided in this report are in 2016 dollars.

4. CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS

4.1 DESIGN INPUTS AND ASSUMPTIONS

The following assumptions were made for the design basis for the White Bluff DSI Systems:

- Design SO₂ inlet concentration of 0.76 lb SO₂/MMBtu.
- SO₂ inlet concentration of 0.57 lb SO₂/MMBtu for annual operating costs.
- Design SO₂ removal efficiency of 50% (defined by injection rate, described in Section 4.1.1)
- Annual capacity factor of 71.2% (annual average capacity factor for White Bluff Units 1 and 2 based on historical heat input from 2009 through 2013).
- Reagent injection at the APH outlet, upstream of the existing ESP.
- Reagent delivery by rail.
- Existing activated carbon silo storage time will be reduced, rather than adding additional or larger storage silos to the system.
- Compliance deadline of three years from the effective date of the rule.

Before proceeding with a DSI project, a demonstration test should be completed at White Bluff to confirm the feasibility of DSI technology at White Bluff and quantify the potential BOP impacts associated with the project, such as impacts to the ESP performance, interference with mercury control technologies, and leachability of the byproduct.

4.1.1 ESP/Ash Handling Modifications

The DSI system, as defined in this report would require an estimated Trona injection rate of approximately 22,000 lb/hour to achieve 50% reduction at the design SO₂ inlet concentration. This injection rate would result in an increase in the particulate loading to the ESP of almost 40% from the current ash loading, due to the DSI byproducts and unreacted DSI reagent.

The addition of sodium compounds to the fly ash lowers the overall resistivity of the particulate being captured as well as shifting the particle size distribution. These changes have been shown to improve the removal efficiency of an ESP; in some cases this increase has been shown to offset the increased particulate loading to the ESP.

ESP performance can also be negatively impacted by a significant increase in particulate loading associated with the high reagent injection rates required for SO₂ control. It is uncertain whether modifications to the ESPs and ash handling systems would be required to accommodate the addition of DSI at White Bluff. However, at the very high injection rates expected for this project, an ESP rebuild will likely be required to ensure the PM emissions stay below the PSD threshold. Therefore, the capital cost estimate includes the costs to completely rebuild the existing ESPs and ash handling systems at White Bluff.

The size and condition of the existing ESP can play a critical role in the overall performance of DSI. In order to evaluate the existing White Bluff ESP with respect to future operation with DSI, S&L used the EPA program ESPVI 4.0W Performance Prediction Model (ESPVI 4.0W) to simulate the baseline and future operating scenarios, as described below. In addition, S&L contacted an ESP vendor to provide input relating to installation of DSI upstream of the existing ESPs at White Bluff.

The baseline operation was established using various design inputs for the units (as needed by the ESPVI 4.0W model), recent operating data and stack emissions to estimate the efficiency at which the ESP is currently operating. ESPVI 4.0W showed that at the baseline operating conditions the White Bluff ESP operates at approximately 99.7% removal of the total inlet loading, corresponding to a filterable PM emission limit of 0.0155 lb/MMBtu.

ESPs operate at a constant efficiency assuming the operating conditions (such as temperature, ash resistivity, or flue gas velocity) stay the same. DSI can impact some of the operating conditions, specifically ash resistivity and particle size distribution. The addition of DSI thus could result in a higher efficiency than the same ESP, without DSI, could achieve.

The ESPVI 4.0W model was developed prior to the introduction of DSI technology and has not been updated to account for the impacts of adding sorbents upstream of the ESP. However, the model was used to predict the high level impact and/or limitations of installing DSI technology by modifying some of the inputs to simulate the characteristics of a fly ash/sodium sorbent mixture.

Based on the modified ash resistivity and adjusted particle sizes associated with the addition of DSI, the baseline ESPVI 4.0W model was used to estimate the predicted removal efficiency for the White Bluff ESP with DSI, as defined in this report, and assuming all other operating

conditions remained the same. ESPVI 4.0W showed an overall removal efficiency which was very similar to the current ESP removal efficiency and resulted in an increase in particulate emissions with the additional loading from the DSI system.

Based on the results from ESPVI 4.0W, the White Bluff ESP may be operating at a marginally higher reduction efficiency with the installation of DSI; however, the loading to the ESP is also increasing significantly. Therefore, the modeling showed that even though the ESP efficiency may increase, the overall PM emissions will still be higher than the current level. This evaluation supports the conclusion that improvement of the existing ESP in conjunction with the DSI project is necessary to avoid increasing PM emissions.

In addition to the modeling that was performed using ESPVI 4.0W, S&L also engaged a vendor experienced with ESP retrofits to provide costs and expertise associated with injection of DSI on an existing ESP. As part of their budgetary quote, the supplier indicated that "while the ESPs are large they are still an efficiency machine and overcoming the new total inlet loading of over 73,000 lb/hr¹ will be extremely difficult to achieve the requested 0.015 lbs/MMBtu outlet PM emissions, without retrofitting the entire ESPs to BART technology. Essentially, the ESPs will need to be rebuilt to 'as-new' condition with the most state-of-the-art technology options" (see Attachment 2).

Finally, in addition to the performance of the ESP, the increased loading will also have an impact on the ash handling system. Therefore, for the purposes of this cost estimate, based on the significant increase in loading, modifications to the ash handling equipment were included in the cost estimate.

4.1.2 Landfill Modifications

The sodium byproducts (salts) that are produced when Trona reacts with SO₂ and other acid gases, along with the unreacted sorbent are soluble in water. The resulting waste collected in the particulate collection device will need to be disposed of in a landfill that is lined and has a leachate collection system. With the addition of DSI, White Bluff will no longer be able to sell their fly ash for beneficial re-use due to the solubility of the sodium salts which would be

Sargent & Lundy

¹ The 73,000 lb/hr loading reflects the design fly ash loading plus the additional loading from the DSI injection (byproduct/unreacted sorbent).

WHITE BLUFF

DSI COST ESTIMATE BASIS DOCUMENT

8.

present in the waste. The cost to maintain a landfill and open new cells is included in the typical maintenance budget of a plant. It was assumed, that any future landfill cells would include lining and leachate collection; therefore, no landfill modifications will be required to accommodate the addition of DSI and no costs were included in this estimate.

4.2 TOTAL INSTALLED CAPITAL INVESTMENT

The DSI system supplier will provide all of the equipment related to storing, milling, conveying and injecting the reagent; in this case, the system is designed for Trona. The remaining BOP scope will be provided by the EPC Contractor. In addition, the EPC Contractor will install/construct the entire system including the equipment provided by the DSI system supplier.

Quantities were developed based on limited project design effort, project experience of a plant of comparable size and then adjusted based on actual size and capacity differences and also taking into consideration the specific site layout based on the general arrangement. In most cases, the costs for bulk materials and equipment were derived from S&L database and recent vendor or manufacturer's quote for similar items on other projects. The scope of work for the capital cost estimate is broken out by the following areas:

4.2.1 DSI Area (Single Unit)

- Reagent Storage Silos: a.
 - Twelve silos capable of storing approximately 14 days of sorbent per unit, 4,200-tons storage total, including substructure
 - 14' diameter and 125' high, each
 - 350-tons working storage, each
 - Continuous level detection systems
 - One bin vent filter per silo
 - Live bottom hopper outlets
 - Rotary airlock assemblies
- b. Reagent conveying systems:
 - 4 trains (4 x 50%)
 - Pneumatic pressure blowers (1 x100% per train)
 - One dehumidifier and chiller per train
- Reagent Milling c.
 - One 7-tph mill per train
 - One set of bypass piping per mill
- d. Reagent Injection
 - Splitters with piping to two APH outlets
 - Six injection lances per injection location

DSI COST ESTIMATE BASIS DOCUMENT

10.

- e. Concrete foundations including piles for all reagent silo, blower, and mill areas; the approximate footprint for DSI Area is 165' x 125'
- f. Buildings, enclosures, and roofs, including:
 - Blower Building, approximately 25' x 100'
 - Electrical Building; approximately 15' x 20'
 - Mill Building; approximately 40 x 80'
 - Dehumidifier Roof; approximately 30' x 125'
 - Heat Exchanger Roof; approximately 10' x 80'
- g. Geotechnical and subsurface investigation contractor work, including hydro excavation
- h. Equipment pricing based on recent vendor pricing for a similar project.

4.2.2 Reagent Handling System

The conceptual design basis for the reagent handling system is to unload two cars at a time. Based on the estimated injection rate and typical railcar capacities, it is anticipated that approximately 20 railcars will be required each week per unit assuming a 100% capacity factor. The reagent handling system includes modification to the existing rail spur on-site to accommodate storage and handling of the reagent railcars. It was assumed that the reagent will be delivered via a 25-car unit train as a maximum. The following equipment and components are included in the cost estimate as part of the reagent handling system:

- a. Reagent rail car unloader:
 - System consists of mobile receiving pad and associated vacuum pneumatic connection equipment to unload railcar
 - Enclosed railcar unloading building; approximately 200' x 75'
 - Trackmobile used to haul and queue the rail cars before and after unloading; capable of moving approximately 25 cars at once.
- b. Reagent unloading systems:
 - Two trains (2 x 100%)
 - Pneumatic pressure blowers (1 x 100%) per train
 - One conveying air dehumidifier and chiller per train
 - Pneumatic conveying piping located on an above-grade sleeper pipe rack
 - The equipment pricing included in this estimate is based on recent firm pricing for similar projects. The basis of the conceptual design is a typical UCC arrangement and equipment.
- c. Rail track spur extension to north to allow reagent train to be unloaded and cars to be stored on site, designed for 136 lb rail to be consistent with existing coal spurs

Final, Rev. 0

4.2.3 **ESP/Ash Handling Modifications**

- ESP Rebuild Based on the budgetary quote provided in Attachment 2. a.
- Ash Handling Modifications Equipment pricing based on recent vendor pricing for a b. similar project.

4.2.4 Civil Work

- Site grading a.
- b. Soil removal earthwork
- Excavation, backfill, and compaction for all foundations c.
- d. Development of a new laydown area, approximately 2 acres, including site preparation, fencing, and temporary power. It was assumed that this area would be located on existing plant property, and does not require land to be purchased.

4.2.5 Mechanical Work

Allowance of \$975,000 provided for mechanical system including transport piping, pipe rack, instrument/service air and other miscellaneous items based on recent in-house cost estimates for similar projects.

4.2.6 Demolition/Relocation

Allowance of \$650,000 is provided for demolition and relocation of existing equipment a. and infrastructure which may interfere with the new DSI system based on recent in-house cost estimates for similar projects.

4.2.7 Electrical

Allowance of \$3,575,000 is provided for electrical equipment upgrades and modifications based on recent in-house cost estimates for similar projects.

4.2.8 **Instrumentation**

Allowance of \$520,000 provided for DCS upgrades and added instrumentation based on recent in-house cost estimates for similar projects.

4.2.9 **Labor Costs**

Installation/labor costs were included in the base estimate under the direct costs. Manhours are estimated for each item in the base estimate and are based on the type of work and typical estimates for similar work. The labor costs are based on the labor wage rates and labor crews developed by S&L.

a. Labor Wage Rates

Crew labor rates were developed using prevailing craft rates and fringe benefits and state specific worker's compensation rates as published in the 2016 edition of R.S. Means Labor Rates for Pine Bluff, Arkansas area. Costs were added to cover FICA, workers compensation, all applicable taxes, small tools, incidentals, construction equipment, and contractor's overhead. State specific workman's compensation rates are from R.S. Means. A 1.15 geographic labor productivity multiplier is included based on the Compass International Construction Yearbook for Arkansas. The crew rates do not include an allowance for weather related delays.

b. Labor crews

Construction/erection labor cost is based on the use of applicable construction crews typically required for projects of this type. The construction crew costs were specifically developed for utility industry and are proprietary to S&L. The prevailing craft rates are incorporated into work crews appropriate for the activities; and include costs for small tools, construction equipment, insurance, and site overheads.

4.2.10 Other Direct and Construction Indirect Costs

In addition to the base labor costs, other construction indirect costs for the project were broken out in the estimate as well as other contractor direct costs. The following items were included as other direct and construction indirect costs.

- a. Scaffolding and Consumables
- b. Premiums and per diems (\$10 per hour)
- c. Overtime at five 10-hour shifts per week
- d. Freight on construction materials
- e. Contractor's General & Administration Fees (included at 10% of total direct costs)
- f. Contractor's Profit (included at 5% of total direct costs)
- g. Sales tax was included in the cost estimate at 8.125%.

Freight on the DSI System equipment was not included in the cost estimate.

4.2.11 EPC Indirect Costs

The final contribution to the overall EPC project price are the EPC Contractor's indirect costs; these include the EPC engineering services, startup spare parts and initial fills, technical field advisors, and the EPC risk fee.

a. EPC Engineering Services

The EPC engineering services was estimated based on recent projects with similar scopes and schedules. The total cost of the EPC engineering services was estimated to be \$4,000,000.

b. Startup Spare Parts and Initial Fills

An allowance has been included for initial fills for equipment, including first fills for lubrication of any motorized equipment. The initial fill of Trona was not included in the EPC Contractor's scope, as this will be supplied by the Owner and is covered as part of the Owner's Costs. The total cost of the initial fills was estimated to be \$75,000.

c. Technical Field Advisors (Vendors)

Allowances were included for equipment supplier's technical field advisory services based on an estimated 150 man-days. The estimate includes technical field advisors for the DSI system supplier (including DSI system subcontractors) and the DCS supplier. The total cost of the technical field advisors was estimated to be \$300,000.

d. EPC Risk Fee

An EPC approach provides an alternative which is expected to reduce risk for Entergy by placing the responsibility for the project on a single entity, the EPC Contractor. The EPC risk fee is a premium charged by the contractor which accounts for the additional coordination and management of the project as well as the additional risk assumed by the contractor. Based on S&L's experience with recent EPC projects, an EPC risk fee was included at 10% of the total EPC project costs.

4.2.12 Owner's Costs and Services

Outside of the EPC Contractor's total cost, Entergy will incur other costs associated with the project, such as services procured from third parties (including Owner's engineer, construction management support, startup and commissioning support and performance testing), and other project related costs.

a. Owner's Costs

Owner's Costs are direct costs that the Owner incurs over the life of the project. The following items are real costs Entergy will incur to install DSI at White Bluff based on the scope and schedule of this project:

- Internal Labor
- Internal Indirects
- Travel Expenses
- Legal Services
- Builders Risk Insurance
- Initial Fills (Reagent)

Owner's costs were included in the estimate at 8% of the total project cost.

b. Construction Management Support

The construction management support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform the tasks, and therefore it will be outsourced. The cost of labor is based on present day

DSI COST ESTIMATE BASIS DOCUMENT

cost. The total cost of the construction management support was estimated to be \$1,500,000.

c. Startup and Commissioning Support

The startup and commissioning support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform the tasks, and therefore it will be outsourced. The total cost of the startup and commissioning support was estimated to be \$300,000.

d. Owner's Engineer

The Owner's Engineer cost was developed as a high level estimate based on a typical scope for Owner's Engineer work for this type of project; including the following tasks:

- Conceptual Study Support
- **EPC Specification Supporting Documents**
- Project Schedule Development
- **EPC Specification Development**
- **EPC Bid Evaluation and Contract Conformance**
- General Project Support
 - Monthly Project Status Meetings
 - Weekly Teleconferences
 - **Overall Coordination**
 - **Project Administration**
 - Site Visits and Travel
- **Permitting Support**
- Design Review of Drawing Submittals
- Technical support during design, fabrication, construction, commissioning, and testing
- Equipment vendor QA/QC audits

The total cost of the Owner's Engineer was estimated to be \$1,750,000.

Performance testing

The cost for performance testing was developed as a factored estimate using costs from projects of similar scope. This cost includes the testing, performed by a third-party contractor hired by the Owner, and also includes the cost for S&L's assistance in the following tasks:

- Development of the test protocol
- Procuring the services of the testing contractor
- Overseeing the performance test campaign
- Evaluating the results of the testing with respect to guarantee compliance

DSI COST ESTIMATE BASIS DOCUMENT

15.

The estimate for the third party testing contractor is based on the assumption that the contractor would be onsite for up to 3 days. The total cost of the Performance Testing was estimated to be \$175,000.

f. Contingency

Contingency is included in the estimate to cover the uncertainty associated with the project costs. The cost estimate includes a recommended contingency of 25%, which is consistent with cost estimating guidelines for a conceptual design and the current level of project definition. Contingency was applied to the total project costs before escalation.

Escalation g.

Escalation was included in the estimate based on a typical schedule for implementation of a DSI system at an escalation rate of 2.15% on equipment and materials and 3.35% on labor and indirects. These escalation rates were developed by S&L based on recent pricing and in-house escalation projections.

Interest During Construction

Interest during construction (IDC) accounts for the time value of money associated with the distribution of construction cash flows over the construction period. IDC was applied to the total EPC project costs including contingency. The IDC was calculated based on a typical schedule for implementation of a DSI system and a typical interest rate of 7.8% per year which was assumed based on a low interest market environment.

4.3 VARIABLE OPERATING AND MAINTENANCE COSTS

The following unit costs were used to develop the variable O&M costs for each reagent specific system. All of these values, with the exception of the reagent costs, were provided by Entergy. The reagent costs are based on recent pricing received by S&L for another project.

Table 4-1: Unit Pricing for Utilities (Provided by Entergy)

Unit Cost	Units	Value		
Trona	\$/ton	\$205		
Activated Carbon	\$/ton	\$1,700		
Low Quality Water	\$/1000 gal	\$0.53		
Byproduct Disposal	\$/ton	\$7.50		
Fly Ash Revenue	\$/ton	\$5.85		
Aux Power Cost ¹	\$/MWh	\$41.02		

Note 1: Entergy provided auxiliary power costs for the first year of operation.

Table 4-2 below summarizes the consumption rates estimated as well as the first year variable O&M costs for each case. The reagent consumption rate was developed using a normalized stoichiometric ratio (NSR) of 1.3 which is consistent with test data for similar projects.

Table 4-2: Variable O&M Rates and First Year Costs

	Units	Value
DSI System Parameters		
Reagent Consumption	lb/hr	16,500
Increased Carbon Consumption	lb/hr	210
DSI Waste Production + Increased Carbon + Unsold Fly Ash ³	lb/hr	40,700
Aux Power Consumption	kW	1,700
Low Quality Water Consumption	gpm	4

DSI COST ESTIMATE BASIS DOCUMENT

	Units	Value
First Year ¹ Variable O&M Costs (@CF ²)		
Reagent Cost	\$/year	\$10,548,500
Waste Disposal Cost (DSI Waste + Increased Carbon + Unsold Fly Ash)	\$/year	\$951,900
Increased Carbon Consumption Cost	\$/year	\$1,113,000
Aux Power Cost	\$/year	\$434,900
Low Quality Water Cost	\$/year	\$800
Loss of Fly Ash Sales ³	\$/year	\$496,000
Total First Year Variable O&M Cost	\$/year	\$13,545,100

Note 1: First year costs are provided in \$2016.

Note 2: The first year costs are calculated using an annual capacity factor of 71.2%.

Note 3: Assumes 57% of the station's fly ash was being sold on an annual basis for an average of approximately \$5.85 per ton (based on historical data from Entergy).

4.4 FIXED O&M COSTS

The fixed O&M costs for the systems consist of operating personnel as well as maintenance costs (including material and labor). The recommended staffing additions for the DSI system are 9 personnel for one system.

The annual maintenance costs are estimated as a percentage of the total capital equipment cost, based on the amount of operating equipment which will require routine maintenance. For this evaluation, the maintenance costs (maintenance and labor) were estimated to be approximately 0.3% of the project capital. Items such as track work and civil work would be considered high capital cost items with little to no maintenance. Table 4-3 below summarizes the first year fixed O&M costs for the design and typical cases.

Table 4-3: First Year Fixed O&M Costs

First Year ¹ Fixed O&M Costs	Units	Value
Operating Labor ²	\$/year	\$1,066,000
Maintenance Material	\$/year	\$180,000
Maintenance Labor	\$/year	\$120,000
Total First Year Fixed O&M Cost	\$/year	\$1,366,000

Note 1: First year costs are provided in \$2016.

Note 2: Operating labor costs are based on a labor rate of \$56.95, which was provided by Entergy.

Note 3: Installation of systems on a single unit would require 9 operators total.

Sargent & Lundy ***

Final, Rev. 0

5. **ATTACHMENTS**

- 1. White Bluff Station DSI System EPC Conceptual Cost Estimate, Sargent & Lundy Estimate No. 34018A
- 2. ESP Rebuild Budgetary Quote

Estimator A. KOCI

Labor rate table 16ARPBL

Project No. 13027-004 **Estimate Date** 10/20/2016

Reviewed By MNO Approved By MNO Estimate No. 34018A

Cost index ARPBL

Estimate No.: 34018A
Project No.: 13027-004
Estimate Date: 10/20/2016
Prep/Rev/App: A. KOCI/MNO/MNO

ENTERGY ARKANSAS WHITE BLUFF STATION UNITS 1 OR 2 (SINGLE UNIT) DSI SYSTEM EPC

Area	Description	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Labor Cost	Total Cost
101	UNIT 1 OR 2 (SINGLE UNIT) DSI AREA	3,359,550	15,000,000	527,160	18,441	11,107,036	29,993,746
	REAGENT HANDLING SYSTEM	1,505,400	1,360,000	1,218,523	26,487	1,956,963	6,040,885
103	ESP/ASH HANDLING MODIFICATIONS	50,000,000	1,050,000	, ,,,	9,885	680,982	51,730,982
104	EARTHWORK			79,496	2,169	183,755	263,251
105	UPGRADE PLANT ENTRANCE						
106	LAYDOWN AREAS			156,000	1,839	146,722	302,722
107	MECHANICAL MISCELLANEOUS	975,000					975,000
108	DEMOLITION / RELOCATION COSTS	650,000					650,000
109	ELECTRICAL	3,575,000					3,575,000
110	INSTRUMENTATION	520,000					520,000
	TOTAL DIRECT	60,584,950	17,410,000	1,981,179	58,822	14,075,457	94,051,586

Estimate No.: 34018A
Project No.: 13027-004
Estimate Date: 10/20/2016
Prep/Rev/App: A. KOCI/MNO/MNO

ENTERGY ARKANSAS WHITE BLUFF STATION UNITS 1 OR 2 (SINGLE UNIT) DSI SYSTEM EPC

Estimate Totals

	Description	Amount	Totals	Hours
Direct Costs:	·			
Labor		14,075,457		58,822
Material		1,981,179		
Subcontract		60,584,950		
Process Equipment		17,410,000		
		94,051,586	94,051,586	
Other Direct & Construction				
Indirect Costs:				
91-1 Scaffolding		985,000		
91-2 Cost Due To OT 5-10's		1,859,000		
91-4 Per Diem		588,000		
91-5 Consumables		141,414		
91-6 Freight on Material		99,000		
91-8 Sales Tax		2,384,000		
91-9 Contractors G&A		1,990,000		
91-10 Contractors Profit		994,000		
		9,040,414	103,092,000	
Indirect Costs:		4 000 000		
93-1 Engineering Services 93-4 SU/S Parts/ Initial Fills		4,000,000 75,000		
93-4 50/5 Parts/ Initial Fills 93-5 Technical Field Advisors		300,000		
93-8 EPC Fee		10,747,000		
33-0 EFC Fee		15,122,000	118,214,000	
		13,122,000	110,214,000	
Escalation:		407.000		
96-1 Escalation on Material		137,000		
96-2 Escalation on Labor		1,693,000		
96-3 Escalation on Subcontract		5,238,000		
96-4 Escalation on Process Eq		926,000		
96-5 Escalation on Indirects		1,261,000	427 460 000	
		9,255,000	127,469,000	
Total EPC Cost			127,469,000	
Owner's Costs:				
99-1 Owner's Costs		9,457,000		
		9,457,000	136,926,000	
Third Party Services:				
100 CM Oversight		1,500,000		
101 Start-Up Oversight		300,000		
102 Owner's Engineer		1,750,000		
103 Performance Testing		175,000		
		3,725,000	140,651,000	
Project Contingency :				
110 Project Contingency		32,851,000 32,851,000	173,502,000	
		32,031,000	173,302,000	
Escalation Addition:		ar		
120 Escalation on Lines 99-110		960,000		
		960,000	174,462,000	
Interest During Construction:				
130 Interest During Constr.		15,649,000		
		15,649,000	190,111,000	
Total			190,111,000	
			, -,	

							Process					
Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
101			UNIT 1 OR 2 (SINGLE UNIT) DSI AREA									
	21.00.00	21.53.00	CIVIL WORK PILING									
		21.55.00	AUGER CAST GROUT PILE, 18 IN DIA BY 80 FT LONG	DSI AREA FOUNDATIONS INCLUDING	323.00 EA	1,162,800	-	-		108.88 /MH		1,162,800
			PILE - MOB/DEMOB	REAGENT SILOS	1.00 LS	100,000	-			108.88 /MH		100,000
			PILING			1,262,800						1,262,800
		21.98.00	CIVIL WORK, TESTING AUGER CAST GROUT PILE - TESTING		1.00 LS	65,000						65,000
			CIVIL WORK,TESTING		1.00 E3	65,000						65,000
			CIVIL WORK			1,327,800						1,327,800
	22.00.00		CONCRETE									
		22.13.00	CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE	DSI AREA FOUNDATIONS INCLUDING	2,292.00 CY			527.160	18.441	60.03 /MH	1,107,036	1,634,196
				REAGENT SILOS	2,292.00 C1	-			-,	60.03 /WH		
			CONCRETE					527,160	18,441		1,107,036	1,634,196
			CONCRETE					527,160	18,441		1,107,036	1,634,196
	23.00.00	23.25.00	STEEL ROLLED SHAPE									
		23.23.00	BUILDING MIX, TWO COAT PAINTED		TN	-	-			93.00 /MH		
	24.00.00		ARCHITECTURAL									
		24.35.00	PRE-ENGINEERED BUILDING									
			SHELL INCLUDING ELECTRICAL & HVAC-STEEL INSULATED 22 GA	BLOWER BUILDING 25 FT X 100 FT	2,500.00 SF	500,000	-			93.00 /MH		500,000
			SHELL INCLUDING ELECTRICAL & HVAC-STEEL INSULATED 22 GA	ELECTRICAL BUILDING 15 FT X 20 FT	300.00 SF	105,000	-			93.00 /MH		105,000
			SHELL INCLUDING ELECTRICAL & HVAC-STEEL INSULATED 22 GA	MILL BUILDING 40 FT X 80 FT	3,200.00 SF	640,000	-			93.00 /MH		640,000
			SHELL - ROOF ONLY AREA	DEHUMIDIFIER - 30 FT X 125 FT	3,750.00 SF	318,750	-			93.00 /MH		318,750
			SHELL - ROOF ONLY AREA PRE-ENGINEERED BUILDING	HEAT EXCHANGER - 10 FT X 80 FT	800.00 SF	1,631,750	-			93.00 /MH		68,000 1,631,750
		24.37.00	ROOFING									
		24.37.00	METAL, INSULATED, 2 IN GALVANIZED, PAINTED, 22 GA	DSI AREA ENCLOSURE ROOF	SF	-	-			35.25 /MH		
		24.41.00	SIDING									
			METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA, GALVANIZED PAINTED	DSI AREA ENCLOSURE SIDING	SF	-	-			79.98 /MH		
		24.99.00	ARCHITECTURAL, MISCELLANEOUS									
			HEATING LIGHTING	DSI AREA	SF SF	-	-			64.51 /MH		
			FIRE PROTECTION	DSI AREA DSI AREA	SF					82.56 /MH 82.56 /MH		
			ARCHITECTURAL			1,631,750						1,631,750
	31.00.00		MECHANICAL EQUIPMENT									
		31.99.00	MECHANICAL EQUIPMENT, MISCELLANEOUS DSI SYSTEM EQUIPMENT	EQUIPMENT COST FOR UNIT 1 OR 2	1.00 LS		15,000,000			/MH	10,000,000	25,000,000
				(SINGLE UNIT)			10,000,000				10,000,000	23,000,000
			STORAGE SILOS WITH BIN VENT FILTERS (~14 DAYS STORAGE)	INCLUDED ABOVE	1.00 LS		-	-		68.89 /MH		
			BLOWERS, HEAT EXCHANGERS, DEHUMIDIFIERS MILLING EQUIPMENT	INCLUDED ABOVE INCLUDED ABOVE	1.00 LS 1.00 LS		-	-		68.89 /MH 68.89 /MH		
			PIPING SYSTEMS COMPRESSORS	INCLUDED ABOVE INCLUDED ABOVE	1.00 LS 1.00 LS		-	-		68.89 /MH 68.89 /MH		
			FLOW MODELING	INCLUDED ABOVE	1.00 LS					68.89 /MH		
			MECHANICAL EQUIPMENT, MISCELLANEOUS MECHANICAL EQUIPMENT				15,000,000 15,000,000				10,000,000	25,000,000 25,000,000
	74.00.00						,,				yy	
	71.00.00	71.25.00	PROJECT INDIRECT CONSULTANT, THIRD PARTY									
			CONSULTANT - SUBSURFACE INVESTIGATION		1.00 LS	250,000	-			/MH		250,000
			CONSULTANT - GEOTECHNICAL		1.00 LS	150,000	-			/MH		150,000

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			CONSULTANT, THIRD PARTY			400,000						400,000
102	21.00.00		PROJECT INDIRECT 101 UNIT 1 OR 2 (SINGLE UNIT) DSI AREA REAGENT HANDLING SYSTEM CIVIL WORK			3,359,550	15,000,000	527,160	18,441		11,107,036	<u>400,000</u> 29,993,746
		21.14.00	STRIP & STOCKPILE TOPSOIL STRIP & STOCKPILE TOPSOIL - 12* STRIP & STOCKPILE TOPSOIL	EXTEND REAGENT RAIL TRACK	90,000.00 SF	-	-		207 207	182.87 /MH	37,835 37,835	37,835 37,835
		21.41.00	EROSION AND SEDIMENTATION CONTROL CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK EROSION AND SEDIMENTATION CONTROL	EXTEND REAGENT RAIL TRACK	10,000.00 SY	-	-	106,500 106,500	345 345	97.70 /MH	33,690 33,690	140,190 140,190
		21.53.00	PILING AUGER CAST GROUT PILE, 18 IN DIA BY 80 FT LONG PILING	UNLOADING SHED 200' X 75' WIDE	64.00 EA	230,400 230,400	-	-	0	108.88 /MH	<u>1</u>	230,401 230,401
		21.71.00	TRACKWORK RAIL, TIE & BALLAST - 136 LB/YD TRACKWORK	EXTEND REAGENT RAIL TRACK	4,500.00 TF	-	-	765,000 765,000	7,759 7,759	81.75 /MH	634,267 634,267	1,399,267 1,399,267
			CIVIL WORK			230,400		871,500	8,310		705,793	1,807,693
	22.00.00	22.13.00	CONCRETE CONCRETE FOUNDATION, 4500 PSI - COMPOSITE RATE	UNLOADING SHED 200' X 75' WIDE	926.00 CY	-	-	212,980	7,451	60.03 /MH	447,258	660,238
			CONCRETE					212,980 212,980	7,451 7,451		447,258 447,258	660,238 660,238
	24.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING SHELL ONLY, STEEL UNINSULATED 22 GA, PRE-ENGINEERED BUILDING ARCHITECTURAL	UNLOADING SHED 200' X 75' WIDE x 20' TALL	15,000.00 SF	1,275,000 1,275,000 1,275,000	-			93.00 /MH		1,275,000 1,275,000 1,275,000
	33.00.00	00.44.00	MATERIAL HANDLING EQUIPMENT			1,273,000						1,273,000
		33.14.00	MATERIAL HANDLING EQUIPMENT REAGENT PNEUMATIC TRAIN UNLOADING EQUIPMENT MATERIAL HANDLING EQUIPMENT		2.00 LS		1,000,000 1, 000,000	-	6,611 6,611	68.89 /MH	455,466 455,466	1,455,466 1,455,466
		33.41.00	MOBILE YARD EQUIPMENT MOBILE YARD EQUIPMENT - TRACKMOBILE MOBILE YARD EQUIPMENT	REAGENT HANDLING SYSTEM	1.00 EA	٠.	225,000 225,000	-		68.89 /MH		225,000 225,000
		33.51.00	RAIL CAR UNLOADER RAIL CAR UNLOADER RAIL CAR UNLOADER	IN UNLOADING SHED 200' X 75' WIDE	1.00 LT		135,000 135,000	-	1,862 1,862	93.00 /MH	173,172 173,172	308,172 308,172
			MATERIAL HANDLING EQUIPMENT				1,360,000		8,474		628,638	1,988,638
	35.00.00	35.14.10	PIPING CARBON STEEL, STRAIGHT RUN 8 IN DIA, SCH 40, 8" VACUUM CONVEY PIPING WITH 4	TO SUPPORT 25 TPH PNEUMATIC TRAIN	250.00 LF		-	10,043	270	77.80 /MH	21,015	31,057
			ELBOWS 12 IN DIA, 3/8 IN STD- 2500 LF OF 10"/12" TRANSPORT PRESSURE PIPING W 8 ELBOWS CARBON STEEL, STRAIGHT RUN	UNLOADING SYSTEM TO SUPPORT 25 TPH PNEUMATIC TRANSPORT SYSTEM	1,250.00 LF	-	-	124,000	1,983 2,253	77.80 /MH	154,259	278,259 309,316
			PIPING					134,043	2,253		175,274	309,316
			102 REAGENT HANDLING SYSTEM			1,505,400	1,360,000	1,218,523	26,487		1,956,963	6,040,885
103	33.00.00	33.99.00	ESP/ASH HANDLING MODIFICATIONS MATERIAL HANDLING EQUIPMENT MATERIAL HANDLING EQUIPMENT, MISCELLANEOUS									
			ESP EQUIPMENT MODIFICATION	FULL REBUILD OF ESP, INCLUDING INSTALLATION COST	1.00 LS	50,000,000	-	-		68.89 /MH		50,000,000

a C	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		33.99.00	MATERIAL HANDLING EQUIPMENT, MISCELLANEOUS									
			ASH HANDLING COMPONENT MODIFICATION	ALLOWANCE	1.00 LS		1,050,000	-	9,885	68.89 /MH	680,982	1,730,9
			MATERIAL HANDLING EQUIPMENT, MISCELLANEOUS			50,000,000	1,050,000		9,885		680,982	51,730,98
			MATERIAL HANDLING EQUIPMENT			50,000,000	1,050,000		9,885		680,982	51,730,98
			103 ESP/ASH HANDLING MODIFICATIONS			50,000,000	1,050,000		9,885		680,982	51,730,98
104			EARTHWORK									
21.	.00.00		CIVIL WORK									
		21.14.00	STRIP & STOCKPILE TOPSOIL STRIP & STOCKPILE TOPSOIL - 12"	SITE GRADING ALLOWANCE	30,000.00 SF	_	-		69	182.87 /MH	12,612	12,6
			STRIP & STOCKPILE TOPSOIL - ONSITE	BUILDINGS	600.00 CY	-	-		79	182.87 /MH	14,503	14,5
			STRIP & STOCKPILE TOPSOIL						148		27,115	27,1
		21.17.00	EXCAVATION									
			EXCAVATION - EXCAVATION , BACKFILL & COMPACT ALL FOUNDATIONS	BUILDINGS	2,860.00 CY	-	-		986	79.78 /MH	78,680	78,6
			EXCAVATION						986		78,680	78,68
		21.39.00	STORM DRAINAGE UTILITIES									
			STORM SEWER WORK STORM DRAINAGE UTILITIES	SITE GRADING ALLOWANCE	1.00 LT	-	-	44,000	920 920	72.57 /MH	66,731 66,731	110,7 110,7
		21.41.00	EROSION AND SEDIMENTATION CONTROL									
			CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK	SITE GRADING ALLOWANCE	3,333.00 SY	-	-	35,496	115	97.70 /MH	11,229	46,
			EROSION AND SEDIMENTATION CONTROL					35,496	115		11,229	46,7
			CIVIL WORK					79,496	2,169		183,755	263,2
			104 EARTHWORK					79,496	2,169		183,755	263,2
105			UPGRADE PLANT ENTRANCE									
21.	.00.00	04 57 00	CIVIL WORK									
		21.57.00	ROAD, PARKING AREA, & SURFACED AREA UPGRADE PLANT ENTRANCE	WORK NOT REQUIRED	0.00 LF	-	-			78.79 /MH		
106			LAYDOWN AREAS									
	.00.00		CIVIL WORK									
		21.99.00	CIVIL WORK, MISCELLANEOUS									
			CIVIL WORK - CONSTRUCTION LAYDOWN AREAS	FENCING, POWER ETC	2.00 AC	-	-	156,000	1,839	79.78 /MH	146,722	302,
			CIVIL WORK, MISCELLANEOUS					156,000	1,839		146,722	302,7
			106 LAYDOWN AREAS					156,000 156,000	1,839 1,839		146,722 146,722	302,7 302,7
			100 LAT DOWN AREAS					130,000	1,039		140,722	302,7
107	.00.00		MECHANICAL MISCELLANEOUS MECHANICAL EQUIPMENT									
31.00.0	.00.00	31.99.00	MECHANICAL EQUIPMENT, MISCELLANEOUS									
			MECHANICAL EQUIPMENT	INCLUDES PIPE RACK - ALLOWANCE SUBCONTRACT COST	1.00 LS	975,000	-	-		68.89 /MH		975,
			MECHANICAL EQUIPMENT, MISCELLANEOUS	COBCONNACT COCT		975,000						975,0
			MECHANICAL EQUIPMENT			975,000						975,0
			107 MECHANICAL MISCELLANEOUS			975,000						975,0
108			DEMOLITION / RELOCATION COSTS									
11.	.00.00	11.99.00	DEMOLITION DEMOLITION, MISCELLANEOUS									
			DEMOLITION, MISCELLARIES DEMOLITION AND RELOCATION	ALLOWANCE - SUBCONTRACT COST	1.00 LS	650,000	-			107.47 /MH		650,0
			DEMOLITION, MISCELLANEOUS			650,000						650,0
			DEMOLITION			650,000						650,0
			108 DEMOLITION / RELOCATION COSTS			650,000						650,0

109

ELECTRICAL

41.00.00 ELECTRICAL EQUIPMENT

41.99.00 ELECTRICAL EQUIPMENT, MISCELLANEOUS

Estimate No..: 34018A
Project No.: 13027-004
Estimate Date: 10/20/2016
Prep/Rev/App: A. KOCI/MNO/MNO

ENTERGY ARKANSAS WHITE BLUFF STATION UNITS 1 OR 2 (SINGLE UNIT) DSI SYSTEM EPC

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		41.99.00	ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS	ALLOWANCE - SUBCONTRACT COST	1.00 LS	3,575,000 3,575,000	-			64.04 /MH		3,575,000 3,575,000
			ELECTRICAL EQUIPMENT			3,575,000						3,575,000
			109 ELECTRICAL			3,575,000						3,575,000
110			INSTRUMENTATION									
	44.00.00	44.99.00	CONTROL & INSTRUMENTATION CONTROL & INSTRUMENTATION, ALLOWANCE									
			CONTROL & INSTRUMENTATION CONTROL & INSTRUMENTATION, ALLOWANCE	ALLOWANCE - SUBCONTRACT COST	1.00 LS	520,000 520,000	-			65.15 /MH		520,000 520,000
			CONTROL & INSTRUMENTATION			520,000						520,000
			110 INSTRUMENTATION			520,000						520,000

27881 Clemens Road Westlake, OH 44145 Phone: 440.899.3888 Fax: 440.899.3890

October 17, 2016

Sargent & Lundy Attention: Danielle Flagg 55 East Monroe Street Chicago, IL 60603

Subject: Fuel Tech, Inc. (FTI) Estimate #16-B-111 Rev1

Confidential Client ESP Retrofit

High Level Estimate

Dear Ms. Flagg,

In response to Sargent & Lundy's (S&L)'s recent request, Fuel Tech, Inc. (FTI), has assembled a high level estimate for the materials and installation necessary to retrofit Sargent & Lundy's "Confidential Client" Electrostatic Precipitators. Please consider the pricing as +/- 30% for high level budgetary estimation purposes.

The ESPs have been evaluated by our engineering staff and the estimate includes the most comprehensive improvements possible. Improvements that we have included in the estimate to increase performance and reliability include all new internals; collecting plates at 16" wide plate spacing, rigid discharge electrodes, top-rapped MIGI rapper conversion with increased rapping sectionalization, increased high voltage frame electrical sectionalization, and the addition of high frequency power supplies.

The estimates and information provided above are based upon FTI's historical information and experience, and should be used for accounting purposes ONLY. Should S&L want to move forward with a more in-depth budgetary proposal, FTI can provide such a document with additional lead-time. Thank you for your interest in our products and services, and we will continue to support Sargent & Lundy's efforts in any way practical for this and other opportunities. Should you require any additional information regarding this submittal, please contact me directly.

Respectfully,

Dustin Ekey

Regional Sales Manager

FTI Budgetary Proposal #16-B-111 Rev 1

Sargent & Lundy Confidential Client ESP Retrofit

Submitted by:

27881 Clemens Road Westlake, Ohio 44145 P: 440.539.8792 www.ftek.com

EXECUTIVE SUMMARY

Sargent & Lundy - Confidential Client ESP Rebuild Budgetary Request:

In accordance with Sargent & Lundy's RFQ dated September 30, 2016, Fuel Tech, Inc. (FTI) has provided a high level estimate based on historical data to engineer, design, supply, and deliver an ESP Retrofit based on the provided information as follows;

A confidential client is currently evaluating the costs associated with rebuilding an existing ESP. As part of this project, the client will potentially be installing dry sorbent injection (DSI) upstream of the upgraded ESP.

The following summarizes the ESP design of the unit being evaluated:

- PC Walther original OEM installed in the early 1980s.
- Consists of four (4) identical ESP casings, with two (2) casings on top of the other two (2) casings; AKA "Piggybacked".
- Each ESP casing has eight (8) mechanical fields, two (2) mechanical fields wide by four (4) mechanical fields deep.
- Each field is 14' in length and contains forty-four (44) collecting electrodes with forty-three (43) gas passages.
- The collecting electrodes are 48' in height with 12" plate spacing.
- The total collecting surface area is 1,900,000 ft².
- Design flue gas flowrate is approximately 3,500,000 acfm, and a design velocity of 5 feet per second.
- The SCA of the existing ESP is approximately 540 ft²/MMacfm.
- The overall dimension for each ESP is approximately 85'L x 90'W x 50'H.
- Each gas passage has discharge frame electrodes.
- The system is equipped with a Walther tumbling hammer rapper system.
- There are eight (8) T/R sets on each ESP, with a total of thirty-two (32).

ESP rebuild design and performance considerations:

- Achieve an outlet PM emissions rate of 0.015 lb/MMBtu or lower.
- Design inlet ash loading of 55,000 lb/hr.
- Non-halogenated PAC is injected at 150 lb/hr.
- Trona will be injected at 22,500 lb/hr, resulting in an increased particulate loading of 18,200 lb/hr to the ESP.
- Inlet flue gas temperature up to 315 deg F.

Sargent & Lundy Confidential Client ESP Retrofit FTI Budgetary Proposal #16-B-111 Rev1 October 17, 2016

<u>Fuel Tech, Inc. – Retrofitted ESP Arrangement and Summary:</u>

While the existing ESPs are considered to be relatively large by industry standards, the design information provided shows that 22,500 lb/hr of Trona will be injected in addition to the existing inlet ash loading is 55,000 lb/hr. With this being said, while the ESPs are large they are still an efficiency machine and overcoming the new total inlet loading of over 73,000 lb/hr will be extremely difficult to achieve the requested 0.015 lbs/MMbtu outlet PM emissions, without retrofitting the entire ESPs to BART technology. Essentially, the ESPs will need to be rebuilt to "as-new" condition with the most state-of-the-art technology options. At the very least, new internals and electrical control systems would require new:

- Assembled Panel Collecting Electrodes
- Rigid Discharge Electrodes
- Top-Rapped MIGI Style Rapper Conversion
- All new Hot Roof, Cold Roof, and Penthouse
- Heated Purge Air Systems
- High Frequency Switch-Mode Power Supplies (SMPS)
- New Access Doors
- All new 3-Phase Electrical Supply Wiring
- New Controllers
- New Hopper Arrangement

Retrofit ESP Arrangement; Quantities are for one (1) ESP, there are four (4) ESPs total:

Number of ESP's / Unit: Mechanical Fields & Size / ESP: 6@9' Electrical Fields & Size / ESP: 12 @ 4.5' Chambers / ESP: 2 Gas Passages / Chamber: 33 Collecting Plates / Chamber: 32 44' Collecting Plate Height: 16" Plate Spacing: RDE's / ESP: 1,536

Rapping Arrangment: Top Rapped – MIGI

Collecting System Rappers / ESP: 176
Discharge System Rappers / ESP: 48
High Frequency Power Supplies / ESP: 16

The amount of planning, engineering, material supply, installation, and installation oversight necessary for a project listed above will be very significant. Pricing estimation can be found below.

High-Level Pricing Estimation for one (1) Confidential Unit including all four (4) ESPs:

Pricing estimate is based upon +/- 30%

The total budgetary estimate to provide ESP materials and engineering: \$20,000,000.00

The total budgetary estimate to provide non-union installation: \$30,000,000.00

*Note: The estimates and information provided above are based upon FTI's historical information and experience, and should be used for accounting purposes ONLY. Should S&L want to move forward with a more in-depth budgetary proposal, FTI can provide such a document with additional lead-time.

WHITE BLUFF

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

SL-014001 Final, Rev. 0August 3, 2017
Project 13027-002

Prepared by

Sargent & Lundy Lundy

55 East Monroe Street • Chicago, IL 60603 USA • 312-269-2000

, 100

ii.

CONTENTS

Sec	<u>ction</u>	<u>Page</u>
1.	PURPOSE	1
2.	TECHNOLOGY DESCRIPTION	1
3.	Арркоасн	2
4.	CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS	5
4.1	DESIGN INPUTS AND ASSUMPTIONS	5
4.1.1	1 Landfill Modifications	5
4.2	TOTAL INSTALLED CAPITAL INVESTMENT	6
4.2.1	DSI Area (Single Unit)	6
4.2.2	2 Reagent Handling System	7
4.2.3	Byproduct Handling	8
4.2.4	4 Baghouse Area	8
4.2.5	5 <u>Ductwork and Supports</u>	8
4.2.6	6 ID Booster Fans	9
4.2.7	7 <u>Civil Work</u>	9
4.2.8	8 Mechanical Work	9
4.2.9	9 <u>Demolition/Relocation</u>	9
4.2.1	10 <u>Electrical</u>	10
4.2.1	11 <u>Instrumentation</u>	10
4.2.1	12 <u>Labor Costs</u>	10
4.2.1	Other Direct and Construction Indirect Costs	10
4.2.1	14 <u>EPC Indirect Costs</u>	11
4.2.1	15 Owner's Costs and Services	11
4.3	VARIABLE OPERATING AND MAINTENANCE COSTS	14
4.4	FIXED O&M COSTS	15
5.	ATTACHMENTS	16

1. PURPOSE

Entergy has requested that Sargent & Lundy (S&L) evaluate installation of an enhanced dry sorbent injection (DSI) system utilizing a baghouse in conjunction with the DSI system at White Bluff to control sulfur dioxide (SO₂) emissions. The purpose of this document is to define the project scope and identify the assumptions that were used as the basis for the operating and maintenance (O&M) and the capital cost estimates.

2. TECHNOLOGY DESCRIPTION

DSI is a proven technology, which has only recently been implemented, for moderate removal of SO₂ and other acid gases from coal-fired power plants. It involves injection of sodium-based sorbents into the ductwork after the boiler and prior to the particulate collection device. DSI is considered a relatively low capital cost, moderate SO₂ removal alternative to wet or dry FGD systems. No slurry equipment or separate reactor vessel is required with a DSI system. With the proper temperature profile and stoichiometry, the sorbent can effectively react with SO₂ and other acid gases in the flue gas. The resulting particulate matter is removed from the flue gas by a particulate collection device, typically an existing electrostatic precipitator (ESP). The performance of DSI technology has been shown to be enhanced by implementation with a downstream fabric filter or baghouse. A baghouse increases the overall residence time due to longer ductwork and additional contact through the filter cake which builds up on the bags. The additional residence time improves performance and in some applications has resulted in much higher achievable removal efficiencies than traditional DSI technology upstream of an existing ESP.

The typical DSI sorbents include sodium bicarbonate (NaHCO₃) and Trona (Na₂CO₃·NaHCO₃·2H₂O). Sorbent injection into the ductwork (downstream of the boiler and upstream of the ESP or baghouse) has been tested in the industry using sodium-based sorbents. The process works through neutralization of SO₂ and other acid gases with the caustic sorbent; the neutralization occurs as long as the sorbent remains in contact with the gas. Sorbent injection has been proven effective on a variety of pulverized coal-fired boilers using a range of low to high sulfur coals. It is considered a commercial technology although with a limited supplier base due to the historically limited interest.

The DSI process produces a dry byproduct which can be landfilled. The waste products will contain sodium sulfate and sulfite (NaSO₃/NaSO₄) along with the unused sorbent and the normal fly ash. These wastes will be collected in a baghouse and can be transported with conventional pneumatic fly ash handling equipment. The waste from sodium-based sorbents will have relatively high concentrations of soluble salts, which may affect the byproduct handling. With the addition of dry sorbent byproducts fly ash cannot be sold for reuse.

3. APPROACH

The project capital and O&M cost estimates are based on project-specific information, including:

- An engineer-procure-construct (EPC) contracting strategy with the DSI technology supplier providing the main process equipment, including reagent storage, milling, conveyance, injection lances, baghouse, and booster fans.
- Installation of a pulse jet fabric filter (PJFF) downstream of the existing ESPs to assist in SO₂ removal efficiency and capture of the DSI byproduct.
- Installation of new booster fans to account for increased draft pressure loss mainly due to the baghouse.
- Reagent injection at the ESP outlet, upstream of a new baghouse to collect flyash separately and preserve flyash sales
- On-site disposal of DSI byproduct, including flyash blending equipment for stabilization.
- Reagent injection rates based on 80% SO₂ removal from a design inlet concentration of 0.76 lb SO₂/MMBtu, based on the highest 5% of SO₂ emissions from 2009 through 2013.
 - Annual operating costs will be based on 80% SO₂ removal from an uncontrolled SO₂ rate of 0.57 lb SO₂/MMBtu, based on the annual heat input weighted average emission from 2009 through 2013.
 - The system will be designed to control emissions to meet a permit limit of 0.15 lb/MMBtu on a 30-boiler day rolling average, based on a maximum 30-day average SO₂ emission rate of 0.66 lb/MMBtu from 2009 through 2013.
- Trona was used as the DSI reagent for the purposes of this estimate.

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

- A high level conceptual system design, based on the estimated injection rate, was used as input to the Enhanced DSI cost estimate. The following were estimated based on previous projects and scaled for the predicted dry sorbent injection rate for White Bluff:
 - Auxiliary power consumption
 - Annual reagent consumption
 - Additional carbon consumption
 - Additional water consumption
 - Additional waste production
 - Reagent storage silos
 - Quantity of mills
 - Quantity of blower trains

The fabric filter and ID fan equipment costs are scaled based on flue gas volume in comparison to industry data and recent budgetary cost estimates.

The total plant capital cost estimate includes the following:

- Equipment and material
- Installation labor
- Indirect field costs
- Freight
- General and Administration
- Erection contractor profit
- Engineering, Procurement and Project Services
- Spare parts/initial fills (other than reagent)
- EPC Fee

As part of this project, S&L estimated the costs for Owner's services and costs outside of the EPC contract including the following:

- Owner's Costs
- Owner's Engineer
- Construction Management Support
- Startup and Commissioning Support
- Performance Testing
- Contingency
- Escalation
- **Interest During Construction**

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

4.

Cost Estimate 34019A provided in Attachment 1 represents the total cost to Entergy to install Enhanced DSI technology on a single unit at White Bluff (Unit 1 or 2) including the EPC Contract price and all additional Owner's costs and third party services.

The total unit O&M cost estimate includes the following:

- Waste disposal (DSI waste)
- Reagent consumption
- Auxiliary power consumption
- Low quality water consumption for mill cleaning
- PJFF bag and cage replacement
- Operating labor
- Maintenance material
- Maintenance labor

The O&M Cost Estimate and Capital Cost Estimate 34019A were developed using the assumptions and scope provided in this document. The project definition and accuracy corresponds to a study level estimate as defined in U.S.EPA's Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual. The costs provided in this report are in 2016 dollars.

Entergy

4. CAPITAL AND O&M COST ESTIMATE TECHNICAL BASIS

4.1 DESIGN INPUTS AND ASSUMPTIONS

The following assumptions were made for the design basis for the White Bluff DSI Systems:

- Design SO₂ inlet concentration of 0.76 lb SO₂/MMBtu.
- SO₂ inlet concentration of 0.57 lb SO₂/MMBtu for annual operating costs.
- Design SO₂ removal efficiency of 80%
- Annual capacity factor of 72.1% (annual average capacity factor for White Bluff Units 1 and 2 based on historical heat input from 2009 through 2013).
- Reagent injection at the ESP outlet, upstream of the new baghouse.
- Reagent delivery by rail.
- Compliance deadline of three years from the effective date of the rule.

Before proceeding with a DSI project, a demonstration test should be completed at White Bluff to confirm the feasibility of DSI technology at White Bluff and quantify the potential BOP impacts associated with the project, such as leachability of the byproduct.

4.1.1 **Landfill Modifications**

The sodium byproducts (salts) that are produced when Trona reacts with SO₂ and other acid gases, along with the unreacted sorbent are soluble in water. The resulting waste collected in the particulate collection device will need to be disposed of in a landfill that is lined and has a leachate collection system. With the addition of DSI, White Bluff will no longer be able to sell their fly ash for beneficial re-use due to the solubility of the sodium salts which would be present in the waste. The cost to maintain a landfill and open new cells is included in the typical maintenance budget of a plant. It was assumed, that any future landfill cells would include lining and leachate collection; therefore, no landfill modifications will be required to accommodate the addition of DSI and no costs were included in this estimate.

4.2 TOTAL INSTALLED CAPITAL INVESTMENT

The DSI system supplier will provide all of the equipment related to storing, milling, conveying and injecting the reagent; in this case, the system is designed for Trona. The baghouse area equipment, ID fan equipment, and the remaining BOP scope will be provided by the EPC Contractor. In addition, the EPC Contractor will install/construct the entire system including the equipment provided by the DSI system supplier.

Quantities were developed based on limited project design effort, project experience of a plant of comparable size and then adjusted based on actual size and capacity differences and also taking into consideration the specific site layout based on the general arrangement. In most cases, the costs for bulk materials and equipment were derived from S&L database and recent vendor or manufacturer's quote for similar items on other projects. The scope of work for the capital cost estimate is broken out by the following areas:

4.2.1 <u>DSI Area (Single Unit)</u>

- a. Reagent Storage Silos:
 - Twenty silos capable of storing approximately 14 days of sorbent per unit, 7,000-tons storage total, including substructure
 - 14' diameter and 125' high, each
 - 350-tons working storage, each
 - Continuous level detection systems
 - One bin vent filter per silo
 - Live bottom hopper outlets
 - Rotary airlock assemblies
- b. Reagent conveying systems:
 - 5 trains (5 x 33%)
 - Pneumatic pressure blowers (1 x100% per train)
 - One dehumidifier and chiller per train
- c. Reagent Milling
 - One 7-tph mill per train
 - One set of bypass piping per mill

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

- d. Reagent Injection
 - Splitters with piping to two ESP outlets
 - Six injection lances per injection location
- e. Concrete foundations including piles for all reagent silo, blower, and mill areas; the approximate footprint for DSI Area is 160' x 200'
- f. Buildings, enclosures, and roofs, including:
 - Blower Building, approximately 25' x 125'
 - Electrical Building; approximately 30' x 20'
 - Mill Building; approximately 50' x 100'
 - Dehumidifier Roof; approximately 30' x 160'
 - Heat Exchanger Roof; approximately 10' x 100'
- g. Geotechnical and subsurface investigation contractor work, including hydro excavation
- h. Equipment pricing based on recent vendor pricing for a similar project.

4.2.2 Reagent Handling System

The conceptual design basis for the reagent handling system is to unload three cars at a time. Based on the estimated injection rate and typical railcar capacities, it is anticipated that approximately 35 railcars will be required each week per unit assuming a 100% capacity factor. The reagent handling system includes modification to the existing rail spur on-site to accommodate storage and handling of the reagent railcars. It was assumed that the reagent will be delivered via a 25-car unit train as a maximum. The following equipment and components are included in the cost estimate as part of the reagent handling system:

- a. Reagent rail car unloader:
 - System consists of mobile receiving pad and associated vacuum pneumatic connection equipment to unload railcar
 - Enclosed railcar unloading building; approximately 300' x 75'
 - Trackmobile used to haul and queue the rail cars before and after unloading; capable of moving approximately 25 cars at once.
- b. Reagent unloading systems:
 - Three trains (3 x 100%)
 - Pneumatic pressure blowers (1 x 100%) per train
 - One conveying air dehumidifier and chiller per train

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

- Pneumatic conveying piping located on an above-grade sleeper pipe rack
- The equipment pricing included in this estimate is based on recent firm pricing for similar projects. The basis of the conceptual design is a typical UCC arrangement and equipment.
- Rail track spur extension to north to allow reagent train to be unloaded and cars to be stored on site, designed for 136 lb rail to be consistent with existing coal spurs

4.2.3 **Byproduct Handling**

- Two DSI by-product storage silos (approximately 7-day capacity) with bin vent filter, fluidizing system, and four unloading conditioners (pin mixers)
- One common fly ash blending bin with bin vent filter, fluidizing system, and four b. pneumatic airslide conveyors
- Water pumps and associated piping for unloading conditioners at both silos c.
- d. Compressed air system for air operated valves
- Storage silo substructure and superstructure e.
- f. Concrete foundations including piles for silos
- Continuous level detection system g.
- One lot pneumatic conveying piping located on an above grade pipe rack h.
- i. Two truck scales and substructure
- Cost estimate based on a recent budgetary proposal for similar project i.

4.2.4 **Baghouse Area**

- New baghouse, including pulse jet cleaning system and all appurtenances a.
- Two casings with 8 compartments b.
- 10 meter bags and cages C.
- 6" insulation with lagging
- Enclosure around hopper area e.
- f. Baghouse area foundations including 18" auger cast piles 60' long
- Equipment pricing based on recent pricing for similar projects

4.2.5 **Ductwork and Supports**

- ID fan outlet to Baghouse inlet:
 - Two ID fan outlet ducts, combine to a single duct to carry flue gas to the new baghouse
 - Carbon steel, ½ in.
 - Velocity, 3,600 fpm

- Baghouse outlet to Booster fans b.
 - A single baghouse outlet duct which splits into two booster fan inlets.
 - Carbon steel, ¼ in.
 - Velocity, 3,600 fpm
- Booster fan outlet to the stack inlet ductwork and supports:
 - Two booster fan inlets, combine to a single duct which connects to the existing chimney breeching duct.
 - Carbon steel, ½ in.
 - Velocity, 3,600 fpm
- Dampers and expansion joints d.
- 6" insulation and lagging e.
- f Steel support structure and concrete mat foundations for all new flue gas ductwork

4.2.6 **ID** Booster Fans

- Two, approximately 4,000 hp, axial booster fans sized to overcome pressure drop associated with baghouse
- Includes motors no spare motor included b.
- Booster fan area foundations

4.2.7 Civil Work

- a. Site grading
- h Soil removal earthwork
- Excavation, backfill, and compaction for all foundations
- Development of a new laydown area, approximately 4 acres, including site preparation, d. fencing, and temporary power. It was assumed that this area would be located on existing plant property, and does not require land to be purchased.

4.2.8 Mechanical Work

Allowance of \$2,600,000 provided for mechanical system including transport piping, pipe rack, instrument/service air and other miscellaneous items based on recent in-house cost estimates for similar projects.

4.2.9 Demolition/Relocation

Allowance of \$975,000 is provided for demolition and relocation of existing equipment and infrastructure which may interfere with the new DSI system based on recent in-house cost estimates for similar projects.

WHITE BLUFF

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

10.

4.2.10 Electrical

Allowance of \$16,250,000 is provided for electrical equipment upgrades and modifications a. based on recent in-house cost estimates for similar projects.

4.2.11 Instrumentation

Allowance of \$2,210,000 provided for DCS upgrades and added instrumentation based on recent in-house cost estimates for similar projects.

4.2.12 **Labor Costs**

Installation/labor costs were included in the base estimate under the direct costs. Manhours are estimated for each item in the base estimate and are based on the type of work and typical estimates for similar work. The labor costs are based on the labor wage rates and labor crews developed by S&L.

Labor Wage Rates a.

Crew labor rates were developed using prevailing craft rates and fringe benefits and state specific worker's compensation rates as published in the 2016 edition of R.S. Means Labor Rates for Pine Bluff, Arkansas area. Costs were added to cover FICA, workers compensation, all applicable taxes, small tools, incidentals, construction equipment, and contractor's overhead. State specific workman's compensation rates are from R.S. Means. A 1.15 geographic labor productivity multiplier is included based on the Compass International Construction Yearbook for Arkansas. The crew rates do not include an allowance for weather related delays.

Labor crews b.

Construction/erection labor cost is based on the use of applicable construction crews typically required for projects of this type. The construction crew costs were specifically developed for utility industry and are proprietary to S&L. The prevailing craft rates are incorporated into work crews appropriate for the activities; and include costs for small tools, construction equipment, insurance, and site overheads.

4.2.13 Other Direct and Construction Indirect Costs

In addition to the base labor costs, other construction indirect costs for the project were broken out in the estimate as well as other contractor direct costs. The following items were included as other direct and construction indirect costs.

- Scaffolding and Consumables a.
- Premiums and per diems (\$10 per hour) b.
- Overtime at five 10-hour shifts per week c.
- Freight on construction materials d.
- Contractor's General & Administration Fees (included at 10% of total direct costs)

WHITE BLUFF

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

11.

- f. Contractor's Profit (included at 5% of total direct costs)
- Sales tax was included at 8.125%. g.

Freight on the DSI System equipment was not included in the cost estimate.

4.2.14 **EPC Indirect Costs**

The final contribution to the overall EPC project price are the EPC Contractor's indirect costs; these include the EPC engineering services, startup spare parts and initial fills, technical field advisors, and the EPC risk fee.

EPC Engineering Services

The EPC engineering services was estimated based on recent projects with similar scopes and schedules. The total cost of the EPC engineering services was estimated to be \$10,000,000.

Startup Spare Parts and Initial Fills

An allowance has been included for initial fills for equipment, including first fills for lubrication of any motorized equipment. The initial fill of Trona was not included in the EPC Contractor's scope, as this will be supplied by the Owner and is covered as part of the Owner's Costs. The total cost of the initial fills was estimated to be \$150,000.

Technical Field Advisors (Vendors)

Allowances were included for equipment supplier's technical field advisory services based on an estimated 200 man-days. The estimate includes technical field advisors for the DSI system supplier (including DSI system subcontractors) and the DCS supplier. The total cost of the technical field advisors was estimated to be \$400,000.

EPC Risk Fee d.

An EPC approach provides an alternative which is expected to reduce risk for Entergy by placing the responsibility for the project on a single entity, the EPC Contractor. The EPC risk fee is a premium charged by the contractor which accounts for the additional coordination and management of the project as well as the additional risk assumed by the contractor. Based on S&L's experience with recent EPC projects, an EPC risk fee was included at 10% of the total EPC project costs.

4.2.15 Owner's Costs and Services

Outside of the EPC Contractor's total cost, Entergy will incur other costs associated with the project, such as services procured from third parties (including Owner's engineer, construction management support, startup and commissioning support and performance testing), and other project related costs.

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

Owner's Costs

Owner's Costs are direct costs that the Owner incurs over the life of the project. The following items are real costs Entergy will incur to install DSI at White Bluff based on the scope and schedule of this project:

- Internal Labor
- **Internal Indirects**
- Travel Expenses
- Legal Services
- **Builders Risk Insurance**
- Initial Fills (Reagent)

Owner's costs were included in the estimate at 8% of the total project cost.

b. Construction Management Support

The construction management support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform the tasks, and therefore it will be outsourced. The cost of labor is based on present day cost. The total cost of the construction management support was estimated to be \$2,500,000.

Startup and Commissioning Support

The startup and commissioning support was estimated based on similar project scopes. It was assumed that Entergy will not have the internal support personnel required to perform the tasks, and therefore it will be outsourced. The total cost of the startup and commissioning support was estimated to be \$350,000.

Owner's Engineer d.

The Owner's Engineer cost was developed as a high level estimate based on a typical scope for Owner's Engineer work for this type of project; including the following tasks:

- Conceptual Study Support
- **EPC Specification Supporting Documents**
- **Project Schedule Development**
- **EPC Specification Development**
- **EPC Bid Evaluation and Contract Conformance**
- General Project Support
 - Monthly Project Status Meetings
 - Weekly Teleconferences
 - **Overall Coordination**
 - **Project Administration**
 - Site Visits and Travel

- Permitting Support
- Design Review of Drawing Submittals
- Technical support during design, fabrication, construction, commissioning, and testing
- Equipment vendor QA/QC audits

The total cost of the Owner's Engineer was estimated to be \$2,750,000.

e. Performance testing

The cost for performance testing was developed as a factored estimate using costs from projects of similar scope. This cost includes the testing, performed by a third-party contractor hired by the Owner, and also includes the cost for S&L's assistance in the following tasks:

- Development of the test protocol
- Procuring the services of the testing contractor
- Overseeing the performance test campaign
- Evaluating the results of the testing with respect to guarantee compliance

The estimate for the third party testing contractor is based on the assumption that the contractor would be onsite for up to 3 days. The total cost of the Performance Testing was estimated to be \$175,000.

f. Contingency

Contingency is included in the estimate to cover the uncertainty associated with the project costs. The cost estimate includes a recommended contingency of 25%, which is consistent with cost estimating guidelines for a conceptual design and the current level of project definition. Contingency was applied to the total project costs before escalation.

g. Escalation

Escalation was included in the estimate based on a typical schedule for implementation of a DSI system at an escalation rate of 2.15% on equipment and materials and 3.35% on labor and indirects. These escalation rates were developed by S&L based on recent pricing and in-house escalation projections.

h. Interest During Construction

Interest during construction (IDC) accounts for the time value of money associated with the distribution of construction cash flows over the construction period. IDC was applied to the total EPC project costs including contingency. The IDC was calculated based on a typical schedule for implementation of a DSI system and a typical interest rate of 7.8% per year which was assumed based on a low interest market environment.

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

4.3 VARIABLE OPERATING AND MAINTENANCE COSTS

The following unit costs were used to develop the variable O&M costs for each reagent specific system. All of these values, with the exception of the reagent costs, were provided by Entergy. The reagent costs are based on recent pricing received by S&L for another project.

Table 4-1: Unit Pricing for Utilities (Provided by Entergy)

Unit Cost	Units	Value
Trona	\$/ton	\$205
Low Quality Water	\$/1000 gal	\$0.53
Bag Cost ¹	\$/bag	100.00
Cage Cost ¹	\$/cage	30.00
Waste Disposal	\$/ton	\$7.50
Aux Power Cost ²	\$/MWh	\$41.02

Note 1: Bags will be replaced every 3 years and cages will be replaced every 9 years.

Note 2: Entergy provided auxiliary power costs for the first year of operation.

Table 4-2 below summarizes the consumption rates estimated as well as the first year variable O&M costs for each case. The reagent consumption rate was developed using a normalized stoichiometric ratio (NSR) of 2.4 which is consistent with test data for similar projects.

Table 4-2: Variable O&M Rates and First Year Costs

	Units	Value
DSI System Parameters		
Reagent Consumption	lb/hr	30,400
DSI Waste Production	lb/hr	24,100
Aux Power Consumption	kW	8,800
Low Quality Water Consumption	gpm	6
First Year ¹ Variable O&M Costs (@CF ²)		
Reagent Cost	\$/year	\$19,434,900
Waste Disposal Cost	\$/year	\$563,700
Aux Power Cost	\$/year	\$2,251,500
Low Quality Water Cost	\$/year	\$1,200
Bag and Cage Replacement Cost	\$/year	\$1,796,000
Total First Year Variable O&M Cost	\$/year	\$24,047,300

Note 1: First year costs are provided in \$2016.

Note 2: The first year costs are calculated using an annual capacity factor of 72.1%.

4.4 FIXED O&M COSTS

Entergy

The fixed O&M costs for the systems consist of operating personnel as well as maintenance costs (including material and labor). The recommended staffing additions for the DSI system are 9 personnel for one system.

The annual maintenance costs are estimated as a percentage of the total capital equipment cost, based on the amount of operating equipment which will require routine maintenance. For this evaluation, the maintenance costs (maintenance and labor) were estimated to be approximately 0.5% of the project capital. Items such as track work and civil work would be considered high capital cost items with little to no maintenance.

Table 4-3 below summarizes the first year fixed O&M costs for the design and typical cases.

Table 4-3: First Year Fixed O&M Costs

First Year ¹ Fixed O&M Costs	Units	Value
Operating Labor ²	\$/year	\$1,066,000
Maintenance Material	\$/year	\$645,000
Maintenance Labor	\$/year	\$430,000
Total First Year Fixed O&M Cost	\$/year	\$2,141,000

Note 1: First year costs are provided in \$2016.

Note 2: Operating labor costs are based on a labor rate of \$56.95, which was provided by Entergy.

Note 3: Installation of systems on a single unit would require 9 operators total.

WHITE BLUFF

ENHANCED DSI COST ESTIMATE BASIS DOCUMENT

5. ATTACHMENTS

1. White Bluff Station Enhanced DSI System EPC Conceptual Cost Estimate, Sargent & Lundy Estimate No. 34019A

Estimator A. KOCI

Labor rate table 16ARPBL

Project No. 13027-004 **Estimate Date** 10/20/2016

Reviewed By MNO Approved By MNO Estimate No. 34019A

Cost index ARPBL

Estimate No.: 34019A Project No.: 13027-004 Estimate Date: 10/20/2016 Prep/Rev/App: A. KOCI/MNO/MNO

Area	Description	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Labor Cost	Total Cost
404	UNIT 1 OR 2 (SINGLE UNIT) DSI AREA	4,693,000	20,500,000	817,880	28,611	15,417,548	41,428,428
	REAGENT HANDLING SYSTEM	2,258,100	2,445,000	1,325,013	35,380	2,581,496	8,609,609
	BYPRODUCT HANDLING SYSTEM						
		7,713,100	6,872,000	853,055	76,615	5,670,075	21,108,230
	UNIT 1 OR 2 FLUE GAS SYSTEM	496,800	240,000	8,136,840	162,932	14,173,748	23,047,388
105	UNIT 1 OR 2 BOOSTER FANS		5,400,000	212,595	27,391	1,888,104	7,500,699
106	UNIT 1 OR 2 BAGHOUSE	1,173,600	20,000,000	3,638,113	85,175	19,008,734	43,820,447
107	EARTHWORK			2,021,832	44,398	5,879,245	7,901,077
108	LAYDOWN AREAS			312,000	3,678	293,444	605,444
109	MECHANICAL MISCELLANEOUS	2,600,000					2,600,000
110	DEMOLITION/RELOCATION	975,000					975,000
111	ACI RELOCATION	100,000		146,775	1,954	135,859	382,635
112	ELECTRICAL	16,250,000					16,250,000
113	INSTRUMENTATION	2,210,000					2,210,000
	TOTAL DIRECT	38,469,600	55,457,000	17,464,103	466,134	65,048,253	176,438,956

Estimate No.: 34019A Project No.: 13027-004 Estimate Date: 10/20/2016 Prep/Rev/App: A. KOCI/MNO/MNO

ENTERGY ARKANSAS WHITE BLUFF STATION UNITS 1 OR 2 (SINGLE UNIT) ENHANCED DSI SYSTEM W/BAGHOUSE EPC

Estimate Totals

	Description	Amount	Totals	Hours
Direct Costs:				
Labor		65,048,253		466,134
Material		17,464,103		
Subcontract		38,469,600		
Process Equipment		55,457,000		
1 100000 Equipmont	_	176,438,956	176,438,956	
Other Direct & Construction				
Indirect Costs:				
91-1 Scaffolding		4,553,000		
91-2 Cost Due To OT 5-10's		8,760,000		
91-4 Per Diem		4,661,000		
91-5 Consumables		650,044		
91-6 Freight on Material		873,000		
91-8 Sales Tax		2,897,000		
91-9 Contractors G&A		10,350,000		
91-10 Contractors Profit		5,175,000		
		37,919,044	214,358,000	
Indirect Costs:				
93-1 Engineering Services		10,000,000		
93-4 SU/S Parts/ Initial Fills		150,000		
93-5 Technical Field Advisors		400,000		
93-8 EPC Fee	_	22,491,000		
		33,041,000	247,399,000	
Escalation:		4 0 4 0 0 0 0		
96-1 Escalation on Material 96-2 Escalation on Labor		1,212,000		
		8,026,000		
96-3 Escalation on Subcontract		3,326,000 2,948,000		
96-4 Escalation on Process Eq 96-5 Escalation on Indirects		2,946,000		
96-5 Escalation on Indirects	-	18,268,000	265,667,000	
		10,200,000		
Total EPC Cost			265,667,000	
Owner's Costs:				
99-1 Owner's Costs	_	19,792,000		
		19,792,000	285,459,000	
Third Party Services:				
100 CM Oversight		2,500,000		
101 Start-Up Oversight		350,000		
102 Owner's Engineer		2,750,000		
103 Performance Testing	=	175,000		
		5,775,000	291,234,000	
Project Contingency :		60 242 000		
110 Project Contingency	_	68,242,000	050 470 000	
		68,242,000	359,476,000	
Escalation Addition:				
120 Escalation on Lines 99-110	=	1,893,000		
		1,893,000	361,369,000	
Interest During Construction:				
130 Interest During Constr.	-	32,375,000	000 7/1000	
		32,375,000	393,744,000	
Total			393,744,000	

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
101			UNIT 1 OR 2 (SINGLE UNIT) DSI AREA									
	21.00.00		CIVIL WORK									
		21.53.00	PILING AUGER CAST GROUT PILE, 18 IN DIA BY 60 FT LONG	DSI AREA FOUNDATIONS INCLUDING REAGENT SILOS	500.00 EA	1,800,000	-	-		108.88 /MH		1,800,000
			PILE - MOB/DEMOB	REAGENT SILOS	1.00 LS	100,000	-			108.88 /MH		100,000
			PILING			1,900,000						1,900,000
		21.98.00	CIVIL WORK,TESTING									
			AUGER CAST GROUT PILE - TESTING CIVIL WORK, TESTING		1.00 LS	65,000 65,000	-	-		-	-	65,000 65,000
			CIVIL WORK			1,965,000						1,965,000
	00.00.00		COMPRETE									
	22.00.00	22.13.00	CONCRETE CONCRETE									
			CONCRETE FOUNDATIONS - COMPOSITE RATE	DSI AREA FOUNDATIONS INCLUDING	3,556.00 CY	-	-	817,880	28,611	60.03 /MH	1,717,548	2,535,428
			CONCRETE	REAGENT SILOS				817,880	28,611		1,717,548	2,535,428
			CONCRETE					817,880	28,611		1,717,548	2,535,428
	23.00.00	23.25.00	STEEL ROLLED SHAPE									
		23.25.00	BUILDING MIX, TWO COAT PAINTED		TN	-	-			93.00 /MH		
	24.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING									
		24.33.00	SHELL INCLUDING ELECTRICAL & HVAC-STEEL	BLOWER BUILDING 25 FT X 125 FT	3,125.00 SF	625,000	-			93.00 /MH		625,000
			INSULATED 22 GA SHELL INCLUDING ELECTRICAL & HVAC-STEEL	ELECTRICAL BUILDING 30 FT X 20 FT	600.00 SF	210,000	_			93.00 /MH		210,000
			INSULATED 22 GA									
			SHELL INCLUDING ELECTRICAL & HVAC-STEEL INSULATED 22 GA	MILL BUILDING 50 FT X 100 FT	5,000.00 SF	1,000,000	-			93.00 /MH		1,000,000
			SHELL - ROOF ONLY AREA	DEHUMIDIFIER - 30 FT X 160 FT	4,800.00 SF	408,000	-			93.00 /MH		408,000
			SHELL - ROOF ONLY AREA PRE-ENGINEERED BUILDING	HEAT EXCHANGER - 10 FT X 100 FT	1,000.00 SF	2,328,000	-			93.00 /MH		85,000 2,328,000
			THE ENGINEERED DOLESING			2,020,000						2,020,000
		24.37.00	ROOFING	DOL 4054 51101 001105 D005								
			METAL, INSULATED, 2 IN GALVANIZED, PAINTED, 22 GA	DSI AREA ENCLOSURE ROOF	SF	-	-			35.25 /MH		
		24.41.00	SIDING									
			METAL, INSULATED, 2 IN THICK FIBERGLASS, 22 GA, GALVANIZED PAINTED	DSI AREA ENCLOSURE SIDING	SF	-	-			79.98 /MH		
		24.99.00	ARCHITECTURAL, MISCELLANEOUS									
			HEATING	DSI AREA	SF	-	-			64.51 /MH		
			LIGHTING FIRE PROTECTION	DSI AREA DSI AREA	SF SF	-				82.56 /MH 82.56 /MH		
			ARCHITECTURAL			2,328,000						2,328,000
	31.00.00		MECHANICAL EQUIPMENT									
		31.99.00	MECHANICAL EQUIPMENT, MISCELLANEOUS									
			DSI SYSTEM EQUIPMENT	EQUIPMENT COST FOR UNIT 1 OR 2 (SINGLE UNIT)	1.00 LS		20,500,000	-		/MH	13,700,000	34,200,000
			STORAGE SILOS WITH BIN VENT FILTERS (~14 DAYS	INCLUDED ABOVE	1.00 LS		-	-		68.89 /MH		
			STORAGE) BLOWERS, HEAT EXCHANGERS, DEHUMIDIFIERS	INCLUDED ABOVE	1.00 LS		_	_		68.89 /MH		
			MILLING EQUIPMENT	INCLUDED ABOVE	1.00 LS		-	-		68.89 /MH		
			PIPING SYSTEMS COMPRESSORS	INCLUDED ABOVE INCLUDED ABOVE	1.00 LS 1.00 LS		-	-		68.89 /MH 68.89 /MH		
			FLOW MODELING	INCLUDED ABOVE	1.00 LS					68.89 /MH		
			MECHANICAL EQUIPMENT, MISCELLANEOUS MECHANICAL EQUIPMENT				20,500,000 20,500,000				13,700,000 13,700,000	34,200,000 34,200,000
							_0,000,000				.5,700,000	0.,200,000
	71.00.00		PROJECT INDIRECT									
		71.25.00	CONSULTANT, THIRD PARTY CONSULTANT - SUBSURFACE INVESTIGATION		1.00 LS	250,000				/MH		250,000
			CONSULTANT - GEOTECHNICAL		1.00 LS	150,000	-			/MH		150,000

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			CONSULTANT, THIRD PARTY			400,000						400,000
102	21.00.00		PROJECT INDIRECT 101 UNIT 1 OR 2 (SINGLE UNIT) DSI AREA REAGENT HANDLING SYSTEM CIVIL WORK			4,693,000 4,693,000	20,500,000	817,880	28,611		15,417,548	400,000 41,428,428
	21.00.00	21.14.00	STRIP & STOCKPILE TOPSOIL STRIP & STOCKPILE TOPSOIL - 12" STRIP & STOCKPILE TOPSOIL	EXTEND REAGENT RAIL TRACK	90,000.00 SF	-	-		207 207	182.87 /MH	37,835 37,835	37,835 37,835
		21.41.00	EROSION AND SEDIMENTATION CONTROL CRUSHED ROCK SURFACING, 12' DEEP WHITE ROCK EROSION AND SEDIMENTATION CONTROL	EXTEND REAGENT RAIL TRACK	10,000.00 SY	-	-	106,500 106,500	345 3 45	97.70 /MH	33,690 33,690	140,190 140,190
		21.53.00	PILING AUGER CAST GROUT PILE, 18 IN DIA BY 60 FT LONG PILING	UNLOADING SHED 300' X 75' WIDE	96.00 EA	345,600 345,600	-	-		108.88 /MH		345,600 345,600
		21.71.00	TRACKWORK RAIL, TIE & BALLAST - 136 LB/YD	EXTEND REAGENT RAIL TRACK	4,500.00 TF	-	-	765,000	7,759	81.75 /MH	634,267	1,399,267
			TRACKWORK CIVIL WORK			345,600		765,000 871,500	7,759 8,310		634,267 705,792	1,399,267 1,922,892
	22.00.00	22.13.00	CONCRETE CONCRETE									
			FOUNDATION, 4500 PSI - COMPOSITE RATE CONCRETE CONCRETE	UNLOADING SHED 300' X 75' WIDE	1,389.00 CY	-	-	319,470 319,470 319,470	11,176 11,176 11,176	60.03 /MH	670,887 670,887	990,357 990,357 990,357
	24.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING SHELL ONLY, STEEL UNINSULATED 22 GA, PRE-ENGINEERED BUILDING ARCHITECTURAL	UNLOADING SHED 300' X 75' WIDE x 20' TALL	22,500.00 SF		-	010,410	.,,,,,	93.00 /MH	010,001	1,912,500 1,912,500 1,912,500
	33.00.00	33.14.00	MATERIAL HANDLING EQUIPMENT MATERIAL HANDLING EQUIPMENT REAGENT PNEUMATIC TRAIN UNLOADING EQUIPMENT MATERIAL HANDLING EQUIPMENT		3.00 LS		1,500,000 1,500,000		9,917 9,917	68.89 /MH		2,183,199 2,183,199
		33.41.00	MOBILE YARD EQUIPMENT MOBILE YARD EQUIPMENT - TRACKMOBILE MOBILE YARD EQUIPMENT	REAGENT HANDLING SYSTEM	3.00 EA		675,000 675,000	-		68.89 /MH		675,000 675,000
		33.51.00	RAIL CAR UNLOADER RAIL CAR UNLOADER RAIL CAR UNLOADER	IN UNLOADING SHED 300' X 75' WIDE	2.00 LT		270,000 270,000		3,724 3, 724	93.00 /MH	346,345 346,345	616,345 616,345
			MATERIAL HANDLING EQUIPMENT				2,445,000		13,641		1,029,544	3,474,544
	35.00.00	35.14.10	PIPING CARBON STEEL, STRAIGHT RUN 8 IN DIA, SCH 40, 8° VACUUM CONVEY PIPING WITH 4 FI ROWS	TO SUPPORT 25 TPH PNEUMATIC TRAIN UNI OADING SYSTEM	250.00 LF	-	-	10,043	270	77.80 /MH	21,015	31,057
			12 IN DIA, 3/8 IN STD- 2500 LF OF 10"/12" TRANSPORT PRESSURE PIPING W 8 ELBOWS	TO SUPPORT 25 TPH PNEUMATIC TRANSPORT SYSTEM	1,250.00 LF	-	-	124,000	1,983	77.80 /MH	154,259	278,259
			CARBON STEEL, STRAIGHT RUN PIPING					134,043 134,043	2,253 2,253		175,274 175,274	309,316 309,316
			102 REAGENT HANDLING SYSTEM			2,258,100	2,445,000		35,380		2,581,496	8,609,609
103	21.00.00	21.54.00	BYPRODUCT HANDLING SYSTEM CIVIL WORK CAISSON 2.5 FT DIA X 30 FT DEEP CAISSON	ASH SILO AND DSI BYPRODUCT SILOS	125.00 EA	-	-	232,125	3,161	108.88 /MH	344,161	576,286
			CAISSON					232,125	3,161		344,161	576,286

	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			CIVIL WORK					232,125	3,161		344,161	576,286
22	.00.00		CONCRETE									
		22.13.00	CONCRETE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI -	DSI BYPRODUCT SILOS	614.00 CY	-	-	141,220	4,940	60.03 /MH	296,562	437,782
			COMPOSITE RATE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI -	FLY ASH BLENDING SILO	67.00 CY	-	-	15,410	539	60.03 /MH	32,361	47,771
			COMPOSITE RATE SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	FOR TRUCK SCALES	144.00 CY	-	-	33,120	1,159	60.03 /MH	69,552	102,67
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE	MISC	100.00 CY	-	-	23,000	805	60.03 /MH	48,300	71,30
			CONCRETE FOUNDATIONS - COMPOSITE RATE	8' X 10' BYPRODUCT AREA, TRUCK SCALE HOUSE	6.00 CY	-	-	1,380	48	60.03 /MH	2,898	4,278
			CONCRETE					214,130	7,491		449,673	663,803
			CONCRETE					214,130	7,491		449,673	663,803
23	3.00.00	23.13.75	STEEL SILO									
		23.13.73	NEW 250 TON FLYASH BLENDING BIN SILO - 24FT DIA X 72 FT HIGH - ERECTION AND FREIGHT INCLUDED	SILO	1.00 EA		275,000		2,839	73.51 /MH	208,701	483,70
			SILO				275,000		2,839		208,701	483,701
			STEEL				275,000		2,839		208,701	483,701
24	.00.00	24.35.00	ARCHITECTURAL PRE-ENGINEERED BUILDING									
		24.35.00	PRE-ENGINEERED BUILDING	8' X 10' BYPRODUCT AREA, TRUCK SCALE HOUSE	1.00 LT	-	-	10,000	115	93.00 /MH	10,690	20,69
			PRE-ENGINEERED BUILDING	HOUSE				10,000	115		10,690	20,690
			ARCHITECTURAL					10,000	115		10,690	20,690
26	00.00	26.13.00	MISCELLANEOUS STRUCTURAL ITEM CONCRETE SILO									
			CONCRETE SILO - DSI BYPRODUCT SILO	ERECTED - 52' DIA	2.00 LS	7,600,000				60.03 /MH		7,600,000
			CONCRETE SILO - BIN VENT FILTERS CONCRETE SILO - LEVEL INDICATOR	INCLUDED W/ SILO INCLUDED W/ SILO	1.00 LS 1.00 LS	-	-		0	/MH /MH		
			CONCRETE SILO - VACUUM PRESSURE RELIEF VALVE	INCLUDED W/ SILO	1.00 LS	-	-		0	/MH		
			CONCRETE SILO - MANHOLE CONCRETE SILO - SPARE PARTS FOR STARTUP AND	INCLUDED W/ SILO	1.00 LS 1.00 LS	-	10,000		0	/MH 73.51 /MH		10,000
			SPECIAL TOOLS CONCRETE SILO - FREIGHT		1.00 LS	-	70,000			73.51 /MH		70,000
			CONCRETE SILO			7,600,000	80,000		0			7,680,000
			MISCELLANEOUS STRUCTURAL ITEM			7,600,000	80,000		0			7,680,000
33	.00.00	33.13.00	MATERIAL HANDLING EQUIPMENT BYPRODUCT HANDLING EQUIPMENT									
		33.13.00	PNEUMATIC ASH CONVEYORS	EQUIPMENT INCLUDES FREIGHT	1.00 LS	-	5,655,000	_		73.51 /MH		5,655,000
			PNEUMATIC ASH CONVEYORS	INSTALLATION COST	1.00 LT	-		-	51,910	73.51 /MH	3,815,929	3,815,929
			BLOWERS, PRESSURE FEEDERS, TRANSPORT PIPING AND VACUUM / PRESSURE RELIEF VALVES	INCLUDED ABOVE	1.00 LT	-		-		73.51 /MH		
			-DRY UNLOADING SPOUT BELOW THE PRODUCT SILO		2.00 EA	-	60,000	-	258	73.51 /MH	18,977	78,977
			AIRSLIDE CONVEYORS FROM BLENDING BIN MIXER/PIPE		4.00 EA	-	80,000		688		50,595	130,595
			CONVEYOR, INCL ALL VALVES AND ACCESSORIES -FOUR PIN MIXERS BELOW CONCRETE SILOS INCL ALL		1.00 LT	-	540,000	-	3,347	73.51 /MH	246,047	786,047
			VALVES AND ACCESSORIES BYPRODUCT HANDLING EQUIPMENT				6,335,000		56,204		4,131,549	10,466,549
		33.57.00	SCALE									
			SCALE - NEW TRUCK SCALES	BYPRODUCT HANDLING SYSTEM	2.00 EA	-	182,000	_	460	68.89 /MH	31,674	213,674
			SCALE MATERIAL HANDLING EQUIPMENT				182,000 6,517,000		460 56,664		31,674 4,163,223	213,674 10,680,223
							0,517,000		30,004		7,100,223	10,000,223
34	.00.00	34.37.00	HVAC DUST COLLECTOR									
		34.37.00	DUST COLLECTOR - INSTALLED COST		1.00 LS	113,100	-			64.51 /MH		113,100

Area	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
			HVAC			113,100						113,100
	35.00.00	35.14.10	PIPING CARBON STEEL, STRAIGHT RUN 12 IN DIA, 3/8 IN STD 12 IN DIA, 3/8 IN STD	CONVEYOR PIPING 12' TIE IN PIPING TO BYPRODUCT SILO FROM THE EXISTING 50 TPH FLY ASH PRESSURE SYSTEM	2,500.00 LF 1,500.00 LF	- -	-	248,000 148,800	3,966 2,379	77.80 /MH 77.80 /MH	308,517 185,110	556,517 333,910
			CARBON STEEL, STRAIGHT RUN	PRESSURE STSTEW				396,800	6,345		493,628	890,428
			PIPING					396,800	6,345		493,628	890,428
104			103 BYPRODUCT HANDLING SYSTEM UNIT 1 OR 2 FLUE GAS SYSTEM			7,713,100	6,872,000	853,055	76,615		5,670,075	21,108,230
104	21.00.00	21.53.00	CIVIL WORK PILING AUGER CAST GROUT PILE, 18 IN DIA BY 60 FT LONG		138.00 EA	496,800	-			108.88 /MH		496,800
			PILING			496,800						496,800
	22.00.00	22.13.00	CONCRETE CONCRETE			496,800						496,800
			SLAB FOUNDATION LESS THAN 2 FT THICK, 4500 PSI, - COMPOSITE RATE		966.00 CY	-	-	222,180	7,772	60.03 /MH	466,578	688,758
			CONCRETE					222,180	7,772		466,578	688,758
			CONCRETE					222,180	7,772		466,578	688,758
	23.00.00	23.15.00	STEEL DUCTWORK PANEL CONSTRUCTION, DUCT PLATE WITH STIFFENERS, INTERNAL TRUSSES, AND TURNING VANES DUCTWORK		867.40 TN	-	-	2,819,050	59,821 59,821	97.70 /MH	5,844,481 5,844,481	8,663,531 8,663,531
		23.21.00	GIRDER ROLLED SHAPE STEEL		1,308.00 TN	_	_	3,544,680	45,103	93.00 /MH	4,194,621	7,739,301
			GIRDER					3,544,680	45,103		4,194,621	7,739,301
			STEEL					6,363,730	104,924		10,039,102	16,402,832
	31.00.00	31.27.00	MECHANICAL EQUIPMENT DAMPERS & ACCESSORIES DAMPERS & ACCESSORIES DAMPERS & ACCESSORIES		800.00 SF	٠.	240,000 240,000		1,471 1,471	97.70 /MH	143,743 143,743	383,743 383,743
		31.33.00	EXPANSION JOINT									
		01100100	EXPANSION JOINTS		1,830.00 LF	-		457,500	5,259	97.70 /MH	513,767	971,267
			EXPANSION JOINT MECHANICAL EQUIPMENT				240,000	457,500 457,500	5,259 6,730		513,767 657,510	971,267 1,355,010
			MEGHANICAE EQUI MENT				240,000	437,300	0,730		037,310	1,333,010
	36.00.00	36.13.00	INSULATION DUCT MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF		168,220.00 SF	-	-	1,093,430	43,505	69.20 /MH	3,010,558	4,103,988
			DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE					4 000 400	40.505		0.040.550	4.400.000
			DUCT INSULATION					1,093,430 1,093,430	43,505 43,505		3,010,558 3,010,558	4,103,988 4,103,988
			104 UNIT 1 OR 2 FLUE GAS SYSTEM			496,800	240,000	8,136,840	162,932		14,173,748	23,047,388
105	21.00.00	21.54.00	UNIT 1 OR 2 BOOSTER FANS CIVIL WORK CAISSON									
			2.5 FT DIA X 30 FT DEEP CAISSON		40.00 EA	-	-	74,280	1,011	108.88 /MH	110,131	184,411
			CAISSON CIVIL WORK					74,280 74,280	1,011 1,011		110,131 110,131	184,411 184,411
	00.00.00		COMPLETE									
	22.00.00	22.13.00	CONCRETE CONCRETE									

36.13.00 DUCT

Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
	22.13.00	CONCRETE MAT FOUNDATION LESS THAN 5FT THICK, 4500 PSI - COMPOSITE RATE		600.00 CY	-	-	138,000	4,828	60.03 /MH	289,800	427,80
		CONCRETE					138,000	4,828		289,800	427,80
		CONCRETE					138,000	4,828		289,800	427,80
31.00.00	31.35.00	MECHANICAL EQUIPMENT FANS & ACCESSORIES (EXCL HVAC) BOOSTER FAN 1.8 MACFM, 4000 HP MOTOR		2.00 EA		5,400,000		10,345	68.89 /MH	712,655	6,112,6
		FANS & ACCESSORIES (EXCL HVAC)		2.00 EA	-	5,400,000	-	10,345	00.09 /IVIN	712,655	6,112,65
		MECHANICAL EQUIPMENT				5,400,000		10,345		712,655	6,112,65
36.00.00	36.15.00	INSULATION EQUIPMENT									
	30.15.00	MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED ON GROUND		1,500.00 SF	-	-	315	11,207	69.20 /MH	775,517	775,8
		EQUIPMENT					315	11,207		775,517	775,83
		INSULATION					315	11,207		775,517	775,83
		105 UNIT 1 OR 2 BOOSTER FANS				5,400,000	212,595	27,391		1,888,104	7,500,69
21.00.00	24 52 00	UNIT 1 OR 2 BAGHOUSE CIVIL WORK PILING									
	21.53.00	AUGER CAST GROUT PILE, 18 IN DIA BY 60 FT LONG PILING		326.00 EA	1,173,600 1,173,600	-	-		108.88 /MH		1,173,6 1,173,6
		CIVIL WORK			1,173,600						1,173,6
22.00.00	22.13.00	CONCRETE									
	22.10.00	CONCRETE FOUNDATIONS - COMPOSITE RATE		2,260.00 CY	-	-	519,800	18,184	60.03 /MH	1,091,580	1,611,3
		CONCRETE FOUNDATIONS - COMPOSITE RATE	8' X 10' COMPRESSOR BLDG	6.00 CY	-	-	1,380	48	60.03 /MH	2,898	4,2
		CONCRETE					521,180 521,180	18,232 18,232		1,094,478 1,094,478	1,615,6 1,615,6
23.00.00		STEEL									
	23.25.00	ROLLED SHAPE									
		BUILDING MIX, GALVANIZED	UNIT 1 BAGHOUSE	560.00 TN	-	-	1,534,400	10,299	93.00 /MH	957,793	2,492,1
		ROLLED SHAPE STEEL					1,534,400 1,534,400	10,299 10,299		957,793 957,793	2,492,1 2,492,1
24.00.00		ARCHITECTURAL									
	24.35.00	PRE-ENGINEERED BUILDING	*** *** *** *** *** *** *** *** *** **								
		PRE-ENGINEERED BUILDING PRE-ENGINEERED BUILDING	8' X 10' COMPRESSOR BLDG	1.00 LT	-	-	20,000 20,000	115 115	93.00 /MH	10,690 10,690	30,6 30,6
	24.41.00	SIDING									
		METAL, UNINSULATED, 24 GA, GALVANIZED CORROGATED SIDING	BAGHOUSE SKIRTS	68,112.00 SF	-	-	221,364 221,364	3,210 3,210	79.98 /MH	256,726 256,726	478,0 478,0
	24.99.00	ARCHITECTURAL, MISCELLANEOUS									
		MISCELLANEOUS	BAGHOUSE SKIRTS MANDOORS	4.00 EA	-	-	2,000	37	51.46 /MH	1,893	3,8
		ARCHITECTURAL, MISCELLANEOUS ARCHITECTURAL					2,000 243,364	37 3,362		1,893 269,308	3,8 512,6
31.00.00		MECHANICAL EQUIPMENT									
	31.57.00	PARTICULATE REMOVAL BAGHOUSE SYSTEM - INCLUDES PENTHOUSE, BYPASS, DAMPERS, EXP. JOINTS, TUBESHEETS, BAGS, CAGES,		1.00 LS	-	20,000,000	-		/МН	13,000,000	33,000,0
		CLEANING PIPING, VALVES, BLOWERS, ETC. PARTICULATE REMOVAL				20,000,000				13,000,000	33,000,00
		MECHANICAL EQUIPMENT				20,000,000				13,000,000	33,000,00

rea	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		36.13.00	DUCT MINERAL WOOL INSULATION, 6 IN THICK, 8 LB/CF DENSITY, ALUMINUM LAGGING, INSTALLED IN PLACE	BAGHOUSE INSUILATION TOP, SIDES AND HOPPERS	206,026.00 SF	-	-	1,339,169	53,283	69.20 /MH	3,687,155	5,026,324
			DUCT					1,339,169	53,283		3,687,155	5,026,324
			INSULATION 106 UNIT 1 OR 2 BAGHOUSE			1,173,600	20 000 000	1,339,169	53,283		3,687,155	5,026,324
			106 UNIT 1 OR 2 BAGHOUSE			1,173,600	20,000,000	3,638,113	85,175		19,008,734	43,820,447
107			EARTHWORK									
	21.00.00		CIVIL WORK									
		21.14.00	STRIP & STOCKPILE TOPSOIL									
			STRIP & STOCKPILE TOPSOIL - 12"	SITE GRADING SITE GRADING	600,000.00 SF	-	-		1,379	182.87 /MH	252,234 3,867,595	252,23
			STRIP & STOCKPILE TOPSOIL - ONSITE STRIP & STOCKPILE TOPSOIL	SITE GRADING	160,000.00 CY	-	-		21,149 22,529	182.87 /MH	4,119,830	3,867,59 4,119,83
			OTAL GOTOGIA IEE TOT COIE						22,023		4,113,000	4,113,00
		21.17.00	EXCAVATION									
			EXCAVATION - EXCAVATION , BACKFILL & COMPACT ALL		20,917.00 CY	-	-		7,213	79.78 /MH	575,434	575,43
			FOUNDATIONS EXCAVATION						7,213		575,434	575,43
			EXCAVATION						7,213		373,434	373,43
		21.39.00	STORM DRAINAGE UTILITIES									
			STORM SEWER WORK	SITE GRADING	1.00 LT	-	-	110,000	2,299	72.57 /MH	166,828	276,82
			STORM DRAINAGE UTILITIES					110,000	2,299		166,828	276,828
		21.41.00	EROSION AND SEDIMENTATION CONTROL									
		21.41.00	CRUSHED ROCK SURFACING, 12" DEEP WHITE ROCK	SITE GRADING	66,667.00 SY	_	-	710,004	2,299	97.70 /MH	224,599	934,60
			EROSION AND SEDIMENTATION CONTROL					710,004	2,299		224,599	934,602
		21.57.00	ROAD, PARKING AREA, & SURFACED AREA									
			BITUMINOUS ROAD - ROAD UPGRADE	BYPRODUCT HAUL ROAD - EAST OF COAL PILE	10,000.00 LF	-	-	500,000	8,046	78.79 /MH	633,943	1,133,943
			BITUMINOUS ROAD - ELIMINATE CHICANE CURVES AT		1.00 LT	-	-	500,000		78.79 /MH		500,000
			LOW PRESSURE SERVICE WATER PUMPS BITUMINOUS ASPHALT (10,000 - 49,999 SF) ROADWORK	SITE GRADING	1,668.00 LF			201,828	2,013	78.79 /MH	158,612	360,440
			24' WIDE 4" ASPHALT	SITE GRADING	1,000.00 LF	•	Ī	201,020	2,013	70.79 /WIT	130,012	300,440
			ROAD, PARKING AREA, & SURFACED AREA					1,201,828	10,059		792,555	1,994,383
			CIVIL WORK					2,021,832	44,398		5,879,245	7,901,077
			107 EARTHWORK					2,021,832	44,398		5,879,245	7,901,077
108			LAVDOMALADEAC									
	21.00.00		LAYDOWN AREAS CIVIL WORK									
	21.00.00	21.99.00	CIVIL WORK, MISCELLANEOUS									
			CIVIL WORK - CONSTRUCTION LAYDOWN AREAS	FENCING, POWER ETC	4.00 AC	-	-	312,000	3,678	79.78 /MH	293,444	605,444
			CIVIL WORK, MISCELLANEOUS					312,000	3,678		293,444	605,444
			CIVIL WORK					312,000	3,678		293,444	605,444
			108 LAYDOWN AREAS					312,000	3,678		293,444	605,444
109			MECHANICAL MISCELLANEOUS									
	31.00.00		MECHANICAL MISCELLANEOUS MECHANICAL EQUIPMENT									
	01.00.00	31.99.00	MECHANICAL EQUIPMENT, MISCELLANEOUS									
			MECHANICAL EQUIPMENT	INCLUDES PIPE RACK - ALLOWANCE	1.00 LS	2,600,000	-	-		68.89 /MH		2,600,000
			MECHANICAL EQUIPMENT, MISCELLANEOUS			2,600,000						2,600,000
			MECHANICAL EQUIPMENT			2,600,000						2,600,000
			109 MECHANICAL MISCELLANEOUS			2,600,000						2,600,000
440			DEMOLITICAL/DELOCATION									
110	11.00.00		DEMOLITION/RELOCATION DEMOLITION									
		11.99.00	DEMOLITION DEMOLITION, MISCELLANEOUS									
			DEMOLITION AND RELOCATION	ALLOWANCE	1.00 LS	975,000	-			107.47 /MH		975,000
			DEMOLITION, MISCELLANEOUS			975,000						975,000
			DEMOLITION			975,000						975,000
			110 DEMOLITION/RELOCATION			975,000						975,000

111 ACI RELOCATION

22.00.00 CONCRETE

G	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		22.13.00	CONCRETE CONCRETE FOUNDATIONS - COMPOSITE RATE	ACI PORT STAIRTOWER FDNS	30.00 CY	_		- 6,900	241	60.03 /MH	14,490	21,39
			CONCRETE	Nort out of all toward bloom	00.00 01			6,900	241	00.00 /1111	14,490	21,3
			CONCRETE					6,900	241		14,490	21,3
23.0	00.00		STEEL									
		23.17.00	GALLERY									
			GALVANIZED GRATING, 1 1/4" DEEP x 3/16" BEARING BAR WITH HOLD DOWN CLIPS	ACI PORT STAIR TOWERS AND PLATFORMS	364.00 SF	-		5,460	42	66.40 /MH	2,778	8,2
			DOUBLE PIPE HANDRAIL WITH POSTS AND GUARD PLATES, PAINTED	ACI PORT STAIR TOWERS AND PLATFORMS	218.00 LF	-	-	11,554	45	66.40 /MH	2,995	14,5
			STAIR SYSTEM -	ACI PORT STAIR TOWERS AND PLATFORMS	448.00 SF	-		40,768	592	66.40 /MH	39,321	80,0
			GALLERY					57,782	679		45,094	102,8
		23.21.00	GIRDER									
			ROLLED SHAPE GIRDER - MEDIUM WEIGHT MEMBER 20# TO 40# / LF, 2 COAT PAINTED	ACI PIPE RACK OVER ROADWAY, 35LF X 23 WIDE X 20' HIGH	1.26 TN	-	-	3,415	25	93.00 /MH	2,290	5,7
			GIRDER	MBE X20 THOM				3,415	25		2,290	5,7
		23.25.00	ROLLED SHAPE									
		20.20.00	LIGHT WEIGHT MEMBERS, LESS THAN 20 LB/LF, TWO	ACI PORT STAIRTOWER FRAMING - 1	2.20 TN	=	-	7,876	56	93.00 /MH	5,174	13,0
			COAT PAINT ROLLED SHAPE	TOWER				7,876	56		5,174	13,0
			STEEL					69,073	759		52,558	121,6
31.00.00	00.00		MECHANICAL EQUIPMENT									
		31.25.00	CRANES & HOISTS									
			MOTORIZED HOIST - 1 TON	RELOCATED FROM PRESENT PORT LOCATIOIN	1.00 EA	-		- -	69	68.89 /MH	4,751	4,7
			CRANES & HOISTS						69		4,751	4,7
		31.51.00	MERCURY REMOVAL EQUIPMENT									
			ACTIVATED CARBON INJECTION (ACI) - LANCE RELOCATIONS	RELOCATED FROM PRESENT PORT LOCATIOIN (16 PER UNIT)	16.00 EA	-		-	184	68.89 /MH	12,669	12,6
			ACTIVATED CARBON INJECTION (ACI) - 40 HP BLOWERS	NEW BLOWERS (2 PER UNIT)	2.00 EA	-		40,000	92	68.89 /MH	6,335	46,3
			ACTIVATED CARBON INJECTION (ACI) - REMOVE EXISTING 20 HP BLOWERS	REMOVE EXISTING	1.00 EA	-			11	68.89 /MH	792	7:
			MERCURY REMOVAL EQUIPMENT					40,000	287		19,796	59,79
			MECHANICAL EQUIPMENT					40,000	356		24,547	64,54
35.0	00.00		PIPING									
		35.13.25	FRP, ABOVE GROUND, PROCESS AREA	IN JECTION DODTO	0.00 15			470	•	77.00 4411	200	
			1.5 IN DIA, TAPER 2 IN DIA, TAPER	INJECTION PORTS INJECTION PORTS	6.00 LF 8.00 LF	-		- 176 - 210	3 5		220 351	3 5
			3 IN DIA, TAPER	INJECTION PORTS	20.00 LF	-		516	15		1,198	1,7
			FRP, ABOVE GROUND, PROCESS AREA					903	23		1,769	2,6
		35.14.25	FRP, STRAIGHT RUN									
			4 IN DIA, TAPER	NEW ACI PIPING	300.00 LF	-	-	6,330	200	77.80 /MH	15,560	21,8
			FRP, STRAIGHT RUN					6,330	200		15,560	21,8
		35.36.00	PIPE SUPPORTS, RACK									
			U-BOLT FOR 4 IN PIPE SUPPORT SLEEPERS	ACI PIPE ACI PIPE	13.50 EA 8.50 EA	-	-	41 2,975	31 39	77.80 /MH 77.80 /MH	2,414 3,040	2,4 6,0
			SUPPORT FOR 4 IN DIA PIPE - USER DEFINED	ACI FIFE	1.00 EA	-		. 2,975	9		715	81
			SUPPORT FOR 3 IN DIA PIPE - USER DEFINED		2.00 EA	-		288	16		1,252	1,5
			PIPE SUPPORTS, RACK					3,457	95		7,422	10,8
		35.45.00	VALVES									
			VALVE - 4" 150 LB CS GATE, FLANGED	ACI AUTO MATIC ISOLATION VALVES (RELOCATE 4 PER UNIT)	4.00 EA	-	-	- 80	33	77.80 /MH	2,575	2,6
			VALVES	(NEESONIE 71 EN OWII)				80	33		2,575	2,65
			PIPING					10,769	351		27,327	38,09

41.00.00

41.46.00 MOTOR CONTROL CENTER (MCC), COMPONENT

ELECTRICAL EQUIPMENT

rea	Group	Phase	Description	Notes	Quantity	Subcontract Cost	Process Equipment Cost	Material Cost	Man Hours	Crew Rate	Labor Cost	Total Cost
		41.46.00	MOTOR CONTROL CENTER (MCC), COMPONENT FVN STARTER - #4,	NEW BLOWERS	2.00 EA	-		- 9,800	37	64.04 /MH	2,355	12,155
			MOTOR CONTROL CENTER (MCC), COMPONENT ELECTRICAL EQUIPMENT					9,800 9,800	37 37		2,355 2,355	12,155 12,155
	42.00.00	42.15.23	RACEWAY, CABLE TRAY & CONDUIT CONDUIT, FLEXIBLE SEALTIGHT ASSEMBLY 1-1/2 IN DIA, 3 FT LONG INCLUDING (2) CONNECTORS	NEW BLOWERS	2.00 EA	-		172	3	62.27 /MH	179	35
		42.15.37	CONDUIT, FLEXIBLE SEALTIGHT ASSEMBLY CONDUIT, RGS					172	3		179	351
		42.13.37	3/4 IN DIA INCLUDING ELBOWS, UNISTRUT SUPPORTS, AND MISC HARDWARE	HOIST	225.00 LF	-		- 659	50	62.27 /MH	3,124	3,78
			1-1/2 IN DIA INCLUDING ELBOWS, UNISTRUT SUPPORTS, AND MISC HARDWARE	NEW BLOWERS	200.00 LF	-		1,344	65	62.27 /MH	4,065	5,40
			CONDUIT, RGS RACEWAY, CABLE TRAY & CONDUIT					2,003 2,175	115 118		7,190 7,369	9,19 9,54
	43.00.00	43.10.00	CABLE CONTROL/INSTRUMENTATION/COMMUNICATION CABLE & TERMINATION CONTROL/INSTRUMENTATION/COMMUNICATION	ACI RELOCATION	300.00 LF	_		- 960	28	82.56 /MH	2,278	3,23
			TERMINATION - MISC CONTROL/INSTRUMENTATION/COMMUNICATION CABLE & TERMINATION					960	28		2,278	3,23
		43.20.00	600V CABLE & TERMINATION 600V #8 3/C CU EPR TS-CPE	HOIST	250.00 LF	-		- 1,640	7	82.56 /MH	593	2,23
			600V #4/0 3/C W/G CU EPR TS-CPE TERMINATION - COMPRESSION LUG, #8, 2 HOLE, COPPER TERMINATION - COMPRESSION LUG, #4, 2 HOLE, COPPER		225.00 LF 6.00 EA 6.00 EA	- - -		- 5,364 - 39 - 56	36 2 3	82.56 /MH 82.56 /MH 82.56 /MH	2,989 171 285	8,35 21 34
			600V CABLE & TERMINATION CABLE					7,099 8,059	49 76		4,038 6,315	11,13 14,37
	44.00.00	44.21.00	CONTROL & INSTRUMENTATION INSTRUMENT ACCOUSTIC MONITOR	RELOCATE TO NEW INJECTION LANCES	3.00 EA				14	65.15 /MH	899	89
			INSTRUMENT CONTROL & INSTRUMENTATION		0.00 E/1				14		899 899	89 89
	71.00.00	71.25.00	PROJECT INDIRECT CONSULTANT, THIRD PARTY COMPUTATIONAL FLUID DYNAMIC ANALYSIS (CFD) CONSULTANT, THIRD PARTY	ACI SYSTEM	1.00 LS	100,000		-		/МН		100,00 100,00
			PROJECT INDIRECT 111 ACI RELOCATION			100,000 100,000		146,775	1,954		135,859	100,00 382,63
112	41.00.00	41.99.00	ELECTRICAL ELECTRICAL EQUIPMENT ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT, MISCELLANEOUS	ALLOWANCE	1.00 LS	16,250,000				64.04 /MH		16,250,000
			ELECTRICAL EQUIPMENT, MISCELLANEOUS ELECTRICAL EQUIPMENT 112 ELECTRICAL			16,250,000 16,250,000 16,250,000						16,250,000 16,250,000 16,250,000
113	44.00.00	44.99.00	INSTRUMENTATION CONTROL & INSTRUMENTATION CONTROL & INSTRUMENTATION, ALLOWANCE CONTROL & INSTRUMENTATION	ALLOWANCE	1.00 LS	2,210,000		-		65.15 /MH		2,210,00
			CONTROL & INSTRUMENTATION, ALLOWANCE CONTROL & INSTRUMENTATION			2,210,000						2,210,000
			113 INSTRUMENTATION			2,210,000						2,210,000

APPENDIX B: 1PP NO_X CONTROLS STUDIES

S&L's May 16, 2013 NO_X Control Technology Cost and Performance Study, Entergy Services, Inc. – White Bluff

Prepared for Gill Elrod Ragon Owen & Sherman, P.A.

NOx Control Technology Cost and Performance Study

Entergy Services, Inc. White Bluff & Lake Catherine

SL-011439

Final Report Rev. 4

May 16, 2013

Project No.: 13027-001

Prepared by

Sargent & Lundy ***

55 East Monroe Street Chicago, IL 60603-5780 USA

SL-011439 Final Report Rev. 4 5/16/2013 Page No. ii

LEGAL NOTICE

This report ("Deliverable") was prepared by Sargent & Lundy, L.L.C. ("S&L"), expressly for the sole use of Gill Elrod Ragon Owen & Sherman, P.A. ("Client") in accordance with the agreement between S&L and Client. This Deliverable was prepared using the degree of skill and care ordinarily exercised by engineers practicing under similar circumstances. Client acknowledges: (1) S&L prepared this Deliverable subject to the particular scope limitations, budgetary and time constraints, and business objectives of the Client; (2) information and data provided by others may not have been independently verified by S&L; and (3) the information and data contained in this Deliverable are time sensitive and changes in the data, applicable codes, standards, and acceptable engineering practices may invalidate the findings of this Deliverable. Any use or reliance upon this Deliverable by third parties shall be at their sole risk.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. iii

White Bluff & Lake Catherine NOx Control Technology Cost and Performance Study

ISSUE SUMMARY AND APPROVAL PAGE

This is to certify that this report has been prepared, reviewed and approved in accordance with Sargent & Lundy's Standard Operating Procedure SOP-0405, which is based on ANSI/ISO/ASSQC Q9001 Quality Management Systems.

CONTRIBUTORS

Decreased have	
Prepared by:	
Struster & Ball	5/16/2013
Kristen Bell	Date
Environmental Associate	
in Roma	5/16/2013
Noy Rooney	Date
Environmental Associate	
Steve Vot Jerger Steve Katzberger o Environmental Lead	5/16/2013 Date
Approved by:	5/16/2013
Sean McHone Project Manager	Date

SL-011439 Final Report Rev. 4 5/16/2013 Page No. iv

ENTERGY SERVICES, INC.

WHITE BLUFF AND LAKE CATHERINE

NO_X CONTROL TECHNOLOGY COST AND PERFORMANCE STUDY

CERTIFICATION PAGE

Sargent & Lundy, L.L.C. is registered in the State of Arkansas to practice engineering. The registration number is 620.

I certify that this study was prepared by me or under my supervision and that I am a registered professional engineer under the laws of the State of Arkansas.

Certified By: _	Sem C. Miff- Date: 5/16/2013
Seal:	
	STATE OF -
	LICENSED
	PROFESSIONAL ENGINEER No. 15308 No. 15308
	No. 15308 No. 15308 No. 15308 No. 15308

Issue:	Date:	Certified By:	Pages Certified:	

SL-011439 Final Report Rev. 4 5/16/2013 Page No. v

1.	INTRODUCTION	1
1.1.	OBJECTIVE	1
1.2.	UNIT DESCRIPTIONS	1
1.2.1.	White Bluff - Units 1 & 2	1
1.2.2.	White Bluff Auxiliary Boiler	1
1.2.3.	Lake Catherine - Unit 4	1
1.3.	ESTIMATE METHODOLOGY	2
1.3.1.	Capital Cost Estimates	2
1.3.2.	Operating and Maintenance Cost Estimates	3
1.4.	DESIGN TARGET vs. COMPLIANCE NO _X EMISSION RATES	3
2.	WHITE BLUFF - UNITS 1 & 2	4
2.1.	FUEL SWITCHING OPTIONS	4
2.1.1.	Natural Gas	4
2.1.2.	Propane	4
2.2.	COMBUSTION CONTROLS	4
2.2.1.	Low NOx Burners and Over-Fire Air	4
2.2.2.	Flue Gas Recirculation (FGR)	5
2.2.3.	Neural Network	5
2.3.	POST COMBUSTION CONTROLS	6
2.3.1.	Selective Non-Catalytic Reduction	6
2.3.2.	Selective Catalytic Reduction.	7
2.4.	CAPITAL COSTS	8
2.5.	OPERATING AND MAINTENANCE COSTS	9
3.	WHITE BLUFF AUXILIARY BOILER	1
3.1.	FUEL SWITCHING	1
3.2.	COMBUSTION CONTROLS	1
3.2.1.	Low NOx Burners + Over-Fire Air	1
3.2.2.	Flue Gas Recirculation1	1
3.2.3.	Low NOx Burners + Over-fire Air + Flue Gas Recirculation	1
3.2.4.	Neural Network	2
3.3.	POST COMBUSTION CONTROLS	2
3.3.1.	Selective Non-Catalytic Reduction	2
3.3.2.	Selective Catalytic Reduction	2

SL-011439 Final Report Rev. 4 5/16/2013 Page No. vi

3.4.	CAPITAL COST ESTIMATES	13
3.5.	OPERATING AND MAINTENANCE COST ESTIMATES	13
4.	LAKE CATHERINE - UNIT 4	15
4.1.	FUEL SWITCHING	15
4.2.	COMBUSTION CONTROLS	15
4.2.1.	Burners-Out-Of-Service	15
4.2.2.	Low NOx Burners + Over-Fire Air	16
4.2.3.	Flue Gas Recirculation	16
4.2.4.	Water Injection	16
4.2.5.	Neural Network	17
4.3.	POST COMBUSTION CONTROLS	17
4.3.1.	Selective Non-Catalytic Reduction	17
4.3.2.	Selective Catalytic Reduction	17
4.4.	CAPITAL COST ESTIMATES	18
4.5.	OPERATING AND MAINTENANCE COST ESTIMATES	19
APPE	NDIX A: CAPITAL COST ESTIMATE	2
1.	BASIS OF ESTIMATES	2
2.	CONCEPTUAL COST ESTIMATE SUMMARY SHEETS	2
APPE	NDIX B	3
1.	ESTIMATED PROJECT SCHEDULES	3
APPE	NDIX C	4
1.	OPERATING AND MAINTENANCE COST ESTIMATES	4
APPE	NDIX D	5
1.	BOOS AT FULL UNIT LOAD	5

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 1

1. INTRODUCTION

1.1. OBJECTIVE

The intent of this study is to provide Gill Elrod Ragon Owen & Sherman, P.A. with a technology evaluation and cost estimates for available methods of NOx control at two Entergy stations including: White Bluff – Units 1 & 2, the White Bluff Auxiliary Boiler, and Lake Catherine – Unit 4. The information developed in this study will be used to create a BART analysis, for compliance with Arkansas DEQ regulations.

1.2. UNIT DESCRIPTIONS

1.2.1. White Bluff - Units 1 & 2

White Bluff - Units 1 & 2 are Alstom-designed, tangentially-fired, pulverized-coal fueled units, rated at 815 MWnet and 844 MWnet respectively. Powder River Basin coal is the primary fuel source for Units 1 & 2. Currently, the units have no NOx controls installed.

1.2.2. White Bluff Auxiliary Boiler

The White Bluff Auxiliary boiler is a small industrial boiler capable of producing 140,000 lb/hr of steam, used for startup of the White Bluff coal units. The auxiliary boiler combusts No. 2 Diesel Oil, and does not have any existing NOx controls.

1.2.3. Lake Catherine - Unit 4

Lake Catherine - Unit 4 is an Alstom-designed, tangentially-fired, natural gas fueled unit, capable of generating 558 MWnet. The unit was originally designed as a dual-fuel unit, able to use natural gas or No. 2 Fuel Oil as fuel. This evaluation will be for natural gas firing only. If No. 2 Fuel Oil is to be combusted in the future, a separate BART analysis will be submitted. The unit currently has no NOx controls.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 2

1.3. ESTIMATE METHODOLOGY

1.3.1. Capital Cost Estimates

S&L's capital cost estimates for retrofit NOx control technologies for White Bluff Units 1&2, White Bluff Auxiliary Boiler and Lake Catherine – Unit 4 encompass the equipment, material, labor, and all other required direct costs. The underlying assumption is that the project will be implemented on a multiple-contracting basis. The capital cost estimates provided herein are "total plant cost," and include the following:

- Equipment and material
- Installation labor
- Indirect field costs and BOP engineering
- Contingency (percentage varies with project size)
- Erection contractor profit (at 10% of material and labor)
- General and administration (at 5% of material and labor)
- Freight on material (at 5% of material)
- Freight on equipment (included with equipment costs)
- Sales/use tax (not included)
- Startup and commissioning (at 1% of construction cost)
- Spare parts (included with equipment costs)
- Consumables (0.5% of material and labor)

Owner's engineering and other Owner's costs were not included. Engineering, Procurement & Project Services and Contingency varied depending on the size of the project. License fees and royalties are not expected for the proposed control strategies. The Basis of Estimate and capital costs are summarized in Appendix A.

Capital cost estimates were calculated in one of three ways. In some cases, vendors were contacted to provide budgetary estimates for equipment and labor. These vendor's costs were used to create Total Installed Cost Estimates. In situations where Sargent & Lundy had performed cost estimates for these units previously, the existing cost estimates were updated to reflect current equipment, labor, and currency values. Remaining cost estimates were developed from similar projects that Sargent & Lundy has completed and adjusted for unit size.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 3

1.3.2. Operating and Maintenance Cost Estimates

Operating and Maintenance Costs for White Bluff - Units 1 & 2 and Lake Catherine – Unit 4 were developed from similar projects Sargent & Lundy has completed. Costs were applied to the units on a \$/kW basis, and assuming a 10% capacity factor for Lake Catherine – Unit 4, and 76% for White Bluff—Units 1 & 2. Operating and Maintenance Costs include the following costs:

- Fixed Operating and Maintenance
- Variable Operating and Maintenance
- Fuel Impact Costs

For the White Bluff Auxiliary boiler, costs were developed using Office of Air Quality Planning and Standards (OAQPS) calculations, assuming a 10% capacity factor.

1.4. DESIGN TARGET vs. COMPLIANCE NO_X EMISSION RATES

NOx control systems retrofit onto existing coal or gas-fired boilers are typically designed to achieve varying levels of NOx removal efficiencies from 10%-94%, depending on the control technologies selected. Controlled NOx emissions fluctuate during normal boiler operation in response to a number of design/operating parameters including, but not necessarily limited to: inlet NOx concentrations, boiler load, load changes, particulate matter loading, flue gas temperatures, flue gas velocities and mixing, catalyst volume and surface area, NH₃:NOx stoichiometric ratio, catalyst age and activity, and the quantity of ammonia slip deemed to be acceptable.

The "design target" NOx emission rate is the rate that a NOx control technology vendor would be willing to guarantee. Based on engineering judgment, and taking into consideration emissions data from existing coal- and gas-fired sources, a compliance margin above the design target is recommended for high removal efficiency/low emission rate technologies (such as SCR) to establish an enforceable permit limit based on long-term (e.g., annual average) emissions. Additional compliance margin would be required to establish enforceable permit limits based on shorter-term averaging times. For example, S&L recommends a compliance margin of 0.02 to 0.03 lb/MMBtu for coal units and 0.01 to 0.02 lb/MMBtu for gas units above the design target emission rate for permit limits based on a 30-day rolling average for control strategies including SCR. The NOx control technology emission rates for strategies including SCR in this report have been adjusted to include margin for compliance. The permit level NOx emission

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 4

rates for SCR are higher by 0.02 to 0.03 lb/MMBtu for coal units and 0.01 to 0.02 lb/MMBtu for gas units.

2. WHITE BLUFF - UNITS 1 & 2

2.1. FUEL SWITCHING OPTIONS

2.1.1. Natural Gas

For White Bluff Units 1 & 2, fuel switching is not a feasible option. Typically, units could be switched from coal to natural gas or propane for NOx reductions. The nearest natural gas pipeline to the White Bluff facility is approximately 20 miles away. Construction of a pipeline is currently estimated at \$2M per mile resulting in a cost of \$40M to bring natural gas to the site, not including the additional upgrades the boiler would require to burn natural gas instead of coal.

2.1.2. Propane

White Bluff – Units 1 & 2 are each over 800 MWnet. Units of this size require more heat input than can practically be achieved with a propane delivery and storage system. Since a propane pipeline is not available, fuel switching to propane is not a feasible option.

2.2. COMBUSTION CONTROLS

2.2.1. Low NOx Burners and Over-Fire Air

Low NOx burners (LNB) limit NOx formation by controlling both the stoichiometric and temperature profiles of the combustion flame in each burner flame envelope. Control is achieved with design features that regulate the aerodynamic distribution and mixing of the fuel and air, yielding reduced oxygen (O_2) in the primary combustion zone, reduced flame temperature, and reduced residence time at peak combustion temperatures. The combination of these techniques produces lower NOx emissions during the combustion process.

OFA involves injecting combustion air downstream of the fuel-rich primary combustion zone by using over-fire air or side-fired air ports. The fuel-rich mixture that is fed to the burners reduces the flame

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 5

temperature and oxygen concentration thus reducing the formation of thermal NOx. Generally, OFA is more effective when used with low nitrogen content fuels such as natural gas and propane, since OFA is more effective in controlling thermal NOx rather than fuel NOx.

LNB + OFA is a technically feasible retrofit solution for White Bluff - Units 1 & 2. The combination of LNB + OFA is capable of achieving a NOx emission rate of 0.15 lb/MMBtu. From Unit 1's baseline emissions of 0.33 lb/MMBtu, this is approximately 54.5% NOx removal efficiency. A removal efficiency of 61.5% can be expected for Unit 2, with a baseline NOx of 0.39 lb/MMBtu.

2.2.2. Flue Gas Recirculation (FGR)

NOx reduction efficiency data for coal-fired units with FGR are limited. The amount of NOx reduction achievable with FGR depends primarily on the fuel nitrogen content and amount of FGR used. Generally, FGR is more effective when used with low nitrogen content fuels such as natural gas and propane, since FGR is more effective in controlling thermal NOx rather than fuel NOx. Industry experience with FGR on coal-fired units for steam temperature control has shown very high maintenance on the gas recirculation fans due to erosion and corrosion. Many of the units with FGR for steam temperature control have removed the recirculation fans from service. The NOx control achievable on tangentially fired units like White Bluff – Units 1&2 with LNB+OFA has been comparable to that of FGR at lower capital and O&M cost. Currently, FGR technology is not offered by OEMs for coal-fired units. For these reasons, FGR is not a feasible technology for the White Bluff coal-fired units.

2.2.3. Neural Network

Neural Network (NN) systems are on-line enhancements to digital control systems (DCS) and plant information systems that improve boiler performance parameters such as heat rate, NOx emissions, and CO levels. The Neural Network model is based on historical data and parametric test data. The software applies an optimizing procedure to identify the best set points for the boiler, which are implemented without operator intervention (closed loop), or, at the plant's discretion, conveyed to the plant operators for implementation (open loop).

A Neural Network system is a technically feasible retrofit option for the White Bluff units. A NN is already installed for monitoring and controlling heat rate at White Bluff – Units 1&2. The reprogrammed

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 6

NN would be optimized first for minimizing NOx emissions and second for heat rate. It is possible that heat rate may increase as a result. Based on information available from vendors, it is expected that Neural Network technology on a coal-fired boiler can maintain the guaranteed performance of low NOx burners and potentially can achieve approximately 10% NOx reduction over a period of years, resulting in NOx emission rates of 0.30 lb/MMBtu, at max load for Unit 1, and of 0.35 lb/MMBtu for Unit 2. The cost for modifying the existing NNs at White Bluff is estimated to be approximately \$250,000 per unit.

2.3. POST COMBUSTION CONTROLS

2.3.1. Selective Non-Catalytic Reduction

Selective non-catalytic reduction (SNCR) involves the direct injection of ammonia (NH₃) or urea $(CO(NH_2)_2)$ into the furnace at high flue gas temperatures (approximately 1600 °F – 2000 °F). The ammonia or urea reacts with NOx in the flue gas to produce N_2 and water as shown in the following equations:

$$(CO(NH_2)_2) + 2NO + \frac{1}{2}O_2 \rightarrow 2H_2O + CO_2 + 2N_2$$

$$2NH_3 + 2NO + \frac{1}{2}O_2 \rightarrow 2N_2 + 3H_2O$$

Flue gas temperature at the point of reactant injection can greatly affect NOx removal efficiencies and the quantity of NH_3 or urea that will pass through the furnace unreacted (referred to as NH_3 slip). In general, SNCR reactions are effective at a temperature range of $1600 \, ^{\circ}\text{F} - 2000 \, ^{\circ}\text{F}$. At temperatures below the desired operating range, the NOx reduction reactions diminish and unreacted NH_3 emissions increase. Above the desired temperature range, NH_3 is oxidized to NOx resulting in low NOx reduction efficiencies.

Mixing of the reactant and flue gas within the reaction zone is also an important factor to SNCR performance. In large boilers, the physical distance over which reagent must be dispersed increases, and the surface area/volume ratio of the convective pass decreases. Both of these factors make it difficult to achieve good mixing of reagent and flue gas, delivery of reagent in the proper temperature window, and sufficient residence time of the reactant and flue gas in that temperature window.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 7

The temperatures and residence times required for an SNCR system make it a feasible option for NOx reduction for White Bluff - Units 1 & 2. Based on vendor input, a unit with no additional controls and a baseline NOx of 0.33 lb/MMBtu could see a 26.5% NOx reduction, for an outlet rate of 0.24 lb/MMBtu on Unit 1. For Unit 2, with a baseline NOx of 0.39 lb/MMBtu could see a 26.5% reduction to an outlet rate of 0.29 lb/MMBtu.

SNCR systems can also be installed in conjunction with LNB + OFA controls. On these coupled systems, the starting NOx of approximately 0.15 lb/MMBtu can be reduced to 0.13 lb/MMBtu, for a total reduction (LNB + OFA + SNCR) of around 61% for Unit 1 and 67% for Unit 2. In addition to the SNCR equipment, the process requires additional demineralized water at a rate of 170 gpm. An additional water treatment system capable of providing the required flows is included in the capital cost. The cost of the SNCR equipment for the combination technology would be approximately 10% lower based on the lower starting NOx rate with LNB/OFA.

2.3.2. Selective Catalytic Reduction

Selective Catalytic Reduction (SCR) involves injecting ammonia into boiler flue gas in the presence of a catalyst to reduce NOx to N_2 and water. The overall SCR reactions are:

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$

 $8NH_3 + 4NO_2 + 2O_2 \rightarrow 6N_2 + 12H_2O$

The optimal temperature range depends on the type of catalyst used, but is typically between 560 °F and 800 °F to maximize NOx reduction efficiency and minimize ammonium sulfate formation. Below this range, ammonium sulfate is formed resulting in catalyst deactivation. Above the optimum temperature, the catalyst will sinter and thus deactivate rapidly. Another factor affecting SCR performance is the condition of the catalyst material. As the catalyst degrades over time or is damaged, NOx removal decreases which is typically compensated by increased ammonia slip.

SCR has been installed on many large coal-fired and some gas-fired boilers and is considered a feasible technology. Because of the expense of the reagent, SCR systems are usually installed on units with existing LNB + OFA systems, or the upgrades are done simultaneously. At White Bluff, an SCR+LNB/OFA system is capable of removing approximately 90% of NOx emissions on a continuous

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 8

long-term basis. With a starting NOx of 0.33 lb/MMBtu (Unit 1) to 0.39 lb/MMBtu (Unit 2), an SCR can be expected to achieve permitted emissions compliance at 0.055 lb/MMBtu.

2.4. CAPITAL COSTS

Capital costs for the technically feasible control options for the White Bluff coal units are listed in Table 2.1. The cost of SCR on White Bluff – Unit 1 is higher than for White Bluff – Unit 2 because the ductwork arrangement is different and there is more total ductwork, support steel, and foundations for Unit 1.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 9

Table 2.1: Expected NOx Emissions and Capital Costs, White Bluff Units 1 & 2

Technology	Controlled NOx (lb/MMBTU)		Unit 1 Total Installed Capital	Unit 2 Total Installed Capital Cost (2012\$)	
reciniology	Unit 1 Unit 2		Cost (2012\$)		
Baseline	0.33	0.39	NA	NA	
LNB + OFA	0.15	0.15	7,804,000 ¹	11,831,000	
Neural Network	0.30	0.35	250,000 ²	$250,000^2$	
SNCR	0.24	0.29	9,372,000	9,372,000	
SNCR (+ LNB/OFA)	0.13	0.13	16,290,000 ¹	20,317,000	
SCR (+ LNB/OFA)	0.055	0.055	202,601,000	178,240,000	

- 1. LNB/OFA material already purchased for Unit 1. The total cost to Entergy would be the same for Unit 1 as shown for Unit 2.
- 2. The cost for modifying the existing neural networks on Units 1 & 2.

2.5. OPERATING AND MAINTENANCE COSTS

Annual Operating and Maintenance costs for each of the feasible technologies for White Bluff Units 1 & 2 are shown in Table 2.2. Costs were calculated assuming full load operation, and a capacity factor (C.F.) of 76%.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 10

Table 2.2: Operating and Maintenance Costs, White Bluff – Units 1 & 2 (Based on a C.F. of 76%)

	Unit 1			Unit 2		
Technology	Variable O&M ¹ Costs (2012\$)	Fixed O&M Costs (2012\$)	Total O&M Costs (2012\$)	Variable O&M ¹ Costs (2012\$)	Fixed O&M Costs (2012\$)	Total O&M Costs (2012\$)
LNB + OFA		142,000	142,000		142,000	142,000
Neural Network		50,000	50,000		50,000	50,000
SNCR	5,658,000	169,000	5,827,000	6,671,000	169,000	6,840,000
SNCR (+ LNB/OFA)	4,538,000	311,000	4,849,000	4,542,000	311,000	4,853,000
SCR (+ LNB/OFA)	2,836,000	608,000	3,444,000	2,858,000	608,000	3,466,000

Note 1: Variable O&M includes fuel cost impacts.

Note 2: The current costs of ammonia and urea are highly volatile and may exceed the values used in this report.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 11

3. WHITE BLUFF AUXILIARY BOILER

3.1. FUEL SWITCHING

The White Bluff auxiliary boiler is a B&W, single burner boiler, firing No. 2 diesel oil, rated at 140,000 lb/hr of steam. Fuel switching to natural gas or propane is not practical because the nearest natural gas pipeline is 20 miles from the site. The costs to convert the White Bluff aux boiler to either natural gas or propane would not be justified based on the low capacity factor.

3.2. COMBUSTION CONTROLS

3.2.1. Low NOx Burners + Over-Fire Air

For an auxiliary boiler such as the one at White Bluff, NOx reduction can be achieved with a combination of technologies. LNB + OFA for aux boilers achieve NOx reduction under the same principles as a coal boiler. By modifying temperatures and fuel-rich areas, less NOx is generated. LNB + OFA are feasible technologies for auxiliary boilers, and vendor data indicates that the White Bluff Aux Boiler could achieve 35% reduction with LNB + OFA, for a final emission of 0.11 lb/MMBtu. The baseline NOx emissions from the White Bluff aux boiler are calculated using US EPA's AP-42 emissions factors.

3.2.2. Flue Gas Recirculation

NOx reduction efficiency data for oil-fired units with FGR are limited. The amount of NOx reduction achievable with FGR depends primarily on the fuel nitrogen content and amount of FGR used. Generally, FGR is more effective when used with low nitrogen content fuels such as natural gas and propane, since FGR is more effective in controlling thermal NOx rather than fuel NOx. FGR is a feasible technology for the White Bluff auxiliary boiler. With a recirculation of 15% of the flue gas, the unit could expect to see 13% NOx removal, for an outlet of 0.149 lb/MMBtu.

3.2.3. Low NOx Burners + Over-fire Air + Flue Gas Recirculation

These three technologies are often installed simultaneously for greater NOx reduction. A vendor has proposed that for the White Bluff aux boiler, a combination of LNB + OFA + FGR will reduce the NOx

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 12

from 0.171 lb/MMBtu to 0.100 lb/MMBtu when burning No. 2 Fuel Oil. This reduction of 42% will come from a new LNB and OFA system and the recirculation of 15% of the flue gas flow.

3.2.4. Neural Network

The White Bluff Auxiliary Boiler is not a candidate for a neural network (NN) because there are few controllable variables to be optimized. The aux boiler also uses a relatively new PLC control system.

3.3. POST COMBUSTION CONTROLS

3.3.1. Selective Non-Catalytic Reduction

SNCR control has proven to be difficult to apply to industrial boilers because of the temperature and mixing requirements, especially industrial boilers that modulate or cycle frequently. In order to effectively reduce NOx emissions, the reactant (ammonia or urea) must be injected into the flue gas within a specific flue gas temperature window, and must remain within that temperature window for a sufficient residence time. In industrial boilers that cycle frequently, the location of the specific exhaust gas temperature window is constantly changing. Thus, SNCR has not been effective on industrial boilers that have high turndown capabilities and modulate or cycle frequently. Based on the temperature and residence time requirements associated with effective NOx reduction, the planned use of the auxiliary boiler, and the limited availability of SNCR control systems for industrial boilers, it has been determined that SNCR is not technically feasible for the White Bluff auxiliary boiler.

3.3.2. Selective Catalytic Reduction

SCR for NOx control on auxiliary boilers is not common, because of their cycling operation, and the use of fuel oil. SCRs have critical operating temperature ranges, which are difficult to achieve and maintain in short periods of time. Because of the sulfur content of diesel oil, the SCR catalyst can become poisoned, resulting in a lower NOx removal efficiency. With this lower efficiency and high cost, an SCR is not considered a feasible technology.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 13

3.4. CAPITAL COST ESTIMATES

Capital costs for the technically feasible control options for the White Bluff Auxiliary Boiler are listed in Table 3.1.

Table 3.1: Expected NOx Emissions and Capital Costs, White Bluff Units 1 & 2

Technology	Controlled NOx	Total Installed Capital Cost (2012\$)
Baseline	0.171	
LNB	0.111	255,000
OFA	0.137	231,000
FGR	0.149	366,000
LNB + OFA + FGR	0.100	852,000

3.5. OPERATING AND MAINTENANCE COST ESTIMATES

Annual Operating and Maintenance costs for each of the feasible technologies for White Bluff Units 1 & 2 are shown in Table 3.2. Costs were calculated assuming full load operation and a capacity factor (C.F.) of 10%.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 14

Table 3.2: White Bluff Auxiliary Boiler Operating and Maintenance Costs (Based on a C.F. of 10%)

Technology	Variable O&M Costs (2012\$)	Fixed O&M Costs (2012\$)	Total O&M Costs (2012\$)
LNB	4,000	4,000	8,000
OFA	5,000	4,000	9,000
FGR	0	7,000	7,000
LNB + OFA + FGR	9,000	15,000	24,000

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 15

4. LAKE CATHERINE - UNIT 4

4.1. FUEL SWITCHING

Lake Catherine - Unit 4 already combusts natural gas, which has the lowest NOx formation of potential fuels. Because fuel switching would not result in a lower NOx emission rate, it is not a feasible option for NOx control.

4.2. COMBUSTION CONTROLS

4.2.1. Burners-Out-Of-Service

Burners-Out-Of-Service (BOOS) allows operators to stop fuel flow to certain burners in the boiler (typically the top level of burners), while air flow is maintained. By removing fuel from the top row of burners, the combustion air becomes over-fire air and the production of thermal NOx is reduced. While the reduction of NOx can be significant, the tradeoff is a reduced generating capacity, if no further modifications to the firing system are made. BOOS is a feasible technology for Lake Catherine - Unit 4. Testing of BOOS at Lake Catherine by Entropy Technology & Environmental Consultants, Inc. (ETEC) with the top levels of burners out resulted in a maximum load of 405 MW, a 28% reduction in capacity, and NOx levels of 0.12 lb/MMBtu, a reduction of 55% from the baseline while using the existing burners.

Recovery of the lost unit capacity is possible by increasing the fuel fired in the three levels of burners that remain in service. The burners remaining in service would have to increase fuel throughput by 25%. The natural gas piping to each burner may also have to be increased in size for the higher fuel flow rates. ETEC, Inc. has experience with several units similar in design to Lake Catherine – Unit 4 that have been able to achieve full capacity by increasing the original "high" burner header pressure (BHP) to increase fuel flow to the burners (See Appendix D). The increase in BHP from 42 to 50 psig at Lake Catherine – Unit 4 would increase fuel flow by 25% and the burners would be operated "fuel rich", lowering NOx formation. Using this approach would reduce NOx emissions at a small capital cost. The costs for BOOS with recovery of full unit capacity were based on vendor cost information for a previous project adjusted on a \$/kW basis to Lake Catherine – Unit 4 and escalated to 2012. The cost provided does not include any modifications to the boiler. A boiler OEM or consultant would need to evaluate the existing fuel piping, superheat and reheat attemperation sprays, tube metal temperatures and burner tilt positions for

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 16

the new operating conditions. The expected NOx reduction would range from 40% at low load to 50% at full load and NOx levels of 0.24 lb/MMBtu.

4.2.2. Low NOx Burners + Over-Fire Air

Low NOx Burners and Over-Fire Air for a gas-fired unit function similarly to coal-fired boilers, as discussed for White Bluff - Units 1 & 2. By controlling the temperature and stoichiometric profiles, the NOx produced as a result of thermal processes is reduced.

LNB + OFA are commonly installed on gas-fired units of this size, and are a feasible retrofit technology for Lake Catherine - Unit 4. With the installation of LNB + OFA, Lake Catherine could expect a 60% reduction in NOx, from 0.4825 lb/MMBtu to 0.19 lb/MMBtu.

4.2.3. Flue Gas Recirculation

Flue Gas Recirculation (FGR) reduces NOx by recirculating flue gas to the furnace. This recirculated gas has lower oxygen content than ambient air usually used for combustion. Lower oxygen and lower flame temperatures reduces thermal NOx formation. FGR can be installed on a unit in two ways. Traditional FGR installations require a new recirculation fan. Induced FGR, or IFGR, installs ductwork from the air preheater outlet to the suction of the existing forced draft fan. IFGR does not require a separate fan, but due to FD fan capacity restrictions, IFGR is not available at higher loads, because the forced draft fans were not designed for the higher air and gas flow rate.

FGR is technically feasible on Lake Catherine - Unit 4 and can result in reductions of 60%. For Unit 4, this would be equivalent to NOx emissions of 0.19 lb/MMBtu.

4.2.4. Water Injection

Water injection operates on similar principles to LNB + OFA and FGR. By injecting water into the furnace, the temperature of the flue gas is reduced, thereby reducing the amount of thermal NOx formed.

Water injection is a feasible technology for Lake Catherine - Unit 4, and can reduce NOx emissions by 9% at full load. Water injection is typically used as a trimming technology at high load. On Unit 4, the emissions would be lowered from the baseline of 0.4825 lb/MMBtu to 0.44 lb/MMBtu.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 17

4.2.5. Neural Network

Lake Catherine – Unit 4 could also install a neural network (NN) but for the low capacity factor and current lack of NOx CEMS, a NN would not be practical. Several of the other technologies would provide greater NOx reductions.

4.3. POST COMBUSTION CONTROLS

4.3.1. Selective Non-Catalytic Reduction

Selective Non-Catalytic Reduction for gas-fired units operates under the same principles as SNCR for coal-fired units, with a few design changes. One of the keys of SNCR design is adequate chemical distribution at the right temperature for the reaction. Lake Catherine - Unit 4 has horizontal superheat platens, which requires multiple-nozzle lances to distribute the urea; the gas pattern does not provide adequate distribution. The reaction and temperature requirements are the same for gas-fired boilers as they are for coal-fired units.

SNCR has been installed on boilers such as Lake Catherine 4 and is considered a feasible technology, although the residence time in the desired temperature zone is lower for a gas-fired unit and the temperature window moves as unit load changes. The unit could expect to see reductions in NOx from the baseline of 0.4825 lb/MMBtu to 0.29 lb/MMBtu, or approximately 40% reduction at full load. In addition to the SNCR equipment, the process requires additional demineralized water at a rate of 85 gpm. An additional water treatment system capable of providing the required flows is included in the capital cost.

SNCR can be combined with LNB/OFA to achieve a combined NOx removal efficiency of 70% for an outlet emission of approximately 0.14 lb/MMBtu,

4.3.2. Selective Catalytic Reduction

Selective Catalytic Reduction units are similar for gas and coal-fired units. Ammonia or urea reagent reacts with NOx to form nitrogen and water, in the presence of a catalyst. Because gas boilers do not have particulate control or sulfur dioxide control, they typically have a shorter distance from the economizer outlet to the stack, which may result in long ductwork runs to and from the SCR.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 18

SCR is a feasible technology for Lake Catherine - Unit 4. Combined with a LNB + OFA installation, which is typical of SCR installations, the unit could achieve a combined NOx removal efficiency of 94%, for a permitted outlet NOx of 0.03 lb/MMBtu at full load. This includes a margin for compliance as discussed in Section 1.4. Without the LNB + OFA installed, the SCR can also be designed to achieve 90% removal efficiency for an outlet emission of approximately 0.05 lb/MMBtu.

4.4. CAPITAL COST ESTIMATES

Capital costs for the technically feasible control options for Lake Catherine - Unit 4 are listed in Table 4.1.

Table 4.1: Expected NOx Emissions and Capital Costs, Lake Catherine Unit 4

Technology	Controlled NOx (lb/MMBtu)	Total Installed Capital Cost (2012\$)
Baseline	$0.4825^{(1)}$	
BOOS (at full capacity)	0.24	893,000
LNB / OFA	0.19	8,762,000
IFGR (below 500 MW)	0.39	2,166,000
FGR	0.19	11,489,000
Water Injection	0.44	2,177,000
SNCR	0.29	15,507,000
SNCR (+ LNB/OFA)	0.14	24,269,000
SCR	0.05	59,587,000
SCR (+ LNB/OFA)	0.03	68,349,000

Note 1: The baseline NOx rate is the maximum daily emission rate from the 2001-2003 baseline period.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 19

4.5. OPERATING AND MAINTENANCE COST ESTIMATES

Annual Operating and Maintenance costs for each of the feasible technologies for Lake Catherine - Unit 4 are shown in Table 4.2. Costs were calculated assuming full load operation, and a capacity factor (C.F. of 10%).

Table 4.2: Annual Operating and Maintenance Costs, Lake Catherine Unit 4 (Based on C.F. of 10%)

Technology	Variable O&M ^{1,2} Costs (2012\$)	Fixed O&M Costs (2012\$)	Total O&M Costs (2012\$)
BOOS		21,000	21,000
LNB + OFA		210,000	210,000
IFGR		52,000	52,000
FGR	142,000	207,000	349,000
Water Injection	486,000	52,000	538,000
SNCR	1,640,000	279,000	1,919,000
SNCR (+ LNB/OFA)	462,000	489,000	951,000
SCR	254,000	358,000	612,000
SCR (+ LNB/OFA)	268,000	568,000	836,000

Note 1: Variable O&M includes fuel cost impacts.

Note 2: The current costs of ammonia and urea are highly volatile and may exceed the values used in this report.

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 2

APPENDIX A: CAPITAL COST ESTIMATE

1. BASIS OF ESTIMATES

2. CONCEPTUAL COST ESTIMATE SUMMARY SHEETS

Client: Entergy

Station: White Bluff/Lake Catherine

Project No.: 13027-001

Preparer: A Hays

Date: 09/04/2012 (Rev 0)

Basis of Estimate

Estimates:

31813A - Lake Catherine, Unit 4 - Low NOx Burners and Over Fired Air

31814A – Lake Catherine, Unit 4 - SCR

31815A - Lake Catherine, Unit 4 - SNCR

31816A - White Bluff, Unit 1 - Low NOx Burners and Over Fired Air

31817A - White Bluff, Unit 1 - SCR

31818A - White Bluff, Unit 2 - SCR

31819A - White Bluff, Units 1 and 2 - SNCR

31820A - White Bluff, Auxiliary Boiler - Low NOx Burners, Over Fired Air, and Flue Gas Recirculation

31832A - White Bluff, Unit 2 - Low NOx Burners and Over Fired Air

General Information

Project Type - Compliance study for Lake Catherine Unit 4 and White Bluff Station Units 1&2.

Type of estimates – Conceptual Cost Estimate for the SCR Case and Order of Magnitude Cost Estimates for all other cases.

Project location - White Bluff: Close to Pine Bluff, Arkansas; Lake Catherine: Close to Mahern, AR

MW rating: White Bluff Unit 1: 815 MW, Unit 2: 844 MW; Lake Catherine Unit 4: 558 MW

Unique site issues - Existing Site.

Contracting strategy - Multiple Lump Sum.

The major components of the capital cost consist of equipment, field materials and supplies, direct labor, indirect field labor, and indirect construction costs. The capital cost was determined through the process of estimating the cost of equipment, components and bulk quantity.

The cost estimates are based largely on Sargent & Lundy LLC experience on similar projects. Detailed engineering has not been performed to firm up the project details, and specific site characteristics have not been fully analyzed. We have attempted to assign allowances where necessary to cover issues that are likely to arise but are not clearly quantified at this time.

Estimate Development

The cost estimates for the Low NOx Burners/Over Fired Air cases were based on a previous estimate prepared in 2011. Equipment costs were escalated to current pricing level. Also, material and labor have been updated to 2012 pricing.

Cost estimates for the SNCR technology (two cases) were based on budgetary quotes received from engineering and on previous estimates.

The cost estimates for the White Bluff SCR was mainly based on similar size and scope cost estimates from other projects and structural takeoffs from engineering. All equipment common to both Units was divided evenly between the two estimates.

The cost estimate for Lake Catherine SCR was adjusted from another cost estimate for a gas fired power station. White Bluff's auxiliary boiler cost estimate for Low NOx Burners/Over Fired Air/Flue Gas Recirculation was also adjusted from a similar project.

Pricing and Quantities

The data used to develop these estimates is based on using material and equipment types and sizes typically used in a power plant.

Equipment and material costs were estimated on the basis of S&L in house data, vendor catalogs, industry publications and other related projects. In most cases, the costs for bulk materials and equipment were derived from recent vendor or manufacturer's quote for similar items on other projects. Where actual or specific information regarding equipment specifications was available, that information was used to size and quantify material and equipment requirements. Where information was not furnished or was not adequate, requirements were assumed and estimated based on information available from project estimates of similar type and size.

Client: Entergy

Station: White Bluff/Lake Catherine

Project No.: 13027-001

Preparer: A Hays

Date: 09/04/2012 (Rev 0)

Quantities contained herein are intended to be reasonable and representative of projects of this type. All quantity data was developed internally by S&L. Quantities were developed based on project experience of a plant of comparable size and then adjusted based on actual size and capacity differences and also taking into consideration the specific site layout based on the general arrangement drawing. While project specifics will certainly have an impact on these quantities, we feel they are appropriate for a study at this level.

Labor Wage Rates

Labor Profile - Union

Labor wage rate selected for the estimate - 2012 Union rates for Pine Bluff, Arkansas. Base craft rates are as published in RS Means Labor Rates for the Construction Industry, 2012 Edition. The craft rates are then incorporated into work crews appropriate for the activities by adding allowances for small tools, construction equipment, insurance, and site overheads to arrive at crew rates detailed in the cost estimate. A 1.15 regional labor productivity multiplier is included based on the Compass International Global Construction Yearbook.

Labor Work Schedule and Incentives - Assumed 5x10 work week for regular work and 7x10 work week for outage work. 10% of the work is assumed to be outage related.

Project Direct & Construction Indirect Costs

The estimate is constructed in such a manner where most of the direct construction costs are determined directly and several direct construction cost accounts are determined indirectly by taking a percentage of the directly determined costs and are identified as "Variable Accounts". These percentages are based on our experience with similar type and size projects. Sales tax is specific to location. Listed below are the variable accounts.

- Cost of overtime 5-10's Hour Days and Outage Work at a 7-10 Schedule
- Subsistence (per diem) not included
- Consumables 0.5% of material and labor
- Freight on Equipment included with equipment cost
- Freight on Material @ 5% of material
- Spare Parts included with equipment costs
- Contractors G&A Expense @ 10%
- Contractors Profit @ 5%

Project Indirect Costs

Included are the following:

- Engineering, Procurement & Project Services varied depending on the size of the project estimated.
 - o 31813A @ 19% of construction cost
 - o 31814A @ 8% of construction cost
 - o 31815A @ 8% of construction cost
 - o 31816A @ 16% of construction cost
 - o 31817A @ 6% of construction cost
 - o 31818A @ 6% of construction cost
 - o 31819A @ 8% of construction cost
 - o 31820A @ 12% of construction cost
 - o 31832A @ 16% of construction cost
- Construction Management varied depending on the size of the project estimated.
 - o 31813A @ 6% of construction cost
 - o 31814A @ 3% of construction cost
 - o 31815A @ 2% of construction cost
 - o 31816A @ 6% of construction cost
 - o 31817A @ 2% of construction cost

Client: Entergy

Station: White Bluff/Lake Catherine

Project No.: 13027-001

Preparer: A Hays

Date: 09/04/2012 (Rev 0)

- o 31818A @ 2% of construction cost
- o 31819A @ 2% of construction cost
- o 31820A @ 0% of construction cost
- o 31832A @ 6% of construction cost
- Craft start-up and commission support @ 1% of construction cost
- General Owner's Costs, including Owners Engineering & Bond Fees not included
- EPC Fee not included

These percentages are based on our experience with similar type and size projects.

Escalation

Not included.

Contingency

The contingency rates vary for each project based on the project's size. The rates are based on past history of similar projects. This rate relates to pricing and quantity variation in the specific scope estimated. The contingency does not cover new scope outside of what has been estimated, only the variation in the defined scope. This is a composite rate and already takes into account the plus and minuses of expected actual costs. The rate does not represent the high range of all costs, nor is it expected that the project will experience all actual costs be realized at the maximum value of their range of variation.

Exclusions

There are items that have been specifically excluded from the estimate. In order to establish the overall project costs, the following items must also be accounted for. This list is for information only and is not intended to be all inclusive.

- Permitting costs
- Rock excavation
- Remediation of soil for hazardous materials
- · Power outage cost during construction

Assumptions

- No rock excavation, no dewatering
- Assumed that asbestos removal or lead paint abatement will not be required.
- No obstruction for the ammonia pipe routing. 6" clearing & grubbing of existing terrain is included, no tree removal.
- Directional boring underneath the existing railroad tracks is included, but with no major interferences or obstructions.
- Electrical equipment and wiring installation is based on non-hazardous location.
- Adjustments for plant unit size were made based on good engineering practice. Actual design and quantities may be significantly different than the quantities shown in the estimates.

ESTIMATE NO.: 31813A2 PROJECT NO.: 13027-001 ISSUE DATE:

PREP./REV.: ADH/ APPROVED:

ENTERGY - LAKE CATHERINE LOW NOX BURNERS AND OVERFIRE AIR SYSTEMS - UNIT 4 CONCEPTUAL ESTIMATE

Descriptio	n	Amount	Total	ls
Labor	331,677			
Material	125,263			
Subcontract	2,850,000			
Equipment				
Other	2,000,000			
	5,306,940	5,30	06,940	USD
91-1 Scaffolding	46,000			
91-2 OT Working 5-10 Hour Days	41,000			
91-3 OT Working 7-10 Hr Days	,			
91-4 Per Diem				
91-5 Consumables	2,000			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	6,000			
91-9 Freight on Process Equip.	100,000			
91-10 Sales Tax				
91-11 Contractor's G&A Expense	65,000			
91-12 Contractor's Profit	32,000			
	292,000	5,59	98,940	USD
93-1 EP&P Services	1,064,000			
93-2 CM Support	168,000			
93-3 Start-Up/Commissioning	56,000			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects				
93-7 Owners Cost				
93-8 EPC Fee				
	1,288,000	6,88	86,940	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	50,000			
94-4 Contingency on Labor	145,000			
94-5 Contingency on Sub.	713,000			
94-6 Contingency on Equipment	525,000			
94-7 Contingency on Indirect	386,000		25.040	HOD
	1,819,000	8,70	05,940	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect		0.7/	DE 040	USD
		8,70	05,940	080
98 - Interest During Constr				
		8,70	05,940	USD
Total		8,70	05,940	USD

ENTERGY - LAKE CATHERINE SCR SYSTEM - UNIT 4 CONCEPTUAL ESTIMATE

Descripti	ion	Amount	Totals	S
Labor	19,780,000			
Material	15,815,652			
Subcontract	2,590,000			
Equipment				
Other	8,290,000			
	46,475,652		16,475,652	USD
91-1 Scaffolding 91-2 OT Working 5-10 Hour Days 91-3 OT Working 7-10 Hr Days 91-4 Per Diem 91-5 Consumables 91-6 Freight on Equipment 91-7 Freight on Special Equip. 91-8 Freight on Material 91-9 Freight on Process Equip.				
91-10 Sales Tax 91-11 Contractor's G&A Expense				
91-11 Contractor's G&A Expense 91-12 Contractor's Profit				
		4	46,475,652	USD
93-1 FP&P Services	3,718,100			
93-2 CM Support	1,394,300			
93-3 Start-Up/Commissioning	464,800			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects				
93-7 Owners Cost				
93-8 EPC Fee				
	5,577,200		52,052,852	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	2,372,400			
94-4 Contingency on Labor	2,967,000			
94-5 Contingency on Sub.	388,500			
94-6 Contingency on Equipment	1,243,500			
94-7 Contingency on Indirect	836,600			
	7,808,000		59,860,852	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect			-0.000.050	LICE
			59,860,852	USD
98 - Interest During Constr				
			59,860,852	USD
T-4-1			-0.000.050	1105
Total			59,860,852	USD

ENTERGY - LAKE CATHERINE SNCR SYSTEM - UNIT 4 CONCEPTUAL ESTIMATE

Description		Amount	Totals	
Labor	2,629,958			
Material	1,083,165			
Subcontract	80,600			
Equipment				
Other	6,193,056			
	9,986,779		9,986,779	USD
91-1 Scaffolding	445,600			
91-2 OT Working 5-10 Hour Days	311,700			
91-3 OT Working 7-10 Hr Days	99,200			
91-4 Per Diem				
91-5 Consumables	18,600			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	54,200			
91-9 Freight on Process Equip. 91-10 Sales Tax				
91-10 Sales Tax 91-11 Contractor's G&A Expense	458,800			
91-12 Contractor's Profit	229,500			
31 12 GOILLAGIO 31 1611	1,617,600		11,604,379	USD
93-1 EP&P Services	928,400			
93-2 CM Support	232,100			
93-3 Start-Up/Commissioning	116,000			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects				
93-7 Owners Cost				
93-8 EPC Fee	1,276,500		12,880,879	USD
	1,210,000		12,000,010	002
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip	200.000			
94-3 Contingency on Material	390,000			
94-4 Contingency on Labor 94-5 Contingency on Sub.	1,209,300 24,200			
94-6 Contingency on Equipment	619,300			
94-7 Contingency on Indirect	383,000			
54 7 Contangency on mancet	2,625,800		15,506,679	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect				
			15,506,679	USD
98 - Interest During Constr				
			15,506,679	USD
Total			15,506,679	USD

ESTIMATE NO.: 31816A PROJECT NO.: 13027-001 ISSUE DATE: 8/31/2012 PREP./REV.: ADH/ APPROVED: MNO

ENTERGY - WHITE BLUFF LOW NOX BURNERS AND OVERFIRE AIR SYSTEMS - UNIT 1 CONCEPTUAL ESTIMATE

Description	ı	Amount	Totals	
Labor	653,648			
Material	306,347			
Subcontract	3,700,000			
Equipment				
Other				
	4,659,995		4,659,995	USD
91-1 Scaffolding	48,000			
91-2 OT Working 5-10 Hour Days	77,000			
91-3 OT Working 7-10 Hr Days	24,000			
91-4 Per Diem				
91-5 Consumables	5,000			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	15,000			
91-9 Freight on Process Equip.				
91-10 Sales Tax	112 000			
91-11 Contractor's G&A Expense 91-12 Contractor's Profit	112,000 55,000			
91-12 Contractor's Front	336,000		4,995,995	USD
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
93-1 EP&P Services	799,000			
93-2 CM Support	300,000			
93-3 Start-Up/Commissioning	50,000			
93-4 Start-Up/Spare Parts 93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects				
93-7 Owners Cost				
93-8 EPC Fee				
	1,149,000		6,144,995	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	110,000			
94-4 Contingency on Labor	279,000			
94-5 Contingency on Sub.	925,000			
94-6 Contingency on Equipment				
94-7 Contingency on Indirect	345,000			
	1,659,000		7,803,995	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect			7,000,005	LIOD
			7,803,995	USD
98 - Interest During Constr				
			7,803,995	USD
Total			7 902 005	USD
i Ulai			7,803,995	บอบ

Description		Amount	Totals	
Labor	2,255,791			
Material	1,089,242			
Subcontract	68,100			
Equipment				
Other	1,948,100			
	5,361,233		5,361,233	USD
91-1 Scaffolding	368,000			
91-2 OT Working 5-10 Hour Days	267,300			
91-3 OT Working 7-10 Hr Days	85,100			
91-4 Per Diem				
91-5 Consumables	16,700			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	54,500			
91-9 Freight on Process Equip. 91-10 Sales Tax				
91-10 Sales Tax 91-11 Contractor's G&A Expense	408,200			
91-12 Contractor's Profit	204,100			
31 12 Contractor 31 Tolk	1,403,900		6,765,133	USD
93-1 EP&P Services	541,200			
93-2 CM Support	135,300			
93-3 Start-Up/Commissioning	67,700			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects				
93-7 Owners Cost				
93-8 EPC Fee	744,200		7,509,333	USD
94-1 Contingency on Equipment	,		,,	
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	392,100			
94-4 Contingency on Labor	1,032,500			
94-5 Contingency on Sub.	20,400			
94-6 Contingency on Equipment	194,800			
94-7 Contingency on Indirect	223,300			
	1,863,100		9,372,433	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect			9,372,433	USD
			0,012,700	300
98 - Interest During Constr			0.070.400	LICD
			9,372,433	USD
Total			9,372,433	USD

ENTERGY - WHITE BLUFF SCR - UNIT 1 CONCEPTUAL ESTIMATE

Description		Amount	Totals	
Labor	56,778,212			
Material	34,013,262			
Subcontract	8,156,000			
Equipment				
Other	21,324,260			
	120,271,734		120,271,734	USD
91-1 Scaffolding	2,270,000			
91-2 OT Working 5-10 Hour Days	6,730,000			
91-3 OT Working 7-10 Hr Days	2,142,000			
91-4 Per Diem				
91-5 Consumables	454,000			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	1,701,000			
91-9 Freight on Process Equip.				
91-10 Sales Tax				
91-11 Contractor's G&A Expense	10,238,000			
91-12 Contractor's Profit	5,120,000		440,000,704	USD
	28,655,000		148,926,734	USD
93-1 EP&P Services	8,936,000			
93-2 CM Support	2,979,000			
93-3 Start-Up/Commissioning	1,489,000			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects 93-7 Owners Cost				
93-8 EPC Fee				
33-0 LF C F 66	13,404,000		162,330,734	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	8,163,000			
94-4 Contingency on Labor	15,726,000			
94-5 Contingency on Sub.	1,631,000			
94-6 Contingency on Equipment	4,265,000			
94-7 Contingency on Indirect	2,681,000			
	32,466,000		194,796,734	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect			404 700 704	LICD
			194,796,734	USD
98 - Interest During Constr				
			194,796,734	USD
Total			404 700 704	LICD
Total			194,796,734	USD

ESTIMATE NO.: 31832A PROJECT NO.: 13027-001 ISSUE DATE: 8/31/2012 PREP./REV.: ADH/ APPROVED: MNO

ENTERGY - WHITE BLUFF LOW NOX BURNERS AND OVERFIRE AIR SYSTEMS - UNIT 2 CONCEPTUAL ESTIMATE

Description		Amount	Totals	
Labor	653,648			
Material	306,347			
Subcontract	3,700,000			
Equipment				
Other	2,600,000			
	7,259,995		7,259,995	USD
91-1 Scaffolding	48,000			
91-2 OT Working 5-10 Hour Days	77,000			
91-3 OT Working 7-10 Hr Days	24,000			
91-4 Per Diem				
91-5 Consumables	5,000			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	15,000			
91-9 Freight on Process Equip.				
91-10 Sales Tax	440.000			
91-11 Contractor's G&A Expense 91-12 Contractor's Profit	112,000			
91-12 Contractor's Profit	55,000 336,000		7,595,995	USD
	330,000		7,090,990	OSD
93-1 EP&P Services	1,215,000			
93-2 CM Support	456,000			
93-3 Start-Up/Commissioning	76,000			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects 93-7 Owners Cost				
93-8 EPC Fee				
93-0 EF C F 66	1,747,000		9,342,995	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	110,000			
94-4 Contingency on Labor	279,000			
94-5 Contingency on Sub.	925,000			
94-6 Contingency on Equipment	650,000			
94-7 Contingency on Indirect	524,000			
	2,488,000		11,830,995	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect				
			11,830,995	USD
98 - Interest During Constr				
			11,830,995	USD
Total			11,830,995	USD
			,000,000	505

Description		Amount	Totals	
Labor	2,255,791			
Material	1,089,242			
Subcontract	68,100			
Equipment				
Other	1,948,100			
	5,361,233		5,361,233	USD
91-1 Scaffolding	368,000			
91-2 OT Working 5-10 Hour Days	267,300			
91-3 OT Working 7-10 Hr Days	85,100			
91-4 Per Diem				
91-5 Consumables	16,700			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	54,500			
91-9 Freight on Process Equip.				
91-10 Sales Tax	100 000			
91-11 Contractor's G&A Expense	408,200			
91-12 Contractor's Profit	204,100 1,403,900		6,765,133	USD
	1,403,900		0,705,155	USD
93-1 EP&P Services	541,200			
93-2 CM Support	135,300			
93-3 Start-Up/Commissioning	67,700			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects 93-7 Owners Cost				
93-7 Owners Cost 93-8 EPC Fee				
93-6 EFC Fee	744,200		7,509,333	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	392,100			
94-4 Contingency on Labor	1,032,500			
94-5 Contingency on Sub.	20,400			
94-6 Contingency on Equipment	194,800			
94-7 Contingency on Indirect	223,300			
	1,863,100		9,372,433	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect				
			9,372,433	USD
98 - Interest During Constr				
			9,372,433	USD
Total			9,372,433	USD
i Otal			3,312,433	JJD

ESTIMATE NO.: 31818A PROJECT NO.: 13027-001 ISSUE DATE: PREP./REV.: ADH/ APPROVED: MNO

Description		Amount	Totals	
Labor	48,597,255			
Material	26,751,692			
Subcontract	6,577,640			
Equipment				
Other	21,324,260			
	103,250,847		103,250,847	USD
91-1 Scaffolding	1,884,000			
91-2 OT Working 5-10 Hour Days	5,759,000			
91-3 OT Working 7-10 Hr Days	1,834,000			
91-4 Per Diem				
91-5 Consumables	377,000			
91-6 Freight on Equipment				
91-7 Freight on Special Equip.				
91-8 Freight on Material	1,338,000			
91-9 Freight on Process Equip.				
91-10 Sales Tax 91-11 Contractor's G&A Expense	8,520,000			
91-12 Contractor's Profit	4,261,000			
91-12 Contractor 3 F Tont	23,973,000		127,223,847	USD
	20,070,000		121,220,041	OOD
93-1 EP&P Services	7,633,000			
93-2 CM Support	2,544,000			
93-3 Start-Up/Commissioning	1,272,000			
93-4 Start-Up/Spare Parts				
93-5 Excess Liability Insur.				
93-6 Sales Tax On Indirects				
93-7 Owners Cost 93-8 EPC Fee				
93-0 EFC F86	11,449,000		138,672,847	USD
94-1 Contingency on Equipment				
94-2 Contingency on Engr Equip				
94-3 Contingency on Material	6,421,000			
94-4 Contingency on Labor	13,444,000			
94-5 Contingency on Sub.	1,316,000			
94-6 Contingency on Equipment	4,265,000			
94-7 Contingency on Indirect	2,290,000			
	27,736,000		166,408,847	USD
96-1 Escalation on Equipment				
96-2 Escalation on Engr Equip				
96-3 Escalation on Material				
96-4 Escalation on Labor				
96-5 Escalation on Sub.				
96-6 Escalation on Process Equ				
96-7 Escalation on Indirect				
			166,408,847	USD
98 - Interest During Constr				
			166,408,847	USD
Total			166,408,847	USD
			,	-

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 3

APPENDIX B

1. ESTIMATED PROJECT SCHEDULES

Activity ID	Activity Name	Org Dur Month Mont																	
		(months)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1
Enter	gy - NOx Strategy Study - Aux Boiler (LNB/OFA/F	15m		1	1		1	 	 	1			 	1				1	-
Permi	tting	12m						1	 	1 1 1 1			 					 	
A1000	Project Authorization	0m	•		1			1	1 1 1 1	1 1 1 1								 	
A1010	Air Permit - Prepare/Review/Approve	12m					:				:							 	-
Engin	eering	8m								1									
A1020	Engineering	8m		-		i	i	; i	; ;		–		; 	 			. = = = = =		7
Procu	rement of Major Equipment	6m							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1			1 1 1 1					1 1 1 1	
A1030	LNB/OFA Spec - Prep/Bid/Eval/Award	3m						i !	1				! ! !						
A1070	GWC Spec - Prep/Bid/Eval/Award	3m		1				1	1 1 1 1		:							 	
Vendo	or Engineering/Fab/Delivery	5m		i ! !	 			i 	1 1 1 1	1 1 1 1								 	
A1040	LNB/OFA Vendor Engineering/Fabrication/Delivery	5m	1 1				 !	 !]				-
Instal	lation	1m							1	1			 					 	
A 1050	Installation	1m							1	! ! ! !			 						1
Comn	nissioning & Start-Up	2m		1	 	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1			1 1 1 1 1	 				 	
A1060	Commissioning & Start-Up	2m		į	; ;				1	! !									

NOx Control Technology Cost and Performance Study for
Entergy Services, Inc. White Bluff and Lake Catherine
Aux Boiler Low NOx Burner/Over-Fire Air/Flue Gas Recirculation (LNB/OFA/FGR)

Run Date: 09-17-12

Activity ID	Activity Name	Org Dur														Moı	nth										
		(months)	1	2	: 3	4	4 !	5 (6	7	8	9	10	11	12	13	14	15	16 1	17 1	18 1	9 2	21	22	23	24	25 26
Enter	gy - NOx Strategy Study - Neural Network	24m			1													-									
Permi	itting	8m																									
A1000	Project Authorization	0m			1	!	!				1		!					1									
A1010	Air Permit - Prepare/Review/Approve	8m	-	1	i	-		+				1	1														
Engin	eering	3m		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1						1					1							1		
A1020	Engineering	3m											;						i -							-	
Procu	rement of Major Equipment	3m																									
A1030	Neural Network Spec - Prep/Bid/Eval/Award	3m				-							1					1									
Vendo	or Engineering/Fab/Delivery	6m											1					1									
A1040	NN Vendor Engineering/Fabrication/Delivery	6m			1			[-	1			!		-			1									
Instal	lation	1m									· ÷		;													, i	
A1050	Installation	1m											1		Ė												
Comn	nissioning & Start-Up	12m		1	1	1	!				-		1					1		-							
A1060	Commissioning & Start-Up	12m														Ė				_	_	÷	÷	÷			

NOx Control Technology Cost and Performance Study for Entergy Services, Inc. White Bluff and Lake Catherine Neural Network

Run Date: 09-17-12

Activity ID	Activity Name	Org Dur	Org Dur (months)																						
		(months)	1	2	3	4	5	6	7	8	9	1	0 -	11	12	13	14	15	16	17	7 18	19	20	21	1 2
Enter	gy - NOx Strategy Study - Low NOx Burners/Over .	19m		1	1						1						1						1		
Permi	itting	12m		1	 						 						 								
A1000	Project Authorization	0m	•	1 1 1 1	1 1 1 1 1 1						1 1 1 1 1 1 1						1 1 1 1	1	1			1	1 1 1		1
A1010	Air Permit - Prepare/Review/Approve	12m		:	-	-	-	<u> </u>	;	-	:	+	+				1 1 1 1						 		
Engin	eering	8m		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1						1 1 1 1						1 1 1 1					1	1 1 1 1		1 1
A1020	Engineering	8m	1	<u></u>	- -			i		- 															
Procu	rement of Major Equipment	7m		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1						 						! ! !						1		
A1030	LNB/OFA Spec - Prep/Bid/Eval/Award	3m		1 1 1	1 1 1 1 1		1	1			1 1 1 1						1 1 1 1	1	1			1	1 1 1		-
A1070	GWC Spec - Prep/Bid/Eval/Award	3m			1 1 1 1						1		÷	•			 						1		
Vendo	or Engineering/Fab/Delivery	6m			1						1 1 1						1 1 1 1						1		
A1040	LNB/OFA Vendor Engineering/Fabrication/Delivery	6m	† †		-i	- -				- 	-;			;											
Instal	lation	3m		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1						1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1	1		1
A1050	Installation	3m		1 1 1	1 1 1 1 1				1		1 1 1						1	1				1	1 1 1		1
Comn	nissioning & Start-Up	4m		 	1 1 1 1 1						 						1 1 1 1 1						1 1 1 1		
A1060	Commissioning & Start-Up	4m			1		1	-	-				-				1 1 1	1 1 1		-	1	1			

NOx Control Technology Cost and Performance Study for Entergy Services, Inc. White Bluff and Lake Catherine Low NOx Burners/Over-Fire Air (LNB/OFA)

argent & Lundy'''

Activity ID	Activity Name	Org Dur								Month											
		(months)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Enterg	y - NOx Strategy Study - Induced Flue Gas Recir	17m			1	1	1													1	-
Permit	ting	2m				1														! ! !	-
A1000	Project Authorization	0m	•			1														! ! !	
A1010	Air Permit - Prepare/Review/Approve	2m			•	 				1	1			i i	1					i 1 1 1 1	
Engine	eering	9m			i 	1				1	1									 	
A1020	BOP Engineering	9m				 					;			;						 	****
Procur	rement of Major Equipment	6m				1	 				1									1 1 1 1	
A1140	FGR Duct Procurement Spec - Prep/Bid/Eval/Award	3m						1	-	1	1			1 1						! ! ! !	
A1030	Mech Install Spec - Prep/Bid/Eval/Award	3m			1	1 1 1 1														 	
A1120	Elec Install Spec - Prep/Bid/Eval/Award	3m			i 1 1 1	1 1 1 1				1	; ;										
Vendo	r Engineering/Fab/Delivery	6m	1											 						<u> </u> 	
A1040	FGR Duct Vendor Engineering/Fabrication/Delivery	6m			1	1 1 1 1	 	! !			:			!						1 1 1 1	
Installa	ation	4m			1	1 1 1 1				! ! !	1 1 1 1			1 1 1 1 1 1 1 1						1 1 1 1 1	
A1050	Installation	4m				1				!	1							-		1 1 1 1	
Comm	Commissioning & Start-Up				: 	1 1 1 1	: 	1		1	; ; ;										
A1060	Commissioning & Start-Up	2m			¦			}													-

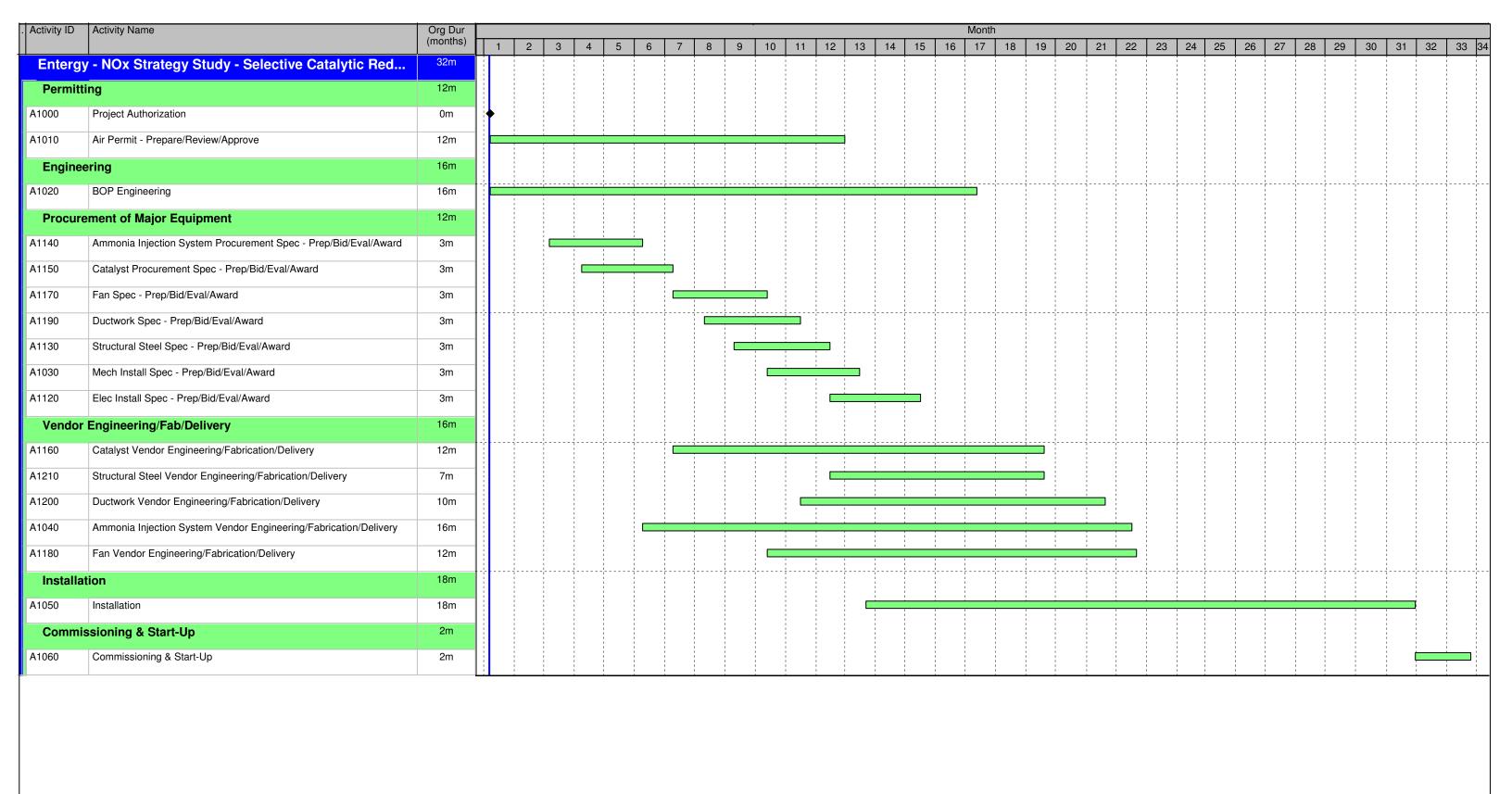
NOx Control Technology Cost and Performance Study for Entergy Services, Inc. White Bluff and Lake Catherine Induced Flue Gas Recirculation (IFGR)

Run Date: 09-17-12

Activity ID	Activity Name	Org Dur												Мо	nth										
		(months)	1	2	3	4	5	6	7	8	9	10) 11	1 12	2 13	3 14	1 15	5 10	6 17	18	19	20	21	22 2	23
Enter	gy - NOx Strategy Study - Flue Gas Recirculation	22m										-						-	1				-		
Permi	tting	8m																							
A1000	Project Authorization	0m	•																						
A1010	Air Permit - Prepare/Review/Approve	8m			1			1	1	!	=	1					1	1	1				1	1	
Engin	eering	10m		1															 				1		
A1020	BOP Engineering	10m	+ +				\ !	} !	i	 i							- 1					<u>-</u>		 -	
Procu	rement of Major Equipment	6m		1															1				1	1	
A1150	FGR Fan Procurement Spec - Prep/Bid/Eval/Award	3m		1	1		:	1	i										 					1	
A1140	FGR Duct Procurement Spec - Prep/Bid/Eval/Award	3m		1			_	1	1	<u></u>		1					1	1	1 1 1 1				1	 	
A1030	Mech Install Spec - Prep/Bid/Eval/Award	3m		1				-	1	; ;									1				1	1	
A1120	Elec Install Spec - Prep/Bid/Eval/Award	3m					{ 	}	T	- 		;									÷				
Vendo	or Engineering/Fab/Delivery	10m		1													1		1					1	
A1040	FGR Duct Vendor Engineering/Fabrication/Delivery	6m		1							1	1	1		1	÷			 					1	
A1160	FGR Fan Vendor Engineering/Fabrication/Delivery	10m		1						1	1	1	1	+	+	+	1	1	i				1	1	
Instal	lation	5m		1															1				1	1	
A1050	Installation	5m																_		i	 				
Comn	Commissioning & Start-Up											1					1	1	1					1	
A1060	Commissioning & Start-Up	2m									-	1												- 1	

NOx Control Technology Cost and Performance Study for Entergy Services, Inc. White Bluff and Lake Catherine Flue Gas Recirculation (FGR)

Run Date: 09-17-12



Activity ID	Activity Name	Org Dur								M	lonth							
		(months)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Enter	gy - NOx Strategy Study - Selective Non-Catalytic	16m			1		1	1 1 1	1 1 1	1	1	1	1 1 1 1		1		1	
Perm	itting	12m						1				1	1		1		1 1 1 1	
A1000	Project Authorization	0m	•					1				1	! ! !		! ! !		! ! ! !	
A1010	Air Permit - Prepare/Review/Approve	12m			!	1	1	!	1	!			!	1	•		1 1 1 1	
Engin	neering	8m		! ! !	1 1 1			1	1 1 1 1	1		! ! ! !	 		! ! !		! ! ! !	
A1020	BOP Engineering	8m					<u> </u>	<u> </u>	<u> </u>			! ! !	 !		 		 ! !	·
Procu	rement of Major Equipment	6m						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	!		1		1 1 1 1	
A1030	SNCR Spec - Prep/Bid/Eval/Award	3m					1	1				! !			! !		; ; ; ;	
A1070	Civil/Structural Installation Spec - Prep/Bid/Eval/Award	3m						1	1			1 1 1 1	1		1 1 1 1		1 1 1 1	
A1080	Mech Installation Spec - Prep/Bid/Eval/Award	3m							1	1		! ! !	; ! ! !		! ! !		 	
A1090	Elec/I&C Installation Spec - Prep/Bid/Eval/Award	3m	1		· -		†	 							! ! !	¦	¦	
Vend	or Engineering/Fab/Delivery	6m						1				1			1		1	
A1040	SNCR Vendor Engineering/Fabrication/Delivery	6m						1		1	1	1	1	1	1		1 1 1 1 1	
Instal	lation	3m						1	1			1 1 1 1	1		! ! !		1 1 1 1	
A1050	Installation	3m			1			 	; ; ;			! !	; 1 1 1			1	: 	
Comr	nissioning & Start-Up	1m	1			÷	†	 				†			! ! !	¦	 	
A1060	Commissioning & Start-Up	1m			1			1	1 1 1	1	:	! !	1	1 1 1		:		

NOx Control Technology Cost and Performance Study for Entergy Services, Inc. White Bluff and Lake Catherine Selective Non-Catalytic Reduction (SNCR)

Run Date: 09-14-12

Entergy Services, Inc.
White Bluff & Lake Catherine
Project No. 13027-001
NOx Control Technology Cost
and Performance Study

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 4

APPENDIX C

1. OPERATING AND MAINTENANCE COST ESTIMATES

Unit Name White Bluff 1

Unit Data		Reager	nt Costs
Size (Gross kW)	815,000	Aq.Ammonia \$/t	\$700
Average NOx Emission Rate (lb/MMBtu at full			
load)	0.33	An.Ammonia \$/t	\$400
Nominal Max. Boiler Heat Input (mmBtu/hr)	8,950.0	Urea \$/t	\$350
Avg. Heat Rate (Btu/kwh)	10,981.6	N/F-T Urea \$/t	\$618
Aux. Power (kw)	-	Coal Cost, \$/Mbtu	2.650
Est. Capacity Factor (%)	76.00		
		Water Cost, \$/1000 gal	
Boiler Type		(3)	2
Boiler Eff. (%)	84	Electricity, \$/MWh	41.50
Estimated NOx, tons/day Max	26.936		
Emission Limit, tons	-		
NOx Sales/Buy rate, \$/ton	-		
Fuel -	PRB		
Seasonal Days	153		
Basis	0		
Analysis - Enter "0" for Annual and	1 for Seasonal	1	
CF For Variable O&M	76.00		

							Opera	ting & Maintenance	Cost
	Estimated Reduction	Emission Rate After	Tons of NOx Emission,	Tons of NOx Removed,				Variable O&M,	Fuel Impact,
	from Baseline	Control	Seasonal/Annual	season/annual	Estimated (Capital Cost	Fixed O&M	season or yr	season or yr
Technology	%	(lb/mmBtu)	tons	tons	\$/kW	\$/unit	\$/yr	\$/@CF	\$/@CF
LNB + OFA (Note 5)	54.5	0.15	4,469	5,363	9.6	\$7,804,000	\$142,000	\$0	\$0
Neural Net	10.0	0.30	8,848	983	0.3	\$250,000	\$50,000	\$0	\$0
Full SNCR	26.5	0.24	7,229	2,602	11.5	\$9,372,000	\$169,000	\$5,377,000	\$281,000
LNB+OFA+Full SNCR	61.4	0.13	3,799	6,033	20.0	\$16,290,000	\$311,000	\$4,154,000	\$384,000
LNB+OFA+Full SCR	83.3	0.055	1,639	8,193	248.6	\$202,601,000	\$608,000	\$2,836,000	\$0

- (1) Aux. Power cost is calculated based on variation in capacity factor
- (2) Assumed water cost of \$2/1000 gallons.
- (3) Assumed that 15% urea will be used for SNCR technology.
- (4) Assumed that initial catalyst life is 12,000 hours
- (5) LNB/OFA material already purchased for Unit 1. The total cost to Entergy would be the same for Unit 1 as shown for Unit 2.
- (6) For SCR technology, the variable O&M costs are based on operating at NOx outlet emissions marginally below the compliance emission rate.

<u>Unit Name</u> <u>White Bluff 2</u>

Unit Data		Reage	nt Costs
Size (Gross kW)	844,000	Aq.Ammonia \$/t	\$700
Average NOx Emission Rate (lb/MMBtu at full			
load)	0.39	An.Ammonia \$/t	\$400
Nominal Max. Boiler Heat Input (mmBtu/hr)	8,950.0	Urea \$/t	\$350
Avg. Heat Rate (Btu/kwh)	10,604.3	N/F-T Urea \$/t	\$618
Aux. Power (kw)	-	Coal Cost, \$/Mbtu	2.650
Est. Capacity Factor (%)	76.00		
		Water Cost, \$/1000 gal	
Boiler Type	T/F	(3)	2
Boiler Eff. (%)	84	Electricity, \$/MWh	41.50
Estimated NOx, tons/day Max	31.833		
Emission Limit, tons	-		
NOx Sales/Buy rate, \$/ton	-		
Fuel -	PRB		
Seasonal Days	153		
Basis	0		
Analysis - Enter "0" for Annual and	1 for Seasonal		
CF For Variable O&M	76.00		

							Opera	ting & Maintenance (Cost
	Estimated Reduction	Emission Rate After	Tons of NOx Emission,	Tons of NOx Removed,				Variable O&M,	Fuel Impact,
	from Baseline	Control	Seasonal/Annual	season/annual	Estimated	Capital Cost	Fixed O&M	season or yr	season or yr
Technology	%	(lb/mmBtu)	tons	tons	\$/kW	\$/unit	\$/yr	\$/@CF	\$/@CF
LNB + OFA	61.5	0.15	4,469	7,150	14.0	\$11,831,000	\$142,000	\$0	\$0
Neural Net	10.0	0.35	10,457	1,162	0.3	\$250,000	\$50,000	\$0	\$0
Full SNCR	26.5	0.29	8,544	3,076	11.1	\$9,372,000	\$169,000	\$6,338,000	\$333,000
LNB+OFA+Full SNCR	67.3	0.13	3,799	7,821	24.1	\$20,317,000	\$311,000	\$4,158,000	\$384,000
LNB+OFA+Full SCR	85.9	0.055	1,639	9,981	211.2	\$178,240,000	\$608,000	\$2,858,000	\$0

- (1) Aux. Power cost is calculated based on variation in capacity factor
- (2) Assumed water cost of \$2/1000 gallons.
- (3) Assumed that 15% urea will be used for SNCR technology.
- (4) Assumed that initial catalyst life is 12,000 hours
- (5) For SCR technology, the variable O&M costs are based on operating at NOx outlet emissions marginally below the compliance emission rate.

<u>Unit name</u> <u>Lake Catherine Unit 4</u>

Unit Data		Reagen	nt Costs
Size (Gross kW)	558,000	Aq.Ammonia \$/t	\$700
Average NOx Emission Rate (lb/MMBtu)	0.4825	An.Ammonia \$/t	\$400
Nominal Max. Boiler Heat Input (mmBtu/hr)	5,850.0	· · · · · · · · · · · · · · · · · · ·	\$350
Avg. Heat Rate (Btu/kwh)		N/F-T Urea \$/t	\$618
Aux. Power (kw)	-	Gas Cost, \$/MBtu	4.900
		Water Cost, \$/1000 gal	
Est. Capacity Factor (%)	10.00	(3)	2
Boiler Type	T/F	Electricity, \$/MWh	41.50
Boiler Eff. (%)	82		
Estimated NOx, tons/day Max	3.387		
Emission Limit, tons	-		
NOx Sales/Buy rate, \$/ton	2500.0		
Fuel	Gas		
Seasonal Days	153		
Basis	0		
Analysis - Enter "0" for Annual and 1	for Seasonal		
CF For Variable O&M	10.00	1	

							Opera	ting & Maintenance	Cost
	Estimated Reduction	Emission Rate After	Tons of NOx Emission,	Tons of NOx Removed,				Variable O&M,	Fuel Impact,
	from Baseline	Control	Seasonal/Annual	season/annual	Estimated (Capital Cost	Fixed O&M	season or yr	season or yr
Technology	%	(lb/mmBtu)	tons	tons	\$/kW	\$/unit	\$/yr	\$/@CF	\$/@CF
Baseline	0	0.4825							
BOOS (at 558 MW)	50.0	0.24	618	618	1.6	\$893,000	\$21,000	\$0	\$0
LNB + OFA	60.0	0.19	495	742	15.7	\$8,762,000	\$210,000	\$0	\$0
SCR	90.0	0.05	124	1,113	106.8	\$59,587,000	\$358,000	\$254,000	\$0
SNCR	40.0	0.29	742	495	27.8	\$15,507,000	\$279,000	\$1,542,000	\$98,000
Water Injection	9.1	0.44	1,124	113	3.9	\$2,177,000	\$52,000	\$18,000	\$468,000
IFGR (below 500 MW)	19.0	0.39	1,001	235	3.9	\$2,166,000	\$52,000	\$0	\$0
FGR	60.0	0.19	495	742	20.6	\$11,489,000	\$207,000	\$142,000	\$0
LNB/OFA + SNCR	70.0	0.14	371	865	43.5	\$24,269,000	\$489,000	\$393,000	\$69,000
LNB/OFA + SCR	94.0	0.03	74	1,162	122.5	\$68,349,000	\$568,000	\$268,000	\$0

- (1) Aux. Power cost is calculated based on variation in capacity factor
- (2) Assumed water cost of \$2/1000 gallons.
- (3) Assumed that 15% urea will be used for SNCR technology.
- (4) Assumed that initial catalyst life is 40,000 hours.
- (5) Water Injection is used only for trimming at high load. Approximately 66% of Hours are affected.
- (6) For SCR technology, the variable O&M costs are based on operating at NOx outlet emissions marginally below the compliance emission rate.

Entergy Services, Inc.
White Bluff & Lake Catherine
Project No. 13027-001
NOx Control Technology Cost
and Performance Study

SL-011439 Final Report Rev. 4 5/16/2013 Page No. 5

APPENDIX D

1. BOOS AT FULL UNIT LOAD

<u>To:</u> Cc: DAVID H PARK/Sargentlundy@Sargentlundy,

Bcc:

Subject: Fw: BOOS for NOx Control

STEVE M KATZBERGER/Sargentlundy - Thursday 03/28/2013 03:32 PM From:

From: Stephen Wood [mailto:swood@etecinc.net]

Sent: Monday, March 25, 2013 2:20 PM

To: HANTZ, JOSEPH

Subject: BOOS for NOx Control

Joe,

The attached PDF file contains background information on utilizing burners out of service for NOx control, as well as, predicted Lake Catherine Unit 4 burner header pressures and NOx emissions, utilizing the top burner elevation out of service (4BOOS). If you have any questions, please let me know.

Regards,

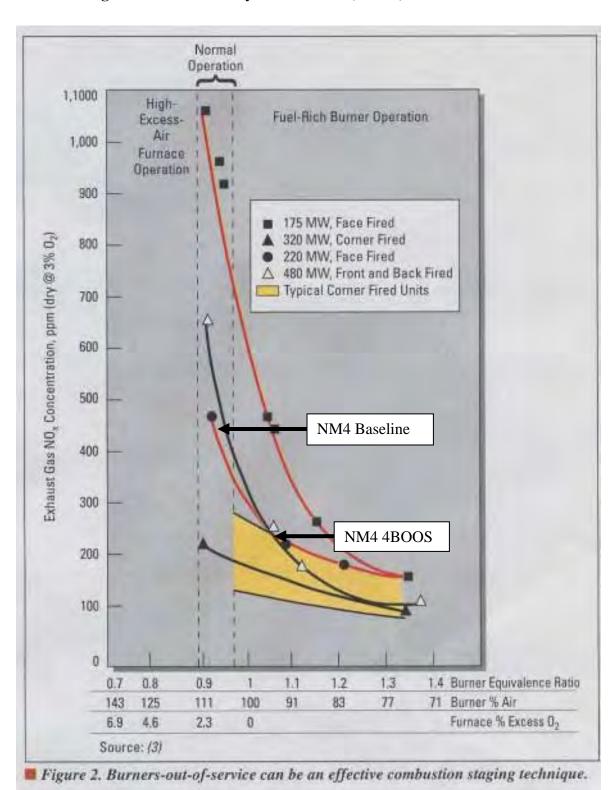
Steve Wood **Principal Officer** Entropy Technology & Environmental Consultants, Inc. (ETEC Inc.) 12337 Jones Rd. Suite 414 Houston, TX 77070 Ph: 281-807-7007

Cell: 713-253-8230 Fax: 281-807-1414

Website: www.etecinc.net

This e-mail and any of its attachments may contain ETEC Inc. proprietary information, which is privileged, confidential, or subject to copyright belonging to the ETEC Inc. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy of this e-mail and any printout. Thank You.

****** BOOS for NOx Control.pdf


Combustion Modification (BOOS) for NOx Control

Implementation of Burner Out Of Service (BOOS) operation is a practical and cost-effective means for achieving staged combustion (i.e., modifying burner stoichoimetry to reduce NOx emissions formation) on an existing gas/oil fired electric utility boiler. Utilizing BOOS operation for NOx control is well documented in the literature, e.g., EPA 456/F-99-006R "Nitrogen Oxides (NOx), Why And How They Are Controlled", November 1999, and EPRI TR-108181 "Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers, Version 2.0", June 1997, among numerous others.

The technique of BOOS operation involves terminating the fuel flow to selected burners on the top elevation while leaving the air registers open. The remaining burners operate fuel-rich, thereby limiting oxygen availability, lowering peak flame temperatures, and reducing NOx formation. The un-reacted products combine with the air from the above terminated-fuel burners to complete burnout before exiting the furnace. I have personally been involved with implementing BOOS operation on virtually every gas fired electric utility boiler design across the country since the mid 1970's. In almost every case, the original "high" burner header pressure (BHP) set point had to be increased to accommodate BOOS operation. No adverse operational or maintenance problems corresponding to BOOS implementation have been reported.

BOOS operation can be a very effective NOx reduction technology, depending on the degree of staging, as shown for Ninemile Unit 4 (750 mw CE Tangential Fired) in Figure 1. The corresponding BOOS pattern is shown in Figure 2. The BHP corresponding to 4BOOS operation on Lake Catherine Unit 4 is shown in Figure 3. The "High" BHP set point would need to be increased from 42 to 50 psig. The predicted NOx emissions corresponding to 4BOOS operation are presented in Figure 4.

Figure 1- Stoichiometry Modification (BOOS) NOx Reduction

Figure 2- Ninemile Units 4 and 5 BOOS Pattern (Top Elevation Out of Service & Air Registers Open)

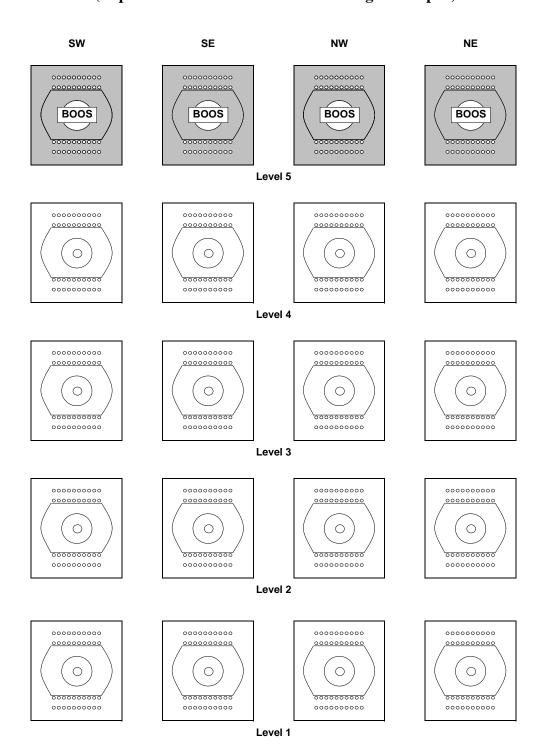


Figure 3- Lake Catherine Unit 4 Burner Header Pressure

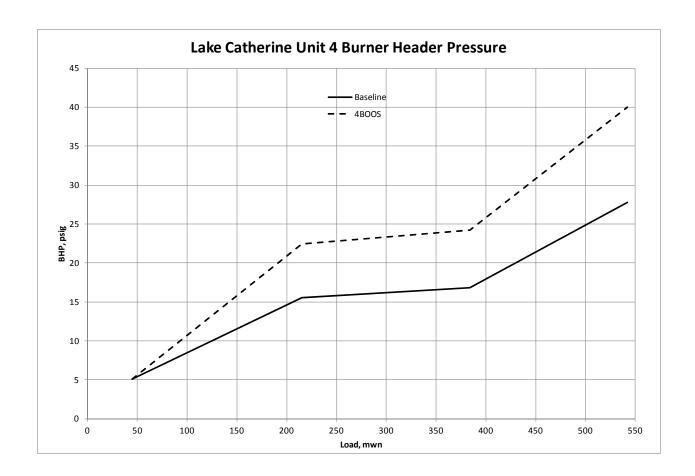
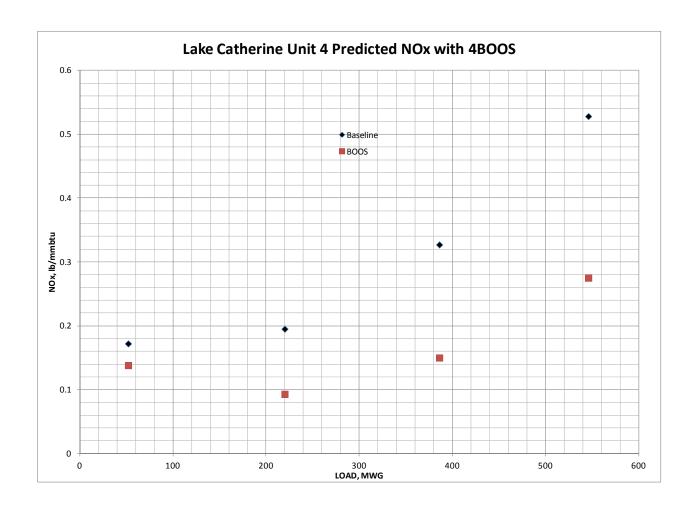



Figure 4- Lake Catherine Unit 4 NOx Emissions Prediction

