STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0287-AOP-R21 AFIN: 41-00002

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Domtar A.W. LLC - Ashdown Mill 285 Highway 71 South Ashdown, Arkansas 71822

3. PERMIT WRITER:

Christopher Riley

4. NAICS DESCRIPTION AND CODE:

NAICS Description:Paper (except Newsprint) MillsNAICS Code:322121

5. ALL SUBMITTALS:

Date of Application	Type of Application (New, Renewal, Modification, Deminimis/Minor Mod, or Administrative Amendment)	Short Description of Any Changes That Would Be Considered New or Modified Emissions
	Auministrative Amenument)	
5/10/2018	Modification	None

6. **REVIEWER'S NOTES:**

Domtar A.W. LLC. –Ashdown Mill (AFIN: 41-00002) operates a paper mill located at 285 Highway 71 South in Ashdown, Arkansas 71822. Domtar submitted an application, as a significant modification, to modify the production limits listed in SC-200a and SC-213a for SN-42 (No. 2 Decker) and SN-45 (O₂ Delignification System) respectively. The new limit for both sources is 535,090 air dried tons of unbleached pulp (ADTUBP) up from 427,123 ADTUBP. The reason for this change is due to an increase in the reliability and efficiency of the equipment as well as a change in the planned downtime for the units. This modification does not trigger PSD review. There are no permitted emissions changes due to this application.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues. The facility was last inspected September 5 and 6, 2018. The inspection found no violations.

8. PSD APPLICABILITY:

a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N/A

- b) Is the facility categorized as a major source for PSD? Y
- Single pollutant \geq 100 tpy and on the list of 28 or single pollutant \geq 250 tpy and not on list

If yes for8(b), explain why this permit modification is not PSD. Actual to Potential Increases were under the Threshold of PSD. There were also no physical modifications or changes in the method of operation associated with the proposed request.

Facility	40 CFR Part 63, Subpart S	NESHAPS for Hazardous Air Pollutants from the Pulp and
		Paper Industry
Facility	40 CFR Part 60, Subpart	General Provisions
	Α	
Facility	40 CFR §52.21	Prevention of Significant Deterioration
Facility	40 CFR 52, Subpart E	Prevention of Significant Deterioration
01	40 CFR Part 60, Subpart	Standards of Performance for Industrial-Commercial-
	Db	Institutional Steam Generating Units
02	40 CFR Part 60, Subpart	Standards of performance for Kraft Pulp Mills
	BB	
02	40 CFR Part 63, Subpart	NESHAPS for Chemical Recovery Combustion Sources at
	MM	Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
05	40 CFR Part 60, Subpart	Standards of Performance for Kraft Pulp Mills
	BB	
05	40 CFR Part 60, Subpart	Standards of Performance for Fossil-Fuel-Fired Steam
	D	Generators for Which Construction Is Commenced after August
		17, 1971
06	40 CFR Part 60, Subpart	Standards of Performance for Kraft Pulp Mills
	BB	
06	40 CFR Part 63, Subpart	NESHAPS for Chemical Recovery Combustion Sources at
	MM	Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
08	40 CFR Part 60, Subpart	Standards of Performance for Kraft Pulp Mills

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

	BB	
08	40 CFR Part 63, Subpart	NESHAPS for Chemical Recovery Combustion Sources at
	MM	Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
09	40 CFR Part 60, Subpart	Standards of Performance for Kraft Pulp Mills
	BB	
09	40 CFR Part 63, Subpart	NESHAPS for Chemical Recovery Combustion Sources at
	MM	Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
14	40 CFR Part 60, Subpart	Standards of Performance for Kraft Pulp Mills
	BB	
14	40 CFR Part 63, Subpart	NESHAPS for Chemical Recovery Combustion Sources at
	MM	Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
15	40 CFR Part 60, Subpart	Standards of Performance for Kraft Pulp Mills
	BB	
15	40 CFR Part 63, Subpart	NESHAPS for Chemical Recovery Combustion Sources at
	MM	Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
23	40 CFR Part 60, Subpart	NSPS Standards of Performance for Volatile Organic Liquid
	Kb	Storage Vessels (including petroleum Liquid storage vessels) for
		which construction, reconstruction, or modification commenced
		after July 23, 1984
16, 17, 18,	40 CFR 63, Subpart S	NESHAPS from the pulp and paper industry
46		
01, 03, and	40 CFR 63, Subpart	NESHAPS for major sources: Industrial, Commercial, and
05	DDDDD	Institutional Boilers and Process Heaters
50, 53, 54a,	40 CFR Part 63, Subpart	National Emissions Standards for Hazardous Air Pollutants for
54b, 57,	ZZZZ	Stationary Reciprocating Internal Combustion Engines
58, 59		
58 and 59	40 CFR Part 60, Subpart	Standards of Performance for stationary compression ignition
	IIII	internal combustion engines

10. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

- 11. AMBIENT AIR EVALUATIONS:
 - a) A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the ADEQ Air Permit Screening Modeling Instructions.
 - b) Non-Criteria Pollutants:

No change in non-criteria emissions.

c) H₂S Modeling:

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details.

Is the facility exempt from the H₂S Standards

Y

The facility is subject to and complies with 40 CFR Part 60, Subpart BB and is exempt pursuant to A.C.A. § 8-3-103-(d)(2)(B)(ii).

12. CALCULATIONS:

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)			
Source	Source SN-01 No. 3 Power Boiler (NCASI Factors include a 20% safety factor)							
PM/PM ₁₀	NSPS and PSD	0.025 lb/MMBtu	ESP	98	Controlled Lb/hr based on 790 MMBtu/hr			
SO ₂	PSD BACT	0.1 lb/MMBtu (NSPS Limit)	N/A	-	PSD limit applied to unit with 620 MMBtu/hr of bark feed and 170 MMBtu/hr natural gas. (Permit 946-A)			
VOC	PSD BACT	0.027 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of bark feed and natural gas			
СО	PSD BACT	0.35 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of a combination of bark feed and natural gas			
NO _X	PSD and NSPS Db	0.3 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of a combination of bark feed and natural gas			
Lead	NCASI	5.20E-06 lb/MMBtu	ESP	N/A	790 MMBtu/hr Heat Input Design Capacity			
Acetaldehyde	NCASI	2.80E-04 lb/MMBtu	N/A					
Acrolein	NCASI	2.60E-04 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity			
Benzene	NCASI	3.30E-03 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity			

Constituent	Emission Factor Source (AP- 42, Testing,	Emission Factor and units (lb/ton,	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
Formaldehyde	etc.) NCASI	lb/hr, etc.) 1.30E-03 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Hydrogen Chloride	Boiler MACT	2.20E-02 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Hexane	NCASI	1.8 lb/MMscf	N/A		790 MMBtu/hr Heat Input Design Capacity
Naphthalene	NCASI	6.10E-04 lb/MMscf	N/A		
Phenol	NCASI	1.60E-04 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Toluene	NCASI	2.90E-05 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity, No SF
Antimony	NCASI	4.20E-07 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Arsenic	NCASI	1.90E-06 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Beryllium	NCASI	4.00E-07 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Cadmium	NCASI	1.10E-03 lb/MMscf	N/A		790 MMBtu/hr Heat Input Design Capacity
Chromium VI	NCASI	4.90E-07 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Chromium	NCASI	2.40E-06 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Cobalt	NCASI	2.40E-06 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Manganese	NCASI	9.10E-05 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Mercury	Boiler MACT	5.76E-6 lb/MMBtu	N/A		
Nickel	NCASI	3.50E-06 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
Selenium	NCASI	3.30E-06 lb/MMBtu	N/A		790 MMBtu/hr Heat Input Design Capacity
SN	N-02 No. 3 Lim	e Kiln (NCAS	I Factors include	de a 20% safety	r factor)
PM ₁₀ /PM	NSPS BB	0.066 gr/dscf	ESP	98	Stack Test 8.6 lb PM ₁₀ /hr

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 6 of 31

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
SO ₂	PSD	0.727 lb/Ton CaO (13.3 lb/hr)			PSD limit applied to unit with 440 tons per day of lime (Permit 946-A) (0.727*440)/24= lb/hr tpy *8760
VOC	PSD	0.795 lb/ton of CaO			287-AR-7 cites AP-42, 4th Edition, current AP- 42 does not have a factor. Calculation of lb/h and tpy same as SO2. The permit has as PSD limit but 946-A did not have in PSD. Picked up as a PSD cite in 287-AR-7.
СО	PSD	3.0 lb/ton CaO			PSD limit applied to unit with 440 tons per day of lime (Permit 946-A) (3.0*440)/24= lb/hr tpy *8760
NO _X	PSD	3.63 lb/ton CaO			PSD limit applied to unit with 440 tons per day of lime (Permit 946-A) (3.63*440)/24= lb/hr tpy *8760
TRS	NSPS BB	8 ppm			1.34 lb/hr CEMS
Lead	NCASI	2.10E-05 lb/ton			
Acetaldehyde	NCASI	9.70E-03 lb/ton			
Benzene	Stack Test	0.24 lb/hr			
Formaldehyde	NCASI	9.40E-03 lb/ton CaO			
Methanol	NCASI	9.30E-02 lbs/ton			
Toluene	NCASI	8.30E-03 lb/ton CaO			
Antimony	NCASI	2.60E-06 lb/tons			
Arsenic	NCASI	1.20E-06 lb/tons			

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
Beryllium	NCASI	3.30E-06 lb/tons			
Cadmium	NCASI	1.30E-05 lb/tons			
Chromium	NCASI	4.00E-05 lb/tons			
Cobalt	NCASI	1.10E-05 lb/tons			
Manganese	NCASI	1.10E-04 lb/tons			
Mercury	NCASI	5.40E-06 lb/tons			
Nickel	NCASI	8.30E-05 lb/tons			
Selenium	NCASI	1.80E-06 lbs/tons			
So	urce SN-03 No.	1 Power Boile	er (Factors inclu	ide a 20% safet	v factor)
PM ₁₀ /PM	AP- 42/NCASI	7.6 lb/MMscf	WESP	98%	Stack test 20% SF
SO ₂	AP- 42/NCASI	0.6 lb/MMscf			
VOC	AP- 42/NCASI	5.5 lb/MMscf			
СО	AP- 42/NCASI	84 lb/MMscf			Stack test 20% SF
NOx	AP- 42/NCASI	280 lb/MMscf			
Lead	AP- 42/NCASI	5.00E-04 lb/MMscf	WESP		
Acetaldehyde	NCASI Factor	0.84 lb/hr	N/A		
Acrolein	NCASI	9.36E-05 lb/MMBtu	N/A		580 MMBtu/hr Design Heat Input Capacity
Barium	AP- 42/NCASI	4.40E-03 lb/MMscf			r ····································
Benzene	AP- 42/NCASI	2.10E-03 lb/MMscf	N/A		580 MMBtu/hr Design Heat Input Capacity
Formaldehyde	AP- 42/NCASI	7.5E-02 lb/MMscf	N/A		580 MMBtu/hr Design Heat Input Capacity

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Emission	Emission	~ .		
ConstituentSource (AP- (B) (et.)inits (B) (b) (et.)Type (if any)Equipment efficiencycontrolled/uncontrolled, etc.)Hydrogen ChlorideStack Test5.2.2 lb/hr		Factor	Factor and		Control	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Constituent	Source (AP-	units		Equipment	
Hydrogen ChlorideStack Test 52.2 lb/hrImage: ChlorideHexaneAP- 42/NCASI1.4E-05 lb/MMscfN/AS80 MMBtu/hr Design Heat Input CapacityPhenolNCASI1.4E-05 lb/MMsthN/AHeat Input Capacity Heat Input CapacityTolueneAP- 42/NCASI3.40E-03 lb/MMsthN/AHeat Input Capacity Heat Input CapacityAntimonyNCASIb/MMstrN/AHeat Input Capacity Heat Input CapacityAntimonyNCASIb/MMscfN/AHeat Input Capacity Heat Input CapacityAntimonyNCASIb/MMscfN/AHeat Input Capacity Heat Input CapacityArsenicAP- 42/NCASI1.00E-05 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityCadmiumAP- 42/NCASI1.10E-03 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityChromium VINCASI5.88E-07 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityChromium VINCASI5.80E-07 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityManganeseAP- 42/NCASI1.40E-03 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityManganeseAP- 42/NCASI3.80E-04 Ib/MMscfN/AHeat Input Capacity Heat Input Capacity Heat Input CapacityManganeseAP- 42/NCASI2.60E-04 Ib/MMscfS80 MMBtu/hr Design Heat Input Capacity Heat Input Capacity Heat Input CapacityManganeseAP- 42/NCASI1.0E-03 Ib/MMscfN/AS80 MMBtu		42, Testing,	(lb/ton,		1 1	,
HexaneAP- 42/NCASI1.8 lb/MMscfN/A580 MMBtu/hr Design Heat Input Capacity Heat Input CapacityPhenolNCASI1.4E.05 lb/MMBtuN/A580 MMBtu/hr Design Heat Input CapacityTolueneAP- 42/NCASI3.04E-03 lb/MMscfN/AHeat Input Capacity Heat Input CapacityAntimonyNCASI5.04E-07 lb/MMscfN/AHeat Input Capacity Heat Input CapacityAntimonyNCASI5.04E-07 lb/MMscfN/AHeat Input Capacity Heat Input CapacityArsenicAP- 42/NCASI2.00E-04 lb/MMscfN/AHeat Input Capacity Heat Input CapacityArsenicAP- 42/NCASI1.00E-03 lb/MMscfN/AHeat Input Capacity Heat Input CapacityChromiumAP- 42/NCASI1.10E-03 lb/MMscfN/AHeat Input Capacity Heat Input Capacity Heat Input Capacity Heat Input Capacity Heat Input CapacityChromiumAP- 42/NCASI1.40E-03 lb/MMscfN/AHeat Input Capacity Heat Input CapacityManganeseAP- 42/NCASI1.40E-03 Ib/MMscfN/AManganeseAP- 42/NCASI2.40E-05 Ib/MMscfS80 MMBtu/hr Design Heat Input Capacity Heat Input Capacity Heat		etc.)		any)		etc.)
Hexane42/NCASIIb/MMscfN/AHeat Input CapacityPhenolNCASI1.4E-05N/AHeat Input CapacityTolueneAP-3.40E-03N/AHeat Input CapacityAntimonyNCASI1b/MMscfN/AHeat Input CapacityAntimonyNCASI1b/MMscfN/AHeat Input CapacityAntimonyNCASI1b/MMscfN/AHeat Input CapacityArsenicAP-2.00E-04N/AHeat Input CapacityArsenicAP-1.20E-05N/AHeat Input CapacityCadmiumAP-1.20E-05N/AHeat Input CapacityChromium VINCASI1b/MMscfN/AHeat Input CapacityChromium VINCASI5.88E-07N/AHeat Input CapacityChromium VINCASI1b/MMscfN/AHeat Input CapacityCobaltAP-1.40E-05N/AHeat Input CapacityManganeseAP-3.80E-04N/AHeat Input CapacityManganeseAP-3.80E-04N/AHeat Input CapacityMercuryAP-2.60E-04N/AHeat Input CapacityMercuryAP-2.40E-05N/AHeat Input CapacityMercuryAP-2.40E-05N/AHeat Input CapacityMercuryAP-2.40E-05N/AHeat Input CapacityMercuryAP-2.40E-05N/AHeat Input CapacityMercuryAP-2.40E-05N/AHeat Input CapacityMickelAP- <td>Hydrogen Chloride</td> <td>Stack Test</td> <td>52.2 lb/hr</td> <td></td> <td></td> <td></td>	Hydrogen Chloride	Stack Test	52.2 lb/hr			
PhenolNCASI1.4E.05N/AHeat Input Capacity Heat Input Capacity Heat Input CapacityTolueneAP- 42/NCASI3.40E-03 Ib/MMscfN/AS80 MMBtu/hr Design Heat Input CapacityAntimonyNCASI5.04E-07 Ib/MMBtuN/AHeat Input Capacity Heat Input CapacityAntimonyNCASI5.04E-07 Ib/MMBtuN/AHeat Input Capacity Heat Input CapacityArenicAP- 42/NCASI2.00E-04 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityArsenicAP- 42/NCASI1.00E-03 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityCadmiumAP- 42/NCASI1.00E-03 Ib/MMscfN/AHeat Input Capacity Heat Input Capacity Heat Input CapacityChromium VINCASI5.88E-07 Ib/MMscfN/AHeat Input Capacity Heat Input CapacityManganeseAP- 42/NCASIN/AS80 MMBtu/hr Design Heat Input Capacity Heat Input CapacityMickelAP- 42/NCASI1.00E-03 Ib/MMscfN/AHeat Input CapacityManganeseAP- 42/NCASI1.00E-03 Ib/MMscfN/AHeat Input CapacityMickelAP- 42/NCASI2.00E-04S80 MMBtu/hr Design Heat Input Cap	Hevane			N/A		Ū.
PhenolNCASIIb/MMBtuN/AHeat Input CapacityTolueneAP-3.40E-03N/A580 MMBtu/hr DesignAntimonyNCASI5.04E-07N/AHeat Input CapacityAntimonyNCASI5.04E-07N/AHeat Input CapacityArsenicAP-2.00E-04N/AHeat Input CapacityArsenicAP-1.20E-05N/AHeat Input CapacityArsenicAP-1.20E-05N/AHeat Input CapacityCadmiumAP-1.10E-03N/AHeat Input CapacityChromium VINCASI5.88E-07N/AHeat Input CapacityChromium VINCASI5.88E-07N/AHeat Input CapacityChromium VINCASI5.88E-07N/AHeat Input CapacityChromiumAP-1.40E-03N/AFae Input CapacityCobaltAP-1.40E-05N/AHeat Input CapacityManganeseAP-3.80E-04N/AHeat Input CapacityMarganeseAP-2.60E-04S80 MMBtu/hr DesignMercuryAP-2.10E-03Heat Input CapacityNickelAP-2.10E-03Heat Input CapacityMickelAP-2.10E-03Heat Input CapacityMickelAP-2.10E-03Heat Input CapacityMercuryAP-2.40E-05S80 MMBtu/hr DesignHeat Input CapacityHeat Input CapacityHeat Input CapacityMickelAP-2.10E-03Heat Input CapacityMorcerSNO. 2 P	Пехане	42/NCASI		\mathbf{N}/\mathbf{A}		1 1 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Phenol	NCASI		N/Δ		U
Ioluene42/NCASIlb/MMscfN/AHeat Input CapacityAntimonyNCASI5.04E-07 lb/MMBtuN/A580 MMBtu/hr Design Heat Input CapacityArsenicAP- 42/NCASI1.00E-04 lb/MMscfN/AHeat Input CapacityBerylliumAP- 42/NCASI1.20E-05 lb/MMscfN/A				11/11		1 1 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene			N/A		580 MMBtu/hr Design
AntimonyNCASIIb/MMBtuN/AHeat Input CapacityArsenicAP- 42/NCASI2.00E-04 Ib/MscfN/AN/ABerylliumAP- 42/NCASI1.0E-05 Ib/MscfN/A	Tolucite	42/NCASI		1 \ / A		* * *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Antimony	NCASI		N/Δ		6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Antimony			11/11		Heat Input Capacity
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Arsenic			N/Δ		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aiseine			\mathbf{N}/\mathbf{A}		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Beryllium	AP-	1.20E-05	NI/A		
$\begin{array}{ c c c c c c } \hline \mbox{Cadmum} & 42/NCASI & lb/Mscf & N/A & & & & & & & & & & & & & & & & & & &$	Derymum	42/NCASI	lb/MMscf	\mathbf{N}/\mathbf{A}		
$\begin{array}{ c c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cadmium	AP-	1.10E-03	NI/A		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cauiniuni	42/NCASI	lb/MMscf	\mathbf{N}/\mathbf{A}		
$ \begin{array}{ c c c c c } \hline b/MMBtu & c c c c c c c c c c c c c c c c c $	Chromium VI	NCASI	5.88E-07			580 MMBtu/hr Design
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		NCASI	lb/MMBtu	1V/A		Heat Input Capacity
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Chromium	AP-	1.40E-03	NT/A		580 MMBtu/hr Design
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chiomium	42/NCASI	lb/MMscf	\mathbf{N}/\mathbf{A}		Heat Input Capacity
$ \begin{array}{ c c c c c c c } \hline \end{tabular} & t$	Cobalt	AP-	8.40E-05	NI/A		580 MMBtu/hr Design
$\begin{tabular}{ c c c c c c } \hline Manganese & 42/NCASI & lb/MMscf & N/A & & & & & & & & & & & & & & & & & & &$	Cobalt	42/NCASI	lb/MMscf	\mathbf{N}/\mathbf{A}		Heat Input Capacity
$\begin{tabular}{ c c c c c c c } \hline \end{tabular} & tabu$	Manganasa	AP-	3.80E-04	NI/A		
$ \begin{array}{ c c c c c } \hline Mercury & 42/NCASI & lb/MMscf & & & & & & & & & \\ \hline Mextrema & AP- & 2.10E-03 & & & & & & & & \\ \hline & AP- & 2.40E-05 & & & & & & & & & & \\ \hline & AP- & 2.40E-05 & & & & & & & & & & & & \\ \hline & 42/NCASI & lb/MMscf & & & & & & & & & & & & \\ \hline & 42/NCASI & lb/MMscf & & & & & & & & & & & & & \\ \hline & 42/NCASI & lb/MMscf & & & & & & & & & & & & & \\ \hline & & & & &$	Manganese	42/NCASI	lb/MMscf	\mathbf{N}/\mathbf{A}		
NickelAP- 42/NCASI $2.10E-03$ lb/MMscfHeat Input CapacityNickelAP- 42/NCASI $2.10E-03$ lb/MMscf580 MMBtu/hr Design Heat Input CapacitySeleniumAP- 42/NCASI $2.40E-05$ lb/MMscf580 MMBtu/hr Design Heat Input CapacitySource SN-05 No. 2 Power Boiler (NCASI factors include a 20% safety factor)820 MMBtu/hr Design Heat Input CapacityPM10NSPS D0.1 lb/MMBtuVenturi Scrubber98820 MMBtu/hr Design Heat Input CapacitySO2NSPS D1.2 lb/MMBtuVenturi Scrubber98820 MMBtu/hr Design Heat Input CapacityVOCStack Test92 lb/hr900 ppmvd820 MMBtu/hr Design Heat Input CapacityNOvNSPS0.7820 MMBtu/hr Design Heat Input Capacity	Moroury	AP-	2.60E-04			580 MMBtu/hr Design
$ \begin{array}{ c c c c c } \hline Nickel & 42/NCASI & lb/MMscf & & & & & & & & & & & & & & & & & & &$	Mercury	42/NCASI	lb/MMscf			Heat Input Capacity
$42/NCASI<$ $10/MMscf$ $10/MMscf$ $10/MMscf$ $10/MMscf$ 580 MMBtu/hr Design Heat Input CapacitySelenium AP - $42/NCASI2.40E-05lb/MMscf580 MMBtu/hr DesignHeat Input CapacitySource SN-05 No. 2 Power Boiler (NCASI factors include a 20% safety factor)820 MMBtu/hr DesignHeat Input CapacityPM_{10}NSPS D0.1lb/MMBtuScrubber98820 MMBtu/hr DesignHeat Input CapacitySO_2NSPS D1.2lb/MMBtuScrubber98820 MMBtu/hr DesignHeat Input CapacitySO_2NSPS D1.2lb/MMBtuScrubber98820 MMBtu/hr DesignHeat Input CapacitySO_2NSPS D1.2lb/MMBtuScrubber98820 MMBtu/hr DesignHeat Input CapacitySO_2MACT900 ppmvdScrubber820 MMBtu/hr DesignHeat Input CapacitySO_2MACT900 ppmvd820 MMBtu/hr DesignHeat Input Capacity$	Niekel	AP-	2.10E-03			
Selenium42/NCASIlb/MMscfHeat Input CapacitySource SN-05 No. 2 Power Boiler (NCASI factors include a 20% safety factor) $Heat Input Capacity$ PM10NSPS D0.1Venturi lb/MMBtu98820 MMBtu/hr Design Heat Input CapacitySO2NSPS D1.2 lb/MMBtuVenturi Scrubber98820 MMBtu/hr Design Heat Input CapacitySO2NSPS D1.2 lb/MMBtuVenturi Scrubber98820 MMBtu/hr Design Heat Input CapacityVOCStack Test92 lb/hr9298820 MMBtu/hr Design Heat Input CapacityCOMACT900 ppmvdImput Capacity820 MMBtu/hr Design Heat Input CapacityNOrNSPS0.7820 MMBtu/hr Design Heat Input Capacity	INICKEI	42/NCASI	lb/MMscf			
$\frac{42/\text{NCASI}}{\text{Source SN-05 No. 2 Power Boiler (NCASI factors include a 20% safety factor)}}{\frac{\text{PM}_{10}}{\text{PM}_{10}} \frac{\text{NSPS D}}{\text{NSPS D}} \frac{\begin{array}{c} 0.1 \\ \text{lb/MMBtu} \\ \text{lb/MMBtu} \\ \text{Scrubber} \end{array} \frac{98}{98} \frac{820 \text{ MMBtu/hr Design}}{\text{Heat Input Capacity}} \\ \frac{820 \text{ MMBtu/hr Design}}{\text{Heat Input Capacity}} \\ \frac{820 \text{ MMBtu/hr Design}}{12 \text{ Venturi}} \\ \frac{820 \text{ MMBtu/hr Design}}{12 \text{ Venturi}} \\ \frac{98}{98} \frac{820 \text{ MMBtu/hr Design}}{12 \text{ Venturi}} \\ \frac{820 \text{ MMBtu/hr Design}}{10 \text{ Venturi}} \\ 820 \text{$	Calanium	AP-	2.40E-05			580 MMBtu/hr Design
PM10NSPS D0.1 lb/MMBtuVenturi Scrubber98820 MMBtu/hr Design Heat Input CapacitySO2NSPS D1.2 lb/MMBtuVenturi Scrubber98820 MMBtu/hr Design Heat Input CapacityVOCStack Test92 lb/hr98820 MMBtu/hr Design Heat Input CapacityCOMACT900 ppmvd820 MMBtu/hr Design Heat Input CapacityNOvNSPS0.7820 MMBtu/hr Design Heat Input Capacity	Selenium	42/NCASI	lb/MMscf			Heat Input Capacity
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Source	SN-05 No. 2 P	ower Boiler (N	ICASI factors i	include a 20% s	afety factor)
PM10NSPS Dlb/MMBtuScrubber98Heat Input CapacitySO2NSPS D1.2Venturi lb/MMBtu98820 MMBtu/hr Design Heat Input CapacityVOCStack Test92 lb/hr98820 MMBtu/hr Design Heat Input CapacityCOMACT900 ppmvd1.2820 MMBtu/hr Design Heat Input CapacityNOvNSPS0.7820 MMBtu/hr Design Heat Input Capacity						
SO2NSPS DIb/MMBtuScrubber98Heat Input CapacityVOCStack Test92 lb/hrCOMACT900 ppmvd820 MMBtu/hr Design Heat Input CapacityNOvNSPS0.7820 MMBtu/hr Design	\mathbf{PIVI}_{10}	NSPS D	lb/MMBtu	Scrubber	98	Heat Input Capacity
Ib/MMBtuScrubberHeat Input CapacityVOCStack Test92 lb/hrCOMACT900 ppmvd820 MMBtu/hr Design Heat Input CapacityNOvNSPS0.7820 MMBtu/hr Design	SO_2	NCDC D	1.2	Venturi	0.9	820 MMBtu/hr Design
COMACT900 ppmvd820 MMBtu/hr Design Heat Input CapacityNOvNSPS0.7820 MMBtu/hr Design		NSPS D	lb/MMBtu	Scrubber	98	Heat Input Capacity
COMAC1900 ppmvdHeat Input CapacityNOvNSPS0.7820 MMBtu/hr Design	VOC	Stack Test	92 lb/hr			
Image: Second	CO		000 mmmmm			820 MMBtu/hr Design
		MACI	900 ppmvd			Heat Input Capacity
	NO	NCDC	0.7			820 MMBtu/hr Design
Hor Heat Input Capacity	NO _X	NSPS	lb/MMBtu			e

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
Lead	NCASI	3.60E-05 lb/MMBtu			
Acetaldehyde	NCASI	2.80E-04 lb/MMBtu	N/A		
Acrolein	NCASI	2.60E-04 lb/MMBtu	N/A		820 MMBtu/hr Design Heat Input Capacity
Benzene	NCASI	3.3E-03 lb/MMBtu	N/A		820 MMBtu/hr Design Heat Input Capacity
HCl	Stack Test	5.75 lb/hr	N/A		
Hexane	NCASI	1.8 lb/MMscf	N/A		820 MMBtu/hr Design Heat Input Capacity
Naphthalene	Stack Test	0.50 lb/hr	N/A		
Phenol	NCASI	1.60E-04 lb/MMBtu	N/A		
Toluene	NCASI	2.9E-05 lb/MMBtu	N/A		
Antimony	NCASI	2.00E-06 lb/MMBtu	Venturi Scrubber	98	800 tons coal/day
Arsenic	NCASI	4.1E-04 lb/ton coal	Venturi Scrubber	98	800 tons coal/day
Beryllium	NCASI	2.1E-05 lb/ton coal	Venturi Scrubber	98	800 tons coal/day
Cadmium	NCASI	3.20E-06 lb/MMBtu	Venturi Scrubber	98	800 tons coal/day
Chromium VI	NCASI	6.1E-6 lb/MMBtu	Venturi Scrubber	98	820 MMBtu/hr Design Heat Input Capacity
Chromium	NCASI	2.6E-04 lb/ton coal	Venturi Scrubber	98	800 tons coal/day
Cobalt	NCASI	1.0E-04 lb/ton coal	Venturi Scrubber	98	800 tons coal/day
Manganese	NCASI	2.50E-04 lb/MMBtu	Venturi Scrubber	98	820 MMBtu/hr Design Heat Input Capacity
Mercury	MACT	5.76E-06 lb/MMBtu	Venturi Scrubber	98	800 tons coal/day
Nickel	NCASI	2.8E-04 lb/ton coal	Venturi Scrubber	98	800 tons coal/day
Selenium	NCASI	1.3E-03 lb/ton coal	Venturi Scrubber	98	800 tons coal/day
Source	SN-06 No. 2 Re		(NCASI factors	s include a 20%	safety factor)

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
PM_{10}	NSPS BB	0.044 gr/dscf	ESP	98	
SO_2	PSD	286 lb/hr			PSD limit from 287-AR- 3
VOC	Stack Test	46.7 lb/hr			
СО	PSD	980 lb/hr 16.8 lb/ADTP			
NO _X	PSD	309.2 lb/hr 5.3 lb/ADTP			
Lead	NCASI	2.30E-05 lb/ton BLS			
Sulfuric Acid	NCASI	3.22 lb/hr			
Acetaldehyde	NCASI	6.1E-03 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Benzene	NCASI	5.0E-03 lb/ton BLS			2160 tons BLS/day 788,400 tons BLS/yr
Formaldehyde	NCASI	1.5E-02 lb/ton BLS			
Styrene	NCASI	8.80E-04 lb/ton BLS			
Antimony	NCASI	1.00E-06 lb/ton BLS			
Arsenic	NCASI	1.47E-06 lb/ton BLS			
Beryllium	NCASI	9.68E-07 lb/ton BLS			
Cadmium	NCASI	1.20E-05 lb/ton BLS			
Chromium	NCASI	4.49E-05 lb/ton BLS			
Chromium VI	NCASI	1.60E-05 lb/ton BLS			
Cobalt	NCASI	3.20E-06 lb/ton BLS			
Manganese	NCASI	9.98E-05 lb/ton BLS			

	Emission Factor	Emission Factor and	Control	Control	Comments (Emission
Constituent		units	Equipment		factor
Constituent	Source (AP-		Type (if	Equipment Efficiency	controlled/uncontrolled,
	42, Testing, etc.)	(lb/ton, lb/hr, etc.)	any)	Efficiency	etc.)
	eic.)	, ,			
Mercury	NCASI	5.46E-06			
		lb/ton BLS			
Nickel	NCASI	7.92E-05			
		lb/ton BLS			
Selenium	NCASI	5.35E-06			
Hadaa ay Chiada	Ct1- Tt	lb/ton BLS			
Hydrogen Chloride	Stack Test	51.20 lb/hr			21(0) DLC/1
Methanol	NCASI	0.045 lb/ton			2160 tons BLS/day
TTD C	NGDG DD	BLS			788,400 tons BLS/yr
TRS	NSPS BB	5 ppm			NSPS BB 5PPMV
Source SN-	08 - No. 2 Sme	elt Dissolving T	ank (NCASI f	actors have a 20	% safety factor)
					PM is a PSD limit from
PM ₁₀ / PM	NSPS BB	0.2 lb/ton	Scrubber	80	287-AR-3
	11010 22	BLS		00	2160 tons BLS/day
					788,400 tons BLS/yr
SO_2	PSD	10.6 lb/hr	Scrubber	80	SO ₂ is a PSD limit from
	1.52				287-AR-3
VOC	NCASI	0.066 lb/ton			2160 tons BLS/day
		BLS			788,400 tons BLS/yr
Acetaldehyde	NCASI	1.6E-03			2160 tons BLS/day
	1107101	lb/ton BLS			788,400 tons BLS/yr
Ammonia	NCASI	0.41E-03			2160 tons BLS/day
7 minionia	1107101	lb/ton BLS			788,400 tons BLS/yr
Formaldehyde	NCASI	3.5E-03			2160 tons BLS/day
Tormandenyae	ПСЛЫ	lb/ton BLS			788,400 tons BLS/yr
Methanol	NCASI	0.087 lb/ton			2160 tons BLS/day
	ПСАЫ	BLS			788,400 tons BLS/yr
Beryllium	NCASI	2.50E-07			
Derymum	INCASI	lb/ton BLS			
TRS	NSPS BB	0.033	Scrubber	60	2160 tons BLS/day
IKS	INSES DD	lb/ton BLS	Schubber	00	788,400 tons BLS/yr
Sour	ce SN-09 No.	2 Lime Kiln (N	ICASI factors l	have a 20% safe	ety factor)
PM/PM ₁₀	Stack Test	51.0 lb/hr			
	NSPS MM	0.064	Scrubber	85	PM is a PSD limit
	INDED IVIIVI	gr/dscf			
					Based on BACT for
SO_2	Permit	0.727 lb/ton			Lime Kiln No. 3
502	946A	CaO			18.33 tons CaO/hr
					160571 tons CaO/yr

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
VOC	AP-42, 4th edition, 1985	17.1 lb/hr			18.33 tons CaO/hr 160571 tons CaO/yr
СО	BACT	3.0 lb/ton CaO			Based on BACT for Lime Kiln No. 3
NO _X	AP-42, 4th edition, 1985	3.7411 lb/ton CaO			18.33 tons CaO/hr 160571 tons CaO/yr
Lead	NCASI	6.20E-03 lb/ton BLS			
Acetaldehyde	NCASI	9.70E-03 lb/ton CaO			18.33 tons CaO/hr 160571 tons CaO/yr
Benzene	Stack Test	0.23			
Methanol	NCASI	9.30E-02 lb/ton BLS			
Formaldehyde	NCASI	9.40E-03 lb/ton CaO			
Toluene	NCASI	8.3E-03 lb/ton CaO			
Antimony	NCASI	3.70E-06 lb/tons BLS			
Arsenic	NCASI	1.30E-05 lb/tons BLS			
Beryllium	NCASI	1.19E-06 lb/tons BLS			
Cadmium	NCASI	2.60E-05 lb/tons BLS			
Chromium	NCASI	2.70E-04 lb/tons BLS			
Cobalt	NCASI	1.00E-05 lb.tons BLS			
Manganese	NCASI	1.70E-03 lb.tons BLS			
Mercury	NCASI	4.00E-06 lb.tons BLS			
Nickel	NCASI	3.10E-04 lb/tons BLS			
Selenium	NCASI	1.40E-05 lb.tons BLS			

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.) 8.00 ppmvd	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
TRS	NSPS BB	@10% O ₂	Scrubber	25	CEMS
Source			: (NCASI facto	rs have a 20% s	afety factor)
PM ₁₀ /PM	PSD NSPS	93.5 lb/hr 0.044 gr/dscf	ESP	98	controlled
SO_2	PSD	425.0 lb/hr 250 PPM			287-AR had a PSD avoidance limit of the firing rate of BLS. CEMS can show compliance now. 1861.5 tpy
VOC	AP-42, 4th edition, 1985	0.8 lb/ADTP			INCOMPLETE Calculations
CO	CEMS	856 lb/hr			
NOx	CEMS	270 lb/hr			PSD Limit
Acetaldehyde	NCASI	4.2E-04			2,800 tons/day
/ locturden yde	i teribi	lb/ton BLS			1,022,000 tons/yr
Benzene	NCASI	6.4E-04			2,800 tons/day
		lb/ton BLS			1,022,000 tons/yr
Formaldehyde	NCASI	6.6E-03 lb/ton BLS			2,800 tons/day
Hydrogen Chloride	Stack Test	54.50 lb/hr			1,022,000 tons/yr
		0.045			2,800 tons/day
Methanol	NCASI	lb/ton BLS			1,022,000 tons/yr
		8.8E-04			2,800 tons/day
Styrene	NCASI	lb/ton BLS			1,022,000 tons/yr
Sulfuric Acid	Stack Test	4.20 lb/hr			
TRS	CEMS	6.6 lb/hr			PSD Limit
Source SN-	15 - No. 3 Sme	elt Dissolving T	ank (NCASI fa	actors have a 20	% safety factor)
PM ₁₀ /PM	PSD NSPS BB	18.7 lb/hr 0.1 g/kg BLS	Scrubber	90	
SO ₂	PSD	5.1 lb/hr	Scrubber	10	
VOC	NCASI ⁷	0.066 lb/ton BLS		-	2800 tons/day 1,022,000 tons/year
TRS	PSD NSPS BB	1.6 lb/hr 0.0168 g/kg BLS	Scrubber	25	

	Emission	Emission			
	Factor	Factor and	Control	Control	Comments (Emission
Constituent	Source (AP-	units	Equipment	Equipment	factor
	42, Testing,	(lb/ton,	Type (if	Efficiency	controlled/uncontrolled,
	etc.)	lb/hr, etc.)	any)		etc.)
A aatal dalaxida	,	1.6E-04			
Acetaldehyde	NCASI	lb/ton BLS			
Ammonia	NCASI	0.41 lb/ton			
		BLS			
Formaldehyde	Stack Test	0.58 lb/hr			
Methanol	NCASI	0.087 lb/ton			
	i teribi	BLS			
Beryllium	NCASI	2.5E-07			
		lb/ton BLS			
Sources SN-16 –					nts and SN-18 - No. 2
	-		factors have a	20% safety fact	
VOC	Stack Test	32.0 lb/hr			Bubbled Sources
СО	Stack Test	240.4 lb/hr			
Acetaldehyde	NCASI	0.0037			3,407 ADTUBP/day
		lb/ADTUBP			1,234,555 ADTUBP/yr
Chlorine	Stack Test	6.00 lb/hr	Scrubber	99	
Chlorine Dioxide	Stack Test	4.00 lb/hr	Scrubber	99	
Chloroform	Stack Test	16.50 lb/hr			
Formaldehyde	NCASI	4.2E-4			3,407 ADTUBP/day
		lb/ADTUBP			1,234,555 ADTUBP/yr
HCl	NCASI	0.022			3,407 ADTUBP/day
		lb/ADTUBP			1,234,555 ADTUBP/yr
Methanol	NCASI	0.16			3,407 ADTUBP/day
		lb/ADTUBP			1,234,555 ADTUBP/yr
TRS	NCASI	0.016			3,407 ADTUBP/day
		lb/ADTUBP			1,234,555 ADTUBP/yr
			ERCO ClO2 Ge	enerator	
Chlorine	Stack Test	0.30 lb/hr			
Chlorine Dioxide	Stack Test	3.00 lb/hr			
Source SN-	-21 - Effluent T	reatment Lago	ons (NCASI fa	ctors have a 20	% safety factor)
					Sum of methanol,
VOC	NCASI	248.9 lb/hr			formaldehyde, and
	1,01101				chloroform estimates
		5 E 02			75 Mgal/day effluent
	NOAGI	5E-03			3,770 ADTUBP/day
Chloroform	NCASI	lb/ADTUB			1,376,050 ADTUBP/yr
		Р			•
Formaldehyde	NCASI	0.76 ppmw			3,770 ADTUBP/day
					1,376,050 ADTUBP/yr

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
Methanol	NCASI	4.9 ^A 21.4 ^B 0.25 ^C 0.25 ^D	Washers (NCA	SI factors have	3,770 ADTUBP/day 1,376,050 ADTUBP/yr Contributions from sources: A: Bleach Plant [lb/ADTUBP] B: Condensates [lb/ADTUBP] C: Clarifier Effluent [ppmw] D: Clarifier Fugitive [ppmw]
Source SN-22	- No. 1A and 1		Washers (NCA	SI factors have	a 20% safety factor)
VOC	stack test	1A 0.57 lb/ton pulp and No. 1B .06173 lb/ton pulp			59.2 lb/hr 259.3 tpy
Acetone	stack test	8.80 lb/hr			
Formaldehyde	stack test	0.2 lb/hr			
Methanol	stack test	59 lb/hr			
TRS	NCASI	0.23 lb/ADTUBP			1,152 ADTUBP/day 420,480 ADTUBP/yr
	Sourc	e SN-23 - Stora	age Tank - Met	hanol Tank	
VOC	AP-42 Sec. 7.1.3.1	39.81 lb/hr			
Methanol	AP-42 Sec. 7.1.3.1	39.81 lb/hr			
		SN-28 -	Storage Tank		
VOC	AP-42 Sec. 7.1.3.1	6.62 lb/hr			
Formic Acid	AP-42 Sec. 7.1.3.1	6.62 lb/hr			
Source	SN-29 - Recau		(NCASI factor	s have a $2\overline{0\%}$ satisfies	
PM/PM ₁₀	NCASI	0.031 lb/ton CaO			1,152 tons CaO/day 420,500 tons CaO/yr
VOC	NCASI	3.62 lb/hr			Sum of acetaldehyde and methanol

	Emission	Emission	Control		Commente (Essissio
	Factor	Factor and	Control	Control	Comments (Emission
Constituent	Source (AP-	units	Equipment	Equipment	factor
	42, Testing,	(lb/ton,	Type (if	Efficiency	controlled/uncontrolled,
	etc.)	lb/hr, etc.)	any)		etc.)
					Emission factor is from
		2.1E-2 lb/ton			the previous permit.
Acetaldehyde	NCASI	CaO			Permittee requested to
		CaO			keep existing emission
					limit of 0.51 lb/hr.
Ammonia	NCASI	0.46 lb/ton			1,152 tons CaO/day
Ammonia	пслы	CaO			420,500 tons CaO/yr
Methanol	NCASI	0.054 lb/ton			1,152 tons CaO/day
		CaO			420,500 tons CaO/yr
			SN-30E and SN	<u>N-30E – PCC C</u>	arbonators Lime Silos
PM_{10}	Stack test	4.8 lb/hr			
SO ₂	Stack test	2.4 lb/hr			
VOC	Stack test	12.6 lb/hr			
СО	Stack test	54.6 lb/hr			
NO _X	Stack test	65.4 lb/hr			
TRS	Stack test	0.36 lb/hr			
S	Source SN-36 -		iquor Tanks (T	anks #1 through	n #10)
VOC	NCASI	0.713			
		lb/hr/tank			
Acetone	NCASI	0.016			
		lb/hr/tank			
Acetaldehyde	NCASI	0.0032			
		lb/hr/tank			
Methanol	NCASI	0.71			
		lb/hr/tank			
TRS (#1-#9)	Stack test	0.1 lb/hr			PSD limit
TRS (#10)	Stack test	0.0531			PSD limit
	Source SN	-37 - Pulp Dry	er Hood and Va	acuum Exhausts	
					R0 Application:
					production rate 37.5 tph
					finished pulp @7%
					moisture which is 34.875
VOC	Stack test	4.7 lb/hr			tph bone dry pulp
	Stuck test				
					900 air dried tons per day
					finished product
					Permitted 8,760 hours
					(328,500 ADTFP/yr)

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
Acetaldehyde	NCASI	0.033 lb/ADTFP			See comment for VOC. Permit limit includes 20% safety factor
Methanol	NCASI	0.071 lb/ADTFP			See comment for VOC. Permit limit includes 20% safety factor
	Sourc	e SN-38 - No.	2 and No. 3 W	ood Yards	
РМ	AP-42 Section 13.2.4	5.6 lb/hr			Bark, Chips, Wind Erosion, and Jet Screen
PM_{10}	AP-42 Section 13.2.4	4.14 lb/hr			Bark, Chips, Wind Erosion, and Jet Screen
VOC	NCASI	2.16 lb/hr			Assumes 50% moisture, 100% softwood PSD Limit
	Source	ce SN-39 – Hig	gh Density Stor	age Tanks	
VOC	NCASI	0.151 lb/hr/tank			11 tanks Sum of acetaldehyde, chloroform, and methanol 20% SF
Acetaldehyde	NCASI	0.02 lb/hr/tank			11 tanks 20% SF
Chloroform	NCASI	0.011 lb/hr/tank			11 tanks 20% SF
Methanol	NCASI	0.12 lb/hr/tank			11 tanks 20% SF
TRS	NCASI	0.349 lb/hr/tank			11 tanks 20% SF
Acetone	NCASI	0.027 lb/hr/tank			11 tanks 20% SF
	Source SN-40	- No. 1A and I	No. 1B Digester	r Chip Fill Exha	nusts

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
VOC	Stack Test	2.09 lb/fill			Compliance demonstrated by limiting time between blows Sum of Methanol and Ethanol Max 4.8 fills/hr 2,304 ADTP/day 840,960 ADTP/yr
Methanol	Stack Test	5.75 lbs/hr			Compliance demonstrated by limiting time between blows Max 4.8 fills/hr
TRS	NCASI	2.02 lb/hr			Compliance demonstrated by limiting time between blows Max 4.8 fills/hr 2,304 ADTP/day 840,960 ADTP/yr
		Source SN-4	1 - Sludge Land	lfill	
РМ	AP-42 Section 13.2.4	1.36E-3 lb/ton Sludge			344,000 yd ³ /yr 170 yd ³ /hr 947.7 lb/yd ³
PM ₁₀	AP-42 Section 13.2.4	6.5E-4 lb/ton Sludge			344,000 yd ³ /yr 170 yd ³ /hr 947.7 lb/yd ³
VOC (as NMOC)	LandGEM	63.15 lb/hr			
СО	LandGEM	4.8 lb/hr 1.8 tpy			
HAPS	LandGEM				See Permit For Emission Rates
	1	Source SN-4	12 - No. 2 Deck	ter	
VOC	Stack Test	5.6 lb/hr			Sum of acetaldehyde, formaldehyde, methanol, and terpenes (0.48 lb terpenes/ADTUBP)
Acetaldehyde	NCASI	5.9E-03 lb/ADTUBP			1,100 ADTUBP/day 401,500 ADTUBP/yr 20% SF
Acetone	Stack Test	7.52 lb/hr			

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
Formaldehyde	NCASI	3.3E-03 lb/ADTUBP			1,100 ADTUBP/day 401,500 ADTUBP/yr 20% SF
Methanol	Stack Test	3.3 lb/hr			
TRS	NCASI	0.044 lb/ADTUBP			1,100 ADTUBP/day 401,500 ADTUBP/yr 20% SF
		Source SN-	43 - Tub Grind	er	
PM ₁₀ /PM	AP-42 Table 3.3-1	0.31 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
SO ₂	AP-42 Table 3.3-1	0.29 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
VOC	AP-42 Table 3.3-1	0.36 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
СО	AP-42 Table 3.3-1	0.95 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
NO _X	AP-42 Table 3.3-1	4.41 lb/MMBtu			4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
HAPs	AP-42 Table 3.3-2				4 MMBtu/hr 258,000 gallon/yr 0.13 MMBtu/gal
	Sources SN-44	, ,	-44c and SN-44	4d - Paper Macl	nines
VOC	Testing	44A: 2.0 44B: 4.7 44C: 5.6 44D: 10.3			Emission factors are in 1b/hr by machine.

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)	
					<u>SN-44A</u> 19.1 ADTFP/hr 167,316 ADTFP/yr	
					<u>SN-44B &C</u>	
Acetaldehyde	NCASI	0.033			30.77 ADTFP/hr 269,553 ADTFP/yr	
Acetaidenyde	NCASI	lb/ADTFP			<u>SN-44D</u>	
					79.92 ADTFP/hr 700,070 ADTFP/yr	
					ADTFP – air dried tons of finished product 20% SF	
Acrolein	NCASI	1.6E-3 lb/ADTFP			See Comments for Acetaldehyde 20% SF	
Formaldehyde	NCASI	6.4E-3 lb/ADTFP			See Comments for Acetaldehyde 20% SF	
Methanol	Testing	44A: 2.00 44B: 4.70 44C: 5.60 44D: 6.80			Limited by VOC and Methanol in shower water Emission factors are in lb/hr by machine.	
		· · · ·	ystem (NCASI	factors have a 2	20% safety factor)	
VOC	Stack Test	9.1 lb/hr			1,100 ADTUBP/day	
СО	Stack Test	16.5 lb/hr			1,100 ADTUBP/day	
Acetaldehyde	NCASI	0.034 lb/ADTP			1,100 ADTUBP/day	
Formaldehyde	NCASI	0.0017 lb/ADTP			1,100 ADTUBP/day	
Methanol	Stack Test	9.11 lb/hr			1,100 ADTUBP/day	
TRS	Stack Test	2 lb/hr			1,144 ADTUBP/day	
SN-46 – Haul roads						

Constituent	Emission Factor Source (AP- 42, Testing, etc.)	Emission Factor and units (lb/ton, lb/hr, etc.)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc.)
PM/PM ₁₀	Estimate	0.16 lb/VMT		Subject to road maintenance plan	Overall lb/VMT for both paved/undpaved with controls included
SN-50,	SN-53, SN-54	a, SN-54b, SN	-57, SN-58, and	d SN-59 – Stati	onary RICE
PM/PM ₁₀	AP-42 Table 3.3-1				
SO ₂	AP-42 Table 3.3-1				
VOC	AP-42 Table 3.3-1				
СО	AP-42 Table 3.3-1				
NO _X	AP-42 Table 3.3-1				
НАР	AP-42 Table 3.3-2				
		SN-55 – Par	per Additive Si	los	·
PM/PM ₁₀	Mass Balance	0.03 gr/dscf	Fabric filter		
		SN-56 –	Dye Operation		
VOC	Mass Balance				Emission factor varies by MSDS for each product used.

13. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
01	PM	5	Every 5 years	§19.702
01	PM_{10}	201A or 5 and 202	Every 5 years	§19.702
01	VOC	Method 25A	Every 5 years	§19.702
01	Filterable PM	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
01	HCl	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 22 of 31

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
01	Mercury	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
02	PM/PM_{10}	5 or 29	Initial test	§63.865
02	O_2	3, 3A or 3B	Initial test	§63.865
02	PM	5	Every five years	§18.1002
02	PM_{10}	201A or 5 and 202	Every five years	§19.702
02	VOC	25A	Every five years	§19.702
03	VOC	25A	Every five years	§19.705
03	PM	5 and 202	Every five years	§18.1002
03	PM_{10}	201A or 5 and 202	Every five years	§19.705
03	СО	10B	Every five years	§19.705
03	NO _X	7E	Every five years	§19.705
05	PM	5	Every five years	§18.1002
05	PM_{10}	201A or 5 and 202	Every five years	§19.705
05	VOC	25A	Every five years	§19.705
05	HC1	26A	Every five years	§18.1002
05	Filterable PM	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
058	HCl	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
05	Mercury	Multiple refer to Subpart DDDDD, Table 5	Annually	Boiler MACT
06	VOC	25A	Every five years	§19.705
06	PM	5 and 202	Every five years	§19.705
06	PM ₁₀	201A or 5 and 202	Every five years	§19.705
08	TRS	16	Every five years	§18.1002
08	VOC	25A	Every five years	§19.705
08	O ₂	3A or 3B	Once	§63.865
08	PM	5	Every five years	§19.705
08	PM ₁₀	201A or 5 and 202	Every five years	§19.705
08	Ammonia	Method 206	Every five years	§18.1002
09	PM	5 or 29	Once	§63.865
09	O ₂	3A or 3B	Once	§63.865
09	NO _X	7E	Every five years	§19.705
14	PM_{10}	201A or 5 and 202	Every five years	§19.702
14	VOC	25A	Every five years	§19.702
15	TRS	16	Annual	<u>§19.804</u>
15	Ammonia	206	Every five years	§19.703
15	PM	5 or 29	Initial	63.865
15	O_2	3 or 3A	Initial	63.865
15	VOC	Method 25A	Every five years	§19.702

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 23 of 31

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
16, 17,18	Pressure differential	Pressure transmitter	Yearly	63.453(a)(1)
16, 17,18	Cl ₂ , ClO ₂	NCASI Special Report Number 91-07	Every five years	18.1002
16,17 ,18	СО	10B	Every five years	§19.703
16,17 ,18	VOC	25A	Every five years	§19.703
20	Cl ₂ , ClO ₂	NCASI Special Report Number 91-07	Every five years	18.1002
21	COD	Water Test	Daily	63.453(j)
21	Horsepower of Aerator units	Observation	Daily	63.453(j)
21	Inlet liquid flow	Flow Meter	Daily	63.453(j)
21	Liquid Temperature	Thermocouple	Daily	63.453(j)
21	BOD ₅ percent reduction	BOD ₅	Quarterly	63.453(j)
22	Methanol	25D	Yearly	§18.1003
22	Acetone	25D	Yearly	§18.1003
30	PM	5	Every five years	§19.702
30	PM/PM ₁₀	201A or 5 and 202	Every five years	§19.702
30	SO ₂	6C	Every five years	§19.702
30	VOC	25A	Every five years	§19.702
30	NO _X	7E	Every five years	§19.702
30	СО	Method 10B	Every five years	§19.702
37	VOC	25D	Yearly	§19.702
42	Methanol	NCASI Method DI/MEOH- 94-02, Methanol in Process liquids by GC/FID, August 1998, Methods Manual, NCASI, Research Triangle Park, NC	Yearly	§18.1002
42	Acetone	,	Yearly	§18.1002
44a	VOC	25D on shower water	Yearly	§19.703

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 24 of 31

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
44b, 44c, 44d	Methanol	NCASI Method DI/MEOH- 94-02, Methanol in Process liquids by GC/FID, August 1998, Methods Manual, NCASI, Research Triangle Park, NC	Yearly	§18.1002
45	VOC	25A	Every 5 years	§19.705
45	CO	10	Every 5 years	§19.705
54a	Formaldehyde	Method 320 or 323 of 40 CFR Part 63, App A	Initial	§63.6620 One test per engine
54b	Formaldehyde	Method 320 or 323 of 40 CFR Part 63, App A	Initial	§63.6620 One test per engine

14. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN(s)	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc.)	Frequency*	Report (Y/N)**
01	CO, NO _X	CEM	Every 15 minutes; Average once/ hour	N
01	Opacity	СОМ	Six-minute average	N
02	TRS	CEM	12-hour Average	N
02	CO, O ₂	CEM	Every 15 minutes; Average once/ hour	N
02	Opacity	СОМ	Six-minute average	Ν
05	SO ₂ , CO, NO _X , O ₂	CEM	Every 15 minutes; Average once/ hour	N

SN(s)	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc.)	Frequency*	Report (Y/N)**
05	Temperature Scrubbing Liquid Flow rate Pressure Drop of Gas Stream	CPMS	Continuous	N
06	SO ₂ , CO, NO _X TRS, O ₂	CEM	Every 15 minutes; Average once/ hour	N
06	Opacity	СОМ	Six-minute average	Ν
06	Floor Tube Temperature	CPMS	Continuous	N
08	Pressure Drop of gas stream Pressure of liquid supply Scrubbing liquor flow rate	CPMS	Continuous	Y
09	CO, TRS, O ₂	CEM	Every 15 minutes; Average once/ hour	Ν
09	Scrubbing liquid flow rate Air pressure drop across scrubber Temperature of lime kiln	CPMS	Continuous	Ν
14	Opacity	СОМ	Six-minute average	N
14	CO, NO _X , TRS, O ₂	CEM	Every 15 minutes; Average once/ hour	N
14	SO_2	CEM	Every 15 minutes; Average once/ hour	Y
14	Temperature	CPMS	Continuous	N
15	Scrubber gas pressure drop Scrubber Liquid Pressure	CPMS	Continuous	Y
15	Scrubbing liquid flow rate	CPMS	Every 8 hours – average the three daily readings	N

SN(s)	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc.)	Frequency*	Report (Y/N)**
16	Inlet air flow rate Scrubbing liquid flow rate Inlet pH of Scrubber Liquid	CPMS	Continuous	Ν
17	Inlet air flow rate Scrubbing liquid flow rate Inlet pH of Scrubber Liquid	CPMS	Continuous	Ν
18	Inlet air flow rate Scrubbing liquid flow rate Inlet pH of Scrubber Liquid	CPMS	Continuous	N
20	Absorption Water Temperature	Thermocouple	Once per shift	N
36	Temperature	CPMS	Continuous	Ν

15. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Limit	Frequency	Report (Y/N)
01	Fuel Usage	Fuel Usage Recording of pounds of fuel used		Ν
01	Fuel Usage	Recording of pounds of fuel used	Monthly Average	Y
01	Fuel Usage	Recording of pounds of fuel used	12-month Rolling Average	Y
01	Hourly NO _X Emission Rate	237 lb/hr	Hourly	Y
01	30-day average NO _X emission rates	0.3 lb/MMBtu	30-day rolling average	Y
01	30-day average CO emission rates	0.35 lb/MMBtu	30-day rolling average	Y
01	Moisture Content of Biomass Fuel	Must exceed 40% by weigh on an as fired annual heat input basis	Monthly	Y
01	HCl and Mercury content per fuel analysis	No standard – Boiler MACT	Concurrently with performance testing, annually	Y
01	Type of fuel and amount during Startup/Shutdown	No standard – Boiler MACT	Per Event	Y

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 27 of 31

SN	Recorded Item	Limit	Frequency	Report (Y/N)
01	BTU Loading	790 MMBTU/hr	Daily	Y
02	TRS Concentration		Twelve-hour Average	Y
02	O ₂		Twelve-hour Average	N
02	Period pre-coat filter isolated	75% feed capacity for kiln		Ν
02	CO and NO_X	240.9 tpy CO 291.3 tpy NO _X	30-day rolling averages	N
02	%Solids of lime mud feed	65% 30-day rolling average	Daily	N
02	CaO Production	Ton/d	daily	Y
05	Fuel Usage	tpd	daily	Y
05	Fuel Usage	tpd	Month	Y
05	Moisture Content of Biomass Fuel	Must exceed 40% by weight on an as fired annual heat input basis	Monthly	Y
05	HCl and Mercury content per fuel analysis	No standard – Boiler MACT	Concurrently with performance testing, annually	Y
05	Type of fuel and amount during Startup/Shutdown	No standard – Boiler MACT	Per Event	Y
05	Biomass heat input	Must be 10% or greater on an annual heat input basis	Monthly	Y
06	TRS emission	12-hour average	Daily	Ν
06	O ₂ Concentration	12-hour average	Daily	Ν
06	Hourly HCl Emissions	One-hour average	Hourly	Ν
06	Floor Tube Temperature	3-hour average	Hourly	Y
06	Floor Tube Temperature	monthly average	monthly	Y
06	Black Liquor Solids Rate	Daily feed	Daily	N
08	Pressure Drop of gas stream	Instantaneous	Once per shift	N
08	Pressure of liquid supply	Instantaneous	Once per shift	Ν
08	Scrubbing Liquor flow Rate	Flow Meter	Hourly	Y
08	Pressure Drop of gas stream	Pressure Drop	Once Every 15- minutes	Y
08	Scrubbing Liquor flow Rate	Flow Meter	Once Every 15- minutes	Y
09	TRS Concentration	CEMS	12-hour average	N
09	O ₂ Concentration	CEMS	12-hour average	N

SN	Recorded Item	Limit	Frequency	Report (Y/N)
09	Pressure Drop of gas stream	Instantaneous	Once per shift	Ν
09	Pressure of liquid supply	Instantaneous	Once per shift	N
09	Temperature	1-hour Rolling average	hourly	N
09	%Solids of lime mud feed	65% 30-day rolling average	Daily	N
09	CaO Production Rate	daily	daily	
09	Liquid Flow rate	Daily		N
09	Gas pressure drop	CEMs	Daily	N
12	Fuel Usage		Daily	Y
12	Fuel Usage		Monthly	Y
12	Hours of Operation		Hour	Y
12	Steam Loading		Hourly	Ν
14	TRS concentration		12-hour average	N
14	Black Liquor Firing Rate		Time below 1.5 MMlbs/day	Ν
14	HCl emissions	54.5 lb/hr and 238.71 tpy	Hourly	Y
14	BLS firing rate		Daily	Y
15	Scrubber Gas Pressure drop		Once per shift/ once every 15 minutes	Y
15	Scrubber Liquid Supply Pressure		Once per shift	Y
15	Scrubber Liquid flow Rate	175 gpm	Once per shift/ once every 15 minutes	Y
16	Fan Amperage	65 -105 amperes	Once per shift	Y
16	Scrubber Liquid flow Rate	300 gallons/minute	Once per shift	
17	Scrubber Liquid flow Rate	300 gallons/minute	Once per shift	
17	Fan Amperage	50 -105 amperes	Once per shift	Y
18	Scrubber Liquid flow Rate	350 gallons/minute	Once per shift	
18	350 gallons/minute	30 -80 amperes	Once per shift	Y
20	Scrubber Water Temperature	•	Once per shift	Ν
23	Tank Dimensions			N
23	Methanol Throughput	18,850,000 lbs/12 months	Monthly	Y
28	Formic Acid throughput	5,336,000 lbs/12 months	Monthly	Ŷ
29	Lime processed	420,500 tons/12 months	Monthly	Y
36 Tank #10	Weak Black Liquor Throughput	2,018,304,000 gallon/12 months	Monthly	Y
37	Finished Product (Pulp)	328,500 tons of air dried pulp	Monthly	Y
38	Woodchips processed	4,320,000 tons/12 months	Monthly	Y

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 29 of 31

SN	Recorded Item	Limit	Frequency	Report (Y/N)
40	Time sample port is opened	Only when retrieving sample	Daily	Ν
40	Spacing of digester blows Minimum of 25 minutes		Daily	Ν
41	Sludge put in landfill	163,000 tons/12 months	Monthly	Y
42, 45	Unbleached Pulp	535,090 tons of air dried unbleached pulp	Monthly	Y
43	Fuel Consumption	258,000 gallons/12 months	Monthly	Y
44A	Finished Product	167,316 tons air dried paper/12 months	Monthly	Y
44B	Finished Product	269,553 tons air dried paper/12 months	Monthly	Y
44C	Finished Product	269,553 tons air dried paper/12 months	Monthly	Y
44D	Finished Product	700,070 tons air dried product/12 months	Monthly	Y
01,03,05	Tire derived fuel	220 tons/24-hours	Daily	Y
ALL	Units Operating at less than 25% capacity		Yearly	Y
RICE	Hours of Operation	500 hrs / 12 months	Per event	Y
56	Dye Usage	1		Y

16. OPACITY:

SN	Opacity %	Justification	Compliance Mechanism
01	20	Boiler fired with many different fuels	COMS - submittals in accordance with CEM standards
01	10	Boiler MACT	COMS operated according to Boiler MACT
02	20	This is a lime kiln. Particulate emissions are present which are not entirely caused by fuel combustion.	COMS - submittals in accordance with CEM standards
03	5	Fires only natural gas.	Fires only natural gas
05	20	This is a boiler which is fired with many different types of fuel.	Scrubber parameters - no submittal of records required.
06	20	Recovery boiler. The highest allowable under the NSPS is 35%. The boiler is limited to 20% because of Department regulations.	COMS - submittals in accordance with COM standards
08	20	Smelt tank with 18 lb/hr of particulate matter emissions.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
09	20	This is a lime kiln which has	Scrubber parameters - Submittal of records as

SN	Opacity %	Justification	Compliance Mechanism
		particulate matter emissions from	required by 63 Subpart MM
		fuel combustion as well as from	
		proper operation of the kiln.	
14	20	Recovery boiler. The highest allowable under the NSPS is 35%. The boiler is limited to 20% because of Department regulations.	COMS - submittals in accordance with CEM standards
15	20	Smelt tank with PM emissions of 18.7 lb/hr.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
43	5	Tub grinder fired with diesel fuel.	Weekly observations - no submittal of records required
RICE	20 – Diesel 5 - Propane	Regulation 19.501	Daily for events lasting more than 24 hours

17. DELETED CONDITIONS:

Former SC	Justification for removal			
	N/A			

18. GROUP A INSIGNIFICANT ACTIVITIES:

	Crown A	Emissions (tpy)						
Source Name	Group A Category	PM/PM ₁₀	SO_2	VOC	СО	NO _x	HAPs	
	Category	F IVI/F IVI 10	30_2	VUC	CO	NO _X	Single	Total
Material Mixer	A1	0.302	0.007	0.929	4.571	2.729	0.027	0.027
250 gal lubricating/hydraulic oil tanks (5,000 gal site wide)	A2			5E-05				
Used Oil Storage Tank (10,000 gal)	A3			8E-05				
Woodyard Diesel Tank (9,425 gal)	A3			0.014				
Woodyard Hydraulic Oil Tank (9,425 gal)	A3			9E-05				
Medium Diesel Tanks (<10,000 gal site wide)	A3			0.014				
Small Diesel Tanks (<1,000 gal each)	A3			0.01				
Paper Machine	A3			0.01				

Permit #: 0287-AOP-R21 AFIN: 41-00002 Page 31 of 31

Source Name Portable Tote Bins	Group A Category							
Portable Tote Bins	Category		SO ₂	VOC	СО	NO _x	HAPs	
Portable Tote Bins		PM/PM ₁₀					Single	Total
Caustic Storage	A4							
Tanks								
Laboratory Hoods	A5			0.21				0.21
Mill Services								
(storeroom) gasoline	A13			1.65				
tank (130,000 gal)								
Brock Services								
Gasoline Tank (552	A13			0.27				
gal)								
Coal Pile	A13	0.03						
Turpentine Storage	A13			0.546				
Tank (18,612 gal)				0.510				
Cooling Tower ^a #1	A13	0.05						
Cooling Tower ^a #2	A13	0.02						
Cooling Tower ^a #3	A13	0.03						
Cooling Tower ^a #4	A13	0.05						
Cooling Tower ^a #5	A13	0.11						
Cooling Tower ^a #6	A13	0.04						
Cooling Tower ^a #7	A13	0.005						
Cooling Tower ^a #8	A13	0.060						
Cooling Tower ^a #9	A13	0.008						
Cooling Tower ^a #10	A13	0.053						
Cooling Tower ^a #11	A13	0.025						
Cooling Tower ^a #12	A13	0.454						
Cooling Tower ^a #13	A13	0.329						
Cooling Tower ^a #14	A13	0.350						
Cooling Tower ^a #15	A13	0.387						
Converting Area ^a #1 #3 EVAP, #2 Wate	A13			0.26				0.26

#1 #3 EVAP, #2 Water Plant North Tower, #3 Water Plant South Tower, #4 R-8 Tower ERCO, #5 SVP Tower, #6 No. 62 Tower, #7 BAC 3642 Tower 61 PM Converting, #8 61 PM Ground, #9 63 PM, #10 Pulp Mill MCC, #11 Admin, #12 No. 4 Turbine Generator Tower, #13 No. 64 Tower, #14 Vacuum Pump Tower, and #15 ECF Conversion Tower

19. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
0287-AOP-R20	

APPENDIX A – EMISSION CHANGES AND FEE CALCULATION

Fee Calculation for Major Source

Facility Name: Domtar (Ashdown) Permit Number: 287-AOP-R21 AFIN:41-00002

\$/ton factor	23.93	Annual Chargeable Emissions (tpy)	<u>16011.46</u>
Permit Type	Modification	Permit Fee \$	1000
Minor Modification Fee \$ Minimum Modification Fee \$ Renewal with Minor Modification \$ Check if Facility Holds an Active Minor Source or Mino Source General Permit If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$ Total Permit Fee Chargeable Emissions (tpy) Initial Title V Permit Fee Chargeable Emissions (tpy)	500 1000 500 r 0 0		

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Revised 03-11-16

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
РМ		2456.9	2456.9	0	0	2456.9
PM ₁₀		1885.4	1885.4	0		
PM _{2.5}		0	0	0		
SO ₂		7889.7	7889.7	0	0	4000
VOC		5682	5682	0	0	4000
со		12299.8	12299.8	0		
NO _X		7610	7610	0	0	4000
Lead		0.83	0.83	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
1,1,1- Trichloroethane		0.03	0.03	0	0	0.03
Acetone	•	73.2	73.2	0	0	73.2
Ammonia		493.24	493.24	0	0	493.24
Chlorine		27.59	27.59	0	0	27.59
Chlorine Dioxide	•	30.66	30.66	0	0	30.66
Dichloromethane		0.56	0.56	0	0	0.56
H2S		0.55	0.55	0	0	0.55
HCl		634.55	634.55	0	0	634.55
Perchloroethylene	•	0.28	0.28	0	0	0.28
Sulfuric Acid		32.5	32.5	0	0	32.5
TRS	•	261.4	261.4	0	0	261.4