

January 24, 2008

John Rimmer, General Manager West Memphis Utilities Commission P.O. Box 1868 West Memphis, AR 72301

RE: City of West Memphis POTW

AFIN: 18-00109 NPDES Permit No.: AR0022039

Dear Mr. Rimmer:

On December 19 and 21, 2007, I performed a routine compliance inspection of the waste water treatment facility in accordance with the provisions of the Federal Clean Water Act, the Arkansas Water and Air Pollution Control Act, and the regulations promulgated thereunder. This inspection revealed the following violation:

The in house laboratory does not have a formal written QA/QC program in place as required by Part II Section B:1.a and Section C:3 of the permit. You may wish to contact Jane Hurley at 501-682-0938 or hurleyj@adeq.state.ar.us in our laboratory for assistance in developing your laboratory's QA/QC program.

The above item requires your immediate attention. Please submit a written response to this finding to the Water Division Enforcement Section of this Department at the following address:

Water Division Enforcement Section Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, AR 72118-5317

This response should contain detailed documentation describing the course of action taken to correct the item noted. This corrective action should be completed as soon as possible, and the written response is due by February 19, 2008.

For additional information you may contact the enforcement section by telephone at 501-682-0639 or by fax at 501-682-0910.

John Rimmer, West Memphis POTW January 24, 2008 Page 2

If I can be of any assistance, please contact me at walker@adeq.state.ar.us or 870-935-7221 ext.-12.

Sincerely,

Brent L. Walker

District 3 Field Inspector

Brest 2 Walter

Water Division

cc: Water Division Enforcement Branch

Water Division Permits Branch

⊕	EPA		Form Approved OMB No. 2040-0003										
		UNIT	ED STATES ENVIRONM	ENTAL PROTECTION	N AGENO	CY							
	NPDES	S C	Complianc Washington	e Inspec	tior	ı F	Report						
			S	Section A: Nation	nal Dat	a Sy	stem Coding						
Transaction Code NPDES Yr/Mo/Day Inspec. Type Inspector Fac. Ty 1 N 2 5 3 A R 0 0 2 2 0 3 9 11 12 0 7 1 2 1 9 17 18 C 19 S 20 1 Remarks													
	Inspection Work Days 67 69]	Facility Evaluation R	ating 1	BI N	72	QA	L	Reserved				
				Section I	3: Faci	lity l	Data						
incli Wes	ne and Location of Facility Inspected ade POTW name and NPDES permit the Memphis WWTP			harging to POTW	V, also		Entry Time/Date 1430 12/19/2007 1320 12/21/2007		Permit Effective Date June 1, 2003				
Wes	Rushing Rd. It Memphis, AR tenden County						Exit Time/Date 1555 12/19/2007 1530 12/21/2007		Permit Expiration Date May 31, 2008				
Pau	ne(s) of On-Site Representative(s)/Ti I Holloway/Waste Water Superint ricia Dixon/Laboratory			aber(s)		•		Oth	her Facility Data				
Joh Wes P.O	ne, Address of Responsible Official/ n Rimmer/General Manager/870-7 at Memphis Utilities Commission . Box 1868 at Memphis, AR 72301			per			Contacted Yes □ No ✓						
				tion C: Areas Ev			uring Inspection sfactory, N = Not Evaluated)						
S	Permit	S	Flow Measuremen		S		erations & Maintenance	S	Sampling				
S	Records/Reports	M	Self-Monitoring F	Program	S	Slu	dge Handling/Disposal	S	Pollution Prevention				
S	Facility Site Review	N	Compliance Sche	dules	N	Pre	treatment	N	Multimedia				
M	Effluent/Receiving Waters	U	Laboratory		S	Sto	rm Water	N	Other:				
		Se	ction D: Summary	of Findings/Com	ments	(Att	ach additional sheets if necessar	y)					
DM 200	IRs submitted since the last inspec 7 exceeded FCB 7-day avg., and J	tion uly 2	were reviewed and t 007 exceeded Montl	the following effl aly and 7-day av	uent vi g. Non	olati	ions were noted: May 2007 exce	eded as rec	FCB Monthly and 7-day avg., June juired.				
	ere appeared to be a small amount rently performing an Oil and Gre							ive Oi	il and Grease limits and the city is				
	e following violation was noted and e in house laboratory does not hav				ace as	requ	nired by Part II Section B:1.a and	d Sect	tion C:3 of the permit.				
Nar	ne(s) and Signature(s) of Inspector(s nt L. Walker Bush				vironi	nent	Fax tal Quality-Jonesboro 0) 935-4715 (Fax)		Date January 24, 2008				
	/ . • • • • • • • • • • • • • • •												
Sign	nature of Reviewer			Agency/Office	/Phone	and	Date						

ADEQ Water NPDES Inspection	AFIN: 18-00109	Permit #: AR0022039

SECTION A: PERMIT VERIFICATION	
PERMIT SATISFACTORILY ADDRESSES OBSERVATIONS	☑S ☐M ☐U ☐NA ☐NE
DETAILS:	
1. CORRECT NAME AND MAILING ADDRESS OF PERMITTEE:	☑Y □N □NA □NE
2. NOTIFICATION GIVEN TO EPA/STATE OF NEW DIFFERENT OR INCREASED DISCHARGES:	□Y □N ☑NA □NE
3. NUMBER AND LOCATION OF DISCHARGE POINTS AS DESCRIBED IN PERMIT:	☑Y □N □NA □NE
4. ALL DISCHARGES ARE PERMITTED:	☑Y □N □NA □NE
SECTION B: RECORDKEEPING AND REPORTING EVALUATION	
RECORDS AND REPORTS MAINTAINED AS REQUIRED BY PERMIT	☑S ☐M ☐U ☐NA ☐NE
DETAILS:	
1. ANALYTICAL RESULTS CONSISTENT WITH DATA REPORTED ON DMRS:	☑Y □N □NA □NE
2. SAMPLING AND ANALYSES DATA ADEQUATE AND INCLUDE:	⊠s □m □u □na □ne
a. DATES AND TIME(S) OF SAMPLING:	⊠y □n □na □ne
b. EXACT LOCATION(S) OF SAMPLING:	☑Y □N □NA □NE
c. NAME OF INDIVIDUAL PERFORMING SAMPLING:	☑Y □N □NA □NE
d. ANALYTICAL METHODS AND TECHNIQUES:	☑Y □N □NA □NE
e. RESULTS OF CALIBRATIONS:	☑Y □N □NA □NE
f. RESULTS OF ANALYSES:	☑Y □N □NA □NE
g. DATES AND TIMES OF ANALYSES:	☑Y □N □NA □NE
h. NAME OF PERSON(S) PERFORMING ANALYSES:	☑Y □N □NA □NE
3. LABORATORY EQUIPMENT CALIBRATION AND MAINTENANCE RECORDS ADEQUATE:	⊠s □m □u □na □ne
4. PLANT RECORDS INCLUDE SCHEDULES, DATES OF EQUIPMENT MAINTENANCE AND REPAIR:	⊠s □m □u □na □ne
5. EFFLUENT LOADINGS CALCULATED USING DAILY EFFLUENT FLOW AND DAILY ANALYTICAL DATA:	☑Y □N □NA □NE
SECTION C: OPERATIONS AND MAINTENANCE	
TREATMENT FACILITY PROPERLY OPERATED AND MAINTAINED	☑S □M □U □NA □NE
DETAILS:	
TREATMENT UNITS PROPERLY OPERATED:	⊠s □m □u □na □ne
2. TREATMENT UNITS PROPERLY MAINTAINED:	Øs □m □u □na □ne
3. STANDBY POWER OR OTHER EQUIVALENT PROVIDED: Facility has installed a new generator	ØS □M □U □NA □NE
4. ADEQUATE ALARM SYSTEM FOR POWER OR EQUIPMENT FAILURES AVAILABLE:	⊠s □m □u □na □ne
5. ALL NEEDED TREATMENT UNITS IN SERVICE:	Øs □m □u □na □ne
6. ADEQUATE NUMBER OF QUALIFIED OPERATORS PROVIDED:	⊠s □m □u □na □ne
7. SPARE PARTS AND SUPPLIES INVENTORY MAINTAINED:	⊠s □m □u □na □ne
8. OPERATION AND MAINTENANCE MANUAL AVAILABLE:	□Y □N □NA ☑NE
9. STANDARD OPERATING PROCEDURES AND SCHEDULES ESTABLISHED:	☑Y □N □NA □NE
10. PROCEDURES FOR EMERGENCY TREATMENT CONTROL ESTABLISHED:	☑Y □N □NA □NE
11. HAVE BYPASSES/OVERFLOWS OCCURRED AT THE PLANT OR IN THE COLLECTION SYSTEM IN THE LAST YEAR:	☑Y □N □NA □NE
12. IF SO, HAS THE REGULATORY AGENCY BEEN NOTIFIED:	☑Y □N □NA □NE
13. HAS CORRECTIVE ACTION BEEN TAKEN TO PREVENT ADDITIONAL BYPASSES/OVERFLOWS:	☑Y □N □NA □NE
14. HAVE ANY HYDRAULIC OVERLOADS OCCURRED AT THE TREATMENT PLANT: May 2007 - Oil dumped in collection system	
15. IF SO, DID PERMIT VIOLATIONS OCCUR AS A RESULT: Exceeded FCB Monthly and 7-day average	☑Y □N □NA □NE

ADEQ Water NPDES Inspection	AFIN: 18-00109	Permit #: AR0022039

S	ECTION D: SAMPLING	
PI	ERMITTEE SAMPLING MEETS PERMIT REQUIREMENTS	☑S □M □U □NA □NE
DI	ETAILS:	
1.	SAMPLES TAKEN AT SITE(S) SPECIFIED IN PERMIT:	☑Y □N □NA □NE
2.	LOCATIONS ADEQUATE FOR REPRESENTATIVE SAMPLES:	☑Y □N □NA □NE
3.	FLOW PROPORTIONED SAMPLES OBTAINED WHEN REQUIRED BY PERMIT:	☑Y □N □NA □NE
4.	SAMPLING AND ANALYSES COMPLETED ON PARAMETERS SPECIFIED IN PERMIT:	☑Y □N □NA □NE
5.	SAMPLING AND ANALYSES PERFORMED AT FREQUENCY SPECIFIED IN PERMIT:	☑Y □N □NA □NE
6.	SAMPLE COLLECTION PROCEDURES ADEQUATE:	☑Y □N □NA □NE
á	a. SAMPLES REFRIGERATED DURING COMPOSITING:	☑Y □N □NA □NE
ŀ	D. PROPER PRESERVATION TECHNIQUES USED:	☑Y □N □NA □NE
(CONTAINERS AND SAMPLE HOLDING TIMES CONFORM TO 40 CFR 136:	☑Y □N □NA □NE
7.	IF MONITORING IS PERFORMED MORE OFTEN THAN REQUIRED ARE RESULTS REPORTED ON THE DMR:	☑Y □N □NA □NE
S	ECTION E: FLOW MEASUREMENT	
PI	ERMITTEE FLOW MEASUREMENT MEETS PERMIT REQUIREMENTS	☑S □M □U □NA □NE
DI	ETAILS:	
1.	PRIMARY FLOW MEASUREMENT DEVICE PROPERLY INSTALLED AND MAINTAINED: TYPE OF DEVICE:	□y □n ☑na □ne
2.	FLOW MEASURED AT EACH OUTFALL AS REQUIRED:	☑Y □N □NA □NE
3.	SECONDARY INSTRUMENTS (TOTALIZERS, RECORDERS, ETC.) PROPERLY OPERATED AND MAINTAINED:	☑Y □N □NA □NE
4.	CALIBRATION FREQUENCY ADEQUATE:	☑Y □N □NA □NE
5.	RECORDS MAINTAINED OF CALIBRATION PROCEDURES:	☑Y □N □NA □NE
6.	CALIBRATION CHECKS DONE TO ASSURE CONTINUED COMPLIANCE:	□y □n ☑na □ne
7.	FLOW ENTERING DEVICE WELL DISTRIBUTED ACROSS THE CHANNEL AND FREE OF TURBULENCE:	☑Y □N □NA □NE
8.	FLOW MEASUREMENT EQUIPMENT ADEQUATE TO HANDLE EXPECTED RANGE OF FLOW RATES:	☑Y □N □NA □NE
9.	HEAD MEASURED AT PROPER LOCATION:	□y □n ☑na □ne
S	ECTION F: LABORATORY	
PI	ERMITTEE LABORATORY PROCEDURES MEET PERMIT REQUIREMENTS	□S □M ☑U □NA □NE
DI	ETAILS: No formal written QA/QC Program	
1.	EPA APPROVED ANALYTICAL PROCEDURES USED (40 CFR 136.3 FOR LIQUIDS, 503.8(B) FOR SLUDGES) :	☑Y □N □NA □NE
2.	IF ALTERNATIVE ANALYTICAL PROCEDURES ARE USED, PROPER APPROVAL HAS BEEN OBTAINED:	□y □n ☑na □ne
3.	SATISFACTORY CALIBRATION AND MAINTENANCE OF INSTRUMENTS AND EQUIPMENT:	☑Y □N □NA □NE
4.	QUALITY CONTROL PROCEDURES ADEQUATE:	□y ☑n □na □ne
5.	DUPLICATE SAMPLES ARE ANALYZED ≥10% OF THE TIME:	☑y □n □na □ne
6.	SPIKED SAMPLES ARE ANALYZED ≥10% OF THE TIME:	☑Y □N □NA □NE
7.	COMMERCIAL LABORATORY USED:	☑Y □N □NA □NE
- 6	a. LAB NAME: Environmental Testing and Consulting	
ŀ	D. LAB ADDRESS: Memphis, TN	
(:. PARAMETERS PERFORMED: FCB & Acute Toxicity	
8.	BIOMONITORING PROCEDURES ADEQUATE:	☑Y □N □NA □NE
6	a. PROPER ORGANISMS USED:	☑Y □N □NA □NE
ŀ	D. PROPER DILUTION SERIES FOLLOWED:	☑Y □N □NA □NE
(:. PROPER TEST METHODS AND DURATION:	☑Y □N □NA □NE
(d. RETESTS AND/OR TRE PERFORMED AS REQUIRED:	□y □n ☑na □ne

ADEQ Water NPDES Inspection	AFIN: 18-00109	Permit #: AR0022039

SF	CTION	G: EFFLUEI	NT/RECEIVIN	G WATERS	OBSERVATION	ONS									
		N VISUAL OBS			OBOLINATIN		Пѕ 🗹 м П	U □NA □NE							
					numning to re	ceiving stream.									
	TFALL #:	OIL SHEEN	GREASE	TURBIDITY	VISIBLE FOAM	FLOATING SOLIDS	COLOR	OTHER							
	001	None	Slight	Low	None	None	Clear								
			J												
		l	l		I		·								
SE	CTION	H: SLUDGE	DISPOSAL												
SL	UDGE D	DISPOSAL ME	ETS PERMIT R	EQUIREMEN	ΓS		⊠s □m □	U □NA □NE							
DE	TAILS:	Sludge is haule	ed to Shelby Co	. Landfill (TN) f	or disposal.	•									
1.	SLUDGE M	IANAGEMENT ADEQU	ATE TO MAINTAIN EF	FLUENT QUALITY:			⊠s □m	□u □na □ne							
2.	SLUDGE R	ECORDS MAINTAINED	O AS REQUIRED BY 40	CFR 503:			⊠s □m	□U □NA □NE							
3.	FOR LAND	APPLIED SLUDGE, TY	PE OF LAND APPLIE	TO: (E.G., FOREST,	AGRICULTURAL, PUE	BLIC CONTACT SITE):									
_	SECTION I: SAMPLING INSPECTION PROCEDURES														
		RESULTS WITH	HIN PERMIT R	EQUIREMENT	S			U ☑NA □NE							
	TAILS:														
1.		OBTAINED THIS INSPI					⊔Y	□n Øna □ne							
2.		AMPLE: GRAB:	☐COMPOSITE: N	METHOD: FREQUE	NCY:										
3.		PRESERVED:	O ODTAINED					ON MA ONE							
4.		PORTIONED SAMPLE		UCE.				□N ☑NA □NE							
5. 6.		BTAINED FROM FACIL EPRESENTATIVE OF						ON MA ONE							
7.		PLIT WITH PERMITTE		e OF DISCHARGE.											
8.		CUSTODY PROCEDU						□N ☑NA □NE							
9.		COLLECTED IN ACCO		 IT·				□N ☑NA □NE							
0.	0/11/11 220	002220125 11171000	TOP WOLL WITH ETWI				<u> </u>								
SE	CTION	J: STORM V	VATER POLL	UTION PREV	/ENTION PL	AN									
		ATER MANAG					⊠s □m □	U DNA DNE							
DE	TAILS:	SWPPP was re	viewed during a	n engineering	site visit on De	cember 11, 2007									
1.		PDATED AS NEEDED:					□Y	□n □na ☑ne							
2.	SITE MAP I	INCLUDING ALL DISCH	HARGES AND SURFAC	CE WATERS:			□Y	□N □NA ☑NE							
3.	POLLUTIO	N PREVENTION TEAM	IDENTIFIED:				□Y	□n □na ☑ne							
4.	POLLUTIO	N PREVENTION TEAM	PROPERLY TRAINED	:			□Y	□N □NA ☑NE							
5.	LIST OF PO	OTENTIAL POLLUTANT	Γ SOURCES:				□Y	□N □NA ☑NE							
6.	LIST OF PO	OTENTIAL SOURCES A	AND PAST SPILLS AND	D LEAKS:			□Y	□N □NA ☑NE							
7.	ALL NON-S	□Y	□N □NA ☑NE												
8.	LIST OF ST	RUCTURAL BMPS:						□N ☑NA □NE							
9.		ON-STRUCTURAL BMF						□N □NA ☑NE							
		PERLY OPERATED AI						ON ONA ONE							
11.	INSPECTIO	ONS CONDUCTED AS	REQUIRED:				⋈ Y	□N □NA □NE							

ADEQ Water NPDES Inspection	AFIN: 18-00109	Permit #: AR0022039

	Fl	_OW CA	ALCULA	TION	SHEET		
The facility	uses a partial pipe	e flow n	neter wi	th no	primary	flow d	evice for
	a calibration check						
Date:	Tin	ne:					
llaadia laa	de a c	□ ot:	, 				
Head in Inc	ines:	Feet:					
Type & Size	e of Primary Flow M	easuren	nent Dev	rice:			
Name & Mo	odel of Secondary Fl	ow Mea	suremer	nt Dev	ice:		
Date of last	: Calibration of Seco	ndary Fl	low Devi	CO.			
		•		cc.			
Recorded F	Flow at Date & Time	Listed A	Above:				(Facility Flow Meter)
Calculated	Flow at Date & Time	Listed	Above:				
(Flow is calculated	ted using flow charts in: ISC	O Open Cl	nannel Flow	Measur	ement Handl	<u> </u>	Edition)
% Error =	Recorded Value	- Calc	culated V	/alue	X 100		
76 LIIOI —	Calcula	ted Valu	ue		X 100		
0/		-			V 400		
% Error =		· ·			X 100		
% Error =		X 100					
% Error =		X 100	<u> </u>				
76 E1101 =		X 100					
% Error =		%					
Comments:							
30	· 1						

DMR Calculation Check

Reporting Period: From 2007 11 01 To 2007 11 30 Year Month Day Year Month Day

Parameter Checked: FCB

Loading **Concentration** Mass **Monthly** Mo. Avg. - lbs/day Mo. Avg. - mg/l 7-day Avg. - mg/l **Reported Value:** 68.5 NA 340.8 69 NA **Calculated Value:** 341 1000 2000 **Permit Value:** NA

If calculated value does not equal reported value, explain: Differences due to rounding

DMR Calculation Check

Reporting Period: From 2007 11 01 To 2007 11 30 Year Month Day Year Month Day

Parameter Checked: BOD

Loading **Concentration** Mass **Monthly** Mo. Avg. - lbs/day 7-day Avg. - mg/l Mo. Avg. - mg/l **Reported Value:** 274 11.6 8.1 274 8.0 **Calculated Value:** 11.6 **30 Permit Value:** 45 1126

If calculated value does not equal reported value, explain: Differences due to rounding

West Memphis Utility Commission

P.O. Box 1868 • 604 East Cooper (870) 735-3355 • Fax (870) 732-7623 West Memphis, Arkansas 72303

To: Greg Hurley, Water Division Enforcement Section

From: Paul Holloway and John Rimmer Subject: Non-Compliance of Inspection

Date: January 31, 2008

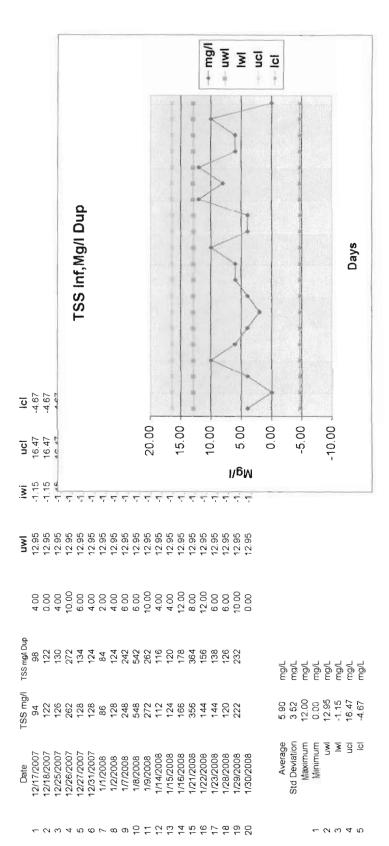
On December 19 and 21, 2007, Mr. Brent Walker inspected our Plant and stated that we needed an In-house QA/QC Program. As of December 31, 2007 our QA/QC program was set up and put in place. As per that section of our permit, Part II Section B:1.a and Section C:3. Enclosed is a print-out of our QA/QC parameters. If you have any other questions, call 870-735-9862.

General Manager John Rimmer

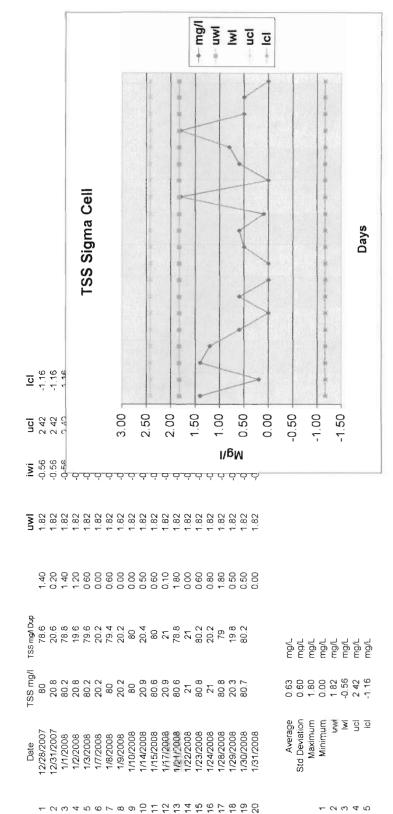
BOD QC Glucose- Glutamic Acid Standard

														1		88.0	I/Bi/I	IWN		M.	IIC	3	2		1						
		175	75	75		ROD O GGA Standard														· · · · ·	ノくくノイ									2000	Days
		239							040	000			000	2000			0	1007	1/6	οN	000	2007			150 +	and a			100		
,	<u>×</u>	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186		_											
	lwn	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228										
	Influent mg/L	220	192	210	207	220	208	200	188	200	218	213	193	217	200	222	198	207	215				207 mg/L	10.58	345		228	186	239	175	Acceptable Range on Glucose is - 30.5 or 167.5 - 228.5
nhibited std	Date	11/28/2007	11/29/2007	12/5/2007	12/6/2007	12/12/2007	12/12/2007	12/18/2007	12/19/2007	12/27/2007	12/28/2007	1/2/2008	1/3/2008	1/9/2008	1/10/2008	1/16/2008	1/17/2008	1/22/2008	1/23/2008	1/30/2008	1/31/2008		Average	Std Deviation	Maximum	Minimum	Μn	₹	nc	0	Acceptable Range on G 198 +/ - 30.5 or 167.5 - 228.5
(*) indicates inhibited std	Chart no.	←	7	ო	4	2	9	7	80	თ	10	11	12	13	14	15	16	17	18	19	20										A. 198 +/ -

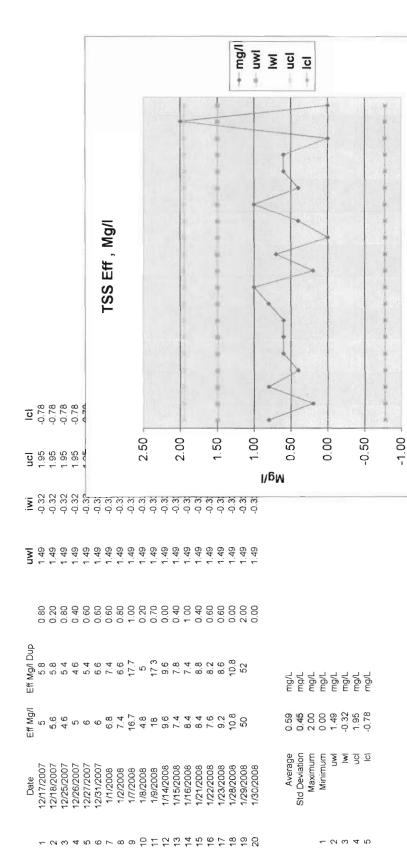
BOD Influent QC Duplicates


Iwl ucl Icl -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24 -6.88 29.90 -14.24	35.00 30.00 25.00 20.00 15.00	5.00 MI Ucl Ucl
uwl 22.554 22.554 22.554 22.554 22.554 22.554 22.554		
17.50 1.00 9.00 10.00 17.00 12.50 21.00 18.50	1.60 4.30 7.70 5.00 5.00 5.00 5.00 0.00 0.00	
Influent Dup 232.5 164.3 190 138 335 320 247.5 180 102.6	146.7 170 129 193 167.7 181 255 212.5	7,6w 30,7 way.r way.r way.r way.r way.r way.r
Influent mg/L Influent Dup 232.5 162.3 164.3 189 190 129 335 303 320 260 247.5 159 180 84 102.5	148.3 165.7 131.7 186 162.7 176 235 210	7.83 7.36 21.00 0.00 22.54 -6.88 29.90 -14.24
	1225/2007 12/27/2007 12/31/2007 1/8/2008 1/15/2008 1/21/2008 1/23/2008	Average Std Devation Maximum Milimum Iwi Iwi Ivi
Ohart - 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011111111111111111111111111111111111111	

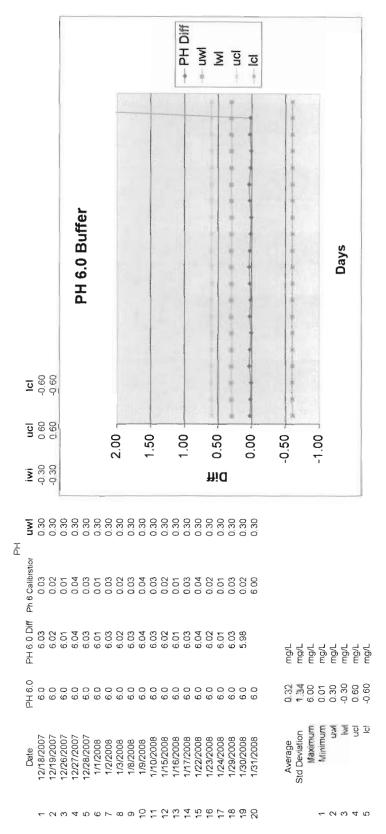
BOD Effluent QC Duplicates


								ROD Effluent Dunlicates	The department of the second o						1				1	1							2760	ည်ရန်ခ	
ᄓ	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12										/	1	*	1	1									
ncı	181	1.81	1.81	1.81	1.81	1.81							2.00		1.50	da .	1.00	-	0.50	4	00.0	-0 50		-1.00	K	-1.50			-
W	-0.63	-0.63	-0.63	-0.63	-0.63	-0.63									`					БĮ		7		`'		`'			
(wn	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32									
	0.10	0 20	0.70	1.80	0.10	0.20	0.10	0.10	0.00	09.0	0.00	0.20	0.20	0.30	0.50	1.50	0.20	0.10	00:00	0.00									
Effluent mg/L Effluent Dup	4.2	12	9.7	13.8	8.5	5.6	7.1	80	7.1	2.5	3.3	4.4	4.5	3.4	7.4	6.3	2.8	3.3				1/000	1,00	Jig/L	ma/L	mg/L	mg/L	mg/L	mg/L
Effluent mg/L	4.3	11.8	თ	15.6	8.4	5.4	7	8.1	7.1	1.9	3.3	4.2	4.3	3.7	6.9	5.8	က	3.2				33	0.00	1.48 80	000	1.32	-0.63	1.81	71.12
Date	11/15/2007	11/7/2007	11/12/2007	11/18/2007	11/22/2007	11/26/2007	12/3/2007	12/5/2007	12/10/2007	12/16/2007	12/18/2007	12/25/2007	12/31/2007	1/2/2008	1/7/2008	1/14/2008	1/15/2008	1/21/2008				o coro	Ctd Downstion	Maximum	Minimum	M)	[w]	nc	15
Chart no.	-	2	ო	4	5	9	7	89	0	10	77	12	13	4	15	16	17	18	19	20					~	2	က	4 (O

Mg/I MI WI MI


TSS Inf, mg/l Dup.

TSS Sigma Cell



TSS Eff, mg/l

Days

PH 6.0 Buffer

																					mg/l w w w													
															Dh E# D.:.5	רוו רווי סמיט			TO THE RESERVE TO SERVE TO SERVE THE TOTAL THE PARTY OF T								XXX			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		The state of the s		
101	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02												-	/	1					-		
ncl	90'0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0									1	1		1	/					-	-		
<u>X</u>	-0.01	0.01	-0.01	-0.04	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01					1	0.07	900	0 0	0.00	***	40.0	0 03		0.02	100	0.0	00.0	0.01	-0.02	0 03)
w	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05														Ŧi(
6 Calibrstion	0.01	0.04	0.05	0.02	0.03	0.03	0.03	0.01	00.00	0.02	0.01	0.02	0.01	0.03	0.00	0.02	0.03	0.03	0.02	00.00														
PH Eff Dup. Ph	6.47	8.0	8	7.15	92.9	7.19	6.83	7.03	7.14	7.04	7	6.89	7.15	7.08	7.1	6.7	7.05	7.06	96.9			,,	IIIg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/l	rig/L	mg/L				
PH Eff	6.46	6.84	6.85	7.17	6.73	7.22	98.9	7.02	7.14	7.02	7.01	6.91	7.14	7.11	7.1	6.68	7.08	7.09	6.94					20.0										
Date	12/18/2007	12/19/2007	12/26/2007	12/27/2007	12/28/2007	1/1/2008	1/2/2008	1/3/2008	1/8/2008	1/9/2008	1/10/2008	1/15/2008	1/16/2008	1/17/2008	1/22/2008	1/23/2008	1/24/2008	1/29/2008	1/30/2008	1/31/2008		· · ·	afignay	Std Deviation	Maximum	MINIMUM	IMD I	A :	io i	ō				
	_	7	ო	4	9	9	7	80	6	10	7	12	13	14	15	16	17	18	9	20						- (N (n •	3 (Ω				

PH Eff Duplicate

Days

QA/QC Corrective Action Sheet

West Memphis, AR 72301 Manager: Paul Holloway											
Lab Analyst: Patricia Dixon Date:											
Parameter out of range											
Was glassware washed properly?	Yes	No									
Was glassware checked with Bromothymol Blue?	Yes	No									
Was instrument calibrated?	Yes	No									
Are Reagents out of date?	Yes	No									
Were all Lab equipment at proper temperatures?	Yes	No									
Were samples measured accurately?	Yes	No									
Corrective Action Taken:			_								

West Memphis Utilities WWTP

502 Rushing Road