

REGIONAL HAZE EVALUATION

Revision 0

Pursuant to

DEQ Information Collection Request dated January 8, 2020

AFIN 32-00036

FutureFuel Chemical Company P.O. Box 2357 Batesville, AR 72503 ARD089234884

April 7, 2020

EXECUTIVE SUMMARY

FutureFuel Chemical Company (FFCC) owns and operates an organic chemical manufacturing plant located southeast of Batesville, Arkansas. As part of plant operations, FFCC (EPA ID# ARD089234884) operates two natural gas boilers, three coal-fired boilers, one waste incinerator, one regenerative thermal oxidizer, two thermal oxidizers, and a flare. FFCC is currently operating these units under its Arkansas Division of Environmental Quality (DEQ) Title V Permit (1085-AOP-R14).

On January 8, 2020, FFCC (AFIN 32-00036) received an "Information Collection Request" from the DEQ asking for information about potential emission reduction strategies for SO_2 and NO_x emissions from the FutureFuel facility. DEQ seeks to develop a Regional Haze State Implementation Plan (SIP) that demonstrates reasonable progress toward achieving natural visibility conditions by remedying existing and preventing future visibility impairment from anthropogenic sources of air pollution by 2064. FFCC believes information provided in this transmittal may be useful as DEQ develops a step-wise approach to the achieving the 2064 goal.

The request stated, at a minimum, that FFCC should include the following potential strategies for the emission units that emit the majority of the SO_2 and NO_x from FFCC, identified by the DEQ as SN:6M01-01 three coal-fired boilers:

- SO₂ Reduction Strategies
 - Fuel Switching from coal to natural gas
 - Wet Gas Scrubber
 - Spray Dryer Absorber
 - In-Duct Dry Sorbent Injection
 - Fuel Switching to a lower sulfur coal
- NO_x Reduction Strategies
 - Selective Catalytic Reduction
 - Selective Non-Catalytic Reduction
 - Low NOx Burner

FFCC and the DEQ concur that the three coal-fired boilers emit the majority of SO_2 and NOx emissions at FFCC, and this submittal will evaluate feasibility and costs associated with implementing the above strategies on FFCC's coal-fired boilers. However, it should be noted that previous DEQ modeling results indicates the coal boilers at FFCC, "do not cause or

FFCC Regional Haze	Evaluation
Revision Number:	0
Revision Date:	4/7/2020
Page	ii of viii

contribute to visibility impairment at the following Class I wilderness areas in Arkansas: Caney Creek and Upper Buffalo." (BART modeling results, Attachment C.) For this reason, FFCC believes it is not prudent to make more than minimal control steps in this period, Planning Period II.

This evaluation relates to the second planning period of development of a state implementation plan (SIP) to address regional haze. The DEQ plans to use the information provided in this evaluation to conduct a four-factor analysis and determine if there are emission control options at FFCC's coal-fired boilers that, if implemented, could be used to attain reasonable progress toward the state's visibility goals.

FFCC completed an evaluation on fifteen (15) different strategies. Three (3) of these strategies were determined to be technically infeasible. Twelve (12) of these strategies were technically feasible and were assessed to determine 1) control effectiveness, 2) emission reduction, 3) time necessary to implement, 4) remaining useful life, 5) energy and non-environmental impacts, and 6) the cost of implementation.

Table ES-1 below provides a summary of the three technologies that were not technically feasible. More information is provided in Section 4.0.

Emission Reduction Strategy	Rationale
Installation of a Low-NOx Burner on the CFBs	There are no available or applicable Low-NOx burner systems designed for stoker style boilers.
Installation of a Sodium Hydroxide Wet Scrubber on the CFBs	Wet Scrubbing is a viable option, but the use of Sodium Hydroxide scrubbing is not technically feasible to due to NPDES permit limitations.
Use of a Low-Sulfur Coal from a nearby Power Plant at the CFBs	The local supply of low-sulfur coal is not usable at FFCC's stoker style boilers due to the heating value being too low (< 11,000 Btu/lb) and the fusion temperature being two low (< 2,550°F fluid fusion temp)

 Table ES-1 - Summary of Technically Infeasible Strategies

Table ES-2 on the next page provides a summary of the emissions reduction and costs of the twelve technologies that were determined to be technically feasible.

Emission Reduction Strategy	Emi Redu SO2	ssion action	Baseline Emissions Before Control (ton/yr)	Emission Reduction by Strategy (ton/yr)	Capital and Indirect Investment (Millions)	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Cost	Cost per Ton Reduced (\$/ton)
Fuel Switch to 2.5% Sulfur Coal	17%	0%	2,884	490	\$0.0	\$0.0	\$1,149,137	\$1,149,137	\$2,345
Fuel Switch to 2% Sulfur Coal	33%	0%	2,884	952	\$0.0	\$0	\$1,995,030	\$1,995,030	\$2,096
Selective Non- Catalytic Reduction	0%	40%	332	133	\$23.8	\$2,252,744	\$413,695	\$2,666,469	\$20,049
Fuel Switch to 1.5% Sulfur Coal	50%	0%	2,884	1,442	\$0.0	\$0	\$4,232,823	\$4,232,823	\$2,935
Selective Catalytic Reduction	0%	80%	332	266	\$46.1	\$4,166,872	\$541,053	\$4,708,925	\$17,703
Fuel Switch to Natural Gas - Retrofit 1 CFB	33%	30%	3,216	1,061	\$6.3	\$903,388	\$10,931,976	\$11,835,364	\$11,155
Close and Replace 1- CFB with Natural Gas	33%	30%	3,216	1,061	\$8.2	\$1,205,117	\$10,931,976	\$12,137,153	\$11,439
Dry Sorbent Injection	40%	0%	2,884	1,154	\$61.9	\$9,892,986	\$921,467	\$10,814,453	\$9,371
Spray Dry Absorption	92%	0%	2,884	2,653	\$67.7	\$11,568,303	\$2,058,925	\$13,627,228	\$5,137
Wet Scrubber - Lime Slurry	94%	0%	2,884	2,711	\$79.4	\$14,194,554	\$3,043,215	\$17,237,769	\$6,358
Fuel Switch to Natural Gas - Retrofit 3 CFBs	99%	90%	3,216	3,154	\$12.9	\$1,922,044	\$30,597,829	\$32,519,873	\$10,311
Close and Replace 3- CFBs with Natural Gas	99%	90%	3,216	3,154	\$13.6	\$2,043,919	\$30,597,829	\$32,641,748	\$10,349

Table ES-2 – Summary of Feasible Strategies by Annual Cost

FFCC Regional Haze EvaluationRevision Number:0Revision Date:4/7/2020Pageiv of viii

DEQ presented modeling results indicating that FFCC contributes a minimal amount to haze in Class I Wilderness Areas. Previous DEQ BART models (Attachment C-1.1) indicated there was no contribution to visibility impairment in Arkansas Class I Wilderness Areas. For this reason, FFCC believes it is not prudent to make more than minimal control steps in this period, Planning Period II.

End of Executive Summary

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY	i
TABLE OF CONTENTS	v
1.0 – INTRODUCTION	1
1.1 – FFCC Regional Haze Emission Reduction Strategy	2
1.2 – FFCC Facility Information and Contacts	3
1.3 – DEQ Regional Haze Information Request	4
1.4 – FFCC Emissions Summary	5
1.5 – Description of the Coal-Fired Boilers	6
1.6 – Regional Haze Evaluation Objective and Layout	9
2.0 – POTENTIAL EMISSION REDUCTION STRATEGIES	10
3.0 – EMISSION REDUCTION STRATEGY EVALUATION	11
4.0 – TECHNICALLY INFEASIBLE EMISSION REDUCTION STRATEGIES	12
4.1 – Installation of a Low NOx Burner	12
4.2 – Installation of a Wet Scrubber using Sodium Hydroxide (NaOH)	12
4.3 – Use of Lower Sulfur Coal from a Nearby Power Plant	13

TABLE OF CONTENTS, continued

Page

5.0 – TECHNICALLY FEASIBLE EMISSION REDUCTION STRATEGIES	14
5.1 – Fuel Switch from Coal to Natural Gas (Close and Replace All CFBs)	14
5.2 – Fuel Switch from Coal to Natural Gas (Close and Replace One CFB)	17
5.3 – Fuel Switch from Coal to Natural Gas (Retrofit All CFBs)	19
5.4 – Fuel Switch from Coal to Natural Gas (Retrofit One CFB)	22
5.5 – SO2 Control Technology – Wet Gas Scrubber	24
5.6 – SO2 Control Technology – Spray Dry Absorber	27
5.7 – SO2 Control Technology – Dry Sorbent Injection	30
5.8 – Fuel Switch to Lower Sulfur Coal (2.5% Sulfur)	33
5.9 – Fuel Switch to Lower Sulfur Coal (2.0% Sulfur)	36
5.10 – Fuel Switch to Lower Sulfur Coal (1.5% Sulfur)	39
5.11 – NOx Control Technology – Selective Catalytic Reduction	42
5.12 – NOx Control Technology – Selective Non-Catalytic Reduction	45
6.0 – SUMMARY OF REGIONAL HAZE EVALUATION	48
6.1 – Summary of Technically Infeasible Strategies	48
6.2 – Summary of Technically Feasible Strategies	48
6.3 – Summary of FFCC Approach to the Regional Haze Evaluation	51

LIST OF ATTACHMENTS

ATTACHMENT A – EMISSION REDUCTION TIMELINES

Attachment A-1.1 - Close and Replace All CFBs Timeline

Attachment A-1.2 – Convert 1 Coal Fired Boiler to Natural Gas Timeline

Attachment A-1.3 - Convert 3 Coal Fired Boilers to Natural Gas Timeline

Attachment A-1.4 - Close 1 Coal Fired Boiler and Replace with Natural Gas Boilers Timeline

Attachment A-1.5 - Install Wet Gas Scrubber Timeline

Attachment A-1.6 - Install Spray Dry Absorber Timeline

Attachment A-1.7- Install Dry Sorbent Injection Timeline

Attachment A-1.8 – Reserved

Attachment A-1.9 – Reserved

Attachment A-1.10 – Reserved

Attachment A-1.11 – Install Selective Catalytic Reduction Timeline

Attachment A-1.12 – Install Selective Non-Catalytic Reduction Timeline

ATTACHMENT B – Strategy Cost Analysis

Attachment B-1.1 – Close and Replace All CFBs Cost Analysis

Attachment B-1.2 – Close and Replace One CFB Cost Analysis

Attachment B-1.3 – Retrofit All CFBs Cost Analysis

Attachment B-1.4 – Retrofit One CFB Cost Analysis

Attachment B-1.5 – Install Wet Gas Scrubber Cost Analysis

LIST OF ATTACHMENTS, continued

Attachment B-1.6 - Install Spray Dry Absorber Cost Analysis

Attachment B-1.7 – Install Dry Sorbent Injection Cost Analysis

Attachment B-1.8 - Cost Analysis

Attachment B-1.9 - Switch to 2% Coal Cost Analysis

Attachment B-1.10 - Switch to 1.5% Coal Cost Analysis

Attachment B-1.11 - Install Selective Catalytic Reduction Cost Analysis

Attachment B-1.12 - Install Non-catalytic Reduction Cost Analysis

ATTACHMENT C – OTHER INFORMATION

Attachment C-1.1 – Best Available Retrofit Technology (BART) modeling results

Attachment C-1.2 – Reserved

FFCC Regional Haze Evaluation			
Revision No.:	0		
Revision:	4/7/2020		
Page:	1 of 51		

1.0 INTRODUCTION

FutureFuel Chemical Company (FFCC) owns and operates an organic chemical manufacturing plant located southeast of Batesville, Arkansas. As part of plant operations, FFCC (EPA ID# ARD089234884) operates two natural gas boilers, three coal-fired boilers, one waste incinerator, one regenerative thermal oxidizer, two thermal oxidizers, and a flare. FFCC is currently operating these units under its Arkansas Division of Environmental Quality (DEQ) Title V Permit (1085-AOP-R14).

On January 8, 2020, FFCC (AFIN 32-00036) received an "Information Collection Request" from the DEQ asking for information about potential emission reduction strategies for SO_2 and NO_x emission from the FutureFuel facility. DEQ seeks to develop a Regional Haze State Implementation Plan (SIP) that demonstrates reasonable progress toward achieving natural visibility conditions by remedying existing and preventing future visibility impairment from anthropogenic sources of air pollution by 2064. FFCC believes information provided in this transmittal may be useful as DEQ develops a step-wise approach to the achieving the 2064 goal.

The request stated, at a minimum, that FFCC should include the following potential strategies for the emission units that emit the majority of the SO_2 and NO_x from FFCC, identified by the DEQ as SN:6M01-01 three coal-fired boilers:

- SO₂ Reduction Strategies
 - Fuel Switching from coal to natural gas
 - Wet Gas Scrubber
 - Spray Dryer Absorber
 - In-Duct Dry Sorbent Injection
 - Fuel Switching to a lower sulfur coal
- NO_x Reduction Strategies
 - o Selective Catalytic Reduction
 - Selective Non-Catalytic Reduction
 - Low NOx Burner

FFCC and the DEQ concur that the three coal-fired boilers emit the majority of SO_2 and NOx emissions at FFCC, and this submittal will evaluate feasibility and costs associated with implementing the above strategies on FFCC's coal-fired boilers. However, it should be noted that previous DEQ modeling results indicates the coal boilers at FFCC "do not cause or

FFCC Regional Ha	ze Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	2 of 51

contribute to visibility impairment at the following Class I wilderness areas in Arkansas: Caney Creek and Upper Buffalo." (BART modeling results, Attachment C.) For this reason, FFCC believes it is not prudent to make more than minimal control steps in this period, Planning Period II.

The DEQ plans to use the information provided in this evaluation to conduct a four-factor analysis and determine if there are emission control options at FFCC's coal-fired boilers that, if implemented, could be used to attain reasonable progress toward the state's visibility goals.

1.1 FFCC Regional Haze Emission Reduction Strategy

The balance of this introduction provides an overview of the FFCC Regional Haze Emission Reduction Strategy, including the following:

- FFCC Facility Information
- DEQ Regional Haze Information Request
- FFCC Emissions Summary
- Description of the Coal-Fired Boilers
- Regional Haze Evaluation Objective and Layout

FFCC Regional Haze Evaluation Revision No.: 0 Revision: 4/7/2020 Page: 3 of 51

1.2 FFCC Facility Information and Contacts

Facility Information

Name:	FutureFuel Chemical Company
Address:	2800 Gap Road Batesville, Arkansas 72501
Phone:	(870) 698-3000
<u>EPA ID:</u>	ARD089234884
<u>AFIN:</u>	32-00036
<u>Title V Permit:</u>	1085-AOP-R14
RCRA Permit:	11H-RN2

Facility Contacts

Contact:	Thomas L Floyd	Contact:	Philip Antici
Title:	Assoc. Environmental Biologist	Title:	HSES Manager
Address:	P.O. Box 2357 Batesville, AR 72503	Address:	P.O. Box 2357 Batesville, AR 72503
Phone:	(870) 698-5577	Phone:	(870) 698-5358
Email:	thomasfloyd@ffcmail.com	Email:	philipantici@ffcmail.com

1.3 DEQ REGIONAL HAZE INFORMATION REQUEST

The request stated, at a minimum, that FFCC should include the following potential strategies for the emission units that emit the majority of the SO_2 and NO_x from FFCC, identified by the DEQ as SN:6M01-01 three coal-fired boilers:

- SO₂ Reduction Strategies
 - Fuel Switching from coal to natural gas
 - Wet Gas Scrubber
 - Spray Dryer Absorber
 - o In-Duct Dry Sorbent Injection
 - Fuel Switching to a lower sulfur coal
- NO_x Reduction Strategies
 - Selective Catalytic Reduction
 - o Selective Non-Catalytic Reduction
 - Low NO_x Burner

FFCC and the DEQ concur that the three coal-fired boilers emit the majority of SO_2 and NO_x emissions at FFCC, and this submittal will evaluate feasibility and costs associated with implementing the above strategies on FFCC's coal-fired boilers.

1.4 FFCC Emissions Summary

FFCC has several emission points of NO_x and SO_2 . However, as noted earlier, the Coal-Fired Boilers generate the vast majority of those emissions. Below is a list of units' onsite with the potential to emit NO_x and/or SO_2 :

- Three Coal-Fired Boilers
- One Incinerator
- Two Natural Gas Boilers
- One Regenerative Thermal Oxidizer (RTO)
- Two Thermal Oxidizers (TO-1 & TO-2)
- One Flare

Table 1.0 below, list these units and their annual emissions per year. They are listed in order of ton/yr of total SO_2 and NO_x .

Unit Description	Unit #	¹ SO ₂ (ton/yr)	% of Total SO ₂	¹ NO _x (ton/yr)	% of Total NO _x	SO ₂ & NO _x (ton/yr)	% Total Emissions
Coal-Fired Boilers	6M01-01	2,884	99	332	71	3216	95
Incinerator	6M03-05	26	1	48	12	74	2
Natural Gas Boiler #4	6M06-01	<1	0	28	6	28	1
Natural Boiler #5	6M07-01	<1	0	39	9	39	1
RTO	5N09-01	1	0	10	2	11	<1
TO-1	5N09-02	<1	0	<1	0	<1	<1
ТО-2	5N09-03	<1	0	<1	0	<1	<1
Flare	5N03-54	<1	0	2	0	2	<1

Table 1.0 – FFCC Emissions Summary

¹Note: Baseline actual emission rate in ton/yr based on maximum monthly value in the period between 2017-2019,

FFCC Regional Ha	FFCC Regional Haze Evaluation	
Revision No.:	0	
Revision:	4/7/2020	
Page:	6 of 51	

Table 1.0 above illustrates the following points of emphasis:

- 95% of all SO₂ and NO_x emissions are emitted from the coal-fired boilers. They emit over 99% of all SO₂, and 71% of all NO_x. This validates that emission reduction strategies on the coal-fired boilers will have the most significant impact.
- Approximately 86% of all SO₂ and NO_x emissions are in the form of SO₂, leaving the remaining 14% as NO_x. This substantiates that emission reduction strategies that reduce SO₂ will have the most significant impact.

This evaluation will focus on Emission Reduction Strategies that involve the coal-fired boilers. For purposes of this evaluation, the coal-fired boilers will also be referred to as by the acronym "CFB" if referring to one coal-fired boiler or "CFBs" when referring to more than one coal-fired boiler.

1.5 Description of the Coal-Fired Boilers

FFCC operates three coal-fired boilers (Nos. 1, 2, and 3) at its Batesville, Arkansas Plant. The CFBs consist of 4 primary process systems: (1) primary fuel and waste feed system, (2) boiler system, (3) air pollution control system (APCS), and (4) ash handling system.

Primary Fuel and Waste Feed Systems

Stoker coal is the primary fuel used to maintain the boilers at a steady state. Coal is fed to the boilers on a continuous basis (i.e., 24 hours/day, 7 days/week) to maintain the desired steam demand.

The coal is delivered by bulk transport. The coal is unloaded into track-hoppers and conveyed on a belt conveyor system up to three separate coal bunkers inside the building that houses the boilers. The coal is gravity fed via the coal chute from the bunkers into the boilers. The coal is mechanically spread onto a traveling grate once it enters the boilers. The grate slowly moves the burning bed of coal across the boiler.

The liquid waste burned in the boilers is usually supplied from one of eleven permitted hazardous waste storage tanks. Waste can also be fed directly to the boiler from containers or a 90-day accumulation tank. FFCC can burn wastes that are potentially incompatible with the waste stored in tanks directly from containers.

FFCC Regio	nal Haze Evaluation
Revision No	.: 0
Revision:	4/7/2020
Page:	7 of 51

Each boiler has one waste liquid injection nozzle located above the coal fuel bed. The liquid waste is injected into the boiler firebox through this steam-atomizing nozzle. Each waste liquid injection nozzle is also equipped with a separate fan/blower to provide combustion air to the nozzle in order to facilitate combustion. However, the nozzle does not act as a stand-alone burner. The primary source of heat needed to sustain a stable flame in the boiler firebox is the burning coal fuel bed.

The boilers could also burn non-hazardous solid waste and alternative fuels. These are fed directly to the boilers via special handling systems. Non-hazardous wastes handled in these direct systems include biological sludge from FFCC's wastewater treatment plant.

Combustion Process

The three coal-fired boilers are a Model MKB units built by E. Keeler Co. in 1976. The boilers are water tube type units with firebox dimensions that are approximately 11 feet wide by 19 feet long by 45 feet tall. The boilers are rated for 50,000 pound per hour steam but have design criteria that specify a maximum steam production surge of 57,500 pounds per hour.

An induced draft fan provides the motive force to transport the combustion gas toward the cold end of the boilers where it will exit to the ESPs at temperatures between 350 and 520 °F. The combustion gas flow rate is expected to range between 15,000 to 25,000 standard cubic feet per minute (scfm).

Air Pollution Control System

The electrostatic precipitators (ESP) remove the suspended material, principally fly ash, from the boiler flue gas. Each of the three ESPs contains three (3) sections demonstrated to treat flue gases to a basis at or below 68 milligrams per dry standard cubic meter (mg/dscm). ESP performance is maintained by ensuring that adequate power, measured in kilowatts (KW), is supplied to each section.

Ash Handling System

Bottom ash falls from the boiler into a collection hopper and the ESPs discharge fly ash into a separate hopper. The ash is then hydraulically conveyed to an ash management area.

FFCC Regional Ha	ze Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	8 of 51

Waste to be treated

FFCC produces a variety of specialty chemicals used by numerous industries, including biofuel, photographic, agricultural, and other manufacturing organizations. FFCC has explored and continues to look for additional ways to recover and reuse as much of its wastes as is practicable, especially the solvent wastes. FFCC is currently burning wastes, which cannot be recovered for useful benefit, in the coal-fired boilers. These wastes not only assist in producing steam, they also reduce the amount of coal combustion necessary to maintain steam production.

FFCC's liquid wastes typically consist of RCRA-listed or characteristic wastes containing constituents listed in 40 Code of Federal Regulation (CFR) 261 Appendix VIII. FFCC does not generate any waste materials that are designated as F020, F021, F022, F023, F026, or F027 wastes (dioxin waste codes).

1.6 Regional Haze Evaluation Objective and Layout

The overall objective of this Regional Haze Evaluation is to provide the DEQ with the information requested in a letter dated January 8, 2020.

This evaluation will focus on the coal-fired boilers and provide information on the following areas:

- Potential Emission Reduction Strategies (Section 2)
- Emission Reduction Strategy Evaluation Objectives (Section 3)
- Technically Infeasible Emission Reduction Strategies (Section 4)
- Technically Feasible Emission Reduction Strategies (Section 5)
- Summary of the Emission Reduction Strategies (Section 6)

2.0 <u>POTENTIAL EMISSION REDUCTION STRATEGIES</u>

The DEQ request stated, at a minimum, that FFCC should include the following potential strategies for the emission units that emit the majority of the SO_2 and NO_x from FFCC, identified by DEQ as SN:6M01-01 three coal-fired boilers:

- SO₂ Reduction Strategies
 - Fuel Switching from coal to natural gas
 - Wet Gas Scrubber
 - Spray Dryer Absorber
 - o In-Duct Dry Sorbent Injection
 - Fuel Switching to a lower sulfur coal
- NO_x Reduction Strategies
 - o Selective Catalytic Reduction
 - Selective Non-Catalytic Reduction
 - Low NO_x Burner

Each one of these strategies will be evaluated to determine if they are technically feasible options for FFCC's coal-fired boilers. Those strategies that are feasible will be evaluated in detail to determine the reduction in emissions, as well as, the cost of implementing that strategy. For any strategies that are determine to be infeasible, FFCC will document as to why but will not conduct a detailed evaluation of that strategy.

3.0 EMISSION REDUCTION STRATEGY EVALUATION

Each potential Emission Reduction Strategy (ERS) will be evaluated for technical feasibility and, if feasible, then FFCC will evaluate and provide the following information in Section 5:

- Control effectiveness (percentage of NO_x and/or SO₂ reduced)
- Emission reductions comparing the following:
 - Baseline actual emission rate in ton/yr for the period between 2017 and 2019
 - Controlled emission rate in ton/yr
 - o Resulting annual emission reductions in tons/yr
- Time necessary to implement the strategy
 - A reasonable time period is one in which the source comes "into compliance in an efficient manner without unusual overtime, above-market wages and prices, or premium charges for expedited delivery of equipment."
- Remaining useful life
 - Remaining useful life of an emission unit will be the remaining useful life of the control technology as found in the EPA Pollution Control Cost Manual.
 - In cases where this is not applicable FFCC will estimate the life of the strategy.
- Energy and non-air quality environmental impacts
 - Associated permitting costs, waste disposal costs, and compliance costs, etc.
- Cost of Implementing the Strategy that involves:
 - Capital and Non-Reoccurring costs
 - Annual Operating and Maintenance Costs
 - o Total Annual Costs
 - Annual Cost per ton of emissions reduced

4.0 <u>TECHNICALLY INFEASIBLE EMISSION REDUCTION STRATEGIES</u>

There were three emission reduction strategies that the agency requested FFCC evaluate that were deemed technically infeasible to implement on the CFBs.

- Installation of a Low NO_x Burner,
- Installation of a Wet Scrubber using Sodium Hydroxide, and
- Use of Low Sulfur Coal from a nearby Power Plant.

4.1 Installation of a Low NO_x Burner

FFCC's coal-fired boilers are E. Keeler water tube boilers fed by a spreader-stoker traveling grate system designed by the Detroit Stoker Company. The coal is mechanically spread onto a traveling grate once it enters the boiler's firebox, and then the grate slowly moves the burning bed of coal across the firebox where the combusted bottom ash drops off into a hopper for removal.

There are currently no low- NO_x burner systems for a spreader-stoker traveling grate coal-fired boiler. Therefore no systems have been installed and operated successfully for this type of system. Since no system is available or applicable, FFCC deems this strategy infeasible.

4.2 Installation of a Wet Scrubber using Sodium Hydroxide (NaOH)

FFCC considered installing a wet scrubbing system that would use NaOH to scrub the SO₂ gases from the exit gas. FFCC currently uses NaOH to scrub acid gases at its on-site incinerator. However, upon evaluation the amount of base needed to neutralize the SO₂ from burning coal created an enormous amount of salts. The amount of salt in the scrubber blowdown would exhaust the limits FFCC currently has in its NPDES permit. Since there is no practical method of removing the salts from the scrubber solution, FFCC deemed this strategy infeasible.

4.3 Use of Lower Sulfur Coal from a Nearby Power Plant

There is a nearby power plant that uses coal which contains significantly less sulfur than the coal used in FFCC's coal-fired boilers. This coal has sulfur content near 0.5% sulfur as compared to FFCC's current sulfur specification of 3% sulfur.

As noted earlier, FFCC's boiler is an E. Keeler, spreader-stoker, traveling grate water tube boiler. This is a completely different style boiler than the one used at the local power plant, which as a pulverized coal feed system.

A spreader stoker boiler uses stoker grade coal because it must set on the traveling gate bed until combusted and since the ash from a spreader stoker is about 90% bottom ash, the ash then needs to readily fall off the grate once it is combusted.

The pulverized coal boiler pulverizes the coal and basically blows it into the combustion zone. Pulverizing the coal allows the use of coal with a lower heating value than that of a spreader stoker system, and since the ash is typically 90% fly ash, the fusion temperature of the coal is insignificant.

FFCC's system is designed for coal with a heating value of at least 11,100 Btu/lb (as received). The coal specification supplied to us by the local power plant indicated the heating value was less than 9,000 Btu/lb (as received). The minimum fluid fusion temperature of the coal used at FFCC must be at least 2,550 deg F. The coal used by the local power plant has a fluid fusion temperature at around 2,234 deg F. There are other significant differences but these two specifications alone make the coal at the local power plant technically infeasible for FFCC's CFBs.

FFCC has located some coal supplies that contain a lower concentration of sulfur than the coal currently under contract, and these coal supplies are identified and evaluated in the Section 5.0.

5.0 TECHNICALLY FEASIBLE EMISSION REDUCTION STRATEGIES

FFCC completed an evaluation on twelve (12) different emission reduction strategies that were technically feasible to implement at the coal-fired boilers (CFBs). Four (4) of these strategies involved reduction of both SO₂ and NO_x emissions, six (6) of these strategies involved only reducing SO₂ emissions, and two (2) of these strategies only involved reducing NOx emissions.

5.1 Fuel Switch from Coal to Natural Gas (Close and Replace All CFBs)

FFCC evaluated closing all CFBs and removing them from service. This would require FFCC to replace the 150k lb/hr steam production with non-coal fueled boilers and ship all waste fuels offsite for treatment. The replacement of steam would require a minimum of two 75k lb/hr steam natural gas boilers (150k lb/hr steam combined).

5.1.1 Control Effectiveness

Since 95% of all SO₂ and NO_x emissions come from the three coal-fired boilers, this option would reduce total SO₂ and NO_x emissions from the plant by about 92-94%. Shutting down the CFBs would result in a control effectiveness of 100%, but the replacement combustion units would add between 30 - 50 tons/yr of NO_x so the emission reduction would be around 98%.

5.1.2 Emission Reductions

The CFBs baseline calculated emissions were 3,216 tons/year of combined SO₂ and NO_x. Replacing them with natural gas boilers would reduce the CFB emissions by about 98%, which would be 3,154 tons/year. Since the total emissions for the facility are approximately 3,375 tons/year, the reduction would be equal to about a 93% reduction in total emissions. See Table 5.1-A below for an emission reduction summary for this strategy.

FFCC Regional Haze Evaluatio					
Revision No.:	0				
Revision:	4/7/2020				
Page:	15 of 51				

3,375

93%

Table 5.1-A - Replace All CFBs Emission Reduction Summary								
Emission Reduction Strategy	Emi Redu (% SO ₂	ssion Iction %) NO _x	CFBs Baseline Emissions (ton/yr)	CFB Emission Reduction (ton/yr)	CFB Emission Reduction (%)	Facility Baseline Emission (ton/yr)	Facility Emission Reduction (%)	
Close All CFBs								

5.1.3 <u>Time Necessary to Implement Strategy</u>

3,216

90%

It is estimated that it would take 2 ½ years to transition the steam demand from coal-fired boilers to natural gas boilers, as well as, prepare logistically for shipping waste off-site. This would involve about a year to study, design the system, and get DEQ approval for construction and implementation. Then it would take a year for vendors to evaluate the system, be selected, build the equipment, and then deliver the equipment needed to construct the system. Finally it would take 6 months for construction, checkout and training before it was up and running. See Attachment A-1.1 for a chart of this timeline.

3,154

98%

5.1.4 <u>Remaining Useful Life</u>

99%

and replace with

Natural Gas Units

There is no enforceable shutdown of these units and there is no documented useful life for the replacement boilers in the EPA Cost Manual. For purposes of this evaluation FFCC chose to use a 30-year useful life even though well maintained units could last beyond that time frame.

5.1.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would be the loss of FFCC's ability to burn waste for energy recovery as permitted by regulation. This cost would fluctuate based on business conditions and other factors, but FFCC estimated an annual cost of over \$25 million dollars in off-site waste disposal alone. However, FFCC placed this cost under "Annual Operating Costs" since it would be reoccurring for the life of the facility. See Attachment B-1.1 for a more detailed explanation of energy and non-environmental impacts.

FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:16 of 51

5.1.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.1-B. FFCC estimates the total capital and indirect cost to close the coal-fired boilers and install replacement gas-fired boilers to be just over \$13.6 million dollars. These costs were depreciated over 30 years and that equates to annualized capital and indirect cost of \$2,043,919 per year. The annual operating and maintenance cost is mostly waste disposal, and is estimated to be \$30,597,829 per year. The actual annual cost associated with this strategy comes to \$32,641,748 per year. That annual cost can be divided by the 3,154 ton/year emission reduction to bring the cost per ton reduced to \$10,349. See Attachment B-1.1 for a more detailed explanation of costs.

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Close All CFBs and replace with Natural Gas Units	3,154	\$13,621,485	\$2,043,919	\$30,597,829	\$32,641748	10,349

5.2 Fuel Switch from Coal to Natural Gas (Close and Replace one CFB)

FFCC evaluated closing just one CFB and removing it from service. This would require FFCC to replace the 50k lb/hr steam production with a natural gas boiler and ship the waste fuels it would typically burn for energy recovery off-site for treatment. The replacement of steam would done with one 75 KPPH steam natural gas boiler.

5.2.1 Control Effectiveness

Since 95% of all SO₂ and NO_x emissions come from the three coal-fired boilers, replacing one boiler would reduce the total SO₂ and NO_x emissions from the plant by about 31-32%. Shutting down one CFB would result in no emissions from that unit but the replacement natural gas boiler would add between 10 - 17 tons/yr of NO_x.

5.2.2 Emission Reductions

The CFBs baseline calculated emissions were 3,216 tons/year of combined SO₂ and NOx. Replacing one CFB with a natural gas boiler would reduce those CFB emissions by about 33%, which would be 1,061 tons/year. Since the total emissions for the facility are approximately 3,375 tons/year, the reduction would be equal to about a 31% reduction in total emissions. See Table 5.2-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emis Redu (%	ssion ction 6)	CFBs Baseline Emissions	CFB Emission Reduction	CFB Emission Reduction	Facility Baseline Emission	Facility Emission Reduction
2 cz doogy	SO ₂	NO _x	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(%)
Close One CFB and replace with Natural Gas Unit	33%	30%	3,216	1,061	33%	3,375	31%

Table 5.2-A	- Replace	One CFB	s Emission	Reduction	Summary

FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:18 of 51

5.2.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 2 years to transition the steam demand from coal-fired boilers to natural gas boilers, as well as, prepare logistically for shipping waste off-site. This would involve about a year to study, design the system, and get DEQ approval for construction and implementation. Then it would take six months for vendors to evaluate the system, be selected, build the equipment, and then deliver the equipment need to construct the system. Finally it would take 6 months for construction, checkout and training before it was up and running. See Attachment A-1.2 for a chart of this timeline.

5.2.4 <u>Remaining Useful Life</u>

There is no enforceable shutdown of this unit and there is no documented useful life for a replacement boiler in the EPA Cost Manual. For purposes of this evaluation FFCC chose to use a 30-year useful life even though a well maintained unit could last beyond that time frame.

5.2.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would be the loss of FFCC's ability to burn waste for energy recovery in that one permitted boiler. This cost would fluctuate based on business conditions and other factors, but FFCC estimated an annual cost of over \$8.4 million dollars in off-site waste disposal. However, FFCC placed this cost under "Annual Operating Costs" since it would be reoccurring for the life of the facility. See Attachment B-1.2 for a more detailed explanation of energy and non-environmental impacts.

5.2.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.2-B. FFCC estimates the total capital and indirect cost to close one coal-fired boiler and install a replacement gas-fired boiler to be just over \$8.2 million dollars. These costs were depreciated over 30 years and that equates to annualized capital and indirect cost of \$1,205,117 per year. The annual operating and maintenance cost is mostly waste disposal, and is estimated to be \$10,931,976 per year. The actual annual cost associated with this strategy comes to \$12,137,153 per year. That annual cost can be divided by the 1,061 ton/year emission reduction to bring the cost per ton reduced to \$11,439. See Attachment B-1.2 for a more detailed explanation of costs.

Table 5.2-B - Replace One CFB	Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Close One CFB and replace with Natural Gas Unit	1,061	\$8,248,162	\$1,205,117	\$10,931,976	\$12,137,153	\$11,439

5.3 Fuel Switch from Coal to Natural Gas (Retrofit All CFBs)

FFCC evaluated retrofitting all CFBs to natural gas boilers. This would require FFCC to redesign and modify each boiler's coal fuel system to a natural gas fuel system. Each boiler would be designed to produce 50 KPPH steam using natural gas. This design would change the dynamics so significantly that it would require a significant physical modification to the entire boiler system.

5.3.1 Control Effectiveness

Since 95% of all SO₂ and NO_x emissions come from the three coal-fired boilers, this option would reduce total SO₂ and NO_x emissions from the plant by about 92 - 94%. Retrofitting the CFBs to natural gas would result in significant control effectiveness, but the replacement natural gas burner would add between 30 - 50 tons/yr of NO_x so the emission reduction would be around 98%.

5.3.2 Emission Reductions

The CFBs baseline calculated emissions were 3,216 tons/year of combined SO₂ and NO_x. Redesigning them to burn natural gas boilers would reduce the current emissions by about 98%, which would be 3,154 tons/year. Since the total emissions for the facility are approximately 3,375 tons/year, the reduction would be equal to about a 93% reduction in total emissions. See Table 5.3-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emission Reduction (%)		CFBs Baseline Emissions	CFB Emission Reduction	CFB Emission Reduction	Facility Baseline Emission	Facility Emission Reduction
Strategy	SO_2	NO _x	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(%)
Retrofit all CFBs with Natural Gas Units	99%	90%	3,216	3,154	98%	3,375	93%

Table 5.3-A - Retrofit All CFBs Emission Reduction Summary

5.3.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 4 years to retrofit the coal-fired boilers to natural gas boilers, as well as, prepare logistically for shipping waste off-site. This would involve about a year to study, design the system, and get DEQ approval for construction and implementation. Then it would take a year for each Boiler to demolish the old feed system, install a new natural gas system, optimize the combustion criteria, check out the equipment, train operators, and then start up the modified unit. See Attachment A-1.3 for a chart of this timeline.

5.3.4 <u>Remaining Useful Life</u>

There is no enforceable shutdown of these units and there is no documented useful life for the retrofitted boilers in the EPA Cost Manual. For purposes of this evaluation FFCC chose to use a 30-year useful life even though well maintained units could last beyond that time frame.

5.3.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would be the loss of FFCC's ability to burn waste for energy recovery as permitted by regulation. This cost would fluctuate based on business conditions and other factors, but FFCC estimated an annual cost of over \$25 million dollars in off-site waste disposal alone. However, FFCC placed this cost under "Annual Operating Costs" since it would be reoccurring for the life of the facility. See Attachment B-1.3 for a more detailed explanation of energy and non-environmental impacts.

5.3.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.3-B. FFCC estimates the total capital and indirect cost to retrofit the coal-fired boilers into natural gas-fired boilers would be just around \$12.9 million dollars. These costs were depreciated over 30 years and that equates to annualized capital and indirect cost of \$1,922,044 year. The annual operating and maintenance cost is mostly waste disposal and is estimated to be \$30,597,829 per year. The actual annual cost associated with this strategy comes to \$32,519,873 per year. That annual cost can be divided by the 3,154 ton/year emission reduction to bring the cost per ton reduced to \$10,311. See Attachment B-1.3 for a more detailed explanation of costs.

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Retrofit all CFBs with Natural Gas Units	3,154	\$12,912,725	\$1,922,044	\$30,597,829	\$32,519,873	\$10,311

Table 5.3-B - Retrofit All CFBs Cost Summary

5.4 Fuel Switch from Coal to Natural Gas (Retrofit One CFB)

FFCC evaluated retrofitting just one CFB to a natural gas boiler. This would require FFCC to redesign and modify one boiler's coal fuel system to a natural gas fuel system. The boiler would be designed to produce 50 KPPH steam using natural gas. This design would change the dynamics significantly and would require a significant physical modification to the entire boiler system.

5.4.1 Control Effectiveness

Since 95% of all SO₂ and NO_x emissions come from the three coal-fired boilers, retrofitting one boiler to natural gas would reduce the total SO₂ and NO_x emissions from the plant by about 31-32%. Retrofitting one coal-fired boiler burner to natural gas would result in significant control effectiveness, but the replacement natural gas burner would add between 10 - 17 tons/yr of NO_x.

5.4.2 Emission Reductions

The CFBs baseline calculated emissions were 3,216 tons/year of combined SO₂ and NO_x. Retrofitting one CFB to burn natural gas would reduce those emissions by about 33%, which would be 1,061 tons/year. Since the total emissions for the facility are approximately 3,375 tons/year, the reduction would be equal to about a 31% reduction in total emissions. See Table 5.4-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emission Reduction (%)		CFBs Baseline Emissions	CFB Emission Reduction	CFB Emission Reduction	Facility Baseline Emission	Facility Emission Reduction
Bildicgy	SO_2	NO _x	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(%)
Retrofit One CFB with a Natural Gas Unit	33%	30%	3,216	1,061	33%	3,375	31%

Table 5.4-A –	Retrofit (One CFBs	Emission	Reduction	Summary

5.4.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 2 years to retrofit the coal-fired boiler to natural gas boiler, as well as, prepare logistically for shipping waste off-site. This would involve about a year to study, design the system, and get DEQ approval for construction and implementation. Then it would take a year to demolish the old feed system, install a new natural gas system, optimize the combustion criteria, check out the equipment, train operators, and then start up the modified unit. See Attachment A-1.4 for a chart of this timeline.

5.4.4 <u>Remaining Useful Life</u>

There is no enforceable shutdown of this unit and there is no documented useful life for a retrofitted boiler in the EPA Cost Manual. For purposes of this evaluation, FFCC chose to use a 30-year useful life even though a well maintained unit could last beyond that time frame.

5.4.5 <u>Energy and Non-Environmental Impacts</u>

The most significant Energy and Non-Environmental impact with this strategy would be the loss of FFCC's ability to burn waste for energy recovery in retrofitted boiler. This cost would fluctuate based on business conditions and other factors, but FFCC estimated an annual cost of over \$8.4 million dollars in off-site waste disposal. However, FFCC placed this cost under "Annual Operating Costs" since it would be reoccurring for the life of the facility. See Attachment B-1.4 for a more detailed explanation of energy and non-environmental impacts.

5.4.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.4-B. FFCC estimates the total capital and indirect cost to retrofit one coal-fired boiler to burn natural gas would be just under \$6.3 million dollars. These costs were depreciated over 30 years and that equates to annualized capital and indirect cost of \$903,388 per year. The annual operating and maintenance cost is mostly waste disposal and is estimated to be \$10,931,976 per year. The actual annual cost associated with this strategy comes to \$11,835,364 per year. That annual cost can be divided by the 1,061 ton/year emission reduction to bring the cost per ton reduced to \$11,155. See Attachment B-1.4 for a more detailed explanation of costs.

Table 5.4-B - Retrofit One CFB Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Retrofit One CFB with a Natural Gas Unit	1,061	\$6,267,742	\$903,388	\$10,931,976	\$11,835,364	\$11,155

5.5 <u>SO₂ Control Technology – Wet Gas Scrubber</u>

FFCC evaluated installing wet gas scrubbers on its three-coal fired boilers to the mitigate SO_2 emissions. This would require at least two wet gas scrubbers, although three would be more desirable. FFCC conducted this analysis based on the installation of two lime-slurry wet gas scrubbers operating independently.

5.5.1 Control Effectiveness

99% of all SO_2 emissions come from the three coal-fired boilers. This strategy would reduce total SO_2 emissions from the facility by about 93%. The reduction of SO_2 emission from the CFBs would be about 94%, which demonstrates that wet gas scrubbing is a very effective method of controlling SO_2 emissions.

5.5.2 Emission Reductions

The CFBs baseline calculated emissions were 2,884 tons/year of SO₂. The addition of a lime slurry wet scrubber would reduce the current emissions by about 94%, which would be 2,711 tons/year. Since the total emissions for the facility are approximately 2,911 tons/year, the reduction would be equal to about a 93% reduction in total emissions. See Table 5.5-A below for an emission reduction summary for this strategy.

Table 5.5-A – Install Wet Scrubber Emission Reduction Summary

Emission Reduction Strategy	Emi Redu (%	ssion (ction (6)	CFBs Baseline Emissions (ton/yr)	CFB Emission Reduction (ton/yr)	CFB Emission Reduction	Facility Baseline Emission (ton/yr)	Facility Emission Reduction
Wet Scrubber – Lime Slurry	94%	0%	2,884	2,711	94%	2,911	93%

5.5.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 6 years to install two lime-slurry wet scrubbers on the back end of the three coal-fired boilers. Since all three boilers share one common stack, this would require FFCC to shutdown all three CFB's during the 6-month installation period. The lime-slurry system would be new to our facility and would require equipment and operations to which FFCC is currently not familiar. Basically, the time frame involves designing the two systems, DEQ review and approval, selection of vendors and equipment, purchasing components, demolishing or moving at least one existing building to make room for the scrubbers, installing the equipment, checkout of the equipment, operator training, and start-up. See Attachment A-1.5 for a chart of this timeline.

5.5.4 <u>Remaining Useful Life</u>

The EPA Cost Manual indicates that the useful life of a Wet Scrubber is approximately 15-years. For purposes of this evaluation, FFCC will use a 15-year useful life to establish the annualized capital and indirect costs.

FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:26 of 51

5.5.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would come from the need to shut down the coal-fired boiler to install the system. This would require the rental of portable gas boilers and the need to ship waste off-site during the downtime. Once the unit is installed, there would be significant cost with disposing of the spent lime slurry from the scrubbing system as well. See Attachment B-1.5 for a more detailed explanation of energy and non-environmental impacts.

5.5.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.5-B. FFCC estimates the total capital and indirect cost to purchase and install a lime slurry wet scrubber would be just over \$79.4 million dollars. These costs were depreciated over 15 years and that equates to annualized capital and indirect cost of \$14,194,554 per year. The annual operating and maintenance cost is estimated to be \$3,043,215 per year. The actual annual cost associated with this strategy comes to \$17,237,769 per year. That annual cost can be divided by the 2,711 ton/year SO2 emission reduction to bring the cost per ton reduced to \$6,358. See Attachment B-1.5 for a more detailed explanation of costs.

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Wet Scrubber – Lime Slurry	2,711	\$79,442,824	\$14,194,554	\$3,043,215	\$17,237,769	\$6,358

Table 5.5-B – Install Wet Scrubber Cost Summary

5.6 <u>SO₂ Control Technology – Spray Dry Absorber</u>

FFCC evaluated installing a spray dry absorber on the back end of its coal-fired boilers to the mitigate SO_2 emissions. This system is designed to use lime to transform SO_2 into a stable and dry powdery material that can easily be handled. Although FFCC would prefer to install a spray dry absorber for each coal-fired boiler, FFCC has decided to base this evaluation on the installation of only two spray dry absorbers in order to minimize the costs.

5.6.1 Control Effectiveness

99% of all SO_2 emissions come from the three coal-fired boilers. This strategy would reduce total SO_2 emissions from the CFBs by about 92%. The reduction of SO_2 emission from the entire facility would be about 91%. Spray Dry Absorber has been used in many applications and is prove to be a very effective method of controlling SO_2 , among other emissions.

5.6.2 Emission Reductions

92%

Absorber

0%

2,884

The CFBs baseline calculated emissions were 2,884 tons/year of SO_2 . The addition of a spray dry absorber would reduce the current emissions by about 92%, which would be 2,653 tons/year. Since the total emissions for the facility are approximately 2,911 tons/year, the reduction would be equal to about a 91% reduction in total emissions. See Table 5.6-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emission Reduction (%)		CFBs Baseline Emissions	CFB Emission Reduction	CFB Emission Reduction	Facility Baseline Emission	Facility Emission Reduction
	SO ₂	NO _x	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(%)
Spray Dry	0.204	0.0/	2 00 4	2 (52	000	2 0 1 1	010/

2,653

92%

2,911

91%
FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:28 of 51

5.6.3 <u>Time Necessary to Implement</u>

It is estimated that it would take 4 years to install two spray dry absorbers on the back end of the three coal-fired boilers. Since all three boilers share one common stack, this would require FFCC to shut down all three CFBs during the installation period. The spray dry absorber system would be new to our facility and would require equipment and operations to which FFCC is currently not familiar. Basically, the time frame involves designing the two systems, DEQ review and approval, selection of vendors and equipment, purchasing components, demolishing or moving at least one existing building to make room for the scrubbers, installing the equipment, checkout of the equipment, operator training, and start-up. See Attachment A-1.6 for a chart of this timeline.

5.6.4 <u>Remaining Useful Life</u>

The EPA Cost Manual indicates that the useful life of a Spray Dry Absorbing system is approximately 15 years. For purposes of this evaluation FFCC will use a 15-year useful life to establish the annualized capital and indirect costs.

5.6.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would come from the need to shut down the coal-fired boiler to install the system. This would require the rental of portable gas boilers and the need to ship waste off-site during the downtime. Once the unit is installed, there would be some cost for managing the spent sorbent. See Attachment B-1.6 for a more detailed explanation of energy and non-environmental impacts.

FFCC Regional Ha	ze Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	29 of 51

5.6.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.6-B below. FFCC estimates the total capital and indirect cost to purchase and install a spray dry absorber system would be just over \$67.7 million dollars. These costs were depreciated over 15 years and that equates to annualized capital and indirect cost of \$11,568,303 per year. The annual operating and maintenance cost is estimated to be \$2,058,925 per year. The actual annual cost associated with this strategy comes to \$13,627,228 per year. That annual cost can be divided by the 2,711 ton/year SO₂ emission reduction to bring the cost per ton reduced to \$5,137. See Attachment B-1.6 for a more detailed explanation of costs.

Table 5.6-B - 1	Install Spray	Dry Absorber	Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Wet Scrubber – Lime Slurry	2,711	\$64,776,915	\$11,568,303	\$2,058,925	\$13,627,228	\$5,137

5.7 <u>SO₂ Control Technology – Dry Sorbent Injection</u>

FFCC evaluated installing a dry sorbent injection on its coal-fired boilers to the mitigate SO_2 emissions. This system is designed to inject hydrated lime into the boilers system to neutralize SO_2 , which is then removed by other pollution control equipment. Although FFCC would prefer to install a dry sorbent injection system for each coal-fired boiler, FFCC has decided to base this evaluation on the installation of only two dry sorbent injection systems in order to minimize the costs.

5.7.1 Control Effectiveness

99% of all SO₂ emissions come from the three coal-fired boilers. This strategy would reduce total SO₂ emissions from the CFBs by about 40%. The reduction of SO₂ emissions from the entire facility would be about 39%. Dry sorbent injection systems have been used in various coal combustion units and have proven to be a fairly effective method of controlling SO₂ in pulverized coal boilers; however FFCC's coal-fired boilers are spreader-stoker boilers and that limits the removal efficiency.

5.7.2 Emission Reductions

The CFBs baseline calculated emissions were 2,884 tons/year of SO₂. The addition of a spray dry absorber would reduce the current emissions by about 40%, which would be 1,154 tons/year. Since the total emissions for the facility are approximately 2,911 tons/year, the reduction would be just under a 40% reduction in total SO₂ emissions. See Table 5.7-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emis Redu (% SO ₂	ssion ction 6) NO _x	CFBs Baseline Emissions (ton/yr)	CFB Emission Reduction (ton/yr)	CFB Emission Reduction (%)	Facility Baseline Emission (ton/yr)	Facility Emission Reduction (%)
Dry Sorbent Injection	40%	0%	2,884	1,154	40%	2,911	40%

Table 5.7-A -	Install Dry Sorbe	nt Injection	Emission	Reduction	Summary
	moun Dry Sorbe	ni mjecnon		I teu u cu o li	Summary

5.7.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 3 years to install two dry sorbent injection systems on the three coal-fired boilers. Since all three boilers share one common stack, this would require FFCC to shut down all three CFBs during the installation period. The spray dry absorber system would be new to our facility and would require equipment and operations to which FFCC is currently not familiar. Basically, the time frame involves designing the two systems, DEQ review and approval, selection of vendors and equipment, purchasing components, demolishing or moving at least one existing building to make room for the scrubbers, installing the equipment, checkout of the equipment, operator training, and start-up. See Attachment A-1.7 for a chart of this timeline.

5.7.4 <u>Remaining Useful Life</u>

The EPA Cost Manual indicates that the useful life of a dry sorbent injection system is approximately 15 years. For purposes of this evaluation FFCC will use a 15-year useful life to establish the annualized capital and indirect costs.

5.7.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would come from the need to shut down the coal fired boiler to install the system. This would require the rental of portable gas boilers and the need to ship waste off-site during the downtime. Once the unit is installed, there would be some cost for managing the spent sorbent. See Attachment B-1.7 for a more detailed explanation of energy and non-environmental impacts.

5.7.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.7-B below. FFCC estimates the total capital and indirect cost to purchase and install a spray dry absorber system would be just under \$61.9 million dollars. These costs were depreciated over 15 years and that equates to annualized capital and indirect cost of \$9,892,986 per year. The annual operating and maintenance cost is estimated to be \$921,467 per year. The actual annual cost associated with this strategy comes to \$10,814,453 per year. That annual cost can be divided by the 1,154 ton/year SO₂ emission reduction to bring the cost per ton reduced to \$9,371. See Attachment B-1.7 for a more detailed explanation of costs.

Table 5.7-B – Install Dry Sorbent Injection Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Dry Sorbent Injection	1,154	\$61,894,695	\$9,892,986	\$921,467	\$10,814,453	\$9,371

FFCC Regional Ha	ze Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	33 of 51

5.8 <u>Fuel Switch to Lower Sulfur Coal (2.5% Sulfur)</u>

FFCC evaluated the use of lower sulfur coal. The current FFCC coal specification is 3% sulfur. This strategy involves the purchase and use of 2.5% sulfur coal. The science to this strategy is the less sulfur present in the combustion zone, the less sulfur is oxidized into SO₂.

5.8.1 Control Effectiveness

99% of all SO₂ emissions come from the three coal-fired boilers. This strategy involves introducing almost 17% less sulfur into the combustion zone, which based on the stoichiometry would produce about 17% less SO2. A 17% reduction of SO₂ emissions from the coal-fired boilers would also equate to about a 17% reduction for the entire facility.

5.8.2 Emission Reductions

The CFBs baseline calculated emissions were 2,884 tons/year of SO₂ using 3% sulfur specification coal. The use of 2.5% sulfur specification coal would result in an SO₂ reduction of about 17%, which would be about 490 tons/year. Since the total emissions for the facility are approximately 2,911 tons/year, the reduction would be just under a 17% reduction in total SO₂ emissions. See Table 5.8-A below for an emission reduction summary for this strategy.

Table 5.8-A – Lower Sulfur Coal (2.5%)	Emission Reduction Summary
--	-----------------------------------

Emission Reduction Strategy	Emis Redu (%	ssion (ction (6)	CFBs Baseline Emissions (ton/yr)	CFB Emission Reduction (ton/yr)	CFB Emission Reduction (%)	Facility Baseline Emission (ton/yr)	Facility Emission Reduction
Fuel Switch to 2.5% Sulfur Coal	17%	0%	2,884	490	17%	2,911	17%

5.8.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take less than one year to implement this strategy. There would be some time required to work through the current coal stock pile, and there might be some time required to complete any existing purchase agreements. However, FFCC does not anticipate any necessary equipment or operational changes to implement this strategy. Since this strategy is fairly seamless, FFCC did not see the need to prepare timeline for this strategy.

5.8.4 <u>Remaining Useful Life</u>

There is no enforceable shutdown of these units, so for purposes of this evaluation, FFCC will use a 30-year useful life even though well maintained boilers should last beyond that time frame.

5.8.5 Energy and Non-Environmental Impacts

The only significant Energy and Non-Environmental impacts with this strategy would involve a change in the coal heating value or fusion temperature. However, such a change would make the coal unusable in FFCC's application and thus there would need to be a specification to ensure those requirements are met on any lower sulfur coal.

5.8.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.8-B. FFCC does not anticipate any capital or indirect cost to purchase 2.5% sulfur specification coal, so there would be no annualized capital and indirect cost from this strategy. The annual operating and maintenance cost would be the cost difference of the lower sulfur coal and the associated tax. This annual operating cost is estimated to be \$1,149,137 per year, which would be equal to the actual annual cost. By dividing the annual cost by the 490 ton/year reduction of SO₂ emissions, the cost per ton reduced would be \$2,345. See Attachment B-1.8 for a more detailed explanation of costs.

Fable 5.8-B – Lower Sulfur	• Coal (2.5%) (Cost Summary
-----------------------------------	-----------------	---------------------

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Fuel Switch to 2.5% Sulfur Coal	490	\$0	\$0	\$1,149,137	\$1,149,137	\$2,345

FFCC Regional Ha	ze Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	36 of 51

5.9 Fuel Switch to Lower Sulfur Coal (2.0% Sulfur)

FFCC evaluated the use of lower sulfur coal. The current FFCC coal specification is 3% sulfur. This strategy involves the purchase and use of 2.0% sulfur coal. The science to this strategy is the less sulfur present in the combustion zone, the less sulfur is oxidized into SO_2 .

5.9.1 Control Effectiveness

99% of all SO_2 emissions come from the three coal-fired boilers. This strategy involves introducing almost 33% less sulfur into the combustion zone, which based on the stoichiometry would produce about 33% less SO_2 . A 33% reduction of SO_2 emissions from the coal-fired boilers would also equate to about a 33% reduction for the entire facility.

5.9.2 Emission Reductions

The CFBs baseline calculated emissions were 2,884 tons/year of SO_2 using 3% sulfur specification coal. The use of 2.0% sulfur specification coal would result in an SO_2 reduction of about 33%, which would be about 952 tons/year. Since the total emissions for the facility are approximately 2,911 tons/year, the reduction would be just under a 33% reduction in total SO_2 emissions. See Table 5.9-A below for an emission reduction summary for this strategy.

Table 5.9-A – Lower Sulfur Coa	l (2.0%) Emission	Reduction	Summary
--------------------------------	-------------------	-----------	---------

Emission Reduction Strategy	Emis Redu (%	ssion ction 6)	CFBs Baseline Emissions	CFB Emission Reduction	CFB Emission Reduction	Facility Baseline Emission	Facility Emission Reduction
	SO_2	NO _x	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(%)
Fuel Switch to 2.0% Sulfur Coal	33%	0%	2,884	952	33%	2,911	33%

5.9.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take less than one year to implement this strategy. There would be some time required to work through the current coal stock pile, and there might be some time required to complete any existing purchase agreements. However, FFCC does not anticipate any necessary equipment or operational changes to implement this strategy. Since this strategy is fairly seamless, FFCC did not see the need to prepare timeline for this strategy.

5.9.4 <u>Remaining Useful Life</u>

There is no enforceable shutdown of these units, so for purposes of this evaluation, FFCC will use a 30-year useful life even though well maintained boilers should last beyond that time frame.

5.9.5 Energy and Non-Environmental Impacts

The only significant Energy and Non-Environmental impacts with this strategy would involve a change in the coal heating value or fusion temperature. However, such a change would make the coal unusable in FFCC's application and thus there would need to be a specification to ensure those requirements are met on any lower sulfur coal.

5.9.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.9-B. FFCC does not anticipate any capital or indirect cost to purchase 2.0% sulfur specification coal, so there would be no annualized capital and indirect cost from this strategy. The annual operating and maintenance cost would be the cost difference of the lower sulfur coal and its associated tax. This annual operating cost is estimated to be \$1,995,030 per year, which would be the same as the actual annual cost. By dividing the annual cost by the 952 ton/year reduction of SO₂ emissions, the cost per ton reduced would be \$2,096. See Attachment B-1.9 for a more detailed explanation of costs.

Table 5.9-B – Lower Sulfu	· Coal (2.0%)	Cost Summary
---------------------------	---------------	---------------------

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Fuel Switch to 2.0% Sulfur Coal	952	\$0	\$0	\$1,995,030	\$1,995,030	\$2,096

FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:39 of 51

5.10 Fuel Switch to Lower Sulfur Coal (1.5% Sulfur)

FFCC evaluated the use of lower sulfur coal. The current FFCC coal specification is 3% sulfur. This strategy involves the purchase and use of 1.5% sulfur coal. The science to this strategy is the less sulfur present in the combustion zone, the less sulfur is oxidized into SO₂.

5.10.1 Control Effectiveness

99% of all SO₂ emissions come from the three coal-fired boilers. This strategy involves introducing 50% less sulfur into the combustion zone, which based on the stoichiometry would produce about 50% less SO₂. A 50% reduction of SO₂ emissions from the coal-fired boilers would equate to just under a 50% reduction for the entire facility.

5.10.2 Emission Reductions

The CFBs baseline calculated emissions were 2,884 tons/year of SO₂ using 3% sulfur specification coal. The use of 1.5% sulfur specification coal would result in an SO₂ reduction of about 50%, which would be about 1,442 tons/year. Since the total emissions for the facility are approximately 2,911 tons/year, the reduction would be just under a 50% reduction in total SO₂ emissions. See Table 5.9-A below for an emission reduction summary for this strategy.

							-
Emission Reduction	Emis Redu (%	ssion action 6)	CFBs Baseline Emissions	CFB Emission Reduction	CFB Emission Reduction	Facility Baseline Emission	Facility Emission Reduction
Strategy	SO_2	NO _x	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(%)
Fuel Switch to	50%	0%	2,884	1,442	50%	2,911	50%

Table 5.10-A – Lower S	ulfur Coal (1.5%)) Emission Reduction	Summary
------------------------	-------------------	----------------------	---------

1.5% Sulfur Coal

FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:40 of 51

5.10.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take less than one year to implement this strategy. There would be some time required to work through the current coal stock pile, and there might be some time required to complete any existing purchase agreements. However, FFCC does not anticipate any necessary equipment or operational changes to implement this strategy. Since this strategy is fairly seamless, FFCC did not see the need to prepare timeline for this strategy.

5.10.4 <u>Remaining Useful Life</u>

There is no enforceable shutdown of these units, so for purposes of this evaluation, FFCC will use a 30-year useful life even though well maintained boilers should last beyond that time frame.

5.10.5 Energy and Non-Environmental Impacts

The only significant Energy and Non-Environmental impacts with this strategy would involve a change in the coal heating value or fusion temperature. However, such a change would make the coal unusable in FFCC's application and thus there would need to be a specification to ensure those requirements are met on any lower sulfur coal.

5.10.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.10-B. FFCC does not anticipate any capital or indirect cost to purchase 1.5% sulfur specification coal, so there would be no annualized capital and indirect cost from this strategy. The annual operating and maintenance cost would be the cost difference of the lower sulfur coal and its associated tax. This annual operating cost is estimated to be \$4,232,823 per year, which would be the same as the actual annual cost. By dividing the annual cost by the 1,442 ton/year reduction of SO₂ emissions, the cost per ton reduced would be \$2,935. See Attachment B-1.10 for a more detailed explanation of costs.

Table 5.10-B – Lower Sulfur Coal (1.5%) Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Fuel Switch to 1.5% Sulfur Coal	1,442	\$0	\$0	\$4,232,823	\$4,232,823	\$2,935

FFCC Regional Haze EvaluationRevision No.:0Revision:4/7/2020Page:42 of 51

5.11 <u>NO_x Control Technology – Selective Catalytic Reduction</u>

FFCC evaluated installing two selective catalytic reduction (SCR) systems for the three coalfired boilers to mitigate NO_x emissions. This system is designed to react boiler combustion gases with urea in the presence of a catalyst in order to reduce NO_x into nitrogen and water vapor. Each boiler would be equipped with SCR downstream of the combustion zone and ESP. The design would require an air heater just before the SCR to ensure reduction temperatures are optimal.

5.11.1 Control Effectiveness

71% of all NO_x emissions come from the three coal-fired boilers. This strategy would reduce total NO_x emissions from the CFBs by about 80%. The reduction of NO_x emissions from the entire facility would be about 57%. Selective Catalytic Reduction is one of the most effective systems to reduce NO_x from combustion gases. They have been used efficiently in combustion units for various design and sizes.

5.11.2 Emission Reductions

The CFBs baseline calculated emissions were 332 tons/year of NO_x . The addition of an SCR would reduce the current emissions by about 80%, which would be 266 tons/year. Since the total emissions for the facility are approximately 464 tons/year, the reduction would be about 57% in total NO_x emissions. See Table 5.11-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emis Redu (% SO ₂	ssion ction 6) NO _x	CFBs Baseline Emissions (ton/yr)	CFB Emission Reduction (ton/yr)	CFB Emission Reduction (%)	Facility Baseline Emission (ton/yr)	Facility Emission Reduction (%)
Selective Catalytic Reduction	0%	80%	332	266	80%	464	57%

Table 5.11-A – Install SCR Emission Reduction Summary

5.11.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 4 years to install two SCRs on the three coal-fired boilers. This would involve about a year to study, design the system, and get DEQ approval for construction and implementation. Then it would take a year for each Boiler to select the vendors and equipment, purchase components, demolish an existing building to make room for the SCRs, install the equipment, checkout of the equipment, operator training, and start-up. See Attachment A-1.11 for a chart of this timeline.

5.11.4 <u>Remaining Useful Life</u>

The EPA Cost Manual indicates that the useful life of an SCR is approximately 22-years for an industrial boiler. For purposes of this evaluation FFCC will use a 22-year useful life to establish the annualized capital and indirect costs. The EPA Cost Manual states that the life of an industrial SCR is less than the life of an SCR on an electrical generating facility which is typically 30 years.

5.11.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would come from the need to shut down the coal-fired boilers to install the system. This would require the rental of portable gas boilers and the need to ship waste off-site during the downtime. See Attachment B-1.11 for a more detailed explanation of energy and non-environmental impacts.

5.11.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.11-B. FFCC estimates the total capital and indirect cost to purchase and install a SCR system would be just over \$46 million dollars. These costs were depreciated over 22 years and that equates to annualized capital and indirect cost of \$4,167,872 per year. The annual operating and maintenance cost is estimated to be \$541,053 per year. The actual annual cost associated with this strategy comes to \$4,708,925 per year. That annual cost can be divided by the 266 ton/year NO_x emission reduction to bring the cost per ton reduced to \$17,703. See Attachment B-1.11 for a more detailed explanation of costs.

Table 5.11-B – Install SCR Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Selective Catalytic Reduction	266	\$46,056,653	\$4,167,872	\$541,053	\$4,708,925	\$17,703

5.12 <u>NOx Control Technology – Selective Non-Catalytic Reduction</u>

FFCC evaluated installing two selective non-catalytic reduction (SNCR) systems for the three coal-fired boilers to mitigate NO_x emissions. This system is designed to react the boiler combustion gases with urea at high temperatures in order to reduce NO_x into nitrogen and water vapor without using a catalyst. Each boiler would be equipped with SNCR close to the combustion zone. The design would require an air heater just before the SNCR to ensure reduction temperatures are optimal.

5.12.1 Control Effectiveness

71% of all NO_x emissions come from the three coal-fired boilers. This strategy would reduce total NO_x emissions from the CFBs by about 40%. The reduction of NO_x emissions from the entire facility would be right at 29%. Selective Non-Catalytic Reduction is one of the most cost effective systems to reduce NO_x from combustion gases. They have been used efficiently in combustion units for various design and sizes.

5.12.2 Emission Reductions

The CFBs baseline calculated emissions were 332 tons/year of NO_x . The addition of an SNCR would reduce the current emissions by about 40%, which would be 133 tons/year. Since the total emissions for the facility are approximately 464 tons/year, the reduction would come to about 29% in total NO_x emissions. See Table 5.12-A below for an emission reduction summary for this strategy.

Emission Reduction Strategy	Emis Redu (% SO ₂	ssion ction 6) NO _x	CFBs Baseline Emissions (ton/yr)	CFB Emission Reduction (ton/yr)	CFB Emission Reduction (%)	Facility Baseline Emission (ton/yr)	Facility Emission Reduction (%)
Selective Non- Catalytic Reduction	0%	40%	332	133	40%	464	29%

Table 5.12-A – Install SNCR Emission Reduction Summary

5.12.3 <u>Time Necessary to Implement Strategy</u>

It is estimated that it would take 4 years to install SNCRs on the three coal-fired boilers. This would involve about a year to study, design the system, and get DEQ approval for construction and implementation. Then it would take a year for each Boiler to select the vendors and equipment, purchase components, demolish or move existing equipment to make room for the SNCR, install the equipment, checkout of the equipment, operator training, and start-up. See Attachment A-1.12 for a chart of this timeline.

5.12.4 <u>Remaining Useful Life</u>

The EPA Cost Manual indicates that the useful life of an SNCR for industrial boilers is approximately 15-25 years. For purposes of this evaluation FFCC will use a 20-year useful life to establish the annualized capital and indirect costs.

5.12.5 Energy and Non-Environmental Impacts

The most significant Energy and Non-Environmental impacts with this strategy would come from the need to shut down each coal-fired boiler to install the system. This would require the rental of portable gas boilers and the need to ship the waste that boiler would have burned off-site during the downtime. See Attachment B-1.12 for a more detailed explanation of energy and non-environmental impacts.

5.12.6 Cost of Implementing the Strategy

The cost of implementing this strategy is summarized below in Table 5.12-B. FFCC estimates the total capital and indirect cost to purchase and install a SNCR system would be just under \$23.8 million dollars. These costs were depreciated over 20 years and that equates to annualized capital and indirect cost of \$2,252,744 per year. The annual operating and maintenance cost is estimated to be \$413,695 per year. The actual annual cost associated with this strategy comes to \$2,666,469 per year. That annual cost can be divided by the 133 ton/year NO_x emission reduction to bring the cost per ton reduced to \$20,049. See Attachment B-1.12 for a more detailed explanation of costs.

Table 5.12-B Table 5.11-B – Install SNCR Cost Summary

Emission Reduction Strategy	CFB Emission Reduction (ton/yr)	Capital and Indirect Costs	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Costs	Cost Per Ton Reduced
Selective Non- Catalytic Reduction	133	\$23,794,387	\$2,252,744	\$413,695	\$2,666,469	\$20,049

6.0 <u>SUMMARY OF REGIONAL HAZE EVALUATION</u>

Each strategy discussed in sections 4.0 and 5.0 are summarized in this section in the form of tables. This allows the DEQ to see the over performance and impact of each strategy. These same tables were provided in the Executive Summary. Finally, there is a summary of the basis of this evaluation and the sources used to obtain all costs, data, and timelines.

6.1 <u>Summary of Technically Infeasible Strategies</u>

The strategies in Table 6.1-A below were determined to be technically infeasible.

Emission Reduction Strategy	Rationale
Installation of a Low-NO _x Burner on the CFBs	There are no available or applicable Low-NO _x burner systems designed for stoker style boilers.
Installation of a Sodium Hydroxide Wet Scrubber on the CFBs	Wet Scrubbing is a viable option, but the use of Sodium Hydroxide scrubbing is not technically feasible to due to NPDES permit limitations.
Use of a Low-Sulfur Coal from a nearby Power Plant at the CFBs	The local supply of low-sulfur coal is not usable at FFCC's stoker style boilers due to the heating value being too low (< 11,000 Btu/lb) and the fusion temperature being two low (< 2,550°F fluid fusion temp)

Table 6.1-A - Summary of Technically Infeasible Strategies

6.2 <u>Summary of Technically Feasible Strategies</u>

The strategies in Table 6.2-A and Table 6.2-B below were determined to be technically feasible. The tables contain the same information but they are sorted by different cost perspectives.

FFCC Regional Haze	e Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	49 of 51

Emission Reduction Strategy	n Emission Reduction y SO ₂ NO,		Baseline Emissions Before Control (ton/yr)	Emission Reduction by Strategy (ton/yr)	Capital and Indirect Investment (Millions)	Annualized Capital and Indirect Costs	Annual Operating and Maintenance Costs	Strategy Annual Cost	Cost per Ton Reduced (\$/ton)
Fuel Switch to 2.5% Sulfur Coal	17%	0%	2,884	490	\$0.0	\$0.0	\$1,149,137	\$1,149,137	\$2,345
Fuel Switch to 2% Sulfur Coal	33%	0%	2,884	952	\$0.0	\$0 \$1,995,030		\$1,995,030	\$2,096
Fuel Switch to 1.5% Sulfur Coal	50%	0%	2,884	1,442	\$0.0	\$0 \$4,232,823		\$4,232,823	\$2,935
Selective Non- Catalytic Reduction	0%	40%	332	133	\$23.8	\$2,252,744 \$413,695		\$2,666,469	\$20,049
Selective Catalytic Reduction	0%	80%	332	266	\$46.1	\$4,167,872	\$541,053	\$4,708,925	\$17,703
Fuel Switch to Natural Gas - Retrofit 1 CFB	33%	30%	3,216	1,061	\$6.3	\$903,388	\$10,931,976	\$11,835,364	\$11,155
Close and Replace 1- CFB with Natural Gas	33%	30%	3,216	1,061	\$8.2	\$1,205,117	\$10,931,976	\$12,137,153	\$11,439
Dry Sorbent Injection	40%	0%	2,884	1,154	\$61.9	\$9,892,986 \$921,467		\$10,814,453	\$9,371
Spray Dry Absorption	92%	0%	2,884	2,653	\$67.7	\$11,568,303	\$2,058,925	\$13,627,228	\$5,137
Fuel Switch to Natural Gas - Retrofit 3 CFBs	99%	90%	3,216	3,154	\$12.9	\$1,922,044	\$30,597,829	\$32,519,873	\$10,310
Close and Replace 3- CFBs with Natural Gas	99%	90%	3,216	3,154	\$13.6	\$2,043,919	\$30,597,829	\$32,641,748	\$10,349
Wet Scrubber - Lime Slurry	94%	0%	2,884	2,711	\$79.4	\$14,194,554	\$3,043,215	\$17,237,769	\$6,358

Table 6.2-A – Summary of Feasible Strategies by Annual Cost

FFCC Regional Ha	ze Evaluation
Revision No.:	0
Revision:	4/7/2020
Page:	50 of 51

Emission	Emission Emission Reduction		Baseline Emissions Before Control	Emission Reduction by Stratogy	Capital and Indirect	Annualized Capital and Indirect	Annual Operating and Mointenance	Stratogy	Cost per Ton Reduced
Strategy	SO ₂	NO _x	(ton/yr)	(ton/yr)	(Millions)	Costs	Costs	Annual Cost	(\$/ton)
Fuel Switch to 2% Sulfur Coal	33%	0%	2,884	952	\$0.0	\$0	\$1,995,030	\$1,995,030	\$2,096
Fuel Switch to 2.5% Sulfur Coal	17%	0%	2,884	490	\$0.0	\$0.0	\$1,149,137	\$1,149,137	\$2,345
Fuel Switch to 1.5% Sulfur Coal	50%	0%	2,884	1,442 \$0.0 \$0 \$4,232,823		\$4,232,823	\$2,935		
Spray Dry Absorption	Dry tion 92% 0% 2,8		2,884	2,653	\$67.7	\$11,568,303	\$20,589,925	\$13,627,228	\$5,137
Wet Scrubber - Lime Slurry	bber - 94% 0% 2,8 e Slurry		2,884	2,711	\$79.4	\$14,194,554 \$3,043,215		\$17,237,769	\$6,358
Dry Sorbent Injection	40%	0%	2,884	1,154	\$61.9	\$9,892,986	\$921,467	\$10,814,453	\$9,371
Fuel Switch to Natural Gas - Retrofit 3 CFBs	40% 0% 2,884 ch 99% 90% 3,216		3,154	\$12.9	\$1,922,044	\$30,597,829	\$32,519,873	\$10,311	
Close and Replace 3- CFBs with Natural Gas	99%	90%	3,216	3,154	\$13.6	\$2,043,919	\$30,597,829	\$32,641,748	\$10,349
Fuel Switch to Natural Gas - Retrofit 1 CFB	33%	30%	3,216	1,061	\$6.3	\$903,388	\$10,931,976	\$11,835,364	\$11,155
Close and Replace 1- CFB with Natural Gas	33%	30%	3,216	1,061	\$8.2	\$1,205,117	\$10,931,976	\$12,137,153	\$11,439
Selective Catalytic Reduction	0%	80% 332		266	\$46.1	\$4,167,872	\$541,053	\$4,708,925	\$17,703
Selective Non- Catalytic Reduction	0%	40%	332	133	\$23.8	\$2,252,744	\$413,695	\$2,666,469	\$20,049

Table 6.2-B – Summary of Feasible Strategies by Cost per Ton Reduced

6.3 <u>Summary of FFCC's Approach to the Regional Haze Evaluation</u>

This evaluation was prepared using internal and external information. FFCC's internal Construction and Engineering Department, Health, Safety, Environmental, and Security Department, Accounting Department, and Process Engineering Department all provided input. The information they provided was based on process knowledge and historical experience involving similar systems and projects.

FFCC personnel also obtained information from external sources such as the EPA, DEQ, the internet, and third-party vendor and/or consultants. Much of the information provided by third party vendors and consultants was provided under a request that it not be shared or made public without written consent.

All strategies were evaluated at the conceptual design level and based on budgetary estimates and proposals. FFCC added the 30% contingency, recommended in the EPA cost manual, but believes these costs could fluctuate as much as 50% in actual installation. Nevertheless, FFCC believes this information to be representative estimates of the actual costs necessary to implement technically feasible strategies.

DEQ presented modeling results indicating that FFCC contributes a minimal amount to haze in Class I Wilderness Areas. Previous DEQ BART models (Attachment C-1.1) indicated there was no contribution to visibility impairment in Arkansas Class I Wilderness Areas. For this reason, FFCC believes it is not prudent to make more than minimal control steps in this period, Planning Period II.

Regional Haze EvaluationRevision No.:0Revision:04/07/2020AttachmentA

Attachment A

Emission Reduction Strategy <u>Timelines</u>

Revision 0

Pursuant to

DEQ Information Collection Request dated January 8, 2020

AFIN 32-00036

FutureFuel Chemical Company P.O. Box 2357 Batesville, AR 72503 ARD089234884

April 7, 2020

Attachment A-1.1 Fuel Switch Shut Down 3 Coal Boilers and Install Natural Gas Boilers

Time to Start-Up: 30 Months

Year 1 Year 2 Year 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Step <u>Task</u> Duration Start End Feasibility Study ADEQ Review **Engineering Design Capital Cost Estimate** Vendor Quotes Selection of Equipment Vendor Fulfillment **Equipment Delivery** FFCC Construction **Equipment Checkout Operator Training** Start-Up

Fuel Switch Shut Down 1 Coal Boiler and Install Natural Gas Boiler

	Time t	o Start-Up:	24	Months				
						Year 1	Year 2	
<u>Step</u>	<u>Task</u>	<u>Start</u>	Duration	End	0 1	2 3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20	21 22 23 24
1	Feasibility Study	0	1	1				
2	ADEQ Review	1	12	12				
3	Engineering Design	13	1	13				
4	Capital Cost Estimate	13	1	14				
5	Vendor Quotes	14	1	15				
6	Selection of Equipment	15	1	16				
7	Vendor Fulfillment	16	4	20				
8	Equipment Delivery	20	2	22				
9	FFCC Construction	19	4	23				
10	Equipment Checkout	23	1	24				
11	Operator Training	23	1	24				
12	Start-Up	30	0	24				

Fuel Switch Convert 3 Coal Boilers to Natural Gas

Time to Start-Up: 42 Months

					Year 1	Year 2	Year 3	Year 4		
Step	<u>Task</u>	<u>Start</u>	Duration	End	0 1 2 3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20 21 22 23 24	25 26 27 28 29 30 31 32 33 34 35 36	37 38 39 40 41 42 43 44 45 46 46 48		
1	Feasibility Study	0	1	1						
2	ADEQ Review	1	12	12						
3	Engineering Design	13	6	19						
4	Capital Cost Estimate	19	2	21						
5	Vendor Quotes	21	2	23						
6	Selection of Equipment	23	1	24						
7	Vendor Fulfillment	24	6	30						
8	Equipment Delivery	30	2	32						
9	FFCC Construction	32	6	38						
10	Equipment Checkout	36	3	39						
11	Operator Training	39	4	42						
12	Start-Up	42	5	48						

Attachment A-1.4 Fuel Switch Convert 1 Coal Boiler to Natural Gas

	Time t	o Start-Up:	24	Months											
							Year 1			Year 2					
<u>Step</u>	<u>Task</u>	<u>Start</u>	Duration	End	0 1	234	5678	9 10 11 12	2 13 14	15 16 17 1	8 19 20) 21 22	23 24		
1	Feasibility Study	0	1	1											
2	ADEQ Review	1	12	12											
3	Engineering Design	13	1	13											
4	Capital Cost Estimate	13	1	14											
5	Vendor Quotes	14	1	15											
6	Selection of Equipment	15	1	16											
7	Vendor Fulfillment	16	4	20											
8	Equipment Delivery	20	2	22											
9	FFCC Construction	19	4	23											
10	Equipment Checkout	23	1	24											
11	Operator Training	23	1	24											
12	Start-Up	30	0	24											

Wet Gas Scrubbers - Lime Slurry

	Time	to start-up:	72	wonths			Ve	1			Voor 3					Voor 2					
Stop	Tack	Start	Duration	End	0 1	2 3	1 5		2 9 10	0 11 12	13 14 15 1	6 17 18		1 22 23	24 2	25 26 27 28 29 3		3 34 35 3	5 37 38 3	0 40 41	
Step	Idsk	Juli	Duration	Ellu	0 1	2 3	4 5	0 / 0		11 12	15 14 15 1	0 17 10	15 20 2	.1 22 23	24 2	20 27 20 27 3	0 31 32 3	5 54 55 5	5 57 50 5	40 41	42 43 44 43
1	Feasibility Study	0	1	1																	
2	ADEQ Review	1	12	12																	
3	Engineering Design	13	6	18																	
4	Capital Cost Estimate	18	3	20																	
5	Vendor Quotes	21	2	22																	
6	Selection of Equipment	22	1	22																	
7	Demolition or Relocation of Existing Structures	22	2	23																	
8	Vendor Fulfillment	23	15	37																	
9	Equipment Delivery	38	3	40																	
10	FFCC Construction	41	30	70																	
11	Equipment Checkout	71	1	71																	
12	Operator Training	70	3	72																	
13	Start-Up	72	0	72																	

Wet Gas Scrubbers - Lime Slurry Time to Start-Up:

72 Months

			-			Year 5	Year 6
Step	<u>Task</u>	<u>Start</u>	Duration	End	46 47 48	49 50 51 52 53 54 55 56 57 58 59 60	61 62 63 64 65 66 67 68 69 70 71 72
1	Feasibility Study	0	1	1			
2	ADEQ Review	1	12	12			
3	Engineering Design	13	6	18			
4	Capital Cost Estimate	18	3	20			
5	Vendor Quotes	21	2	22			
6	Selection of Equipment	22	1	22			
7	Demolition or Relocation of Existing Structures	22	2	23			
8	Vendor Fulfillment	23	15	37			
9	Equipment Delivery	38	3	40			
10	FFCC Construction	41	30	70			
11	Equipment Checkout	71	1	71			
12	Operator Training	70	3	72			
13	Start-Up	72	0	72			

Spray Dry Absorption

	Time	Months																					
							Year 1	1			Yea	r 2			Y	ear 3				Yea	ar 4		
Step	Task	Start	Duration	End	0 1	2 3 4	5 6	7 8	9 10 11	12	13 14 15 16 17 18	19 20	21 22 23 24	25 26 27	7 28 29 3	0 31 32	33 34 35 3	6 37	38 39 40	41 42	43 44 4	5 46 47	7 48
1	Feasibility Study	0	1	1																			
2	ADEQ Review	1	12	12																			
3	Engineering Design	13	6	18																			
4	Capital Cost Estimate	18	3	20																			
5	Vendor Quotes	20	2	21																			
6	Selection of Equipment	22	1	22																			
7	Demolition or Relocation of Existing Structures	22	2	23																			
8	Vendor Fulfillment	23	5	27																			
9	Equipment Delivery	28	3	30																		_	
10	FFCC Construction	31	16	46																			
11	Equipment Checkout	47	1	47																			
12	Operator Training	46	3	48																			
13	Start-Up	48	0	48																			

Dry Sorbent Injection

Time to Start-Up: 36 Months Year 1 Year 2 Year 3 Year 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Step Task **Start** Duration End Feasibility Study ADEQ Review Engineering Design Capital Cost Estimate Vendor Quotes Selection of Equipment Demolition or Relocation of **Existing Structures** Vendor Fulfillment **Equipment Delivery** FFCC Construction Equipment Checkout **Operator Training** Start-Up

ATTACHMENT A-1.8

RESERVED

ATTACHMENT A-1.9

RESERVED

ATTACHMENT A-1.10

RESERVED
Attachment A-1.11

Selective Catalytic Reduction

Time to Start-Up: 48 Months			Months																		
						Year 1	Y	ear 2				· · ·	/ear 3					Ye	ar 4		
<u>Step</u>	<u>Task</u>	<u>Start</u>	<u>Duration</u>	<u>End</u>	0 1	1 2 3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 1	.8 19 2	0 21 2	2 23 24	25 26 27	28 29	30 31 3	2 33 34	4 35 36	37 38	39 40	41 42	43 44	45 46	6 47 48
1	Feasibility Study	0	1	1																	
2	ADEQ Review	1	12	12																	
3	Engineering Design	13	6	18																	
4	Capital Cost Estimate	18	3	20																	
5	Vendor Quotes	20	2	21																	
6	Selection of Equipment	22	1	22																	
7	Demolition or Relocation of	22	2	23																	
8	Vendor Fulfillment	23	5	27																	
9	Equipment Delivery	28	3	30																	
10	FFCC Construction	31	16	46																	
11	Equipment Checkout	47	1	47																	
12	Operator Training	46	3	48																	
13	Start-Up	48	0	48																	

Attachment A-1.12 Selective Non-catalytic Reduction

48 Months

				Year 1	Year 2	Year 3	Year 4		
<u>Step</u>	<u>Task</u>	<u>Start</u>	<u>Duration</u>	<u>End</u>	0 1 2 3 4 5 6 7 8 9 10 11 12	13 14 15 16 17 18 19 20 21 22 23 24	25 26 27 28 29 30 31 32 33 34 35 36	5 37 38 39 40 41 42 43 44 45 46 47 48	
1	Feasibility Study	0	1	1					
2	ADEQ Review	1	12	12					
3	Engineering Design	13	6	18					
4	Capital Cost Estimate	18	3	20					
5	Vendor Quotes	20	2	21					
6	Selection of Equipment	22	1	22					
7	Demolition or Relocation of Existing Structures	22	2	23					
8	Vendor Fulfillment	23	5	27					
9	Equipment Delivery	28	3	30					
10	FFCC Construction	31	16	46					
11	Equipment Checkout	47	1	47					
12	Operator Training	46	3	48					
13	Start-Up	48	0	48					

Regional Haze EvaluationRevision No.:0Revision:04/07/2020AttachmentB

Attachment B

Emission Reduction Strategy Cost Analysis

Revision 0

Pursuant to

DEQ Information Collection Request dated January 8, 2020

AFIN 32-00036

FutureFuel Chemical Company P.O. Box 2357 Batesville, AR 72503 ARD089234884

April 7, 2020

Attachment B-1.1									
FFCC SO ₂ /NO _x En	nission Reduction S	trategy							
Fuel Switch - Replace All Coal Boilers with Natural Gas									
Cost Item	Cost Estimate	Reference							
Capital Costs									
Two 75 KPPH, 600 PSIG, Gas-Fired Water Tube Boilers	= \$3,000,000 = \$900,000	- Budgetary Quote B&W - \$1.5 mm each							
Piping	= \$1,620,000	general Layout							
Eletrical and Instrument	= \$1,620,000	- Costs based on similar existing facilities &							
Engineering	= \$690,000	equipment quotes							
Project Management	= \$270,000	- Estimate Resources FFCC & Vendors							
30% Contigency Total Capitaal Costs	$=$ $\frac{$2,430,000}{$10,530,000}$	- 30% Contingency from EPA Manual							
Total Capital Costs	= \$10,550,000								
Energy and Non-Environmental Capital Costs									
Energy and then Environmental Capital Costs									
Start-Up Training	= \$30,000								
Plant Shutdown for Tie-ins	= \$2,899,000								
Boiler Hazardous Waste Closure Costs Total Energy and Non-Environmental Capital Costs	= \$162,485 = \$3.091.485	RCRA 2020 Closure Cost							
Total Energy and Non-Environmental Capital Costs	- \$5,071,+85								
Annual Operating and Maintenance Costs									
rundar operating and maintenance costs									
Natural Gas Costs	= \$4,086,385	Similar Onsite Unit							
Electrical Costs	= \$407,735	Similar Onsite Unit							
Maintenance Costs Operating And Support Labor Costs	= \$111,585 = \$251,776	Similar Onsite Unit							
Permitting and Compliance Costs	= \$251,776 = \$8.642	Similar Onsite Unit							
Offsite Liquid Waste Disposal Costs	= \$25,396,988	Based on known offsite disposal costs							
Offsite Dewatered Sludge Disposal Costs	= \$205,086	Based on known offsite disposal costs							
Offsite Disposal Support Labor Costs	= \$129,632	Logistical offsite labor cost estimate							
Total Annual Operting and Maintenace Costs	= \$30,597,829								
Indirect Annual costs									
Overhead	= \$218,016	Cost Control Manual							
Administrative Charges	= \$364,005	Cost Control Manual							
Property Tax	= \$182,003 = \$182.003	Cost Control Manual							
Capital Recovery	= \$182,005 = \$1.097.892	Cost Control Manual							
Total Annual Indirect Costs	= \$2,043,919								
Total Strategy Annual Costs									
Annual Operating and Maintenace Costs	= \$30,597,829								
Annual Indirect Costs	= \$2,043,919								
Total Strategy Annual Costs	= \$32,641,748								
Cost per Ton of SO2 Reduced									
Total Uncontrolled SO2 and NOv Emissions (ton/vr)	= 3216	Based on maximum monthly value annualized for							
Total Controlled SO2 and NOX Emissions (ton/vr)	= 62	years 2017- 2019							
Total SO2 and NOx Emission Reduction (ton/yr)	= 3154	-							
	¢10.240								
Emission Reduction, \$/10n Reduced	= \$10,349								

Attachment B-1.2

FFCC SO ₂ /NO _x Emission Reduction Strategy									
Fuel Switch - Replace One Coal Boiler with Natural Gas									
Cost Item		Cost Estimate	Reference						
Capital Costs									
One 75 KPPH, 600 PSIG, Gas-Fired Water Tube Boilers	=	\$1,500,000	- Proprietary Quote from Vendor						
Civil	=	\$450,000	- Equipment configuration per FFCC proposed						
Piping	=	\$810,000	general Layout						
Eletrical and Instrument	=	\$810,000 \$245,000	- Costs based on similar existing facilities &						
Project Management	_	\$135,000	- Estimate Resources FECC & Vendors						
30% Contigency	_	\$1.215.000	- 30% Contingency from EPA Manual						
Total Capitaal Costs	=	\$5,265,000							
Energy and Non Environmental Capital Costs									
Energy and Non-Environmental Capital Costs Start Up Training	_	\$30,000							
Plant Shutdown for Tie-ins	_	\$2,899,000							
Boiler Hazardous Waste Closure Costs	=	\$54.162	RCRA 2020 Closure Cost						
Total Energy and Non-Environmental Capital Costs	=	\$2,983,162							
Annual Operating and Maintenance Costs									
Natural Gas Costs	=	\$1,916,532	Similar Onsite Unit						
Electrical Costs	=	\$152,901	Similar Onsite Unit						
Maintenance Costs	=	\$42,173	Similar Onsite Unit						
Operating And Support Labor Costs	=	\$251,776	Similar Onsite Unit						
Permitting and Compliance Costs	=	\$8,642	Similar Onsite Unit						
Offsite Liquid Waste Disposal Costs	=	\$8,465,663	Based on known offsite disposal costs						
Offsite Dewatered Sludge Disposal Costs	=	\$68,363	Based on known offsite disposal costs						
Total Annual Operting and Maintenage Costs	=	\$25,926	Logistical offsite labor support						
Total Annual Opening and Maintenace Costs	-	\$10,951,970							
Indirect Annual costs									
Overhead	=	\$176,370	Cost Control Manual						
Administrative Charges	=	\$182,003	Cost Control Manual						
Property Tax	=	\$91,001 \$01,001	Cost Control Manual						
Insurance Capital Recovery	=	\$91,001 \$664,802	Cost Control Manual						
Total Annual Indirect Costs	=	\$1,205,177							
Total Strategy Annual Costs		\$10.001 == -							
Annual Operting and Maintenace Costs	=	\$10,931,976							
Annual Indirect Costs	=	\$1,205,177							
Total Strategy Annual Costs	=	φ12,137,133							
Cost per Ton of SO2 Reduced									
Total Uncontrolled SO2 and NOx Emissions (ton/yr)	=	3216	Based on maximum monthly value, annualized for						
Total Controlled SO2 and NOx Emissions (ton/yr)	=	2155	years 2017- 2019						
Total SO2 and NOx Emission Reduction (ton/yr)	=	1061							
Emission Reduction , \$/Ton Reduced	=	\$11,439							

Attachment B-1.3									
FFCC SO ₂ /NO _x Emission Reduction Strategy									
Fuel Switch - Retrofit 3-Coal Boilers to Natural Gas									
Cost Item Cost Estimate Reference									
Canital Costs	0000								
Three 50 KPPH Steam Conversion Gas Boiler	= \$1,232,100								
Mechanical Installation of Gas Boilers	= \$2,171,700								
Electrical and Instruments	= \$812,100	Vender-D Budgetary Proposal							
Thermal Modeling	= \$153,900								
Boiler Tube and Refractory Replacement	= \$3,135,000	Vendor-P Budgetary Proposal							
Project Management	= \$50,000	- Estimate Resources FFCC							
30% Contigency	= \$2,266,440	- 30% Contingency from EPA Manual							
Total Capital Costs	= \$9,821,240								
E IN E Engeneratel Contal Costa									
Energy and Non-Environmental Capital Costs	¢20.000								
Start-Up Training Plant Shutdown for Tie-ins	= \$30,000 - \$2,800,000								
Roiler Hazardous Waste Closure Costs	= \$2,099,000 \$160.485	DCD & 2020 Closure Cost							
Total Energy and Non-Environmental Capital Costs	$= \frac{102,403}{43,001,485}$	KUKA 2020 Closure Cost							
	= \$3,071,+05								
Annual Operating and Maintenance Costs									
Natural Gas Costs	= \$4,086,385	Similar Onsite Unit							
Electrical Costs	= \$407,735	Similar Onsite Unit							
Maintenance Costs	= \$111,585	Similar Onsite Unit							
Operating And Support Labor Costs	= \$251,776	Similar Onsite Unit							
Permitting and Compliance Costs	= \$8,642	Similar Onsite Unit							
Offsite Liquid Waste Disposal Costs	= \$25,396,988	Based on known offsite disposal costs							
Offsite Dewatered Sludge Disposal Costs	= \$205,086	Based on known offsite disposal costs							
Offsite Disposal Support Labor Costs	= \$129,632	Logistical offsite labor support							
Total Annual Operting and Maintenace Costs	= \$30,597,829								
Indiract Annual costs									
Overhead	= \$218.016	Cost Control Manual							
Administrative Charges	= \$331.630	Cost Control Manual							
Property Tax	= \$165.816	Cost Control Manual							
Insurance	= \$165.816	Cost Control Manual							
Capital Recovery	= \$1,040,766	Cost Control Manual							
Total Annual Indirect Costs	= \$1,922,044								
Total Strategy Annual Costs	*** -*- **								
Annual Operting and Maintenace Costs	= \$30,597,829								
Annual Indirect Costs	= \$1,922,044								
1 otai Strategy Annuai Costs	= \$32,519,873								
Cost per Ton of SO2 Reduced									
Total Uncontrolled SO2 and NOx Emissions (ton/yr)	= 3216	Based on maximum monthly value, annualized for							
Total Controlled SO2 and NOx Emissions (ton/yr)	= 62	years 2017- 2019							
Total SO2 and NOx Emission Reduction (ton/yr)	= 3154								
Emission Reduction , \$/Ton Reduced	= \$10,311								

Attachment B-1.4										
FFCC SO ₂ /NO _x En	FFCC SO ₂ /NO _x Emission Reduction Strategy									
Fuel Switch - Retrofit One Coal Boiler to Natural Gas										
Cost Item Cost Estimate Reference										
Capital Costs										
One 50 KPPH Steam Conversion Gas Boiler	=	\$410,700								
Mechanical Installation of Gas Boiler	=	\$723,900	Vander-D Rudgetary Proposal							
Electrical and Instruments	=	\$270,700	Vender-D Budgetary r roposar							
Thermal Modeling	=	\$51,300								
Boiler Tube and Refractory Replacement	=	\$1,045,000	Vendor-P Budgetary Proposal							
Project Management	=	\$25,000	- Estimate Resources FFCC							
30% Contigency	=	\$757,980	- 30% Contingency from EPA Manual							
Total Capitaal Costs	=	\$3,284,580								
Energy and Non-Environmental Capital Costs										
Start-Up Training	=	\$30,000								
Plant Shutdown for Tie-ins	=	\$2,899,000								
Boiler Hazardous Waste Closure Costs	=	\$54,162	RCRA 2020 Closure Cost							
Total Energy and Non-Environmental Capital Costs	=	\$2,983,162								
Annual Operating and Maintanange Costs										
Annual Operating and Mannenance Costs	_	\$1 916 532	Similar Onsite Unit							
Flectrical Costs	_	\$1,910,932	Similar Onsite Unit							
Maintenance Costs	=	\$42.173	Similar Onsite Unit							
Operating And Support Labor Costs	=	\$251,776	Similar Onsite Unit							
Permitting and Compliance Costs	=	\$8,642	Similar Onsite Unit							
Offsite Liquid Waste Disposal Costs	=	\$8,465,663	Based on known offsite disposal costs							
Offsite Dewatered Sludge Disposal Costs	=	\$68,363	Based on known offsite disposal costs							
Offsite Disposal Support Labor Costs	=	\$25,926	Logistical offsite labor support							
Total Annual Operting and Maintenace Costs	=	\$10,931,976								
Indiract Appual costs										
<u>Indirect Annual costs</u> Overhead	_	\$176 370	Cost Control Manual							
Administrative Charges	_	\$110,918	Cost Control Manual							
Property Tax	=	\$55.460	Cost Control Manual							
Insurance	=	\$55,460	Cost Control Manual							
Capital Recovery	=	\$505,180	Cost Control Manual							
Total Annual Indirect Costs	=	\$903,388								
Tatal Starts on Americal Casta										
Appual Operting and Maintenace Costs	_	\$10,931,976								
Annual Indirect Costs	_	\$903.388								
Total Strategy Annual Costs	=	\$11,835,364								
······································										
Cost per Ton of SO2 Reduced										
Total Uncontrolled SO2 and NOx Emissions (ton/vr)	=	3216	Based on maximum monthly value annualized for							
Total Controlled SO2 and NOx Emissions (ton/yr)	=	2155	years 2017- 2019							
Total SO2 and NOx Emission Reduction (ton/yr)	=	1061	-							
Emission Reduction , \$/Ton Reduced = \$11,155										

Attachment B-1.5									
FFCC SO ₂ Emission Reduction Strategy									
Wet Scrubber									
Cost Item		Cost Estimate	Reference						
Capital Costs									
Equipment Base Absorber Island Cost	=	\$8,524,883	IPM Model						
Base Module Reagent Preparation	=	\$4,833,436	IPM Model						
Base Waste Handing Cost.	=	\$3,344,731	IPM Model						
Balance of cost including booster fans, ductwork, piping, etc.	=	\$15,405,909	IPM Model						
Engineering and construction management	=	\$3,185,896	IPM Model						
Contractor profit and fees	=	\$3,185,896	IPM Model						
Labor Adjustment	=	\$3,185,896	IPM Model						
Owner's Costs	=	\$2,070,832	IPM Model						
Allowaance for Funds used during Construction	=	\$4,348,748	IPM Model						
Demo old control room	=	\$1,000,000	FFC Estimate						
Line from scrubber to WWT	=	\$700,000	FFC Estimate						
Tank, Sulfuric Acid Line, pH Control	=	\$1,000,000	FFC Estimate						
30% Contigency	=	\$15,235,868	IPM Model						
Total Capital Costs	=	\$66,022,096							
Energy and Non-Air Quality Environmental Costs									
Boiler Rental During Tie-ins	=	\$3 740 000	Vendor Quotes						
Plant Shutdown for Tie-ins	=	\$2,899,000	, endor Quotes						
Off Site Disposal During Tie-ins	=	\$6 781 728	Vendor Quotes						
Total Energy and Non-Environmental Capital Costs	=	\$13,420,728	, endor Quotes						
		+-+,,							
Annual Operating and Maintenance Costs									
Fixed Additional Operating Labor Costs	=	\$2,166,649	IPM Model						
Fixed Additional Maintenance labor and materials	=	\$448,041	IPM Model						
Additional Adminstrative labor Costs	=	\$70,376	IPM Model						
Variable Sorbant Cost	=	\$6,742	IPM Model						
Variable Cost Waste Disposal of Sorbant	=	\$332,983	IPM Model						
Variable Cost of Additional Power, Makeup water and Sulfuric Acid	=	\$18,424	IPM Model						
Total Annual Operting and Maintenace Costs	=	\$3,043,215							
Indirect Annual Costs									
Overhead	=	\$1,611,040	IPM Model						
Adminstrative Charges	=	\$1,910,346	IPM Model						
Property Tax	=	\$955,173	IPM Model						
Insurance	=	\$995,173	IPM Model						
Capital Recovery	=	\$8,722,822	IPM Model						
Total Annual Indirect Costs	=	\$14,194,554							
Total Strategy Annual Costs									
Annual Operting and Maintenace Costs	_	\$3.043.215							
Annual Opening and Mannenace Costs	_	93,043,213 \$14 194 554							
Total Strategy Annual Costs	_	\$17,237,769							
	_	φ1,201,102							
Cost per Ton of SO ₂ Removed									
Total Uncontrolled SO ₂ Emissions, Tons/yr	=	2,884	Maxium monthly						
SO ₂ Removal Efficiency, %	=	94	value in period						
Total SO ₂ Removed, Tons/yr	=	2,711	2017-2019 annualized						
SO ₂ Effectiveness, \$/Ton SO ₂ Removed	=	\$6,358							

Attachement B-1.6							
FFCC SO ₂ Emission Reduct	ion	Strategy					
Spray Dry Absorber							
Cost Item		Cost Estimate	Reference				
Capital Costs							
Equipment Base Module Absorber Island Cost	=	\$8,614,265	IPM Model				
Base Module reagent preparation and waste handling	=	\$6,358,937	IPM Model				
Base Module balance of costs including booster fans piping ductwork etc.	=	\$12,239,675	IPM Model				
Labor Adjustments	=	\$2,696,287	IPM Model				
Engineering and construction management	=	\$2,696,287	IPM Model				
Contractor profit and fees	=	\$2,696,287	IPM Model				
Owner's Cost	=	\$1,752,587	IPM Model				
Allowaance for Funds used during Construction	=	\$3,680,433	IPM Model				
Demo old control room	=	\$1,000,000	FFC Estimate				
30% Contigency	=	\$12,520,428	IPM Model				
Total Capital Costs	=	\$54,255,187					
Energy and Non-Air Quality Environmental Costs							
Boiler Rental During Tie-ins	=	\$3,740,000	Vendor Quotes				
Plant Shutdown for Tie-ins	=	\$2,899,000					
Off Site Disposal During Tie-ins	=	\$6,781,728	Vendor Quotes				
Total Energy and Non-Environmental Capital Costs	=	\$13,420,728					
Annual Operating and Maintenance Costs							
Fixed Additional Operating Labor Costs	=	\$1,444,433	IPM Model				
Fixed Additional Maintenance labor and materials	=	\$173,063	IPM Model				
Additional Adminstrative labor Costs	=	\$45,410	IPM Model				
Variable Sorbant Cost	=	\$6,763	IPM Model				
Variable Cost Waste Disposal of Sorbant	=	\$379,506	IPM Model				
Variable Cost Additional Power and Make Up Water	=	\$9,750	IPM Model				
Total Annual Operting and Maintenace Costs	=	\$2,058,925					
Indirect Annual Costs	—	· .					
Overhead	_	\$997 744	IPM Model				
Adminstrative Charges	_	φ771,144 ¢1 560 872	IF WI WOOCI				
Property Tax	_	\$784 036	IDM Model				
	_	\$10 4 ,730 \$781 036	IF WI WOOCI				
Capital Recovery	_	ወ/ 04,750 \$7 / 20 815	If WI Woodel				
Total Annual Indirect Costs	_	\$1,400,010 \$11 568 303					
	_	φ11,500,505					
Total Strategy Annual Costs		40.059.0 05					
Annual Operting and Maintenace Costs	=	\$2,058,925					
Annual Indirect Costs	=	\$11,568,303					
Iotal Strategy Annual Costs	=	\$13,627,228					
Cost per Ton of SO ₂ Removed							
Total Uncontrolled SO ₂ Emissions, Tons/yr	=	2,884	Maxium monthly value				
SO ₂ Removal Efficiency, %	=	92	in period				
Total SO ₂ Removed, Tons/yr	=	2,653	2017-2019 annualized				
SO ₂ Effectiveness, \$/Ton SO ₂ Removed	=	\$5,137					

Attachment B-1.7							
FFCC SO ₂ Emission Reduction Strategy							
Dry Sorbant Injection							
Cost Item		Cost Estimate	Reference				
Capital Costs							
Equipment Base DSI Module from unloading to injection	=	\$26,651,221	IPM Model				
Labor adjustment	=	\$2,640,122	IPM Model				
Contractor proffit and fees	=	\$2.640.122	IPM Model				
Owner's costs (owner's engineering, management, and procurement)	=	\$1,716,079	IPM Model				
Engineering	=	\$2,640,122	IPM Model				
Demo old control room	=	\$1.000.000	IFM Model				
30% Contigency	=	\$11 186 300	FFC Estimate				
Total Capital Costs	=	\$48 473 967	IPWI Middel				
	_	\$10,175,507					
Energy and Non-Air Quality Environmental Costs							
Boiler Rental During Tie-ins	=	\$3,740,000	Vendor Quotes				
Plant Shutdown for Tie-ins	=	\$2,899,000					
Off Site Disposal During Tie-ins	=	\$6,781,728	Vendor Quotes				
Total Energy and Non-Environmental Capital Costs	=	\$13,420,728					
Annual Operating and Maintenance Costs							
Fixed Additional Operating Labor Costs	=	\$361,108	IPM Model				
Fixed Additional Maintenance labor and materials	=	\$112,972	IPM Model				
Additional Adminstrative labor Costs	=	\$12,189	IPM Model				
Variable Sorbant Cost	=	\$18,206	IPM Model				
Variable Cost Waste Disposal of Sorbant	=	\$397,132	IPM Model				
Variable Cost Additional Power	=	\$19,860	IPM Model				
Total Annual Operting and Maintenace Costs	=	\$921,467					
Indirect Annual Costs							
Querbead	_	\$291 762	IPM Model				
Adminstrative Charges	_	\$1,402,592	IPM Model				
Pronerty Tax	_	\$701 297	IPM Model				
	_	\$701,297	IPM Model				
Capital Pacavary	_	\$6 706 038	IPM Model				
Total Appual Indirect Costs	_	\$0,790,038	IF WI WIOdel				
Total Annual munet Costs	-	\$7,872,780					
Total Strategy Annual Costs							
Annual Operting and Maintenace Costs	=	\$921,467					
Annual Indirect Costs	=	\$9,892,986					
Total Strategy Annual Costs	=	\$10,814,453					
Cost per Top of SQ. Removed							
Total Uncontrollad SO. Emissions Total	_	2881					
SO Demoved Efficience of	_	2,004	2017 2010 approximate				
SO ₂ Removal Efficiency, %	_	40	2017-2017 annuanzed				
10iai SO_2 Keinoved, 10nS/yr SO. Effectiveness S/Ten SO. Removed	=	1,154					
50_2 Effectiveness, $\frac{1}{5}$ 1 on 50_2 Kemoved	=	\$9,371					

Attac	chment B-1.8								
FFCC SO ₂ Emis	sion Reduction Stra	tegy							
Fuel Switch - Lower Sulfur Coal (2.5%)									
Cost Item	Cost Estimate	Reference							
Canital Costs									
Total Capitaal Costs	= \$0	Do not anticipate any capital costs							
Energy and Non-Environmental Capital Costs									
	± ~								
Total Energy and Non-Environmental Capital Costs	= \$0	Do not anticipate any front end costs							
Annual Operating and Maintenance Costs									
Cost Ingrass for 2.5% coal	¢1 061 016	C-al Inamaga Cost							
Cost Increase for 2.370 Coar Coal Usage Tax	= \$1,064,016 = \$85,121	Coal Increase Cost Coal Usage Tax							
Total Annual Operting and Maintenace Costs	= \$1,149,137								
Indirect Annual costs									
Total Annual Indirect Costs	- \$0								
	- \$ U								
SO2 Emission <u>Summary</u>									
Total Uncontrolled SO2 and NOX Emissions (ton/yr) Total Controlled SO2 and NOX Emissions (ton/yr)	= 2884 = 2394	Based on maximum monthly value, annualized for years 2017- 2019							
Total SO2 and NOx Emission Reduction (ton/yr)	= 490								
Cost per Ton of SO2 Reduced									
Total Annual Costs	= \$1,149,137								
SO2 Emission Reduction , \$/Ton Reduced	= \$2,345								
 ,,,,									

Attac	chment B-1.9								
FFCC SO ₂ Emission Reduction Strategy									
Fuel Switch - Lower Sulfur Coal (2.0%)									
Cost Item	Cost Estimat	e Reference							
0.510.2									
Capital Costs									
Total Capitaal Costs	s = \$0	Do not anticipate any capital costs							
Energy and Non-Environmental Capital Costs									
Total Energy and Non-Environmental Capital Costs	s = \$0	Do not anticipate any front end costs							
Annual Operating and Maintenance Costs									
Cost Insurance for 2.0% and	1 01047 350								
Cost Increase for 2.0% coar Coal Usage Tax		Coal Increase Cost Coal Usage Tax							
Total Annual Operting and Maintenace Costs	s = \$1,995,030	č							
Indirect Annual costs									
Total Annual Indirect Costs	s = \$0								
SO <u>2 Emission Summary</u>									
Total Uncontrolled SO2 and NOx Emissions (ton/yr) Total Controlled SO2 and NOx Emissions (ton/yr)	() = 2884 () = 1932	Based on maximum monthly value, annualized for vears 2017-2019							
Total SO2 and NOx Emission Reduction (ton/yr)	$r) = \frac{1932}{952}$	years 2017 2017							
Cost per Ton of SO2 Reduced									
Total Annual Costs	c \$1,005,020								
Total SO2 Emission Reduction (ton/yr)	$s ={31,995,050}$	_							
SO2 Emission Reduction , \$/Ton Reduced	1 = \$2,096								

Attac	chment B-1.10									
FFCC SO ₂ Emission Reduction Strategy										
Fuel Switch - Lo	Fuel Switch - Lower Sulfur Coal (1.5%)									
Cost Item	Cost Estimate	Reference								
<u>Capital Costs</u>										
Total Capitaal Costs	= \$0	Do not anticipate any capital costs								
Energy and Non-Environmental Capital Costs										
Total Energy and Non-Environmental Capital Costs	s = \$0	Do not anticipate any front end costs								
	T. T. T.	20								
Appual Operating and Maintenance Costs										
Allium Operating and Humanate Costs										
Cost Increase for 1.5% coal	= \$3,919,281	Coal Increase Cost								
Cost Increase for 1.5% coat Total Annual Operting and Maintenace Costs	= \$313,542 = \$4.232.823	Coal Usage Tax								
	- + ·,=======									
Indirect Annual costs										
Indirect Annual Costs										
Total Annual Indirect Costs	= \$0									
SO2 Emission Summary										
Total Uncontrolled SO2 and NOx Emissions (ton/vr)	- 2884	Based on maximum monthly value, annualized for								
Total Controlled SO2 and NOx Emissions (con/yr)	= 1442	years 2017- 2019								
Total SO2 and NOx Emission Reduction (ton/yr)	= 1442									
Cost per Ton of SO2 Reduced										
Total Annual Costs	\$ = \$4,232,823									
Total SO2 Emission Reduction (ton/yr)	= 1442									
SO2 Emission Reduction , \$/Ton Reduced	= \$2,935									

Attachment B-1.11 FFCC NO _x Emission Reduction Strategy Selective Catalytic Reduction									
						Cost Item		Cost Estimate	Reference
						Capital Costs			
Capital for SCP	-	\$11 KOK 207							
Capital 101 SCK	=	\$11,070,377 \$5 105 005	Cost Control Manual						
Air Pre Heater Cost	=	\$3,103,003	Cost Control Manual						
All FIC-ficatel Cost Balance of Plant Costs	=	\$2,031,774 \$5 071 181	Cost Control Manual						
Demo old control room	_	\$3,271,101	Cost Control Manual						
30% Contigency	_	\$1,000,000 \$7 531 367	FFC Estimate						
Total Capital Costs	_	\$22 625 925	Cost Control Manual						
10tai Capitai Costs	=	\$32,033,92 <i>3</i>							
Enorgy and Non Air Quality Environmental Costs									
Ellergy and Non-All Quarty Environmental Costs									
Boiler Rental During Tie-ins	=	\$3,740,000	Vendor Quotes						
Plant Shutdown for Tie-ins	=	\$2,899,000	-						
Off Site Disposal During Tie-ins	=	\$6,781,728	Vendor Quotes						
Total Energy and Non-Environmental Capital Costs	=	\$13,420,728							
Annual Operating and Maintenance Costs									
Maintenance Cost	=	\$239,320	Cost Control Manual						
Reagent Cost	=	\$216,051	Cost Control Manual						
Electricity Cost	=	\$66,018	Cost Control Manual						
Catalyst Replacement Cost	=	\$19,664	Cost Control Manual						
Total Annual Operting and Maintenace Costs	=	\$541,053							
Indirect Annual Costs									
Adminstrative Charges	_	\$4 351	Cost Control Manual						
Capital Recovery	_	\$4 163 521	Cost Control Manual						
Total Annual Indirect Costs	=	\$4 167 872	COst Control Manual						
		ψτ,107,072							
Total Strategy Annual Costs									
Annual Operting and Maintenace Costs	=	\$541,053							
Annual Indirect Costs	=	\$4,167,872							
Total Strategy Annual Costs	=	\$4,708,925							
Cost per Ton of SO ₂ Removed									
- Total Uncontrolled NOx Emissions, Tons/yr	=	332	Maxium monthly						
NOx Removal Efficiency, %	=	80	value in period						
Total NOx Removed, Tons/yr	=	266	2017-2019 annualized						
NOx Effectiveness, \$/Ton NOx Removed	=	\$17,703							

Attachment B-1.12					
FFCC NO _x Emission Reduction Strategy Selective Non-Catalytic Reduction					
Capital Costs					
Capital for SCR	=	\$2,352,725	Cost Control Manual		
Air Pre-Heater Cost	=	\$1,956,098	Cost Control Manual		
Balance of Plant Costs	=	\$2,670,915	Cost Control Manual		
Demo old control room	=	\$1,000,000	FFC Estimate		
30% Contigency	=	\$2,393,921	Cost Control Manual		
Total Capital Costs	=	\$10,373,659			
Energy and Non-Air Quality Environmental Costs					
Boiler Rental During Tie-ins	=	\$3.740.000	Vendor Ouotes		
Plant Shutdown for Tie-ins	=	\$2,899.000	, ender Quetes		
Off Site Disposal During Tie-ins	=	\$6.781.728	Vendor Ouotes		
Total Energy and Non-Environmental Capital Costs	=	\$13,420,728			
Annual Operating and Maintenance Costs					
Maintenance Cost	=	\$219,462	Cost Control Manual		
Reagent Cost	=	\$189,948	Cost Control Manual		
Electricity Cost	=	\$2,845	Cost Control Manual		
Water, Additiona Fuel, Additional Ash Cost	=	\$1,440	Cost Control Manual		
Total Annual Operting and Maintenace Costs	=	\$413,695			
Indirect Annual Costs					
Adminstrative Charges	_	\$6.584	Cost Control Manual		
Canital Recovery	_	\$2 246 190	Cost Control Manual		
Total Annual Indirect Costs	_	\$2,252,774	Cost Control Manual		
		+-,			
Total Strategy Annual Costs					
Annual Operting and Maintenace Costs	=	\$413,695			
Annual Indirect Costs	=	\$2,252,774			
Total Strategy Annual Costs	=	\$2,666,469			
Cost nor Ton of SO. Domousd					
COSL per 100 01 SO ₂ Kemoved	_	220	noriod		
NOr Demonstrate Street Effection of	=	332	period		
NOX KEMOVAL EILICIENCY, %	=	40	2017-2019 annualized		
NOv Effectiveness \$/Ten NOv Demoved	_	\$20.049			
NOX Effectiveness, ϕ foil NOX Keinoved	-	φ20,049			

Regional Haze EvaluationRevision No.:0Revision:04/07/2020AttachmentB

Attachment C

Emission Reduction Strategy Other Information

Revision 0

Pursuant to

DEQ Information Collection Request dated January 8, 2020

AFIN 32-00036

FutureFuel Chemical Company P.O. Box 2357 Batesville, AR 72503 ARD089234884

April 7, 2020

April 14, 2008

Mr. Mike Collins FutureFuel Chemical Company P.O. Box 2357 Batesville, AR 72503

Re: Best Available Retrofit Technology (BART) modeling results

Dear Mr. Collins:

This letter is to notify you that ADEQ's BART determination modeling results indicate your facility's unit 6M01-01 is not subject-to-BART. According to the data, emissions from your unit do not cause nor contribute to visibility impairment at the following Class I wilderness areas in Arkansas: Caney Creek and Upper Buffalo.

Sincerely,

Mary Pettyjohn Senior Epidemiologist