STATEMENT OF BASIS For the issuance of Draft Air Permit # 1009-AOP-R28 AFIN: 70-00098 #### 1. PERMITTING AUTHORITY: Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317 #### 2. APPLICANT: Clean Harbors El Dorado, LLC 309 American Circle El Dorado, Arkansas 71730 #### 3. PERMIT WRITER: Elliott Marshall #### 4. NAICS DESCRIPTION AND CODE: NAICS Description: Hazardous Waste Treatment and Disposal NAICS Code: 562211 ### 5. ALL SUBMITTALS: The following is a list of ALL permit applications included in this permit revision. | Date of Application | Type of Application | Short Description of Any Changes | | |---------------------|------------------------------|----------------------------------|--| | | (New, Renewal, Modification, | That Would Be Considered New or | | | | Deminimis/Minor Mod, or | Modified Emissions | | | | Administrative Amendment) | | | | 12/18/2024 | Modification | Add SN-24H and SN-24I | | | 1/3/2025 | Minor Mod | N/A | | ## 6. REVIEWER'S NOTES: This permitting action is necessary to: 1. Incorporate a minor modification to revise the operational limits, established in accordance with 40 C.F.R. § Part 63 Subpart EEE, specified in the current permit with newly developed values based on the latest Comprehensive Performance Test (CPT) performed on SN-01 in October 2022 and SN-44 in March/May of 2024. Plantwide Conditions #150.a., 150.c. 154, 155, 156, 159, 163, 165, 170, 172, 175, 180 and 182 will be revised as a result of this change. AFIN: 70-00098 Page 2 of 32 - 2. Revise operational limits in Plantwide condition #177 (SN-01 & SN-44) in line with changes described in the approved minor modification. This condition was erroneously not included in the initial minor modification application, but is being revised to remain consistent and to include newly developed operational limits based on CPT's at SN-01 and SN-44. - 3. Add SN-24H a 155 HP emergency natural gas generator at the Crown Building. - 4. Add SN-24I a 275 HP emergency diesel fire pump engine at the 10-day yard. - 5. Revise emission totals in the emission summary table to correct historical rounding and typographical errors. Permitted emission rates are increasing by 0.2 tpy PM/PM₁₀/SO₂/VOC, 0.8 tpy CO, 1.0 tpy NO_x, 0.02 tpy Acetaldehyde/Acrolein, 0.01 tpy Florene/Methylene Chloride/Phenanthrene, 0.05 tpy Formaldehyde, 0.06 tpy Tetrachloroethylene, 0.03 tpy Titanium Tetrachloride and 0.07 tpy Total Organic HAP. Emission increases of Tetrachloroethylene and Titanium Tetrachloride are solely due to correcting emissions totals in the emission summary table. ### 7. COMPLIANCE STATUS: The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues. Engines SN-24H and SN-24I were found to be unpermitted sources operating at the facility. In a response to department correspondence, Clean Harbors submitted a compliance plan and schedule addressing this issue. This permitting action serves to add sources SN-24H/I and associated conditions to the permit. ### 8. PSD/GHG APPLICABILITY: - a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N - b) Is the facility categorized as a major source for PSD? Y - Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list If yes for 8(b), explain why this permit modification is not PSD. No emission increases in excess of PSD significant emission rates. ### 9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY: | Source | Pollutant | Regulation
(NSPS, NESHAP or PSD) | |-----------------|---------------------------|-------------------------------------| | SN-34, SN-50 | SO ₂ , opacity | 40 CFR 60, Subpart Dc | | SN-21 | VOC | 40 CFR 60, Subpart Kb | | Equipment Leaks | VOC | 40 CFR 60, Subpart VVa | AFIN: 70-00098 Page 3 of 32 | | | D 1.2 | |--------------------------------|---|--------------------------| | Source | Pollutant | Regulation | | Boarce | Tondant | (NSPS, NESHAP or PSD) | | Facility | VOC | 40 CFR 61, Subpart C | | Facility | VOC | 40 CFR 61, Subpart E | | Equipment Leaks | HAP | 40 CFR 61, Subpart V | | Facility | VOC | 40 CFR 61, Subpart FF | | SN-31, 37, 38, 39, 40, 41 | HAP | 40 CFR 63, Subpart DD | | Tanks | HAP | 40 CFR 63, Subpart OO | | Containers | HAP | 40 CFR 63, Subpart PP | | Facility | ALL | 40 CFR 63, Subpart EEE | | SN-24A, 24B, 24D | HAP | 40 CFR 63, Subpart ZZZZ | | SN-24C, 24E | - | 40 CFR 60, Subpart IIII | | SN-50 | HAP | 40 CFR 63, Subpart DDDDD | | SN-24F, 24G, 24H | - | 40 CFR 63, Subpart JJJJ | | 01, 07, 20, 21, 44, 46, 48, 54 | PM/PM ₁₀ /SO ₂ /VOC | 40 C.F.R. 64 | | Plantwide | Class I or Class II substances-
ozone depleting substances | 40 C.F.R. 82, Subpart F | #### 10. UNCONSTRUCTED SOURCES: | Unaanatmustad | Permit | Extension | Extension | If Greater than 18 Months without | | | |---------------|----------|-----------|-----------|-----------------------------------|--|--| | Unconstructed | Approval | Requested | Approval | Approval, List Reason for | | | | Source | Date | Date | Date | Continued Inclusion in Permit | | | | N/A | | | | | | | ### 11. PERMIT SHIELD – TITLE V PERMITS ONLY: Did the facility request a permit shield in this application? N (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Rule 18 requirement.) ### 12. COMPLIANCE ASSURANCE MONITORING (CAM) – TITLE V PERMITS ONLY: List sources potentially subject to CAM because they use a control device to achieve compliance and have pre-control emissions of at least 100 percent of the major source level. List the pollutant of concern and a brief summary of the CAM plan (temperature monitoring, CEMs, opacity monitoring, etc.) and frequency requirements of § 64. AFIN: 70-00098 Page 4 of 32 | Source | Pollutant Controlled | Cite Exemption or CAM Plan Monitoring and Frequency | |--------|------------------------------------|---| | 01, 44 | PM ₁₀ & SO ₂ | COMS and limit sulfur feed rate. Daily inspection of cyclone and pressure drop readings across cyclone | | 07, 20 | PM | Daily opacity observations, pressure differential reading, and document daily inspections of bag filters | | 46, 48 | PM | Daily opacity observations, pressure differential reading, and document daily inspections of bag filters | | 21, 54 | VOC | Monitor organic liquid throughput, weekly VOC concentration and document daily inspections of the carbon canisters. | #### 13. EMISSION CHANGES AND FEE CALCULATION: See emission change and fee calculation spreadsheet in Appendix A. #### 14. AMBIENT AIR EVALUATIONS: The following are results for ambient air evaluations or modeling. ## a) NAAQS A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the DEQ Air Permit Screening Modeling Instructions. ### b) Non-Criteria Pollutants: The non-criteria pollutants listed below were evaluated. Based on Division of Environmental Quality procedures for review of non-criteria pollutants, emissions of all other non-criteria pollutants are below thresholds of concern. ## 1st Tier Screening (PAER) Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Division of Environmental Quality has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH). AFIN: 70-00098 Page 5 of 32 Emergency equipment (SN-24A through SN-24I) is not included in lb/hr totals. Since emergency equipment is the only source(s) being added with this revision, lb/hr totals, used to compare against the PAER, remained unchanged. | | TIV | DAED (11- /1) | | | |---------------------------|-----------------------------|----------------------------------|----------------|-------| | Pollutant | TLV
(mg/m ³) | $PAER (lb/hr) = 0.11 \times TLV$ | Proposed lb/hr | Pass? | | Acrolein | 0.22 | 0.0242 | 3.29E-03 | Y | | Antimony | 0.5 | 0.055 | 6.80E-01 | N | | Arsenic | 0.01 | 0.0011 | 2.42E-02 | N | | Beryllium | 0.00005 | 5.50E-06 | 2.42E-02 | N | | Cadmium
Compounds | 0.002 | 0.00022 | 5.32E-02 | N | | Calcium
Cyanamide | 0.5 | 0.055 | 3.061 | N | | Chlorine | 0.29 | 0.0319 | 15.425 | N | | Chromium | 0.5 | 0.055 | 2.43E-02 | Y | | Cobalt | 0.02 | 0.0022 | 1.07 | N | | Dioxins/Furans 1 | 0.001 | 0.00011 | 8.99E-08 | Y | | Hydrazine | 0.013 | 0.00143 | 2.07 | N | | Hydrochloric Acid | 2.98 | 0.3278 | 15.9 | N | | Hydrogen Fluoride | 0.409 | 0.045 | 6.85 | N | | Lead | 0.05 | 0.0055 | 5.319E-02 | N | | Manganese | 0.1 | 0.0022 | 7.247 | N | | Mercury | 0.01 | 0.0011 | 3.028E-02 | N | | Methyl Chloroform | 210.47 | 23.1517 | 13.51 | Y | | Methylene Chloride | 173.68 | 19.1048 | 25.39 | N | | Nickel | 1.5 | 0.165 | 2.567 | N | | Phosphine | 0.05 | 0.0055 | 3.08 | N | | Phosphorus | 0.1 | 0.011 | 3.05 | N | | Selenium | 0.2 | 0.022 | 5.570 | N | | Titanium
Tetrachloride | 0.54 | 0.0594 | 3.08 | N | AFIN: 70-00098 Page 6 of 32 | Pollutant | TLV
(mg/m³) | $PAER (lb/hr) = 0.11 \times TLV$ | Proposed lb/hr | Pass? | |----------------------|----------------|----------------------------------|----------------|-------| | Formaldehyde | 1.5 | 0.165 | 3.27E-02 | Y | | POM/PAH ³ | 0.2 | 0.022 | 3.45E-03 | Y | | Naphthalene | 52.42 | 5.766 | 0.142 | Y | ¹ Hypothetical value. The reviewing engineer screened these pollutants based on a hypothetical TLV of 0.001 mg/m3. The emission rates for dioxins and furans were based on the requirements of 40 CFR
Part 63, Subpart EEE. 2nd Tier Screening (PAIL) AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Division of Environmental Quality to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH. No modeling was performed with this revision. | Pollutant | PAIL $(\mu g/m^3) = 1/100$ of
Threshold Limit Value | Modeled Concentration (μg/m³) | Pass? | |-------------------|--|-------------------------------|-------| | Antimony | 5.0 | 0.08226 | Y | | Arsenic | 0.1 | 0.0757 | Y | | Beryllium * | 0.0005 | 0.00212 | N | | Cadmium | 0.02 | 0.00786 | Y | | Calcium Cyanamide | 5.0 | 0.29893 | Y | | Chlorine | 2.9 | 1.291 | Y | | Cobalt | 0.2 | 0.1145 | Y | | Hydrazine * | 0.13 | 0.507 | N | | Hydrochloric Acid | 29.8 | 1.326 | Y | | Hydrogen Fluoride | 4.09 | 0.641 | Y | | Lead | 0.5 | 0.0757 | Y | | Manganese | 1.0 | 0.6627 | Y | ² No TLV found. Used AEGL-1 (8-h). ³ Excludes Naphthalene. AFIN: 70-00098 Page 7 of 32 | Pollutant | PAIL (μ g/m ³) = 1/100 of
Threshold Limit Value | Modeled Concentration (μg/m³) | Pass? | |------------------------|---|-------------------------------|-------| | Mercury | 0.1 | 0.0757 | Y | | Methylene Chloride | 1,736.8 | 595.402 | Y | | Nickel | 15.0 | 0.2311 | Y | | Phosphine | 0.5 | 0.612 | Y | | Phosphorus | 1.0 | 0.29893 | Y | | Selenium | 2.0 | 0.5071 | Y | | Titanium Tetrachloride | 5.4 | 0.612 | Y | ^{*}Alternate modeling was performed for beryllium. Alternate modeling was performed for beryllium for R22 and Hydrazine for R17. The results are summarized in the following table: | Pollutant | Highest
Modeling
Result (µg/m³) | OEHHA –
Chronic REL
(μg/m³) | Averaging
Period | Pass? | |-----------|---------------------------------------|-----------------------------------|---------------------|-------| | Beryllium | 0.00034 | 0.007 | Annual | Pass | | Hydrazine | 0.086* | 0.2 | Annual | Pass | ^{*} Based on highest product received in past (51,000 lb/yr = 1.02 lb/hr); includes fugitives REL = Reference Exposure Level OEHHA = California Office of Environmental Health Hazard Assessment Air quality standards established by the California Office of Environmental Health Hazard Assessment (OEHHA) were used to evaluate the modeling results. Said agency has promulgated a Chronic REL for the target pollutant. ADEQ has accepted the use of OEHHA values as alternate air quality criteria in previous permitting actions for other Arkansas industrial facilities. The Air Division has determined that if the ambient air concentrations of a given HAP are less than 100% of the Chronic REL, then the emissions are acceptable from an air quality standpoint. # c) H₂S Modeling: ^{**}The vapor pressure of Hydrazine is 0.31 psi which is very low. In addition, the facility receives Hydrazine as a mixture of waste. Therefore, in the past permit application/renewal (R17), it is assumed that negligible amounts of fugitive emissions occur during material handling and modeled for incinerator emissions only using very conservative assumptions. The highest amount of Hydrazine received in the past (51,000 lb/yr = 1.02 lb/hr) which includes fugitives which also should account for SN-49 and SN-52 emissions. Highest Hydrazine product received in the past remains 51,000 lb/yr for this revision, R27. AFIN: 70-00098 Page 8 of 32 A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details. Is the facility exempt from the H₂S Standards If exempt, explain: N | Pollutant | Threshold value | Modeled Concentration (ppb) | Pass? | |------------------|--|-----------------------------|-------| | | 20 parts per million (5-minute average*) | 6.73 ppb (0.0067 ppm) | Y | | H ₂ S | 80 parts per billion
(8-hour average)
residential area | 0.87 ppb | Y | | | 100 parts per billion
(8-hour average)
nonresidential area | 0.87 ppb | Y | ^{*}To determine the 5-minute average use the following equation $Cp = Cm (t_m/t_p)^{0.2}$ where Cp = 5-minute average concentration Cm = 1-hour average concentration $t_m = 60 \text{ minutes}$ $t_p = 5 \text{ minutes}$ ## 15. CALCULATIONS: | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |----|--|--|--------------------------------------|------------------------------------|--| | 01 | PM/PM ₁₀ :
NESHAP limit | 0.013 gr/dscf at 7% oxygen | Baghouse | Unknown | | | 01 | SO ₂ : Sulfur feed rate | 2045 lb/hr | Scrubber | 98.9% | Sulfur content of
fuel tested before
burning | | 01 | VOC:
Testing and
Material Balance | 55,837
micrograms/L
(groundwater)
1.1 lb/hr
(combustion) | Incineration – Secondary Combustor | 99.998% | 125 gal
groundwater/hr
1,095,000 gal
groundwater/yr | | 01 | CO:
NESHAP limit | 100 ppm | N/A | N/A | | AFIN: 70-00098 Page 9 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Haunment | | Comments | |-----------|--|---|-----------------------------------|---------|---| | 01 | NO _X : 2011 Stack
Test | 110.17 lb/hr,
Standard Deviation
= 24.01 lb/hr | N/A | N/A | 2 standard
deviation safety
factor | | 01 | Organic HAPs:
Material Balance | Assumed 100% of
waste is organic
HAP | waste is organic — Secondary 99.9 | | 61,025 lb feed/hr | | 01 | HCl and Cl ₂ :
NESHAP limit | 32 ppmv | Scrubber | 95% | | | 01 | Mercury:
NESHAP limit | 130 μg/dscm | Activated Carbon | Unknown | | | 01 | Lead and Cadmium (SVM): NESHAP limit | 230 μg/dscm | Baghouse | Unknown | | | 01 | Arsenic, Beryllium,
Chromium (LVM):
NESHAP limit | 92 μg/dscm | Baghouse Unknown | | | | 01 | Sb
Co
Mn
Ni
Se | 489 μg/dscm
2224 μg/dscm
29719 μg/dscm
8898 μg/dscm
22245 μg/dscm | scm
dscm
scm | | Conservative estimates | | 01 | Dioxins/Furans:
NESHAP limit | 0.40 ng TEQ/dscm | Activated
Carbon | Unknown | Combustion gas
temp < 400 °F | | 07 | Grain loading | 25 gr/scf | Baghouse | 99.9% | 8,500 ft ³ /min | | 08 | AP-42 | Boiler factors
Natural gas | N/A | N/A | 8760 hr/yr | | 09
A&B | AP-42 Table 11.12-
2 | 0.73 lb PM/ton
0.47 lb PM ₁₀ /ton | Baghouse | 95% | 20 tons/truck
2 trucks/hr
1,794 trucks/yr | | 11 | Tanks 4.0 | N/A | N/A | N/A | 55,496 gal/yr | | 16 | Estimate | 0.1 lb/hr | Scrubber | Unknown | | | 18 | AP-42 Table 11.12- | 0.73 lb PM/ton | | _ | 20 tons/truck | | 47 | 2 | 0.47 lb PM ₁₀ /ton | Baghouse 95% | | 1 truck/hr
600 trucks/yr | | 20 | Grain loading | 15 gr/ft ³ | Baghouse | 99.9% | 1,200 ft ³ /min | | 21 | Tanks 4.0 | N/A | 2 Carbon
Canisters | 99% | 6,000 gal/hr | AFIN: 70-00098 Page 10 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control Equipment Equipment Efficiency | | Comments | |--------------|--|--|--|--|--| | | , | | (in series) | | 18,000,000 gal/yr | | 24A,
B, C | AP-42 Table 3.3-1 | 0.31 lb PM/PM ₁₀ /MMBtu 0.29 lb SO _x /MMBtu 0.36 lb VOC/MMBtu 0.95 lb CO/MMBtu 4.41 lb NOx/MMBtu | /MMBtu 0.29 lb SO _x /MMBtu 0.36 lb VOC/MMBtu 0.95 lb CO/MMBtu 4.41 lb | | 24A – 44.25 HP
24B – 196 HP
24C – 275 HP | | 24D | AP-42 Table 3.4-1 | 0.10 lb PM/PM ₁₀ /MMBtu 0.0505 lb SO _x /MMBtu 0.09 lb VOC/MMBtu 0.85 lb CO/MMBtu 3.2 lb NOx/MMBtu | | | | | 24E | AP-42 Table 3.4-1
&
EPA Tier II | 0.0505 lb SO _x /MMBtu 0.09 lb VOC/MMBtu 0.15 g PM/PM ₁₀ /BHP-hr 2.6 g CO/BHP-hr 4.8 g NO _x /BHP-hr | None N/A | | 24E – 755 HP | | 24F | AP-42 Table 3.2-3
Subpart JJJJ Table | 1.94E-2 lb PM/PM ₁₀ /MMBtu 5.88E-4 lb SO _x /MMBtu 1.0 g VOC/HP-hr 4.0 g CO/HP-hr 2.0 g NOx/HP-hr | None N/A | | 149 HP
500 hrs | AFIN: 70-00098 Page 11 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | (lb/ton lb/hr etc.) Equipment Eq | | Control
Equipment
Efficiency | Comments | |-----|--|--|--|------------------------------------|---| | 24G | AP-42 Table 3.2-2
Subpart JJJJ Table
1 | 9.99E-03 lb PM/MMBtu 7.71E-05 lb PM ₁₀ /MMBtu 5.88E-04 lb SO ₂ /MMBtu 1.18E-01 lb VOC/MMBtu 27.39 g CO/BHP-hr 3.85 g NO _x /BHP-hr | | N/A | 62.6 HP
500 hrs | | 24H | AP-42 Table 3.2-2
Subpart JJJJ Table
1 | 9.91E-03 lb
PM/PM ₁₀ /MMBtu
5.88E-04 lb
SO ₂ /MMBtu
1.0 g VOC/HP-hr
4.0 g CO/HP-hr
2.0 g NO _x /HP-hr | None N/A | | 155 HP
500 hrs | | 24I | AP-42 Chp. 3.3
C.F.R. 1039
Appendix I, Tier 2 | 0.36 lb
VOC/MMBtu
0.29 lb
SO ₂ /MMBtu
0.2 g PM/PM
₁₀
/kW-hr
3.5 g CO/kW-hr
6.40 g NO _x /kW-hr | 6 lb MMBtu 9 lb MMBtu None N/A V-hr O/kW-hr | | 275 HP
500 hrs | | 25 | Drum Sampling Air Emission Models for Waste and Wastewater | 6.191 lb VOC/1000
gallons
S=1.45 (splash
loading) | N/A | N/A | 825,000
samples/yr
95 samples /hr | | 25 | Drum Filling and
Rinsing:
Air Emission
Models for Waste
and Wastewater | L _L =6.179 lb
VOC/1000 gallons
M=102.6 lb/lb-mol
P=1.75 psia
T= 524 °R
S=1.45 (splash
loading) | N/A | N/A | 2,400,000 gal/yr
for filling and
rinsing combined
2000 hr/yr | AFIN: 70-00098 Page 12 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |----|---|---|----------------------|------------------------------------|--| | 25 | Waste Repackaging | 0.0037 lb/drum | N/A | N/A | 56,000 drums/yr | | 25 | Pumps, Flanges,
Valves:
EPA's Protocol for
Equipment Leak
Emission Estimates
dated November
1995 | Varied. See permit application for emission factors | N/A | N/A | | | 25 | Tanker and Railcar
Cleaning:
AP-42 Tables 4.8-1
and 4.8-2 | 5.1808 lb/car
0.686 lb/truck | N/A N/A | | 152 rail cars/yr
1930 tank
trucks/yr | | 25 | Vacuum Truck Loading: Air Emission Models for Waste and Wastewater | 0.184 lb/1000
gallons N/A N/A
S=1.45 | | 3,000 gal/hr
2,000,000 gal/yr | | | 25 | Equipment and Truck Wash Decontamination: Tanks 4.0 | N/A | N/A | N/A | 1,260,000 gal
washwater/yr | | 25 | Barrel Crushing | 0.26 lb
VOC(HAP)/hr | N/A | N/A | | | 25 | 18-Wheeler PM: 0.9599 lb/VMT PM10: 0.19198 lb/VMT Paved Roads: AP-42 13.2.1 CH Vehicles PM: 0.1108 lb/VMT PM10: 0.0222 | | N/A | N/A | Annual Miles
18 Wheeler: 3,800
CH Vehicles:
133,360 | AFIN: 70-00098 Page 13 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |-----------|---|--|---|------------------------------------|---| | 25 | Railcar Loading | 18.01 lb/1000
gallons | Two carbon canisters in series | 99% | 4,800 gal/hr
1,380,000 gal/yr | | 25 | Some pollutants
emission rates are
based on previous
permit values | 0.109% lb/hr; 0.60% tpy Chlorine, Hydrazine, Hydrochloric acid, Hydrogen fluoride, Methyl Chloroform, Phosphine, Titanium tetrachloride 2.89% lb/hr; 23.0% tpy Methylene chloride 0.272% lb/hr; 2.2% tpy Tetrachloroethylene | N/A | N/A | HAPS based on
VOC ratio method
– previous testing | | 31 | Waste Solvent
Tanks:
Tanks 4.0 | N/A | Carbon Canisters in series when SCC unavailable | | 15,000 gal/hr
11,720,000 gal/yr
15% annually sent
to carbon canisters | | 31 | Intermediate and
Final Product
Tanks:
Tanks 4.0 | N/A | Carbon Canisters in series when SCC unavailable | 95% | 1,831.25 gal/hr
8,790,000 gal/yr
15% annually sent
to carbon canisters | | 32 | Stack Testing | Average of stack test: 0.002 lb/hr PM/PM ₁₀ 7.5E-6 lb/hr mercury Plus a safety factor | Baghouse
and Carbon
Adsorber | N/A | 2,542 bulbs/hr *
0.63 lb/bulb * 24
hr/day = 38,435
lb/day | | 35,
36 | AP-42 Section 13.4 | PM/PM ₁₀ =Water
Circulation Rate x
Drift Rate x TDS | N/A | N/A | Drift Rate = 0.005% TDS = 13,600 ppm Water flow rate = 825 gal/min, each | | 37 | AP-42 Table 4.7-1
(Highest of Range) | 8.34 lb/ton | Carbon
Canisters in
series when | 95% | 14.1 ton/hr
67,373 ton/yr | AFIN: 70-00098 Page 14 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |----|--|--|--|------------------------------------|---| | | | | SCC
unavailable | | | | 38 | 38 AP-42 Section 5.2 Equation 1 HAPs estimated based on molecular weight and vapor pressure | | Carbon
Canisters in
series | 99% | 4,800 gal/hr
1,771,000 gal/yr | | 39 | AP-42 Section 5.2
Equation 1 | 18.04 lb/1000 gallons HAPs estimated based on molecular weight and vapor pressure | 000 s Carbon Canister lecular vapor | | 4,400 gal/hr
879,000 gal/yr | | 40 | AP-42 Section 5.2
Equation 1 | 18.04 lb/1000 gallons HAPs estimated based on molecular weight and vapor pressure | timated nolecular nd vapor by/1000 Vapor Balance System (emissions sent back to tanks) | | 1 tanker/hr
6,000 gal/tanker
6,153,000 gal/yr | | 41 | Pumps, Flanges,
Valves:
EPA's Protocol for
Equipment Leak
Emission Estimates
dated November
1995 | Varied. See permit application for emission factors | nit N/A N/A | | 28 pumps
749 valves
597 connectors | | 42 | AP-42 Section 13.4 | PM=Water
Circulation Rate x
Drift Rate x TDS
PM ₁₀ = 15%PM | N/A | N/A | Drift Rate = 0.008% TDS = 13,600 ppm Water flow rate = 6,200 gal/min | AFIN: 70-00098 Page 15 of 32 | - | | | | | | |----|--|--|--------------------------------------|---------------------------------------|--| | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | | 43 | PM/PM ₁₀ , Sb, Co, | 0.0016 gr/dscf at | | | Drift Rate = 0.0006% TDS = 13,600 ppm Water flow rate = 6,500 gal/min | | | Mn, Ni, Se: NESHAP limit | 7% oxygen | Baghouse | Unknown | 41,272.9 DSCFM | | | SO ₂ : Sulfur feed rate | 2045 lb/hr | Scrubber | 98.9% | Sulfer content of
fuel tested before
burning | | | VOC:
2011 CPT Testing | Feed Rate x removal efficiency | Incineration - Secondary Combustor | 99.997% | 61,025 lb/hr | | | CO:
NESHAP limit | 100 ppm | N/A | N/A | | | 44 | NOx: 2015
Emission Data (SN-01) | 42.8 lb/hr, Standard Deviation = 6.7 lb/hr | N/A | De-NO _x
55%
(hourly) | SN-01 (190
MMBtu/hr)
SN-44 (155
MMBtu/hr)
2 standard
deviation safety
factor | | | Organic HAPs:
Material Balance | Assumed 100% of
waste is organic
HAP | Incineration - Secondary Combustor | 99.997% | 61,025 lb feed/hr | | | Hydrazine | 51,000 lb/hr | Incineration - Secondary Combustor | 99.998% | | | | Hydrogen Fluoride | 0.60 lb/hr | Incineration - Secondary Combustor | 99.4% | | | | HCl and Cl ₂ :
NESHAP limit | 21 ppmv | Scrubber | | | | | Mercury:
NESHAP limit | 8.1 μg/dscm | Activated
Carbon | Unknown | | | | Lead and Cadmium (SVM): NESHAP limit | 10 μg/dscm | Baghouse | Unknown | | AFIN: 70-00098 Page 16 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |-----|---
--|----------------------|------------------------------------|--| | | Arsenic, Beryllium,
Chromium (LVM):
NESHAP limit | 23 μg/dscm | Baghouse | Unknown | | | | Dioxins/Furans:
NESHAP limit | 0.11 ng TEQ/dscm | Activated Carbon | Unknown | | | | Ammonia
Emission test | 20ppm | | | Deer Park, TX
5ppm x 4 safety
factor | | 45 | Tanks 4.0.9d | N/A | SCC/Carbon
Tank | 99% | 399,360 gallons/yr | | 46 | AP-42 Table 11.17-
7 | 0.01 PM
grains/DSCF
55% of PM is PM ₁₀ | Baghouse | 99% | 1,800,000 cubic
feet/hr blower
capacity | | 48 | Grain loading | 0.01 PM
grains/DSCF | Baghouse | 99% | 20,000 cubic
feet/min blower
capacity | | 49A | Shredding AP-42 Table 11.19.2-2 Tertiary Crushing of Stone | PM - 0.0054 lb/ton | N/A | N/A | 55 gal drum – 20
lb/drum
110 drums/hr | | 49A | VOC/HAP Clement's Equation for drum residues HAPs based on VOC ratio - established on historical permitted values and testing | W=2.35E-04 lb/sec 0.13% lb/hr Chlorine, Hydrazine, Hydrochloric acid, Hydrogen fluoride, Phosphine, Titanium tetrachloride 1.46% lb/hr Methyl chloroform 2.96% lb/hr Methylene chloride 0.31% lb/hr Tetrachloroethylene | N/A | N/A | MW for MC 84.9
g/gmol
A=Area of spill
3.14 ft ²
U=0.1 mph
enclosed building
D=0.26 cm ² /sec | | 49B | Injection Molding Michigan Air Emissions Michigan FORMALDEHYDE - | | N/A | N/A | 55 gal drum – 20
lb/drum
110 drums/hr | AFIN: 70-00098 Page 17 of 32 | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |----|--|---|---|--|---| | | | ACRYLIC ACID -
4.00E-05
PROPIONALDEHYDE
- 4.00E-05
ACETONE - 6.00E-05 | | | Pelletizing PM
accounted for in
shredding calcs | | 50 | AP-42
Tables 1.4-1
through 4
Natural Gas | $\begin{array}{c} lb/MMscf\\ PM/PM_10-7.6\\ SO_x-0.6\\ VOC-5.5\\ CO-84\\ NO_x-100 \end{array}$ | Controlled
Flue Gas
recirculation | N/A | 400HP - 18
MMBTU/hr
200HP – 9
MMBTU/hr | | | Shredding and Mixing: AP-42 Table 11.19.2-2 Tertiary Crushing of Stone | 0.0054 lb/ton each activity | | | 25 ton/hr
7,300 ton/yr | | | Waste Unloading
and Waste Transfer:
AP-42 13.2.4
Equation 1 | 0.00022 lb/ton each activity | | | 7,500 toll/yl | | 52 | VOC/HAP
Mass balance | 0.13% lb/hr Chlorine, Hydrazine, Hydrochloric acid, Hydrogen fluoride, Phosphine, Titanium tetrachloride 1.46% lb/hr Methyl chloroform 2.96% lb/hr Methylene chloride 0.31% lb/hr Tetrachloroethylene | N/A | 40,000 lb/day Non-haz liquid – 37% Non-haz VOC contents = 3,453 mg/L (VOC) Paint = 0.3% Paint VOC = 5% wt (propylene glycol) | | | 53 | AP-42
Table 7.1-3 and Eq.
1 from 5.2.2.1.1 | LL = $(12.46*S*M*P)/T$
S = 1.45
M = 84.94 Mol. Wt.
P = 6.159 psia
T = 524 R | Carbon
Canister | 95% | 100 tanker/yr
6,000 gal/tanker | | 54 | AP-42 | LL = (12.46*S*M*P)/T
S = 1.45
M = 84.94 Mol. Wt. | Carbon
Canister | 99% | 2,400 tanker/yr
6,000 gall/tanker | AFIN: 70-00098 Page 18 of 32 | , | SN | Emission Factor
Source
(AP-42, testing,
etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control
Equipment | Control
Equipment
Efficiency | Comments | |---|----|--|--|----------------------|------------------------------------|-------------------------------------| | | | Table 7.1-3 and Eq. 1 from 5.2.2.1.1 | P = 6.159 psia
T = 524 R | | | 55 gal/drum | | | 55 | AP-42
Table 7.1-3 and Eq.
1 from 5.2.2.1.1 | LL= $(12.46*S*M*P)/T$
S = 1.45
M = 84.94 Mol. Wt.
P = 6.159 psia
T = 524 R | Carbon
Canister | 99% | 60 railcar/yr
23,000 gal/railcar | # 16. TESTING REQUIREMENTS: The permit requires testing of the following sources. | SN | Pollutants | Test Method | Test Interval | Justification | |--|--|---|---|--| | 01, 44 | SO ₂ Removal
Efficiency | 6C | Every Five
Years | To ensure compliance with SO ₂ limits | | 01, 44 | Condensable PM | 202 | Every Five
Years | To ensure compliance with PM limits | | | D/F | 0023A or 23 of
Part 60
Appendix A
(approval
required) | | | | | Mercury | 29 | Every 61 months | NESHAP EEE | | 01, 44 | Lead and cadmium | 29 | Every 61 months
and after a
change in the | | | (Comprehensive
Performance
Test) | Arsenic,
beryllium, and
chromium | 29 | design,
operation, or
maintenance | | | | Carbon
monoxide and
hydrocarbons | CO or
Hydrocarbon
CEMS | practices of the source | | | | HCl and chlorine gas | 26/26A of Part
60 Appendix A,
320 or 321of
Part 63
Appendix A, or | | | AFIN: 70-00098 Page 19 of 32 | SN | Pollutants | Test Method | Test Interval | Justification | |--|---|---|--|--| | | | ASTM D 6735-
01 and 26/26A
with additional
requirements | | | | | PM | 5 or 5I of Part
60 Appendix A | | | | | Hydrocarbons
(Destruction and
Removal
Efficiency Test) | Refer to
NESHAP EEE | Once unless
source is
modified | | | 01, 44
(Confirmatory
Performance
Test) | D/F | 0023A or 23 of
Part 60
Appendix A
(approval
required) | 31 months after
the previous
comprehensive
performance test | NESHAP EEE | | 21 | VOC concentration | 21 | See permit | To determine breakthrough. See CAM plan. | | 34 | Opacity | 9 | See NSPS Dc | Per NSPS Dc | | 41 | VOC | 21 | Varied. See 60,
VVa | 60, VVa | | Carbon Canisters
for Subpart DD
Sources (unless
use design
analysis) | VOC | 18 | 63, DD | 63, DD | | Incinerator for
Subpart DD
(unless use
design analysis) | VOC | 18 | 63, DD | 63, DD | | Leak Interface | VOC | 21 | 63, DD | 63, DD | | 35, 36, 42, 43 | PM/PM ₁₀ (TDS) | Conductivity and TDS | Weekly
conductivity
testing, with
quarterly direct
TDS testing | To ensure proper maintenance and operation | | 50 | Opacity | 9 | See NSPS Dc | Per NSPS Dc | # 17. MONITORING OR CEMS: AFIN: 70-00098 Page 20 of 32 The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.) | SN | Parameter or Pollutant
to be Monitored | Method
(CEM,
Pressure
Gauge, etc.) | Frequency | Report
(Y/N) | |--------|---|---|---|-----------------| | 01, 44 | Mercury Emissions | Monitors | Daily – ONLY if
requirements of
Plantwide Condition
24 are not met. | Y | | 01, 44 | СО | CEM | Continuously | Y | | 01, 44 | O ₂ | CEM | Continuously | Y | | 01, 44 | NOx | CEM | Continuously | Y | | 01, 44 | Opacity | COM or
CPM | Continuously | Y | | 01, 44 | PM | CEM | Not required until Agency promulgates all performance specifications and operational requirements | N/A | | 01, 44 | Feedrates: Hazardous Waste;
Ash; Chlorine and chloride;
Mercury; Semivolatile
Metals; Low Volatility
Metals; Activated Carbon | CMS | Continuously | Y | | 01, 44 | Temperature: Secondary combustion chamber; waste fired boiler | CMS | Continuously | Y | | 01, 44 | Flue gas flowrate | CMS | Continuously | Y | | 01, 44 | Scrubber Pressure Drop | CMS | Continuously | Y | | 01 | Scrubber Liquid Flowrate | CMS | Continuously | Y | | 44 | Condenser Liquid Flowrate | | | | | 01 | Scrubber Inlet Liquid pH | CMS | Continuously | Y | | 44 | Condenser Inlet Liquid pH | | | | | 01, 44 | Activated Carbon Carrier Fluid Flowrate | CMS | Continuously | Y | AFIN: 70-00098 Page 21 of 32 | | | Method | | | |-----------------------------------|--|----------------------|--|--------| | | Parameter or Pollutant | (CEM, | _ | Report | | SN | to be Monitored | , | Pressure Frequency | | | | to be Montored | Gauge, etc.) | | (Y/N) | | 01, 44 | Baghouse pressure drop, per cell | CMS | Continuously | Y | | 01, 44 | Combustion Chamber
pressure: Kiln; Secondary
Combustion Chamber; Waste
Fired Boiler | CMS | Continuously | Y | | 41 | Equipment Leaks | See 60, VVa | See 60, VVa | | | 41 | Equipment Leaks of Pumps | 60.485a(b) | Monthly | Y | | 41 | Equipment Leaks of Valves
in Gas/Vapor/Light
Liquid
Service | 60.485a(b) | Monthly | Y | | 41 | Equipment Leaks of Connectors in Gas/Vapor/Light Liquid Service | 60.485a(b) | See 60, VVa | Y | | 01, 44 SCC | Vent Stream Flow | CMS | Hourly | Y | | Subpart
DD Carbon
Canisters | Concentration of Organic
Compounds | CMS | Continuously | Y | | Subpart
DD Carbon
Canisters | Concentration of Organic
Compounds | CMS | Daily or no greater
than 20% of the time
required to consume
the total carbon
working capacity | Y | | 01, 44 SCC | Concentration of Organic
Compounds | CMS | Continuously | Y | | 07, 20, 46,
48 | Pressure Drop | CMS | Continuously | Y | | 21, 54 | VOC Concentration | Portable
Analyzer | Weekly | Y | AFIN: 70-00098 Page 22 of 32 # 18. RECORDKEEPING REQUIREMENTS: The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded. | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | |--------|---|--------------------------|------------------|--------------| | 01, 44 | Opacity | 20% | Continuously | N | | 01, 44 | Cyclone Inspection and pressure drop | 1-14 in. water column | Daily/Continuous | Y | | 01 | Sulfur Feed Rate | 2045 lb/hr
2681.8 tpy | Monthly | Y | | 44 | Sulful I ced Rate | 2045 lb/hr
1590 tpy | Wienen | 1 | | 01, 44 | Scrubber efficiency for SO ₂ from test | 98.9% | 5 yrs | Y | | 01, 44 | PM, cyanide
compounds, hydrazine,
hydrogen fluoride,
phosphine, and
titanium tetrachloride
Testing results | See Permit
Limits | 5 yrs | Y | | 01 | NO _X Emissions | 158.2 lb/hr
451.0 tpy | Continuously | Y | | 44 | NOX Emissions | 56.2 lb/hr
38.0 tpy | Continuously | 1 | | 01 | Utilization Rate of
Recovered Energy
from liquid waste | 74%
Maximum | Monthly | Y | | 07 | Opacity | 5% | Daily | Y | | 07 | Bag Filter Inspections | N/A | Daily | Y | | 07 | Pressure Drop | Manufacturer spec. | Continuously | Y | | 08 | Natural Gas | 15,840,000
scf/yr | Monthly | Y | | 09A&B | Opacity | 5% | Weekly | N | | 09A&B | Number of trucks containing lime | 1794 trucks/yr combined | Monthly | Y | | 11 | Gasoline | 55,496 gal/yr | Monthly | Y | AFIN: 70-00098 Page 23 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report | |----------------|---|--|------------------------|------------| | 11 | Vapor Pressure of Gasoline | 6.2 psia at 70°F | As Needed | (Y/N)
N | | 18 & 47 | Opacity | 5% | Weekly | N | | 18 & 47 | Number of trucks of flyash and/or lime | 520 trucks/yr | Monthly | Y | | 20 | Opacity | 5% | Daily | N | | 20 | Bag Filter Inspections | N/A | Daily | Y | | 20 | Pressure Drop | Manufacturer spec. | Continuously | Y | | 21 | Operating plan for carbon canisters and maintenance performed | N/A | N/A | N/A | | 21 | Vessel Analysis | Size | N/A | N | | 21 | Organic liquids | 18,000,000
gal/yr | Monthly | Y | | 21 | Vapor Pressure of tank contents | 6.159 psia at
65°F | As Needed | N | | 21 | VOC Concentration
between carbon
canisters | 500 ppmv or
greater
requires
replacement of
one or both
carbon
canisters | Weekly | Y | | 21 | Inspection Documentation for carbon canisters | N/A | Daily | Y | | 24 A through I | Hours of Operation | 500 hrs each | Monthly when operating | N | | 25 | Drum Filling | 2,400,000
gal/yr | Monthly | Y | | 25 | Waste Repackaging | 56,000
drums/yr | Monthly | Y | | 25 | Tanker and Railcar
Cleaning | 152 rail tank
cars/yr | Monthly | Y | | 25 | Tanker and Railcar
Cleaning | 1930 tank
trucks/yr | Monthly | Y | AFIN: 70-00098 Page 24 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | |----|--|--|-----------|--------------| | 25 | Vacuum Truck
Loading | 2,000,000 gal
rain water
collection/yr | Monthly | Y | | 25 | Equipment and Truck Wash/Decontamination | 1,260,000 gal
wash water/yr | Monthly | Y | | 25 | Paved roads | 3,800 vehicle
miles traveled
via 18-wheel
traffic/yr | Monthly | Y | | 25 | Paved roads | 133,360
vehicle miles
traveled via
Clean Harbors
vehicles/yr | Monthly | Y | | 25 | Road Maintenance
Plan Recordkeeping | N/A | N/A | N | | 31 | Throughput of Waste Solvent | 11,720,000
gal/yr | Monthly | Y | | 31 | Throughput of Intermediate and Final Products | 8,790,000
gal/yr | Monthly | Y | | 31 | Throughput of waste solvent while venting to carbon canister | 1,758,000
gal/yr | Monthly | Y | | 31 | Throughput of intermediate and final products while venting to carbon canister | 1,318,500
gal/yr | Monthly | Y | | 31 | Vapor Pressure of
Tank Contents | 6.159 psia at
65°F | As Needed | N | | 32 | Amount of bulbs processed per day | 38,435 lbs of bulbs/day | Daily | N | | 32 | Opacity | 5% | Weekly | N | | 37 | Throughput of Solvent | 67,373 tons/yr | Monthly | Y | | 37 | Throughput of solvent while venting to carbon canister | 10,106 tons/yr | Monthly | Y | | 38 | Loadout to Railcar | 1,771,000
gal/yr | Monthly | Y | | 39 | Loadout to 55 gallon
drums | 879,000 gal/yr | Monthly | Y | AFIN: 70-00098 Page 25 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | |-----|---|--------------------------------|-----------------------------------|--------------| | 4.0 | Loadout to Tanker | 6,153,000 | Monthly | Y | | 40 | Trucks | gal/yr
1 tanker/hr | As needed | N | | 41 | Items specified in 60.486a(a)(3) | See 60, VVa | Varied. See 60,
VVa | N | | 41 | Leak detected log (items specified in 60.486a(c)) | See 60, VVa | As Needed when each leak detected | N | | 41 | Log for 60.486a(e) | See 60, VVa | As Needed | N | | 41 | Log for 60.486a(j) | N/A | As Needed | N | | 41 | See 60.487a(b) | N/A | Semiannual | Y | | 41 | See 60.487a(c) | N/A | Semiannual | Y | | 45 | Diesel fuel throughput | 399,360
gallons per
year | Monthly | N | | 46 | Opacity | 5% | Daily | N | | 46 | Bag Filter Inspections | N/A | Daily | Y | | 46 | Pressure Drop | Manufacturer spec. | Continuously | Y | | 48 | Opacity | 5% | Daily | N | | 48 | Bag Filter Inspections | N/A | Daily | Y | | 48 | Pressure Drop | Manufacturer spec. | Continuously | Y | | 49 | Opacity | 5% | Weekly | N | | 49 | Drums Processed | 963,600
drums/yr | Monthly | Y | | 49 | Drum Bill of Lading | El Dorado
RCRA waste | Monthly | N | | 52 | Facility Database | codes | iviolitiliy | 11 | | 50 | Amount of fuel combusted | N/A | Monthly | N | | 50 | Records required by NSPS | See NSPS | See NSPS | Y | | 52 | Opacity | 5% | Weekly | N | | 52 | Debris and waste processed | 7,300 tons/yr | Monthly | Y | AFIN: 70-00098 Page 26 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | |---|--|--|------------------|--------------| | 53 | Tankers | 100 tankers/yr | Monthly | Y | | 54 | Organic liquids | 14,400,000
gal/yr
2,400 tankers | Monthly | Y | | 54 | VOC Concentration
between carbon
canisters | 500 ppmv or
greater
requires
replacement of
one or both
carbon
canisters | Weekly | Y | | 54 | Inspection Documentation for carbon canisters | N/A | Daily | Y | | 55 | Railcars and Gallons of material | 60 railcars/yr
1,380,000
gal/yr | Monthly | Y | | 01, 44 SCC | Vent stream flow | Must be established | Continuous | Y | | 63, Subpart DD sources | 63.696(g)(1) and (g)(2) | N/A | Semiannual | N | | Tanks (Level 2) | Inspections | N/A | Annual | N | | Closed vent
systems | Inspections and Monitoring | N/A | 63, DD 63.695(c) | N | | Closed vent complying with 63.693(c)(1)(ii) | Inspections | N/A | 63.695(c)(2) | N | | Closed vent systems | Defect repair | N/A | As Needed | N | | 63, Subpart DD control device systems | Malfunctions 63.696(h)(1) to (h)(3) | N/A | As Needed | Y | | Plantwide | Divert Stack
Procedures | See Plantwide
Conditions 10,
11, 13, and 15 | As needed | Y | | Plantwide | Monthly Fuel Use | No limit specified, used to show | Monthly | N | AFIN: 70-00098 Page 27 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | |--------|--------------------------------------|--|------------------------------|------------------| | | | compliance with NSPS Dc | | | | 01, 44 | Operating Record Requirements | See NESHAP
EEE | As needed | N | | | | 13,383 lb/hr
Kiln 1 | | | | | | 30,168 lb/hr
Kiln 2 | | | | 01 | | 13,601 lb/hr (secondary | | | | | Total Hazardous Waste
Feedrate | combustion chamber) | Continuously (Hourly Rolling | \mathbf{Y}^{1} | | | | 3,873 lb/hr
(waste fired
boiler) | Average) | | | 44 | | 28,035 lb/hr
Kiln | | | | 77 | | 12,602 lb/hr
SCC | | | | | | 5,005 lb/hr
Kiln 1 | | | | | Pumpable Hazardous
Waste Feedrate | 6,656 lb/hr
Kiln 2 | | | | 01 | | 13,601 lb/hr
SCC | Continuously | | | | | 3,873 lb/hr
(waste fired
boiler) | (Hourly Rolling
Average) | Y^1 | | 44 | _ | 6,827 lb/hr
Kiln | | | | | | 12,602 lb/hr
SCC | | | | 0.1 | | 15,695 lb/hr | Continuously | | | 01 | Ash Feedrate | 164.2 lb/hr
(WFB) | (Rolling 12-hr average) | Y^1 | | 44 | | 10,252 lb/hr | average) | | | 01 | Chlorine and Chloride
Feedrate | Total: 2718
lb/hr | Continuously | Y^1 | AFIN: 70-00098 Page 28 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | | |----|----------------------------------|---|---------------------------------------
----------------|--| | | | 1,020 lb hr
(WFB) | (Rolling 12-hr
average) | | | | 44 | | 2,035 lb/hr | | | | | | | 0.509 lb/hr | | | | | 01 | Mercury Feedrate | 0.187 lb/hr
(WFB) | Continuously (Rolling 12-hr average) | 1 | | | 44 | | 0.38 lb/hr | average) | | | | 01 | | 134 lb/hr | Continuously | | | | 44 | Semi volatile metals | 73 lb/hr (kiln) | (Rolling 12-hr | \mathbf{Y}^1 | | | 01 | feedrate | 3.12 lb/hr
(WFB) | average) | - | | | 01 | | 44 lb/hr | | | | | 44 | | 46 lb/hr (kiln) | Continuously | | | | 01 | Low volatile metals feedrate | 2.87
lb/MMBtu
And 30 lb/hr
(WFB) | (Rolling 12-hr
average) | Y^1 | | | 01 | Activated carbon | 22.4 lb/hr | Continuously | | | | 44 | feedrate | 24.9 lb/hr | (Hourly Rolling
Average) | \mathbf{Y}^1 | | | 01 | Secondary combustion | 1,858°F | Continuously | 1 | | | 44 | chamber temperature | 1,855°F | (Hourly Rolling
Average) | \mathbf{Y}^1 | | | 01 | Waste fired boiler temperature | 1,856°F | Continuously (Hourly Rolling Average) | \mathbf{Y}^1 | | | 01 | | 100,568 acfm | Continuously | | | | 44 | Flue gas flowrate | 86,967 acfm | (Hourly Rolling
Average) | \mathbf{Y}^1 | | | 01 | WFB Max combustion air flow rate | 8,630 acfm | Continuously (Hourly Rolling Average) | \mathbf{Y}^1 | | | 01 | Scrubber pressure drop | 33.8 in. w.c. | Continuously | | | | 44 | Condenser pressure drop | 10.9 psi | (Hourly Rolling
Average) | \mathbf{Y}^1 | | AFIN: 70-00098 Page 29 of 32 | SN | Recorded Item | Permit Limit | Frequency | Report (Y/N) | |--------|---|---|---|----------------| | 01 | Scrubber liquid flowrate | 664 gpm | Continuously | \mathbf{Y}^1 | | 44 | Condenser liquid flowrate | 3635 gpm | (Hourly Rolling
Average) | 1 | | 01 | Scrubber liquid pH | 3.4 | Continuously | 3 71 | | 44 | Condenser liquid pH | 4.1 | (Hourly Rolling Average) | \mathbf{Y}^1 | | 01 | Activated carbon | 30 scfm | Continuously | \mathbf{Y}^1 | | 44 | carrier fluid flowrate | 60.1 scfm | (Hourly Rolling Average) | Y | | 01, 44 | Baghouse pressure drop, per cell | 1 in. w.c.
(minimum)
16 in. w.c.
(maximum) | Continuously
(Hourly Rolling
Average) | \mathbf{Y}^1 | | 01, 44 | Combustion chamber pressure: kiln, secondary combustion chamber | Below
atmospheric | Instantaneous | \mathbf{Y}^1 | | 01 | waste fired boiler | | | | | 01, 44 | CO Emissions | 100 ppmv | Continuously | \mathbf{Y}^1 | | | Flow rate & Pressure
Drop | Manufacturer
Spec | Daily | N | | 16 | Caustic concentration | Replaced
when below
5% strength | Once per 12-hour
shift | N | # 19. OPACITY: | SN | Opacity | Justification for limit | Compliance
Mechanism | |--------|---------|-------------------------|-------------------------| | 01, 44 | 20% | Dept. Guidance | COMS | | 04 | 5% | Dept. Guidance | Natural Gas as Fuel | | 07 | 5% | Dept. Guidance | Weekly | | 08 | 5% | Dept. Guidance | Natural Gas as Fuel | | 09 | 5% | Dept. Guidance | Weekly | | 18 | 5% | Dept. Guidance | Weekly | AFIN: 70-00098 Page 30 of 32 | SN | Opacity | Justification for limit | Compliance
Mechanism | |------------|-------------|-------------------------|-----------------------------| | 20 | 5% | Dept. Guidance | Weekly | | 22 | 5% | Dept. Guidance | Weekly | | 24A-E, 24I | 20% | Dept. Guidance | Annual | | 24F-H | 5% | Dept. Guidance | Annual | | 25 | Off-site 5% | Dept. Guidance | Inspections | | 32 | 5% | Dept. Guidance | Weekly | | 42, 43 | 20% | Dept. Guidance | Conductivity & TDS sampling | | 46 | 5% | Dept. Guidance | Daily | | 48 | 5% | Dept. Guidance | Daily | | 49A, 49B | 5% | Dept. Guidance | Weekly | | 50 | 5% | Dept. Guidance | Natural Gas as Fuel | | 52 | 5% | Dept. Guidance | Weekly | # 20. DELETED CONDITIONS: | Former SC | Justification for removal | |-----------|---------------------------| | | N/A | # 21. GROUP A INSIGNIFICANT ACTIVITIES: The following is a list of Insignificant Activities including revisions by this permit. | Source
Name | Group A | | | Emis | sions (| tpy) | | | | |-------------------|----------|---------------------|--------|----------|---------|------|----------|----------|--| | | Category | PM/PM ₁₀ | SO_2 | VOC | СО | NOx | HAPs | | | | | canagory | PIVI/PIVI10 | SO_2 | | | | Single | Total | | | 10,000 gal | | | | | | | | | | | Diesel | | | | | | | | | | | Storage | A-3 | 0 | 0 | 0.03 | 0 | 0 | 0.03 | 0.03 | | | Tank and | A-3 | U | U | 0.03 | U | U | 0.03 | 0.03 | | | Dispenser | | | | | | | | | | | Unit | | | | | | | | | | | 550 gal
Diesel | A-3 | 0 | 0 | 0.000475 | 0 | 0 | 0.000475 | 0.000475 | | AFIN: 70-00098 Page 31 of 32 | Source | Group A | Emissions (tpy) | | | | | | | | |---------------------|----------|-----------------|--------|---------|-----|--------|---------|---------|--| | Name | Category | D) //D) / | | MOG | GO. | NO | HA | APs | | | Name | Category | PM/PM_{10} | SO_2 | VOC | CO | NO_x | Single | Total | | | Storage
Tank | | | | | | | - | | | | 1,000 gal | | | | | | | | | | | Diesel | | | | | | | | | | | Storage | | | 0 | 0.0000 | | | 0.0000 | 0.0000 | | | Tank | A-3 | 0 | 0 | 0.00082 | 0 | 0 | 0.00082 | 0.00082 | | | (formally | | | | | | | | | | | SN-12) | | | | | | | | | | | 500 gal | | | | | | | | | | | Diesel | | | | | | | | | | | Storage | A-3 | 0 | 0 | 0.00082 | 0 | 0 | 0.00082 | 0.00082 | | | Tank | A-3 | U | U | 0.00082 | | U | 0.00082 | 0.00082 | | | (formally | | | | | | | | | | | SN-12) | | | | | | | | | | | 250 gal | | | | | | | | | | | Diesel | A-3 | 0 | 0 | 0.00041 | 0 | 0 | 0.00041 | 0.00041 | | | Storage | | | | | | | | | | | Tank | | | | | | | | | | | Nine (9) | | | | | | | | | | | Solar | A-13 | 0 | 0 | 0.0014 | 0 | 0 | 0 | 0 | | | Sipper | A-13 | U | U | 0.0014 | U | U | U | 0 | | | Recovery
Systems | | | | | | | | | | | Surface | | | | | | | | | | | Water | A-13 | 0 | 0 | 0.00014 | 0 | 0 | 0.00003 | 0.00014 | | | Treatment | 71 13 | Ü | O | 0.00011 | | | 0.00003 | 0.00011 | | | SN-22 | | | | | | | | | | | Brine Plant | | | | | | | | | | | Sources | A-13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | (other than | | | | | | | | | | | listed) | | | | | | | | | | | Filter Aid | | | | | | | | | | | Loading | | | | | | | | | | | Operation | | | | | | | | | | | (at Tank | A-13 | 0.0000078 | 0 | 0 | 0 | 0 | 0 | 0 | | | 597) | | | | | | | | | | | (formally | | | | | | | | | | | SN-22) | | | | | | | | | | | Bulk Solid | A 12 | 0 | 0 | 0.01 | 0 | 0 | 0.01 | 0.01 | | | Mixing | A-13 | 0 | 0 | 0.91 | 0 | 0 | 0.91 | 0.91 | | | Process | | | | | | | | | | AFIN: 70-00098 Page 32 of 32 | Source
Name | Group A | | | Emissions (tpy) | | | | | | |----------------|----------|---------------------|--------|-----------------|----|--------|--------|-------|--| | | Category | PM/PM ₁₀ | SO_2 | VOC | СО | NO | HAPs | | | | | 6 - 3 | F1V1/ F1V11() | 302 | VOC | | NO_x | Single | Total | | | Backup | | | | | | | | | | | Carbon | | | | | | | | | | | Filter | | | | | | | | | | | Railcar | | | | | | | | | | | Unloading | A-13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Emergency | A-13 | U | U | U | | U | U | U | | | Scrubber | | | | | | | | | | | Electric | | | | | | | | | | | Heater and | | | | | | | | | | | Fan at | A-13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Pellet Silo | | | | | | | | | | | #1 | | | | | | | | | | | Electric | | | | | | | | | | | Heater and | | | | | | | | | | | Fan at | A-13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Pellet Silo | | | | | | | | | | | #2 | | | | | | | | | | # 22. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS: The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit. | Permit # | |--------------| | 1009-AOP-R27 | Facility Name: Clean Harbors El Dorado, LLC Permit Number: 1009-AOP-R28 AFIN: 70-00098 | 000 | |-----| HAPs not included in VOC or PM: Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride Air Contaminants: All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.) | Pollutant (tpy) | Check if
Chargeable
Emission | Old Permit | New Permit | Change in Emissions | Permit Fee
Chargeable
Emissions | Annual
Chargeable
Emissions | |-------------------|------------------------------------|------------|------------|---------------------|---------------------------------------|-----------------------------------| | PM | | 92.1 | 92.3 | 0.2 | 0.2 | 92.3 | | PM_{10} | | 66.7 | 66.9 | 0.2 | | | | PM _{2.5} | | 0 | 0 | 0 | | | | SO_2 | | 95.1 | 95.3 | 0.2 | 0.2 | 95.3 | | VOC | | 56.1 | 56.3 | 0.2 | 0.2 | 56.3 | | со | | 231.7 | 232.5 | 0.8 | | | | NO_X | | 536.4 | 537.4 | 1 | 1 | 537.4 | | Lead Compounds | | 0.26 | 0.26 | 0 | | | | Pollutant (tpy) | Check if
Chargeable
Emission | Old Permit | New Permit | Change in Emissions | Permit Fee
Chargeable
Emissions | Annual
Chargeable
Emissions | |---------------------|------------------------------------|-------------|-------------|---------------------|---------------------------------------|-----------------------------------| | Acetaldehyde | | 0.01 | 0.03 | 0.02 | | | | Acrolein | | 0.01 | 0.03 | 0.02 | | | | Acrylic Acid | | 0.01 | 0.01 | 0 | | | | Antimony Compounds | | 2.97 | 2.97 | 0 | | | | Arsenic Compounds | | 0.14 | 0.14 | 0 | | | | Beryllium Compounds | | 0.14 | 0.14 | 0 | | | | Cadmium Compounds | | 0.26 | 0.26 | 0 | | | | Calcium cyanimide | | 13.37 | 13.37 | 0 | | | | Chlorine | ✓ | 67.6 | 67.6 | 0 | 0 | 67.6 | | Chromium Compounds | | 0.14 | 0.14 | 0 | | | | Cobalt Compounds | | 4.71 | 4.71 | 0 | | | | Cyanide Compounds | | 13.37 | 13.37 | 0 | | | | Dioxins/Furans | | 0.000000469 | 0.000000469 | 0 | | | | Fluorene | ~ | 0.08 | 0.09 | 0.01 | 0.01 | 0.09 | | Formaldehyde | | 0.01 | 0.06 | 0.05 | | | | Hydrazine |
✓ | 9.1 | 9.1 | 0 | 0 | 9.1 | | Hydrochloric acid | ~ | 69.58 | 69.58 | 0 | 0 | 69.58 | | Hydrogen fluoride | ✓ | 30.1 | 30.1 | 0 | 0 | 30.1 | | Manganese Compounds | | 31.76 | 31.76 | 0 | | | | Mercury Compounds | | 0.16 | 0.16 | 0 | | | | Methyl chloroform | ✓ | 18.82 | 18.82 | 0 | 0 | 18.82 | | Methylene chloride | ✓ | 28.06 | 28.07 | 0.01 | 0.01 | 28.07 | | Nickel Compounds | | 11.27 | 11.27 | 0 | | | | Phenanthrene | | 0.08 | 0.09 | 0.01 | | | | Phosphine | ~ | 13.52 | 13.52 | 0 | 0 | 13.52 | | Phosphorus | | 13.37 | 13.37 | 0 | | | | Propionaldehyde | | 0.01 | 0.01 | 0 | | | | Selenium Compounds | | 24.42 | 24.42 | 0 | | | | Pollutant (tpy) | Check if
Chargeable
Emission | Old Permit | New Permit | Change in Emissions | Permit Fee
Chargeable
Emissions | Annual
Chargeable
Emissions | |------------------------|------------------------------------|------------|------------|---------------------|---------------------------------------|-----------------------------------| | Tetrachloroethylene | > | 14.61 | 14.67 | 0.06 | 0.06 | 14.67 | | Titanium tetrachloride | | 13.49 | 13.52 | 0.03 | | | | Single Organic HAP | | 30.47 | 30.52 | 0.05 | | | | Total Organic HAP | | 34.44 | 34.51 | 0.07 | | | | H2S | ~ | 0.1 | 0.1 | 0 | 0 | 0.1 | | Ammonia | ~ | 9.8 | 9.8 | 0 | 0 | 9.8 | | Acetone | ✓ | 0.1 | 0.1 | 0 | 0 | 0.1 |