STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0810-AR-6 AFIN: 16-00008

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Camfil USA, Inc. 3501 Airport Road Jonesboro, Arkansas 72401

3. PERMIT WRITER:

Derrick Brown

4. NAICS DESCRIPTION AND CODE:

NAICS Description:Sheet Metal Work ManufacturingNAICS Code:332322

5. ALL SUBMITTALS:

The following is a list of ALL permit applications included in this permit revision.

Date of	Type of Application	Short Description of Any Changes
Application	(New, Renewal,	That Would Be Considered New or Modified
	Modification,	Emissions
	Deminimis/Minor Mod, or	
	Administrative	
	Amendment)	
9/26/2018	Deminimis	This modification allows the operation of a
		Powder Coating Operation at SN-16 through SN-
		19, updating of emissions at the Filter Tray Primer
		Station, Low Bay (SN-20), addition of an
		Emergency Generator (SN-21), a 250 gallon diesel
		tank to the insignificant activity list, and removal
		of SN-04 and SN-05

Permit #: 0810-AR-6 AFIN: 16-00008 Page 2 of 5

6. **REVIEWER'S NOTES:**

Camfil USA manufacturer's emissions control equipment at 3501 Airport Road, Jonesboro, Arkansas. This modification allows the operation of a Powder Coating Operation at SN-16 through SN-19, updating of emissions at the Filter Tray Primer Station, Low Bay (SN-20), addition of an Emergency Generator (SN-21), a 250 gallon diesel tank to the insignificant activity list, and removal of SN-04 and SN-05. This modification increases facility emissions by 0.1 tpy of PM/PM₁₀, and decreases emissions by 69.9 tpy of VOC, and 18.18 tpy of HAPs.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The facility was last inspected on January 23, 2013 and was found to be in compliance.

8. PSD/GHG APPLICABILITY:

a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N/A

- b) Is the facility categorized as a major source for PSD? N
- Single pollutant \geq 100 tpy and on the list of 28 or single pollutant \geq 250 tpy and not on list

If yes for 8(b), explain why this permit modification is not PSD.

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
SN-21	NO _x , CO	NSPS, Part 60, Subpart IIII
SN-21	HAPs	NESHAP, Part 63, Subpart ZZZZ

10. PERMIT SHIELD – TITLE V PERMITS ONLY:

Did the facility request a permit shield in this application? N/A (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Regulation 18 requirement.)

11. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

Permit #: 0810-AR-6 AFIN: 16-00008 Page 3 of 5

12. AMBIENT AIR EVALUATIONS:

The following are results for ambient air evaluations or modeling.

a) NAAQS

A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the ADEQ Air Permit Screening Modeling Instructions.

b) Non-Criteria Pollutants:

Based on Department procedures for review of non-criteria pollutants, emissions of non-criteria pollutants are below thresholds of concern.

c) H₂S Modeling: N/A

13. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equip.	Control Equip. Eff.	Comments
03	Maximum monthly sand usage and minimum monthly hours of operation				
16-19	AP-42 factor for electrodes consumed in a month/minimum hours of operation				
20	Based on mock time and motion study conducted by Camfil operator.	5 trayr/min x 60 min/hr x 3 g/tray x 100% VOC/HAP x 1 lb/453.7 g = 2.0 lb/hr VOC/HAP			
21	AP-42 Table 3.2-3	All in lb/MMBtu/hr: 0.0194 PM 0.0095 PM_{10} 0.000588 SO_2 0.0296 VOC 3.72 CO 2.27 NO_x 0.103 HAPs			

14. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
None.				

Permit #: 0810-AR-6 AFIN: 16-00008 Page 4 of 5

15. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant	Method	Frequency	Report (Y/N)	
SIN	to be Monitored	(CEM, Pressure Gauge, etc.)	riequency	Report (1/N)	
03	Pressure Drop	Pressure Drop Measurement Device	Weekly	Ν	

16. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
Plantwide	VOC Emissions	5.0 tpy	Monthly	Ν
Plantwide	Total and Individual HAP Emissions	6.3 tons of total HAP emissions per year; 5.7 tons of individual HAP emissions per year; HAP TLV no greater than 1.0 mg/m ³ .	Monthly	Y
SN-21	Hours of operation	500 hours/yr	Monthly	Ν
03	Pressure Drop	Between 1.5 and 4.0 inches of water	Weekly	Ν
03	Maintenance Records	_	Each Time Maintenance is Performed	Ν

17. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
03, 16, 17, 18, 19, 20, 21	5%	Reg.18.501 and Ark. Code Ann. § 8-4- 203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311	Inspector Observation

18. DELETED CONDITIONS:

Former SC	Justification for removal
None.	

19. GROUP A INSIGNIFICANT ACTIVITIES:

The following is a list of Insignificant Activities including revisions by this permit.

	Group		Emissions (tpy)					
Source Name	A		SO ₂	VOC	СО	NO _x	HAPs	
	Cat.	1 1 v1 /1 1 v1 ₁₀	302	voc	0	NO _x	Single	Total
Powder Coat Washer	A-13							
Natural Gas Fired Dry Off Oven (1.0 MMBTU/hr)	A-1	0.04	0.01	0.03	0.37	0.43		
Powder Coating	A-13			0.01			0.01	0.01
Natural Gas Fired Bake Oven (1.7 MMBTU/hr)	A-1	0.06	0.01	0.05	0.62	0.73		
250 gallon diesel tank	A-2			0.01				0.01
Powder Coat 5.3 MM Btu/hr	A-1	0.18	0.02	0.13	1.92	2.28		0.05
Powder Coat 2.7 MM Btu/hr	A-1	0.09	0.01	0.07	0.98	1.16		0.03
Powder Coat 4.9 MM Btu/hr	A-1	0.16	0.02	0.12	1.77	2.11		0.01
Powder Coat 0.75 MM Btu/hr	A-1	0.03	0.01	0.02	0.28	0.33		0.01

20. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
0810-AR-5	

APPENDIX A – EMISSION CHANGES AND FEE CALCULATION

Fee Calculation for Minor Source

Facility Name: Camfil USA, Inc. Permit Number: 0810-AR-6 AFIN: 16-00008

\$/ton factor	23.93
Minimum Fee \$	400
Minimum Initial Fee \$	500

Old Permit New Permit 75 Permit Predominant Air Contaminant 6.32 Net Predominant Air Contaminant Increase -68.68 Permit Fee \$ 400 6.32 No Annual Fee

Check if Administrative Amendment

Annual Chargeable Emissions (tpy)

Revised	03-11-16
Revised	03-11-16

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pollutant (tpy)	Old Permit	New Permit	Change
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PM	2.8	2.9	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PM_{10}	2.8	2.9	0.1
$\begin{array}{c cccccc} SO_2 \\ VOC \\ VOC \\ CO \\ OO_X \\ HAP (Total) \\ HAP (Single) \\ \end{array} \begin{array}{c ccccccc} 0 \\ 0 \\ AP (Single) \\ \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	0.1	0.1
$\begin{array}{c cccc} {\rm CO} & & & & & & & & & & & & & & & & & & &$		75	5.1	
HAP (Total) 24.5 6.32 -18.18 HAP (Single) 9.5 5.72 -3.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.6	
HAP (Single) 9.5 5.72 -3.78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO _X	0	0.4	0.4
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	HAP (Total)	24.5	6.32	-18.18
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	HAP (Single)	9.5	5.72	-3.78
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$				0
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		0		
$\left \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$		0	0	0
$\left \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$		0	0	0
$\left \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				
$\left \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				
$\left \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				
$\left \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
0 0 0 0 0 0				
0 0 0				
		0	0	0