STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0573-AOP-R19 AFIN: 70-00040

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

El Dorado Chemical Company 4500 North West Avenue El Dorado, Arkansas 71730

3. PERMIT WRITER:

Shawn Hutchings

4. NAICS DESCRIPTION AND CODE:

NAICS Description: Nitrogenous Fertilizer Manufacturing

NAICS Code: 325311

5. SUBMITTALS:

Date of Application	Type of Application	Short Description of Any Changes
	(New, Renewal, Modification,	That Would Be Considered New or
	Deminimis/Minor Mod, or	Modified Emissions
	Administrative Amendment)	
11/18/2016	PSD MOD	Increase in Annual Emission rates for
		boiler
8/19/2016	None	Only changes to instack and ambient
		monitoring requirements.

PSD Issues in permit 0573-AOP-R19

This modification is an adjustment of the annual usage of the start-up boiler, SN-61. All hourly limits of the source are unchanged. Those hourly rates were used to do previous modeling and other impact analysis. Those analyses remain unchanged as a result of this modification and were not reviewed further.

BACT

AFIN: 70-00040 Page 2 of 16

This modification only increased the annual throughput of the boiler, SN-61. All previously established BACT limits were set on a short term basis and need not be altered with this modification except for the CO₂e annual limit. All other BACT limits established as part of this PSD project were not changed.

	BACT Analysis Summary							
Source	Description	Pollutant	Control Technology	BACT Limit				
SN-61	Start-up Boiler (240 MMBtu/hr)	GHG	Good operating practices	CO ₂ e 123,500 tons per rolling 12 months				

6. REVIEWER'S NOTES:

El Dorado Chemical Company (EDCC) owns and operates a chemical manufacturing facility located at 4500 North West Avenue in El Dorado, Arkansas. This permit is a PSD modification to remove operating limits for SN-61, the start-up boiler. This project was part of the previous PSD modifications for the facility and only addresses issues which need changing for the source. The only PSD permit limit needing changed is the CO₂e BACT limit for the source. This permit also removes the ambient NO₂ monitoring requirement for the facility. The facility submitted refined modeling which demonstrated predicted impacts lower than those relied on for the initial PSD application. The N₂O requirements for SN-59 were revised to use a specific N₂O monitor and not the NO₂ monitor to monitor both pollutant. Also, the opacity requirements in Specific Condition 206 were adjusted.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The facility has a CAO in routing for failed stack tests.

8. PSD APPLICABILITY:

- a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? Y
- b) Is the facility categorized as a major source for PSD?
- Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list

AFIN: 70-00040 Page 3 of 16

If yes, explain why this permit modification is not PSD. This modification was an Administrative Amendment for addition of an insignificant activity.

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)	
SN-41	PM_{10}	PSD	
SN-49, SN-53, SN-54, SN-56, SN-57, & SN-61	SO_2 VOC CO NO_x GHG $Opacity$	PSD	
SN-50	VOC CO GHG	PSD	
SN-51	VOC CO GHG	PSD	
SN-59	NO _x GHG Opacity	PSD	
SN-61	NO_x	40 CFR Part 60, Subpart Db	
SN-13	NO _x	40 CFR Part 60, Subpart G	
SN-59	NO _x	40 CFR Part 60, Subpart Ga	
SN-07	SO ₂ and sulfuric acid mist	40 CFR Part 60, Subpart H	
SN-65 and 66	There are no specific emission limits or pollutants identified, but the rules generally regulate HAPs	40 CFR Part 63, Subpart ZZZZ	
SN-48, SN49, SN-54, & SN- 61		40 CFR Part 63, Subpart DDDDD	
SN-25		40 CFR Part 63, Subpart CCCCCC	
SN-65	CO, PM, NMHC + NOx	40 CFR Part 60, Subpart IIII	
SN-66	CO, VOC, NOx	40 CFR Part 60, Subpart JJJJ	

10. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

AFIN: 70-00040 Page 4 of 16

11. AMBIENT AIR EVALUATIONS:

a) The facility updated 1 – hour NO₂ modeling from previous PSD projects to justify their request to remove the NO₂ ambient monitor. Results of their modeling are summarized below.

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (μg/m³)	Averaging Time	Highest Concentration (µg/m³)	% of NAAQS
NO_x	998.6	188	1-hour	181.9	96

The receptor which recorded the predicted concentration and also recorded all instances where the model was predict to exceed 90% of the NAAQS were the same. This receptor was located near an emergency generator located at another facility. When ADEQ ran the model to verify EDCCs results and excluded this receptor there were no instances above 90%.

b) Non-Criteria Pollutants:

The non-criteria pollutants listed below were evaluated. Based on Department procedures for review of non-criteria pollutants, emissions of all other non-criteria pollutants are below thresholds of concern.

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH). Only HNO₃ and H_2SO_4 increased over previous screened emission rates.

Pollutant	TLV (mg/m ³)	$PAER (lb/hr) = 0.11 \times TLV$	Proposed lb/hr	Pass?
HNO ₃	5.15	0.56	4.1	No
H ₂ SO ₄	0.2	0.022	2.97	No

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each

AFIN: 70-00040 Page 5 of 16

compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
HNO ₃	51.5	36	Yes
H ₂ SO ₄	2.0	0.61	Yes

12. CALCULATIONS:

$ \begin{array}{ c c c c c } SN & Emission Factor & Emission Factor & Control Equipment Edificiency \\ \hline Source & Factor & Equipment & Equipment Edificiency \\ \hline \hline 05A \\ and \\ B & Specification & mg/acf & Scrubber \\ \hline \hline Engineering Estimate & Sourber & Scrubber & Scrubber \\ \hline \hline 07 & NSPS limit & SO_2 - 92.0 & Brinks Mist Eliminator & Remain the previous permitted limit \\ \hline \hline 07 & NSPS limit & SO_2 - 92.0 & Brinks Mist Eliminator & Source & Sour$	12.	CALCULATIONS:				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SN	Emission Factor	Emission	Control	Control	Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Source	Factor	Equipment	Equipment	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Efficiency	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05A	Vendor	$PM_{10} - 0.085$	Brinks	-	-
Scrubber Scrubber Scrubber Scrubber Scrubber		Specification	mg/acf	Scrubber		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	В	Engineering	0.8 lb/hr NH ₃	Brinks	99.5%	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Estimate		Scrubber		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07	NSPS limit	$SO_2 - 92.0$	Brinks Mist	-	Remain the
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			lb/hr	Eliminator		previous
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						permitted limit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Testing	H_2SO_4 –	Brinks Mist	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		C	0.123 lb/ton	Eliminator		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	08	Testing	NO _X - 52.2	Refrigeration	-98.5%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		C	lb/hr	SCR		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Ammonia –			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			40.0 lb/hr			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	09	Testing	NO _X - 52.2	Refrigeration	-98.5%	-
$ \begin{array}{ c c c c c c c c c } \hline & 40.0 \ lb/hr \\ \hline \hline & 10 & AP-42 & NO_X - 10.0 \\ \hline & Highest \ lb/hr \\ from \ Stack \ Test \\ results \ of \ 2001- \\ \hline & 2004 & 10/8.5 = 2.3 \\ \hline & 10/hr + 1.1 \\ \hline & 10/hr \ from \ car \\ \hline & barn \\ \hline & NO_X - 3.3 \ x \\ \hline & 1.25 \ x \ 40/8.5 \\ \hline & = 19.5 \ lb/hr \\ \hline \end{array} \right. \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	lb/hr	SCR		
$ \begin{array}{ c c c c c c c c c } \hline 10 & AP-42 & NO_X - 10.0 & best operation \\ \hline & Highest lb/hr & HNO_3 - 0.389 & - & & & & & & \\ from Stack Test & x 1.25 x & & & & & \\ results of 2001- & 2004 & 1b/hr + 1.1 & & & & \\ & & 1b/hr from car & & & & & \\ & & barn & & & & \\ & & & NO_X - 3.3 x & & & \\ & & & & 1.25 x 40/8.5 & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \hline \end{array} $			Ammonia –			
$\begin{array}{ c c c c c }\hline & lb/ton \\ \hline & Highest lb/hr \\ from Stack Test \\ results of 2001- \\ 2004 & lb/hr + 1.1 \\ lb/hr from car \\ barn \\ NO_X - 3.3 x \\ 1.25 x 40/8.5 \\ = 19.5 \ lb/hr \\ \end{array} \begin{array}{ c c c c }\hline & Ih/O_3 - 0.389 \\ \hline & x 1.25 x \\ \hline $			40.0 lb/hr			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	AP-42	NO _X - 10.0	best operation	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			lb/ton	_		
results of 2001- 2004 $10/8.5 = 2.3$ $10/hr + 1.1$ $10/hr$ from car barn $1.25 \times 40/8.5$ $10/hr$ 1		Highest lb/hr	$HNO_3 - 0.389$	-	-	Maximum nitric
results of 2001- 2004		from Stack Test	x 1.25 x			acid production
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		results of 2001-	40/8.5 = 2.3			
$\begin{array}{ c c c c c c }\hline barn & acid blend \\ NO_X - 3.3 \ x \\ 1.25 \ x \ 40/8.5 & tons/hr. \\ & = 19.5 \ lb/hr & Stack \ test + 25\% \\ \hline \end{array}$		2004	lb/hr +1.1			tons/hr, and
			lb/hr from car			maximum nitric
1.25 x 40/8.5 = 19.5 lb/hr			barn			
= 19.5 lb/hr Stack test + 25%			$NO_{X} - 3.3 x$			-
						tons/hr.
safety factor.			= 19.5 lb/hr			
						safety factor.

AFIN: 70-00040 Page 6 of 16

1.2	Mana	2.0.11 //	C' 4 1		
13	NSPS	3.0 lb/ton of	refrigerated	-	-
		acid	absorption		
18	Process	$PM_{10} - 0.033$	Baghouse	-	-
	Knowledge	lb/ton			
19	PM - 50,556	-	-	-	
	scfm x 011677				
	lb/mmft ³ x 60				
	min/hr x 1.2				
	111111/111 X 1.2				
	NH ₃ - 50,556				
	scfm x 25 ppm x				
	17.1 lb/lb-mol x				
	lb-mol/385.2 ft ³				
	60min/hr x 1.2				
25	TANKS 4.0.9	VOC	none	-	-
26	TANKS 4.0.9	NH ₃	none	-	-
27	Testing	PM 4.8E-7	none	_	_
27	resums	lb/ton	none		
20					
28	Testing	PM 4.8E-7	none	-	-
		lb/ton			
30	AP-42 Section	H ₂ SO ₄ –	none	_	_
	5.2	0.0034	110116		
	5.2	lb/1000			
		gallons			
31	SOCMI	$NH_3 - 0.5$	none	-	-
		lb/hr			
32	SOCMI	$NH_3 - 1.6$	none	_	_
	2 2 2 1 2 2	lb/hr			
22	Dungana		2000		
33	Process	$NO_X - 0.1$	none	-	-
	Knowledge	lb/hr			
	Process	$HNO_3 - 0.1$	none	-	-
	Knowledge	lb/hr			
34	Process	$PM_{10} - 0.7$	none	_	_
J F	Knowledge	lb/ton x 1.46	110110		
	Milowicuge	ton/hr			
35A	Testing	$PM_{10} - 0.1$	baghouse	99%	-
		lb/hr			
35B	AP-42	PM 19.7 lb/hr	none		
38	$EF_{PM} = Total$			-	
	liquid drift				
					

AFIN: 70-00040 Page 7 of 16

	gal x 1,560 ppm				
	$PM10 = EF_{PM} x$ flowrate				
	= 9,000 gpm x				
40	EF _{PM}				
40	TANKS Program	NH ₃ – 0.22lb/hr			-
41	Stack testing	$NH_3-10.0$ lb/hr $PM/PM10-4$ lb/hr	Chemical steam scrubber	-	24-hr BACT limit is 13.8 lb/hr 30-day rolling BACT limit is 3.4 lb/hr
44	Mass Balance for sulfur oxides and sulfuric acid.	Scrubber	-	-	
	Stack test from similar plant plus a safety factor of 25%.				
46	0.00013 lb/1000 gal	-	-	0.001% is design drift loss percent provided by manufacturer.	
13	NSPS	NO ₂ (3-hr): 3.0 lb/ton	SCR	95%	After installation of SCR and Tail gas preheater
	EPA/DOJ	NO ₂ (3-hr): 1.0 lb/ton (excluding SSM) NO ₂ (rolling 365-days): 0.6 lb/ton			gas preneater
	Vendor Info	NH ₃ : 20 ppm			
65 and	AP-42 or NSPS	varied	none		
66	AP-42	0.02 lb/ton	None		

AFIN: 70-00040 Page 8 of 16

14	Vendor	0.085 mg/acf	Scrubber	99.5 for	
and	Specification	PM		ammonia	
21					

13. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
10	NOx	7E	Every five years	Necessary for efficiency check on Venturi & Packed Tower
10	HNO ₃	Approved method	Every five years	Scrubber Necessary for efficiency check on Venturi & Packed Tower Scrubber
07	SO ₂	6C	Initial performance test	NSPS Requirement
05A and B	PM_{10}	Approved method	Initial and alternating annually.	Necessary to prove that PSD has not been triggered.
14, & 21	PM, PM ₁₀ , PM _{2.5}	Method 5 or 201A, and 202	Annually until 2 consecutive passes, then once every 5 years	Necessary to prove that PSD has not been triggered.
21	NH ₃	Approved method	Annually until 3 consecutive passes, then once every 3 years	Necessary to prove adherence to the non-criteria pollutant strategy.
44	SO ₃ NO _x H ₂ SO ₄ HNO ₃	Approved method	Every five years	Necessary to prove adherence to the non-criteria pollutant strategy.
08 & 09	NH ₃	CTM-027 or equivalent	Every five years	Verify emissions

AFIN: 70-00040 Page 9 of 16

SN	Pollutants	Test Method	Test Interval	Justification
59	NH ₃	CTM-027 or equivalent	Annually until 2 consecutive passes, then once every 5 years	Necessary to prove adherence to the non-criteria pollutant strategy.
49	PM PM ₁₀ PM _{2.5} SO ₂ VOC CH ₄ CO CO ₂ N ₂ O	Method 5 & 202 Method 201A & Method 202 Method 6C Method 25A Method 18 Method 10 Method 3A Method 320, ASTM D6348- 03 or other approved method	Annually until 2 consecutive passes, then once every 5 years	Verify emissions
50	VOC CO ₂	25A 3A	One Time Test	Verify emissions
50	Methanol	18 or 25A	Annually until 2 consecutive passes, then once every 5 years	Verify emissions
51	VOC Pre and Post Control CO NH ₃	25A 10 320	One Time Test	Verify emissions
51	Methanol CO ₂	18 or 25A 3A	Annually until 2 consecutive passes, then once every 5 years	Verify emissions

AFIN: 70-00040 Page 10 of 16

SN	Pollutants	Test Method	Test Interval	Justification	
	PM M				
	PM_{10}	Method 201A &			
	$PM_{2.5}$	Method 202	Annually until 2	Verify emissions	
61	SO_2	6C	consecutive passes, then once		
	VOC	25A	every 5 years		
	CO	10	every s years		
	NO_x	7E			
13	NH ₃	CTM-027 or equivalent	Annually until 2 consecutive passes, then once every 5 years	Necessary to prove adherence to the non-criteria pollutant strategy.	

14. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
13	NO_x	CEM	Continuously	Y
07	SO ₂ emission rate	CEM	Continuously	Y
08 & 09	NO_x	CEM	Continuously	Y
41 and 63	Ammonia and particulate emission rates	Daily sampling consisting of two 12-hour composite sample	Continuously	Y
59	NO_x and N_2O	CEM	Continuously	Y
49	NO _x	CEM	Continuously	Y

15. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
08 & 09	weak nitric acid production	304,775 tons/12 months	Monthly	Y

AFIN: 70-00040 Page 11 of 16

SN	Recorded Item	Permit Limit	Permit Limit Frequency	
13	weak nitric acid production	140,000 tons/12 months Monthly		Y
38, 46, 52, 60	Total Dissolve solid	1,560 ppm	Weekly	N
59	weak nitric acid production	461,725 tons/12 months	Monthly	Y
47	strong nitric acid production	5.2 tons per hour	Hourly	Y
47	strong nitric acid production	45,625 tons/12 months	Monthly	Y
10	Scrubber parameter	hydrogen peroxide concentration	Daily	N
07	Sulfuric acid production	200,750 ton/12 months	Monthly	Y
	Sulfuric acid production	550 tons of 100% sulfuric acid per day	Daily	Y
	Sulfuric acid emission limit	4.0 lb of SO ₂ per ton of acid production, expressed as 100% H ₂ SO ₄ , and based on a 3-hr average.	Continuously and averaged every 3-hours	N
	Annual SO ₂ Emissions (tpy on a calendar basis)	N/A	Annually	N
30	Sulfuric acid shipped	200,750 tons/12 months	Monthly	Y
All E2 Plant	Production	525,600 tons/12 months	Monthly	Y
05A and B	Scrubber liquid flow rate for each scrubber Gas pressure drop across unit Scrubber liquid pH	225 gal/min (minimum) 2.5 in. H_2O (minimum) $0.5 - 6.0$	Daily	N

AFIN: 70-00040 Page 12 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
41	BACT Limit PM	24-hour Average 0.223 lb/ton	Daily	Y
71	BACT EIIIIITIW	30-day Average 0.054 lb/ton	Monthly	Y
All KT plant	Production	394,200 tons/12 months	Monthly	Y
	Scrubber liquid flow rate	225 gal/min (minimum)		
14	Gas Pressure Drop Across Unit	2.5 in H ₂ O (minimum)	Daily	N
	pH Exhaust Flow Rate	0.5 – 6.0 131,452 acfm (maximum)		
18	Baghouse Pressure Drop	$0.5 - 8.0 \text{ in H}_2\text{O}$	Daily	N
	Scrubber liquid flow rate	225 gal/min (minimum)		
21	Gas Pressure Drop Across Unit	2.5 in H ₂ O (minimum)	Daily	N
	pH Exhaust Flow Rate	0.5 – 6.0 131,452 acfm (maximum)		
	PM emissions	24-hour Average 0.223 lb/ton	Daily	Y
63	r w emissions	30-day Average 0.054 lb/ton	Monthly	Y
	AN Production	547,500 tons/12 months	Monthly	Y
49	NH ₃ production	565,750 tons/12 months	Monthly	Y
49	Natural gas usage	7,076.7 MMscf per 12 months	Monthly	Y
	Natural gas usage	9.0 MMscf per 12 months	Monthly	Y
53	Hours of operation	No more than 3 hours during any 24-hour period	Daily	Y

AFIN: 70-00040 Page 13 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		unless HRU		
		outage		
51	Scrubber	30 gpm	Daily	N
	parameters	2 in H ₂ O		11
56	Natural gas	8.2 MMscf per	Monthly	Y
	usage	12 months		
57	Natural gas	1.5 MMscf per	Monthly	Y
	usage	12 months	•	
54	Natural gas	18.63 MMscf per	Monthly	Y
	usage	12 months	•	
54, 56, 57	Flare	No limit	As required	Y
	maintenance Amount of		-	
	Oleum offload			
	into the storage			
	tank	394,000 tons		
44	Percent strength		Monthly	N
11	of the Oleum	30%	Wilding	14
	Amount of	219,000 tons		
	mixed acid			
	produced.			
	Scrubber liquid	5.0 gal/min		
	flow rate for each	(minimum)		
	scrubber	(mmmam)	D. '1	N.T.
44	Gas pressure	$10 - 35$ in. H_2O	Daily	N
• •	drop across unit	10 22 111 1120		
	Scrubber liquid			
	рН	0.5 - 7.5		
	F	40,000		
25	usage of gasoline	gallons/12	Monthly	Y
		months	•	
20	Nitric Acid	250,000 tons/12	Monthly	Y
29	Shipped	months	Monthly	ĭ
40	AN Loading	65,000,000	Monthly	Y
40	tonnage	tons/12 months	Monthly	I
58	Ammonia	226,300 tons/12	Monthly	Y
30	Loading	months	wioniny	1
65 and 66	Hours of	100 hours per	Monthly	Y
os and oo	operation	calendar year	iviolitily	1
		Change oil and		
65 and 66	Engine	filter every 500	As needed	N
os and oo	maintenance	hours of	1 is needed	14
		operation, or		

AFIN: 70-00040 Page 14 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		annually,		
		whichever comes		
		first;		
		Inspect air		
		cleaner every		
		1,000 hours of		
		operation or		
		annually,		
		whichever comes		
		first; and		
		Inspect all hoses		
		and belts every		
		500 hours of		
		operation or		
		annually,		
		whichever comes		
		first, and replace		
		as necessary.		
67	Prills Unloaded	36,500 tons per	Monthly	Y
07	Fillis Ullioaded	12 months	Monthly	I

16. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
00.00	100/	C1:	
08 & 09	10%	Compliance assurance for SCR operation	Daily Observation
07 & 13	10%	NSPS limit	Daily Observation
54, 61	5%	Department Guidance	Natural Gas
		_	Combustion
49, 59	0%	BACT limit	Daily Observation
53, 56, 57	0%	BACT limit	Natural Gas
			Combustion
05A and B, 18, 35A, 47, 63	5%	Department Guidance	Weekly Observation
52, 60	5%	Department Guidance	Weekly TDS
21, 27, 28	10%	Department Guidance	Daily Observation
14, 19	15%	Department Guidance	Daily Observation
34, 44	20%	Previous permit	Daily Observation

AFIN: 70-00040 Page 15 of 16

SN	Opacity	Justification for limit	Compliance Mechanism
10, 38, 46	20%	Department Guidance	Weekly TDS
35B & 67	20%	Department Guidance	-
65	20%	Department Guidance	Annual Observation
66	5%	Department Guidance	Annual Observation

17. DELETED CONDITIONS:

Former SC	Justification for removal
Plantwide 11	Removed NO ₂ ambient monitor
SN-61	Removed Natural Gas annual limit and recordkeeping. Source not permitted for 8760 operation at max capacity.

18. GROUP A INSIGNIFICANT ACTIVITIES:

G. N	Group A				Emis	sions	(tpy)			
Source Name	Category	PM/PM ₁₀	SO_2	VOC	СО	NO _x	H ₂ S	NH ₃		APs
		1 141/1 14110	502	100		110 _X	1125	11113	Single	Total
Molten Sulfur										
Storage Tank	B-21								0.001	0.001
(formerly SN-23)										
Diesel Storage				0.004					0.002	0.000
Tank (500 Gallon)	A-3			0.001					0.002	0.002
(formerly SN-24)										
Diesel Storage										
Tank (2,000	A-3			0.002					0.003	0.003
Gallon) (formerly SN-45)										
ŕ	_									
Total	A-3			0.003						
Partwashers	A-13			2.11						
2 x Ammonia Flares	A-13	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Sulfur										
Unloading/Storag	A-13						0.13			
e										
Ammonia	A-13							0.44		
Offloading	A-13							0.44		
Tier 2 Warehouse	A-13	0.02								

AFIN: 70-00040 Page 16 of 16

Natural Gas Pipeline Knockout Pot	A-13			0.14						
Portable Cooling Tower	A-13	0.043								
E2 Prill Warehouse	A-13	1.03								
Total	A-13	5.49	0.01	2.26	0.01	0.01	0.13	0.54	0.01	0.01
Sulfuric Acid Solution Storage Tanks	B-21									

19. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #
0573-AOP-R18

El Dorado Chemical Company Permit #: 0573-AOP-R19

AFIN: 70-00040

\$/ton factor	23.93	Annual Chargeable Emissions (tpy)	1925.34
Permit Type	Modification	Permit Fee \$	1000
• •			
Minor Modification Fee \$	500		
Minimum Modification Fee \$	1000		
Renewal with Minor Modification \$	500		
Check if Facility Holds an Active Minor Source or M	finor		
Source General Permit			
If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$	0		
Total Permit Fee Chargeable Emissions (tpy)	24.2		
Initial Title V Permit Fee Chargeable Emissions (tpy)		

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
PM		114.7	122.1	7.4	7.4	122.1
PM_{10}		94.3	101.7	7.4		
PM _{2.5}		89.8	95.7	5.9		
SO_2		402.9	403.4	0.5	0.5	403.4
VOC		37.3	40.3	3	3	40.3
со		130.1	157.3	27.2		
NO_X		708	721.3	13.3	13.3	721.3
CO2e		1207090	1293490	86400		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	
Lead		0.06	0.06	0		
Arsenic*		0.06	0.06	0		
Cadmium*		0.06	0.06	0		
Formaldehyde*		0.39	0.39	0		
Hexane*		8.28	8.32	0.04		
Mercury	~	0.06	0.06	0	0	0.0
Methanol*		28.21	28.21	0		
NH3**	~	613.6	613.6	0	1.137E-13	613.
H2SO4**		12.63	12.63	0	0	12.6
HNO3**		11.95	11.95	0	0	11.9
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0			

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0			
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0			
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0		0		
		0	0	0		
		0		0		
		0	0	0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	_	Ţ.		
		0		Ţ.		
		0				

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Chargeable
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0		0		
		0		0		
		0	0	0		
		0	0	0		
		0		Ţ.		
		0		Ţ.		
		0		_		
		0		_		
		0	0	_		
		0		_		
		0				
		0				
I		0	U	0	I	l l