Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 1 of 19

STATEMENT OF BASIS

for the issuance of Draft Air Permit # 0287-AOP-R5

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 8001 National Drive Post Office Box 8913 Little Rock, Arkansas 72219-8913

2. APPLICANT:

Domtar Industries, Inc. – Ashdown Mill 285 Highway 71 South Ashdown, Arkansas 71822

PERMIT WRITER: Phillip Murphy

3. PROCESS DESCRIPTION AND NAICS CODE:

NAICS Description: Kraft paper stock manufacturing NAICS Code: 322121

SUBMITTALS: Two Minor Modifications submitted on May 17, 2005 and submittal on7/26/2005.

4. **REVIEWER'S NOTES:**

Minor Modification, submitted 5-17-2005, was to reduce the scrubber liquor flow for the Bleach Plant Scrubbers (SN-16, SN-17 and SN-18) based on testing;

Minor Modification, submitted 5-17-2005, was to change the process water for the #3 Smelt Dissolving Tank (SN-15) to weak wash water.

Minor Modification, submitted 7/26/2005, was to change the analytical method for testing the biological treatment from BOD₅ to COD and deleting requirement for testing of mixed liquor suspended solids.

5. COMPLIANCE STATUS:

The following summarizes the current compliance status of the facility including active/pending enforcement actions and recent compliance activities and issues:

The permittee will be in compliance with this permit upon issuance of this permit.

6. **APPLICABLE REGULATIONS:**

PSD Applicability

Did the facility undergo PSD review in this permit (i.e., BACT,	Ν
Modeling, et cetera?	

Has this facility undergone PSD review in the past? Y Permits #287-AR-1, -3, -5 and -

Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 2 of 19

6 and Permit #946A

Is this facility categorized as a major source for PSD?	Y
100 tpy and on the list of 28 (100 tpy)?	Y
250 tpy all other	Y
PSD Netting	
Is netting performed to avoid PSD review in this permit?	Ν

Is netting performed to avoid PSD review in this permit?

Source No.	Regulation	Description
Facility	40 CFR Part 63, Subpart S	NESHAPS for Hazardous Air Pollutants from the Pulp and Paper Industry
Facility	40 CFR Part 60, Subpart A	General Provisions
01	40 CFR Part 60, Subpart Db	Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units
01	40 CFR 52, Subpart E	Prevention of Significant Deterioration
02	40 CFR Part 60, Subpart BB	Standards of performance for Kraft Pulp Mills
02	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
02	40 CFR 52, Subpart E	Prevention of Significant Deterioration
05	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
05	40 CFR Part 60, Subpart D	Standards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced after August 17, 1971
06	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
06	40 CFR 52, Subpart E	Prevention of Significant Deterioration
06	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
08	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
08	40 CFR §52.21	Prevention of Significant Deterioration
08	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
09	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
09	40 CFR Part 63, Subpart MM	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
11	40 CFR 52, Subpart E	Prevention of Significant Deterioration
12	40 CFR Part 60, Subpart Db	Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units

7. Source and Pollutant Specific Regulatory Applicability

Source No.	Regulation	Description
14	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
14	40 CFR 52, Subpart E	Prevention of Significant Deterioration
14	40 CFR Part 63, Subpart M	NESHAPS for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite and Stand-Alone Semichemical Pulp Mills
15	40 CFR Part 60, Subpart BB	Standards of Performance for Kraft Pulp Mills
15	40 CFR 52, Subpart E	Prevention of Significant Deterioration

8. EMISSION CHANGES:

The following table summarizes plant wide emission changes associated with this permitting action.

	Plant Wide Permitted Emissions (ton/yr)					
Pollutant	Permit 0287-AOP-R4	Permit 0287-AOP-R5	Change			
PM/PM ₁₀	3158.5	3158.5	0			
SO ₂	8111.6	8111.6	0			
VOC	2863.0	2857.7	0			
СО	12473.3	12473.3	0			
NO _X	7995.6	7995.6	0			
Pb	0.10	0.10	0			
TRS	118.5	118.5	0			
Acetaldehyde	451.24	451.24	0			
Benzene	6.06	6.06	0			
Chloroform	101.89	101.89	0			
Formaldehyde	13.99	13.99	0			
HCl	488.20	488.20	0			
Methanol	536.82	533.2	0			
Naphthalene	4.38	4.38	0			
Styrene	0.10	0.1	0			
Acetone	10.86	10.86	0			
Ammonia	71.5	71.5	0			
Barium	4.92	4.92	0			
Chlorine	27.66	27.66	0			
Chlorine Dioxide	30.68	30.68	0			
Phosphoric Acid	0.10	0.10	0			
Sulfuric Acid	32.94	32.94	0			

9. MODELING:

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (µg/m ³)	Averaging Time	Highest Concentration $(\mu g/m^3)$	% of NAAQS
PM ₁₀		50	Annual	2.4	5%
		150	24-hour	17	11%
SO ₂		80	Annual	8.13	10%
		1,300	3-hour	476	37%

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (µg/m ³)	Averaging Time	Highest Concentration (µg/m ³)	% of NAAQS
		365	24-hour	134	37%
NO _X		100	Annual	28	28%
VOC		0.12	1-hour (ppm)		0%
СО		10,000	8-hour	704.98541	7%
		40,000	1-hour	1397.32	3.5%

Other Modeling

Odor

Odor modeling for sources emitting styrene.

Pollutant	Threshold value 1-hour average	Modeled Concentration (µg/m3)	Pass?
Styrene	1361 µg/m3	NA	NA

H₂S Modeling

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific standards.

Pollutant	Threshold value	Modeled Concentration (ppb)	Pass?
H_2S	20 parts per billion (5- minute average)	40 CFR 63 Subpart BB exemption	Y
	80 parts per billion (8- hour average) residential area	40 CFR 63 Subpart BB exemption	Y
	100 parts per billion (8- hour average) nonresidential area	40 CFR 63 Subpart BB exemption	Y

Non-Criteria Pollutants

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department deemed PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m3), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV	PAER (lb/hr)=		
Tonutant	(mg/m^3)	0.11*TLV	Proposed lb/hr	Pass?
Acetaldehyde	45.0	5.0	2.47	Y
Benzene	1.6	0.17	1.15	Ν
Chloroform	48.8	5.37	23.3	Ν
Formaldehyde	0.004	0.04	3.21	Ν
Hydrogen Chloride	0.3	0.03	111.45	Ν

Pollutant	TLV (mg/m ³)	PAER (lb/hr)= 0.11*TLV	Proposed lb/hr	Pass?
Methanol	262	28.82	114.48	Ν
Naphthalene	52.42	5.77	1.00	Y
Styrene	85.2	0.85	0.1	Y
Toluene	188.4	20.7	0.09	Υ
Acetone	1187	130.58	10.86	Y
Ammonia	17.4	1.91	103.1	Ν
Barium	0.5	0.055	1.12	Ν
Chlorine	1.45	0.16	6.30	Ν
Chlorine Dioxide	0.27	0.03	8	Ν
Phosphoric Acid	1	.01	0.01	Y
Sulfuric Acid	.2	.002	0.1	Ν

2nd Tier Screening (PAIL)

ISCST3 air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound was deemed by the Department to be one one-hundredth of the Threshold Limit Value, as listed by the ACGIH.

Pollutant	(PAIL, μ g/m ³) = 1/100 of Threshold Limit Value	Modeled Concentration $(\mu g/m^3)$	Pass?
Benzene	15.97	15.40	Y
Chloroform	488.26	1.3	Y
Formaldehyde	3.68	0.87080	Y
Hydrogen Chloride	2.98	0.06	Y
Methanol	2620	235	Y
Ammonia	174	71.40282	Y
Barium	5	0.00401	Y
Chlorine	14.50102249	0.5	Υ
Chlorine Dioxide	2.759100204	0.5	Y
Sulfuric Acid	2	0.13	Y

10. CALCULATIONS:

	Emission Factor Source	Emission Factor and units	Control Equipment	Control	
	(AP-42,	(lbs/ton,	Type (if	Equipment	Comments (Emission factor
Constituent	Testing, etc)	lbs/hr, etc)	any)	Efficiency	controlled/uncontrolled, etc)
Source SN-01 No. 3 Powe	er Boiler				
PM/PM ₁₀	NSPS and	0.025	ESP	98	Controlled Lb/hr based on 790
	PSD	lb/MMBtu			MMBtu/hr
SO ₂	PSD BACT	0.1	N/A	-	PSD limit applied to unit with 620
		lb/MMBtu			MMBtu/hr of bark feed and 170
		(NSPS			MMBtu/hr natural gas. (Permit 946-A)
		Limit)			_

Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 6 of 19

		Emission			
	Emission	Factor and	Control		
	Factor Source	units	Equipment	Control	
	(AP-42,	(lbs/ton,	Type (if	Equipment	Comments (Emission factor
Constituent	Testing, etc)	lbs/hr, etc)	any)	Efficiency	controlled/uncontrolled, etc)
VOC	PSD BACT	0.027 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of bark feed and natural gas
		10/101101010			at a steam production rate of 450,000
					lbs/hr. (Permit 946-A)
СО	PSD BACT	0.35	N/A		PSD limit applied to unit with 790
		lb/MMBtu			MMBtu/hr of a combination of bark
					feed and natural gas at a steam
					production rate of 450,000 lbs/hr.
NO	DCD and	0.2	NT/A		(Permit 946-A)
NO _x	PSD and NSPS Db	0.3 lb/MMBtu	N/A		PSD limit applied to unit with 790 MMBtu/hr of a combination of bark
	INSPS D0	10/1vilvibtu			feed and natural gas at a steam
					production rate of 450,000 lbs/hr.
					(Permit 946-A)
Acetaldehyde	Stack Test	0.21 lb/hr	N/A		
Benzene	Stack Test	0.21 lb/hr	N/A		
Naphthalene	Stack Test	0.50 lb/hr	N/A		
SN-02- No. 3 Lime Kilr	18				
		1	1	1	1
PM ₁₀ /PM	NSPS BB	0.066	ESP	98	
SO ₂	PSD	gr/dscf 0.727 lb/Ton			PSD limit applied to unit with 440 tons
30_2	L2D	CaO (13.3			per day of lime (Permit 946-A)
		lb/hr)			(0.727*440)/24 = 1bs/hr tpy *8760
VOC	PSD	0.795 lb/ton			287-AR-7 cites AP-42, 4 th Edition,
		of CaO			current AP-42 does not have a factor.
					Calculation of lb/h and Tpy same as
					SO_2 . The permit has as PSD limit but
					946-A did not have in PSD. Picked up
<u> </u>	DOD	2011/			as a PSD cite in 287-AR-7.
СО	PSD	3.0 lb/ton CaO			PSD limit applied to unit with 440 tons
		CaO			per day of lime (Permit 946-A) (3.0*440)/24= lbs/hr tpy *8760
NO _X	PSD	3.63 lb/ton			PSD limit applied to unit with 440 tons
	100	CaO			per day of lime (Permit 946-A)
					(3.63*440)/24 = 1bs/hr tpy *8760
TRS	NSPS BB	8 ppm			lbs/hr
Benzene	Stack Test	0.24 lbs/hr			Tpy=lbs/hr *8760
Methanol	Stack Test	1.31 lbs/hr			Tpy=lbs/hr *8760
Source SN 03 - No. 1 Po		1	1	1	1
PM ₁₀ PM	Stack Test	343.0 lbs/hr			Stack test 20% SF
SO ₂	Fuel Reporting	214 lb/hr			
VOC	Stack Test Stack Test	43 lb/hr 164 lbs/hr			Steel: test 200 SE
CO NO _x	Stack Test	247.5 lb/hr		+	Stack test 20% SF
Acetaldehyde	NCASI Factor	0.84			
Barium	NCASI Factor	0.77			
Benzene	NCASI Factor	0.49			
Source SN 05 - No. 2 Po			1	1	
Source SIN 05 - INO. 2 I V	JWCI DOIICI				
PM ₁₀	NSPS	0.1	Venturi	98	Tpy is 8760 * hourly rate

Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 7 of 19

		Emission			
	Emission	Factor and	Control		
	Factor Source	units	Equipment	Control	
	(AP-42,	(lbs/ton,	Type (if	Equipment	Comments (Emission factor
Constituent	Testing, etc)	lbs/hr, etc)	any)	Efficiency	controlled/uncontrolled, etc)
SO ₂	NSPS	1.2 lb/MMBtu	Venturi Scrubber	98	Tpy is 8760 * hourly rate
VOC	AP-42, 4 th edition, 1985	0.112 lb/mmbtu			
СО	AP-42, 4 th edition, 1985	0.324 Lb/mmBtu			
NO _X	NSPS	0.7 lb/MMBtu			Tpy is 8760 * hourly rate
Lead	EPA Toxic Air Pollutant Factors, October 1988	0.03 lb/hrt			
Acetaldehyde	Stack Test	0.21 lb/hr			
Benzene	Stack Test	0.21 lb/hr			
HCl	Stack Test	5.75 lb/hr			
Naphthalene	Stack Test	0.50 lb/hr			
No. 2 Recovery Boiler					
PM ₁₀	NSPS	0.044	ESP	98	
10		gr/dscf			
SO ₂	PSD	286 lb/hr			Tpy is 8760 * hourly rate. PSD limit from 287-AR-3
VOC	AP-42, 4 th	0.8 lb/ADTP			
	edition, 1985				
СО	?	16.8			
		lb/ADTP			
NO _X		5.3 lb/ADTP			
Formaldehyde	Stack Test	0.72 lb/hr			
Hydrogen Chloride	Stack Test	51.20 lb/hr			
Methanol	Stack Test	1.18 lb/hr			
Styrene	Stack Test	3.22 lb/hr			
Sulfuric Acid	Stack Test	0.06 lb/hr			
TRS	NSPS BB	5 PPMV			
Source SN-08 - No. 2 St					
PM _{10/} PM	NSPS BB	0.2 lb/ton BLS	Scrubber	80	PM is a PSD limit from 287-AR-3
SO ₂	PSD		Scrubber	80	SO ₂ is a PSD limit from 287-AR-3
VOC	FIRE Data Base, AP-42, 4 th edition, 1985	0.16 lb/ARDP			
Ammonia	Stack Test	/hr			
Formaldehyde	Stack Test	0.36 lb/hr			
Methanol	Stack Test	5.40 lb/hr	~ ~ ~ ~		
TRS	NSPS	0.0168 g/kg BLS	Scrubber	60	
Source SN-09 - No. 2 Li	ime Kiln			•	
PM10	NSPS	0.064 gr/dscf	Scrubber	85	
SO2	Permit 946A	0.727 lb/ton CaO			Based on BACT for Lime Kiln No. 3

Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 8 of 19

Constituent	Emission Factor Source (AP-42, Testing, etc)	Emission Factor and units (lbs/ton, lbs/hr, etc)	Control Equipment Type (if any)	Control Equipment Efficiency	Comments (Emission factor controlled/uncontrolled, etc)
VOC	AP-42, 4 th edition, 1985	0.9353 lb/ton CaO			
СО	AP-42, 4 th edition, 1985	3.0 lb/ton CaO			Based on BACT for Lime Kiln No. 3
NO _X	AP-42, 4 th edition, 1985	3.7411 lb/ton CaO			
Benzene	Stack Test	0.23			
Methanol	Stack Test	1.18			
Formaldehyde	Stack Test	0.02			
Toluene	Stack Test	0.02			
TRS	NSPS	8.00 ppm	Scrubber	25	
Source SN-11 - No. 2 N	latural Gas-Fired Pac			•	•
PM ₁₀	AP-42, 4 th	0.0029			
	edition, 1985	lb/MMBtu			
SO ₂	AP-42, 4 th edition, 1985	0.001 lb/MMBtu r			
VOC	AP-42, 4 th edition, 1985	0.00141 lb/MMBtu			
СО	AP-42, 4 th edition, 1985	0.12 lb/MMBtu			
NO _X	AP-42, 4 th edition, 1985	0.13 lb/MMBtu			PSD limit with BACT of natural gas as fuel in Permit No. 287-AR-3 and excess O_2 between 8 and 12%.
Source SN-12 - No. 3 P					
PM ₁₀ /PM	AP-42, 4 th edition, 1985	0.0029 lb/MMBtu			
SO2	AP-42, 4 th edition, 1985	0.001 lb/MMBtu r			
VOC	AP-42, 4 th edition, 1985	0.0014 1 lb/MMBtu			
СО	AP-42, 4 th edition, 1985	0.12 lb/MMBtu			
NO _X	AP-42, 4 th edition, 1985	0.13 lb/MMBtu			
Source SN-14 - No. 3 R	ecovery Boiler				
PM ₁₀ /PM	NSPS	0.044 gr/dscf	ESP	98	controlled
SO ₂		250 PPM			287-AR had a PSD avoidance limit of the firing rate of BLS. CEMS can show compliance now. 1861.5 tpy
VOC	AP-42, 4 th edition, 1985	0.8 lb/ADTP			
СО		16.8 lb/ADTP			
NO _x		5.3 lb/ADTP			
Formaldehyde	Stack Test	0.87 lb/hr			
Hydrogen Chloride	Stack Test	54.50 lb/hr			
Methanol	Stack Test	0.46 lb/hr			
Styrene	Stack Test	0.07 lb/hr			
Sulfuric Acid	Stack Test	4.20 lb/hr	1		
TRS	NSPS BB	6.6 lb/hr			

Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 9 of 19

		Emission			
	Emission	Factor and	Control		
	Factor Source	units	Equipment	Control	
	(AP-42,	(lbs/ton,	Type (if	Equipment	Comments (Emission factor
Constituent	Testing, etc)	lbs/hr, etc)	any)	Efficiency	controlled/uncontrolled, etc)
Source SN-15 - No. 3 St			1	1	1
PM ₁₀ /PM	NSPS BB	0.1 g/kg BLS	Scrubber	90	
SO_2			Scrubber	10	
VOC	FIRE Data Base, AP-42, 4 th edition,	9.9			
	1985				
TRS	NSPS BB	0.0168 g/kg BLS	Scrubber	25	
Ammonia	Stack Test				
Formaldehyde	Stack Test				
Methanol	Stack Test				
Sources SN-16 – No. 1A	A Bleachplant Vents	, SN-17 - No. 11	B Bleachplant V	ents and SN-1	8 - No. 2 Bleachplant Vents
VOC	Stack Test	1.0 lb/hr			Bubbled Sources
СО	Stack Test	240.4 lb/hr			
Chlorine	Stack Test	.00 lb/hr	Scrubber	99	
Chlorine Dioxide	Stack Test	.00 lb/hr	Scrubber	99	
Chloroform	Stack Test	.50 lb/hr			
Source SN-20 - ERCO	ClO ₂ Generator	•	•		
Chlorine	Stack Test	0.30 lb/hr			
Chlorine Dioxide	Stack Test	3.00 lb/hr			
Source SN-21 - Effluent			1	•	1
VOC	NCASI	12.8 lb/hr	Biodegradat ion	92	Controlled
Chloroform	NCASI	8.80 lb/hr	Biodegradat ion		
Formaldehyde	NCASI	0.20 lb/hr	Biodegradat ion		
Methanol	NCASI	59.00 lb/hr	Biodegradat ion	92	Controlled
Source SN-22 - No. 1A	and 1B Brownstocl	Washers	1		1
VOC	stack test	1A 0.57 lb/ton pulp and No. 1B .06173 lb/ton pulp			
Acetone	stack test				
Formaldehyde	stack test	1A 0.0109	1		
-		lb/ton pulp			
Methanol	stack test	1A 0.01731 lb/ton pulp and No. 1B .0.01593			

Emission Factor and (AP-42, Orserie (AP-42, Testing, etc) Bis/for, etc) and ConstituentControl (Ap-42, Testing, etc) (Apstr, etc) (Apstr, etc) (Apstr, etc) (Apstr, etc) (Apstr, etc)Control Type (if Apstr, etc) (Apstr, etc) (Apstr, etc)Control (Apstr, etc) (Apstr, etc)Control (Apstr, etc)<			Emission			
Constituent(AP-42, Testing, etc)(bbs/ton, etc) ison, etc)Type' (if Equipment Efficiency Efficiency Comments (Emission factor controlled/uncontrolled, etc)VOCSociety of ALP-4 hbs/hb Moubstry factor 287-AR-74.2F-4 hbs/hb throughputN; PadSociety etc)MethanolSociety of Organic Chemical Manufactures Industry factor 287-AR-74.2F-4 hbs/hb throughputN; PadSociety etc)SN-25 - Storage Tank, Phosphoric AcidSociety of Organic Chemical Manufactures Industry factor 287-AR-71.33E-4 throughputSociety etc)SN-26 - Storage Tank, Chemical Manufactures Industry factor 287-AR-7Society of throughputI.33E-4 throughputSociety etc)SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 287-AR-78.37 lbs/hb throughputI.SE etc)I.SE etc)SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4I.SE etc)I.SE etc)SN-28 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4I.SE etc)SN-28 - Storage TankI.SE Efficiency Chemical Manufactures Industry factor1.65E-4I.SE etc)SN-28 - Storage TankI.SE Efficiency Chemical Manufactures Industry factorI.SE etc)I.SE etc)SN-28 - Storage TankI.SE Efficiency Chemical Manufactures Industry factorI.SE etc)I.SE etc) <td< td=""><td></td><td></td><td></td><td></td><td>Control</td><td></td></td<>					Control	
ConstituentTesting, etc.)Ibs/hr, etc.)any.)Efficiencycontrolled/uncontrolled, etc.)VOCSociety of Organic 287-AR-72.F4 Hs/hb UroughputN2 Pad when have have have have have have have have						Comments (Emission feator
VOC Society of Uroughput Manufactures Industry factor 287-AR-7 4.2E-4 lbs/lb Uroughput Manufactures Industry factor N ₂ Pad Methanol Society of Organic Chemical Manufactures Industry factor 4.2E-4 lbs/lb Uroughput N ₂ Pad SN-25 - Storage Tank. Toseirs of Organic Chemical Manufactures Industry factor 1.33E-4 Ibs/lb Uroughput N ₂ Pad SN-25 - Storage Tank. Society of Organic Chemical Manufactures Industry factor 1.33E-4 Ibs/lb Uroughput N ₂ Pad SN-26 - Storage Tank. Society of Organic Chemical Manufactures Industry factor 8.37 lbs/lb Uroughput N SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 8.37 lbs/lb Uroughput N SN-28 - Storage Tank Society of Organic Chemical Manufactures Industry factor 1.65E-4 Ibs/lb Uroughput N VOC Society of Organic Chemical Manufactures Industry factor 1.65E-4 Ibs/lb Uroughput N VOC NCASI Factor 287-AR-7 3.7F-2 Ibs/lon CaO N Source SN-29 - Recausticizer Vents VOC NCASI Factor 3.7F-2 Ibs/lon CaO Acetaldehyde NCASI Factor 3.7F-2 Ibs/lon CaO N Ammonia NCASI Factor 3.7F-2 Ibs/lon CaO Snoce Sub- CaO Sources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime Silos M Muthol NCASI Factor <	Constituent					
Organic Chemical Manufactures Industry factor throughput - Methanol Society of Organic Chemical Manufactures Industry factor 4.2E-4 lbs/lb throughput N ₂ Pad SN-25 - Storage Tank. - - Phosphoric Acid Society of Organic Chemical Manufactures Industry factor 1.33E-4 bs/lb Chemical Manufactures Industry factor N ₂ Pad SN-25 - Storage Tank. - - - Phosphoric Acid Society of Organic Chemical Manufactures Industry factor 1.33E-4 bs/lb Chemical Manufactures Industry factor - SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 8.37 lbs/lb throughput - SN-28 - Storage Tank Society of Organic Chemical Manufactures Industry factor 1.65E-4 lbs/lb throughput - VOC Society of Organic Chemical Manufactures Industry factor 1.65E-4 lbs/lb throughput - VOC Society of Organic Chemical Manufactures Industry factor 3.76-2 lbs/lo Chemical Manufactures - VOC Society of Organic Chemical Manufactures 3.76-2 lbs/lo Chemical Manufactures - Source SN-29 - Recaustic/cref 3.76-2 lbs/lo Ca0 - Source SN-302, SN-305, SN-305 SN-304 - Source SN-304, SN-305, SN-305, SN-305 SN-304 - Source SN-304, SN-305, SN-305, SN-305 -					Efficiency	controlled/uncontrolled, etc)
Chemical Industry factor Industry factor 4.2E-4 lbs/lb N2 Pad Methanol Society of Organic Chemical Manufactures Industry factor 4.2E-4 lbs/lb N2 Pad SN-25 - Storage Tank, Tociety of Organic Chemical Manufactures Industry factor 1.33E-4 Ibs/lb Ibs/lb SN-25 - Storage Tank, Society of Organic Chemical Manufactures Industry factor 1.33E-4 Ibs/lb Ibs/lb SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 8.37 lbs/lb Ibs/lb SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 8.37 lbs/lb Ibs/lb SN-28 - Storage Tank Society of Organic Chemical Manufactures Industry factor 1.65E-4 Ibs/lb SN-28 - Storage Tank Ibs/lb Ibs/lb Ibs/lb VOC Society of Organic Chemical Manufactures Industry factor 1.65E-4 VOC NCASI Factor 3.7E-2 Source SN-29 - Recausticizer Vents	VOC			1 v ₂ 1 au		
Manufactures 287-AR-7Manufactures throughputN2 PadMethanolSociety of Chemical Manufactures Industry factor 287-AR-7A.2E-4 Ibs/lb throughputN2 PadSN-25 - Storage Tank, Prosphoric AcidSociety of Organic Chemical Chemical relation throughput1.33E-4 Ibs/lb throughputN2 PadSN-25 - Storage Tank, Prosphoric AcidSociety of Organic Chemical relation Distribut Chemical relation1.33E-4 Ibs/lb throughputN2 PadSN-26 - Storage TankSociety of Organic Chemical relation 287-AR-7S.37 Ibs/lb throughputImaufacturesSN-26 - Storage TankSociety of Organic Chemical relation Distribut Chemical relation Amufactures Industry factor 287-AR-7S.37 Ibs/lb throughputImaufacturesSN-28 - Storage TankSociety of Organic Chemical relation Manufactures Industry factor 287-AR-71.55E-4 Ibs/lb throughputImaufacturesVOCSociety of Organic CASI Factor 287-AR-71.55E-4 Ibs/lb throughputImaufacturesVOCSociety of Organic CASI Factor3.7E-2 Ibs/lb throughputImaufacturesSource SN-29 - Recurstic/FVVI-CASI Factor Ibs/lbImaufacturesMethanolNCASI Factor CASI Factor0.1 Ibs/lb CaOImaufacturesImaunofactures Manufactures0.1 Ibs/lb CASI Factor0.1 Ibs/lb CASIImaufacturesSource SN-30-A, SN-30E, SN-30E, SN-30E, SN-30E - Lime CaO0.1 Ibs/lb CASI Factor0.1 Ibs/lb CASIImaufactures<			unougnput			
Industry factor 287-AR-7Image: second seco						
287 - A8 - 7 Organic Chemical Manufactures Industry factor 287 - A8 - 7N2 PadSN-25 - Storage Tank. Phosphoric AcidSociety of Organic Chemical Manufactures Industry factor 287 - A8 - 71.33E-4 Ibs/lb throughputSN-26 - Storage Tank. Chemical Manufactures Industry factor 287 - A8 - 71.33E-4 Ibs/lb throughputSN-26 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287 - A8 - 71.33E-4 Ibs/lb throughputSN-26 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287 - A8 - 71.55E-4 Ibs/lb throughputSN-26 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287 - A8 - 78.37 lbs/lb throughputSN-28 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287 - A8 - 71.65E-4 lbs/lb throughputVOCSociety of Organic CASI Factor 287 - A8 - 71.65E-4 lbs/lb throughput1.65E-4 lbs/lb lbVOCSociety of Organic (ASI Factor 287 - A8 - 71.65E-4 lbs/lb1.65E-4 lbs/lbVOCSociety of Organic (ASI Factor 287 - A8 - 71.65E-4 lbs/lb1.65E-4 lbs/lbVOCSociety of Organic (ASI Factor 0 - 1.15/lb1.65E-4 lbs/lb1.65E-4 lbs/lbVOCSociety of Organic (ASI Factor 0 - 1.15/lb1.65E-4 lbs/lb1.65E-4 lbs/lbVOCSociety of Organic (ASI Factor CASI Factor1.65E-4 lbs/lb1.65E-4 lbVOC<						
Organic Chemical Manufactures Industry factor 287-AR-7throughputSN-25 - Storage Tank, Phosphoric AcidSociety of Organic Chemical Manufactures Industry factor 						
$ \begin{array}{ c c c c c } \hline Chemical \\ Manufactures \\ Industry factor \\ 287-AR-7 \\ \hline Phosphoric Acid \\ \hline Organic \\ Organic \\ Organic \\ Throughput \\ Manufactures \\ Industry factor \\ 287-AR-7 \\ \hline SN-26 - Storage Tank \\ \hline Suffuric Acid \\ \hline Organic \\ Chemical \\ Manufactures \\ Industry factor \\ 287-AR-7 \\ \hline SN-26 - Storage Tank \\ \hline Suffuric Acid \\ \hline Organic \\ Chemical \\ Manufactures \\ Industry factor \\ 287-AR-7 \\ \hline \hline \\ SN-28 - Storage Tank \\ \hline \\ \hline \\ SN-28 - Storage Tank \\ \hline \\ $	Methanol	Society of	4.2E-4 lbs/lb	N ₂ Pad		
Manufactures Industry factor 287-AR-7			throughput			
Industry factor 287-AR-7ISN-25 - Storage Tank, Phosphoric AcidSociety of Organic Chemical Manufactures Industry factor 287-AR-71.33E-4 Ibs/Ib throughputSN-26 - Storage TankIndustry factor 287-AR-7ISulfuric AcidSociety of Organic Chemical Manufactures Industry factor 287-AR-78.37 Ibs/Ib throughputSN-26 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287-AR-78.37 Ibs/Ib throughputSN-28 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/Ib throughputVOCSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/Ib throughputVOCNCASI Factor Ibs/Ib throughput3.7E-2 Ibs/Ib throughputSource SN-29 - Recausticizer Vents3.7E-2 Ibs/Ib throughputVOCNCASI Factor CaO3.7E-2 Ibs/Ib Ibs/Ib CaOArtenadNCASI Factor CaO1.158/AD Ibs/Ib CaOArtenadNCASI Factor CaO0.1MethanolNCASI Factor CaO0.1Source SN-30A, SN-30B, SN-30C, SN-30E and SN-30E - Lime SilosPM10Stack test Ca (A Ib/In1.2SOurce SN-30A, SN-30B, SN-30C, SN-30E, SN-30E - Lime SilosPM10Stack test Ca (A Ib/In1.2Source SN-30A, SN-30B, SN-30C, SN-30E, SN-30E - Lime SilosPM10Stack test Ca (A Ib/In1.2SOURCE SN-30A, SN-30B, SN-30C, SN-30E, SN-30E - Lime SilosP						
$ \begin{array}{ c c c c c } \hline \hline \\ \hline \\ SN-25 - Storage Tank, \\ \hline \\ \hline \\ Phosphoric Acid \\ Organic \\ Chemical \\ Manufactures \\ Industry factor \\ 287 - AR - 7 \\ \hline \\ \hline \\ SN-26 - Storage Tank \\ \hline \\ Sulfuric Acid \\ \hline \\ Organic \\ Chemical \\ Manufactures \\ Industry factor \\ 287 - AR - 7 \\ \hline \\ \hline \\ \hline \\ SN-28 - Storage Tank \\ \hline \\ \hline \\ \hline \\ SN-28 - Storage Tank \\ \hline \\ $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
Phosphoric AcidSociety of Organic Chemical Manufactures Industry factor 287-AR-71.33E.4 Ibs/lb throughputImage Ibs/lb throughputImage Image Image Image Image Image Image Image Image ImageImage Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image1.33E.4 Ibs/lb throughput Image Ima		287-AR-7				
Organic Chemical Manufactures Industry factor 287-AR-7Ibs/lb throughputSN-26 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287-AR-7S.37 Ibs/lb throughputSulfuric AcidSociety of Organic Chemical Manufactures Industry factor 287-AR-7S.37 Ibs/lb throughputSN-28 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287-AR-7I.65E-4 Ibs/lb throughputVOCSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/lb throughputSource SN-29 - Recausticizer VentsIbs/lb Ibs/to CaOI.65E-4 Ibs/no CaOSource SN-29 - Recausticizer VentsIbs/ton CaOAcetaldehydeNCASI Factor 2003.7E-2 Ibs/ton CaOAcetaldehydeNCASI Factor CaO2.1E-2 Ibs/ton CaOAmmoniaNCASI Factor CaO2.1B-2 Ibs/ton CaOMethanolNCASI Factor CaO2.1B-2 Ibs/ton CaOSources SN-30A, SN-30B, SN-30C, SN-30D, STack test4.8 Ib/hrSurces SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPMi0Stack test 2.4 Ib/hrCOStack test2.4 Ib/hrSources SN-30A, SN-30B, SN-30C, SN-30D, STack test1.2 Ib/hrCOStack test3.6 Ib/hrSN-30AStack test4.8 Ib/hrSN-30AStack test4.6 Ib/hrSN-30AStack test5.6 Ib/hrSN-30AStack test5.6 Ib/hrSN-30AStack test		Quality of	1.225.4	1	1	
Chemical Manufactures Industry factor 287-AR-7throughputSN-26 - Storage TankSociety of Organic Chemical Manufactures Industry factor 287-AR-78.37 lbs/lb throughputSN-28 - Storage TankSociety of Organic Industry factor 287-AR-78.37 lbs/lb throughputSN-28 - Storage TankSociety of Organic Industry factor 287-AR-71.65E-4 lbs/lb throughputVOCSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 lbs/lb throughputVOCSociety of Organic Industry factor 287-AR-71.65E-4 lbs/lb throughputSource SN-29 - Recausticizer VentsIbs/lb throughputVOCNCASI Factor 287-AR-73.7E-2 lbs/lon CaOAcetaldehydeNCASI Factor CaO3.7E-2 lbs/lon CaOAmmoniaNCASI Factor CaO0.1 lbs/lon CaOMethanolNCASI Factor CaO0.1 lbs/lon CaOSources SN-30A, SN-30E, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM10Stack test4.8 lb/hrS02Stack test4.8 lb/hrS02Stack test4.6 lb/hrCOStack test4.6 lb/hrNOxStack test5.4 lb/hr	Phosphoric Acid					
Manufactures Industry factor 287-AR-7 No SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 287-AR-7 8.37 lbs/lb throughput SN-28 - Storage Tank Society of Organic Chemical Manufactures Industry factor 287-AR-7 1.65E-4 Ibs/lb VOC Society of Organic Chemical Manufactures Industry factor 287-AR-7 1.65E-4 Ibs/lb Source SN-29 - Recausticizer Vents Industry factor 287-AR-7 Source SN-29 - Recausticizer Vents Industry factor 287-AR-7 VOC NCASI Factor 3.7E-2 Ibs/ton CaO Acetaldehyde NCASI Factor 2.1E-2 Ibs/ton CaO Ammonia NCASI Factor 0.4 lbs/ton CaO Sources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime Silos PM10 Stack test 4.8 lb/hr S0_2 Stack test 4.8 lb/hr VOC Stack test 4.6 lb/hr NO _X Stack test 6.54 lb/hr						
Industry factor 287-AR-7Image: Construct on the second s			unougnput			
$ \begin{array}{ c c c c } \hline 287-AR-7 & & & & \\ \hline SN-26 - Storage Tank \\ \hline Sulfuric Acid & Society of Organic Chemical Manufactures Industry factor 287-AR-7 & & & & \\ \hline SN-28 - Storage Tank \\ \hline \hline VOC & Society of Organic Chemical Manufactures Industry factor 287-AR-7 & & & & \\ \hline VOC & Society of Organic Chemical Manufactures Industry factor 287-AR-7 & & & \\ \hline SN-28 - Storage Tank \\ \hline VOC & Society of Organic Chemical Hard Hard Hard Hard Hard Hard Hard Hard$						
SN-26 - Storage Tank Society of Organic Chemical Manufactures Industry factor 287-AR-7 8.37 lbs/lb throughput SN-28 - Storage Tank VOC Society of Organic Ibs/lb throughput 1.65E-4 VOC Society of Chemical Manufactures Industry factor 287-AR-7 1.65E-4 1.65E-4 Source SN-29 - Recausticizer Vents throughput 1.65E-4 1.65E-4 VOC NCASI Factor 287-AR-7 3.7E-2 1.65E-4 Source SN-29 - Recausticizer Vents 1.65E-4 1.65E-4 VOC NCASI Factor 287-AR-7 3.7E-2 Ibs/ton CaO 1.65E-4 1.65E-4 Acetaldehyde NCASI Factor 3.7E-2 Ibs/ton CaO 1.65E-4 1.65E-4 Manufactures 1.65E-4 1.65E-4 NCASI Factor 2.1E-2 1.65C Manufactures 0.4 lbs/ton CaO 1.65E-4 Armonia NCASI Factor 0.1 lbs/ton CaO Methanol NCASI Factor 0.1 lbs/ton CaO Sources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime Silos PM ₁₀ Stack test 2.4 lb/hr 2.6 VOC Stack test 2.4 lb/hr <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
Sulfuric Acid Society of Organic Chemical Manufactures Industry factor 287-AR-7 8.37 lbs/lb throughput SN-28 - Storage Tank VOC Society of Organic Chemical Manufactures Industry factor 287-AR-7 1.65E-4 lbs/lb throughput Society of Organic Chemical Manufactures Industry factor 287-AR-7 1.65E-4 lbs/lb throughput Society of Organic Chemical Manufactures Industry factor 287-AR-7 1.65E-4 lbs/lb throughput Source SN-29 - Recausticizer Vents throughput VOC NCASI Factor 287-AR-7 3.7E-2 lbs/ton CaO Acetaldehyde NCASI Factor CaO 3.7E-2 lbs/ton CaO Ammonia NCASI Factor CaO 0.4 lbs/ton CaO Methanol NCASI Factor CaO 0.1 lbs/ton CaO Sources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime Silos PM ₁₀ Stack test 2.4 lb/hr VOC Stack test 2.4 lb/hr VOC Stack test 2.4 lb/hr Mau 2.16 lb/hr 1 Mau Stack test 2.4 lb/hr	SN-26 - Storage Tank	207 1110 7	I	I		
Organic Chemical Manufactures Industry factor 287-AR-7throughputSN-28 - Storage Tank		Society of	8.37 lbs/lb			
Chemical Manufactures Industry factor 287-AR-7Industry factor 287-AR-7SN-28 - Storage TankVOCSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/Ib throughputSource SN-29 - Recausticizer VentsVOCNCASI Factor 287-AR-73.7E-2 Ibs/ton CaOSource SN-29 - Recausticizer VentsVOCNCASI Factor 2.1E-2 Ibs/ton CaO3.7E-2 Ibs/ton CaOAcetaldehydeNCASI Factor CaO2.1E-2 Ibs/ton CaOAmmoniaNCASI Factor CaO0.1 Ibs/ton CaOMethanolNCASI Factor CaO0.1 Ibs/ton CaOSources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM10 Stack test4.8 Ib/hrS02 COStack test2.4 Ib/hrNO2Stack test5.4.6 Ib/hrNO2 XStack test5.4.6 Ib/hrNO2 XStack test5.4.6 Ib/hrNO2 XStack test5.4.6 Ib/hrNO2 XStack test5.4.6 Ib/hrNO2 XStack test5.4.6 Ib/hrNO3 XStack test5.4.6 Ib/hrNO4 XStack test5.4.6 Ib/hrNO5 XStack test5.4.6 Ib/hrNO4 XStack test5.4.6 Ib/hrNO5 XStack test5.4.6 Ib/hrNO4 XStack test5.4.6 Ib/hrNO5 XStack test5.4.6 Ib/hrNO5 XStack test5.4.6 Ib/hrNO5 XStack test5.4.6 Ib/hr <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Industry factor 287-AR-7Industry factor 287-AR-7SN-28 - Storage TankVOCSociety of Organic (Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/lb throughputSource SN-29 - Recausticizer VentsVOCNCASI Factor 287-AR-7VOCNCASI Factor 1bs/ton CaOAcetaldehydeNCASI Factor 1bs/ton CaOAcetaldehydeNCASI Factor 2.1E-2 1bs/ton CaOAmmoniaNCASI Factor 2.1E-2 1bs/ton CaOMethanolNCASI Factor 2.4 Ibs/ton CaOMethanolNCASI Factor 2.4 Ibs/ton CaOSource SN-30A, SN-30B, SN-30D, SN-30D, SN-30E and SN-30E - Lime SilosPM10Stack test 2.4 Ib/hrSO2Stack test 2.4 Ib/hrCOStack test 2.4 Ib/hrCOStack test 2.4 Ib/hrSN2Stack test 2.4 Ib/hrCOStack test 4.6 Ib/hrCOStack test 4.6 Ib/hrCOStack test 4.6 Ib/hrNOxStack test 4.6 Ib/hrCOStack test 4.6 Ib/hrCOStack test 4.6 Ib/hrCOStack test 4.6 Ib/hrNOxStack test 4.6 Ib/hrCOStack tes		Chemical				
287-AR-7SN-28 - Storage TankVOCSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/lb throughputSource SN-29 - Recausticizer VentsVOCNCASI Factor 287-AR-7Source SN-29 - Recausticizer VentsVOCNCASI Factor 1bs/ton CaOAcetaldehydeNCASI Factor 1bs/ton CaOAntmoniaNCASI Factor CaOAttice SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM10Stack testStack test2.4 lb/hrSO2Stack testQ2Stack testQ2Stack testQ2Stack testQ2Stack testQ2Stack testQ3Stack testQ4Stack testQ2Stack testQ2Stack testQ3Stack testQ4Stack testQ4Stack testQ5Stack testQ4Stack testQ5Stack testQ4Stack testQ5Stack testQ4Stack testQ5Stack testQ5Stack testQ6Stack testQ6Stack testQ6Stack testQ7Stack testQ8Stack testQ9Stack testQ9Stack testQ9Stack testQ9Stack testQ9Stack testQ9Stack testQ9Stack test <td< td=""><td></td><td>Manufactures</td><td></td><td></td><td></td><td></td></td<>		Manufactures				
SN-28 - Storage Tank Society of Organic 1.65E-4 Ibs/lb Ibs/lb VOC Society of Organic 1.65E-4 Ibs/lb Ibs/lb Manufactures Industry factor 287-AR-7 Infoustry factor 287-AR-7 Source SN-29 - Recausticizer Vents VOC NCASI Factor 3.7E-2 Ibs/ton CaO Acetaldehyde NCASI Factor 2.1E-2 Ibs/ton CaO Ibs/ton CaO Ammonia NCASI Factor 0.4 Ibs/ton CaO Ibs/ton CaO Methanol NCASI Factor 0.1 Ibs/ton CaO Ibs/ton CaO Sources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime Silos PM ₁₀ Stack test 4.8 Ib/hr SO ₂ Stack test 1.2.6 Ib/hr Ibs/ton CO Istack test 54.6 Ib/hr NO _X Stack test 0.4.1 Ib/hr Ibs/ton CaO Ibs/ton CaO Ibs/ton CaO						
VOCSociety of Organic Chemical Manufactures Industry factor 287-AR-71.65E-4 Ibs/lb throughputSource SN-29 - Recausticizer VentsVOCNCASI Factor 1bs/ton CaOAcetaldehydeNCASI Factor 2.1E-2 1bs/ton CaOAcetaldehydeNCASI Factor 2.1E-2 1bs/ton CaOAmmoniaNCASI Factor 0.4 Ibs/ton CaOMethanol0.4 Ibs/ton CaOSources SN-30A, SN-30E, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM10Stack testStack test2.4 Ib/hrSO2Stack testStack test1.6 Ib/hrCOStack testStack test2.4 Ib/hrNOxStack testStack test0.36 Ib/hrCOStack testStack test0.36 Ib/hrCOStack testStack test0.36 Ib/hrStack test0.36 Ib/hr		287-AR-7				
Organic Chemical Manufactures Industry factor 287-AR-7Ibs/lb throughputIbs/lb throughputSource SN-29 - Recaustic/ver VertsVOCNCASI Factor 1083.7E-2 Ibs/ton CaOImage: Carbon of the sector of the s	SN-28 - Storage Tank					
Organic Chemical Manufactures Industry factor 287-AR-7Ibs/lb throughputIbs/lb throughputSource SN-29 - Recaustic/ver VertsVOCNCASI Factor 1083.7E-2 Ibs/ton CaOImage: Carbon of the sector of the s						
Chemical Manufactures Industry factor 287-AR-7throughputhroughputSource SN-29 - Recaustic 287-AR-73.7E-2 1bs/ton CaO	VOC					
$ \begin{array}{ c c c c c } Industry factor \\ 287-AR-7 \\ \hline \\ Source SN-29 - Recaustic Vents \\ \hline \\ VOC & NCASI Factor \\ - & 0 \\ \hline \\ NCASI Fa$			throughput			
$\begin{array}{ c c c c } \hline 287-AR-7 & \hline & \hline & \hline & \hline & \hline \\ \hline Source SN-29 - Recaustic Vents \\ \hline VOC & NCASI Factor & 3.7E-2 & & \hline & \hline \\ lbs/ton CaO & & \hline & \hline \\ hotor CaO & & \hline & \hline \\ Acetaldehyde & NCASI Factor & 2.1E-2 & & \hline \\ lbs/ton CaO & & \hline & \hline \\ hotor CaO & & \hline & \hline \\ Anmonia & NCASI Factor & 0.4 lbs/ton & & \hline \\ CaO & & \hline & \hline \\ NCASI Factor & 0.1 lbs/ton & & \hline \\ CaO & & \hline & \hline \\ Sources SN-30A, SN-30B, SN-30C, SN-30D & SN-30E - Lime Silos \\ \hline PM_{10} & Stack test & 4.8 lb/hr & \hline \\ SO_2 & Stack test & 2.4 lb/hr & \hline \\ NOC & Stack test & 12.6 lb/hr & \hline \\ NO_X & Stack test & 54.6 lb/hr & \hline \\ NO_X & Stack test & 0.36 lb/hr & \hline \\ \end{array}$						
Source SN-29 - Recausticizer VentsVOCNCASI Factor $3.7E-2$ lbs/ton CaOAcetaldehydeNCASI Factor $2.1E-2$ lbs/ton CaOAmmoniaNCASI Factor 0.4 lbs/ton CaOMethanolNCASI Factor 0.1 lbs/ton CaOMethanolNCASI Factor 0.1 lbs/ton CaOSources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM10Stack test 4.8 lb/hrSO2Stack test 2.4 lb/hrVOCStack test 12.6 lb/hrCOStack test 54.6 lb/hrNO _X Stack test 0.36 lb/hr		Industry factor				
$ \begin{array}{ c c c c } VOC & NCASI Factor & 3.7E-2 & bs/ton CaO & \\ Acetaldehyde & NCASI Factor & 2.1E-2 & bs/ton CaO & \\ Ammonia & NCASI Factor & 0.4 bs/ton & CaO & \\ Methanol & NCASI Factor & 0.1 bs/ton & CaO & \\ NCASI Factor & 0.1 bs/ton & CaO & \\ CaO & \\ VOC & Stack test & 4.8 lb/hr & \\ SO_2 & Stack test & 2.4 lb/hr & \\ VOC & Stack test & 12.6 lb/hr & \\ VOC & Stack test & 12.6 lb/hr & \\ NO_X & Stack test & 65.4 lb/hr & \\ NO_X & Stack test & 0.36 lb/hr & \\ \end{array} $						
$ \begin{array}{ c c c } \hline \begin{tabular}{ c c } \hline \end{tabular} \hline \begin{tabular}{ c c } \hline \end{tabular} \hline \end{tabular} \hline \begin{tabular}{ c c } \hline \end{tabular} \hline tabular$			2.75.0			
AcetaldehydeNCASI Factor2.1E-2 lbs/ton CaOImage: CaOImage: CaOAmmoniaNCASI Factor0.4 lbs/ton CaOImage: CaOImage: CaOMethanolNCASI Factor0.1 lbs/ton CaOImage: CaOImage: CaOSources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosImage: CaOImage: CaOPM10Stack test4.8 lb/hrImage: CaOImage: CaOSO2Stack test2.4 lb/hrImage: CaOImage: CaOVOCStack test12.6 lb/hrImage: CaOImage: CaOVOCStack test54.6 lb/hrImage: CaOImage: CaONOxStack test65.4 lb/hrImage: CaOImage: CaOTRSStack test0.36 lb/hrImage: CaOImage: CaO	VUC	INCASI Factor				
Image: Section of the section of th	Acetaldebyde	NCASI Factor				
AmmoniaNCASI Factor 0.4 lbs/ton CaOImage: CaOMethanolNCASI Factor 0.1 lbs/ton CaOImage: CaOSources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM10Stack test 4.8 lb/hrSO2Stack test 2.4 lb/hrVOCStack test 12.6 lb/hrCOStack test 54.6 lb/hrNOxStack test 65.4 lb/hrNOxStack test 0.36 lb/hr	Acctaldenyde	INCASI Factor				
CaOCaOMethanolNCASI Factor0.1 lbs/ton CaOSources SN-30A, SN-30B, SN-30C, SN-30DSN-30E and SN-30E - Lime SilosPM10Stack test4.8 lb/hrSO2Stack test2.4 lb/hrVOCStack test12.6 lb/hrCOStack test54.6 lb/hrNOxStack test65.4 lb/hrTRSStack test0.36 lb/hr	Ammonia	NCASI Factor				
MethanolNCASI Factor $0.1 \text{ lbs/ton} \\ CaOIbs/ton \\CaOSources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime SilosPM_{10}Stack testPM_{20}Stack testSO_2Stack testStack test2.4 \text{ lb/hr}VOCStack testStack test12.6 \text{ lb/hr}COStack testNO_XStack testStack test65.4 \text{ lb/hr}TRSStack test$	7 minoma					
CaOCaOSources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Line Silos PM_{10} Stack test SO_2 Stack testStack test2.4 lb/hrVOCStack testStack test12.6 lb/hrCOStack testStack test54.6 lb/hrNO_XStack testStack test0.36 lb/hr	Methanol	NCASI Factor			1	
Sources SN-30A, SN-30B, SN-30C, SN-30D, SN-30E and SN-30E - Lime Silos PM_{10} Stack test4.8 lb/hr SO_2 Stack test2.4 lb/hrVOCStack test12.6 lb/hrCOStack test54.6 lb/hrNO_XStack test65.4 lb/hrTRSStack test0.36 lb/hr						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sources SN-30A, SN-30B	, SN-30C, SN-30E		SN-30E - Lime	Silos	
SO2Stack test2.4 lb/hrImage: Constraint of the stack testVOCStack test12.6 lb/hrImage: Constraint of the stack testCOStack test54.6 lb/hrImage: Constraint of the stack testNOXStack test65.4 lb/hrImage: Constraint of the stack testTRSStack test0.36 lb/hrImage: Constraint of the stack test						
CO Stack test 54.6 lb/hr NO _X Stack test 65.4 lb/hr TRS Stack test 0.36 lb/hr		Stack test				
NO _X Stack test 65.4 lb/hr TRS Stack test 0.36 lb/hr	VOC	Stack test	12.6 lb/hr			
TRS Stack test 0.36 lb/hr						
Source SN-36 - Weak Black Liquor Tanks			0.36 lb/hr			
	Source SN-36 - Weak Blac	ck Liquor Tanks				

		Emission			
	Emission	Factor and	Control		
	Factor Source	units	Equipment	Control	
	(AP-42,	(lbs/ton,	Type (if	Equipment	Comments (Emission factor
Constituent	Testing, etc)	lbs/hr, etc)	any)	Efficiency	controlled/uncontrolled, etc)
VOC	Stack test	7.3 lb/hr	uny)	Lineleney	
Methanol	Stack test	6.30 lb/hr			
TRS	Stack test	0.1 lb/hr			
Source SN-37 - Pulp D					
VOC	Stack test	4.7 lb/hr			
Acetaldehyde	Stack test	0.70 lb/hr			
Methanol	Stack test	2.60 lb/hr			
Source SN-38 - No. 2	N				
VOC	NCASI	0.25 lbs/ton			
VUC	INCASI	wood chips			
Source SN-40 - No. 1A	and No. 1R Digeste				
VOC	Estimate	10 lb/hr			Compliance demonstrated by limiting
VOC	Estimate	10 10/11			time between blows
					time between blows
Methanol	Estimate	5.75 lb/hr			Compliance demonstrated by limiting
					time between blows
TRS	Estimate	2.02 lb/hr			Compliance demonstrated by limiting
					time between blows
Source SN-41 - Sludge	e Landfill				
VOC	?				
Methanol	?				
Source SN-42 - No. 2	Decker				
VOC	Stack Test	5.6 lb/hr			
Acetone	Stack Test	7.50 lb/hr			
Methanol	Stack Test	3.30 lb/hr			
Source SN-43 - Tub G	rinder		•	-	
PM ₁₀ /PM	AP-42 Large	0.1			
	diesel engines	lb/MMBtu			
SO ₂	AP-42	2.5			
		lb/MMBtu			
VOC	AP-42	0.09			
		lb/MMBtu			
СО	AP-42	0.85			
		lb/MMBtu			
NO _X	AP-42	3.2			
		lb/MMBtu			
Sources SN-44a, SN-4	4b, SN-44c and SN-4	4d - Paper Mac	hines		
VOC	Mass Balance			Limited by	
				VOC and	
				Methanol	
			1		
				in shower	
				water	
Methanol	Mass Balance				
Methanol	Mass Balance			water	
Methanol	Mass Balance			water Limited by	
Methanol	Mass Balance			water Limited by VOC and	
Methanol	Mass Balance			water Limited by VOC and Methanol	
Methanol Source SN-45 - Oxyge		tem		water Limited by VOC and Methanol in shower	

	Emission Factor Source (AP-42,	Emission Factor and units (lbs/ton,	Control Equipment Type (if	Control Equipment	Comments (Emission factor
Constituent	Testing, etc)	lbs/hr, etc)	any)	Efficiency	controlled/uncontrolled, etc)
СО	Stack Test	16.5 lb/hr			
Methanol	Stack Test	9.11 lb/hr			

Limits for TDF fuel were calculated by multiplying the boiler heat capacity (MMBtu/hr) by 10% and dividing this by the estimated Btu/lb of TDF. This hourly figure was multiplied by 24 hrs and divided by 2,000 lb/ton to give a limit for each Power Boiler in terms of tons/24 hrs.

11. TESTING REQUIREMENTS:

This permit adds additional stack testing of the following sources to assure compliance with Subpart MM.

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
01	PM	5	Every 5 years	§19.702
01	PM ₁₀	201A and 202 or 5 and 202	Every 5 years	§19.702
SN-01	VOC	Method 25A	Every 5 years	§19.702
SN-02	PM/PM ₁₀	5 or 29	Initial test	§63.865
02	O ₂	3, 3A or 3B	Initial test	§63.865
02	PM	5	Every five years	§18.1002
02	PM ₁₀	201A and 202 or 5 and 202	Every five years	§19.702
02	VOC	25A	Every five years	§19.702
02	% Solids in Lime Mud		Once per day	§19.705
03	Sulfur Content of Fuel Oil	Manufacturer Certification or ASTM Sulfur content	Each Shipment	§19.705
03	VOC	25A	Every five years	§19.705
03	PM	5 and 202	Every five years	§18.1002
03	PM ₁₀	201A and 202 or 5 and 202	Every five years	§19.705
03	СО	10B	Every five years	§19.705
03	NO _X	7E	Every five years	§19.705
05	PM	5	Every five years	§18.1002
05	PM ₁₀	201A and 202 or 5 and 202	Every five years	§19.705
05	VOC	25A	Every five years	§19.705
05	HCl	26A	Every five years	§18.1002
06	VOC	25A	Every five years	§19.705
06	PM	5 and 202	Every five years	§19.705
06	PM ₁₀	201A and 202 or 5 and 202	Every five years	§19.705
08	TRS	16	Every five years	§18.1002
08		25A	Every five years	§19.705
08		3A or 3B	Once	§63.865
08	PM	5	Every five years	§19.705
08	PM ₁₀	201A and 202 or 5 and 202	Every five years	§19.705
09	PM	5 or 29	Once	§63.865
09		3A or 3B	Once	§63.865
09		7E	Annually	§19.705
09	% solids in lime mud	Testing	Daily	Ν
14	VOC	25A	Every five years	Y
15	TRS	16	Annual	§19.804

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
15	Ammonia	206	Every five years	§19.703
15	PM	5 or 29	Initial	63.865
15	O ₂	3 or 3A	Initial	63.865
16,17,	Pressure	Pressure transmitter	Yearly	63.453(a)(1)
18	differential		rearry	05.455(a)(1)
16,17, 18	Cl ₂ , ClO ₂	NCASI Special Report Number 91- 07	Every five years	18.1002
16,17, 18	СО	10B	Every five years	§19.703
16,17, 18	VOC	25A	Every five years	§19.703
20	Cl ₂ , ClO ₂	NCASI Special Report Number 91- 07	Every five years	18.1002
21	COD	Water Test	Daily	63.453(j)
21	Horsepower of Aerator units	Observation	Daily	63.453(j)
21	Inlet liquid flow	Flow Meter	Daily	63.453(j)
21	Liquid Temperature	Thermocouple	Daily	63.453(j)
21	BOD ₅ percent reduction	BOD ₅	Quarterly	63.453(j)
22	Methanol	25D	Yearly	§18.1003
22	Acetone	25D	Yearly	§18.1003
30	PM	5	Every five years	§19.702
30	PM/PM ₁₀	201A and 202 or 5 and 202	Every five years	§19.702
30	SO ₂	6C	Every five years	\$19.702
30	VOC	25A	Every five years	§19.702
30	NO _X	7E	Every five years	§19.702
37	VOC	25D	Yearly	§19.702
42	Methanol	NCASI Method DI/MEOH-94-02, Methanol in Process liquids by GC/FID, August 1998, Methods Manual, NCASI, Research Triangle Park, NC	Yearly	§18.1002
42	Acetone		Yearly	§18.1002
44a	VOC	25D on shower water	Yearly	§19.703
44b, 44c, 44d	Methanol	NCASI Method DI/MEOH-94-02, Methanol in Process liquids by GC/FID, August 1998, Methods Manual, NCASI, Research Triangle Park, NC	Yearly	§18.1002
45	VOC	25A	Every 5 years	§19.705
45	СО	10	Every 5 years	§19.705

12. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMs or other monitoring equipment (temperature, pressure differential, etc), frequency of recording and the need for records included in any annual, semiannual or other reports.

SN(s)	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc)	Frequency*	Report (Y/N)**
01	СО	СЕМ	Every 15 minutes; Average once/ hour	N
01	NO _x	CEM,	Every 15 minutes; Average once/ hour	Ν
01	Opacity	СОМ	Six-minute average	Ν
02	TRS	CEM	12-hour Average	Ν
02	СО	CEM	Every 15 minutes; Average once/ hour	Ν
02	Opacity	СОМ	Six-minute average	Ν
02	O ₂	CEM	Every 15 minutes; Average once/ hour	Ν
03	Pressure Drop across Multi-clones	CEM	Once per 8-hr shift	Ν
05	СО	CEM	Every 15 minutes; Average once/ hour	Ν
05	SO ₂	CEM	Every 15 minutes; Average once/ hour	Ν
05	NO _X	CEM	Every 15 minutes; Average once/ hour	Ν
05	O ₂	CEM	Every 15 minutes; Average once/ hour	Ν
05	Temperature	CEM	Continuous	Ν
05	Scrubbing Liquid Flow rate	CEM	Continuous	Ν
05	Pressure Drop of Gas Stream	CEM	Continuous	Ν
06	TRS	CEM	Every 15 minutes; Average once/ hour	Ν
06	СО	CEM	Every 15 minutes; Average once/ hour	Ν
06	NO _x	CEM	Every 15 minutes; Average once/ hour	Ν
06	SO ₂	CEM	Every 15 minutes; Average once/ hour	Ν
06	Opacity	СОМ	Six-minute average	Ν
06	O ₂	CEM	Every 15 minutes; Average once/ hour	Ν
06	Floor Tube Temperature	CEM	Continuous	Ν
08	Pressure Drop of gas stream	CEM	Continuous	Y
08	Pressure of liquid supply	Pressure Gauge	Continuous	Y
08	Scrubbing liquor flow rate	Flow meter	Continuous	Y
09	TRS	CEM	Every 15 minutes; Average once/ hour	Ν
09	СО	CEM	Every 15 minutes; Average once/ hour	Ν
09	Scrubbing liquid flow rate	Flow rate monitor	Recording device	Ν
09	Air pressure drop across scrubber	Pressure drop monitor	Recording device	Ν

SN(s)	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc)	Frequency*	Report (Y/N)**
09	02	CEM	Every 15 minutes; Average once/ hour	Y
09	Temperature of lime kiln	thermocouple	Continuous	Ν
14	Opacity	СОМ	Six-minute average	Ν
14	TRS	CEM	Every 15 minutes; Average once/ hour	Ν
14	02	CEM	Every 15 minutes; Average once/ hour	Y
14	со	CEM	Every 15 minutes; Average once/ hour	Ν
14	NOX	CEM	Every 15 minutes; Average once/ hour	Ν
14	SO2	CEM	Every 15 minutes; Average once/ hour	Y
14	Temperature	Temperature Monitor	Continuous	Ν
15	Scrubber gas pressure drop	Pressure Drop	Continuous	Y
15	Scrubber Liquid Pressure	Pressure Transmitter	Continuous	Y
15	Scrubbing liquid flow rate	Flow rate monitor	Every 8 hours – average the three daily readings	Ν
16	Inlet air flow rate	Amperage on induced Draft Fans	Continuous	Ν
16	Scrubbing liquid flow rate	Flow rate monitor	Continuous	Ν
16	Inlet pH of Scrubber Liquid	pH monitor	Continuous	Ν
17	Inlet air flow rate	Amperage on induced Draft Fans	Continuous	Ν
17	Scrubbing liquid flow rate	Flow rate monitor	Continuous	Ν
17	Inlet pH of Scrubber Liquid	pH monitor	Continuous	Ν
18	Inlet air flow rate	Amperage on induced Draft Fans	Continuous	Ν
18	Scrubbing liquid flow rate	Flow rate monitor	Continuous	Ν
18	Inlet pH of Scrubber Liquid	pH monitor	Continuous	Ν
20	Absorption Water Temperature	Thermocouple	Once per shift	Ν
36	Temperature	Temperature Monitor	Continuous	Ν

* Indicates frequency of recording required for the parameter (Continuously, hourly, daily, etc.)

** Indicates whether the parameter needs to be included in reports.

13. RECORD KEEPING REQUIREMENTS

The following are items (such as throughput, fuel usage, VOC content of coating, etc) that must be tracked and recorded, frequency of recording and whether records are needed to be included in any annual, semiannual or other reports.

SN	Recorded Item	Limit	Frequency	Report (Y/N)**
01	Fuel Usage	Recording of pounds of fuel used	Daily	Ν
01	Fuel Usage	Recording of pounds of fuel used	Monthly Average	Y
01	Fuel Usage	Recording of pounds of fuel used	12-month Rolling Average	Y
01	Hourly NO _X Emission Rate	237 lb/hr	Hourly	Y

SN	Recorded Item	Limit	Frequency	Report (Y/N)**
01	30-day average NOX emission		30-day rolling average	Y
	rates			Y
01	20 day and consisting action		20 days and 11 in a second as	1
01	30-day average CO emission rates		30-day rolling average	
				Y
				1
01	BTU Loading	790 MMBTU/hr	Daily	
				Y
02	TRS Concentration		Twelve-hour Average	
				N
02	02		Twelve-hour Average	
02	02		I werve-nour Average	
				N
				19
02	Period pre-coat filter isolated	75% feed capacity for kiln		
				Ν
02	CO and NOx	240.9 tpy CO	30-day rolling averages	
		291.3 tpy NOX		
				Daily
02	0/ Solids of lives much food	650	20 days welling a second of	, , , , , , , , , , , , , , , , , , ,
02	%Solids of lime mud feed	65%	30-day rolling average	
02	CaO Production	Ton/d	4.1.	V
02 03	Fuel oil usage	2,700,000 gal/12 months	daily Monthly	Y Y
03	Pressure Drop across Multiclones	0.68 in. of H2O	Every eight hours	N
05	Fuel Usage	tpd	daily	Y
05	Fuel Usage	tpd	Month	Y
06	TRS emission	12-hour average	Daily	Ν
06	O2 Concentration	12-hour average	Daily	Ν
06	Hourly HCl Emissions	One-hour average	Hourly	Ν
06	Floor Tube Temperature	3-hour average	Hourly	Y
06	Floor Tube Temperature	monthly average	monthly	Y
06	Black Liquor Solids Rate	Daily feed	Daily	Ν
08	Pressure Drop of gas stream	Instantaneous	Once per shift	N
08	Pressure of liquid supply	Instantaneous	Once per shift	Ν
08	Scrubbing Liquor flow Rate	Flow Meter	Hourly	Y
08	Pressure Drop of gas stream	Pressure Drop	Once Every 15-minutes	Y
08	Scrubbing Liquor flow Rate	Flow Meter	Once Every 15-minutes	Y
09	TRS Concentration	CEMS	12-hour average	Ν
09	O2 Concentration	CEMS	12-hour average	Ν
09	Pressure Drop of gas stream	Instantaneous	Once per shift	N
09	Pressure of liquid supply	Instantaneous	Once per shift	Ν
09	Temperature	1-hour Rolling average	hourly	Ν

Permit #: 0287-AOP-R5 AFIN: 41-00002 Page 17 of 19

SN	Recorded Item	Limit	Frequency	Report (Y/N)**
09	Fuel Oil Usage	Yearly	12-month Rolling average	Y
09	% Solids in lime mud		Once per shift	Y
09	CaO Production Rate	daily	daily	
09	Liquid Flow rate	Daily		Ν
09	Gas pressure drop	CEMs	Daily	Ν
12	Fuel Usage		Daily	Y
12	Fuel Usage		Monthly	Y
12	Hours of Operation		Hour	Y
12	Steam Loading		Hourly	N
14	TRS concentration		12-hour average	N
14	Black Liquor Firing Rate		Time below 1.5 MMlbs/day	N
14	HCl emissions	54.5 lb/hr and 238.71 tpy	Hourly	Y
14	BLS firing rate		Daily	Y
15	Scrubber Gas Pressure drop		Once per shift/ once every 15 minutes	Y
15	Scrubber Liquid Supply Pressure		Once per shift	Y
15	Scrubber Liquid flow Rate	175 gpm	Once per shift/ once every 15 minutes	Y
16	Fan Amperage	65 -105 amperes	Once per shift	Y
16	Scrubber Liquid flow Rate	300 gallons/minute	Once per shift	
17	Scrubber Liquid flow Rate	300 gallons/minute	Once per shift	
17	Fan Amperage	50 -105 amperes	Once per shift	Y
18	Scrubber Liquid flow Rate	350 gallons/minute	Once per shift	
18	350 gallons/minute	30 -80 amperes	Once per shift	Y
20	Scrubber Water Temperature		Once per shift	N
23	Tank Dimensions			N
23	Methanol Throughput	18,850,000 lbs/12 months	Monthly	Y
24	Ammonia Throughput	800,000 lbs/12 months	Monthly	Y
25	Phosphoric Acid throughput	1,500,000 lbs/12 months	Monthly	Y
26	Sulfuric Acid throughput	105,120,000 lbs/12 months	Monthly	Y
28	Formic Acid throughput	5,336,000 lbs/12 months	Monthly	Y
29	Lime processed	420,500 tons/12 months	Monthly	Y
38	Woodchips processed	4,320,000 tons/12 months	Monthly	Y
40	Time sample port is opened	Only when retrieving sample	Daily	N
40	Spacing of digester blows	Minimum of 25 minutes	Daily	N
41	Sludge put in landfill	163,000 tons/12 months	Monthly	Y
43	Fuel Consumption	258,000 gallons/12 months	Monthly	Y
01,03,05	Tire derived fuel	220 tons/24-hours	daily	Y
ALL	Units Operating at less than 25% capacity		Yearly	Y

* Indicate frequency of recording required for the item (Continuously, hourly, daily, etc.)

** Indicates whether the item needs to be included in reports

14. OPACITY

SN	Opacity %	Justification	Compliance Mechanism
----	-----------	---------------	----------------------

SN	Opacity %	Justification	Compliance Mechanism
01	20	Boiler fired with many different fuels	COMS - submittals in accordance with CEM standards
02	20	This is a lime kiln. Particulate emissions are present which are not entirely caused by fuel combustion.	COMS - submittals in accordance with CEM standards
03	40	Power boiler that burns mostly fuel oil and bark.	Parametric monitoring of multi-clone pressure drop
	5	This is the limit when firing only natural gas.	No compliance mechanism needed when burning only natural gas.
05	20	This is a boiler which is fired with many different types of fuel.	Scrubber parameters - no submittal of records required.
06	20	Recovery boiler. The highest allowable under the NSPS is 35%. The boiler is limited to 20% because of Department regulations.	CEMS - submittals in accordance with CEM standards
08	20	Smelt tank with 18 lb/hr of particulate matter emissions.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
09	20	This is a lime kiln which has particulate matter emissions from fuel combustion as well as from proper operation of the kiln.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
11	5	Natural gas fired boiler. Department study has shown that natural gas fired sources should not have any visible emissions when operated properly.	Natural gas as the only fuel used to fire this source.
12	5	Natural gas fired boiler. Department study has shown that natural gas fired sources should not have any visible emissions when operated properly.	Natural gas as the only fuel used to fire this source.

SN	Opacity %	Justification	Compliance Mechanism
14	20	Recovery boiler. The highest allowable under the NSPS is 35%. The boiler is limited to 20% because of Department regulations.	COMS - submittals in accordance with CEM standards
15	20	Smelt tank with PM emissions of 18.7 lb/hr.	Scrubber parameters - Submittal of records as required by 63 Subpart MM
43	5	Tub grinder fired with diesel fuel.	Weekly observations - no submittal of records required

15. DELETED CONDITIONS:

The previous permit contained the following deleted Specific Conditions.

None

16. VOIDED, SUPERSEDED OR SUBSUMED PERMITS

List all active permits voided/superseded/subsumed by issuance of this permit for this facility.

Permit #

0287-AOP-R4

CONCURRENCE BY:

The following supervisor concurs with the permitting decision:

Thomas Rheaume, P.E.