STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0511-AR-9 AFIN: 70-00103

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

AmerCable, Inc. 350 Bailey Road El Dorado, Arkansas 71730

3. PERMIT WRITER:

Ann Sudmeyer

4. PROCESS DESCRIPTION AND NAICS CODE:

NAICS Description: Copper Rolling, Drawing, Extruding, and Alloying

NAICS Code: 33142

5. SUBMITTALS:

5/19/2008

6. REVIEWER'S NOTES:

AmerCable, Inc. is a manufacturer of industrial cable. This facility is located in El Dorado, Union County, Arkansas. This permitting action is necessary to:

- 1. Install an additional 40 ton lead kettle (SN-09);
- 2. Install an additional tuber line (SN-07) with two extruders capable of 1,500 lb/hr each; and
- 3. Install an additional resin line (SN-05) capable of 1,500 lb/hr.

The total annual permitted emission rate limit increases associated with this modification include: 0.3 tons per year (tpy) PM/PM₁₀, 3.0 tpy VOC, and 0.3 tpy lead.

Permit #: 0511-AR-9 AFIN: 70-00103 Page 2 of 13

> The facility requested a daily limit of 99,000 pounds of acetophenone-producing thermoset compounds instead of being limited to using only 4 lines at SN-07. Extensive modeling was conducted to find the amount that would pass the PAIL.

7. **COMPLIANCE STATUS:**

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

An inspection conducted on April 17, 2007 showed the facility to be out of compliance for exceeding the Chemlok ethyl benzene and xylene content limits. These limits were increased with the last modification.

8. **PSD APPLICABILITY:**

a. Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N

N

b. Is the facility categorized as a major source for PSD? Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list?

If yes, explain why this permit modification not PSD?

N/A

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
	N/A	

10. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

Permit #: 0511-AR-9 AFIN: 70-00103 Page 3 of 13

11. MODELING:

Criteria Pollutants

Examination of the source type, location, plot plan, land use, emission parameters, and other available information indicate that modeling is not warranted at this time. All criteria pollutants are less than 100 tpy.

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (μg/m³)	Averaging Time	Highest Concentration (µg/m³)	% of NAAQS
Lead	0.6	1.5	Quarterly	1.4 ^a	93.3%

a. Monthly average used in lieu of quarterly average.

Non-Criteria Pollutants:

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m ³)	PAER (lb/hr) = 0.11 × TLV	Proposed lb/hr	Pass?
Acetone	1187.11	130.58	15.5	Y
Acetophenone	49.14	5.40	176.4	N
Di(2- ethylhexyl)phthalate	5	0.55	0.94	N
Ethyl Benzene	434.19	47.76	0.24	Y
Ethylene Glycol	100	11	2.63	Y
Formaldehyde	0.3684	0.04	0.05	N
Methanol	262.08	28.82	3.0	Y
Methylene Chloride	173.68	19.10	5.5	Y
Methyl Isobutyl Ketone	204.82	22.53	5.9	Y
Toluene	188.40	20.72	9.4	Y
Xylene	434.19	47.76	0.86	Y

Permit #: 0511-AR-9 AFIN: 70-00103 Page 4 of 13

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
Acetophenone	491.4	459.4 ^{1,2}	Y
Di(2-ethylhexyl)phthalate	50	15.6	Y
Formaldehdye	3.6	0.05	Y

- 1. This is the only pollutant that was modeled with AERMOD. All other non-criteria pollutants did not increase the lb/hr emission rates with this modification.
- 2. Numerous scenarios were modeled. This concentration is assuming that the Tuber lines emit at capacity for 11 hours (the worst case of the scenarios modeled). The 99,000 lb/day limit was determined based on this worst case scenario. Any adjustment to the daily limit will have to be evaluated against the PAIL.

Other Modeling: N/A

Odor: N/A

Odor modeling for sources emitting styrene.

Pollutant Threshold value 1-hour average		Modeled Concentration (μg/m³)	Pass?
Styrene	1361 μg/m ³	N/A	N/A

H₂S Modeling: N/A

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details.

Is the facility exempt from the H ₂ S Standards	N/A
If exempt, explain:	

Permit #: 0511-AR-9 AFIN: 70-00103 Page 5 of 13

Pollutant	Threshold value	Modeled Concentration (ppb)	Pass?
	20 parts per million (5-minute average*)	N/A	N/A
H ₂ S	80 parts per billion (8-hour average) residential area	N/A	N/A
	100 parts per billion (8-hour average) nonresidential area	N/A	N/A

^{*}To determine the 5-minute average use the following equation

$$Cp = Cm (t_m/t_p)^{0.2}$$
 where

Cp = 5-minute average concentration Cm = 1-hour average concentration

 $t_m = 60 \text{ minutes}$

 $t_p = 5$ minutes

12. **CALCULATIONS:**

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipme nt	Control Equipment Efficiency	Comments
SN-01	AP-42, Natural	PM/PM_{10} : 7.6 lb/MMft ³	N/A	N/A	6.5 MMBTU/hr
	Gas	SO ₂ : 0.6 lb/MMft ³			
	Combustion	VOC: 5.5 lb/MMft ³			
	Factors	CO: 84 lb/MMft ³			
		NO _X : 100 lb/MMft ³			
SN-02	AP-42, Natural	PM/PM_{10} : 7.6 lb/MMft ³	N/A	N/A	6.5 MMBTU/hr
	Gas	SO_2 : 0.6 lb/MMft ³			
	Combustion	VOC: 5.5 lb/MMft ³			
	Factors	CO: 84 lb/MMft ³			
		NO_X : 100 lb/MMft ³			
SN-03	AP-42, Natural	PM/PM_{10} : 7.6 lb/MMft ³	N/A	N/A	4.2 MMBTU/hr
}	Gas	SO_2 : 0.6 lb/MMft ³			
	Combustion	VOC: 5.5 lb/MMft ³			
	Factors	CO: 84 lb/MMft ³			
		NO _X : 100 lb/MMft ³			

Permit #: 0511-AR-9 AFIN: 70-00103 Page 6 of 13

	P		-	**	
SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipme nt	Control Equipment Efficiency	Comments
SN-04	AP-42, Natural Gas Combustion Factors	PM/PM ₁₀ : 7.6 lb/MMft ³ SO ₂ : 0.6 lb/MMft ³ VOC: 5.5 lb/MMft ³ CO: 84 lb/MMft ³ NO _X : 100 lb/MMft ³	N/A	N/A	4.2 MMBTU/hr
SN-05	Thermoplastic extrusion factor from similar facility	0.191 lb VOC/ton	N/A	N/A	Hourly emission rates based on 1800 lb compound/hr. Annual emission rates based on 3,000,000 lb/yr.
SN-06	Material Balance, MSDS	VOC: Chemlok 6.93 lb/gal Toluene Extender 7.18 lb/gal HAPs: Ethyl Benzene 1.54 lb/gal Toluene 7.18 lb/gal Xylene 5.39 lb/gal	N/A	N/A	Annual emission rates based on 600 gal/yr Chemlock and 2220 gal/yr toluene extender. Hourly emission rates based on 0.1 gal/hr Chemlock and 0.5 gal/hr toluene extender.
SN-07	MSDS, Rubber Tire Manufacturing Industry	1.0 wt% acetophenone (from the decomposition of cumene peroxide) 67% of acetophenone emitted based on testing 0.002 lb VOC/25.3 lb Adhesive (DOP): 8.2 lb/gal VOC 8.2 lb/gal di(2-ethylhexyl)phthalate	N/A	N/A	Hourly emission rates based on 24,350 lb/hr of acetophenone-producing compounds. Total maximum extrusion rate of 24,350 lb compound/hr. Hourly emission rate based on 0.94 lb/hr

Permit #: 0511-AR-9 AFIN: 70-00103 Page 7 of 13

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipme nt	Control Equipment Efficiency	Comments
SN-08	Material Balance, MSDS	VOC M-1055: 7.5 lb/gal Lacquer (Telecom Cable): 25 wt% Varsol: 6.34 lb/gal Ink/Extender: 9.84 lb/gal HAPs Methylene Chloride Solvent: Methylene Chloride 11.0 lb/gal M-1055: MIBK 3.75 lb/gal Lacquer (Telecom Cable): Methanol 20 wt% Toluene 5 wt% Varsol: Ethyl benzene 0.04 lb/gal Xylene 0.32 lb/gal Acetone Acetone: 6.7 lb/gal Lacquer (Telecom Cable): 25 wt% Ink/Extender:	N/A	N/A	Adhesive (DOP). Annual emission rates based on 9.9 tpy of acetophenone emissions and 30.0 MM lb/yr of total thermoset compounds. Annual emission rate based on 360 gal/yr Adhesive (DOP). Hourly emission rates based on: 0.5 gal/hr Methylene Chloride, 0.5 gal/hr Acetone, 15 lb/hr Lacquer (Telecom Cable), 1 gal/hr Varsol, and 1.0 gal/hr ink/extender. Annual emission rates based on: 360 gal/yr Methylene Chloride, 360 gal/yr Methylene Chloride, 360 gal/yr Acetone, 60000 lb/yr Lacquer (Telecom

Permit #: 0511-AR-9 AFIN: 70-00103 Page 8 of 13

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipme nt	Control Equipment Efficiency	Comments
		Acetone 4.02 lb/gal MIBK 3.75 lb/gal Toluene 4.97 lb/gal			Cable), 2000 gal/yr Varsol, and 1,300 gal/yr ink/extender.
SN-09	MSDS	Quickkote: 15 wt% VOC	Baghouse	97%	Hourly VOC emission rate based on 11.6666 lb/hr Quickkote. Hourly lead emission rate based on a worst case of 2000 hr/yr. Annual emission rates based on 58333.33 lb/yr Quickkote and 35,000 lb/yr lead dust produced.
SN-10	Material Balance, MSDS	Tape: VOC 4% by weight Formaldehyde 0.0061% by weight Release Agent: VOC 18% by weight Ethylene Glycol 3.5% by weight Formaldehyde 0.04% by weight	N/A	N/A	Hourly emission rates based on 250 lb/hr tape and 75 lb/hr release agent. Annual emission rates based 42,000 lb/yr tape and 12,000 lb/yr release agent.
SN-11	AP-42, Natural Gas Combustion Factors	PM/PM ₁₀ : 7.6 lb/MMft ³ SO ₂ : 0.6 lb/MMft ³ VOC: 5.5 lb/MMft ³ CO: 84 lb/MMft ³ NO _X : 100 lb/MMft ³	N/A	N/A	4.2 MMBTU/hr
SN-12	Rubber Tire Manufacturing Industry	Thermoset compounds: 0.002 lb VOC/25.3 lb	N/A	N/A	Hourly emission rates based on 1,200 lb/hr each

Permit #: 0511-AR-9 AFIN: 70-00103 Page 9 of 13

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipme nt	Control Equipment Efficiency	Comments
		Thermoplastic compounds: 0.191 lb VOC/ton 1.0 wt% acetophenone (from the decomposition of cumene peroxide) 67% of acetophenone emitted based on testing			of thermoset, acetophenone producing compounds, and thermoplastic compounds. Annual emission rates based on 8760 hr/yr. Cap of 9.9 tpy acetophenone (VOC).
SN-13	AP-42, Natural Gas Combustion Factors	PM/PM ₁₀ : 7.6 lb/MMft ³ SO ₂ : 0.6 lb/MMft ³ VOC: 5.5 lb/MMft ³ CO: 84 lb/MMft ³ NO _X : 100 lb/MMft ³	N/A	N/A	4.2 MMBTU/hr
SN-14	Rubber Tire Manufacturing Industry	Thermoset compounds: 0.002 lb VOC/25.3 lb Thermoplastic compounds and resin line emissions: 0.191 lb VOC/ton 1.0 wt% acetophenone (from the decomposition of cumene peroxide) 67% of acetophenone emitted based on testing	N/A	N/A	Hourly emission rates based on 750 lb/hr of thermoset/aceto phenone producing compounds or thermoplastic compounds. Annual emission rates based on 8760 hr/yr. Cap of 9.9 tpy acetophenone (VOC).

Permit #: 0511-AR-9 AFIN: 70-00103 Page 10 of 13

13. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
N/A				

14. MONITORING OR CEMS

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
N/A				

15. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
SN-05	Thermoplastics usage	3,000,000 lb/yr	Monthly	N
SN-06 and SN- 08	VOC Emissions	34.2 tons/year	Monthly	N
CNI OC	MSDS (or equivalent) for	Chemlok: 6.93 lb/gal Toluene Extender: 7.18	A - NI - 1 - 1	N
SN-06	VOC Content	lb/gal Chemlok: Ethyl Benzene 1.54	As Needed	N
	MSDS (or equivalent) for	lb/gal Xylene 5.39 lb/gal		
SN-06	Pollutant Content	Toluene Extender: Toluene 7.18 lb/gal	As Needed	N

Permit #: 0511-AR-9 AFIN: 70-00103 Page 11 of 13

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
	Thermoset			
CN 1.07	Compound	20,000,000	3.6 (1.1	N .T
SN-07	Usage	30,000,000 pounds/year	Monthly	N
SN-07, SN-12,	Acetophenone	0.04	N.C41-1	N T
and SN-14	Emissions	9.9 tpy	Monthly	N
CNI 07	Adhesive	260 11 /	Manthle	N.T.
SN-07	(DOP) Usage	360 gallons/year	Monthly	N
SN-07, SN-12,	MSDS (or	1.0 wt% acetophenone (from the decomposition		
and SN-14	MSDS (or equivalent)	of cumene peroxide)	As Needed	N
and SIN-14	Acetotphenone-	or cumenc peroxide)	As Necded	11
	producing			
	thermoset	j		
SN-07, SN-12,	compounds			
and SN-14	usage	99,000 lb/day	Daily	N
und Bit it	usuge	Adhesive (DOP): 8.2 lb	Duny	
		VOC/gal		
	MSDS (or	8.2 lb di(2-		
SN-07	equivalent)	ethylhexyl)phthalate/gal	As Needed	N
		Acetone 3,000 gal/yr		
		Lacquer (Telecom		
		Cable) 60,000 lb/yr		
	Material	Ink/Extender 1,300		
SN-08	Throughput	gal/yr	Monthly	N
		M-1055: 7.5 lb/gal		
		Lacquer (Telecom		
		Cable): 25% by weight		
	MSDS (or	Varsol: 6.34 lb/gal		
	equivalent) for	Ink/Extender: 9.84		ı
SN-08	VOC Content	lb/gal	As Needed	N
		Methylene Chloride		
		Solvent:		
		Methylene Chloride		
		11.0 lb/gal		
		M-1055 Solvent:		
	}	MIBK 3.75 lb/gal		
		Lacquer (Telecom Cable):		
		Acetone 25 wt%		
	MSDS (or	Methanol 20 wt%		
	equivalent) for	Toluene 5 wt%		
	Pollutant	Varsol:		
SN-08	Content	Ethyl benzene: 0.04	As Needed	N

Permit #: 0511-AR-9 AFIN: 70-00103 Page 12 of 13

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		lb/gal Xylene 0.32 lb/gal Ink/Extender: Acetone 4.02 lb/gal MIBK 3.75 lb/gal Toluene 4.97 lb/gal		
SN-09	VOC Emissions	4.4 tons/year	Monthly	N
SN-09	MSDS (or equivalent) for VOC Content Material	Quickkote Lead Release Agent: 15% by wt Lead Dust Produced	As Needed	N
SN-09	Throughput	35,000 pounds/year	Monthly	N
SN-09	Baghouse Maintenance Inspection Log	N/A	Weekly	N
SN-10	Material Throughput MSDS (or	Tape: 42,000 pounds/year Release Agent: 12,000 pounds/year Tape: 4% by weight	Monthly	N
SN-10	equivalent) for VOC Content	Release Agent: 18% by weight	As Needed	N
SN-10	MSDS (or equivalent) for Pollutant	Tape: Formaldehyde 0.0061% by weight Release Agent: Ethylene Glycol 3.5% by weight Formaldehdye 0.04% by	As Needed	N
Plantwide	Content HAP Emissions	weight 9.5 tons/year single HAP (except acetophenone) 23.75 tons/year total HAPs (include acetophenone)	As Needed Monthly	N

Permit #: 0511-AR-9 AFIN: 70-00103 Page 13 of 13

16. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
SN-01 through SN- 04, SN-11, SN-13	5%	Department Guidance	Natural Gas Combustion
SN-05	5%	Department Guidance	
SN-09	5%	Department Guidance	Baghouse Operation

17. DELETED CONDITIONS:

Former SC	Justification for removal				
	N/A				

18. GROUP A INSIGNIFICANT ACTIVITIES

Source	Group A			Emissic	ons (tpy)		
Name	1 *	PM/PM ₁₀	SO ₂	VOC	СО	NO _x	HAPs Single Total
None requested with this permit modification.							

19. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
0511-AR-8	

20. CONCURRENCE BY:

The following supervisor concurs with the permitting decision.

Karen Cerney, P.E.

		·	

·			

Fee Calculation for Minor Source

\$/ton factor
Minimum Fee \$
400
Minimum Initial Fee \$
500

Check if Administrative Amendment

Permit Predominant Air Contaminant Net Chargable Emission Increase Permit Modification Fee \$ Initial Permit Fee \$ Annual TPY Chargeable Emissions

	Old Pe	rmit	New Permit
t	·:· .		
		400	
		0	•
		56.5	•

Pollutant (tpy)	Old Permit	New Permit	Change
PM	1.8	2.1	0.3
PM ₁₀	1.8	2.1	0.3
SO_2	0.6	0.6	0
VOC	53.5	56.5	3
CO	11.2	11.2	0
NO_X	13.4	13.4	0
Lead*	0.3	0.6	0.3
Acetophenone*	9,9	9.9	0
Di (2-ethylhexyl) phthalate*	1,48	1.48	0
Ethyl Benzene*	0.86	0.86	0
Ethylene Glycol*	0.21	0.21	0
Formaldehdye*	3 0.01	0.01	0
Methanol*	6	Control of the contro	0
Methylene Chloride*	9.5		0
Methyl Isobutyl Ketone*	9,5		0
Toluene*	9.5	CHEMPSON WAS BUILDING	0
Xylene*	3.78		0
Total HAP	23.75	Additional to the second second second	0
Acetone	20.2	20.2	0
*HAP			0