STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0559-AOP-R5 AFIN: 33-00013

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Unilin Flooring NC, LLC-Columbia Flooring Division State Highway 9 Spur Melbourne, Arkansas 72556

3. PERMIT WRITER:

Patty Campbell, PE

4. PROCESS DESCRIPTION AND NAICS CODE:

NAICS Description: Other Millwork (including Flooring)

NAICS Code: 321918

5. SUBMITTALS:

7/9/2010, 7/21/10, 8/31/10, 09/09/10, 10/01/10, 10/27/10 and 10/28/10

6. REVIEWER'S NOTES:

Unilin Flooring NC, LLC (formerly Century Flooring Company) owns and operates a hardwood flooring mill, Columbia Flooring Division (Columbia Flooring), located at State Highway 9 Spur, Melbourne Izard County, Arkansas 72556. This permitting action is necessary to modify the permit as follows:

- 1. Renew Title V permit;
- 2. Remove SN-04 baghouse from service;
- 3. Update emission factors for reportable HAPs for wood-fired Boilers SN-05/06;
- 4. Require a performance stack test for Deltak Boiler (SN-05) no later than December 31, 2010 and return to an every five-year from the date of the last successful test schedule thereafter, Specific Condition (SC) #10;
- 5. Add NO_X testing requirement for SN-05, SC #10;
- 6. Require continuous, proper use and maintenance of a multiple cyclone fly ash arrestor control device when operating either boiler (SN-05/06), SC #13;

AFIN: 33-00013 Page 2 of 11

- 7. Update content limits and remove TLV tables for coating materials SN-07, 08, 09, 10 and 21 used in the Finishing Department;
- 8. Correct math error for pounds per hour emissions of VOC, formaldehyde and methanol for Kilns (SN-17);
- 9. Update facility-wide opacity observation requirements;
- 10. Add non-resettable hour meter to Diesel Generator (SN-19), SC #29;
- 11. Correct math summary error for PM/PM₁₀ for Wood Waste (SN-20);
- 12. Add Insignificant Activities: five electric UV curing ovens and four wood storage silos, A-13; and
- 13. Add General Provisions #24 through #26.

Total permitted annual emission changes associated with these modifications and renewal are: 1.2 tpy PM, 0.4 tpy PM₁₀, -16.5 tpy VOC, 0.1 tpy NO_X, 0.83 tpy acrolein, 0.88 tpy benzene, -0.07 tpy methanol, 0.01 tpy dioxins/furans, 0.40 tpy styrene, 7.89 tpy combined HAPs and 10.28 tpy acetone.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

Unilin Flooring has an active CAO LIS 10-021 due to: Violation of General Provisions 7 and 21 permittee failed to submit Semi-annual Monitoring Report (SAM) and an Annual Compliance Certification (ACC) due on or before May 1, 2008. After notice was provided to the facility of these reporting deficiencies, Unilin submitted the past due SAM and ACC on October 15, 2008. A fine of \$3,225.00 was imposed.

8. PSD APPLICABILITY:

a. Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N b. Is the facility categorized as a major source for PSD? N Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list? If yes, explain why this permit modification not PSD?

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
	None identif	ied.

10. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

AFIN: 33-00013 Page 3 of 11

11. MODELING:

Criteria Pollutants

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (μg/m³)	Averaging Time	Highest Concentration (µg/m³)	% of NAAQS	
PM ₁₀	30.844 (33.3)	150	24-Hour	48.24*	32.16%	
		80	Annual	1.487	1.86%	
SO ₂	4.65 (4.70)	1300	3-Hour	65.48	5.04%	
		365	24-Hour	29.86	8.18%	
СО	26.72	10,000	8-Hour	46.64	0.47%	
	(26.8)	(26.8)	40,000	1-Hour	188.41	0.47%
NO _X	NO _X 40.19 100		Annual	9.14	9.14%	
Lead (Pb)	0.004087 (0.01)	0.15	Rolling 3-month period over 3 years (not to be exceeded in any 3-month period)	0.002**	1.33%	

^{*}Background not added because concentration less than 50%.

Non-Criteria Pollutants:

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m³)	PAER (lb/hr) = 0.11 × TLV	Proposed lb/hr	Pass?
Acetone	1187.1	130.58	26.35	Yes

^{** 24-}hr

AFIN: 33-00013 Page 4 of 11

Pollutant	TLV (mg/m³)	PAER (lb/hr) = 0.11 × TLV	Proposed lb/hr	Pass?
Acrolein	0.2293	0.0252	0.34056	No
Arsenic	0.0033	0.000363	0.001874	No
Benzene	1.60	0.176	0.35759	No
Chlorine	1.45	0.1595	0.06301	Yes
Dioxins/Furans	0.001	0.00011	0.0001439	No
Formaldehyde	1.50	0.165	3.58902	No
Hydrogen Chloride	2.98	0.328	1.61766	No
Manganese	0.20	0.022	0.13622	No
Methanol	262.1	28.83	140.06	No
Styrene	85.2	9.372	0.161766	Yes

^{2&}lt;sup>nd</sup> Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL (μg/m³) = 1/100 of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
Acrolein	2.293	0.167	Yes
Arsenic	0.033	0.00092	Yes
Benzene	16.00	0.1748	Yes
Dioxins/Furans	0.01	0.00007	Yes
Formaldehyde	15.0	14.763	Yes
Hydrogen Chloride	29.9	0.791	Yes

AFIN: 33-00013 Page 5 of 11

Pollutant	PAIL (μ g/m ³) = 1/100 of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
Manganese	2.0	0.6659	Yes
Methanol	2620.9	644.795	Yes

Although the 2 boilers are used mutually exclusively, HAPs from both boilers were included in the modeling, as extreme ultra-conservative, worst case scenario.

Other Modeling: None.

Non-Criteria Pollutants not included in the permit:

Table 11
Estimated PTE Annual HAP Emissions Summary
Unilin Flooring NC, LLC -- Columbia Division - Melbourne Facility

	г								
НАР	Emision Fa lbs/MMB		Hourly (d)	Wood-fired Boilers SN-05/06	VOC/HAP Containing products SN- 07/08/09/10/21	Lumber Kilns SN-17	Diesel Storage Tank IA	Diesel Generator SN-19	HAP Total
1,1,1-trichloroethane	3.10E-05	(1)	1.5E-03	6.5E-03					6.5E-03
1,2-Dichloroethane	2.90E-05	(1)	1.4E-03	6.1E-03					6.1E-03
1,2-Dichloropropne	3.30E-05	(1)	1.6E-03	6.9E-03					6.9E-03
2,4-Dinitrophenol	1.80E-07	(1)	8.6E-06	3.8E-05					3.8E-05
4-Nitrophenol	1.10E-07	(1)	5.2E-06	2.3E-05					2.3E-05
Acenaphthene	9.70E-07	(1)	4.6E-05	2.0E-04				1.50E-05	2.2E-04
Acenaphthylene	5.00E-06	(1)	2.4E-04	1.0E-03				2.90E-05	1.1E-03
Acetaldehyde	8.30E-04	(1)	4.0E-02	1.7E-01				8.00E-05	1.7E-01
Acetophenone	3.20E-09	(1)	1.5E-07	6.7E-07					6.7E-07
Acrolein	4.00E-03	(1)	1.9E-01	8.3E-01				2.50E-05	8.3E-01
Anthracene	3.00E-06	(1)	1.4E-04	6.3E-04				3.90E-06	6.3E-04
Antimony	7.90E-06	(2)	3.8E-04	1.6E-03					1.6E-03
Arsenic	2.20E-05	(2)	1.0E-03	4.6E-03					4.6E-03
Benzene	4.20E-03	(1)	2.0E-01	8.8E-01		 	5.00E- 06	2.50E-03	8.8E-01
Benzo(a)anthracene	6.50E-08	(1)	3.1E-06	1.4E-05	<u> </u>			2.00E-06	1.6E-05
Benzo(a)pyrene	2.60E-06	(1)	1.2E-04	5.4E-04				8.20E-07	5.4E-04
Benzo(b)fluoranthene	1.00E-07	(1)	4.8E-06	2.1E-05				3.50E-06	2.4E-05
Benzo(g,h,i)perylene	9.30E-08	(1)	4.4E-06	1.9E-05				1.80E-06	2.1E-05
Benzo(k)fluoranthene	3.60E-08	(1)	1.7E-06	7.5E-06				7.00E-07	8.2E-06
Beryllium	1.10E-06	(2)	5.2E-05	2.3E-04					2.3E-04
bis(2-Ethylhexyl)phthalate	4.70E-08	(1)	2.2E-06	9.8E-06					9.8E-06
Bromomethane	1.50E-05	(1)	7.1E-04	3.1E-03					3.1E-03
Cadmium	4.10E-06	(1)	2.0E-04	8.6E-04					8.6E-04
Carbon Tetrachloride	4.50E-05	(1)	2.1E-03	9.4E-03					9.4E-03

AFIN: 33-00013 Page 6 of 11

Chlroine	7.90E-04	(1)	3.8E-02	1.6E-01					1.6E-01
Chlorobenzene	3.30E-05	(1)	1.6E-03	6.9E-03					6.9E-03
Chloroform	2.80E-05	(1)	1.3E-03	5.8E-03					5.8E-03
Chloromethane	2.30E-05	(1)	1.1E-03	4.8E-03					4.8E-03
Chromium (total)	2.10E-05	(2)	1.0E-03	4.4E-03					4.4E-03
Chrysene	3.80E-08	(1)	1.8E-06	7.9E-06			··	4.90E-06	1.3E-05
Cobalt	6.50E-06	(2)	3.1E-04	1.4E-03					1.4E-03
Cumene					5.22E-03				5.2E-03
Dibezno(a,h)anthracene	9.10E-09	(1)	4.3E-07	1.9E-06				1.10E-06	3.0E-06
Dichloromethane	2.90E-04	(1)	1.4E-02	6.1E-02					6.1E-02
Ehtylbenzene	3.10E-05	(1)	1.5E-03	6.5E-03	9.50E-03_		1.00E- 05		1.6E-02
Fluoranthene	1.60E-06	(1)	7.6E-05	3.3E-04				1.30E-05	3.5E-04
Fluorene	3.40E-06	(1)	1.6E-04	7.1E-04				4.10E-05	7.5E-04
Formaldehyde	4.40E-03	(1)	2.1E-01	9.2E-01		7.00E-02		2.50E-04	9.9E-01
Hydrogen Chloride	1.90E-02	(1)	9.1E-01	4.0E+00					4.0E+00
ldeno(1,2,3 c,d)pyrene	8.70E-08	(1)	4.1E-06	1.8E-05				1.30E-06	1.9E-05
Lead	4.80E-05	(2)	2.3E-03	1.0E-02					1.0E-02
Manganese_	1.60E-03	(2)	7.6E-02	3.3E-01					3.3E-01
Mercury	3.50E-06	(2)	1.7E-04	7.3E-04					7.3E-04
Methanol						3.05E+00			3.1E+00
Naphthalene	9.70E-05	(1)	4.6E-03	2.0E-02	3.10E-03			4.10E-04	2.4E-02
Nickel	3.30E-05	(2)	1.6E-03	6.9E-03					6.9E-03
Pentachorophenol	5.10E-08	(1)	2.4E-06	1.1E-05					1.1E-05
Phenathrene	7.00E-06	(1)	3.3E-04	1.5E-03				1.30E-04	1.6E-03
Phenol Phenol	5.10E-05	(1)	2.4E-03	1.1E-02					1.1E-02
Polychlorinated dibenzo- p-dioxins (a)	1.67E-06	(1)	7.956E-05	3.5E-04					3.5E-04
Polychlorinated Dibenzo- p-furans (b)	1.87E-09	(1)	8.9E-08	3.9E-07					3.9E-07
Polychlorinated biphynyls (c)	8.14E-09	(1)	3.878E-07	1.7E-06					1.7E-06
Propionaldehyde	6.10E-05	(1)	2.9E-03	1.3E-02				<u> </u>	1.3E-02
Pyrene	3.70E-06	(1)	1.8E-04	7.7E-04				1.20E-05	7.8E-04
Selenium	2.80E-06	(2)	1.3E-04	5.8E-04					5.8E-04
Styrene	1.90E-03	(1)	9.1E-02	4.0E-01					4.0E-01
Tetrachloroethene	3.80E-05	_(1)_	1.8E-03	7.9E-03			 _		7.9E-03
Toluene	9.20E-04	(1)	4.4E-02	1.9E-01	1.90E-03		7.50E- 05	9.00E-04	1.9E-01
Trichloroethene	3.00E-05	(1)	1.4E-03	6.3E-03		<u> </u>			6.3E-03
Vinyl Chloride	1.80E-05	(1)	8.6E-04	3.8E-03					3.8E-03
Xylene	2.50E-05	(1)	1.2E-03	5.2E-03	5.02E-02		1.90E- 04	6.20E-04	5.6E-02
HAP Total	HAP Total		1.1E+00	8.07	0.07	3.12	2.80E- 04	0.005	11.27

AFIN: 33-00013 9/9/2010

These sums are the totals of all HAPs emitted at the Unilin - Columbia Flooring - Melbourne Facility.

⁽¹⁾ Factors from AP42 Chapter 1.6 Table 1.6-3 Emission Factors for Speciated Organic Compounds from Wood Residue Combustion (September 2003)

AFIN: 33-00013 Page 7 of 11

- (2) Factors from AP42 Chapter 1.6 Table 1.6-4 Emission Factors for Trace Elements from Wood Residue Combustion (September 2003)
- (a) Includes Hepta, Hexa, Octa, Penta,(2,3,7,7) Tetra, and Tetrachlrodibenzop-dioxins
- (b) Includes Hepta, Hexa, Octa, Penta,(2,3,7,7) Tetra, and Tetrachirodibenzo-p-furans
- (c) Includes Deca, Di, Hexa, Hepta, Octa, Mono, Penta, Tetra and Trichlorobiphenyl
- (d) Estimated hourly emissions lb/hr = (MMBtu/hr max rating for boilers) x (emission factor [lb/MMBtu])

Maximum PTE hourly boiler fuel combustion (MMBtu/hr) = 47.64

(e) Estimated annual PTE in tons per year = (hourly emission) x (8760)/2000

12. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
01, 02, 03	EF from informal testing event performed at SN-03 on 8/11/2003 & engineering judgment	01/04 Test result = 0.0016 grains/dscf PM conservatively used EF = 0.01 gr/dscf PM	SN-01 Pneumafil Baghouse model #135- 448-10 Fabric Filter SN-02, 03 Carter Day Baghouses model #RFJ- 376 Fabric Filters	99.9% each	Emissions calculated based on exhaust air flow of individual baghouses @8,760 hrs/yr Rated air flow SN-01 = 17.06 ft/sec – 20,500 scfm SN-02, 03 = 20.07 ft/sec – 20,100 scfm installed 1979 Unilin assumes 100% of PM is PM ₁₀ .

AFIN: 33-00013 Page 8 of 11

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
05/06	Criteria EF from test HAP EF from AP- 42 Chapter 1.6 Tables 1.6-3 ¹ & 1.6-4 ² (9/03)	$\frac{lbs/hr}{PM/PM_{10} = 25.0}$ $SO_2 = 1.0$ $VOC = 0.7$ $CO = 21.7$ $NO_X = 18.3$ $\frac{lbs/MMBtu/hr}{^{1}}$ $^{1}Acrolein - 4.00E-03$ $^{2}Arsenic - 2.20E-05$ $^{1}Benzene - 4.20E-03$ $^{1}Chlorine - 7.90E-04$ $^{1}Formaldehyde - 4.40E-03$ $^{1}HCl - 1.90E-02$ $^{2}Lead - 4.80E-05$ $^{2}Manganese - 1.60E-03$ $^{1}Dixions - 1.70E-06$ $^{1}Furans - 1.90E-09$ $^{1}Styrene - 1.90E-03$	Zurn flyash arrestor, multi-clone	80-90% 85% for PM 63% for PM10	Wood fired Boilers SN-05 – Deltak Boiler = 47.64 MMBtu/hr SN-06 – Keeler Boiler = 37.5 MMBtu/hr Boilers operated mutually exclusive, 1 @ a time. SN-05 @ 8,760 hrs/yr SN-06 @ 1 hr/yr Actual is about 80/20 but conservatively estimated larger boiler SN-05 ops 100% SN-06 HAPs lb/hr
07, 08, 09, 10, 21	Mass Balance for Finishing Dept Materials	MSDS & actual usage Max 1. MMBF/hr w/12 kilns at capacity	None	N/A	VOC & HAP-containing Materials in Finishing Dept. Assumes 100% of VOCs & HAPs emitted
17	VOC¹- Brian W. Beakler, et al "Quantification VOCs kin-drying Red Oak & White Oak Lumber" (11/07) Formaldehyde² & Methanol² – OR State Univ. "Small Scale Kiln Study Utilizing Ponderosa Pine, White Fir" (9/20/00)	Lumber Kiln Throughput = 50 MMBF of lumber / 12 consecutive mos. Lb/mbf VOC = 0.256 ¹ Formaldehyde = 0.0028 ² Methanol = 0.122 ²	None	N/A	MBF x 1000 = MMBF 1 - worst case, red oak range 0.154 - 0.356 = 0.256 lb/mbf VOC (both white & red are dried) 2 - used white fir emission factor since oak not included

AFIN: 33-00013 Page 9 of 11

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
19	AP-42 Chap 3.4-1 (10/96)	$\frac{lbs/hp-hr}{PM/PM_{10} = 0.0007}$ $SO_2 = 0.00405^1$ $VOC = 0.000705$ $CO = 0.0055$ $NO_X = 0.0240$	None	N/A	Diesel Generator 981 hp [Large] @1000 hrs/yr Unilin assumes 100% of PM is PM ₁₀ . 1 Sulfur content of diesel fuel is 0.5% x 0.00809 lbs/hp-hr = 0.00405 lbs/hp-hr (EF)
20	AP-42 Chap 9.9.1-1 (03/03)	lbs/ton	None	N/A	AP-42 is for Grain Truck Shipping as substitute for wood waste. The facility can only load one truck per hour. Historical data (last 5 yrs show max 96 loads/mo in 10/07.

13. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
	PM		Current test due no later than	
05	PM ₁₀	201A and 202	December 31, 2010, thereafter - Once every 5 years or if test	§19.702 and
Boiler		10	fails, two consecutive annual	§19.901
	NO _X	7E	tests until boiler passes	

14. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

There are no CEMS or other monitoring equipment.

AFIN: 33-00013 Page 10 of 11

15. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
05/06	Boiler Operation	1 hour for Start-up/Shutdown	As needed	N
05/06	Performance Tests	PM, PM_{10} , CO and NO_X limits	Every 5 years or if failed 2 consecutive successful tests	Y
7-10 & 21	VOC, HAP & acetone content	Various	Monthly	Y
17	Lumber Kiln-dried Throughput	50 million (MM) board feet (BF) of Lumber per 12 consecutive months	Monthly	Y
19	Operating Hours of Diesel Generator	1,000 operating hours per 12 consecutive months	Monthly	N
19	Diesel Fuel	Combust diesel fuel only	On-going	N
20	Wood Waste Truck Loadout	2,500 tons of Wood Waste per month [equivalent to 100 trucks loaded per month] 30,000 tons of Wood Waste per 12 consecutive months	Monthly	Y

16. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
01, 02, 03	5%	§18.501 and A.C.A.	Weekly Observation
05, 06, 19	20%	§19.503 and A.C.A.	Daily Observation
20	10%	§18.501 and A.C.A.	Weekly Observation
Off-site	5%	§18.501 & A.C.A.	Observation

AFIN: 33-00013 Page 11 of 11

17. DELETED CONDITIONS:

Former SC	Justification for removal
19	Removed TLV tables, not required. Facility has changed coatings to no or low HAP materials.

18. GROUP A INSIGNIFICANT ACTIVITIES:

		Emissions (tpy)							
Source Name	Α	PM/	SO ₂	VOC	СО	NOx	Н	IAPs	
		PM ₁₀	SO_2	VOC	CO	NOX	S	Tot	
One Diesel Fuel Storage Tank, 10,000 gallon capacity (formerly SN-18)	A-3	0.0	0.0	0.003	0.0	0.0	-	2.80E-04	
Five Electric UV Ovens	A-13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Four Wood Storage Silos	A-13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

19. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:


List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
0559-AOP-R4	

20. CONCURRENCE BY:

The following supervisor concurs with the permitting decision.

Paula Parker, P.E.

Fee Calculation for Major Source

Revised 03-01-10

Facility Name: Unilin Flooring Permit Number: 0559-AOP-R5

AFIN: 33-00013

\$/ton factor Permit Type	22.07 Renewal No Changes	Annual Chargeable Emissions (tpy) Permit Fee \$	<u>263.84</u> <u>0</u>
Minor Modification Fee \$	500		
Minimum Modification Fee \$	1000		
Renewal with Minor Modification \$	500		
Check if Facility Holds an Active Minor Source or Minor Source General Permit	Γ		
If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$	0		
Total Permit Fee Chargeable Emissions (tpy) Initial Title V Permit Fee Chargeable Emissions (tpy)	-4.92		

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
PM	Image: Control of the	132.9	134.1	1.2	1.2	134.1
PM_{10}		132	133.3	1.3		
SO_2	F	6.3	6.3	0	0	6.3
voc	V	34.3	17.8	-16.5	-16.5	17.8
co		97.6	97.6	0		
NO _X	┍	91.1	91.2	0.1	0.1	91.2
Acetone	V	0	10.28	10.28	10.28	10.28
Acrolein	Г	0.83	0.83	0	Í	
Arsenic		0.01	0.01	0		
Benzene	Г	0	0.88	0.88] 	
Chlorine	V	0.16	0.16	0	0	0.16
Dioxins/Furans	Г	0	0.01	0.01	}	
Formaldehyde		0.99	0.99	0	ļ	}
Hydrogen Chloride	₩	4	4	} o	0	4
Lead	F	0.01	0.01	0	ł J	
Manganese		0.33	0.33	0	}	}
Methanol		o	3.05	3.05	Ì	
Styrene		0	0.4	0.4		
Toluene		0.19	0	-0.19	1	}

Pollutant (tpy)		Check if Chargeable Emission	Old Permit	New Permit	_	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
Xylene			0.2	0	-0.2		
Combined HAPs		Г	7.97	0.08	-7.89		
рс	i	Γ	0'	0	0		
	11/29/2010	Γ	0	0	0		