#### **RESPONSE TO COMMENTS**

# CLEAN HARBORS EL DORADO, LLC PERMIT #1009-AOP-R7 AFIN: 70-00098

On May 13, 2010 and May 20, 2010, the Director of the Arkansas Department of Environmental Quality gave notice of a draft permitting decision for the above referenced facility. During the comment period, written comments on the draft permitting decision were submitted by the facility. The Department's response to these issues follows.

Note: The following page numbers and condition numbers refer to the draft permit. These references may have changed in the final permit based on changes made during the comment period.

#### Comment #1:

Page 53, Source Description: To avoid duplication of tank number designations, Clean Harbors wishes to make the following changes to the tank descriptions:

Please change Tank Numbers 600-TNK-007 through 009 to Tanks 502 through 504; and change Tanks 600 TNK 501 through 523 to Tanks 505 through 527.

# **Response to Comment #1:**

The tank numbers were changed as requested. In addition to the Source Description, the tank numbers were changed in the Summary of Permit Activity, Process Description, and Plantwide Condition #35.

#### Comment #2:

Specific Condition 93: Please change "per manufacturers specifications on each tank" to "manufacturers specifications on the tank farm." All solvent recovery system will be vented to a single carbon system.

#### **Response to Comment #2:**

Specific Condition #93 was changed to the following:

The permittee shall maintain the carbon canisters per manufacturer's specifications on the tank farm while any material is being stored in any tank within the tank farm. [§19.303 of Regulation #19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

#### Comment #3:

Specific Condition 97: Clean Harbors wishes to make clear that it is their belief that the solvent recovery system is not a synthetic, organic chemical manufacturing industry unit, and therefore, will not be subject to 40 CFR Part 60, Subpart VVa. Clean Harbors intends to petition EPA for an applicability determination.

#### **Response to Comment #3:**

The affected facility per 40 CFR Part 60, Subpart VVa is "the group of all equipment (defined in §60.481a) within a process unit." A process unit is defined as "components assembled to produce, as intermediate or final products, one or more of the chemicals listed in §60.489 of this part. A process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the product." The solvent recovery equipment at Clean Harbors is expected to produce one or more of the chemicals listed in 40 CFR §60.489. Review of EPA's Applicability Determination Index did not give any indication that the solvent recovery equipment was not part of the synthetic organic chemicals manufacturing industry. Therefore, the solvent recovery equipment appears to meet the applicability criteria of 40 CFR Part 60, Subpart VVa. Clean Harbors also did not provide any regulatory references or EPA documentation to support the claim that 40 CFR Part 60, Subpart VVa does not apply. The Department agrees that an applicability determination should be requested from EPA.

#### Comment #4:

Specific Condition 98: Clean Harbors wishes to make clear that it is their belief that the solvent recovery system is not a synthetic, organic chemical manufacturing industry unit, and therefore, will not be subject to 40 CFR Part 60, Subpart NNN. Clean Harbors intends to petition EPA for an applicability determination.

#### **Response to Comment #4:**

No evidence was submitted that indicates that the solvent recovery system is not a synthetic organic chemicals manufacturing industry unit. However, since the vacuum pot distillation unit, thin film evaporator, and the two distillation columns will be batch units; they will be exempt from 40 CFR Part 60, Subpart NNN per §60.660(c)(3). Specific Condition #98 was removed from the permit due to the exemption.

#### Comment #5:

Specific Condition 98a: Clean Harbors requests that this condition be clarified to note that the comprehensive performance test (CPT), as required by 40 CFR Part 63, Subpart EEE, will be used to fulfill this requirement. The CPT will be conducted on the schedule required by Subpart EEE, which will be prior to installation of the solvent recovery system; however, the CPT is designed to determine destruction and removal efficiency (DRE) under worst-case conditions of the entire incinerator complex. The contribution by the proposed solvent recovery system will be de minimis, and should have no impact on the expected DRE results.

#### **Response to Comment #5:**

Specific Condition #98 was removed from the permit due to the exemption at §60.660(c)(3) of 40 CFR Part 60, Subpart NNN.

#### Comment #6:

Finally, Clean Harbors wishes to ask ADEQ to consider regulating the solvent recovery system under 40 CFR Part 63, Subpart DD-National Emission Standards for Hazardous Air Pollutants from Offsite Waste and Recovery Operations, rather than the multiple standards, which have been included. This will remove redundant requirements and make compliance much easier to demonstrate, while reducing the overall regulatory burden on the facility.

#### **Response to Comment #6:**

The multiple standards that Clean Harbors is referring to include: 40 CFR Part 63, Subpart DD and 40 CFR Part 60, Subparts VVa and NNN.

40 CFR Part 60, Subpart NNN was removed from the permit since the vacuum pot distillation unit, thin film evaporator, and the two distillation columns will be batch units and thus exempt from 40 CFR Part 60, Subpart NNN per §60.660(c)(3).

While 40 CFR Part 60, Subpart VVa and 40 CFR Part 63, Subpart DD may have similar requirements; one standard regulates the VOC emissions while the other standard regulates HAP emissions. The applicability of 40 CFR Part 60, Subpart VVa is discussed in the Response to Comment #3.



July 16, 2010

Kathy Shoemaker Sr. Compliance Manager Clean Harbors El Dorado, LLC 309 American Circle El Dorado, AR 71730

Dear Ms. Shoemaker:

The enclosed Permit No. 1009-AOP-R7 is issued pursuant to the Arkansas Operating Permit Program, Regulation # 26.

After considering the facts and requirements of A.C.A. §8-4-101 et seq., and implementing regulations, I have determined that Permit No. 1009-AOP-R7 for the construction, operation and maintenance of an air pollution control system for Clean Harbors El Dorado, LLC to be issued and effective on the date specified in the permit, unless a Commission review has been properly requested under Arkansas Department of Pollution Control & Ecology Commission's Administrative Procedures, Regulation 8.603, within thirty (30) days after service of this decision.

All persons submitting written comments during the thirty (30) day, and all other persons entitled to do so, may request an adjudicatory hearing and Commission review on whether the decision of the Director should be reversed or modified. Such a request shall be in the form and manner required by Regulation 8.603, including filing a written Request for Hearing with the APC&E Commission Secretary at 101 E. Capitol Ave., Suite 205, Little Rock, Arkansas 72201. If you have any questions about filing the request, please call the Commission at 501-682-7890.

Sincerely,

Mike Bates

Chief, Air Division

# ADEQ OPERATING AIR PERMIT

Pursuant to the Regulations of the Arkansas Operating Air Permit Program, Regulation 26:

Permit No.: 1009-AOP-R7 Renewal #1 IS ISSUED TO:

Clean Harbors El Dorado, LLC 309 American Circle El Dorado, AR 71730 Union County AFIN: 70-00098

THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

August 15, 2008 AND August 14, 2013

THE PERMITTEE IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:

Mike Bates

Chief, Air Division

July 16, 2010

Date

AFIN: 70-00098

# Table of Contents

| SECTION I: FACILITY INFORMATION                            |     |
|------------------------------------------------------------|-----|
| SECTION II: INTRODUCTION                                   | 6   |
| Summary of Permit Activity                                 | 6   |
| Process Description                                        |     |
| Regulations                                                | 10  |
| Emission Summary                                           |     |
| SECTION III: PERMIT HISTORY                                | 18  |
| SECTION IV: SPECIFIC CONDITIONS                            | 21  |
| SN-01                                                      | 21  |
| SN-03 and SN-23                                            | 25  |
| SN-07                                                      | 27  |
| SN-08                                                      | 29  |
| SN-09                                                      | 31  |
| SN-11                                                      | 33  |
| SN-12                                                      | 34  |
| SN-16                                                      | 35  |
| SN-17                                                      | 36  |
| SN-18                                                      | 38  |
| SN-19                                                      | 40  |
| SN-20                                                      | 41  |
| SN-21                                                      | 43  |
| SN-22                                                      | 47  |
| SN-25                                                      | 49  |
| SN-31, SN-35, SN-36, SN-37, SN-38, SN-39, SN-40, and SN-41 | 53  |
| SN-32                                                      | 73  |
| SN-33                                                      | 75  |
| SN-34                                                      |     |
| 40 CFR 60, Subpart Dc Conditions for SN-34                 |     |
| SECTION V: COMPLIANCE PLAN AND SCHEDULE                    |     |
| SECTION VI: PLANTWIDE CONDITIONS                           |     |
| Divert Stack Events                                        |     |
| 40 CFR 61, Subpart C                                       |     |
| 40 CFR 61, Subpart E                                       |     |
| 40 CFR 61, Subpart FF                                      |     |
| 40 CFR 63, Subpart DD                                      |     |
| 40 CFR 63, Subpart EEE                                     |     |
| Risk Assessment Requirements                               |     |
| Acid Rain (Title IV)                                       |     |
| Title VI Provisions                                        | 138 |
| SECTION VII: INSIGNIFICANT ACTIVITIES                      |     |
| SECTION VIII: GENERAL PROVISIONS                           | 141 |
| Appendix A – 40 CFR Part 60, Subpart Dc                    |     |
| Appendix B – 40 CFR Part 60, Subpart Kb                    |     |

Permit #: 1009-AOP-R7

AFIN: 70-00098

Appendix C - 40 CFR Part 60, Subpart VVa

Appendix D - 40 CFR Part 61, Subpart C

Appendix E - 40 CFR Part 61, Subpart E

Appendix F – 40 CFR Part 61, Subpart V

Appendix G-40 CFR Part 61, Subpart FF

Appendix H-40 CFR Part 63, Subpart DD

Appendix I – 40 CFR Part 63, Subpart OO

Appendix J - 40 CFR Part 63, Subpart PP

Appendix K-40 CFR Part 63, Subpart EEE

Appendix L – Continuous Emission Monitoring Systems Conditions

Appendix M - Waste Fired Boiler Recovered Energy Calculation Plan

Permit #: 1009-AOP-R7

AFIN: 70-00098

# List of Acronyms and Abbreviations

A.C.A. Arkansas Code Annotated

AFIN ADEQ Facility Identification Number

CFR Code of Federal Regulations

CO Carbon Monoxide

HAP Hazardous Air Pollutant

lb/hr Pound Per Hour

MVAC Motor Vehicle Air Conditioner

No. Number

NO<sub>x</sub> Nitrogen Oxide

PM Particulate Matter

PM<sub>10</sub> Particulate Matter Smaller Than Ten Microns

SNAP Significant New Alternatives Program (SNAP)

SO<sub>2</sub> Sulfur Dioxide

SSM Startup, Shutdown, and Malfunction Plan

Tpy Tons Per Year

UTM Universal Transverse Mercator

VOC Volatile Organic Compound

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### **SECTION I: FACILITY INFORMATION**

PERMITTEE:

Clean Harbors El Dorado, LLC

AFIN:

70-00098

PERMIT NUMBER:

1009-AOP-R7

**FACILITY ADDRESS:** 

309 American Circle

El Dorado, AR 71730

**MAILING ADDRESS:** 

309 American Circle

El Dorado, AR 71730

COUNTY:

**Union County** 

CONTACT NAME:

Kathy Shoemaker

CONTACT POSITION:

Sr. Compliance Manager

TELEPHONE NUMBER:

870-864-3711

REVIEWING ENGINEER: Ann Sudmeyer

UTM North South (Y):

Zone 15: 3674169.25 m

UTM East West (X):

Zone 15: 534387.21 m

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### **SECTION II: INTRODUCTION**

#### **Summary of Permit Activity**

Clean Harbors operates a hazardous waste treatment and storage facility located in El Dorado. The primary treatment process consists of incineration and some recycling activities.

This permitting action is necessary to:

- 1. Install a non-hazardous waste shredder (SN-33);
- 2. Increase the throughput at SN-25 of the tanker and railcar cleaning from 400 tanker trucks/yr to 750 tanker trucks/yr, the amount of loading tankers pumped from 600 tankers/yr to 1,200 tankers/yr, the gallons of vacuum truck loading from 156,000 gal/yr to 500,000 gal/yr, and the miles of 18-wheeler traffic on paved roads from 1,660 miles/yr to 2,100 miles/yr;
- 3. Update the road emission calculations based on an adjusted vehicle weight at SN-25;
- 4. Permit railcar loading operations at SN-25;
- 5. Replace the 84 MMBtu/hr natural gas fired boiler (SN-04) with a 33.75 MMBtu/hr natural gas/diesel fired boiler (SN-34);
- 6. Correct the vapor pressure limit at SN-21; and
- 7. Permit Phase 2 of the Solvent Recovery System:
  - a. Install 3 new waste solvent storage tanks at SN-31 (600-TNK-502 through 504);
  - b. Install 23 new intermediate and product storage tanks at SN-31 (600-TNK-505 through 527);
  - c. Permit existing tanks 144-TNK-201 through 204 under SN-31 instead of SN-21;
  - d. Install a thin film evaporator and two distillation columns (SN-37);
  - e. Install two cooling towers (SN-35 and SN-36);
  - f. Install railcar loading (SN-38), drum filling (SN-39), and tanker loading (SN-40);
  - g. Permit fugitive emissions (SN-41);
  - h. Increase the vapor pressure limit for materials processed; and
  - i. Permit the processing of HAP-containing materials.

The total permitted annual emission rate limit changes associated with this modification include: 2.6 tons per year (tpy) PM, 7.4 tpy PM<sub>10</sub>, 39.0 tpy SO<sub>2</sub>, 9.0 tpy VOC, -18.5 tpy CO, -41.8 tpy NO<sub>X</sub>, 0.01 tpy lead compounds, 0.01 tpy arsenic compounds, 0.01 tpy beryllium compounds, 0.01 tpy cadmium compounds, 0.01 tpy chromium compounds, 0.01 tpy cobalt compounds, 0.01 tpy manganese compounds, 0.01 tpy mercury compounds, 5.6 tpy methyl chloroform, 8.11 tpy methylene chloride, 0.01 tpy nickel compounds, 0.01 tpy selenium compounds, 2.77 tpy tetrachloroethylene, 10.28 tpy single organic HAP, and 10.36 tpy total organic HAP.

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### **Process Description**

#### **Fixed Incinerator Unit**

Clean Harbors owns and operates an incineration system at their facility in El Dorado, Arkansas, to thermally treat hazardous and non-regulated wastes generated by other facilities. The incineration system consists of two rotary kilns, a Waste Fired Boiler (WFB), a Secondary Combustion Chamber (SCC), a gas conditioning system, and an air pollution control train.

Wastes are fed to one of four primary feed locations: the two rotary kilns, the WFB, and the SCC. The purpose of the rotary kilns is to pre-process wastes before they are fed to the combustion system. The gases generated in the kilns are fed along with liquid and gaseous wastes to the SCC for thermal treatment. The WFB also receives liquid wastes for thermal treatment.

Combustion gases from the WFB and SCC are combined and routed through a saturator and two-parallel condensing towers for gas conditioning. The saturator rapidly cools the combustion gases as they exit the thermal treatment devices. The gas stream is then split and passes into the condensing towers where it is further cooled, condensing some of the moisture carried with the gases.

Once gas conditioning is complete, the gases from the two towers are combined and are routed to the air pollution control system, which consists of a High Energy Scrubber (HES) and a baghouse. After passing through the condensing towers, the gases are routed to the HES for removal of acid gases. The combustion gases are then reheated with a direct fired natural gas burner to prevent condensation of moisture on the filter bags. Once the temperature of the combustion gases is elevated above the dewpoint temperature, the combustion gases enter a fabric-filter baghouse for removal of PM, SVM, and LVM. Activated carbon is introduced into the baghouse for control of dioxins/furans (D/F) and mercury. The treated combustion gases then pass through the induced draft fan and exit through the stack (SN-01).

As a precaution to thermal damage of scrubbing chambers and duct work due to unexpected loss of scrubbing solution, it is necessary to have emergency vents known as divert stacks. These stacks are normally closed, and the gases do not normally exit from them to the atmosphere. However, during times of excessive thermal build up in the scrubber (for purposes of this permit to be known as an operational divert stack event), it may be necessary for safety purposes to bypass the normal gas routing, and vent the gases to the atmosphere through the divert stacks. During such events, waste feed is ceased automatically while temperature is maintained to destroy residual organics.

For routine maintenance operations, it is sometimes necessary to route gases to the atmosphere using the divert stacks (for purposes of this permit to be known as a maintenance divert stack event). No waste is fed during these maintenance operations. Procedures for operating the facility during these events are outlined by Plantwide Conditions #10 through #18.

Permit #: 1009-AOP-R7

AFIN: 70-00098

### **Organic Liquid Storage Tanks**

Waste organic liquids received at the facility are generally stored in above ground tanks. All tanks have fixed roofs with vents that are connected to carbon canisters. Tank emissions are accounted for in SN-21.

#### **On-Site Boilers**

Clean Harbors uses a boiler (SN-34) which can be fired with natural gas/diesel fuel and a waste-fired boiler (SN-08) to produce steam for use throughout the plant. Only SN-34 normally vents emissions directly to the atmosphere. The waste-fired boiler exhaust is normally vented into the fixed incinerator scrubbing system, but can vent to the atmosphere if the conditions of the air permit are met. When the waste-fired boiler does not exhaust directly to the atmosphere, its emissions are regulated under SN-01 of this permit.

#### **Ground Water Recovery System**

The site Clean Harbors currently operates was previously the site of an oil refinery from 1920 to 1970. Various past refinery operations at this site have contributed to ground water contamination. To recover and clean the contaminated ground water, Clean Harbors operates a ground water recovery system (SN-23) as part of a corrective action program regulated under RCRA. Recovered ground water, which is high in chlorides, is removed as part of the cleanup process and is routed by piping to the wet scrubber at the fixed incinerator unit. Ground water recovered by the system which is low in chlorides is routed to the Low Chloride Water Treatment facility.

The recovered low chloride ground water is treated with lime to adjust the pH prior to polymer addition. After the flocculation process, suspended solids are removed by a filter press. The water is then pH adjusted and routed to an air stripper. The stripper is designated as SN-03, and the HCl storage tank utilized for adjusting the pH of the water is designated as SN-13.

A lime storage silo is used at the wastewater treatment facility. A baghouse controls particulate emissions from this silo (SN-17).

#### **Ash Treatment Process**

Ash generated by the two rotary kilns in the fixed incinerator unit is transported to an on-site ash treatment area. This area is enclosed and the particulates generated by the process are controlled by a baghouse filter (SN-07). The solidification agents may be stored in a silo (SN-18). The silo is sited just outside the solidification building and is loaded pneumatically by truck. Particulate emissions from this source are controlled by a small baghouse located on the silo.

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### **Brine Unit**

Wastes containing chlorinated hydrocarbon compounds which are incinerated at this facility are broken into carbon dioxide (CO<sub>2</sub>), water vapor, and acid gases such as hydrochloric acid (HCl). The incinerator air pollution control equipment removes the majority of the HCl. This process results in the production of calcium chloride (CaCl<sub>2</sub>) in a liquid form referred to as "scrubber brine." The calcium chloride and entrained particulates are recirculated in the control system until a predetermined specific gravity is achieved.

A portion of this solution is routed to the Brine Unit for recovery as 40% calcium chloride fluid via vacuum evaporation. Lime or NaSH, Na<sub>2</sub>S, or similar sulfide compounds are used to treat the scrubber brine used to produce this product. The lime or NaSH react with any metals that may be in the scrubber brine. The resulting insoluble metal hydroxides or sulfides are removed by filtration. A small amount of hydrogen sulfide (H<sub>2</sub>S) may be produced in this process. The hydrogen sulfide is removed by a wet scrubber (SN-16) located on the batch tank vent. Other process equipment at the Brine Plant is addressed in SN-14, SN-15, and SN-22.

#### **Stationary Internal Combustion Sources**

Clean Harbors maintains two emergency generators and three firewater pumps. Each are diesel-fueled internal combustion engines. They are addressed in SN-24.

#### **Miscellaneous Sources**

In addition to the above listed sources, Clean Harbors has several other emission points.

Clean Harbors has a 1,000 gallon diesel tank and a 500 gallon diesel tank (SN-12) and a 1,000 gallon gasoline tank (SN-11). These are all aboveground tanks.

Clean Harbors has one 500-gallon waste oil storage tank (SN-19). Lubricating oils generated during servicing and repair for Clean Harbors vehicles are stored in this tank.

Lime is received in bulk shipments by tank truck for use in the incinerator scrubber systems. The only time there are emissions is during the off leading of the lime into the batch tank. Emissions from the loading operation are controlled by baghouses (SN-09 and SN-20). From the lime batch tank, the lime slurry is pumped to a day tank from which the lime is fed to the scrubber.

Other miscellaneous sources include: drum sampling; waste repackaging; fugitive emissions from pumps, flanges and valves; tanker and railcar cleaning; railcar unloading; tanker loading and unloading; roll-off loading and unloading; vacuum truck loading; equipment and truck wash/decontamination; barrel crushing; empty drum storage; fugitive dust from unpaved and paved roads; and railcar loading. These are addressed in SN-25.

Permit #: 1009-AOP-R7

AFIN: 70-00098

A non-hazardous waste shredder (SN-33) is used to reduce the volume of non-hazardous debris and other solid wastes.

# **Solvent Recovery System**

Phase I was installed and operated to process n-methylpyrrolidone (NMP), a non-HAP organic solvent with low vapor pressure. Phase II will be installed and operated to process organic solvents for recycle with a maximum vapor pressure of 6.159 psia at 65°F and includes HAP-containing solvents. The Phase I equipment included a vacuum pot-type solvent recovery system, a heat exchanger, and storage tanks. Phase I tanks included Tanks 201 through 204 and Tanks 600-TNK-505 through 600-TNK-508 (SN-31). Phase II equipment will include a thin film evaporator and two distillation columns (SN-37), three new waste solvent storage tanks at SN-31 (600-TNK-502 through 504), 23 new intermediate and product storage tanks at SN-31 (600-TNK-505 through 527), two cooling towers (SN-35 and SN-36), railcar loading (SN-38), drum filling (SN-39), tanker loading (SN-40), and fugitives emissions (SN-41).

Waste solvents will be received in drums, totes, bulk tanker trucks or bulk rail and stored in Tanks 144-TNK-201 through 204 and 600-TNK-502 through 504. These tanks will normally vent to the secondary combustion chamber (SCC) but may be vented through dual carbon canisters in series when the SCC is not available. Up to 58,600 gallons of waste solvent are processed per day by transfer from the waste storage tanks to the vacuum pot, the thin film evaporator, or the distillation columns. The process emissions will normally be vented through the SCC but may be vented through the dual carbon canisters in series when the SCC is not operating. Intermediate and product solvent will be stored in Tanks 600-TNK-505 through 527. These tanks will vent directly to the SCC with carbon units used as backup when the SCC is not operating. The final product is either bulk loaded into a tank truck or railcar or pumped into drums for shipment to customers. Railcar loading is controlled with carbon canisters in series and tanker loading emissions are captured through a vapor balance system and sent back to the tanks being unloaded.

#### **Lamp Recycling System**

The lamp recycling system (SN-32) processes fluorescent lamps. The bulbs are crushed and separated into glass, end caps, and phosphor powder. Emissions from the bulb crusher are exhausted into a baghouse for particulate removal followed by a carbon adsorber for mercury removal.

# Regulations

The following table contains the regulations applicable to this permit.

| Regulations                                                                    |
|--------------------------------------------------------------------------------|
| Arkansas Air Pollution Control Code, Regulation 18, effective January 25, 2009 |

Permit #: 1009-AOP-R7

AFIN: 70-00098

| Re   | gula | tions |
|------|------|-------|
| 1(0) | zuia | nons  |

Regulations of the Arkansas Plan of Implementation for Air Pollution Control, Regulation 19, effective July 18, 2009

Regulations of the Arkansas Operating Air Permit Program, Regulation 26, effective January 25, 2009

40 CFR 60, Subpart Dc - Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

40 CFR 60, Subpart Kb – National Emission Standards for Volatile Organic Liquids Storage Vessels (Including Petroleum Liquid Storage Vessels) for which Construction, Reconstruction, or Modification Commenced After July 23, 1984

40 CFR 60, Subpart VVa – Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006

40 CFR 61, Subpart C - National Emission Standard for Beryllium

40 CFR 61, Subpart E – National Emission Standard for Mercury

40 CFR 61, Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

40 CFR 61, Subpart FF – National Emission Standard for Benzene Waste Operations

40 CFR 63, Subpart DD – National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations

40 CFR 63, Subpart OO - National Emission Standards for Tanks—Level 1

40 CFR 63, Subpart PP - National Emission Standards for Containers

40 CFR 63, Subpart EEE – National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors

40 CFR 64 - Compliance Assurance Monitoring

40 CFR 82, Subpart F – Protection of Stratospheric Ozone, Subpart F, Recycling and Emissions Reduction

Permit #: 1009-AOP-R7

AFIN: 70-00098

# **Emission Summary**

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

| EMISSION SUMMARY                     |                       |                        |                |          |
|--------------------------------------|-----------------------|------------------------|----------------|----------|
| Source                               | Description           | Pollutant              | Emission Rates |          |
| Number                               | Description           | ronutant               | lb/hr          | tpy      |
|                                      |                       | PM                     | 36.18          | 63.4     |
|                                      |                       | $PM_{10}$              | 19.88          | 54.0     |
| Total                                | Allowable Emissions   | $SO_2$                 | 57.2           | 60.6     |
| 1 Otal                               | Allowable Lillissions | VOC                    | 81.8           | 43.8     |
|                                      |                       | СО                     | 35.09          | 129.7    |
| !                                    |                       | $NO_X$                 | 46.0           | 170.2    |
|                                      |                       | Lead Compounds*        | 0.0616         | 0.24     |
| ı                                    |                       | Antimony Compounds*    | 0.11           | 0.49     |
|                                      |                       | Arsenic Compounds*     | 0.0306         | 0.11     |
|                                      |                       | Beryllium Compounds*   | 0.0207         | 0.11     |
|                                      |                       | Cadmium Compounds*     | 0.0526         | 0.24     |
|                                      |                       | Calcium cyanamide*     | 1.066          | 4.67     |
|                                      |                       | Chlorine***            | 10.625         | 46.52    |
|                                      |                       | Chromium Compounds*    | 0.0306         | 0.11     |
|                                      |                       | Cobalt Compounds*      | 0.51           | 2.20     |
|                                      |                       | Cyanide Compounds*     | 1.066          | 4.67     |
|                                      |                       | Dioxins/Furans*        | 8.99E-8        | 3.94E-7  |
|                                      |                       | Hydrazine              | 1.086          | 4.73     |
|                                      | HAPs                  | Hydrochloric acid      | 10.938         | 47.89    |
|                                      |                       | Hydrogen fluoride      | 6.24           | 27.31    |
|                                      |                       | Manganese Compounds*   | 10.01          | 43.81    |
|                                      |                       | Mercury Compounds*     | 0.039013       | 0.140057 |
|                                      |                       | Methyl chloroform      | 27.676         | 11.38    |
|                                      |                       | Methylene chloride     | 52.386         | 23.22    |
|                                      |                       | Nickel Compounds*      | 2.01           | 8.77     |
|                                      |                       | Phosphine              | 1.086          | 4.73     |
|                                      |                       | Phosphorus*            | 1.066          | 4.67     |
|                                      |                       | Selenium Compounds*    | 5.01           | 21.91    |
|                                      |                       | Tetrachloroethylene    | 10.386         | 7.66     |
|                                      |                       | Titanium tetrachloride | 1.086          | 4.73     |
|                                      |                       | Single Organic HAP*    | 69.866         | 30.62    |
| A:.                                  | : Contaminants **     | Total Organic HAP*     | 72.216         | 40.96    |
| Air Contaminants ** H <sub>2</sub> S |                       | 0.1                    | 0.1            |          |

|        | EMISSION SUMMARY       |                             |                     |                    |  |
|--------|------------------------|-----------------------------|---------------------|--------------------|--|
| Source | Description            | Pollutant                   | Emissio             | Emission Rates     |  |
| Number | Description            | 1 Ollutain                  | lb/hr               | tpy                |  |
| SN-01  | Fixed Incinerator Unit | PM                          | 6.68                | 29.3               |  |
|        |                        | $PM_{10}$                   | 6.68                | 29.3               |  |
|        |                        | $SO_2$                      | 45.0                | 21.2               |  |
|        |                        | VOC                         | 1.2                 | 5.3                |  |
|        |                        | CO                          | 26.59               | 116.5              |  |
|        |                        | $NO_X$                      | 33.2                | 145.5              |  |
|        |                        | Lead Compounds              | 0.0516 <sup>a</sup> | $0.23^{a}$         |  |
|        |                        | Antimony Compounds          | 0.11                | 0.49               |  |
|        |                        | Arsenic Compounds           | 0.0206 <sup>b</sup> | $0.10^{b}$         |  |
|        |                        | Beryllium Compounds         | 0.0206 <sup>b</sup> | $0.10^{b}$         |  |
|        |                        | Cadmium Compounds           | 0.0516 <sup>a</sup> | $0.23^{a}$         |  |
|        |                        | Calcium cyanamide           | 1.066               | 4.67               |  |
|        |                        | Chlorine                    | 10.605 <sup>c</sup> | 46.46 <sup>c</sup> |  |
|        |                        | Chromium Compounds          | 0.0206 <sup>b</sup> | $0.10^{b}$         |  |
|        |                        | Cobalt Compounds            | 0.50                | 2.19               |  |
|        |                        | Cyanide Compounds           | 1.066               | 4.67               |  |
|        |                        | Dioxins/Furans              | 8.99E-8             | 3.94E-7            |  |
|        |                        | Hydrazine                   | 1.066               | 4.67               |  |
|        |                        | Hydrochloric acid           | 10.918°             | 47.83°             |  |
|        |                        | Hydrogen fluoride           | 6.22                | 27.25              |  |
|        |                        | Manganese Compounds         | 10.00               | 43.80              |  |
|        |                        | Mercury Compounds           | 0.029               | 0.13               |  |
|        |                        | Methyl chloroform           | 1.066               | 4.67               |  |
|        |                        | Methylene chloride          | 1.066               | 4.67               |  |
|        |                        | Nickel Compounds            | 2.00                | 8.76               |  |
|        |                        | Phosphine                   | 1.066               | 4.67               |  |
|        |                        | Phosphorus                  | 1.066               | 4.67               |  |
|        |                        | Selenium Compounds          | 5.00                | 21.90              |  |
|        |                        | Tetrachloroethylene         | 1.066               | 4.67               |  |
|        |                        | Titanium tetrachloride      | 1.066               | 4.67               |  |
|        |                        | Single Organic HAP          | 1.066               | 4.67               |  |
|        |                        | Total Organic HAP           | 1.066               | 4.67               |  |
| SN-02  | MWP-2000               | Source Remove               | d From Service      | ÷                  |  |
| SN-03  | Low Chloride           | Emissions incl              | uded in SN-23       |                    |  |
| SN-04  | Boiler #1              | Source Remove               | d From Service      | <del></del>        |  |
|        |                        | Replaced with SN-34         |                     |                    |  |
| SN-05  | Boiler #2              | Source Removed From Service |                     |                    |  |
| SN-06  | Boiler #3              | Source Removed From Service |                     |                    |  |

|        | EMISSION SUMMARY              |                        |                |           |  |
|--------|-------------------------------|------------------------|----------------|-----------|--|
| Source | Description                   | Pollutant              | Emissio        | ion Rates |  |
| Number | Description                   | 1 Officialit           | lb/hr          | tpy       |  |
| SN-07  | Solidification Building       | PM                     | 1.9            | 8.0       |  |
|        |                               | $PM_{10}$              | 1.9            | 8.0       |  |
| SN-08  | Waste Fired Boiler            | PM                     | 0.6            | 0.1       |  |
|        | (Natural Gas                  | $PM_{10}$              | 0.6            | 0.1       |  |
|        | Only)                         | $\mathrm{SO}_2$        | 0.1            | 0.1       |  |
|        |                               | VOC                    | 0.4            | 0.1       |  |
|        |                               | CO                     | 5.6            | 0.7       |  |
|        |                               | NO <sub>X</sub>        | 6.6            | 0.8       |  |
| SN-09  | Lime Silo Bin Vent            | PM                     | 0.8            | 0.3       |  |
|        |                               | PM <sub>10</sub>       | 0.5            | 0.2       |  |
| SN-10  | HCL Storage Tanks at TOU      | Source Remove          | d From Service | •         |  |
| SN-11  | Gasoline Storage Tank         | VOC                    | 6.6            | 0.4       |  |
| SN-12  | Diesel Storage Tank           | VOC                    | 0.1            | 0.1       |  |
| SN-13  | HCL Storage at WWTP           | Insignificant Activity |                |           |  |
| SN-14  | NaOH Storage at Brine<br>Unit | Removed Fr             | om Service     |           |  |
| SN-15  | NaSH Storage at Brine<br>Unit | Insignifica            | nt Activity    |           |  |
| SN-16  | Brine Reactor Vessel          | H <sub>2</sub> S       | 0.1            | 0.1       |  |
| SN-17  | WWTP Lime Silo                | PM                     | 0.8            | 0.1       |  |
|        |                               | $PM_{10}$              | 0.5            | 0.1       |  |
| SN-18  | Solidification Silo Bin       | PM                     | 0.8            | 0.1       |  |
|        | Vent                          | $PM_{10}$              | 0.5            | 0.1       |  |
| SN-19  | Waste Oil Storage             | VOC                    | 1.5            | 0.1       |  |
| SN-20  | Lime Perma Batch              | PM                     | 0.2            | 0.7       |  |
|        | Tank                          | $PM_{10}$              | 0.2            | 0.7       |  |
| SN-21  | Organic Liquid                | VOC                    | 1.0            | 1.5       |  |
|        | Waste Tanks                   | Methyl chloroform      | 0.47           | 0.69      |  |
|        |                               | Methylene chloride     | 0.99           | 1.47      |  |
|        |                               | Tetrachloroethylene    | 0.09           | 0.17      |  |
|        |                               | Single Organic HAP     | 0.99           | 1.47      |  |
|        |                               | Total Organic HAP      | 0.99           | 1.47      |  |

|        | EMISSION SUMMARY                              |                             |                |          |
|--------|-----------------------------------------------|-----------------------------|----------------|----------|
| Source | Description                                   | Pollutant Emission Rates    |                | n Rates  |
| Number | Description                                   | Tonutunt                    | lb/hr          | tpy      |
| SN-22  | Brine Plant Sources                           | PM                          | 1.0            | 1.0      |
|        |                                               | $PM_{10}$                   | 1.0            | 1.0      |
| SN-23  | Ground Water                                  | VOC                         | 3.9            | 17.1     |
|        |                                               | Methylene chloride          | 1.55           | 6.78     |
|        |                                               | Single Organic HAP          | 1.55           | 6.78     |
|        |                                               | Total Organic HAP           | 3.89           | 17.04    |
| SN-24  | Stationary Diesel<br>Engines                  | Insignificar                | nt Activity    |          |
| SN-25  | Plant Fugitives                               | PM                          | 20.2           | 11.9     |
|        |                                               | $PM_{10}$                   | 4.8            | 2.6      |
|        |                                               | VOC                         | 18.4           | 10.0     |
|        |                                               | Chlorine                    | 0.02           | 0.06     |
|        |                                               | Hydrazine                   | 0.02           | 0.06     |
|        |                                               | Hydrochloric acid           | 0.02           | 0.06     |
|        |                                               | Hydrogen fluoride           | 0.02           | 0.06     |
|        |                                               | Methyl chloroform           | 0.26           | 1.11     |
|        |                                               | Methylene chloride          | 0.53           | 2.30     |
|        |                                               | Phosphine                   | 0.02           | 0.06     |
|        |                                               | Tetrachloroethylene         | 0.05           | 0.22     |
|        |                                               | Titanium tetrachloride      | 0.02           | 0.06     |
|        |                                               | Single Organic HAP          | 17.94          | 9.43     |
|        |                                               | Total Organic HAP           | 17.94          | 9.43     |
| SN-27  | Aerosol Processing Machine (APM)              | Emissions Ro                | uted to SN-01  |          |
| SN-28  | Solvent Recovery Process (with Package Units) | Source Remove               | d From Service | ,        |
|        | (SRP)                                         |                             |                |          |
| SN-29  | Refrigerant Reclaim Process                   | Source Remove               | d From Service | <b>;</b> |
| SN-30  | Refrigerant Reclaim<br>Boiler                 | Source Removed From Service |                |          |
| SN-31  | Solvent Recovery                              | VOC                         | 5.2            | 0.7      |
|        | System Storage Tanks                          | Methyl chloroform           | 2.43           | 0.31     |
|        |                                               | Methylene chloride          | 5.16           | 0.66     |
| ]      |                                               | Tetrachloroethylene         | 0.40           | 0.05     |
|        |                                               | Single Organic HAP          | 5.16           | 0.66     |
|        |                                               | Total Organic HAP           | 5.16           | 0.66     |

|        | EMISSION SUMMARY     |                     |          |          |
|--------|----------------------|---------------------|----------|----------|
| Source | Description          | Pollutant           | Emissio  | n Rates  |
| Number | Description          | 1 Onutant           | lb/hr    | tpy      |
| SN-32  | Lamp Recycling       | PM                  | 0.1      | 0.1      |
|        | System               | $\mathrm{PM}_{10}$  | 0.1      | 0.1      |
|        |                      | Mercury             | 0.000013 | 0.000057 |
| SN-33  | Non-Hazardous Waste  | PM                  | 0.2      | 0.5      |
|        | Shredder             | $PM_{10}$           | 0.2      | 0.5      |
| SN-34  | No. 1 Package Boiler | PM                  | 0.9      | 3.1      |
|        | (33.75 MMBtu/hr      | $PM_{10}$           | 0.9      | 3.1      |
|        | Natural Gas/Diesel   | $SO_2$              | 12.1     | 39.3     |
|        | Fired)               | VOC                 | 0.2      | 0.9      |
|        |                      | CO                  | 2.9      | 12.5     |
|        |                      | $NO_X$              | 6.2      | 23.9     |
|        |                      | Lead Compounds      | 0.01     | 0.01     |
|        |                      | Arsenic Compounds   | 0.01     | 0.01     |
| ł      |                      | Beryllium Compounds | 0.0001   | 0.01     |
|        |                      | Cadmium Compounds   | 0.001    | 0.01     |
|        |                      | Chromium Compounds, | 0.01     | 0.01     |
|        |                      | hexavalent          |          |          |
|        |                      | Cobalt Compounds    | 0.01     | 0.01     |
|        |                      | Manganese Compounds | 0.01     | 0.01     |
|        |                      | Mercury Compounds   | 0.01     | 0.01     |
|        |                      | Nickel Compounds    | 0.01     | 0.01     |
|        |                      | Selenium Compounds  | 0.01     | 0.01     |
|        |                      | Single Organic HAP  | 0.07     | 0.27     |
|        |                      | Total Organic HAP   | 0.08     | 0.35     |
| SN-35  | Solvent Recovery     | PM                  | 1.0      | 4.1      |
|        | System Cooling Tower | $PM_{10}$           | 1.0      | 4.1      |
| SN-36  | Solvent Recovery     | PM                  | 1.0      | 4.1      |
|        | System Cooling Tower | PM <sub>10</sub>    | 1.0      | 4.1      |
| SN-37  | Solvent Recovery     | VOC                 | 5.9      | 2.2      |
|        | System Process       | Methyl chloroform   | 5.88     | 2.12     |
|        | Emissions            | Methylene chloride  | 5.88     | 2.12     |
|        |                      | Tetrachloroethylene | 5.88     | 2.12     |
|        |                      | Single Organic HAP  | 5.88     | 2.12     |
|        |                      | Total Organic HAP   | 5.88     | 2.12     |

Permit #: 1009-AOP-R7

|        | EMISSION SUMMARY    |                     |                |      |
|--------|---------------------|---------------------|----------------|------|
| Source | Description         | Pollutant —         | Emission Rates |      |
| Number | Description         | 1 Ollutarit         | lb/hr          | tpy  |
| SN-38  | Solvent Recovery    | VOC                 | 0.9            | 0.2  |
|        | System Railcar      | Methyl chloroform   | 0.41           | 0.08 |
|        | Loading             | Methylene chloride  | 0.87           | 0.16 |
|        |                     | Tetrachloroethylene | 0.07           | 0.02 |
|        |                     | Single Organic HAP  | 0.87           | 0.16 |
|        |                     | Total Organic HAP   | 0.87           | 0.16 |
| SN-39  | Solvent Recovery    | VOC                 | 27.4           | 2.8  |
|        | System Drum Filling | Methyl chloroform   | 12.92          | 1.29 |
|        |                     | Methylene chloride  | 27.37          | 2.74 |
|        |                     | Tetrachloroethylene | 2.12           | 0.21 |
|        |                     | Single Organic HAP  | 27.37          | 2.74 |
|        |                     | Total Organic HAP   | 27.37          | 2.74 |
| SN-40  | Solvent Recovery    | VOC                 | 9.0            | 2.3  |
|        | System Tanker       | Methyl chloroform   | 4.23           | 1.09 |
|        | Loading             | Methylene chloride  | 8.96           | 2.30 |
|        |                     | Tetrachloroethylene | 0.70           | 0.18 |
|        |                     | Single Organic HAP  | 8.96           | 2.30 |
|        |                     | Total Organic HAP   | 8.96           | 2.30 |
| SN-41  | Solvent Recovery    | VOC                 | 0.1            | 0.1  |
|        | System              | Methyl chloroform   | 0.01           | 0.02 |
|        | Fugitive            | Methylene chloride  | 0.01           | 0.02 |
|        |                     | Tetrachloroethylene | 0.01           | 0.02 |
|        |                     | Single Organic HAP  | 0.01           | 0.02 |
|        |                     | Total Organic HAP   | 0.01           | 0.02 |

<sup>\*</sup>HAPs included in the VOC or PM totals. Other HAPs are not included in any other totals unless specifically stated.

<sup>\*\*</sup>Air Contaminants such as ammonia, acetone, and certain halogenated solvents are not VOCs or HAPs.

<sup>\*\*\*</sup>Included in HCl total.

a. Combined limits for lead and cadmium at SN-01.

b. Combined limits for arsenic, beryllium, and chromium at SN-01.

c. Combined limit of 32 ppm for chlorine and hydrogen chloride emissions at SN-01, expressed as chloride equivalent.

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### SECTION III: PERMIT HISTORY

Permit 249-A was issued to Pollution Controls, Inc. on June 19, 1974. This is the initial permit for construction of this facility.

Permit 249-A(Modification) was issued on September 13, 1976 to update scrubber operation at the facility.

Permit 461-A was issued to ENSCO on December 1, 1977. This permit allowed for the installation and operation of equipment designed for the incineration of drummed solids, semisolids, and liquids such as PCB impregnated capacitors.

Permit 509-A was issued to ENSCO on August 1, 1978. This allowed for construction of a waste destruction system to handle NaK by reacting it with steam.

Permit 249-A(Modification) was issued to Ensco on July 24, 1981. This permit revised the design of the system to update the existing control equipment at the facility.

Permit 249-AR-3 was issued to Ensco, Inc. on March 25, 1983. This allowed for installation of a waste fuel fired boiler.

Permit 754-A was issued to ENSCO, Inc. on May 8, 1985. It allowed for construction and operation of a mobile incinerator, the MWP-2000 (SN-02).

Permit 1009-A was issued to ENSCO, Inc., on August 15, 1990. This permit consolidated permits 249-AR-3, 461-A, 509-A, and 754-A.

Permit 1009-AR-1 was issued to ENSCO, Inc., on June 9, 1992. This permit added a residue treatment facility which removed ferrous metals from the incinerator ash and also added the lime silo. Also, this permit removed a CEM requirement for SO<sub>2</sub> because the moisture content of the stack gases was greater than existing CEMs were able to overcome.

Permit 1009-AR-2 was issued to ENSCO, Inc., on May 5, 1993. This permit adjusted the emission values for  $NO_X$ . Because of this increase, CEMs were added to measure  $NO_X$  in the incinerator stacks.

Permit 1009-AR-3 was issued to ENSCO, Inc., on October 8, 1993. This permit allowed addition of a storage silo and changes to the ferrous metal recovery system. ENSCO also permitted previously unpermitted storage tanks.

Permit 1009-AR-4 was issued to Ensco, Inc., on November 16, 1993. This permit allowed for installation of the lime batch tank.

Permit 1009-AR-5 was issued to Ensco, Inc., on May 25, 1994. This permit allowed the installation of a baghouse to replace a wet scrubber on the lime handling system.

AFIN: 70-00098

Permit 1009-AR-5 was transferred to Teris, L.L.C., on July 25, 2001.

Permit 1009-AOP-R0 was issued to Teris, L.L.C. on May 1, 2002. This was the initial Title V permit for this facility.

Permit 1009-AOP-R0 was administratively amended on October 9, 2002. This amendment added a 5,000 gallon Sulfuric Acid Storage Tank to the Insignificant Activities List.

Permit 1009-AOP-R1 was issued to Teris, L.L.C. on September 10, 2003. This permit allowed for replacement of a heat exchanger on SN-01 with a direct-fired natural gas heater. Emissions from the combustion of natural gas were routed through the existing SN-01 stack. This resulted in the addition of 0.4 tpy of PM/PM<sub>10</sub>, 0.1 tpy of SO<sub>2</sub>, 0.3 tpy of VOC, 3.7 tpy of CO, and 4.4 tpy of NO<sub>X</sub>.

Permit 1009-AOP-R2 was issued on September 23, 2005. This minor modification allowed for installation of an Aerosol Processing Machine (APM), a Solvent Recovery Process (with package units) (SRP), a Refrigerant Reclaim Process, and a Refrigerant Reclaim Process Boiler. The APM (SN-27) is used to recover metals for recycling from aerosol cans and paint cans. The off-gasses of the APM are normally routed to the existing Secondary Combustion Chamber to destroy any combustibles. Under special operation conditions where paint cans are being crushed and off-gas flows are minuscule, the off-gasses were routed through an Activated Carbon Unit included with the APM. VOC emissions were 0.2 tons per year. The SRP (SN-28) was a distillation process which was used to reclaim halogenated type solvents. The noncondensable off-gasses of the SRP were routed to the existing Secondary Combustion Chamber to destroy any combustibles. When gases cannot be routed to the SCC, the condenser overhead gases will be routed to an Activated Carbon Unit included with the SRP. Emissions for this Unit were 0.21 tons per year of Non-VOC Refrigerant and 0.21 tons per year of Methylene Chloride (which is a HAP, but not a VOC). The Refrigerant Reclaim Process (SN-29) and a Refrigerant Reclaim Process Boiler (SN-30) were limited to non-VOC and non-HAP refrigerants, but were subject to 40 CFR 82, Subpart F. The permit included VOC and HAP emissions to account for trace contaminants in the refrigerants.

Permit 1009-AOP-R3 was issued on August 15, 2008. This permitting action was necessary to renew the facility's Title V air permit; update the MACT EEE requirements; add the operational limits established during the comprehensive performance test; increase the feed capacity from 42,410 lb/hr to 53,320 lb/hr; decrease the destruction and removal efficiency at SN-01 for organic HAPs (excluding dioxins and furans) from 99.999% to 99.998% based on testing; update the Cl<sub>2</sub> and HCl rates at SN-01 to coincide with MACT EEE; remove the following sources: SN-02, SN-05, SN-06, SN-10, SN-14, SN-28, SN-29, and SN-30, a 1.0 MMBtu/hr natural gas fired boiler at SN-22, Tanks 98, 99, 100, 510, and 543 at SN-21, Kiln #3 from the permit since this source was removed from the site, sulfuric acid tank from the insignificant activities list, and the lime storage silo from the insignificant activities list since this source vents to SN-01; remove the hazardous waste derived fuel burning operating scenario for SN-04; increase gasoline throughput at SN-11; increase diesel throughput at SN-12; add a new 500 gallon diesel storage tank to SN-12; transfer SN-13 and SN-15 to the insignificant activities list; increase the control

Permit #: 1009-AOP-R7

AFIN: 70-00098

efficiency of the carbon canisters at SN-21 based on a verbal statement from the carbon manufacturer; specify the use of carbon canisters at SN-25 Tanker Loading/Unloading (Tank Transfer); specify the use of carbon tank at SN-25 Drum Pumping; replace the HAP content limits with a TLV table; add and update various compliance mechanisms in the permit; and permit Phase I of a Solvent Recovery Plant which will include a vacuum pot-type solvent recovery system, a heat exchanger, and four storage tanks (SN-31, 600-TNK-501 through 600-TNK-504). The total permitted annual emission rate limit increases associated with this modification included: 0.067 tons per year (tpy) beryllium compounds, 3.01 tpy calcium cyanamide, 94.51 tpy chlorine, 2.24 tpy cyanide compounds, 2.24 tpy hydrazine, 2.24 tpy phosphine, 2.18 tpy phosphorus, 1.41 tpy tetrachloroethylene, 2.24 tpy titanium tetrachloride, and 4.26 to 19.98 toy single organic HAP. The total permitted annual emission rate limit decreases associated with this modification include: 109.0 tpy PM, 123.2 tpy PM<sub>10</sub>, 57.3 tpy SO<sub>2</sub>, 18.1 tpy VOC, 4.1 tpy CO, 197.9 tpy NO<sub>x</sub>, 0.13 tpy antimony compounds, 5.95 tpy arsenic compounds, 2.94 tpy cadmium compounds, 2.49 tpy caprolactam dust, 2.49 tpy caprolactam vapor, 25.16 tpy chromium compounds, 0.67 tpy cobalt compounds, 59.59 tpy hydrochloric acid, 7.26 tpy hydrogen fluoride, 85.81 tpy lead compounds, 4.38 tpy manganese compounds, 5.04 tpy mercury compounds, 2.92 tpy methyl chloroform, 1.19 tpy methylene chloride, 43.41 tpy nickel compounds, 8.67 tpy selenium compounds, 0.1 tpy NaOH, 0.1 tpy NaSH, 22.71 tpy refrigerant (non-VOC), and 578.7 tpy total organic HAP.

Permit 1009-AOP-R4 was issued on January 7, 2009. This permitting action was necessary to install a Lamp Recycling System (SN-32) to process fluorescent lamps. The total permitted annual emission rate limit increases associated with this modification included: 0.1 tons per year (tpy) PM/PM<sub>10</sub> and 0.000057 tpy mercury.

Permit 1009-AOP-R5 was issued on April 6, 2009. This permitting action was necessary to address the applicable requirements of 40 CFR §63.1219; limit the liquid boiler (SN-01) recovered energy utilization rate; update the description of the Organic Liquid Waste Tanks (SN-21); and correct the NSPS applicability of the Organic Liquid Waste Tanks (SN-21) to 40 CFR Part 60, Subpart Kb. The total permitted annual emission rate limit decreases associated with this modification included: 4.5 tons per year (tpy) PM/PM<sub>10</sub>, 0.01 tpy lead compounds, 0.01 tpy cadmium compounds, 65.31 tpy chlorine, and 67.27 tpy hydrogen chloride.

Permit 1009-AOP-R6 was issued on July 6, 2009. This permitting action was necessary to increase the permitted throughput of the Organic Liquid Waste Tanks (SN-21) from 5,164,590 gallons per year to 10,000,000 gallons per year. The total permitted annual emission rate limit increases associated with this modification included: 0.3 tons per year (tpy) VOC, 0.3 tpy methylene chloride, 0.3 tpy single organic HAP, and 0.3 tpy total organic HAP.

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### **SECTION IV: SPECIFIC CONDITIONS**

# SN-01 Fixed Incinerator Unit

#### **Source Description**

The Fixed Incinerator Unit is comprised of two rotary kilns, a secondary combustion chamber referred to as the Secondary Combustion Chamber (SCC), and the Waste Fired Boiler (WFB). All of these combustion units have a combined capacity of 53,320 pounds/hour of waste feed. The kilns vent exhaust gases through their respective cyclones and into the SCC which serves as the common afterburner. The WFB exhaust gases are not vented to the SCC, but are vented directly to the pollution control equipment. A lime storage silo also vents to SN-01.

# **Specific Conditions**

1. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #3, #6, #8, #10, and #11, Plantwide Condition #194, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr               | tpy               |
|------------------|---------------------|-------------------|
| PM <sub>10</sub> | 6.68                | 29.3              |
| SO <sub>2</sub>  | 45.0                | 21.2              |
| VOC              | 1.2                 | 5.3               |
| СО               | 26.59               | 116.5             |
| NO <sub>x</sub>  | 33.2                | 145.5             |
| Lead Compounds   | 0.0516 <sup>a</sup> | 0.23 <sup>a</sup> |

- a. Combined limits for lead and cadmium.
- 2. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #3, #5, and #12, Plantwide Condition #194, and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

| Pollutant          | lb/hr | tpy  |
|--------------------|-------|------|
| PM                 | 6.68  | 29.3 |
| Antimony Compounds | 0.11  | 0.49 |

Permit #: 1009-AOP-R7

| lb/hr                  | tpy                                                                                                                                                                                                                                 |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0206 <sup>b</sup>    | 0.10 <sup>b</sup>                                                                                                                                                                                                                   |
| 0.0206 <sup>b, c</sup> | 0.10 <sup>b</sup>                                                                                                                                                                                                                   |
| 0.0516 <sup>a</sup>    | 0.23 <sup>a</sup>                                                                                                                                                                                                                   |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 10.605 <sup>d</sup>    | 46.46 <sup>d</sup>                                                                                                                                                                                                                  |
| 0.0206 <sup>b</sup>    | 0.10 <sup>b</sup>                                                                                                                                                                                                                   |
| 0.50                   | 2.19                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 8.99E-8                | 3.94E-7                                                                                                                                                                                                                             |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 10.918 <sup>d</sup>    | 47.83 <sup>d</sup>                                                                                                                                                                                                                  |
| 6.22                   | 27.25                                                                                                                                                                                                                               |
| 10.00                  | 43.80                                                                                                                                                                                                                               |
| 0.029 <sup>e</sup>     | 0.13                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 2.00                   | 8.76                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 5.00                   | 21.90                                                                                                                                                                                                                               |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
| 1.066                  | 4.67                                                                                                                                                                                                                                |
|                        | 0.0206 <sup>b</sup> 0.0206 <sup>b</sup> , c  0.0516 <sup>a</sup> 1.066 10.605 <sup>d</sup> 0.0206 <sup>b</sup> 0.50 1.066 8.99E-8 1.066 10.918 <sup>d</sup> 6.22 10.00 0.029 <sup>e</sup> 1.066 1.066 1.066 1.066 1.066 1.066 1.066 |

a. Combined limits for lead and cadmium.

b. Combined limits for arsenic, beryllium, and chromium.

c. Beryllium emissions are also limited by 40 CFR 61, Subpart C.

d. Combined limit for chlorine and hydrogen chloride of 32 ppm, expressed as chloride equivalent.

Permit #: 1009-AOP-R7

AFIN: 70-00098

e. Mercury emissions are also limited by 40 CFR 61, Subpart E.

3. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation                                        |
|----|-------|------------------------------------------------------------|
| 01 | 20%   | §19.503 of Regulation #19 and<br>40 CFR Part 52, Subpart E |

- 4. The permittee shall maintain a Continuous Opacity Monitoring System (COMS) to demonstrate compliance with Specific Condition #3. This COMS shall comply with the Air Division's "Continuous Emission Monitoring Systems Conditions." [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 5. The permittee shall maintain a destruction and removal efficiency of 99.998% for organic HAPs (excluding dioxins and furans). Compliance with this condition shall be demonstrated during each comprehensive performance test required by 40 CFR Part 63, Subpart EEE. [§19.705 of Regulation #19; A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311; and 40 CFR 70.6]
- 6. The permittee shall not emit more than 21.2 tons of SO<sub>2</sub> per consecutive 12-month period at SN-01. [§19.501 of Regulation #19 et seq and 40 CFR Part 52, Subpart E]
- 7. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #6. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. These mass balance records shall indicate the amount of sulfur fed, the scrubber control efficiency, and the SO<sub>2</sub> emissions. A twelve month rolling total and each individual month's data shall be maintained onsite, made available to Department personnel upon request and submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 8. The control efficiency of the scrubber shall be maintained at a minimum of 90% for SO<sub>2</sub> removal. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 9. The permittee shall conduct testing to determine the control efficiency of the scrubber for SO<sub>2</sub> at SN-01. This testing shall be conducted in accordance with EPA Reference Method 6C and Plantwide Condition #3. The initial test shall be conducted during the next comprehensive performance test (CPT) which will be conducted as required by 40 CFR Part 63, Subpart EEE. This testing shall be performed a minimum of once every 5 years. [§19.702 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

- 10. The permittee shall conduct testing to determine the emission rate of condensable particulate matter at SN-01. This testing shall be conducted in accordance with EPA Method 202. If necessary, the permittee shall modify this permit to include a condensable particulate emission rate. The initial testing shall be performed at the same time as the CPT required by 40 CFR Part 63, Subpart EEE. This testing shall be performed a minimum of once every five years. A copy of these test results shall be submitted in accordance with General Provision #7. [§19.702 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 11. The permittee shall test SN-01 for NO<sub>X</sub> while operating at 90% or greater capacity. Emission results shall be extrapolated to correlate with 100% of the permitted capacity to determine compliance. The NO<sub>X</sub> test shall be performed using EPA Reference Method 7E. This test shall be conducted in accordance with Plantwide Condition #3. This testing shall be conducted during the next comprehensive performance test which will be conducted as required by 40 CFR Part 63, Subpart EEE. [§19.702 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 12. The permittee shall test SN-01 for cyanide compounds, hydrazine, hydrogen fluoride, phosphine, and titanium tetrachloride while operating at 90% or greater capacity. Emission results shall be extrapolated to correlate with 100% of the permitted capacity to determine compliance. These tests shall be performed using test methods as approved by ADEQ, and shall be conducted in accordance with Plantwide Condition #3. This testing shall be conducted during the next CPT which will be conducted as required by 40 CFR Part 63, Subpart EEE. [§18.1002 of Regulation #18 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 13. The permittee shall not utilize more than 74% of the recovered energy, calculated on an annual basis, from the liquid waste fired boiler at SN-01. The permittee shall maintain monthly records to demonstrate compliance with this specific condition. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling average and each individual month's data shall be submitted in accordance with General Provision #7. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 14. A plan for calculating the energy utilization rate of the liquid waste fired boiler at SN-01 shall be submitted to the Department for approval within 60 days of the date of issuance of Permit #1009-AOP-R5. The plan was received by the Department on April 30, 2009. The approved plan was submitted on June 2, 2009 and is included in the appendices. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-03 and SN-23 Low Chloride Water Treatment and Ground Water Recovery System

# **Source Description**

The site Clean Harbors currently occupies was previously the site of an oil refinery. Various operations at this site have contributed in ground water contamination. To recover and clean the contaminated ground water, Clean Harbors operates a ground water recovery system (SN-23) and a treatment plant. Recovered ground water which is high in chlorides removed as part of the cleanup process is routed by piping to the quench and scrubber at the fixed incinerator unit. Ground water recovered by the system which is low in chlorides is routed to the Low Chloride Water Treatment facility (SN-03) where it is treated. This system consists of a physical/chemical treatment system.

# **Specific Conditions**

15. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #17, #19, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Source | Pollutant | lb/hr            | tpy          |
|--------|-----------|------------------|--------------|
| SN-03  | VOC       | Emissions includ | led in SN-23 |
| SN-23  | VOC       | 3.9              | 17.1         |

16. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #17, #19, and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Source | Pollutant          | lb/hr                       | tpy   |
|--------|--------------------|-----------------------------|-------|
|        | Methylene chloride | Emissions included in SN-23 |       |
| SN-03  | Single Organic HAP |                             |       |
|        | Total Organic HAP  |                             |       |
|        | Methylene chloride | 1.55                        | 6.78  |
| SN-23  | Single Organic HAP | 1.55                        | 6.78  |
|        | Total Organic HAP  | 3.89                        | 17.04 |

Permit #: 1009-AOP-R7

AFIN: 70-00098

17. The permittee shall not process more than 72,014,500 gallons of water in SN-03 during any consecutive twelve month period. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

- 18. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #17. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 19. The VOC content of the collected groundwater shall not exceed 55,837 micrograms per liter. The HAP content for any single HAP shall not exceed 21,700 micrograms per liter. The permittee shall perform VOC concentration and composition testing of the groundwater collected. This testing shall be conducted once every quarter. The permittee shall maintain records of each test. These records shall be kept on site and made available to Department personnel upon request. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, 40 CFR 70.6, and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-07 Solidification Building

# **Source Description**

Ash solidification occurs within an enclosed structure equipped with a baghouse. Ash from the incinerators is moved via truck to the Solidification Building where it is placed in a mixing container and mixed with an absorbent to remove all free moisture. The mixing process results in the emission of absorbent dust which is collected by an Aeropulse Baghouse.

# **Specific Conditions**

20. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #22 and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 1.9   | 8.0 |

21. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #22 and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 1.9   | 8.0 |

22. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 07 | 5%    | §18.501 of Regulation #18 |

23. The permittee shall conduct weekly observations of the opacity from source SN-07 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of the cause of any visible emissions and the corrective action taken.

Permit #: 1009-AOP-R7

AFIN: 70-00098

The permittee must keep these records onsite and make them available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-08 Waste Fired Boiler (Natural Gas Only)

# **Source Description**

The Waste Fired Boiler is exhausted through the air pollution control train for the Fixed Incineration Unit (SN-01) when burning waste liquids, and emissions are accounted for in SN-01 during such operations. However, natural gas is burned in the WFB to bring it up to temperature prior to burning waste, and at least for one hour following burning of waste. In the one hour following burning of waste, the WFB is also exhausted through SN-01, but at other times when burning natural gas, the WFB may exhaust directly to the atmosphere.

# **Specific Conditions**

24. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #26, #27, and equipment limitations. These emissions are for natural gas combustion only. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 0.6   | 0.1 |
| SO <sub>2</sub>  | 0.1   | 0.1 |
| VOC              | 0.4   | 0.1 |
| СО               | 5.6   | 0.7 |
| NO <sub>x</sub>  | 6.6   | 0.8 |

25. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #26 and #27, and equipment limitations. These emissions are for natural gas combustion only. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 0.6   | 0.1 |

Permit #: 1009-AOP-R7

AFIN: 70-00098

26. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance will be demonstrated by burning only natural gas. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 08 | 5%    | §18.501 of Regulation #18 |

- 27. The permittee shall not use more than 15,840,000 scf of natural gas per consecutive 12-month period at SN-08. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 28. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #27. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-09 Lime Silo Bin Vent

#### **Source Description**

Lime is used in the incinerator air pollution control train. Lime may be stored on-site in a lime silo. Emissions occur when lime is transferred from trucks into the silo. Emissions are controlled by a silo vent baghouse.

# **Specific Conditions**

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #31, #33, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| $PM_{10}$ | 0.5   | 0.2 |

30. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #31, #33, and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 0.8   | 0.3 |

31. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 09 | 5%    | §18.501 of Regulation #18 |

32. The permittee shall conduct weekly observations of the opacity from source SN-09 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of the cause of any visible emissions and the corrective action taken. The permittee must keep these records onsite and make them available to Department

Permit #: 1009-AOP-R7

AFIN: 70-00098

personnel upon request. [ $\S18.1004$  of Regulation #18 and A.C.A.  $\S8-4-203$  as referenced by  $\S8-4-304$  and  $\S8-4-311$ ]

- 33. The permittee shall not receive more than 624 trucks of lime per consecutive 12-month period at SN-09. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 34. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #33. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-11 Gasoline Storage Tank

#### **Source Description**

The Gasoline Storage tank has a capacity of 1,000 gallons of unleaded gasoline. The tank is located in the concrete containment area behind the Fire Station/Safety Office. The tank is used to fuel Clean Harbors owned vehicles within the plant.

#### **Specific Conditions**

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #36, #38, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| VOC       | 6.6   | 0.4 |

- 36. The permittee shall not have a throughput in excess of 55,496 gallons of gasoline at SN-11 during any consecutive twelve month period. [§19.705 of Regulation #19; A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311; and 40 CFR 70.6]
- 37. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #36. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 38. The permittee shall only store gasoline with a vapor pressure equal to or less than 6.2 psia at 70 °F. Supporting documentation shall be maintained on site to demonstrate compliance with this specific condition. [§19.705 of Regulation 19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-12 Diesel Storage Tank

#### **Source Description**

This source consists of two diesel storage tanks one with a capacity of 1,000 gallons and one with a capacity of 500 gallons of diesel fuel. These tanks are located in the concrete containment area behind the Fire Station/Safety Office. These tanks are used to fuel Clean Harbors owned vehicles within the plant.

## **Specific Conditions**

39. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #40 and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| VOC       | 0.1   | 0.1 |

- 40. The permittee shall not have a throughput in excess of 109,716 gallons of diesel fuel in SN-12 during any consecutive twelve month period. [§19.705 of Regulation #19; A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311; and 40 CFR 70.6]
- 41. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #40. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

## SN-16 Brine Reactor Vessel

#### **Source Description**

Sodium Hydroxide (NaOH) or lime and Sodium Hydrogen Sulfide (NaSH) are used during the treatment of scrubber brine at the brine unit. The NaOH adjusts the brine to a pH range in which the NaSH can react with any metals that may be in the scrubber brine. A small amount of  $H_2S$  gas may be produced in the brine batch reactor. This gas is vented through a NaOH scrubber to the atmosphere.

#### **Specific Conditions**

42. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #43 and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| H <sub>2</sub> S | 0.1   | 0.1 |

43. The permittee shall operate the scrubber per manufacturers specifications at all times that SN-16 is in operation. [§18.1104 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 1009-AOP-R7 AFIN: 70-00098

## SN-17 WWTP Lime Silo

#### **Source Description**

The pebble sized lime is received in transport trucks. The trucks have blowers mounted on them, which pneumatically convey the lime from the truck to the Lime Silo. The baghouse, which is mounted on top of the Lime Silo, filters the conveying air as it is exhausted to the silo.

#### **Specific Conditions**

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #46, #48, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 0.5   | 0.1 |

45. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #46, #48, and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 0.8   | 0.1 |

46. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 17 | 5%    | §18.501 of Regulation #18 |

47. The permittee shall conduct weekly observations of the opacity from source SN-17 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of the cause of any visible emissions and the corrective action taken. The permittee must keep these records onsite and make them available to Department

Permit #: 1009-AOP-R7

AFIN: 70-00098

personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 48. The permittee shall not receive more than 5 trucks of lime per consecutive 12-month period at SN-17. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 49. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #48. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

## SN-18 Solidification Silo Bin Vent

#### **Source Description**

Ash solidification occurs within an enclosed structure equipped with a baghouse. Ash from the incinerators is moved via truck to the Solidification Building where it is placed in a mixing container and mixed with an absorbent to remove all free moisture. The mixing process results in the emission of absorbent dust which is collected by an Aeropulse Baghouse.

## **Specific Conditions**

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #52, #54, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 0.5   | 0.1 |

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #52, #54, and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 0.8   | 0.1 |

52. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 18 | 5%    | §18.501 of Regulation #18 |

53. The permittee shall conduct weekly observations of the opacity from source SN-18 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of the cause of any visible emissions and the corrective action taken.

Permit #: 1009-AOP-R7

AFIN: 70-00098

The permittee must keep these records onsite and make them available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 54. The permittee shall not unload more than 208 trucks of flyash per consecutive 12-month period at SN-18. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 55. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #54. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-19 Waste Oil Storage

# **Source Description**

The vehicle repair shop, located in the Crown Building north of the facility proper, generates approximately 250 gallons per month of lubrication oils during servicing and repair of Clean Harbors' vehicles. This waste oil is poured into a 500 gallon tank. Approximately every two months, this oil is removed by a vacuum truck and disposed via incineration in the incinerator.

#### **Specific Conditions**

56. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #57 and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| VOC       | 1.5   | 0.1 |

- 57. The permittee shall not have a throughput in excess of 3,000 gallons of lubrication oils in SN-19 during any consecutive twelve month period. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 58. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #57. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

## SN-20 Lime Perma Batch Tank

#### **Source Description**

The Clean Harbors lime slurry preparation is a batch system. A predetermined volume of water is added to the lime batch tank. A ribbon blender is installed inside the tank. This blender mixes the dry hydrated and/or pebble lime to form a lime-water slurry. The dry hydrated lime and/or pebble lime is delivered via truck and is pneumatically conveyed from the truck to the batch tank. The batch tank is equipped with a baghouse (SN-20).

#### **Specific Conditions**

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #61 and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 0.2   | 0.7 |

60. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #61 and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 0.2   | 0.7 |

61. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 20 | 5%    | §18.501 of Regulation #18 |

62. The permittee shall conduct weekly observations of the opacity from source SN-20 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall

Permit #: 1009-AOP-R7

AFIN: 70-00098

maintain records of the cause of any visible emissions and the corrective action taken. The permittee must keep these records onsite and make them available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-21 Organic Liquid Waste Tanks

# **Source Description**

Clean Harbors operates 22 tanks in organic liquid wastes services. Each tank is vented through a series of two activated carbon adsorbers.

## **Specific Conditions**

63. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #66, #67, #68, #69, #71, and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| VOC       | 1.0   | 1.5 |

64. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #66, #67, #68, #69, #71, and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant           | lb/hr | tpy  |
|---------------------|-------|------|
| Methyl chloroform   | 0.47  | 0.69 |
| Methylene chloride  | 0.99  | 1.47 |
| Tetrachloroethylene | 0.09  | 0.17 |
| Single Organic HAP  | 0.99  | 1.47 |
| Total Organic HAP   | 0.99  | 1.47 |

- 65. All tanks at SN-21, except Tanks 501 and 545, are subject to regulation under NSPS Kb Standards of Performance for Volatile Organic Storage Vessels for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984. [§19.304 of Regulation #19 and 40 CFR §60.110b(a)]
- 66. The permittee shall keep records of the operating plan for the use of carbon canisters and the maintenance performed on the canisters at SN-21. The operating plan shall be submitted to the Department within 90 days of the date of issuance of Permit #1009-AOP-R0 for approval. [§19.304 of Regulation #19 and 40 CFR §60.115b(c)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

67. The permittee shall keep records showing the dimension of and an analysis showing the capacity of each storage vessel at SN-21. Records shall be kept on site and be provided to Department personnel upon request. [§19.304 of Regulation #19 and 40 CFR §60.116b(b)]

- 68. The permittee shall maintain the carbon canisters per manufacturer's specifications on each tank while any waste is being stored in it. [§19.303 of Regulation #19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 69. The permittee shall not load in excess of 10,000,000 gallons of organic liquids into all tanks combined at SN-21 during any rolling 12 month period. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 70. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #69. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 71. The permittee shall not exceed a vapor pressure of 6.159 psia at 65°F for the contents of the storage tanks at SN-21. Supporting documentation shall be maintained on site to demonstrate compliance with this specific condition. [19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 72. SN-21 is subject to Compliance Assurance Monitoring and shall comply with all applicable provisions, including but not limited to: [§19.304 of Regulation 19 and 40 CFR Part 64]
  - a. Indicator: The permittee shall monitor the organic liquid throughput, monitor the VOC concentration, and document daily inspections of the carbon canisters. [40 CFR §64.6(c)(1)(i)]
  - b. Indicator Range and Averaging Period: The permittee shall maintain the organic liquid throughput below the limit specified in Specific Condition #69 on a rolling 12-month basis; a VOC concentration of 500 ppmv or greater requires replacement of one or both carbon canisters; and the permittee shall perform daily inspections of the carbon canisters to document undamaged condition. [40 CFR §64.6(c)(2)]
  - c. Measurement Approach: The permittee shall maintain receiving records for the throughput of SN-21; use EPA Reference Method 21 to determine the VOC concentration; and perform daily inspections of the carbon canisters. [40 CFR §64.6(c)(1)(ii)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

d. Data Representativeness: The permittee shall test for the VOC concentration between the primary and secondary carbon canisters using EPA Reference Method 21. The daily inspections shall be performed by trained personnel using documented inspection procedures. [40 CFR §64.6(c)(1)(iii)]

e. QA/QC and Frequency of Monitoring: The permittee shall follow the manufacturer's recommendations for maintenance of the carbon canisters. Personnel shall be trained on the inspection procedures. The carbon canisters shall be inspected daily. The throughput shall be updated monthly in accordance with Specific Condition #70. The VOC concentration measurements shall follow the procedures of EPA Reference Method 21, and the VOC concentration shall be monitored according to the following schedule: [40 CFR §64.6(c)(1)(iii) and §64.3(b)(4)]

| Tank | VOC Concentration    |
|------|----------------------|
|      | Monitoring Frequency |
|      | (Weeks)              |
| 1    | 1                    |
| 3    | 1                    |
|      | 1                    |
| 4    | 1                    |
| 8    | 2                    |
| 9    | 2                    |
| 10   | 2 2                  |
| 11   | 2                    |
| 12   | 1                    |
| 13   | 1                    |
| 14   | 1                    |
| 15   | 1                    |
| 501  | 4                    |
| 545  | 4                    |
| 602  | 1                    |
| 603  | 1                    |
| 604  | 1                    |
| 605  | 1                    |
| 606  | 1                    |
| 607  | 1                    |
| 608  | 1                    |
| 609  | 1                    |

- f. A monitoring report shall be submitted to the Department in accordance with General Provision #7 and shall include the following per 40 CFR §64.9(a)(2):
  - i. The information required under 40 CFR §70.6(a)(3)(iii);

Permit #: 1009-AOP-R7

- ii. Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken; and
- iii. A description of the actions taken to implement a QIP, if required, during the reporting period as specified in §64.8. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring. A QIP shall be required if the excess emissions exceeds 5% of the unit operating time.
- g. The permittee shall comply with the recordkeeping requirements specified in §70.6(a)(3)(ii). The permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to §64.8 and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under 40 CFR Part 64 (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). [40 CFR §64.9(b)(1)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### SN-22 Brine Plant Sources

#### **Source Description**

Wastes containing chlorinated hydrocarbon compounds which are incinerated at this facility are broken down into carbon dioxide, water, and hydrochloric acid. The incinerator air pollution control equipment removes the majority of the HCl. This process results in the production of calcium chloride in a liquid form referred to as "scrubber brine." The calcium chloride and entrained particulates are recirculated in the control system until a predetermined specific gravity is achieved. Once the predetermined specific gravity is achieved, the solution is sold as completion fluids for use in oil-wells and is also sold for other brine product applications.

#### **Specific Conditions**

73. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #75 and equipment limitations. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 1.0   | 1.0 |

74. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #75 and equipment limitations. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 1.0   | 1.0 |

75. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 22 | 5%    | §18.501 of Regulation #18 |

76. The permittee shall conduct weekly observations of the opacity from source SN-22 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible

Permit #: 1009-AOP-R7

AFIN: 70-00098

emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of the cause of any visible emissions and the corrective action taken. The permittee must keep these records onsite and make them available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-25 Plant Fugitives

#### **Source Description**

Plant fugitives include drum sampling; waste repackaging; pumps, flanges, and valves; tanker and railcar cleaning; tanker loading and unloading; vacuum truck loading and unloading; equipment and truck washing and decontamination; barrel crushing; empty drum storage; unpaved roads, and paved roads.

# **Specific Conditions**

77. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #79, #80, #82, #83, #84, and #85. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy  |
|------------------|-------|------|
| PM <sub>10</sub> | 4.8   | 2.6  |
| VOC              | 18.4  | 10.0 |

78. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance by Specific Conditions #79, #80, #82, #83, #84, and #85. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant           | lb/hr | tpy  |
|---------------------|-------|------|
| PM                  | 20.2  | 11.9 |
| Chlorine            | 0.02  | 0.06 |
| Hydrazine           | 0.02  | 0.06 |
| Hydrochloric acid   | 0.02  | 0.06 |
| Hydrogen fluoride   | 0.02  | 0.06 |
| Methyl chloroform   | 0.26  | 1.11 |
| Methylene chloride  | 0.53  | 2.30 |
| Phosphine           | 0.02  | 0.06 |
| Tetrachloroethylene | 0.05  | 0.22 |

Permit #: 1009-AOP-R7

| lb/hr | tpy           |
|-------|---------------|
| 0.02  | 0.06          |
| 17.94 | 9.43          |
| 17.94 | 9.43          |
|       | 0.02<br>17.94 |

- 79. The permittee shall not operate in a manner such that emissions from the roads would cause a nuisance off-site. Under normal conditions, off-site opacity less than or equal to 5% shall not be considered a nuisance. [§18.501 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 80. The permittee shall not exceed the following throughput limits at SN-25. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

| Activity                 | Limit                            |
|--------------------------|----------------------------------|
| Drum Filling             | 1,200,000 gal/yr                 |
| Waste Repackaging        | 28,000 drums/yr                  |
| Tanker and Railcar       | 100 rail tank cars/yr            |
| Cleaning                 | 750 tank trucks/yr               |
| Tanker Loading/Unloading | 100 tankers/yr                   |
|                          | 1,200 tankers pumped/yr          |
| Vacuum Truck Loading     | 500,000 gal rain water           |
|                          | collection/yr                    |
| Equipment and Truck      | 260,000 gal wash water/yr        |
| Wash/Decontamination     |                                  |
| Unpaved roads            | 3,000 vehicle miles traveled/yr  |
| Paved roads              | 2,100 vehicle miles traveled via |
|                          | 18-wheel traffic/yr              |
|                          | 113,360 vehicle miles traveled   |
|                          | via Clean Harbors vehicles/yr    |
| Railcar Loading          | 1,380,000 gallons/yr             |

- 81. The permittee shall maintain monthly records which demonstrate compliance with the throughput limits set in Specific Condition #80. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 82. No later than 30 days after issuance of Permit #1009-AOP-R3, the permittee shall submit a detailed haul road maintenance plan to the Department. The permittee shall comply

Permit #: 1009-AOP-R7

AFIN: 70-00098

with the approved road maintenance plan. A copy of the approved plan and associated recordkeeping shall be kept on site and made available to Department personnel upon request. The Department approved the road maintenance plan dated November 3, 2008. [§18.1004 of Regulation #18, §19.705 of Regulation #19, 40 CFR 70.6, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 83. The permittee shall maintain the carbon canisters used to control emissions from the tank transfer operations per manufacturer's specifications. [§19.303 of Regulation #19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 84. The permittee shall maintain the carbon tank used to control emissions from the drum pumping per manufacturer's specifications. [§19.303 of Regulation #19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 85. SN-25, railcar loading, is subject to Compliance Assurance Monitoring and shall comply with all applicable provisions, including but not limited to: [§19.304 of Regulation #19 and 40 CFR Part 64]
  - a. Indicator: The permittee shall monitor the throughput, monitor the VOC concentration, and document daily inspections of the carbon canisters. [40 CFR §64.6(c)(1)(i)]
  - b. Indicator Range and Averaging Period: The permittee shall maintain the organic liquid throughput below the limit specified in Specific Condition #80 on a rolling 12-month basis; a VOC concentration of 500 ppmv or greater requires replacement of one or both carbon canisters; and the permittee shall perform daily inspections of the carbon canisters to document undamaged condition. [40 CFR §64.6(c)(2)]
  - c. Measurement Approach: The permittee shall maintain receiving records for the throughput of SN-25, railcar loading; use EPA Reference Method 21 to determine the VOC concentration; and perform daily inspections of the carbon canisters.

    [40 CFR §64.6(c)(1)(ii)]
  - d. Data Representativeness: The permittee shall test for the VOC concentration between the primary and secondary carbon canisters using EPA Reference Method 21. The daily inspections shall be performed by trained personnel using documented inspection procedures. [40 CFR §64.6(c)(1)(iii)]
  - e. QA/QC and Frequency of Monitoring: The permittee shall follow the manufacturer's recommendations for maintenance of the carbon canisters. Personnel shall be trained on the inspection procedures. The carbon canisters shall be inspected daily. The throughput shall be updated monthly in accordance with Specific Condition #81. The VOC concentration measurements shall follow the procedures of EPA Reference Method 21, and the VOC concentration shall be

Permit #: 1009-AOP-R7

AFIN: 70-00098

monitored according to 40 CFR Part 264, Subpart AA, §264.1033(h). [40 CFR §64.6(c)(1)(iii) and §64.3(b)(4)]

- f. A monitoring report shall be submitted to the Department in accordance with General Provision #7 and shall include the following per 40 CFR §64.9(a)(2):
  - i. The information required under 40 CFR §70.6(a)(3)(iii);
  - ii. Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken; and
  - iii. A description of the actions taken to implement a QIP, if required, during the reporting period as specified in §64.8. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring. A QIP shall be required if the excess emissions exceeds 5% of the unit operating time.
- g. The permittee shall comply with the recordkeeping requirements specified in §70.6(a)(3)(ii). The permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to §64.8 and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under 40 CFR Part 64 (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). [40 CFR §64.9(b)(1)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-31, SN-35, SN-36, SN-37, SN-38, SN-39, SN-40, and SN-41 Solvent Recovery System Storage Tanks, Cooling Towers, Process Emissions, Railcar Loading, Drum Filling, Tanker Loading, and Fugitive

## **Source Description**

SN-31 consists of 7 waste solvent storage tanks (144-TNK-201 through 204 and 600-TNK-502 through 504) and 23 intermediate and final product storage tanks (600-TNK-505 through 527). The waste solvent storage tanks are loaded by a 250 gpm pump. The intermediate/final product storage tanks are loaded at a rate of 1,831.25 gallons per hour (physical limit of solvent produced is 43,950 gallons per day).

| Material           | Tank                    | Capacity            |
|--------------------|-------------------------|---------------------|
| Waste Solvent      | 144-TNK-201 through 204 | 10,000 gallons each |
|                    | 600-TNK-502             | 11,655 gallons      |
|                    | 600-TNK-503 and 504     | 19,400 gallons each |
| Intermediate/Final | 600-TNK-505 through 522 | 8,800 gallons each  |
| Product            | 600-TNK-523 through 526 | 11,160 gallons each |
|                    | 600-TNK-527             | 13,000 gallons      |

SN-37 consists of a vacuum pot distillation unit, thin film evaporator, and two distillation columns. The solvent recovery equipment operates at a maximum of 58,600 gallons per day. The solvent processed through the thin film evaporator may be subject to additional treatment through the distillation columns. The emissions from the process equipment are combined.

SN-31 and SN-37 will normally vent to the secondary combustion chamber (SCC) but may be vented through two carbon canisters in series up to 15% of the year when the SCC is not operating.

SN-38 consists of the loadout of final products into railcars for off-site shipment. Railcars are loaded by pump with a maximum rate of 4,800 gallons per hour. The emissions are controlled with carbon canisters in series.

SN-39 consists of filling 55 gallon drums with final products. The facility can fill a maximum of 80 drums per hour.

SN-40 consists of submerged loading of final product into tankers. The tanker capacity is 6,000 gallons and loaded by pump with a maximum rate of 6,000 gallons per hour. A maximum of two tankers can be loaded at any given time. The emissions from the final product loading operations to tankers are captured through a vapor balance system. The tanker vent is connected to the tank vent and displaced air is sent back to the tank to balance the vapor.

SN-41 consists of solvent recovery system fugitive emissions that occur at pumps, connectors, and valves.

Permit #: 1009-AOP-R7

AFIN: 70-00098

SN-35 and SN-36 consist of two wet cooling towers. The water flowrate of each cooling tower is 820 gallons per minute.

# **Specific Conditions**

86. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #88, #89, #91, #92, #93, #94, and #97. [§19.501 et seq. of Regulation #19 and 40 CFR Part 52, Subpart E]

| Source | Description                                                                                                                                                           | Pollutant        | lb/hr | tpy |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-----|
| SN-31  | Solvent Recovery System Storage Tanks (Seven Waste Solvent Tanks and 23 Product Solvent Tanks vented to two carbon canisters in series)                               | VOC              | 5.2   | 0.7 |
| SN-35  | Solvent Recovery System Cooling Tower                                                                                                                                 | PM <sub>10</sub> | 1.0   | 4.1 |
| SN-36  | Solvent Recovery System Cooling Tower                                                                                                                                 | PM <sub>10</sub> | 1.0   | 4.1 |
| SN-37  | Solvent Recovery System Process Emissions (Vacuum Pot Distillation Unit, Thin Film Evaporator, and two Distillation Columns vented to two carbon canisters in series) | VOC              | 5.9   | 2.2 |
| SN-38  | Solvent Recovery System Railcar Loading (with two carbon canisters in series)                                                                                         | VOC              | 0.9   | 0.2 |
| SN-39  | Solvent Recovery System Drum Filling                                                                                                                                  | VOC              | 27.4  | 2.8 |
| SN-40  | Solvent Recovery System Tanker Loading (with emissions routed back to the tanks)                                                                                      | VOC              | 9.0   | 2.3 |
| SN-41  | Solvent Recovery System Fugitive                                                                                                                                      | VOC              | 0.1   | 0.1 |

Permit #: 1009-AOP-R7

AFIN: 70-00098

87. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions #88, #89, #91, #92, #93, #94, and #97 and Plantwide Conditions #8 and #35. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Source | Description                                                                                                                                                           | Pollutant                                                                                                 | lb/hr                                    | tpy                                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| SN-31  | Solvent Recovery System Storage Tanks (Seven Waste Solvent Tanks and 23 Product Solvent Tanks vented to two carbon canisters in series)                               | Methyl chloroform<br>Methylene chloride<br>Tetrachloroethylene<br>Single Organic HAP<br>Total Organic HAP | 2.43<br>5.16<br>0.40<br>5.16<br>5.16     | 0.31<br>0.66<br>0.05<br>0.66<br>0.66 |
| SN-35  | Solvent Recovery System Cooling Tower                                                                                                                                 | PM                                                                                                        | 1.0                                      | 4.1                                  |
| SN-36  | Solvent Recovery System Cooling Tower                                                                                                                                 | PM                                                                                                        | 1.0                                      | 4.1                                  |
| SN-37  | Solvent Recovery System Process Emissions (Vacuum Pot Distillation Unit, Thin Film Evaporator, and two Distillation Columns vented to two carbon canisters in series) | Methyl chloroform<br>Methylene chloride<br>Tetrachloroethylene<br>Single Organic HAP<br>Total Organic HAP | 5.88<br>5.88<br>5.88<br>5.88<br>5.88     | 2.12<br>2.12<br>2.12<br>2.12<br>2.12 |
| SN-38  | Solvent Recovery System Railcar Loading (with two carbon canisters in series)                                                                                         | Methyl chloroform Methylene chloride Tetrachloroethylene Single Organic HAP Total Organic HAP             | 0.41<br>0.87<br>0.07<br>0.87<br>0.87     | 0.08<br>0.16<br>0.02<br>0.16<br>0.16 |
| SN-39  | Solvent Recovery System<br>Drum Filling                                                                                                                               | Methyl chloroform Methylene chloride Tetrachloroethylene Single Organic HAP Total Organic HAP             | 12.92<br>27.37<br>2.12<br>27.37<br>27.37 | 1.29<br>2.74<br>0.21<br>2.74<br>2.74 |
| SN-40  | Solvent Recovery System Tanker Loading (with emissions routed back to the tanks)                                                                                      | Methyl chloroform Methylene chloride Tetrachloroethylene Single Organic HAP Total Organic HAP             | 4.23<br>8.96<br>0.70<br>8.96<br>8.96     | 1.09<br>2.30<br>0.18<br>2.30<br>2.30 |
| SN-41  | Solvent Recovery System<br>Fugitive                                                                                                                                   | Methyl chloroform Methylene chloride Tetrachloroethylene Single Organic HAP Total Organic HAP             | 0.01<br>0.01<br>0.01<br>0.01<br>0.01     | 0.02<br>0.02<br>0.02<br>0.02<br>0.02 |

Permit #: 1009-AOP-R7

AFIN: 70-00098

88. The permittee shall not exceed the following throughput limits. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 70.6]

| Source | Activity                                            | Limit                          |
|--------|-----------------------------------------------------|--------------------------------|
| SN-31  | Throughput of Waste Solvent Tanks                   | 11,720,000 gallons per<br>year |
| SN-31  | Throughput of Intermediate and Final Products Tanks | 8,790,000 gallons per year     |
| SN-37  | Throughput of Solvent                               | 67,373 tons per year           |
| SN-38  | Loadout to Railcars                                 | 1,771,000 gallons per year     |
| SN-39  | Loadout to 55 gallon drums                          | 879,000 gallons per year       |
| SN-40  | Loadout to Tanker Trucks                            | 6,153,000 gallons per year     |

89. The permittee shall vent SN-31 and SN-37 to carbon canisters when not being vented to the secondary combustion chamber (SN-01). The permittee shall not exceed the following throughput limits while being vented to the carbon canisters. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 70.6]

| Source | Activity                             | Limit                      |  |
|--------|--------------------------------------|----------------------------|--|
| SN-31  | Throughput of Waste Solvent Tanks    | 1,758,000 gallons per year |  |
|        | Throughput of Intermediate and Final | 1,318,500 gallons per year |  |
|        | Products Tanks                       |                            |  |
| SN-37  | Throughput of Solvent                | 10,106 tons per year       |  |

- 90. The permittee shall maintain monthly records which demonstrate compliance with the throughput limits set in Specific Conditions #88 and #89. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 91. The permittee shall not exceed a vapor pressure of 6.159 psia at 65°F for the contents of the storage tanks at SN-31. Supporting documentation shall be maintained on site to demonstrate compliance with this specific condition. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 70.6]
- 92. The permittee shall not process any material at the Solvent Recovery System such that the product of the vapor pressure and molecular weight exceeds 523.15 psia lb/lbmol. Supporting documentation shall be maintained on site to demonstrate compliance with this specific condition. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 70.6]

Permit #: 1009-AOP-R7

AFIN: 70-00098

93. The permittee shall maintain the carbon canisters per manufacturer's specifications on the tank farm while any material is being stored in any tank within the tank farm. [§19.303 of Regulation #19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- 94. The permittee shall maintain the carbon canisters per manufacturer's specifications at SN-37 and SN-38. [§19.303 of Regulation #19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 95. SN-31, SN-37, SN-38, and SN-40 are subject to Compliance Assurance Monitoring and shall comply with all applicable provisions, including but not limited to: [§19.304 of Regulation 19 and 40 CFR Part 64]
  - a. Indicator: The permittee shall monitor the organic liquid throughput, monitor the VOC concentration, and document daily inspections of the carbon canisters. [40 CFR §64.6(c)(1)(i)]
  - b. Indicator Range and Averaging Period: The permittee shall maintain the organic liquid throughput below the limit specified in Specific Condition #88 and #89 on a rolling 12-month basis; a VOC concentration of 500 ppmv or greater requires replacement of one or both carbon canisters; and the permittee shall perform daily inspections of the carbon canisters to document undamaged condition. [40 CFR §64.6(c)(2)]
  - c. Measurement Approach: The permittee shall maintain receiving records for the throughput of these sources; use EPA Reference Method 21 to determine the VOC concentration; and perform daily inspections of the carbon canisters. [40 CFR §64.6(c)(1)(ii)]
  - d. Data Representativeness: The permittee shall test for the VOC concentration between the primary and secondary carbon canisters using EPA Reference Method 21. The daily inspections shall be performed by trained personnel using documented inspection procedures. [40 CFR §64.6(c)(1)(iii)]
  - e. QA/QC and Frequency of Monitoring: The permittee shall follow the manufacturer's recommendations for maintenance of the carbon canisters. Personnel shall be trained on the inspection procedures. The carbon canisters shall be inspected daily. The throughput shall be updated monthly in accordance with Specific Condition #90. The VOC concentration measurements shall follow the procedures of EPA Reference Method 21, and the VOC concentration shall be monitored according to the schedule required by 40 CFR Part 264, Subpart CC. [40 CFR §64.6(c)(1)(iii) and §64.3(b)(4)]
  - f. A monitoring report shall be submitted to the Department in accordance with General Provision #7 and shall include the following per 40 CFR §64.9(a)(2):

Permit #: 1009-AOP-R7

AFIN: 70-00098

i. The information required under 40 CFR §70.6(a)(3)(iii);

- ii. Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken; and
- iii. A description of the actions taken to implement a QIP, if required, during the reporting period as specified in §64.8. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring. A QIP shall be required if the excess emissions exceeds 5% of the unit operating time.
- 96. The permittee shall comply with the recordkeeping requirements specified in §70.6(a)(3)(ii). The permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to §64.8 and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under 40 CFR Part 64 (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). [40 CFR §64.9(b)(1)]
- 97. Each pump, pressure relief device, sampling connection system, open-ended valve or line, valve, and flange or other connector in VOC service and any devices or systems required by 40 CFR Part 60, Subpart VVa is subject to 40 CFR Part 60, Subpart VVa Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006. The permittee shall comply with all applicable requirements under 40 CFR Part 60, Subpart VVa. These requirements include, but are not limited to, the following: [§19.304 of Regulation #19 and 40 CFR Part 60, Subpart VVa]
  - a. Each owner or operator subject to the provisions of 40 CFR Part 60, Subpart VVa shall demonstrate compliance with the requirements of §§60.482–1a through 60.482–10a for all equipment within 180 days of initial startup. [§19.304 of Regulation #19 and 40 CFR 60.482-1a(a)]
  - b. Compliance with §§60.482–1a to 60.482–10a will be determined by review of records and reports, review of performance test results, and inspection using the methods and procedures specified in §60.485a. [§19.304 of Regulation #19 and 40 CFR 60.482-1a(b)]
  - c. If the storage vessel is shared with multiple process units, the process unit with the greatest annual amount of stored materials (predominant use) is the process unit the storage vessel is assigned to. If the storage vessel is shared equally among process units, and one of the process units has equipment subject to 40 CFR Part 60, Subpart VVa, the storage vessel is assigned to that process unit. If

Permit #: 1009-AOP-R7

AFIN: 70-00098

the storage vessel is shared equally among process units, none of which have equipment subject to 40 CFR Part 60, Subpart VVa, the storage vessel is assigned to any process unit subject to subpart VV of this part. If the predominant use of the storage vessel varies from year to year, then the owner or operator must estimate the predominant use initially and reassess every 3 years. The owner or operator must keep records of the information and supporting calculations that show how predominant use is determined. All equipment on the storage vessel must be monitored when in VOC service. [§19.304 of Regulation #19 and 40 CFR 60.482-1a(g)] Effective Date Note: At 73 FR 31376, June 2, 2008, in §60.482-1a, paragraph (g) was stayed until further notice.

- d. Each pump in light liquid service shall be monitored monthly to detect leaks by the methods specified in §60.485a(b). A pump that begins operation in light liquid service after the initial startup date for the process unit must be monitored for the first time within 30 days after the end of its startup period, except for a pump that replaces a leaking pump. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(a)(1)]
- e. Each pump in light liquid service shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(a)(2)]
- f. The instrument reading that defines a leak is specified in paragraphs (b)(1)(i) and (ii) of §60.482-2a. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(b)(1)]
  - i. 5,000 parts per million (ppm) or greater for pumps handling polymerizing monomers;
  - ii. 2,000 ppm or greater for all other pumps.
- g. If there are indications of liquids dripping from the pump seal, the owner or operator shall follow the procedure specified in either paragraph (b)(2)(i) or (ii) of §60.482-2a. This requirement does not apply to a pump that was monitored after a previous weekly inspection and the instrument reading was less than the concentration specified in paragraph (b)(1)(i) or (ii) of §60.482-2a, whichever is applicable. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(b)(2)]
  - i. Monitor the pump within 5 days as specified in §60.485a(b). A leak is detected if the instrument reading measured during monitoring indicates a leak as specified in paragraph (b)(1)(i) or (ii) of §60.482-2a, whichever is applicable. The leak shall be repaired using the procedures in paragraph (c) of §60.482-2a. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(b)(2)(i)]
  - ii. Designate the visual indications of liquids dripping as a leak, and repair the leak using either the procedures in paragraph (c) of §60.482-2a or by

Permit #: 1009-AOP-R7

AFIN: 70-00098

eliminating the visual indications of liquids dripping. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(b)(2)(ii)]

- h. When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482–9a. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(c)(1)]
- i. A first attempt at repair shall be made no later than 5 calendar days after each leak is detected. First attempts at repair include, but are not limited to, the practices described in paragraphs (c)(2)(i) and (ii) of §60.482-2a, where practicable. [§19.304 of Regulation #19 and 40 CFR 60.482-2a(c)(2)]
  - i. Tightening the packing gland nuts;
  - ii. Ensuring that the seal flush is operating at design pressure and temperature.
- j. Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as determined by the methods specified in §60.485a(c). [§19.304 of Regulation #19 and 40 CFR 60.482-4a(a)]
- k. After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after the pressure release, except as provided in §60.482–9a. [§19.304 of Regulation #19 and 40 CFR 60.482-4a(b)(1)]
- 1. No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the conditions of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, by the methods specified in §60.485a(c). [§19.304 of Regulation #19 and 40 CFR 60.482-4a(b)(2)]
- m. Any pressure relief device that is routed to a process or fuel gas system or equipped with a closed vent system capable of capturing and transporting leakage through the pressure relief device to a control device as described in §60.482–10a is exempted from the requirements of paragraphs (a) and (b) of §60.482-4a. [§19.304 of Regulation #19 and 40 CFR 60.482-4a(c)]
- n. Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (a) and (b) of §60.482-4a, provided the owner or operator complies with the requirements in paragraph (d)(2) of §60.482-4a. [§19.304 of Regulation #19 and 40 CFR 60.482-4a(d)(1)]

Permit #: 1009-AOP-R7

- o. After each pressure release, a new rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §60.482–9a. [§19.304 of Regulation #19 and 40 CFR 60.482-4a(d)(2)]
- p. Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent system, except as provided in §60.482-1a(c) and paragraph (c) of §60.482-5a. [§19.304 of Regulation #19 and 40 CFR 60.482-5a(a)]
- q. Each closed-purge, closed-loop, or closed-vent system as required in paragraph (a) of §60.482-5a shall comply with the requirements specified in paragraphs (b)(1) through (4) of §60.482-5a. [§19.304 of Regulation #19 and 40 CFR 60.482-5a(b)]
  - i. Gases displaced during filling of the sample container are not required to be collected or captured.
  - ii. Containers that are part of a closed-purge system must be covered or closed when not being filled or emptied.
  - iii. Gases remaining in the tubing or piping between the closed-purge system valve(s) and sample container valve(s) after the valves are closed and the sample container is disconnected are not required to be collected or captured.
  - iv. Each closed-purge, closed-loop, or closed-vent system shall be designed and operated to meet requirements in either paragraph (b)(4)(i), (ii), (iii), or (iv) of §60.482-5a.
    - A. Return the purged process fluid directly to the process line.
    - B. Collect and recycle the purged process fluid to a process.
    - C. Capture and transport all the purged process fluid to a control device that complies with the requirements of §60.482–10a.
    - D. Collect, store, and transport the purged process fluid to any of the following systems or facilities:
      - 1. A waste management unit as defined in 40 CFR 63.111, if the waste management unit is subject to and operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater streams;
      - 2. A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266;
      - 3. A facility permitted, licensed, or registered by a state to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261;
      - 4. A waste management unit subject to and operated in compliance with the treatment requirements of 40 CFR 61.348(a), provided all waste management units that collect, store, or transport the purged process fluid to the treatment unit

Permit #: 1009-AOP-R7

- are subject to and operated in compliance with the management requirements of 40 CFR 61.343 through 40 CFR 61.347; or
- 5. A device used to burn off-specification used oil for energy recovery in accordance with 40 CFR part 279, subpart G, provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261.
- r. Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve, except as provided in §60.482–1a(c) and paragraphs (d) and (e) of §60.482-6a. [§19.304 of Regulation #19 and 40 CFR 60.482-6a(a)(1)]
- s. The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring process fluid flow through the open-ended valve or line. [§19.304 of Regulation #19 and 40 CFR 60.482-6a(a)(2)]
- t. Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed. [§19.304 of Regulation #19 and 40 CFR 60.482-6a(b)]
- u. When a double block-and-bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) of §60.482-6a at all other times. [§19.304 of Regulation #19 and 40 CFR 60.482-6a(c)]
- v. Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b), and (c) of §60.482-6a. [§19.304 of Regulation #19 and 40 CFR 60.482-6a(d)]
- w. Open-ended valves or lines containing materials which would autocatalytically polymerize or would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of §60.482-6a are exempt from the requirements of paragraphs (a) through (c) of §60.482-6a. [§19.304 of Regulation #19 and 40 CFR 60.482-6a(e)]
- x. Each valve shall be monitored monthly to detect leaks by the methods specified in §60.485a(b) and shall comply with paragraphs (b) through (e) of §60.482-7a. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(a)(1)]
- y. A valve that begins operation in gas/vapor service or light liquid service after the initial startup date for the process unit must be monitored according to paragraphs (a)(2)(i) or (ii), except for a valve that replaces a leaking valve. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(a)(2)]

Permit #: 1009-AOP-R7

- i. Monitor the valve as in paragraph (a)(1) of §60.482-7a. The valve must be monitored for the first time within 30 days after the end of its startup period to ensure proper installation.
- z. If an instrument reading of 500 ppm or greater is measured, a leak is detected. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(b)]
- aa. Any valve for which a leak is not detected for 2 successive months may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(c)(1)(i)]
- bb. As an alternative to monitoring all of the valves in the first month of a quarter, an owner or operator may elect to subdivide the process unit into two or three subgroups of valves and monitor each subgroup in a different month during the quarter, provided each subgroup is monitored every 3 months. The owner or operator must keep records of the valves assigned to each subgroup. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(c)(1)(ii)]
- cc. If a leak is detected, the valve shall be monitored monthly until a leak is not detected for 2 successive months. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(c)(2)]
- dd. When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in §60.482–9a. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(d)(1)]
- ee. A first attempt at repair shall be made no later than 5 calendar days after each leak is detected. [§19.304 of Regulation #19 and 40 CFR 60.482-7a(d)(2)]
- ff. First attempts at repair include, but are not limited to, the following best practices where practicable: [§19.304 of Regulation #19 and 40 CFR 60.482-7a(e)]
  - i. Tightening of bonnet bolts;
  - ii. Replacement of bonnet bolts;
  - iii. Tightening of packing gland nuts;
  - iv. Injection of lubricant into lubricated packing.
- gg. If evidence of a potential leak is found by visual, audible, olfactory, or any other detection method at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service, the owner or operator shall follow either one of the following procedures: [§19.304 of Regulation #19 and 40 CFR 60.482-8a(a)]
  - i. The owner or operator shall monitor the equipment within 5 days by the method specified in §60.485a(b) and shall comply with the requirements of paragraphs (b) through (d) of §60.482-8a.

Permit #: 1009-AOP-R7

- ii. The owner or operator shall eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 calendar days of detection.
- hh. If an instrument reading of 10,000 ppm or greater is measured, a leak is detected. [§19.304 of Regulation #19 and 40 CFR 60.482-8a(b)]
- ii. When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482–9a. [§19.304 of Regulation #19 and 40 CFR 60.482-8a(c)(1)]
- jj. The first attempt at repair shall be made no later than 5 calendar days after each leak is detected. [§19.304 of Regulation #19 and 40 CFR 60.482-8a(c)(2)]
- kk. First attempts at repair include, but are not limited to, the best practices described under §\$60.482-2a(c)(2) and 60.482-7a(e). [§19.304 of Regulation #19 and 40 CFR 60.482-8a(d)]
- ll. Delay of repair of equipment for which leaks have been detected will be allowed if repair within 15 days is technically infeasible without a process unit shutdown. Repair of this equipment shall occur before the end of the next process unit shutdown. Monitoring to verify repair must occur within 15 days after startup of the process unit. [§19.304 of Regulation #19 and 40 CFR 60.482-9a(a)]
- mm. Delay of repair of equipment will be allowed for equipment which is isolated from the process and which does not remain in VOC service. [§19.304 of Regulation #19 and 40 CFR 60.482-9a(b)]
- nn. Delay of repair for valves and connectors will be allowed if: [§19.304 of Regulation #19 and 40 CFR 60.482-9a(c)]
  - i. The owner or operator demonstrates that emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and
  - ii. When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with §60.482–10a.
- oo. Delay of repair for pumps will be allowed if: [§19.304 of Regulation #19 and 40 CFR 60.482-9a(d)]
  - i. Repair requires the use of a dual mechanical seal system that includes a barrier fluid system, and
  - ii. Repair is completed as soon as practicable, but not later than 6 months after the leak was detected.
- pp. Delay of repair beyond a process unit shutdown will be allowed for a valve, if valve assembly replacement is necessary during the process unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been

Permit #: 1009-AOP-R7

AFIN: 70-00098

sufficiently stocked before the supplies were depleted. Delay of repair beyond the next process unit shutdown will not be allowed unless the next process unit shutdown occurs sooner than 6 months after the first process unit shutdown. [§19.304 of Regulation #19 and 40 CFR 60.482-9a(e)]

- qq. When delay of repair is allowed for a leaking pump, valve, or connector that remains in service, the pump, valve, or connector may be considered to be repaired and no longer subject to delay of repair requirements if two consecutive monthly monitoring instrument readings are below the leak definition. [§19.304 of Regulation #19 and 40 CFR 60.482-9a(f)]
- rr. The owner or operator shall initially monitor all connectors in the process unit for leaks by the later of either 12 months after the compliance date or 12 months after initial startup. If all connectors in the process unit have been monitored for leaks prior to the compliance date, no initial monitoring is required provided either no process changes have been made since the monitoring or the owner or operator can determine that the results of the monitoring, with or without adjustments, reliably demonstrate compliance despite process changes. If required to monitor because of a process change, the owner or operator is required to monitor only those connectors involved in the process change. [§19.304 of Regulation #19 and 40 CFR 60.482-11a(a)]
- ss. Except as allowed in §60.482–10a, the owner or operator shall monitor all connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of §60.482-11a. [§19.304 of Regulation #19 and 40 CFR 60.482-11a(b)]
  - i. The connectors shall be monitored to detect leaks by the method specified in §60.485a(b) and, as applicable, §60.485a(c).
  - ii. If an instrument reading greater than or equal to 500 ppm is measured, a leak is detected.
  - iii. The owner or operator shall perform monitoring, subsequent to the initial monitoring required in paragraph (a) of §60.482-11a, as specified in paragraphs (b)(3)(i) through (iii) of §60.482-11a, and shall comply with the requirements of paragraphs (b)(3)(iv) and (v) of §60.482-11a. The required period in which monitoring must be conducted shall be determined from paragraphs (b)(3)(i) through (iii) of §60.482-11a using the monitoring results from the preceding monitoring period. The percent leaking connectors shall be calculated as specified in paragraph (c) of §60.482-11a.
    - A. If the percent leaking connectors in the process unit was greater than or equal to 0.5 percent, then monitor within 12 months (1 year).
    - B. If the percent leaking connectors in the process unit was greater than or equal to 0.25 percent but less than 0.5 percent, then monitor within 4 years. An owner or operator may comply with

Permit #: 1009-AOP-R7

AFIN: 70-00098

the requirements of §60.482-11a(b)(3)(ii) by monitoring at least 40 percent of the connectors within 2 years of the start of the monitoring period, provided all connectors have been monitored by the end of the 4-year monitoring period.

- C. If the percent leaking connectors in the process unit was less than 0.25 percent, then monitor as provided in paragraph (b)(3)(iii)(A) of §60.482-11a and either paragraph (b)(3)(iii)(B) or (b)(3)(iii)(C) of §60.482-11a, as appropriate.
  - 1. An owner or operator shall monitor at least 50 percent of the connectors within 4 years of the start of the monitoring period.
  - 2. If the percent of leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of §60.482-11a is greater than or equal to 0.35 percent of the monitored connectors, the owner or operator shall monitor as soon as practical, but within the next 6 months, all connectors that have not yet been monitored during the monitoring period. At the conclusion of monitoring, a new monitoring period shall be started pursuant to paragraph (b)(3) of §60.482-11a, based on the percent of leaking connectors within the total monitored connectors.
  - 3. If the percent of leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of §60.482-11a is less than 0.35 percent of the monitored connectors, the owner or operator shall monitor all connectors that have not yet been monitored within 8 years of the start of the monitoring period.
- D. If, during the monitoring conducted pursuant to paragraphs (b)(3)(i) through (iii) of §60.482-11a, a connector is found to be leaking, it shall be re-monitored once within 90 days after repair to confirm that it is not leaking.
- E. The owner or operator shall keep a record of the start date and end date of each monitoring period under §60.482-11a for each process unit.
- tt. For use in determining the monitoring frequency, as specified in paragraphs (a) and (b)(3) of §60.482-11a, the percent leaking connectors as used in paragraphs (a) and (b)(3) of §60.482-11a shall be calculated by using the following equation: [§19.304 of Regulation #19 and 40 CFR 60.482-11a(c)]

$$%C_{L} = C_{I} / C_{t} * 100$$

#### Where:

% $C_L$ = Percent of leaking connectors as determined through periodic monitoring required in paragraphs (a) and (b)(3)(i) through (iii) of §60.482-11a.  $C_L$ = Number of connectors measured at 500 ppm or greater, by the method specified in §60.485a(b).

Permit #: 1009-AOP-R7

AFIN: 70-00098

C<sub>t</sub>= Total number of monitored connectors in the process unit or affected facility.

- uu. When a leak is detected pursuant to paragraphs (a) and (b) of §60.482-11a, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482-9a. A first attempt at repair as defined in 40 CFR Part 60, Subpart VVa shall be made no later than 5 calendar days after the leak is detected. [§19.304 of Regulation #19 and 40 CFR 60.482-11a(d)]
- vv. Except for instrumentation systems and inaccessible, ceramic, or ceramic-lined connectors meeting the provisions of paragraph (f) of §60.482-11a, identify the connectors subject to the requirements of 40 CFR Part 60, Subpart VVa. Connectors need not be individually identified if all connectors in a designated area or length of pipe subject to the provisions of 40 CFR Part 60, Subpart VVa are identified as a group, and the number of connectors subject is indicated. [§19.304 of Regulation #19 and 40 CFR 60.482-11a(g)] Effective Date Note: At 73 FR 31376, June 2, 2008, §60.482-11a was stayed until further notice.
- ww. In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in §60.485a, except as provided in §60.8(b). [§19.304 of Regulation #19 and 40 CFR 60.485a(a)]
- xx. The owner or operator shall determine compliance with the standards in §§60.482-1a through 60.482-11a as follows: [§19.304 of Regulation #19 and 40 CFR 60.485a(b)]
  - i. Method 21 shall be used to determine the presence of leaking sources. The instrument shall be calibrated before use each day of its use by the procedures specified in Method 21 of appendix A-7 of this part. The following calibration gases shall be used:
    - A. Zero air (less than 10 ppm of hydrocarbon in air); and
    - B. A mixture of methane or n-hexane and air at a concentration no more than 2,000 ppm greater than the leak definition concentration of the equipment monitored. If the monitoring instrument's design allows for multiple calibration scales, then the lower scale shall be calibrated with a calibration gas that is no higher than 2,000 ppm above the concentration specified as a leak, and the highest scale shall be calibrated with a calibration gas that is approximately equal to 10,000 ppm. If only one scale on an instrument will be used during monitoring, the owner or operator need not calibrate the scales that will not be used during that day's monitoring.
  - ii. A calibration drift assessment shall be performed, at a minimum, at the end of each monitoring day. Check the instrument using the same calibration gas(es) that were used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to

Permit #: 1009-AOP-R7

AFIN: 70-00098

the calibration gas value. Record the instrument reading for each scale used as specified in §60.486a(e)(7). Calculate the average algebraic difference between the three meter readings and the most recent calibration value. Divide this algebraic difference by the initial calibration value and multiply by 100 to express the calibration drift as a percentage. If any calibration drift assessment shows a negative drift of more than 10 percent from the initial calibration value, then all equipment monitored since the last calibration with instrument readings below the appropriate leak definition and above the leak definition multiplied by (100 minus the percent of negative drift/divided by 100) must be re-monitored. If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment since the last calibration with instrument readings above the appropriate leak definition and below the leak definition multiplied by (100 plus the percent of positive drift/divided by 100) may be remonitored.

- yy. The owner or operator shall determine compliance with the no-detectableemission standards in §60.482–4a as follows: [§19.304 of Regulation #19 and 40 CFR 60.485a(c)]
  - i. The requirements of paragraph (b) of §60.485a shall apply.
  - ii. Method 21 of appendix A-7 of this part shall be used to determine the background level. All potential leak interfaces shall be traversed as close to the interface as possible. The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared with 500 ppm for determining compliance.
- The owner or operator shall test each piece of equipment unless he demonstrates that a process unit is not in VOC service, i.e., that the VOC content would never be reasonably expected to exceed 10 percent by weight. For purposes of this demonstration, the following methods and procedures shall be used: [§19.304 of Regulation #19 and 40 CFR 60.485a(d)]
  - i. Procedures that conform to the general methods in ASTM E260-73, 91, or 96, E168-67, 77, or 92, E169-63, 77, or 93 (incorporated by reference—see §60.17) shall be used to determine the percent VOC content in the process fluid that is contained in or contacts a piece of equipment.
  - ii. Organic compounds that are considered by the Administrator to have negligible photochemical reactivity may be excluded from the total quantity of organic compounds in determining the VOC content of the process fluid.
  - iii. Engineering judgment may be used to estimate the VOC content, if a piece of equipment had not been shown previously to be in service. If the Administrator disagrees with the judgment, paragraphs (d)(1) and (2) of §60.485a shall be used to resolve the disagreement.

Permit #: 1009-AOP-R7

- aaa. The owner or operator shall demonstrate that a piece of equipment is in light liquid service by showing that all the following conditions apply: [§19.304 of Regulation #19 and 40 CFR 60.485a(e)]
  - i. The vapor pressure of one or more of the organic components is greater than 0.3 kPa at 20 °C (1.2 in. H2O at 68 °F). Standard reference texts or ASTM D2879–83, 96, or 97 (incorporated by reference—see §60.17) shall be used to determine the vapor pressures.
  - ii. The total concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H<sub>2</sub>O at 68 °F) is equal to or greater than 20 percent by weight.
  - iii. The fluid is a liquid at operating conditions.
- bbb. Samples used in conjunction with paragraphs (d), (e), and (g) of §60.485a shall be representative of the process fluid that is contained in or contacts the equipment. [§19.304 of Regulation #19 and 40 CFR 60.485a(f)]
- ccc. Each owner or operator subject to the provisions of 40 CFR Part 60, Subpart VVa shall comply with the recordkeeping requirements of §60.486a. [§19.304 of Regulation #19 and 40 CFR 60.486a(a)(1)]
- ddd. An owner or operator of more than one affected facility subject to the provisions of 40 CFR Part 60, Subpart VVa may comply with the recordkeeping requirements for these facilities in one recordkeeping system if the system identifies each record by each facility. [§19.304 of Regulation #19 and 40 CFR 60.486a(a)(2)]
- eee. The owner or operator shall record the information specified in paragraphs (a)(3)(i) through (v) of §60.486a for each monitoring event required by §§60.482–2a, 60.482–3a, 60.482–7a, 60.482–8a, and 60.482–11a. [§19.304 of Regulation #19 and 40 CFR 60.486a(a)(3)]
  - i. Monitoring instrument identification.
  - ii. Operator identification.
  - iii. Equipment identification.
  - iv. Date of monitoring.
  - v. Instrument reading.
- fff. When each leak is detected as specified in §§60.482–2a, 60.482–3a, 60.482–7a, 60.482–8a, and 60.482–11a, the following requirements apply: [§19.304 of Regulation #19 and 40 CFR 60.486a(b)]
  - i. A weatherproof and readily visible identification, marked with the equipment identification number, shall be attached to the leaking equipment.

Permit #: 1009-AOP-R7

- ii. The identification on a valve may be removed after it has been monitored for 2 successive months as specified in §60.482–7a(c) and no leak has been detected during those 2 months.
- iii. The identification on a connector may be removed after it has been monitored as specified in §60.482–11a(b)(3)(iv) and no leak has been detected during that monitoring.
- iv. The identification on equipment, except on a valve or connector, may be removed after it has been repaired.
- ggg. When each leak is detected as specified in §§60.482–2a, 60.482–3a, 60.482–7a, 60.482–8a, and 60.482–11a, the following information shall be recorded in a log and shall be kept for 2 years in a readily accessible location: [§19.304 of Regulation #19 and 40 CFR 60.486a(c)]
  - i. The instrument and operator identification numbers and the equipment identification number, except when indications of liquids dripping from a pump are designated as a leak.
  - ii. The date the leak was detected and the dates of each attempt to repair the leak.
  - iii. Repair methods applied in each attempt to repair the leak.
  - iv. Maximum instrument reading measured by Method 21 of appendix A-7 of this part at the time the leak is successfully repaired or determined to be nonrepairable, except when a pump is repaired by eliminating indications of liquids dripping.
  - v. "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
  - vi. The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown.
  - vii. The expected date of successful repair of the leak if a leak is not repaired within 15 days.
  - viii. Dates of process unit shutdowns that occur while the equipment is unrepaired.
  - ix. The date of successful repair of the leak.
- hhh. The following information pertaining to all equipment subject to the requirements in §§60.482–1a to 60.482–11a shall be recorded in a log that is kept in a readily accessible location: [§19.304 of Regulation #19 and 40 CFR 60.486a(e)]
  - i. A list of identification numbers for equipment subject to the requirements of 40 CFR Part 60, Subpart VVa.
  - ii. A list of equipment identification numbers for pressure relief devices required to comply with \$60.482-4a.
  - iii. The dates of each compliance test as required in §§60.482-2a(e), 60.482-3a(i), 60.482-4a, and 60.482-7a(f).
  - iv. The background level measured during each compliance test.
  - v. The maximum instrument reading measured at the equipment during each compliance test.

Permit #: 1009-AOP-R7

- vi. A list of identification numbers for equipment in vacuum service.
- vii. A list of identification numbers for equipment that the owner or operator designates as operating in VOC service less than 300 hr/yr in accordance with §60.482-1a(e), a description of the conditions under which the equipment is in VOC service, and rationale supporting the designation that it is in VOC service less than 300 hr/yr.
- viii. The date and results of the weekly visual inspection for indications of liquids dripping from pumps in light liquid service.
- ix. Records of the information specified in paragraphs (e)(8)(i) through (vi) of §60.486a for monitoring instrument calibrations conducted according to sections 8.1.2 and 10 of Method 21 of appendix A-7 of this part and §60.485a(b).
  - A. Date of calibration and initials of operator performing the calibration.
  - B. Calibration gas cylinder identification, certification date, and certified concentration.
  - C. Instrument scale(s) used.
  - D. A description of any corrective action taken if the meter readout could not be adjusted to correspond to the calibration gas value in accordance with section 10.1 of Method 21 of appendix A-7 of Part 60.
  - E. Results of each calibration drift assessment required by §60.485a(b)(2) (i.e., instrument reading for calibration at end of monitoring day and the calculated percent difference from the initial calibration value).
  - F. If an owner or operator makes their own calibration gas, a description of the procedure used.
- x. The connector monitoring schedule for each process unit as specified in §60.482-11a(b)(3)(v).
- xi. Records of each release from a pressure relief device subject to §60.482–4a.
- iii. Information and data used to demonstrate that a piece of equipment is not in VOC service shall be recorded in a log that is kept in a readily accessible location. [§19.304 of Regulation #19 and 40 CFR 60.486a(j)]
- jjj. The provisions of §60.7(b) and (d) do not apply to affected facilities subject to 40 CFR Part 60, Subpart VVa. [§19.304 of Regulation #19 and 40 CFR 60.486a(k)]
- kkk. Each owner or operator subject to the provisions of 40 CFR Part 60, Subpart VVa shall submit semiannual reports to the Administrator beginning 6 months after the initial startup date. [§19.304 of Regulation #19 and 40 CFR 60.487a(a)]
- Ill. The initial semiannual report to the Administrator shall include the following information: [§19.304 of Regulation #19 and 40 CFR 60.487a(b)]

Permit #: 1009-AOP-R7

- i. Process unit identification.
- ii. Number of valves subject to the requirements of §60.482–7a, excluding those valves designated for no detectable emissions under the provisions of §60.482–7a(f).
- iii. Number of pumps subject to the requirements of §60.482–2a, excluding those pumps designated for no detectable emissions under the provisions of §60.482–2a(e) and those pumps complying with §60.482–2a(f).
- iv. Number of connectors subject to the requirements of §60.482–11a.
- mmm. All semiannual reports to the Administrator shall include the following information, summarized from the information in §60.486a: [§19.304 of Regulation #19 and 40 CFR 60.487a(c)]
  - i. Process unit identification.
  - ii. For each month during the semiannual reporting period,
    - A. Number of valves for which leaks were detected as described in §60.482–7a(b) or §60.483–2a,
    - B. Number of valves for which leaks were not repaired as required in §60.482-7a(d)(1),
    - C. Number of pumps for which leaks were detected as described in §60.482-2a(b), (d)(4)(ii)(A) or (B), or (d)(5)(iii),
    - D. Number of pumps for which leaks were not repaired as required in §60.482-2a(c)(1) and (d)(6),
    - E. Number of connectors for which leaks were detected as described in §60.482-11a(b)
    - F. Number of connectors for which leaks were not repaired as required in §60.482-11a(d), and
    - G. The facts that explain each delay of repair and, where appropriate, why a process unit shutdown was technically infeasible.
  - iii. Dates of process unit shutdowns which occurred within the semiannual reporting period.
  - iv. Revisions to items reported according to paragraph (b) of §60.487a if changes have occurred since the initial report or subsequent revisions to the initial report.
- nnn. An owner or operator shall report the results of all performance tests in accordance with §60.8 of the General Provisions. The provisions of §60.8(d) do not apply to affected facilities subject to the provisions of 40 CFR Part 60, Subpart VVa except that an owner or operator must notify the Administrator of the schedule for the initial performance tests at least 30 days before the initial performance tests. [§19.304 of Regulation #19 and 40 CFR 60.487a(e)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SN-32 Lamp Recycling System

#### **Source Description**

The lamp recycling system (SN-32) processes fluorescent lamps. The bulbs are crushed and separated into glass, end caps, and phosphor powder. Emissions from the bulb crusher are exhausted into a baghouse for particulate removal followed by a carbon adsorber for mercury removal.

## **Specific Conditions**

98. The permittee shall not exceed the emission rates set forth in the following table. [§19.501 of the Regulation #19 et seq and 40 CFR Part 52, Subpart E]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| $PM_{10}$ | 0.1   | 0.1 |

99. The permittee shall not exceed the emission rates set forth in the following table. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| Pollutant | lb/hr    | tpy      |
|-----------|----------|----------|
| PM        | 0.1      | 0.1      |
| Mercury   | 0.000013 | 0.000057 |

100. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

| SN    | Limit | Regulatory Citation |
|-------|-------|---------------------|
| SN-32 | 5%    | §18.501 and A.C.A.  |

101. The permittee shall conduct weekly observations of the opacity from sources SN-32 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of all observations, the cause of any visible emissions, and the corrective action taken. The permittee must keep these records onsite and make them available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 1009-AOP-R7

AFIN: 70-00098

102. The permittee shall not process more than 38,435 pounds of bulbs per day at SN-32. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 70.6]

103. The permittee shall maintain daily records which demonstrate compliance with Specific Condition #102. These records shall be updated daily. The records shall be kept onsite and made available to Department personnel upon request. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

Permit #: 1009-AOP-R7

AFIN: 70-00098

## SN-33 Non-Hazardous Waste Shredder

### **Source Description**

## **Specific Conditions**

The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions #106, #108, and #111. [§19.501 of Regulation #19 et seq. and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy |
|------------------|-------|-----|
| PM <sub>10</sub> | 0.2   | 0.5 |

105. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions #106, #108, and #110. [§18.801 of Regulation #18, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

| Pollutant | lb/hr | tpy |
|-----------|-------|-----|
| PM        | 0.2   | 0.5 |

106. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

| SN | Limit | Regulatory Citation       |
|----|-------|---------------------------|
| 33 | 5%    | §18.501 of Regulation #18 |

- 107. The permittee shall conduct weekly observations of the opacity from source SN-33 and keep a record of these observations. If the permittee detects visible emissions, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements. The permittee shall maintain records of all observations, the cause of any visible emissions, and the corrective action taken. The permittee must keep these records onsite and make them available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 108. The permittee shall not process more than 75,200 tons of debris and waste combined per consecutive 12 month period at SN-33. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

Permit #: 1009-AOP-R7

AFIN: 70-00098

109. The permittee shall maintain monthly records which demonstrate compliance with Specific Condition #108. These records shall be updated by the fifteenth day of the month following the month to which the records pertain. A twelve month rolling total and each individual month's data shall be maintained on site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

- 110. The permittee shall not process any hazardous materials at SN-33. The permittee shall maintain appropriate documentation onsite to demonstrate compliance with this specific condition. This documentation shall be made available to Department personnel upon request. [§18.1004 of Regulation #18 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 111. The permittee shall not process any VOC-containing materials at SN-33. The permittee shall maintain appropriate documentation onsite to demonstrate compliance with this specific condition. This documentation shall be made available to Department personnel upon request. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR 70.6]

Permit #: 1009-AOP-R7

AFIN: 70-00098

## SN-34 No. 1 Package Boiler

### **Source Description**

Clean Harbors currently operates one natural gas/diesel fired boiler to produce steam which is used to create a venturi jet downstream of the Fixed Incinerator Unit scrubber. This boiler has a heat input capacity of 33.75 MMBTU/hr.

## **Specific Conditions**

112. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions #114, #115, and #117. [§19.501 of Regulation #19 et seq. and 40 CFR Part 52, Subpart E]

| Pollutant        | lb/hr | tpy  |
|------------------|-------|------|
| PM <sub>10</sub> | 0.9   | 3.1  |
| $SO_2$           | 12.1  | 39.3 |
| VOC              | 0.2   | 0.9  |
| СО               | 2.9   | 12.5 |
| NO <sub>x</sub>  | 6.2   | 23.9 |
| Lead Compounds   | 0.01  | 0.01 |

113. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #115. [§18.801 of Regulation #18 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

| Pollutant                      | lb/hr  | tpy  |
|--------------------------------|--------|------|
| PM                             | 0.9    | 3.1  |
| Arsenic Compounds              | 0.01   | 0.01 |
| Beryllium Compounds            | 0.0001 | 0.01 |
| Cadmium Compounds              | 0.001  | 0.01 |
| Chromium Compounds, hexavalent | 0.01   | 0.01 |
| Cobalt Compounds               | 0.01   | 0.01 |
| Manganese Compounds            | 0.01   | 0.01 |
| Mercury Compounds              | 0.01   | 0.01 |
| Nickel Compounds               | 0.01   | 0.01 |
| Selenium Compounds             | 0.01   | 0.01 |
| Single Organic HAP             | 0.07   | 0.27 |
| Total Organic HAP              | 0.08   | 0.35 |

Permit #: 1009-AOP-R7

AFIN: 70-00098

114. The diesel fuel used at SN-34 shall not exceed a sulfur content of 0.3% by weight. The permittee shall maintain fuel supplier certifications to demonstrate compliance with this specific condition. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR 70.6]

- 115. The diesel fuel throughput at SN-34 shall not exceed 1,664,000 gallons per consecutive 12-month period. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR 70.6]
- 116. The permittee shall maintain monthly records which demonstrate compliance with the throughput limit set in Specific Condition #115. These records may be used by the Department for enforcement purposes. These records shall be updated by the fifteenth day of the month following the month to which the records pertain, shall be kept on site, and shall be provided to Department personnel upon request. A 12-month rolling total and each individual month's data shall be submitted in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

#### 40 CFR 60, Subpart Dc Conditions for SN-34

- 117. SN-34 is subject to 40 CFR Part 60, Subpart Dc Standards of Performance for Small Industrial, Commercial, Institutional Steam Generating Units. The permittee shall comply with all applicable requirements under 40 CFR Part 60, Subpart Dc. These requirements include, but are not limited to, the following: [§19.304 of Regulation #19 and 40 CFR Part 60, Subpart Dc]
  - a. On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur.\* [§19.304 of Regulation #19 and 40 CFR 60.42c(d)] \*A more stringent limit of 0.3% by weight is in effect for this source (See Specific Condition #114)
  - b. Compliance with the emission limits or fuel oil sulfur limits under §60.42c may be determined based on a certification from the fuel supplier, as described under §60.48c(f), as applicable. [§19.304 of Regulation #19 and 40 CFR 60.42c(h)]
  - c. The SO<sub>2</sub> emission limits, fuel oil sulfur limits, and percent reduction requirements under §60.42c apply at all times, including periods of startup, shutdown, and malfunction. [§19.304 of Regulation #19 and 40 CFR 60.42c(i)]
  - d. On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that can combust coal, wood, or oil and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average).

Permit #: 1009-AOP-R7

- except for one 6-minute period per hour of not more than 27 percent opacity. [§19.304 of Regulation #19 and 40 CFR 60.43c(c)]
- e. The PM and opacity standards under §60.43c apply at all times, except during periods of startup, shutdown, or malfunction. [§19.304 of Regulation #19 and 40 CFR 60.43c(d)]
- f. On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, an owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only oil that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under §60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO<sub>2</sub> emissions is not subject to the PM limit in §60.43c. [§19.304 of Regulation #19 and 40 CFR 60.43c(e)(4)]
- g. For affected facilities subject to §60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO<sub>2</sub> standards based on fuel supplier certification, the performance test shall consist of the certification from the fuel supplier, as described in §60.48c(f), as applicable. [§19.304 of Regulation #19 and 40 CFR 60.44c(h)]
- h. The owner or operator of an affected facility subject to the PM and/or opacity standards under §60.43c shall conduct an initial performance test as required under §60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of §60.45c. [§19.304 of Regulation #19 and 40 CFR 60.45c(a)]
  - 1. Method 9 of appendix A-4 of 40 CFR Part 60 shall be used for determining the opacity of stack emissions. [§19.304 of Regulation #19 and 40 CFR 60.45c(a)(8)]
- i. The owner or operator of an affected facility seeking to demonstrate compliance under §60.43c(e)(4) shall follow the applicable procedures under §60.48c(f). [§19.304 of Regulation #19 and 40 CFR 60.45c(d)]
- j. The monitoring requirements of paragraphs (a) and (d) of §60.46c shall not apply to affected facilities subject to §60.42c(h) (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO<sub>2</sub> standards based on fuel supplier certification, as described under §60.48c(f), as applicable. [§19.304 of Regulation #19 and 40 CFR 60.46c(e)]
- k. The owner or operator shall conduct a performance test using Method 9 of appendix A-4 of 40 CFR Part 60 and the procedures in §60.11 to demonstrate compliance with the applicable limit in §60.43c and shall comply with either paragraphs (a)(1), (a)(2), or (a)(3) of §60.47c. If during the initial 60 minutes of observation all 6-minute averages are less than 10 percent and all individual 15-second observations are less than or

Permit #: 1009-AOP-R7

AFIN: 70-00098

equal to 20 percent, the observation period may be reduced from 3 hours to 60 minutes. [§19.304 of Regulation #19 and 40 CFR 60.47c(a)]

- Except as provided in paragraph (a)(2) and (a)(3) of §60.47c, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of 40 CFR Part 60 performance tests using the procedures in paragraph (a) of §60.47c according to the applicable schedule in paragraphs (a)(1)(i) through (a)(1)(iv) of §60.47c, as determined by the most recent Method 9 of appendix A-4 of 40 CFR Part 60 performance test results. [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(1)]
  - A. If no visible emissions are observed, a subsequent Method 9 of appendix A-4 of 40 CFR Part 60 performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted; [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(1)(i)]
  - B. If visible emissions are observed but the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of 40 CFR Part 60 performance test must be completed within 6 calendar months from the date that the most recent performance test was conducted; [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(1)(ii)]
  - C. If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of 40 CFR Part 60 performance test must be completed within 3 calendar months from the date that the most recent performance test was conducted; [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(1)(iii)] or
  - D. If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of 40 CFR Part 60 performance test must be completed within 30 calendar days from the date that the most recent performance test was conducted. [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(1)(iv)]
- 2. If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of 40 CFR Part 60 performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of 40 CFR Part 60 performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of 40 CFR Part 60 according to the procedures specified in paragraphs (a)(2)(i) and (ii) of §60.47c. [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(2)]
  - A. The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of 40 CFR Part 60 and demonstrate that the sum of the occurrences of any visible emissions is not in excess of

Permit #: 1009-AOP-R7

AFIN: 70-00098

5 percent of the observation period (i.e., 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than 30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the occurrence of visible emissions is greater than 5 percent of the observation period (i.e., 90 seconds per 30 minute period) the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24 hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute observation (i.e., 90 seconds) or conduct a new Method 9 of appendix A-4 of 40 CFR Part 60 performance test using the procedures in paragraph (a) of §60.47c within 30 calendar days according to the requirements in §60.45c(a)(8). [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(2)(i)]

- B. If no visible emissions are observed for 30 operating days during which an opacity standard is applicable, observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any visible emissions are observed, daily observations shall be resumed. [§19.304 of Regulation #19 and 40 CFR 60.47c(a)(2)(ii)]
- 1. Owners and operators of an affected facilities that burn only distillate oil that contains no more than 0.5 weight percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.060 lb/MMBtu) heat input or less and that do not use a post-combustion technology to reduce SO<sub>2</sub> or PM emissions and that are subject to an opacity standard in §60.43c(c) are not required to operate a COMS if they follow the applicable procedures in §60.48c(f). [§19.304 of Regulation #19 and 40 CFR 60.47c(c)]
- m. The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by §60.7 of 40 CFR Part 60. This notification shall include the items required by §60.48c(a)(1) through (4). [§19.304 of Regulation #19 and 40 CFR 60.48c(a)]
- n. The owner or operator of each affected facility subject to the SO<sub>2</sub> emission limits of §60.42c, or the PM or opacity limits of §60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of 40 CFR Part 60. [§19.304 of Regulation #19 and 40 CFR 60.48c(b)]
- o. In addition to the applicable requirements in §60.7, the owner or operator of an affected facility subject to the opacity limits in §60.43c(c) shall submit excess emission reports for any excess emissions from the affected facility that occur during the reporting period and maintain records according to the requirements specified in paragraphs (c)(1) through (3) of

Permit #: 1009-AOP-R7

AFIN: 70-00098

§60.48c, as applicable to the visible emissions monitoring method used. [§19.304 of Regulation #19 and 40 CFR 60.48c(c)]

- p. The owner or operator of each affected facility subject to the SO<sub>2</sub> emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall submit reports to the Administrator. [§19.304 of Regulation #19 and 40 CFR 60.48c(d)]
- q. The owner or operator of each affected facility subject to the SO<sub>2</sub> emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall keep records and submit reports as required under paragraph (d) of §60.48c, including the following information, as applicable. [§19.304 of Regulation #19 and 40 CFR 60.48c(e)]
- r. Fuel supplier certification shall include the following information: [§19.304 of Regulation #19 and 40 CFR 60.48c(f)]
  - 1. For distillate oil: [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(1)]
    - A. The name of the oil supplier; [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(1)(i)]
    - B. A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in §60.41c; and [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(1)(ii)]
    - C. The sulfur content or maximum sulfur content of the oil. [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(1)(iii)]
  - 2. For other fuels: [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(4)]
    - A. The name of the supplier of the fuel; [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(4)(i)]
    - B. The potential sulfur emissions rate or maximum potential sulfur emissions rate of the fuel in ng/J heat input; and [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(4)(ii)]
    - C. The method used to determine the potential sulfur emissions rate of the fuel. [§19.304 of Regulation #19 and 40 CFR 60.48c(f)(4)(iii)]
- s. As an alternative to meeting the requirements of paragraph (g)(1) of §60.48c(g), the owner or operator of an affected facility that combusts only natural gas, wood, fuels using fuel certification in §60.48c(f) to demonstrate compliance with the SO<sub>2</sub> standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month. [§19.304 of Regulation #19 and 40 CFR 60.48c(g)(2)]
- t. All records required under §60.48c shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record. [§19.304 of Regulation #19 and 40 CFR 60.48c(i)]
- u. The reporting period for the reports required under 40 CFR Part 60, Subpart Dc is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end

Clean Harbors El Dorado, LLC Permit #: 1009-AOP-R7

AFIN: 70-00098

of the reporting period. [§19.304 of Regulation #19 and 40 CFR 60.48c(j)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# SECTION V: COMPLIANCE PLAN AND SCHEDULE

Clean Harbors El Dorado, LLC will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future regulations that may apply and determine their applicability with any necessary action taken on a timely basis.

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### SECTION VI: PLANTWIDE CONDITIONS

- 1. The permittee shall notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Regulation 19, §19.704, 40 CFR Part 52, Subpart E, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Regulation 19, §19.410(B) and 40 CFR Part 52, Subpart E]
- 3. The permittee must test any equipment scheduled for testing, unless otherwise stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) new equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) operating equipment according to the time frames set forth by the Department or within 180 days of permit issuance if no date is specified. The permittee must notify the Department of the scheduled date of compliance testing at least fifteen (15) days in advance of such test. The permittee shall submit the compliance test results to the Department within thirty (30) days after completing the testing. [Regulation 19, §19.702 and/or Regulation 18 §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 4. The permittee must provide:
  - a. Sampling ports adequate for applicable test methods;
  - b. Safe sampling platforms;
  - c. Safe access to sampling platforms; and
  - d. Utilities for sampling and testing equipment.

[Regulation 19, §19.702 and/or Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

- 5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee shall maintain the equipment in good condition at all times. [Regulation 19, §19.303 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 6. This permit subsumes and incorporates all previously issued air permits for this facility. [Regulation 26 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 7. The permittee must prepare and implement a Startup, Shutdown, and Malfunction Plan (SSM). If the Department requests a review of the SSM, the permittee will make the SSM available for review. The permittee must keep a copy of the SSM at the source's

Permit #: 1009-AOP-R7

AFIN: 70-00098

location and retain all previous versions of the SSM plan for five years. [Regulation 19, §19.304 and 40 CFR 63.6(e)(3)]

8. The permittee shall not exceed the maximum HAP content limits for the groundwater collected or any waste materials, intermediates, or products processed and/or stored at this facility as listed in the following table. HAPs subject to this requirement include organic HAPs and hydrazine. [§18.1004 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

| Minimum TLV for Each | Maximum Allowable           | Maximum Allowable           |
|----------------------|-----------------------------|-----------------------------|
| $HAP (mg/m^3)$       | Concentration of Any Single | Concentration of Any Single |
|                      | HAP from waste materials,   | HAP from Groundwater        |
| · ·                  | intermediates, or products  | (μg/L)                      |
|                      | (% by weight)               |                             |
| 150.22               | 100                         | 21,700                      |
| 135.20               | 90                          | 19,530                      |
| 120.18               | 80                          | 17,360                      |
| 105.16               | 70                          | 15,190                      |
| 90.14                | 60                          | 13,020                      |
| 75.12                | 50                          | 10,850                      |
| 60.10                | 40                          | 8,680                       |
| 45.08                | 30                          | 6,510                       |
| 30.06                | 20                          | 4,340                       |
| 15.04                | 10                          | 2,170                       |
| 7.53                 | 5                           | 1,085                       |
| 1.52                 | 1                           | 217                         |
| 0.77                 | 0.5                         | 108.5                       |
| 0.17                 | 0.1                         | 21.7                        |

Note: Intermediate values may be obtained by using the following formulas.

Minimum HAP TLV 
$$\left(\frac{\text{mg}}{\text{m}^3}\right) = \left(\frac{\text{X Weight Percent}}{100} \times \left(150.2 \frac{\text{mg}}{\text{m}^3}\right)\right) + 0.0151 \frac{\text{mg}}{\text{m}^3}$$

Where X = the weight percentage of the HAP in the waste material, intermediate, or product.

Minimum HAP TLV 
$$\left(\frac{mg}{m^3}\right) = \left(\frac{X \text{ Concentration of Any Single HAP}\left(\frac{\mu g}{L}\right)}{21,700 \frac{\mu g}{L}} \times \left(150.2 \frac{mg}{m^3}\right)\right) + 0.0151 \frac{mg}{m^3}$$

Where X = the concentration of HAP in the groundwater ( $\mu g/L$ ).

Permit #: 1009-AOP-R7

AFIN: 70-00098

9. The permittee shall maintain records and WMDS of the concentration of each HAP in percent by weight (for waste materials, intermediates, or products) or micrograms per liter (for groundwater) and the corresponding TLV. All HAPs shall be included in the WMDS. The TLV for each HAP shall be obtained from the 2009 ACGIH handbook of Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs). These records shall be maintained in a spreadsheet, database, or other well organized format. These records shall be kept on-site and made available to Department personnel upon request. [§18.1004 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

#### **Divert Stack Events**

- Opening of any of the divert stack(s) while uncombusted waste material is contained in the kiln(s) shall constitute an operational divert stack event. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]
- 11. No divert stack shall be opened during an operational divert stack event without first stopping the waste feed and halting the kiln(s) rotation. No waste feed shall be introduced into the kiln without first closing the divert stack(s). [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]
- 12. Within one hour of an operational divert stack event, the permittee shall notify the on-site inspector. If the on-site inspector is unavailable, the permittee shall note the time of the notification attempt in the operation log for the unit. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- The permittee is limited to twelve operational divert stack events per year, and shall not exceed three divert stack events during any rolling 30 day period. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]
- 14. The permittee shall maintain records which demonstrate compliance with the limit set in Plantwide Condition #13. These records may be used by the Department for enforcement purposes. Records shall be updated during each event, shall be kept on site, and shall be provided to Department in accordance with General Provision #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- Within 5 working days of the operational divert stack event, the permittee shall submit to the Department a written report detailing the cause(s) of the event, the duration of the event, actions taken during the event, and actions taken to correct the cause(s). [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]
- 16. Opening of any of the divert stack(s) while uncombusted waste material is NOT contained in the kiln(s) shall constitute a maintenance divert stack event and not be

Permit #: 1009-AOP-R7

AFIN: 70-00098

subject to Plant Wide Conditions #10 through #15. [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]

- 17. Prior to opening the divert stacks for a maintenance divert stack event, the permittee shall: [§19.705 of Regulation #19, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]
  - 1. Shut down all waste feed:
  - 2. Burn out using natural gas as sole source of fuel for one hour prior to opening the divert vent;
  - 3. Shut off all burners:
  - 4. Do not allow combustion (including natural gas combustion) to take place in the kilns or SCC while vent is open; and
  - 5. Follow Emergency Safety Ventilation Procedures set in the MACT Operating Plan.
- 18. The permittee shall maintain records which demonstrate compliance with the limits set in Plantwide Condition #17. These records may be used by the Department for enforcement purposes. Records shall be updated during each event, shall be kept on site, and shall be provided to Department in accordance with General Condition #7. [§19.705 of Regulation #19 and 40 CFR Part 52, Subpart E]

# 40 CFR 61, Subpart C

- 19. This facility is considered an affected source and is subject, but not limited to, the following requirements. [§19.304 of Regulation #19 and 40 CFR 61, Subpart C National Emission Standard for Beryllium]
- 20. The permittee shall not emit to the atmosphere greater than 10 grams of beryllium over a 24-hour period. [§19.304 of Regulation #19 and 40 CFR 61.32(a)]
- 21. Within 90 days of startup of the new APC system, the permittee shall test SN-01 according to Method 104 of Appendix B of 40 CFR Part 61. [§19.304 of Regulation #19 and 40 CFR 61.33(a)]
- 22. The permittee shall notify the Department at least 30 days prior to an emission test. [§19.304 of Regulation #19 and 40 CFR 61.22(b)]
- 23. The permittee shall take samples over such a period or periods as are necessary to accurately determine the maximum emissions which will occur in any 24-hour period. [§19.304 of Regulation #19 and 40 CFR 61.33(c)]
- 24. The permittee shall analyze all samples and beryllium emissions shall be determined within 30 days after the source test. Test results will then be sent to the Department. [§19.304 of Regulation #19 and 40 CFR 61.33(d)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### 40 CFR 61, Subpart E

25. This facility is considered an affected source and is subject, but not limited to, the following requirements. [§19.304 of Regulation #19 and 40 CFR 61, Subpart E – National Emission Standards for Mercury]

- 26. The permittee shall not emit to the atmosphere greater than 3200 grams of mercury per 24-hour period. [§19.304 of Regulation #19 and 40 CFR 61.52(b)]
- 27. Within 90 days of startup of the new APC system, the permittee shall test SN-01 for mercury emissions using Method 101A in Appendix B of 40 CFR Part 61. [§19.304 of Regulation #19 and 40 CFR 61.53(d)(2)]
- 28. The permittee shall notify the Department at least 30 days prior to an emission test. [§19.304 of Regulation #19 and 40 CFR 61.53(d)(3)]
- 29. The permittee shall take samples over such a period or periods as are necessary to accurately determine the maximum emissions which will occur in any 24-hour period. [§19.304 of Regulation #19 and 40 CFR 61.53(d)(4)]
- 30. The permittee shall analyze all samples and mercury emissions shall be determined within 30 days after the source test. Test results will then be sent to the Department. [§19.304 of Regulation #19 and 40 CFR 61.53(d)(5)]
- 31. The permittee is required to monitor mercury emissions in accordance with §61.55(a) if the mercury emissions are greater than 1,600 grams per 24-hour period. [§19.304 of Regulation #19 and 40 CFR 61.55(a)]

### 40 CFR 61, Subpart FF

- This facility is considered an affected source and is subject, but not limited to, the following requirements. [§19.304 of Regulation 19 and 40 CFR 61, Subpart FF]
- 33. A treatment process or waste stream is in compliance with the requirements of 40 CFR Part 61, Subpart FF and exempt from the requirements of paragraph (c) of §61.348 because the facility is a hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR Part 270 and complies with the requirements of 40 CFR Part 264, Subpart O. [§19.304 of Regulation #19 and 40 CFR 61.348(d)]
- 34. The facility shall develop and implement a written startup, shutdown, and malfunction plan for those sources indicated as being subject to 40 CFR Part 63, Subpart FF. The plan shall include those items listed in 40 CFR 63.6(e)(3) et seq. The plan shall be maintained on site and be available to Department personnel upon request. [§19.304 of Regulation #19 and 40 CFR 63.6(e)(3)(i)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### 40 CFR 63, Subpart DD

- 35. Tanks RCRA 1 through 4, RCRA 8 through RCRA 15, RCRA 501, RCRA 545, RCRA 602 through 609, 144-TNK-201 through 144-TNK-204, 600-TNK-502 through 600-TNK-504, 600-TNK-505 through 600-TNK-527, containers (including but not limited to: drums, tank trucks, and railcars), vacuum pot distillation unit, thin film evaporator, two distillation columns, transfer systems, and equipment components are subject to 40 CFR Part 63, Subpart DD National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations. The permittee shall comply with all applicable requirements under 40 CFR Part 63, Subpart DD. These requirements include, but are not limited to, the following requirements. [§19.304 of Regulation #19 and 40 CFR Part 63, Subpart DD]
- 36. Affected sources —(1) Off-site material management units. For each operation specified in paragraphs (a)(2)(i) through (a)(2)(vi) of §63.680 that is located at the plant site, the affected source is the entire group of off-site material management units associated with the operation. An off-site material management unit is a tank, container, surface impoundment, oil-water separator, organic-water separator, or transfer system used to manage off-site material. For the purpose of implementing the standards under 40 CFR Part 63, Subpart DD, a unit that meets the definition of a tank or container but also is equipped with a vent that serves as a process vent for any of the processes listed in paragraphs (c)(2)(i) through (c)(2)(vi) of §63.680 is not an off-site material management unit but instead is a process vent and is to be included in the appropriate affected source group under paragraph (c)(2) of §63.680. Examples of such a unit may include, but are not limited to, a distillate receiver vessel, a primary condenser, a bottoms receiver vessel, a surge control tank, a separator tank, and a hot well. [§19.304 of Regulation #19 and 40 CFR 63.680(c)(1)]
- 37. Process vents. For each operation specified in paragraphs (a)(2)(i) through (a)(2)(vi) of §63.680 that is located at the plant site, the affected source is the entire group of process equipment associated with the process vents for the processes listed in paragraphs (c)(2)(i) through (c)(2)(vi) of §63.680. [§19.304 of Regulation #19 and 40 CFR 63.680(c)(2)]
  - a. Distillation process used for the treatment, recycling, or recovery of off-site material. Distillation means a process, either batch or continuous, separating one or more off-site material feed streams into two or more exit streams having different component concentrations from those in the feed stream or streams. The separation is achieved by the redistribution of the components between the liquid and vapor phases as they approach equilibrium within the distillation unit. [§19.304 of Regulation #19 and 40 CFR 63.680(c)(2)(i)]
  - b. Thin-film evaporation process used for the treatment, recycling, or recovery of off-site material. Thin-film evaporation means a liquid mixture separation process or method that uses a heating surface consisting of a large diameter tube that may be either straight or tapered, horizontal or vertical. Liquid is spread on the tube wall by a rotating assembly of blades that maintain a close clearance

Permit #: 1009-AOP-R7

AFIN: 70-00098

from the wall or actually ride on the film of liquid on the wall. [§19.304 of Regulation #19 and 40 CFR 63.680(c)(2)(iii)]

- 38. Equipment leaks. For each operation specified in paragraphs (a)(2)(i) through (a)(2)(vi) of §63.680 that is located at the plant site, the affected source is the entire group of equipment components for which each component meets all of the conditions specified in paragraphs (c)(3)(i) through (c)(3)(iii) of §63.680. If any one of these conditions do not apply to an equipment component, then that component is not part of the affected source for equipment leaks. [§19.304 of Regulation #19 and 40 CFR 63.680(c)(3)]
  - a. The equipment component is a pump, compressor, agitator, pressure relief device, sampling connection system, open-ended valve or line, valve, connector, or instrumentation system; [§19.304 of Regulation #19 and 40 CFR 63.680(c)(3)(i)]
  - b. The equipment component contains or contacts off-site material having a total HAP concentration equal to or greater than 10 percent by weight; and [§19.304 of Regulation #19 and 40 CFR 63.680(c)(3)(ii)]
  - c. The equipment component is intended to operate for 300 hours or more during a calendar year in off-site material service, as defined in §63.681 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.680(c)(3)(iii)]
- 39. Compliance dates —(1) Existing sources. The owner or operator of an affected source that commenced construction or reconstruction before October 13, 1994, must achieve compliance with the provisions of 40 CFR Part 63, Subpart DD on or before the date specified in paragraph (e)(1)(i) or (e)(1)(ii) of §63.680 as applicable to the affected source. [§19.304 of Regulation #19 and 40 CFR 63.680(e)(1)]
  - a. For an affected source that commenced construction or reconstruction before October 13, 1994 and receives off-site material for the first time before February 1, 2000, the owner or operator of this affected source must achieve compliance with the provisions of 40 CFR Part 63, Subpart DD on or before February 1, 2000 unless an extension has been granted by the Administrator as provided in 40 CFR 63.6(i). [§19.304 of Regulation #19 and 40 CFR 63.680(e)(1)(i)]
  - b. For an affected source that commenced construction or reconstruction before October 13, 1994, but receives off-site material for the first time on or after February 1, 2000, the owner or operator of the affected source must achieve compliance with the provisions of 40 CFR Part 63, Subpart DD upon the first date that the affected source begins to manage off-site material. [§19.304 of Regulation #19 and 40 CFR 63.680(e)(1)(ii)]
- 40. New sources. The owner or operator of an affected source for which construction or reconstruction commences on or after October 13, 1994, must achieve compliance with the provisions of 40 CFR Part 63, Subpart DD on or before July 1, 1996, or upon initial startup of operations, whichever date is later as provided in 40 CFR 63.6(b). [§19.304 of Regulation #19 and 40 CFR 63.680(e)(2)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

41. The provisions of 40 CFR part 63, subpart A—General Provisions that apply and those that do not apply to 40 CFR Part 63, Subpart DD are specified in Table 2 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.680(f)]

- 42. Off-site material management units. (1) For each off-site material management unit that is part of an affected source, the owner or operator must meet the requirements in paragraph (b)(1)(i) of §63.683. [§19.304 of Regulation #19 and 40 CFR 63.683(b)(1)]
  - a. The owner or operator controls air emissions from the off-site material management unit in accordance with the applicable standards specified in §§63.685 through 63.689 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.683(b)(1)(i)]
- 43. Process vents. (1) For each process vent that is part of an affected source, the owner or operator must meet the requirements in paragraph (c)(1)(i) of §63.683. [§19.304 of Regulation #19 and 40 CFR 63.683(c)(1)]
  - a. The owner or operator controls air emissions from the process vent in accordance with the standards specified in §63.690 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.683(c)(1)(i)]
- 44. Equipment leaks. The owner or operator must control equipment leaks from each equipment component that is part of the affected source specified in §63.680(c)(3) of 40 CFR Part 63, Subpart DD by implementing leak detection and control measures in accordance with the standards specified in §63.691 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.683(d)]
- 45. The owner or operator shall control air emissions from each tank subject to §63.685 in accordance with the following applicable requirements: [§19.304 of Regulation #19 and 40 CFR 63.685(b)]
  - a. For a tank that is part of an existing affected source but the tank is not used to manage off-site material having a maximum HAP vapor pressure kilopascal (kPa) that is equal to or greater than 76.6 kPa nor is the tank used for a waste stabilization process as defined in §63.681 of 40 CFR Part 63, Subpart DD, the owner or operator shall determine whether the tank is required to use either Tank Level 1 controls or Tank Level 2 controls as specified for the tank by Table 3 of 40 CFR Part 63, Subpart DD based on the off-site material maximum HAP vapor pressure and the tank's design capacity. The owner or operator shall control air emissions from a tank required by Table 3 to use Tank Level 1 controls in accordance with the requirements of paragraph (c) of §63.685. The owner or operator shall control air emissions from a tank required by Table 3 to use Tank Level 2 controls in accordance with the requirements of paragraph (d) of §63.685. [§19.304 of Regulation #19 and 40 CFR 63.685(b)(1)]
  - b. For a tank that is part of a new affected source but the tank is not used to manage off-site material having a maximum HAP vapor pressure that is equal to or greater

Permit #: 1009-AOP-R7

AFIN: 70-00098

than 76.6 kPa nor is the tank used for a waste stabilization process as defined in §63.681 of 40 CFR Part 63, Subpart DD, the owner or operator shall determine whether the tank is required to use either Tank Level 1 controls or Tank Level 2 controls as specified for the tank by Table 4 of 40 CFR Part 63, Subpart DD based on the off-site material maximum HAP vapor pressure and the tank's design capacity. The owner or operator shall control air emissions from a tank required by Table 4 to use Tank Level 1 controls in accordance with the requirements of paragraph (c) of §63.685. The owner or operator shall control air emissions from a tank required by Table 4 to use Tank Level 2 controls in accordance with the requirements of paragraph (d) of §63.685. [§19.304 of Regulation #19 and 40 CFR 63.685(b)(2)]

- Owners and operators controlling air emissions from a tank using Tank Level 1 controls shall meet the following requirements: [§19.304 of Regulation #19 and 40 CFR 63.685(c)]
  - a. The owner or operator shall determine the maximum HAP vapor pressure for an off-site material to be managed in the tank using Tank Level 1 controls before the first time the off-site material is placed in the tank. The maximum HAP vapor pressure shall be determined using the procedures specified in §63.694(j) of 40 CFR Part 63, Subpart DD. Thereafter, the owner or operator shall perform a new determination whenever changes to the off-site material managed in the tank could potentially cause the maximum HAP vapor pressure to increase to a level that is equal to or greater than the maximum HAP vapor pressure limit for the tank design capacity category specified in Table 3 or Table 4 of 40 CFR Part 63, Subpart DD, as applicable to the tank. [§19.304 of Regulation #19 and 40 CFR 63.685(c)(1)]
  - b. The owner or operator must control air emissions from the tank in accordance with the requirements in either paragraph (c)(2)(i) or (c)(2)(ii) of §63.685, as applicable to the tank. [§19.304 of Regulation #19 and 40 CFR 63.685(c)(2)]
    - i. The owner or operator controls air emissions from the tank in accordance with the provisions specified in subpart OO of 40 CFR part 63—National Emission Standards for Tanks—Level 1. [§19.304 of Regulation #19 and 40 CFR 63.685(c)(2)(i)]
    - ii. As an alternative to meeting the requirements in paragraph (c)(2)(i) of §63.685, an owner or operator may control air emissions from the tank in accordance with the provisions for Tank Level 2 controls as specified in paragraph (d) of §63.685. [§19.304 of Regulation #19 and 40 CFR 63.685(c)(2)(ii)]
- 47. Owners and operators controlling air emissions from a tank using Tank Level 2 controls shall use one of the following tanks: [§19.304 of Regulation #19 and 40 CFR 63.685(d)]
  - a. A tank vented through a closed-vent system to a control device in accordance with the requirements specified in paragraph (g) of §63.685. [§19.304 of Regulation #19 and 40 CFR 63.685(d)(3)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

48. The owner or operator who controls tank air emissions by venting to a control device shall meet the requirements specified in paragraphs (g)(1) through (g)(3) of §63.685. [§19.304 of Regulation #19 and 40 CFR 63.685(g)]

- a. The tank shall be covered by a fixed roof and vented directly through a closed-vent system to a control device in accordance with the following requirements: [§19.304 of Regulation #19 and 40 CFR 63.685(g)(1)]
  - i. The fixed roof and its closure devices shall be designed to form a continuous barrier over the entire surface area of the liquid in the tank. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(1)(i)]
  - ii. Each opening in the fixed roof not vented to the control device shall be equipped with a closure device. If the pressure in the vapor headspace underneath the fixed roof is less than atmospheric pressure when the control device is operating, the closure devices shall be designed to operate such that when the closure device is secured in the closed position there are no visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the cover opening and the closure device. If the pressure in the vapor headspace underneath the fixed roof is equal to or greater than atmospheric pressure when the control device is operating, the closure device shall be designed to operate with no detectable organic emissions. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(1)(ii)]
  - iii. The fixed roof and its closure devices shall be made of suitable materials that will minimize exposure of the off-site material to the atmosphere, to the extent practical, and will maintain the integrity of the equipment throughout its intended service life. Factors to be considered when selecting the materials for and designing the fixed roof and closure devices shall include: organic vapor permeability, the effects of any contact with the liquid and its vapor managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank on which the fixed roof is installed. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(1)(iii)]
  - iv. The closed-vent system and control device shall be designed and operated in accordance with the requirements of §63.693 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(1)(iv)]
- b. Whenever an off-site material is in the tank, the fixed roof shall be installed with each closure device secured in the closed position and the vapor headspace underneath the fixed roof vented to the control device except as follows: [§19.304 of Regulation #19 and 40 CFR 63.685(g)(2)]
  - i. Venting to the control device is not required, and opening of closure devices or removal of the fixed roof is allowed at the following times: [§19.304 of Regulation #19 and 40 CFR 63.685(g)(2)(i)]
    - To provide access to the tank for performing routine inspection, maintenance, or other activities needed for normal operations.
       Examples of such activities include those times when a worker needs to open a port to sample liquid in the tank, or when a worker

Permit #: 1009-AOP-R7

AFIN: 70-00098

needs to open a hatch to maintain or repair equipment. Following completion of the activity, the owner or operator shall promptly secure the closure device in the closed position or reinstall the cover, as applicable, to the tank. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(2)(i)(A)]

- 2. To remove accumulated sludge or other residues from the bottom of the tank. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(2)(i)(B)]
- ii. Opening of a safety device, as defined in §63.681 of 40 CFR Part 63, Subpart DD, is allowed at any time conditions require it to do so to avoid an unsafe condition. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(2)(ii)]
- c. The owner or operator shall inspect and monitor the air emission control equipment in accordance with the procedures specified in §63.695 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.685(g)(3)]
- 49. The owner or operator shall control air emissions from each container subject to §63.688 in accordance with the following requirements, as applicable to the container. [§19.304 of Regulation #19 and 40 CFR 63.688(b)]
  - a. For a container having a design capacity greater than 0.1 m<sup>3</sup> and less than or equal to 0.46 m<sup>3</sup>, the owner or operator must control air emissions from the container in accordance with the requirements in either paragraph (b)(1)(i) or (b)(1)(ii) of §63.688. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(1)]
    - i. The owner or operator controls air emissions from the container in accordance with the standards for Container Level 1 controls as specified in 40 CFR part 63, subpart PP—National Emission Standards for Containers. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(1)(i)]
    - ii. As an alternative to meeting the requirements in paragraph (b)(1)(i) of §63.688, an owner or operator may choose to control air emissions from the container in accordance with the standards for either Container Level 2 controls or Container Level 3 controls as specified in subpart PP of this part 63—National Emission Standards for Containers. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(1)(ii)]
  - b. For a container having a design capacity greater than 0.46 m<sup>3</sup> and the container is not in light-material service as defined in §63.681 of 40 CFR Part 63, Subpart DD, the owner or operator must control air emissions from the container in accordance with the requirements in either paragraph (b)(1)(i) or (b)(1)(ii) of §63.688. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(2)]
  - c. For a container having a design capacity greater than 0.46 m<sup>3</sup> and the container is in light-material service as defined in §63.681 of 40 CFR Part 63, Subpart DD, the owner or operator must control air emissions from the container in accordance with the requirements in either paragraph (b)(3)(i) or (b)(3)(ii) of §63.688. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(3)]
    - i. The owner or operator controls air emissions from the container in accordance with the standards for Container Level 2 controls as specified

Permit #: 1009-AOP-R7

AFIN: 70-00098

in 40 CFR part 63, subpart PP—National Emission Standards for Containers. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(3)(i)]

- ii. As an alternative to meeting the requirements in paragraph (b)(3)(i) of §63.688, an owner or operator may choose to control air emissions from the container in accordance with the standards for Container Level 3 controls as specified in 40 CFR part 63, subpart PP—National Emission Standards for Containers. [§19.304 of Regulation #19 and 40 CFR 63.688(b)(3)(ii)]
- 50. For each transfer system that is subject to §63.689, the owner or operator shall control air emissions by using the transfer systems specified in paragraphs (c)(2) of §63.689. [§19.304 of Regulation #19 and 40 CFR 63.689(c)]
  - a. A transfer system that consists of continuous hard-piping. All joints or seams between the pipe sections shall be permanently or semi-permanently sealed (e.g., a welded joint between two sections of metal pipe or a bolted and gasketed flange). [§19.304 of Regulation #19 and 40 CFR 63.689(c)(2)]
- 51. The owner or operator must route the vent stream from each affected process vent through a closed-vent system to a control device that meets the standards specified in §63.693 of 40 CFR Part 63, Subpart DD. For the purpose of complying with paragraph (b) of §63.690, a primary condenser is not a control device; however, a second condenser or other organic recovery device that is operated downstream of the primary condenser is considered a control device. [§19.304 of Regulation #19 and 40 CFR 63.690(b)]
- 52. The owner or operator shall control the HAP emitted from equipment leaks in accordance with the applicable provisions specified in either paragraph (b)(1) or (b)(2) of §63.691. [§19.304 of Regulation #19 and 40 CFR 63.691(b)]
  - a. The owner or operator controls the HAP emitted from equipment leaks in accordance with §61.242 through §61.247 in 40 CFR part 61, subpart V—National Emission Standards for Equipment Leaks; or [§19.304 of Regulation #19 and 40 CFR 63.691(b)(1)]
- 53. For each closed-vent system and control device used to comply with §63.693, the owner or operator shall meet the following requirements: [§19.304 of Regulation #19 and 40 CFR 63.693(b)]
  - a. The owner or operator must use a closed-vent system that meets the requirements specified in paragraph (c) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(1)]
  - b. The owner or operator must use a control device that meets the requirements specified in paragraphs (d) through (h) of §63.693 as applicable to the type and design of the control device selected by the owner or operator to comply with the provisions of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(2)]
  - c. Whenever gases or vapors containing HAP are vented through a closed-vent system connected to a control device used to comply with §63.693, the control

Permit #: 1009-AOP-R7

AFIN: 70-00098

device must be operating except at those times listed in either paragraph (b)(3)(i) or (b)(3)(ii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(3)]

- i. The control device may be bypassed for the purpose of performing planned routine maintenance of the closed-vent system or control device in situations when the routine maintenance cannot be performed during periods that the emission point vented to the control device is shutdown. On an annual basis, the total time that the closed-vent system or control device is bypassed to perform routine maintenance shall not exceed 240 hours per each calendar year. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(3)(i)]
- ii. The control device may be bypassed for the purpose of correcting a malfunction of the closed-vent system or control device. The owner or operator shall perform the adjustments or repairs necessary to correct the malfunction as soon as practicable after the malfunction is detected. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(3)(ii)]
- d. The owner or operator must inspect and monitor each closed-vent system in accordance with the requirements specified in either paragraph (b)(4)(i) or (b)(4)(ii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(4)]
  - i. The owner or operator inspects and monitors the closed-vent system in accordance with the requirements specified in §63.695(c) of 40 CFR Part 63, Subpart DD, and complies with the applicable recordkeeping requirements in §63.696 of 40 CFR Part 63, Subpart DD and the applicable reporting requirements in §63.697 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(4)(i)]
  - ii. As an alternative to meeting the requirements specified in paragraph (b)(4)(i) of §63.693, the owner or operator may choose to inspect and monitor the closed-vent system in accordance with the requirements under 40 CFR part 63, subpart H—National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks as specified in 40 CFR 63.172(f) through (h), and complies with the applicable recordkeeping requirements in 40 CFR 63.181 and the applicable reporting requirements in 40 CFR 63.182. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(4)(ii)]
- e. The owner or operator must monitor the operation of each control device in accordance with the requirements specified in paragraphs (d) through (h) of §63.693 as applicable to the type and design of the control device selected by the owner or operator to comply with the provisions of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(5)]
- f. The owner or operator shall maintain records for each control device in accordance with the requirements of §63.696 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(6)]
- g. The owner or operator shall prepare and submit reports for each control device in accordance with the requirements of §63.697 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(7)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

h. In the case when an owner or operator chooses to use a design analysis to demonstrate compliance of a control device with the applicable performance requirements specified in §63.693 as provided for in paragraphs (d) through (g) of §63.693, the Administrator may request that the design analysis be revised or amended by the owner or operator to correct any deficiencies identified by the Administrator. If the owner or operator and the Administrator do not agree on the acceptability of using the design analysis (including any changes requested by the Administrator) to demonstrate that the control device achieves the applicable performance requirements, then the disagreement must be resolved using the results of a performance test conducted by the owner or operator in accordance with the requirements of §63.694(1) of 40 CFR Part 63, Subpart DD. The Administrator may choose to have an authorized representative observe the performance test conducted by the owner or operator. Should the results of this performance test not agree with the determination of control device performance based on the design analysis, then the results of the performance test will be used to establish compliance with 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.693(b)(8)]

- 54. Closed-vent system requirements. [§19.304 of Regulation #19 and 40 CFR 63.693(c)]
  - a. The vent stream required to be controlled shall be conveyed to the control device by either of the following closed-vent systems: [§19.304 of Regulation #19 and 40 CFR 63.693(c)(1)]
    - i. A closed-vent system that is designed to operate with no detectable organic emissions using the procedure specified in §63.694(k) of 40 CFR Part 63, Subpart DD; or [§19.304 of Regulation #19 and 40 CFR 63.693(c)(1)(i)]
    - ii. A closed-vent system that is designed to operate at a pressure below atmospheric pressure. The system shall be equipped with at least one pressure gage or other pressure measurement device that can be read from a readily accessible location to verify that negative pressure is being maintained in the closed-vent system when the control device is operating. [§19.304 of Regulation #19 and 40 CFR 63.693(c)(1)(ii)]
- 55. Carbon adsorption control device requirements. [§19.304 of Regulation #19 and 40 CFR 63.693(d)]
  - a. The carbon adsorption system must achieve the performance specifications in either paragraph (d)(1)(i) or (d)(1)(ii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(1)]
    - i. Recover 95 percent or more, on a weight-basis, of the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the carbon adsorption system; or [§19.304 of Regulation #19 and 40 CFR 63.693(d)(1)(i)]
    - ii. Recover 95 percent or more, on a weight-basis, of the total HAP listed in Table 1 of 40 CFR Part 63, Subpart DD contained in the vent stream

Permit #: 1009-AOP-R7

AFIN: 70-00098

entering the carbon adsorption system. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(1)(ii)]

- b. The owner or operator must demonstrate that the carbon adsorption system achieves the performance requirements in paragraph (d)(1) of §63.693 by either performing a performance test as specified in paragraph (d)(2)(i) of §63.693 or a design analysis as specified in paragraph (d)(2)(ii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(2)]
  - i. An owner or operator choosing to use a performance test to demonstrate compliance must conduct the test in accordance with the requirements of §63.694(1) of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(2)(i)]
  - ii. An owner or operator choosing to use a design analysis to demonstrate compliance must include as part of this design analysis the information specified in paragraph (d)(2)(ii)(B) of §63.693 as applicable to the carbon adsorption system design. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(2)(ii)]
    - 1. For a nonregenerable carbon adsorption system (e.g., a carbon canister), the design analysis shall address the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature and shall establish the design exhaust vent stream organic compound concentration, carbon bed capacity, activated carbon type and working capacity, and design carbon replacement interval based on the total carbon working capacity of the control device and emission point operating schedule.

      [§19.304 of Regulation #19 and 40 CFR 63.693(d)(2)(ii)(B)]
- c. The owner or operator must monitor the operation of the carbon adsorption system in accordance with the requirements of §63.695(e) using the continuous monitoring systems specified in paragraphs (d)(3)(ii) of §63.693. Monitoring the operation of a nonregenerable carbon adsorption system (e.g., a carbon canister) using a continuous monitoring system is not required when the carbon canister or the carbon in the control device is replaced on a regular basis according to the requirements in paragraph (d)(4)(iii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(3)]
  - i. A continuous monitoring system to measure and record the daily average concentration level of organic compounds in the exhaust gas stream from the control device. The organic monitoring system must comply either with Performance Specification 8 or 9 in 40 CFR part 60, appendix B. The relative accuracy provision of Performance Specification 8, Sections 2.4 and 3 need not be conducted. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(3)(ii)]
- d. The owner or operator shall manage the carbon used for the carbon adsorption system, as follows: [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)]
  - i. Following the initial startup of the control device, all carbon in the control device shall be replaced with fresh carbon on a regular, predetermined time interval that is no longer than the carbon service life established for

Permit #: 1009-AOP-R7

AFIN: 70-00098

the carbon adsorption system. The provisions of this paragraph (d)(4)(i) do not apply to a nonregenerable carbon adsorption system (e.g., a carbon canister) for which the carbon canister or the carbon in the control device is replaced on a regular basis according to the requirements in paragraph (d)(4)(iii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(i)]

- ii. The spent carbon removed from the carbon adsorption system must be either regenerated, reactivated, or burned in one of the units specified in paragraphs (d)(4)(ii)(A) through (d)(4)(ii)(G) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)]
  - 1. Regenerated or reactivated in a thermal treatment unit for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart X. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(A)]
  - 2. Regenerated or reactivated in a thermal treatment unit equipped with and operating air emission controls in accordance with §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(B)]
  - 3. Regenerated or reactivated in a thermal treatment unit equipped with and operating organic air emission controls in accordance with a national emission standard for hazardous air pollutants under another subpart in 40 CFR part 63 or 40 CFR part 61. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(C)]
  - 4. Burned in a hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart O. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(D)]
  - 5. Burned in a hazardous waste incinerator for which the owner or operator has designed and operates the incinerator in accordance with the interim status requirements of 40 CFR part 265, subpart O. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(E)]
  - 6. Burned in a boiler or industrial furnace for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 266, subpart H. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(F)]
  - 7. Burned in a boiler or industrial furnace for which the owner or operator has designed and operates the unit in accordance with the interim status requirements of 40 CFR part 266, subpart H. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(ii)(G)]
- iii. As an alternative to meeting the requirements in paragraphs (d)(3) and (d)(4)(i) of §63.693, an owner or operator of a nonregenerable carbon adsorption system may choose to replace on a regular basis the carbon canister or the carbon in the control device using the procedures in either paragraph (d)(4)(iii)(A) or (d)(4)(iii)(B) of §63.693. For the purpose of

Permit #: 1009-AOP-R7

AFIN: 70-00098

complying with this paragraph (d)(4)(iii), a nonregenerable carbon adsorption system means a carbon adsorption system that does not regenerate the carbon bed directly onsite in the control device, such as a carbon canister. The spent carbon removed from the nonregenerable carbon adsorption system must be managed according to the requirements in paragraph (d)(4)(ii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(iii)]

- 1. Monitor the concentration level of the organic compounds in the exhaust vent from the carbon adsorption system on a regular schedule, and when carbon breakthrough is indicated, immediately replace either the existing carbon canister with a new carbon canister or replace the existing carbon in the control device with fresh carbon. Measurement of the concentration level of the organic compounds in the exhaust vent stream must be made with a detection instrument that is appropriate for the composition of organic constituents in the vent stream and is routinely calibrated to measure the organic concentration level expected to occur at breakthrough. The monitoring frequency must be daily or at an interval no greater than 20 percent of the time required to consume the total carbon working capacity established as a requirement of paragraph (d)(2)(ii)(B) of §63.693, whichever is longer. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(iii)(A)]
- 2. Replace either the existing carbon canister with a new carbon canister or replace the existing carbon in the control device with fresh carbon at a regular, predetermined time interval that is less than the design carbon replacement interval established as a requirement of paragraph (d)(2)(ii)(B) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(d)(4)(iii)(B)]
- Vapor incinerator control device requirements. [§19.304 of Regulation #19 and 40 CFR 63.693(f)]
  - a. The vapor incinerator must achieve the performance specifications in either paragraph (f)(1)(i), (f)(1)(ii), or (f)(1)(iii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)]
    - i. Destroy the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the vapor incinerator either:
       [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(i)]
      - 1. By 95 percent or more, on a weight-basis, or [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(i)(A)]
      - 2. To achieve a total incinerator outlet concentration for the TOC, less methane and ethane, of less than or equal to ppmv on a dry basis corrected to 3 percent oxygen. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(i)(B)]

Permit #: 1009-AOP-R7

- ii. Destroy the HAP listed in Table 1 of 40 CFR Part 63, Subpart DD contained in the vent stream entering the vapor incinerator either: [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(ii)]
  - 1. By 95 percent or more, on a total HAP weight-basis, or [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(ii)(A)]
  - 2. To achieve a total incinerator outlet concentration for the HAP, listed in Table 1 of 40 CFR Part 63, Subpart DD, of less than or equal to ppmv on a dry basis corrected to 3 percent oxygen. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(ii)(B)]
- iii. Maintain the conditions in the vapor incinerator combustion chamber at a residence time of 0.5 seconds or longer and at a temperature of 760°C or higher. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(1)(iii)]
- b. The owner or operator must demonstrate that the vapor incinerator achieves the performance requirements in paragraph (f)(1) of §63.693 by either performing a performance test as specified in paragraph (f)(2)(i) of §63.693 or a design analysis as specified in paragraph (f)(2)(ii) of §63.693. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(2)]
  - i. An owner or operator choosing to use a performance test to demonstrate compliance must conduct the test in accordance with the requirements of §63.694(1) of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(2)(i)]
  - ii. An owner or operator choosing to use a design analysis to demonstrate compliance must include as part of this design analysis the information specified in either paragraph (f)(2)(ii)(A) or (f)(2)(ii)(B) of §63.693 as applicable to the vapor incinerator design. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(2)(ii)]
    - 1. For a thermal vapor incinerator, the design analysis shall address the vent stream composition, constituent concentrations, and flow rate and shall establish the design minimum and average temperatures in the combustion chamber and the combustion chamber residence time. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(2)(ii)(A)]
- c. The owner or operator must monitor the operation of the vapor incinerator in accordance with the requirements of §63.695(e) of 40 CFR Part 63, Subpart DD using one of the continuous monitoring systems specified in paragraphs (f)(3)(i) through (f)(3)(iv) of §63.693 as applicable to the type of vapor incinerator used. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(3)]
  - i. For a thermal vapor incinerator, a continuous parameter monitoring system to measure and record the daily average temperature of the exhaust gases from the control device. The accuracy of the temperature monitoring device must be ±1 percent of the temperature being measured, expressed in degrees Celsius of ±0.5 °C, whichever is greater. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(3)(i)]
  - ii. For either type of vapor incinerator, a continuous monitoring system to measure and record the daily average concentration of organic compounds

Permit #: 1009-AOP-R7

AFIN: 70-00098

in the exhaust vent stream from the control device. The organic monitoring system must comply either with Performance Specification 8 or 9 in 40 CFR part 60, appendix B. The relative accuracy provision of Performance Specification 8, Sections 2.4 and 3 need not be conducted. [§19.304 of Regulation #19 and 40 CFR 63.693(f)(3)(iii)]

- 57. To determine maximum organic HAP vapor pressure of off-site materials in tanks for compliance with the standards specified in §63.685 of 40 CFR Part 63, Subpart DD, the testing methods and procedures are specified in paragraph (j) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(a)(9)]
- 58. To determine no detectable organic emissions, the testing methods and procedures are specified in paragraph (k) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(a)(10)]
- 59. To determine closed-vent system and control device performance for compliance with the standards specified in §63.693 of 40 CFR Part 63, Subpart DD, the testing methods and procedures are specified in paragraph (l) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(a)(11)]
- 60. To determine process vent stream flow rate and total organic HAP concentration for compliance with the standards specified in §63.693 of 40 CFR Part 63, Subpart DD, the testing methods and procedures are specified in paragraph (m) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(a)(12)]
- 61. Determination of maximum HAP vapor pressure for off-site material in a tank. [§19.304 of Regulation #19 and 40 CFR 63.694(j)]
  - a. The maximum HAP vapor pressure of the off-site material composition managed in a tank shall be determined using either direct measurement as specified in paragraph (j)(2) of §63.694 or by knowledge of the off-site material as specified by paragraph (j)(3) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(j)(1)]
  - b. Direct measurement to determine the maximum HAP vapor pressure of an off-site material. [§19.304 of Regulation #19 and 40 CFR 63.694(j)(2)]
    - i. Sampling. A sufficient number of samples shall be collected to be representative of the off-site material contained in the tank. All samples shall be collected and handled in accordance with written procedures prepared by the owner or operator and documented in a site sampling plan. This plan shall describe the procedure by which representative samples of the off-site material is collected such that a minimum loss of organics occurs throughout the sample collection and handling process and by which sample integrity is maintained. A copy of the written sampling plan shall be maintained on-site in the plant site operating records. An example of an acceptable sampling plan includes a plan incorporating sample

Permit #: 1009-AOP-R7

AFIN: 70-00098

collection and handling procedures in accordance with the requirements specified in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846 or Method 25D in 40 CFR part 60, appendix A. [§19.304 of Regulation #19 and 40 CFR 63.694(j)(2)(i)]

- ii. Analysis. Any one of the following methods may be used to analyze the samples and compute the maximum HAP vapor pressure of the off-site material: [§19.304 of Regulation #19 and 40 CFR 63.694(j)(2)(ii)]
  - 1. Method 25E in 40 CFR part 60 appendix A;
  - 2. Methods described in American Petroleum Institute Bulletin 2517, "Evaporation Loss from External Floating Roof Tanks,";
  - 3. Methods obtained from standard reference texts;
  - 4. ASTM Method 2879-83; or
  - 5. Any other method approved by the Administrator.
- c. Use of knowledge to determine the maximum HAP vapor pressure of the off-site material. Documentation shall be prepared and recorded that presents the information used as the basis for the owner's or operator's knowledge that the maximum HAP vapor pressure of the off-site material is less than the maximum vapor pressure limit listed in Table 3 or Table 4 of 40 CFR Part 63, Subpart DD for the applicable tank design capacity category. Examples of information that may be used include: the off-site material is generated by a process for which at other locations it previously has been determined by direct measurement that the off-site material maximum HAP vapor pressure is less than the maximum vapor pressure limit for the appropriate tank design capacity category. [§19.304 of Regulation #19 and 40 CFR 63.694(j)(3)]
- 62. Procedure for determining no detectable organic emissions for the purpose of complying with 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.694(k)]
  - a. The test shall be conducted in accordance with the procedures specified in Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak interfaces that are associated with covers and closure devices include, but are not limited to: the interface of the cover and its foundation mounting; the periphery of any opening on the cover and its associated closure device; and the sealing seat interface on a spring-loaded pressure-relief valve. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(1)]
  - b. The test shall be performed when the unit contains a material having a total organic concentration representative of the range of concentrations for the materials expected to be managed in the unit. During the test, the cover and closure devices shall be secured in the closed position. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(2)]
  - c. The detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the organic constituents in the material placed in the unit, not for each individual organic constituent. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(3)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

d. The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix A. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(4)]

- e. Calibration gases shall be as follows: [§19.304 of Regulation #19 and 40 CFR 63.694(k)(5)]
  - i. Zero air (less than 10 ppmv hydrocarbon in air); and
  - ii. A mixture of methane or n-hexane in air at a concentration of approximately, but less than, 10,000 ppmv.
- f. An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(6)]
- g. Each potential leak interface shall be checked by traversing the instrument probe around the potential leak interface as close to the interface as possible, as described in Method 21. In the case when the configuration of the cover or closure device prevents a complete traverse of the interface, all accessible portions of the interface shall be sampled. In the case when the configuration of the closure device prevents any sampling at the interface and the device is equipped with an enclosed extension or horn (e.g., some pressure relief devices), the instrument probe inlet shall be placed at approximately the center of the exhaust area to the atmosphere. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(7)]
- h. An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (k)(8)(i) or (k)(8)(ii) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(8)]
  - i. If an owner or operator chooses not to adjust the detection instrument readings for the background organic concentration level, then the maximum organic concentration value measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (k)(9) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(8)(i)]
  - ii. If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (k)(6) of §63.694 is compared with the applicable value for the potential leak interface as specified in paragraph (k)(9) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(8)(ii)]
- i. A potential leak interface is determined to operate with no detectable emissions using the applicable criteria specified in paragraphs (k)(9)(i) and (k)(9)(ii) of \$63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(9)]

Permit #: 1009-AOP-R7

- i. For a potential leak interface other than a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (k)(8) is less than 500 ppmv. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(9)(i)]
- ii. For a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (k)(8) is less than 10,000 ppmv. [§19.304 of Regulation #19 and 40 CFR 63.694(k)(9)(ii)]
- 63. Control device performance test procedures. [§19.304 of Regulation #19 and 40 CFR 63.694(1)]
  - a. Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the sampling sites at the inlet and outlet of the control device. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(1)]
    - i. To determine compliance with a control device percent reduction requirement, sampling sites shall be located at the inlet of the control device as specified in paragraphs (l)(1)(i)(A) and (l)(1)(i)(B) of §63.694, and at the outlet of the control device. [§19.304 of Regulation #19 and 40 CFR 63.694(l)(1)(i)]
      - 1. The control device inlet sampling site shall be located after the final product recovery device. [§19.304 of Regulation #19 and 40 CFR 63.694(l)(1)(i)(A)]
      - 2. If a vent stream is introduced with the combustion air or as an auxiliary fuel into a boiler or process heater, the location of the inlet sampling sites shall be selected to ensure that the measurement of total HAP concentration or TOC concentration, as applicable, includes all vent streams and primary and secondary fuels introduced into the boiler or process heater. [§19.304 of Regulation #19 and 40 CFR 63.694(l)(1)(i)(B)]
    - ii. To determine compliance with an enclosed combustion device concentration limit, the sampling site shall be located at the outlet of the device. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(1)(ii)]
  - b. The gas volumetric flow rate shall be determined using Method 2, 2A, 2C, or 2D of 40 CFR part 60, appendix A, as appropriate. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(2)]
  - c. To determine compliance with the control device percent reduction requirement, the owner or operator shall use Method 18 of 40 CFR part 60, appendix A of Chapter I; alternatively, any other method or data that has been validated according to the applicable procedures in Method 301 in 40 CFR part 63, appendix A of Part 63 may be used. The following procedures shall be used to calculate percent reduction efficiency: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

i. The minimum sampling time for each run shall be 1 hour in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time such as 15 minute intervals during the run. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(i)]

- ii. The mass rate of either TOC (minus methane and ethane) or total HAP (E<sub>i</sub> and E<sub>o</sub>, respectively) shall be computed. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(ii)]
  - 1. The following equations shall be used: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(ii)(A)]

$$E_i = K_2 \times Q_i \times \sum_{i=1}^{n} (C_{ij} \times M_{ij})$$

$$E_o = K_2 \times Q_o \times \sum_{j=1}^{n} \left( C_{oj} \times M_{oj} \right)$$

Where:

 $C_{ij}$ ,  $C_{oj}$  = Concentration of sample component j of the gas stream at the inlet and outlet of the control device, respectively, dry basis, parts per million by volume.  $E_i$ ,  $E_o$  = Mass rate of TOC (minus methane and ethane) or total HAP at the inlet and outlet of the control device, respectively, dry basis, kilogram per hour.

 $M_{ij}$ ,  $M_{oj}$  = Molecular weight of sample component j of the gas stream at the inlet and outlet of the control device, respectively, gram/gram-mole.

 $Q_i$ ,  $Q_o$  = Flow rate of gas stream at the inlet and outlet of the control device, respectively, dry standard cubic meter per minute.

 $K_2$  = Constant, 2.494×10<sup>-6</sup> (parts per million)<sup>-1</sup> (gram-mole per standard cubic meter) (kilogram/gram) (minute/hour), where standard temperature (gram-mole per standard cubic meter) is 20 °C.

- 2. When the TOC mass rate is calculated, all organic compounds (minus methane and ethane) measured by Method 18 of 40 CFR part 60, appendix A shall be summed using the equation in paragraph (1)(3)(ii)(A) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(ii)(B)]
- 3. When the total HAP mass rate is calculated, only the HAP constituents shall be summed using the equation in paragraph (1)(3)(ii)(A) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(ii)(C)]
- iii. The percent reduction in TOC (minus methane and ethane) or total HAP shall be calculated as follows: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(iii)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

$$R_{cd} = \frac{E_i - E_o}{E_i} \times 100$$

where:

 $R_{cd}$  = Control efficiency of control device, percent.

 $E_i$  = Mass rate of TOC (minus methane and ethane) or total HAP at the inlet to the control device as calculated under paragraph (1)(3)(ii) of §63.694, kilograms TOC per hour or kilograms HAP per hour.  $E_o$  = Mass rate of TOC (minus methane and ethane) or total HAP at the outlet of the control device, as calculated under paragraph (1)(3)(ii) of §63.694, kilograms TOC per hour or kilograms HAP per hour. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(3)(iii)]

- d. To determine compliance with the enclosed combustion device total HAP concentration limit of 40 CFR Part 63, Subpart DD, the owner or operator shall use Method 18 of 40 CFR part 60, appendix A to measure either TOC (minus methane and ethane) or total HAP. Alternatively, any other method or data that has been validated according to Method 301 in appendix A of Part 63, may be used. The following procedures shall be used to calculate parts per million by volume concentration, corrected to 3 percent oxygen: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)]
  - i. The minimum sampling time for each run shall be 1 hour in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time, such as 15 minute intervals during the run. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)(i)]
  - ii. The TOC concentration or total HAP concentration shall be calculated according to paragraph (m)(4)(ii)(A) or (m)(4)(ii)(B) of §63.694. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)(ii)]
    - 1. The TOC concentration (C<sub>TOC</sub>) is the sum of the concentrations of the individual components and shall be computed for each run using the following equation: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)(ii)(A)]

$$C_{TOC} = \sum_{i=1}^{x} \frac{\sum_{j=1}^{x} C_{ij}}{x}$$

where:

 $C_{TOC}$  = Concentration of total organic compounds minus methane and ethane, dry basis, parts per million by volume.

 $C_{ji}$  = Concentration of sample components j of sample i, dry basis, parts per million by volume.

N = Number of components in the sample.

Permit #: 1009-AOP-R7

AFIN: 70-00098

X = Number of samples in the sample run.

- 2. The total HAP concentration (C<sub>HAP</sub>) shall be computed according to the equation in paragraph (l)(4)(ii)(A) of §63.694 except that only HAP constituents shall be summed. [§19.304 of Regulation #19 and 40 CFR 63.694(l)(4)(ii)(B)]
- iii. The measured TOC concentration or total HAP concentration shall be corrected to 3 percent oxygen as follows: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)(iii)]
  - 1. The emission rate correction factor or excess air, integrated sampling and analysis procedures of Method 3B of 40 CFR part 60, appendix A shall be used to determine the oxygen concentration (%O<sub>2dry</sub>). The samples shall be collected during the same time that the samples are collected for determining TOC concentration or total HAP concentration. [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)(iii)(A)]
  - 2. The concentration corrected to 3 percent oxygen (C<sub>c</sub>) shall be computed using the following equation: [§19.304 of Regulation #19 and 40 CFR 63.694(1)(4)(iii)(B)]

$$C_c = C_m \left( \frac{17.9}{20.9 - \%0_{2dy}} \right)$$

where

 $C_c$  = TOC concentration or total HAP concentration corrected to 3 percent oxygen, dry basis, parts per million by volume.

 $C_m$  = Measured TOC concentration or total HAP concentration, dry basis, parts per million by volume.

 $%O_{2dry} = Concentration of oxygen, dry basis, percent by volume.$ 

- 64. Determination of process vent stream flow rate and total HAP concentration. [§19.304 of Regulation #19 and 40 CFR 63.694(m)]
  - a. Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate, must be used for selection of the sampling site. [§19.304 of Regulation #19 and 40 CFR 63.694(m)(1)]
  - b. No traverse site selection method is needed for vents smaller than 0.10 meter in diameter. [§19.304 of Regulation #19 and 40 CFR 63.694(m)(2)]
  - c. Process vent stream gas volumetric flow rate must be determined using Method 2, 2A, 2C, or 2D of 40 CFR part 60, appendix A, as appropriate. [§19.304 of Regulation #19 and 40 CFR 63.694(m)(3)]
  - d. Process vent stream total HAP concentration must be measured using the following procedures: [§19.304 of Regulation #19 and 40 CFR 63.694(m)(4)]
    - i. Method 18 of 40 CFR part 60, appendix A, must be used to measure the total HAP concentration. Alternatively, any other method or data that has

Permit #: 1009-AOP-R7

AFIN: 70-00098

been validated according to the protocol in Method 301 of appendix A of Part 63 may be used. [§19.304 of Regulation #19 and 40 CFR 63.694(m)(4)(i)]

- ii. Where Method 18 of 40 CFR part 60, appendix A, is used, the following procedures must be used to calculate parts per million by volume concentration: [§19.304 of Regulation #19 and 40 CFR 63.694(m)(4)(ii)]
  - 1. The minimum sampling time for each run must be 1 hour in which either an integrated sample or four grab samples must be taken. If grab sampling is used, then the samples must be taken at approximately equal intervals in time, such as 15 minute intervals during the run. [§19.304 of Regulation #19 and 40 CFR 63.694(m)(4)(ii)(A)]
  - 2. The total HAP concentration (C<sub>HAP</sub>) must be computed according to the following equation: [§19.304 of Regulation #19 and 40 CFR 63.694(m)(4)(ii)(B)]

$$C_{BMP} = \frac{\sum_{i=1}^{x} \left( \sum_{j=1}^{n} C_{ji} \right)}{X}$$

Where:

C<sub>HAP</sub> = Total concentration of HAP compounds listed in Table 1 of 40 CFR Part 63, Subpart DD, dry basis, parts per million by volume.

 $C_{ji}$  = Concentration of sample component j of the sample i, dry basis, parts per million by volume.

n = Number of components in the sample.

x = Number of samples in the sample run.

- 65. Tank Level 2 fixed roof and floating roof inspection requirements. [§19.304 of Regulation #19 and 40 CFR 63.695(b)]
  - a. Owners and operators that use a tank equipped with a fixed roof in accordance with the provisions of §63.685(g) of 40 CFR Part 63, Subpart DD shall meet the following requirements: [§19.304 of Regulation #19 and 40 CFR 63.695(b)(3)]
    - i. The fixed roof and its closure devices shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the roof sections or between the roof and the separator wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the case when a tank is buried partially or entirely underground, inspection is required only for those portions of the cover that extend to or above the ground surface, and those connections that are on such portions of the cover (e.g., fill ports, access hatches, gauge wells, etc.) and can be opened to the atmosphere. [§19.304 of Regulation #19 and 40 CFR 63.695(b)(3)(i)]

Permit #: 1009-AOP-R7

- ii. The owner or operator must perform an initial inspection following installation of the fixed roof. Thereafter, the owner or operator must perform the inspections at least once every calendar year except as provided for in paragraph (f) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(b)(3)(ii)]
- iii. In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (b)(4) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(b)(3)(iii)]
- iv. The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696(e) of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.695(b)(3)(iv)]
- b. The owner or operator shall repair each defect detected during an inspection performed in accordance with the requirements of paragraph (b)(1), (b)(2), or (b)(3) of §63.695 in the following manner: [§19.304 of Regulation #19 and 40 CFR 63.695(b)(4)]
  - i. The owner or operator shall within 45 calendar days of detecting the defect either repair the defect or empty the tank and remove it from service. If within this 45-day period the defect cannot be repaired or the tank cannot be removed from service without disrupting operations at the plant site, the owner or operator is allowed two 30-day extensions. In cases when an owner or operator elects to use a 30-day extension, the owner or operator shall prepare and maintain documentation describing the defect, explaining why alternative storage capacity is not available, and specify a schedule of actions that will ensure that the control equipment will be repaired or the tank emptied as soon as possible. [§19.304 of Regulation #19 and 40 CFR 63.695(b)(4)(i)]
  - ii. When a defect is detected during an inspection of a tank that has been emptied and degassed, the owner or operator shall repair the defect before refilling the tank. [§19.304 of Regulation #19 and 40 CFR 63.695(b)(4)(ii)]
- 66. Owners and operators that use a closed-vent system in accordance with the provisions of §63.693 of 40 CFR Part 63, Subpart DD shall meet the following inspection and monitoring requirements: [§19.304 of Regulation #19 and 40 CFR 63.695(c)]
  - a. Each closed-vent system that is used to comply with §63.693(c)(1)(i) of 40 CFR Part 63, Subpart DD shall be inspected and monitored in accordance with the following requirements: [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)]
    - i. At initial startup, the owner or operator shall monitor the closed-vent system components and connections using the procedures specified in §63.694(k) of 40 CFR Part 63, Subpart DD to demonstrate that the closed-vent system operates with no detectable organic emissions. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(i)]

Permit #: 1009-AOP-R7

- ii. After initial startup, the owner or operator shall inspect and monitor the closed-vent system as follows: [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(ii)]
  - 1. Closed-vent system joints, seams, or other connections that are permanently or semi-permanently sealed (e.g., a welded joint between two sections of hard piping or a bolted and gasketed ducting flange) shall be visually inspected at least once per year to check for defects that could result in air emissions. The owner or operator shall monitor a component or connection using the procedures specified in §63.694(k) of 40 CFR Part 63, Subpart DD to demonstrate that it operates with no detectable organic emissions following any time the component is repaired or replaced (e.g., a section of damaged hard piping is replaced with new hard piping) or the connection is unsealed (e.g., a flange is unbolted). [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(ii)(A)]
  - 2. Closed-vent system components or connections other than those specified in paragraph (c)(1)(ii)(A) of §63.695, shall be monitored at least once per year using the procedures specified in §63.694(k) of 40 CFR Part 63, Subpart DD to demonstrate that components or connections operate with no detectable organic emissions. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(ii)(B)]
  - 3. The continuous monitoring system required by §63.693(b)(4)(i) shall monitor and record either an instantaneous data value at least once every 15 minutes or an average value for intervals of 15 minutes or less. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(ii)(C)]
  - 4. The owner or operator shall visually inspect the seal or closure mechanism required by §63.693(c)(2)(ii) at least once every month to verify that the bypass mechanism is maintained in the closed position. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(ii)(D)]
- iii. In the event that a defect or leak is detected, the owner or operator shall repair the defect or leak in accordance with the requirements of paragraph (c)(3) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(iii)]
- iv. The owner or operator shall maintain a record of the inspection and monitoring in accordance with the requirements specified in §63.696 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(1)(iv)]
- b. Each closed-vent system that is used to comply with §63.693(c)(1)(ii) of 40 CFR Part 63, Subpart DD shall be inspected and monitored in accordance with the following requirements: [§19.304 of Regulation #19 and 40 CFR 63.695(c)(2)]
  - i. The closed-vent system shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects

Permit #: 1009-AOP-R7

- include, but are not limited to, visible cracks, holes, or gaps in ductwork or piping; loose connections; or broken or missing caps or other closure devices. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(2)(i)]
- ii. The owner or operator must perform an initial inspection following installation of the closed-vent system. Thereafter, the owner or operator must perform the inspections at least once every calendar year except as provided for in paragraph (f) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(2)(ii)]
- iii. In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (c)(3) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(2)(iii)]
- iv. The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(2)(iv)]
- c. The owner or operator shall repair all detected defects as follows: [§19.304 of Regulation #19 and 40 CFR 63.695(c)(3)]
  - i. The owner or operator shall make first efforts at repair of the defect no later than 5 calendar days after detection and repair shall be completed as soon as possible but no later than 45 calendar days after detection. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(3)(i)]
  - ii. Repair of a defect may be delayed beyond 45 calendar days if either of the conditions specified in paragraph (c)(3)(ii)(A) or (c)(3)(ii)(B) of §63.695 occurs. In this case, the owner or operator must repair the defect the next time the process or unit that vents to the closed-vent system is shutdown. Repair of the defect must be completed before the process or unit resumes operation. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(3)(ii)]
    - Completion of the repair is technically infeasible without the shutdown of the process or unit that vents to the closed-vent system. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(3)(ii)(A)]
    - 2. The owner or operator determines that the air emissions resulting from the repair of the defect within the specified period would be greater than the fugitive emissions likely to result by delaying the repair until the next time the process or unit that vents to the closed-vent system is shutdown. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(3)(ii)(B)]
  - iii. The owner or operator shall maintain a record of the defect repair in accordance with the requirements specified in §63.696 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.695(c)(3)(iii)]
- 67. Control device monitoring requirements. For each control device required under §63.693 of 40 CFR Part 63, Subpart DD to be monitored in accordance with the provisions of this paragraph (e), the owner or operator must ensure that each control device operates properly by monitoring the control device in accordance with the requirements specified

Permit #: 1009-AOP-R7

AFIN: 70-00098

in paragraphs (e)(1) through (e)(7) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(e)]

- a. A continuous parameter monitoring system must be used to measure the operating parameter or parameters specified for the control device in §63.693(d) through §63.693(g) of 40 CFR Part 63, Subpart DD as applicable to the type and design of the control device. The continuous parameter monitoring system must meet the following specifications and requirements: [§19.304 of Regulation #19 and 40 CFR 63.695(e)(1)]
  - i. The continuous parameter monitoring system must measure either an instantaneous value at least once every 15 minutes or an average value for intervals of 15 minutes or less and continuously record either: [§19.304 of Regulation #19 and 40 CFR 63.695(e)(1)(i)]
    - 1. Each measured data value; or [§19.304 of Regulation #19 and 40 CFR 63.695(e)(1)(i)(A)]
    - 2. Each block average value for each 1-hour period or shorter periods calculated from all measured data values during each period. If values are measured more frequently than once per minute, a single value for each minute may be used to calculate the hourly (or shorter period) block average instead of all measured values. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(1)(i)(B)]
  - ii. The monitoring system must be installed, calibrated, operated, and maintained in accordance with the manufacturer's specifications or other written procedures that provide reasonable assurance that the monitoring equipment is operating properly. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(1)(ii)]
- b. Using the data recorded by the monitoring system, the owner or operator must calculate the daily average value for each monitored operating parameter for each operating day. If operation of the control device is continuous, the operating day is a 24-hour period. If control device operation is not continuous, the operating day is the total number of hours of control device operation per 24-hour period. Valid data points must be available for 75 percent of the operating hours in an operating day to compute the daily average. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(2)]
- c. For each monitored operating parameter, the owner or operator must establish a minimum operating parameter value or a maximum operating parameter value, as appropriate, to define the range of conditions at which the control device must be operated to continuously achieve the applicable performance requirements specified in §63.693(b)(2) of 40 CFR Part 63, Subpart DD. Each minimum or maximum operating parameter value must be established in accordance with the requirements in paragraphs (e)(3)(i) and (e)(3)(ii) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(3)]
  - i. If the owner or operator conducts a performance test to demonstrate control device performance, then the minimum or maximum operating parameter value must be established based on values measured during the performance test and supplemented, as necessary, by the control device

Permit #: 1009-AOP-R7

- design specifications, manufacturer recommendations, or other applicable information. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(3)(i)]
- ii. If the owner or operator uses a control device design analysis to demonstrate control device performance, then the minimum or maximum operating parameter value must be established based on the control device design analysis and supplemented, as necessary, by the control device manufacturer recommendations or other applicable information. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(3)(ii)]
- d. An excursion for a given control device is determined to have occurred when the monitoring data or lack of monitoring data result in any one of the criteria specified in paragraphs (e)(4)(i) through (e)(4)(iii) of §63.695 being met. When multiple operating parameters are monitored for the same control device and during the same operating day more than one of these operating parameters meets an excursion criterion specified in paragraphs (e)(4)(i) through (e)(4)(iii) of §63.695, then a single excursion is determined to have occurred for the control device for that operating day. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(4)]
  - i. An excursion occurs when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit) established for the operating parameter in accordance with the requirements of paragraph (e)(3) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(4)(i)]
  - ii. An excursion occurs when the period of control device operation is 4 hours or greater in an operating day and the monitoring data are insufficient to constitute a valid hour of data for at least 75 percent of the operating hours. Monitoring data are insufficient to constitute a valid hour of data if measured values are unavailable for any of the 15-minute periods within the hour. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(4)(ii)]
  - iii. An excursion occurs when the period of control device operation is less than 4 hours in an operating day and more than 1 of the hours during the period does not constitute a valid hour of data due to insufficient monitoring data. Monitoring data are insufficient to constitute a valid hour of data if measured values are unavailable for any of the 15-minute periods within the hour. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(4)(iii)]
- e. For each excursion, except as provided for in paragraph (e)(6) of this section, the owner or operator shall be deemed to have failed to have applied control in a manner that achieves the required operating parameter limits. Failure to achieve the required operating parameter limits is a violation of this standard. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(5)]
- f. An excursion is not a violation of this standard under any one of the conditions specified in paragraphs (e)(6)(i) and (e)(6)(ii) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(6)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

i. An excursion is not a violation nor does it count toward the number of excused excursions allowed under paragraph (e)(6)(ii) of §63.695 when the excursion occurs during any one of the following periods: [§19.304 of Regulation #19 and 40 CFR 63.695(e)(6)(i)]

- During a period of startup, shutdown, or malfunction when the affected facility is operated during such period in accordance with §63.6(e)(1); or [§19.304 of Regulation #19 and 40 CFR 63.695(e)(6)(i)(A)]
- 2. During periods of non-operation of the unit or the process that is vented to the control device (resulting in cessation of HAP emissions to which the monitoring applies). [§19.304 of Regulation #19 and 40 CFR 63.695(e)(6)(i)(B)]
- ii. For each control device, one excused excursion is allowed per semiannual period for any reason. The initial semiannual period is the 6-month reporting period addressed by the first semiannual report submitted by the owner or operator in accordance with §63.697(b)(4) of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(6)(ii)]
- g. Nothing in paragraphs (e)(1) through (e)(6) of §63.695 shall be construed to allow or excuse a monitoring parameter excursion caused by any activity that violates other applicable provisions of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.695(e)(7)]
- 68. Alternative inspection and monitoring interval. Following the initial inspection and monitoring of a piece of air pollution control equipment in accordance with the applicable provisions of §63.695, subsequent inspection and monitoring of the equipment may be performed at intervals longer than 1 year when an owner or operator determines that performing the required inspection or monitoring procedures would expose a worker to dangerous, hazardous, or otherwise unsafe conditions and the owner or operator complies with the requirements specified in paragraphs (f)(1) and (f)(2) of §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(f)]
  - a. The owner or operator must prepare and maintain at the plant site written documentation identifying the specific air pollution control equipment designated as "unsafe to inspect and monitor." The documentation must include for each piece of air pollution control equipment designated as such a written explanation of the reasons why the equipment is unsafe to inspect or monitor using the applicable procedures under §63.695. [§19.304 of Regulation #19 and 40 CFR 63.695(f)(1)]
  - b. The owner or operator must develop and implement a written plan and schedule to inspect and monitor the air pollution control equipment using the applicable procedures specified in §63.695 during times when a worker can safely access the air pollution control equipment. The required inspections and monitoring must be performed as frequently as practicable but do not need to be performed more frequently than the periodic schedule that would be otherwise applicable to the air pollution control equipment under the provisions of §63.695. A copy of the

Permit #: 1009-AOP-R7

AFIN: 70-00098

written plan and schedule must be maintained at the plant site. [§19.304 of Regulation #19 and 40 CFR 63.695(f)(2)]

- 69. The owner or operator shall comply with the recordkeeping requirements in §63.10 under 40 CFR 63 subpart A—General Provisions that are applicable to 40 CFR Part 63, Subpart DD as specified in Table 2 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.696(a)]
- 70. The owner or operator of a control device subject to 40 CFR Part 63, Subpart DD shall maintain the records in accordance with the requirements of 40 CFR 63.10 of Part 63. [§19.304 of Regulation #19 and 40 CFR 63.696(b)]
- An owner or operator shall record, on a semiannual basis, the information specified in paragraphs (g)(1) and (g)(2) of §63.696 for those planned routine maintenance operations that would require the control device not to meet the requirements of §63.693(d) through (h) of 40 CFR Part 63, Subpart DD, as applicable. [§19.304 of Regulation #19 and 40 CFR 63.696(g)]
  - a. A description of the planned routine maintenance that is anticipated to be performed for the control device during the next 6 months. This description shall include the type of maintenance necessary, planned frequency of maintenance, and lengths of maintenance periods. [§19.304 of Regulation #19 and 40 CFR 63.696(g)(1)]
  - b. A description of the planned routine maintenance that was performed for the control device during the previous 6 months. This description shall include the type of maintenance performed and the total number of hours during these 6 months that the control device did not meet the requirement of §63.693 (d) through (h) of 40 CFR Part 63, Subpart DD, as applicable, due to planned routine maintenance. [§19.304 of Regulation #19 and 40 CFR 63.696(g)(2)]
- 72. An owner or operator shall record the information specified in paragraphs (h)(1) through (h)(3) of §63.696 for those unexpected control device system malfunctions that would require the control device not to meet the requirements of §63.693 (d) through (h) of 40 CFR Part 63, Subpart DD, as applicable. [§19.304 of Regulation #19 and 40 CFR 63.696(h)]
  - a. The occurrence and duration of each malfunction of the control device system. [§19.304 of Regulation #19 and 40 CFR 63.696(h)(1)]
  - b. The duration of each period during a malfunction when gases, vapors, or fumes are vented from the waste management unit through the closed-vent system to the control device while the control device is not properly functioning. [§19.304 of Regulation #19 and 40 CFR 63.696(h)(2)]
  - c. Actions taken during periods of malfunction to restore a malfunctioning control device to its normal or usual manner of operation. [§19.304 of Regulation #19 and 40 CFR 63.696(h)(3)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

73. Each owner or operator of an affected source subject to 40 CFR Part 63, Subpart DD must comply with the notification requirements specified in paragraph (a)(1) of §63.697 and the reporting requirements specified in paragraph (a)(2) of §63.697. [§19.304 of Regulation #19 and 40 CFR 63.697(a)]

- a. The owner or operator of an affected source must submit notices to the Administrator in accordance with the applicable notification requirements in 40 CFR 63.9 as specified in Table 2 of 40 CFR Part 63, Subpart DD. For the purpose of 40 CFR Part 63, Subpart DD, an owner or operator subject to the initial notification requirements under 40 CFR 63.9(b)(2) must submit the required notification on or before October 19, 1999. [§19.304 of Regulation #19 and 40 CFR 63.697(a)(1)]
- b. The owner or operator of an affected source must submit reports to the Administrator in accordance with the applicable reporting requirements in 40 CFR 63.10 as specified in Table 2 of 40 CFR Part 63, Subpart DD. [§19.304 of Regulation #19 and 40 CFR 63.697(a)(2)]
- 74. The owner or operator of a control device used to meet the requirements of §63.693 of 40 CFR Part 63, Subpart DD shall submit the following notifications and reports to the Administrator: [§19.304 of Regulation #19 and 40 CFR 63.697(b)]
  - a. A Notification of Performance Tests specified in §63.7 and §63.9(g) of Part 63,
  - b. Performance test reports specified in §63.10(d)(2) of Part 63, and
  - c. Startup, shutdown, and malfunction reports specified in §63.10(d)(5) of Part 63.
    - i. If actions taken by an owner or operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are not completely consistent with the procedures specified in the source's startup, shutdown, and malfunction plan specified in §63.6(e)(3) of Part 63, the owner or operator shall state such information in the report. The startup, shutdown, or malfunction report shall consist of a letter, containing the name, title, and signature of the responsible official who is certifying its accuracy, that shall be submitted to the Administrator, and
    - ii. Separate startup, shutdown, or malfunction reports are not required if the information is included in the summary report specified in paragraph (b)(4) of §63.697.
  - d. A summary report specified in §63.10(e)(3) of Part 63 shall be submitted on a semiannual basis (i.e., once every 6-month period). The summary report must include a description of all excursions as defined in §63.695(e) of 40 CFR Part 63, Subpart DD that have occurred during the 6-month reporting period. For each excursion caused when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit), the report must include the daily average values of the monitored parameter, the applicable operating parameter limit, and the date and duration of the period that the exceedance occurred. For each excursion caused by lack of monitoring data, the report must

Permit #: 1009-AOP-R7

AFIN: 70-00098

include the date and duration of period when the monitoring data were not collected and the reason why the data were not collected.

### 40 CFR 63, Subpart EEE

- 75. This facility is considered an affected source and is subject, but not limited to, the following requirements. These requirements shall become effective on the Compliance Date, which is currently September 30, 2004. [§19.304 of Regulation #19 and 40 CFR 63, Subpart EEE, National Emission Standards for Hazardous Air Pollutants From Hazardous Waste Combustors]
- 76. The permittee must comply with the standards set forth in 40 CFR Part 63, Subpart EEE no later than September 30, 2004 unless the Administrator grants an extension of time under §63.6(i) or §63.1213. [§63.1206(a)(1)(i)(A)]
- 77. The permittee must comply with the emission standards under §63.1219 and the other requirements of 40 CFR Part 63, Subpart EEE no later than October 14, 2008. [§63.1206(a)(1)(ii)(A)]
- 78. The emission standards and operating requirements set forth in 40 CFR Part 63, Subpart EEE apply at all times except: [§63.1206(b)(1)]
  - A. During periods of startup, shutdown, and malfunction, provided that hazardous waste is not in the combustion chamber (i.e., the hazardous waste feed to the combustor has been cutoff for a period time not less than the hazardous waste residence time, excluding residues that may adhere to the combustion chamber surfaces after waste feed is stopped) during those periods of operation, as provided by paragraph (c)(2)(ii) of §63.1206; and
  - B. When hazardous waste is not in the combustion chamber (i.e., the hazardous waste feed to the combustor has been cutoff for a period time not less than the hazardous waste residence time, excluding residues that may adhere to the combustion chamber surfaces after waste feed is stopped), and the permittee has documented in the operating record that you are complying with all otherwise applicable requirements and standards promulgated under authority of sections 112 or 129 of the Clean Air Act in lieu of the emission standards under §§63.1203, 63.1204, 63.1205, 63.1215, 63.1216, 63.1217, 63.1218, 63.1219, 63.1220, and 63.1221; the monitoring and compliance standards of §63.1206 and §§63.1207 through 63.1209, except the modes of operation requirements of §63.1209(q); and the notification, reporting, and recordkeeping requirements of §§63.1210 through 63.1212.
- 79. The Administrator will determine compliance with the emission standards of 40 CFR Part 63, Subpart EEE as provided by 63.6(f)(2). Conducting performance testing under operating conditions representative of the extreme range of normal conditions is

Permit #: 1009-AOP-R7

AFIN: 70-00098

consistent with the requirements of 63.6(f)(2)(iii)(B) and 63.7(e)(1) to conduct performance testing under representative operating conditions. [§63.1206(b)(2)]

- 80. The Administrator will make a finding concerning compliance with the emission standards and other requirements of 40 CFR Part 63, Subpart EEE as provided by 63.6(f)(3). [§63.1206(b)(3)]
- 81. The Administrator may grant an extension of compliance with the emission standards of 40 CFR Part 63, Subpart EEE as provided by §63.6(i) and §63.1213. [§63.1206(b)(4)]
- 82. If the permittee plans to change the design, operation, or maintenance practices of the source in a manner that may adversely affect compliance with any emission standard that is not monitored with a CEMS, the following must be followed: [§63.1206(b)(5)(i)]
  - A. The permittee must notify the Administrator at least 60 days prior to the change, unless the permittee documents the circumstances that dictate such prior notice is not reasonably feasible. The notification must include:
    - 1. A description of the changes and which emission standards may be affected; and
    - 2. A comprehensive performance test schedule and test plan under the requirements of 63.1207(f) that will document compliance with the affected emission standard(s);
  - B. The permittee must conduct a comprehensive performance test under the requirements of 63.1207(f)(1) and (g)(1) to document compliance with the affected emission standard(s) and establish operating parameter limits as required under 63.1209, and submit to the Administrator a Notification of Compliance under 63.1207(j) and 63.1210(d); and
  - C. 1. Except as provided by §63.1206(b)(5)(i)(C)(2), after the change and prior to submitting the notification of compliance, the permittee must not burn hazardous waste for more than a total of 720 hours (renewable at the discretion of the Administrator) and only for purposes of pretesting or comprehensive performance testing.
    - 2. The permittee may petition the Administrator to obtain written approval to burn hazardous waste in the interim prior to submitting a Notification of Compliance for purposes other than testing or pretesting. The permittee must specify operating requirements, including limits on operating parameters, that will demonstrate compliance with the emission standards of 40 CFR Part 63, Subpart EEE based on available information.
- 83. If the permittee determines that a change will not adversely affect compliance with the emission standards or operating requirements, the permittee must document the change in the operating record upon making such change. The permittee will revise as necessary the performance test plan, Documentation of Compliance, Notification of Compliance,

Permit #: 1009-AOP-R7

AFIN: 70-00098

and start-up, shutdown, and malfunction plan to reflect these changes. [§63.1206(b)(5)(ii)]

- 84. If a DRE test is acceptable as documentation of compliance with the DRE standard, the permittee may use the highest hourly rolling average hydrocarbon level achieved during those DRE test runs to document compliance with the hydrocarbon standard. An acceptable DRE test is any test for which the data and results are determined to meet quality assurance objectives (on a site-specific basis) such that the results adequately demonstrate compliance with the DRE standard. [§63.1206(b)(6)(i)]
- 85. If during the acceptable DRE test, the permittee did not obtain hydrocarbon emissions data sufficient to document compliance with the hydrocarbon standard, the permittee must either: [§63.1206(b)(6)(ii)]
  - A. Perform, as part of the performance test, an "equivalent DRE test" to document compliance with the hydrocarbon standard; or
  - B. Perform a DRE test as part of the performance test.
- 86. The permittee must document compliance with the DRE standard under 40 CFR Part 63, Subpart EEE only once, provided that the permittee does not modify the source after the DRE test in a manner that could affect the ability of the source to achieve the DRE standard. [§63.1206(b)(7)(i)(A)]
- 87. The permittee may use any DRE test data that documents that the source achieves the required level of DRE provided:
  - a. The permittee has not modified the design or operation of the source in a manner that could effect the ability of the source to achieve the DRE standard since the DRE test was performed; and,
  - b. The DRE test data meet quality assurance objectives determined on a site-specific basis. [§63.1206(b)(7)(i)(B)]
- 88. For sources that feed hazardous waste at a location in the combustion system other than the normal flame zone, the permittee must demonstrate compliance with the DRE standard during each comprehensive performance test. [§63.1206(b)(7)(ii)(A)]
- 89. For sources that do not use DRE previous testing to document conformance with the DRE standard pursuant to §63.1207(c)(2), the permittee must perform DRE testing during the initial comprehensive performance test. [§63.1206(b)(7)(iii)]
- 90. Any particulate matter and opacity standards or any permit or other emissions operating parameter limits or conditions, including any limitation on workplace practices, that are applicable to hazardous waste combustors to insure compliance with any particulate matter or opacity standard of parts 60, 61, 63, 264, 265, and 266 of Chapter I (i.e., any

Permit #: 1009-AOP-R7

AFIN: 70-00098

title 40 particulate or opacity standards) applicable to hazardous waste combustor do not apply while the permittee conducts particulate matter continuous emissions monitoring system (CEMS) correlation tests. [§63.1206(b)(8)(i) and (ii)]

- 91. For provisions of §63.1206(b)(8) to apply, the permittee must develop a particulate matter CEMS correlation test plan that includes the following information. This test plan may be included as part of the comprehensive performance test plan required under §§63.1207(e) and (f): [§63.1206(b)(8)(iii)(A) and (B)]
  - A. Number of test conditions and number of runs for each test condition;
  - B. Target particulate matter emission level for each test condition;
  - C. How you plan to modify operations to attain the desired particulate matter emission levels;
  - D. Anticipated normal emission levels; and
  - E. Submit the test plan to the Administrator for approval at least 90 calendar days before the correlation test is scheduled to be conducted.
- 92. If the Administrator fails to approve or disapprove the correlation test plan with the time period specified by §63.7(c)(3)(i), the plan is considered approved, unless the Administrator has requested additional information. [§63.1206(b)(8)(iv)]
- 93. The particulate matter and associated operating limits and conditions will not be waived for more than 96 hours, in the aggregate, for a correlation test, including all runs of all test conditions unless an extension to this limit has been granted by the Administrator prior to the occurrence. [§63.1206(b)(8)(v)]
- 94. The stack sampling team must be on-site and prepared to perform correlation testing no later than 24 hours after the permittee has modified operations to attain the desired particulate matter emissions concentrations; unless the permittee documents in the correlation test plan that a longer period of conditioning is appropriate. [§63.1206(b)(8)(vi)]
- 95. The permittee must return to operating conditions indicative of compliance with the applicable particulate matter and opacity standards as soon as possible after correlation testing is completed. [§63.1206(b)(8)(vii)]
- 96. The permittee must calculate the hazardous waste residence time and include the calculation in the performance test plan under §63.1207(f) and the operating record. The permittee must also provide the hazardous waste residence time in the Documentation of Compliance under §63.1211(c) and the Notification of Compliance under §63.1207(j) and 63.1210(d). [§63.1206(b)(11)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

97. The permittee must conduct a minimum of three runs of a performance test required under §63.1207 to document compliance with the emission standards of 40 CFR Part 63, Subpart EEE. [§63.1206(b)(12)(i)]

- 98. The permittee must document compliance with the emission standards based on the arithmetic average of the emission results of each run, except that the permittee must document compliance with the destruction and removal efficiency standard for each run of the comprehensive performance test individually. [§63.1206(b)(12)(ii)]
- 99. In lieu of complying with the particulate matter standards under §63.1203, the permittee may elect to comply with the following alternative metal emission control requirements: [§63.1206(b)(14)(i) and (ii)]
  - a. The permittee must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of 240 µgm/dscm, combined emissions, corrected to 7 percent oxygen; and,
  - b. The permittee must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 97 µgm/dscm, combined emissions, corrected to 7 percent oxygen.
- 100. Semivolatile and and low volatile metal operating parameter limits must be established to ensure compliance with the alternative emission limitations described in paragraphs (b)(14)(ii) and (iii) of §63.1206 pursuant to §63.1209(n), except that semivolatile metal feedrate limits apply to lead, cadmium, and selenium, combined, and low volatile metal feedrate limits apply to arsenic, beryllium, chromium, antimony, cobalt, manganese, and nickel, combined. [§63.1206(b)(14)(iv)]
- 101. The permittee must operate only under the operating requirements specified in the Documentation of Compliance under §63.1211(c) or the Notification of Compliance under §\$63.1207(j) and 63.1210(d), except during performance tests under approved test plans according to §63.1207(e), (f), and (g) and under the conditions of paragraph (b)(1)(i) or (ii) of §63.1206. [§63.1206(c)(1)(i)]
- 102. The Documentation of Compliance and the Notification of Compliance must contain operating requirements including, but not limited to, the operating requirements of §63.1206 and §63.1209. [§63.1206(c)(1)(ii)]
- 103. Failure to comply with the operating requirements is failure to ensure compliance with the emissions standards of 40 CFR Part 63, Subpart EEE. [§63.1206(c)(1)(iii)]
- 104. Operating requirements in the Notification of Compliance are applicable requirements for purposes of parts 70 and 71 of Chapter I. [§63.1206(c)(1)(iv)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

105. The operating requirements specified in the Notification of Compliance will be incorporated in the Title V permit. [§63.1206(c)(1)(v)]

- 106. The permittee is subject to the startup, shutdown, and malfunction plan requirements of §63.6(e)(3). [§63.1206(c)(2)(i)]
- 107. If the permittee elects to comply with §§270.235(a)(1)(iii), 270.235(a)(2)(iii), or 270.235(b)(1)(ii) of Chapter I to address RCRA concerns that you minimize emissions of toxic compounds from startup, shutdown, and malfunction events (including releases from emergency safety vents), then the permittee must comply with §63.1206(c)(2)(ii). [§63.1206(c)(2)(ii)]
- 108. The permittee must identify in the plan the projected oxygen correction factor based on normal operations to use during periods of startup and shutdown. [§63.1206(c)(2)(iii)]
- 109. The permittee must record the plan in the operating record. [§63.1206(c)(2)(iv)]
- 110. During malfunctions, the automatic waste feed cutoff requirements of §63.1206(c)(3) continue to apply, except for paragraphs (c)(3)(v) and (c)(3)(vi) of §63.1206. If the permittee exceeds a part 63, Subpart EEE, of Chapter I emission standard monitored by a CEMS or COMs or operating limit specified under §63.1209, the automatic waste feed cutoff system must immediately and automatically cutoff the hazardous waste feed, except as provided by paragraph (c)(3)(viii) of§63.1206. If the malfunction itself prevents immediate and automatic cutoff of the hazardous waste feed, however, the permittee must cease feeding hazardous waste as quickly as possible. Although the automatic waste feed cutoff requirements continue to apply during a malfunction, an exceedance of an emission standard monitored by a CEMS or COMS or operating limit specified under §63.1209 is not a violation of 40 CFR Part 63, Subpart EEE if the permittee operates in accordance with §63.6(e)(1). [§63.1206(c)(2)(v)(A)(1) and (2)]
- 111. For each set of 10 exceedances of an emission standard or operating requirement while hazardous waste remains in the combustion chamber (*i.e.*, when the hazardous waste residence time has not transpired since the hazardous waste feed was cutoff) during a 60-day block period, the permittee must: [§63.1206(c)(2)(v)(A)(3)]
  - a. Within 45 days of the 10<sup>th</sup> exceedance, complete an investigation of the cause of each exceedance and evaluation of approaches to minimize the frequency, duration, and severity of each exceedance, and revise the startup, shutdown, and malfunction plan as warranted by the evaluation to minimize the frequency, duration, and severity of each exceedance; and
  - b. Record the results of the investigation and evaluation in the operating record, and include a summary of the investigation and evaluation, and any changes to the startup, shutdown, and malfunction plan, in the excess emissions report required under §63.10(e)(3).

Permit #: 1009-AOP-R7

AFIN: 70-00098

112. Compliance with AWFCO requirements when burning hazardous waste during startup and shutdown. [§63.1206(c)(2)(v)(B)]

- a. If the permittee feeds hazardous waste during startup or shutdown, the permittee must include waste feed restrictions (e.g., type and quantity), and other appropriate operating conditions and limits in the startup, shutdown, and malfunction plan.
- b. The permittee must interlock the operating limits you establish under paragraph (c)(2)(v)(B)(1) of §63.1206 with the automatic waste feed cutoff system required under §63.1206(c)(3), except for paragraphs (c)(3)(v) and (c)(3)(vi) of §63.1206.
- c. When feeding hazardous waste during startup or shutdown, the automatic waste feed cutoff system must immediately and automatically cutoff the hazardous waste feed if the permittee exceeds the operating limits the permittee establishes under paragraph (c)(2)(v)(B)(1) of §63.1206, except as provided by paragraph (c)(3)(viii) of §63.1206.
- d. Although the automatic waste feed cutoff requirements of this paragraph (c)(2)(v)(B)(4) apply during startup and shutdown, an exceedance of an emission standard or operating limit is not a violation of 40 CFR Part 63, Subpart EEE if the permittee operates in accordance with §63.6(e)(1).
- 113. Upon the compliance date, the permittee must operate the combustor with a functioning system that immediately and automatically cuts off the hazardous waste feed, except as provided by paragraph (c)(3)(viii) of §63.1206: [§63.1206(c)(3)(i)]
  - A. When any of the following are exceeded: operating parameter limits specified under §63.1209; an emission standard monitored by CEMS; and the allowable combustion chamber pressure;
  - B. When the span value of any CMS detector, except a CEMS, is met or exceeded:
  - C. Upon malfunction of a CMS monitoring an operating parameter limit specified under \$63.1209 or an emission level; or
  - D. When any component of the automatic waste feed cutoff system fails.
- During an automatic waste feed cutoff (AWFCO) the permittee must continue to duct combustion gases to the air pollution control system while hazardous waste remains in the combustion chamber (*i.e.*, if the hazardous waste residence time has not transpired since the hazardous waste feed cutoff system was activated). [§63.1206(c)(3)(ii)]
- 115. The permittee must continue to monitor during the cutoff the operating parameters for which limits are established under §63.1209 and the emissions required under that section to be monitored by a CEMS, and the permittee shall not restart the hazardous waste feed until the operating parameters and emission levels are within specified limits. [§63.1206(c)(3)(iii)]

Permit #: 1009-AOP-R7

- 116. If the AWFCO system fails to automatically and immediately cutoff the flow of hazardous waste upon exceedance of a parameter required to be interlocked with the AWFCO system under paragraph (c)(3)(i) of §63.1206, the permittee has failed to comply with the AWFCO requirements of paragraph (c)(3) of §63.1206. If an equipment or other failure prevents immediate and automatic cutoff of the hazardous waste feed, however, the permittee must cease feeding hazardous waste as quickly as possible. [§63.1206(c)(3)(iv)]
- 117. If, after any AWFCO, there is an exceedance of any emission standard or operating requirement, irrespective of whether the exceedance occurred while hazardous waste remained in the combustion chamber (i.e., whether the hazardous waste residence time has transpired since the hazardous waste feed cutoff system was activated), the permittee shall investigate the cause of the AWFCO, take appropriate corrective measures to minimize future AWFCOs and record the findings and corrective measures in the operating record. [§63.1206(c)(3)(v)]
- 118. For each set of 10 exceedances of an emissions standard or operating requirement while hazardous waste remains in the combustion chamber (i.e., when the hazardous waste residence time has not transpired since the hazardous waste feed was cutoff), excluding residues that may adhere to the combustion chamber surfaces after waste feed is stopped, during a 60-day block period, the permittee must submit to the Administrator a written report within 5 calendar days of the 10<sup>th</sup> exceedance documenting the exceedances and the results of the investigation and corrective measures taken. [§63.1206(c)(3)(vi)(A)]
- 119. On a case-by-case basis, the Administrator may require excessive exceedance reporting when fewer than 10 exceedances occur during a 60-day block period. [§63.1206(c)(3)(vi)(B)]
- 120. The AWFCO system and associated alarms must be tested at least weekly to verify operability, unless the permittee documents in the operating record that weekly inspections will unduly restrict or upset operations and that less frequent inspection will be adequate. At a minimum, the permittee must conduct operability testing at least monthly. The permittee must document and record in the operating record AWFCO operability test procedures and results. [§63.1206(c)(3)(vii)]
- 121. The permittee may ramp down the waste feedrate of pumpable hazardous waste over a period not to exceed one minute, except as provided by paragraph (c)(3)(viii)(B). If the permittee elects to ramp down the waste feed, the permittee must document ramp down procedures in the operating and maintenance plan. The procedure must specify that the ramp down begins immediately upon initiation of automatic waste feed cutoff and the procedures must prescribe a bona fide ramping down. If an emission standard or operating limit is exceeded during the ramp down, the permittee has failed to comply with the emission standards or operating requirements of 40 CFR Part 63, Subpart EEE. [§63.1206(c)(3)(viii)(A)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

122. If the automatic waste feed cutoff is triggered by an exceedance of any of the following operating limits, the permittee may not ramp down the waste feed cutoff: Minimum combustion temperature, maximum hazardous waste feedrate, or any hazardous waste firing system operating limits that may be established for the combustor. [§63.1206(c)(3)(viii)(B)]

- 123. The permittee is subject to the emergency safety vent (ESV) operating and reporting requirements set forth in §63.1206(c)(4). [§§63.1206(c)(4)(i through iv)]
- 124. The permittee is subject to the combustion system leak control system operating and reporting requirements set forth in §63.1206(c)(5). [§§63.1206(c)(5)(i through ii)]
- The permittee is subject to the operator training and certification standards set forth in §63.1206(c)(6). [§§63.1206(c)(6)(i through vii)]
- 126. The permittee must prepare and at all times operate according to an operation and maintenance plan which complies with the requirements set forth in §63.1206(c)(7). [§§63.1206(c)(7)(i through iv)]
- 127. If the combustor is equipped with a baghouse (fabric filter), the permittee must continuously operate either:
  - a. A bag leak detection system that meets the specifications and requirements of paragraph (c)(8)(ii) of §63.1206 and the permittee must comply with the corrective measures and notification requirements of paragraphs (c)(8)(iii) and (iv) of §63.1206; or
  - b. A particulate matter detection system under paragraph (c)(9) of §63.1206.
- 128. If the permittee operates a bag leak detection system, then the permittee is subject to the bag leak detection system standards set forth in §63.1206(c)(8). [§§63.1206(c)(8)(ii through iv)]
- 129. If the permittee operates a particulate matter detection system, the permittee is subject to the particulate matter detection system standards set forth in §63.1206(c)(9). [§63.1206(c)(9)]
- 130. The permittee must conduct performance testing in accordance with the applicable requirements contained in §63.1207. [§§63.1207(a-m)]
- 131. The permittee must commence the initial comprehensive performance test not later than six months after the compliance date. An extension to March 30, 2006 for conducting the comprehensive performance test was given by the Environmental Protection Agency. [§63.1207(c)(1)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

132. The permittee must conduct testing periodically as described in paragraphs (d)(1) through (3) of §63.1207. The date of commencement of the initial comprehensive performance test is the basis for establishing the deadline to commence the initial confirmatory performance test and the next comprehensive performance test. The permittee may conduct performance testing at any time prior to the required date. The deadline for commencing subsequent confirmatory and comprehensive performance testing is based on the date of commencement of the previous comprehensive performance test. [§§63.1207(d)(1) through (3)]

- A. The permittee must commence testing no later than 61 months after the date of commencing the previous comprehensive performance test.
- B. The permittee must commence confirmatory performance testing no later than 31 months after the date of commencing the previous comprehensive performance test. To insure that the confirmatory test is conducted approximately midway between comprehensive performance tests, the Administrator will not approve a test plan that schedules testing within 18 months of commencing the previous comprehensive performance test.
- C. The permittee must complete performance testing within 60 days after the date of commencement, unless the Administrator determines that a time extension is warranted based on documentation in writing of factors beyond the permittee's control that prevent the permittee from meeting the 60-day deadline.
- 133. Except as provided in paragraph (c)(2) of §63.1207, the permittee must conduct only an initial comprehensive performance test under the interim standards (§§63.1203 through 63.1205); all subsequent comprehensive performance testing requirements are waived under the interim standards. The provisions in the introductory text to paragraph (d) and in paragraph (d)(1) of §63.1207 apply only to tests used to demonstrate compliance with the standards under §§63.1219 through 63.1221. [§63.1207(d)(4)(i)]
- 134. The permittee is not required to conduct a confirmatory test under the interim standards (§§63.1203 through 63.1205). The confirmatory testing requirements in the introductory text to paragraph (d) and in paragraph (d)(2) of §63.1207 apply only after the permittee has demonstrated compliance with the standards under §§63.1219 through 63.1221. [§63.1207(d)(4)(ii)]
- 135. The permittee must submit to the Administrator a notification of intent to conduct a comprehensive performance test and CMS performance evaluation and a site specific test plan and CMS performance evaluation plan at least one year before the performance test and performance evaluation are scheduled to begin. [§63.1207(e)(1)(i)]
- 136. The permittee must submit to the Administrator a notification of intent to conduct the comprehensive performance test at least 60 calendar days before the test is scheduled to begin. [§63.1207(e)(1)(i)(B)]

Permit #: 1009-AOP-R7

- 137. The permittee must submit to the Administrator a notification of intent to conduct a confirmatory performance test and CMS performance evaluation and a site-specific test plan and CMS performance evaluation plan at least 60 calendar days before the performance test is scheduled to begin. [§63.1207(e)(1)(ii)]
- The permittee shall use the test methods contained in §63.1208 when determining compliance with the emissions standards of 40 CFR Part 63, Subpart EEE. [§§63.1208(a-b)]
- The permittee is subject to the applicable monitoring requirements contained in §63.1209. [§§63.1209 (a-r)]
- 140. The permittee must use a either a carbon monoxide or hydrocarbon CEMS to demonstrate and monitor compliance with the carbon monoxide and hydrocarbon standards under 40 CFR Part 63, Subpart EEE. The permittee must also use an oxygen CEMS to continuously correct the carbon monoxide or hydrocarbon levels to 7 percent oxygen. [§63.1209(a)(1)(i)]
- 141. The permittee must install, calibrate, maintain, and operate a particulate matter CEMS to demonstrate and monitor compliance with the particulate matter standards under 40 CFR Part 63, Subpart EEE. However, compliance with the requirements in §63.1209 to install, calibrate, maintain, and operate the PM CEMS is not required until such time that the Agency promulgates all performance specifications and operational requirements applicable to PM CEMS. [§63.1209(a)(1)(iii)]
- The permittee must install, calibrate, maintain, and continuously operate the COMS and CEMS in compliance with the quality assurance procedures provided in the appendix to 40 CFR Part 63, Subpart EEE and Performance Specifications 1 (opacity), 4B (carbon monoxide and oxygen), and 8A (hydrocarbons) in Appendix B, Part 60 of Chapter I. [§63.1209(a)(2)]
- 143. If a carbon monoxide CEMS is used, the permittee is subject to the provisions of §63.1209(a)(3) if a carbon monoxide exceedance is detected. [§63.1209(a)(3)]
- 144. If a hydrocarbon CEMS is used, the permittee is subject to the provisions of §63.1209(a)(4) if a hydrocarbon exceedance is detected. [§63.1209(a)(4)]
- 145. If the permittee elects to comply with the carbon monoxide and hydrocarbon emission standard by continuously monitoring carbon monoxide with a CEMS, the permittee must demonstrate that hydrocarbon emissions during the comprehensive performance test do not exceed the hydrocarbon emissions standard. In addition, the limits the permittee establishes on the destruction and removal efficiency (DRE) operating parameters required under paragraph (j) of §63.1209 also ensure that the permittee maintains compliance with the hydrocarbon emission standard. If the permittee does not conduct the hydrocarbon demonstration and DRE tests concurrently, the permittee must establish

Permit #: 1009-AOP-R7

AFIN: 70-00098

separate operating parameter limits under paragraph (j) of §63.1209 based on each test and the more restrictive of the operating parameter limits applies. [§63.1209(a)(7)]

- 146. The permittee is subject to the CMS standards of §63.1209(b). [§63.1209(b)]
- 147. Prior to feeding the material, the permittee must obtain an analysis of each feedstream that is sufficient to document compliance with the applicable feedrate limits provided in §63.1209. [§63.1209(c)(1)]
- 148. The permittee must develop and implement a feedstream analysis plan and record it in the operating record. [§63.1209(c)(2)]
- 149. The permittee must submit the feedstream analysis plan to the Administrator for review and approval, if requested. [§63.1209(c)(3)]
- 150. To comply with the applicable feedrate limits of §63.1209, the permittee must monitor and record the feedrates as follows: [§63.1209(c)(4)]
  - A. Determine and record the value of the parameter for each feedstream by sampling and analysis or other method;
  - B. Determine and record the mass or volume flowrate of each feedstream by a CMS. If the permittee determines flowrate of a feedstream by volume, the permittee must determine and record the density of the feedstream by sampling and analysis (unless the permittee reports the constituent concentration in units of weight per volume); and
  - C. Calculate and record the mass feedrate of the parameter per unit time.
- 151. The requirements of §§63.8(d) (Quality control program) and (e) (Performance evaluation of continuous monitoring systems) apply, except that the permittee must conduct performance evaluations components of the CMS under the frequency and procedures (for example, submittal of performance evaluation test plan for review and approval) applicable to performance tests as provided by §63.1207. [§63.1209(d)(1)]
- 152. The permittee must comply with the quality assurance procedures for CEMS prescribed in the appendix to 40 CFR Part 63, Subpart EEE. [§63.1209(d)(2)]
- 153. To remain in compliance with the destruction and removal efficiency (DRE) standards, the permittee must establish operating limits during the comprehensive performance test (or during a previous DRE test under provisions of §63.1206(b)(7)) for the following parameters, unless the limits are based on manufacturer specifications and comply with those limits at all times that hazardous waste remains in the combustion chamber (i.e., the hazardous waste residence time has not transpired since the hazardous waste feed cutoff system was activated). [§63.1209(j)]

Permit #: 1009-AOP-R7

- a. The permittee must measure the temperature of each combustion chamber at locations that best represents, as practicable, the bulk gas temperature in the combustion zone. The permittee must document the temperature measurement location in the test plan submitted under §63.1207(e). The permittee must establish a minimum hourly rolling average limit as the average of the test run averages. [§63.1209(j)(1)(i) and (ii)]
- b. As an indicator of gas residence time in the control device, the permittee must establish and comply with a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that is documented in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run. The permittee must comply with this limit on a hourly rolling average basis. [§63.1209(j)(2)(i) and (ii)]
- c. The permittee must establish limits on the maximum pumpable and total (i.e., pumpable and nonpumpable) hazardous waste feedrate for each location where hazardous waste is fed. Based on the most recent comprehensive performance test, these limits are listed below. [§63.1209(j)(3)(i)]

| Location                           | Maximum Total<br>Hazardous<br>Waste Feed Rate<br>(lb/hr) | Maximum<br>Pumpable<br>Hazardous Waste<br>Feed Rate (lb/hr) | Averaging<br>Period    |
|------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------------|
| Kilns                              | 37,000                                                   |                                                             | Hourly Rolling Average |
| Secondary<br>Combustion<br>Chamber | 12,340                                                   | 12,340                                                      | Hourly Rolling Average |
| Waste Fired<br>Boiler              | 3,980                                                    | 3,980                                                       | Hourly Rolling Average |

- 154. The permittee must specify operating parameters and limits to insure that good operation of each hazardous waste firing system is maintained. [§63.1209(j)(4)]
- 155. The permittee must comply with the dioxin and furans emission standard by establishing and complying with the following operating parameter limits. The permittee must base the limits on operations during the comprehensive performance test, unless the limits are based on manufacturer specifications. [§63.1209(k)]
- 156. The permittee must establish a limit on the maximum temperature of the gas at the inlet to the baghouse on an hourly rolling average. The permittee must establish the hourly rolling average limit as the average of the test run averages. [§63.1209(k)(1)(i)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

157. The permittee must measure the temperature of each combustion chamber at a location that best represents, as practicable, the bulk gas temperature in the combustion zone. The permittee must document the temperature measurement location in the test plan. These temperatures are: [§63.1209(k)(2)(i)]

| Location                        | Minimum Temperature<br>(°F) | Averaging Period          |
|---------------------------------|-----------------------------|---------------------------|
| Secondary Combustion<br>Chamber | 1,848                       | Hourly Rolling<br>Average |
| Waste Fired Boiler              | 1,881                       | Hourly Rolling Average    |

- As an indicator of gas residence time in the control device, the permittee must establish and comply with a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that the permittee documents in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run. The maximum flue gas flowrate shall be 95,330 acfm, on a hourly rolling average basis. [§63.1209(k)(3)(i)]
- 159. The permittee must establish limits on the maximum pumpable and total (pumpable and nonpumpable) hazardous waste feedrate for each location where waste is fed. These feedrates are: [§63.1209(k)(4)(i)]

| Location                        | Maximum Total<br>Hazardous Waste<br>Feed Rate (lb/hr) | Maximum Pumpable Hazardous Waste Feed Rate (lb/hr) | Averaging Period       |
|---------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------|
| Kilns                           | 37,000                                                |                                                    | Hourly Rolling Average |
| Secondary Combustion<br>Chamber | 12,340                                                | 12,340                                             | Hourly Rolling Average |
| Waste Fired Boiler              | 3,980                                                 | 3,980                                              | Hourly Rolling Average |

- 160. If the combustor is equipped with an activated carbon injection system or a carbon bed system, it is subject to the provisions of §63.1209(k)(5). [§63.1209(k)(5)]
- 161. If the combustor is equipped with an activated carbon injection system, it is subject to the provisions of §63.1209(k)(6). [§63.1209(k)(6)]
- 162. The permittee must establish a limit on minimum carbon injection rate on an hourly rolling average calculated as the average of the test run averages. If the carbon injection system injects carbon at more than one location, the permittee must establish a carbon

Permit #: 1009-AOP-R7

AFIN: 70-00098

feedrate limit for each location. The minimum carbon feedrate limit is 23 lb/hr (hourly rolling average). [§63.1209(k)(6)(i)]

- 163. The permittee must establish a limit on minimum carrier fluid (gas or liquid) flowrate or pressure drop as an hourly rolling average based on the manufacturer's specifications. The permittee must document the specifications in the test plan submitted under §§63.1207(e) and (f). The minimum carrier fluid flowrate is 30 scfm (hourly rolling average). [§63.1209(k)(6)(ii)]
- The permittee must specify and use the brand (*i.e.*, manufacturer) and type of carbon used during the comprehensive performance test until a subsequent comprehensive performance test is conducted, unless the permittee documents in the site-specific performance test plan required under §§63.1207(e) and (f) key parameters that affect adsorption and establish limits on those parameters based on the carbon used in the performance test. The permittee may substitute at any time a different brand or type of carbon provided that the replacement has equivalent or improved properties compared to the carbon used in the performance test and conforms to the key sorbent parameters the permittee identifies under §63.1209 (k)(6)(iii)(A). The permittee must include in the operating record documentation that the substitute carbon will provide the same level of control as the original carbon. [§63.1209(k)(6)(iii)]
- 165. The permittee must comply with the mercury emission standard by establishing and complying with the operating parameter limits found in §63.1209(1). [§63.1209(1)]
- 166. For incinerators and solid fuel boilers, when complying with the mercury emission standards under §§63.1203, 63.1216 and 63.1219, the permittee must establish a 12-hour rolling average limit for the total feedrate of mercury in all feedstreams as the average of the test run averages. The feedrate of mercury shall not exceed 0.64 lb/hr (rolling 12 hour average). [§63.1209(1)(1)(i)]
- 167. The permittee must comply with the particulate matter emission standard by establishing and complying with the operating parameter limits found in §63.1209(m) of 40 CFR Part 63, Subpart EEE. [§63.1209(m)]
- 168. The permittee must establish the minimum pressure drop across the wet scrubber on an hourly rolling average, established as the average of the test run averages. The minimum pressure drop across the high energy scrubber is 37 in. w.c. (hourly rolling average). [§63.1209(m)(1)(i)(A)]
- 169. The permittee must establish a limit on solids content of the scrubber liquid using a CMS or by manual sampling and analysis. If the permittee elects to monitor solids content manually, the permittee must sample and analyze the scrubber liquid hourly unless the permittee supports an alternative monitoring frequency in the performance test plan that the permittee submits for review and approval, or establish a minimum blowdown rate

Permit #: 1009-AOP-R7

AFIN: 70-00098

using a CMS and either a minimum scrubber tank volume or liquid level using a CMS. [§63.1209(m)(1)(i)(B)(1)(i) and (ii)]

- 170. For maximum solids content monitored with a CMS, the permittee must establish a limit on a twelve-hour rolling average as the average of the test run averages. [§63.1209(m)(1)(i)(B)(2)]
- 171. For maximum solids content measured manually, the permittee must establish an hourly limit, as measured at least once per hour, unless the permittee supports an alternative monitoring frequency in the performance test plan that the permittee submits for review and approval. The permittee must establish the maximum hourly limit as the average of the manual measurement averages for each run. [§63.1209(m)(1)(i)(B)(3)]
- 172. For minimum blowdown rate and either a minimum scrubber tank volume or liquid level using a CMS, the permittee must establish a limit on an hourly rolling average as the average of the test run averages. [§63.1209(m)(1)(i)(B)(4)]
- 173. The permittee must establish limits on either the minimum liquid to gas ratio or the minimum scrubber water flowrate and maximum flue gas flowrate on an hourly rolling average. If the permittee establishes limits on maximum flue gas flowrate under this paragraph, the permittee need not establish a limit on maximum flue gas flowrate under paragraph (m)(2) of §63.1209. The permittee must establish these hourly rolling average limits as the average of the test run averages. The minimum scrubber water flowrate is 600 gpm (hourly rolling average). The maximum flue gas flowrate is 95,330 acfm (hourly rolling average). [§63.1209(m)(1)(i)(C)]
- 174. If the combustor is equipped with a baghouse, the permittee must establish a limit on the minimum pressure drop and the maximum pressure drop across each baghouse cell based on manufacturer's specifications. The permittee must comply with the limit on an hourly rolling average. The minimum baghouse pressure drop per cell is 1 in. w.c. The maximum baghouse pressure drop per cell is 16 in. w.c. [§63.1209(m)(1)(ii)]
- 175. The permittee must establish a maximum ash feedrate limit. The feedrate of ash shall not exceed 53,320 lb/hr (12 hour rolling average). [§63.1209(m)(3)]
- 176. The permittee must comply with the semivolatile metal (cadmium and lead) and low volatile metal (arsenic, beryllium, and chromium) emission standards by establishing and complying with the following operating parameter limits. [§63.1209(n)]
- 177. The permittee must establish a limit on the maximum inlet temperature to the primary dry metals emissions control device on an hourly rolling basis as the average of the test run averages. [§63.1209(n)(1)]
- 178. The permittee must establish feedrate limits for semivolatile metals and low volatile metals as set forth in §63.1209(n)(2). These feedrate limits are: [§63.1209(n)(2)]

Permit #: 1009-AOP-R7

| Metal        | Maximum Feedrate<br>Limit (lb/hr, 12 hr-RA) |
|--------------|---------------------------------------------|
| Semivolatile | 224                                         |
| Low volatile | 501                                         |

- 179. The permittee must establish operating parameter limits on the particulate matter control device as specified by paragraph §63.1209(m)(1). [§63.1209(n)(3)]
- 180. The permittee must establish a 12-hour rolling average limit for the feedrate of total chlorine and chloride in all feedstreams. The feedrate of total chlorine and chloride shall not exceed 2,421 lb/hr (12 hour rolling average). [§63.1209(n)(4)]
- 181. As an indicator of gas residence time in the control device, the permittee must establish a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that the permittee documents in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run. The permittee must comply with this limit on a hourly rolling average basis. [§63.1209(n)(5)]
- 182. The permittee must comply with the hydrochloric acid and chlorine emission standards by establishing and complying with the operating parameter limits found in §63.1209(o). [§63.1209(o)]
- 183. The permittee must establish a 12-hour rolling average limit for the total feedrate of chlorine (organic and inorganic) in all feedstreams as the average of the test run averages. The feedrate of total chlorine and chloride shall not exceed 2,421 lb/hr (12 hour rolling average). [§63.1209(o)(1)(i)]
- 184. The permittee must establish a limit on minimum pressure drop across the wet scrubber on an hourly rolling average as the average of the test run averages. [§63.1209(o)(3)(i)]
- 185. The permittee must establish a limit on minimum pH on an hourly rolling average as the average of the test run averages. The minimum pH of the scrubber liquid is 2.7 (hourly rolling average). [§63.1209(o)(3)(iv)]
- 186. The permittee must establish limits on either the minimum liquid to gas ratio or the minimum scrubber water flowrate and maximum flue gas flowrate on an hourly rolling average as the average of the test run averages. If the permittee establishes limits on maximum flue gas flowrate under this paragraph, the permittee need not establish a limit on maximum flue gas flowrate under paragraph (o)(2) of §63.1209. [§63.1209(o)(3)(v)]
- 187. If the permittee complies with the requirements for combustion system leaks under §63.1206(c)(5) by maintaining combustion chamber zone pressure lower than ambient pressure, the permittee must monitor the pressure instantaneously and the automatic

Permit #: 1009-AOP-R7

AFIN: 70-00098

waste feed cutoff system must be engaged when negative pressure is not adequately maintained. [§63.1209(p)]

- 188. The permittee shall submit all of the applicable notifications prior to the deadlines established in 40 CFR Part 63, Subpart EEE. [§63.1210(a)(1)]
- 189. The permittee must submit the required notifications outlined in §63.1210(a)(2) to the Administrator in order to request or elect to comply with the alternative requirements contained in 40 CFR Part 63, Subpart EEE. [§63.1210(a)(2)]
- 190. Upon postmark of the Notification of Compliance, the operating parameter limits identified in the Notification of Compliance, as applicable, shall be complied with, the limits identified in the Document of Compliance or a previous Notification of Compliance are no longer applicable. [§63.1210(d)(2)]
- 191. The permittee shall comply with the recordkeeping and reporting requirements of §63.1211. [§63.1211]
- 192. The permittee may request an extension of the compliance date to install pollution prevention or waste minimization controls provided that the conditions outlined in §63.1213 are met. [§63.1213]
- 193. Prior to April 14, 2008, the permittee shall submit an application to the Department which addresses all of the applicable requirements of §63.1217 and §63.1219. An application was received on April 11, 2008. [§26.1011(A)(1) of Regulation 26]
- 194. The permittee must not discharge or cause combustion gases to be emitted into the atmosphere that contain: [§63.1219(a)]
  - a. For dioxins and furans:
    - 1. Emissions in excess of 0.20 ng TEQ/dscm, corrected to 7 percent oxygen; or
    - 2. Emissions in excess of 0.40 ng TEQ/dscm, corrected to 7 percent oxygen, provided that the combustion gas temperature at the inlet to the initial particulate matter control device is 400 °F or lower based on the average of the test run average temperatures. (For purposes of compliance, operation of a wet particulate matter control device is presumed to meet the 400 °F or lower requirement);
  - b. Mercury in excess of 130 μgm/dscm, corrected to 7 percent oxygen;
  - c. Cadmium and lead in excess of 230 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
  - d. Arsenic, beryllium, and chromium in excess of 92 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
  - e. For carbon monoxide and hydrocarbons, either:

Permit #: 1009-AOP-R7

AFIN: 70-00098

- 1. Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If the permittee elects to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of §63.1219, the permittee must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- 2. Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- f. Hydrogen chloride and chlorine gas (total chlorine) in excess of 32 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- g. Particulate matter in excess of 0.013 gr/dscf corrected to 7 percent oxygen.
- 195. The permittee must achieve a destruction and removal efficiency (DRE) of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of §63.1219. The permittee must calculate DRE for each POHC from the following equation: [§63.1219(c)(1)]

$$DRE = [1 - (Wout/Win)] \times 100\%$$

Where:

Win = mass feedrate of one POHC in a waste feedstream; and

Wout = mass emission rate of the same POHC present in exhaust emissions

prior to release to the atmosphere.

- 196. The permittee must treat each POHC in the waste feed that the permittee specified under paragraph (c)(3)(ii) of §63.1219 to the extent required by paragraphs (c)(1) and (c)(2) of §63.1219. [§63.1219(c)(3)(i)]
- 197. The permittee must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. The permittee must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information. [§63.1219(c)(3)(ii)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

# Risk Assessment Requirements

198. Compliance with the conditions of this air permit is also contingent upon the compliance with the Risk Assessment Requirements contained in the RCRA Permit No. 10H-RN1. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

## Acid Rain (Title IV)

199. The Director prohibits the permittee to cause any emissions exceeding any allowances the source lawfully holds under Title IV of the Act or the regulations promulgated under the Act. No permit revision is required for increases in emissions allowed by allowances acquired pursuant to the acid rain program, if such increases do not require a permit revision under any other applicable requirement. This permit establishes no limit on the number of allowances held by the permittee. However, the source may not use allowances as a defense for noncompliance with any other applicable requirement of this permit or the Act. The permittee will account for any such allowance according to the procedures established in regulations promulgated under Title IV of the Act. [Regulation 26, §26.701 and 40 CFR 70.6(a)(4)]

#### **Title VI Provisions**

- 200. The permittee must comply with the standards for labeling of products using ozone-depleting substances. [40 CFR Part 82, Subpart E]
  - a. All containers containing a class I or class II substance stored or transported, all products containing a class I substance, and all products directly manufactured with a class I substance must bear the required warning statement if it is being introduced to interstate commerce pursuant to §82.106.
  - b. The placement of the required warning statement must comply with the requirements pursuant to §82.108.
  - c. The form of the label bearing the required warning must comply with the requirements pursuant to §82.110.
  - d. No person may modify, remove, or interfere with the required warning statement except as described in §82.112.
- 201. The permittee must comply with the standards for recycling and emissions reduction, except as provided for MVACs in Subpart B. [40 CFR Part 82, Subpart F]
  - a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices pursuant to §82.156.
  - b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to §82.158.
  - c. Persons performing maintenance, service repair, or disposal of appliances must be certified by an approved technician certification program pursuant to §82.161.

Permit #: 1009-AOP-R7

AFIN: 70-00098

- d. Persons disposing of small appliances, MVACs, and MVAC like appliances must comply with record keeping requirements pursuant to §82.166. ("MVAC like appliance" as defined at §82.152)
- e. Persons owning commercial or industrial process refrigeration equipment must comply with leak repair requirements pursuant to §82.156.
- f. Owners/operators of appliances normally containing 50 or more pounds of refrigerant must keep records of refrigerant purchased and added to such appliances pursuant to §82.166.
- 202. If the permittee manufactures, transforms, destroys, imports, or exports a class I or class II substance, the permittee is subject to all requirements as specified in 40 CFR Part 82, Subpart A, Production and Consumption Controls.
- 203. If the permittee performs a service on motor (fleet) vehicles when this service involves ozone depleting substance refrigerant (or regulated substitute substance) in the motor vehicle air conditioner (MVAC), the permittee is subject to all the applicable requirements as specified in 40 CFR part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners.

The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed. The term "MVAC" as used in Subpart B does not include the air tight sealed refrigeration system used as refrigerated cargo, or the system used on passenger buses using HCFC 22 refrigerant.

204. The permittee can switch from any ozone depleting substance to any alternative listed in the Significant New Alternatives Program (SNAP) promulgated pursuant to 40 CFR Part 82, Subpart G.

Permit #: 1009-AOP-R7

AFIN: 70-00098

## SECTION VII: INSIGNIFICANT ACTIVITIES

The following sources are insignificant activities. Any activity that has a state or federal applicable requirement shall be considered a significant activity even if this activity meets the criteria of §26.304 of Regulation 26 or listed in the table below. Insignificant activity determinations rely upon the information submitted by the permittee in an application dated October 30, 2006.

| Description                                          | Category |
|------------------------------------------------------|----------|
| SN-24 Stationary Diesel Engines                      | A-1      |
| SN-13 HCl Storage Tank at WWTP with a water scrubber | A-13     |
| SN-15 NaSH Storage at Brine Unit                     | B-21     |

Permit #: 1009-AOP-R7

AFIN: 70-00098

#### **SECTION VIII: GENERAL PROVISIONS**

- 1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute. [40 CFR 70.6(b)(2)]
- 2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 CFR 70.6(a)(2) and §26.701(B) of the Regulations of the Arkansas Operating Air Permit Program (Regulation 26)]
- 3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee's right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Department takes final action on the renewal application. The Department will not necessarily notify the permittee when the permit renewal application is due. [Regulation 26, §26.406]
- 4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, et seq. (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 CFR 70.6(a)(1)(ii) and Regulation 26, §26.701(A)(2)]
- 5. The permittee must maintain the following records of monitoring information as required by this permit.
  - a. The date, place as defined in this permit, and time of sampling or measurements;
  - b. The date(s) analyses performed;
  - c. The company or entity performing the analyses;
  - d. The analytical techniques or methods used;
  - e. The results of such analyses; and
  - f. The operating conditions existing at the time of sampling or measurement.

[40 CFR 70.6(a)(3)(ii)(A) and Regulation 26, §26.701(C)(2)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 CFR 70.6(a)(3)(ii)(B) and Regulation 26, §26.701(C)(2)(b)]

7. The permittee must submit reports of all required monitoring every six (6) months. If permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due within thirty (30) days of the end of the reporting period. Although the reports are due every six months, each report shall contain a full year of data. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Regulation No. 26, §26.2 must certify all required reports. The permittee will send the reports to the address below:

Arkansas Department of Environmental Quality Air Division ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118-5317

[40 C.F.R. 70.6(a)(3)(iii)(A) and Regulation 26, §26.701(C)(3)(a)]

- 8. The permittee shall report to the Department all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.
  - a. For all upset conditions (as defined in Regulation 19, § 19.601), the permittee will make an initial report to the Department by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:
    - i. The facility name and location;
    - ii. The process unit or emission source deviating from the permit limit;
    - iii. The permit limit, including the identification of pollutants, from which deviation occurs;
    - iv. The date and time the deviation started;
    - v. The duration of the deviation;
    - vi. The average emissions during the deviation;
    - vii. The probable cause of such deviations;
    - viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future; and
      - ix. The name of the person submitting the report.

Permit #: 1009-AOP-R7

AFIN: 70-00098

The permittee shall make a full report in writing to the Department within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit's limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

b. For all deviations, the permittee shall report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a above. The semi-annual report must include all the information as required by the initial and full reports required in 8a.

[Regulation 19, §19.601 and §19.602, Regulation 26, §26.701(C)(3)(b), and 40 CFR 70.6(a)(3)(iii)(B)]

- 9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Regulation are declared to be separable and severable. [40 CFR 70.6(a)(5), Regulation 26, §26.701(E), and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Regulation 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. §7401, et seq. and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 CFR 70.6(a)(6)(i) and Regulation 26, §26.701(F)(1)]
- 11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 CFR 70.6(a)(6)(ii) and Regulation 26, §26.701(F)(2)]
- 12. The Department may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. [40 CFR 70.6(a)(6)(iii) and Regulation 26, §26.701(F)(3)]
- 13. This permit does not convey any property rights of any sort, or any exclusive privilege. [40 CFR 70.6(a)(6)(iv) and Regulation 26, §26.701(F)(4)]

Permit #: 1009-AOP-R7

AFIN: 70-00098

- 14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Department may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 CFR 70.6(a)(6)(v) and Regulation 26, §26.701(F)(5)]
- 15. The permittee must pay all permit fees in accordance with the procedures established in Regulation 9. [40 CFR 70.6(a)(7) and Regulation 26, §26.701(G)]
- 16. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 CFR 70.6(a)(8) and Regulation 26, §26.701(H)]
- 17. If the permit allows different operating scenarios, the permittee shall, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 CFR 70.6(a)(9)(i) and Regulation 26, §26.701(I)(1)]
- 18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source's potential to emit, unless the Department specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 CFR 70.6(b) and Regulation 26, §26.702(A) and (B)]
- 19. Any document (including reports) required by this permit must contain a certification by a responsible official as defined in Regulation 26, §26.2. [40 CFR 70.6(c)(1) and Regulation 26, §26.703(A)]
- 20. The permittee must allow an authorized representative of the Department, upon presentation of credentials, to perform the following: [40 CFR 70.6(c)(2) and Regulation 26, §26.703(B)]
  - a. Enter upon the permittee's premises where the permitted source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
  - b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;
  - c. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and

Permit #: 1009-AOP-R7

AFIN: 70-00098

- d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.
- 21. The permittee shall submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually within 30 days following the last day of the anniversary month of the initial Title V permit. The permittee must also submit the compliance certification to the Administrator as well as to the Department. All compliance certifications required by this permit must include the following: [40 CFR 70.6(c)(5) and Regulation 26, §26.703(E)(3)]
  - a. The identification of each term or condition of the permit that is the basis of the certification;
  - b. The compliance status;
  - c. Whether compliance was continuous or intermittent;
  - d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
  - e. Such other facts as the Department may require elsewhere in this permit or by §114(a)(3) and §504(b) of the Act.
- 22. Nothing in this permit will alter or affect the following: [Regulation 26, §26.704(C)]
  - a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
  - b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
  - c. The applicable requirements of the acid rain program, consistent with §408(a) of the Act; or
  - d. The ability of EPA to obtain information from a source pursuant to §114 of the Act.
- 23. This permit authorizes only those pollutant emitting activities addressed in this permit. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 24. The permittee may request in writing and at least 15 days in advance of the deadline, an extension to any testing, compliance or other dates in this permit. No such extensions are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion in the following circumstances:
  - a. Such an extension does not violate a federal requirement;
  - b. The permittee demonstrates the need for the extension; and
  - c. The permittee documents that all reasonable measures have been taken to meet the current deadline and documents reasons it cannot be met.

Permit #: 1009-AOP-R7

AFIN: 70-00098

[Regulation 18, §18.314(A), Regulation 19, §19.416(A), Regulation 26, §26.1013(A), A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]

- 25. The permittee may request in writing and at least 30 days in advance, temporary emissions and/or testing that would otherwise exceed an emission rate, throughput requirement, or other limit in this permit. No such activities are authorized until the permittee receives written Department approval. Any such emissions shall be included in the facility's total emissions and reported as such. The Department may grant such a request, at its discretion under the following conditions:
  - a. Such a request does not violate a federal requirement;
  - b. Such a request is temporary in nature;
  - c. Such a request will not result in a condition of air pollution;
  - d. The request contains such information necessary for the Department to evaluate the request, including but not limited to, quantification of such emissions and the date/time such emission will occur;
  - e. Such a request will result in increased emissions less than five tons of any individual criteria pollutant, one ton of any single HAP and 2.5 tons of total HAPs; and
  - f. The permittee maintains records of the dates and results of such temporary emissions/testing.

[Regulation 18, §18.314(B), Regulation 19, §19.416(B), Regulation 26, §26.1013(B), A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]

- 26. The permittee may request in writing and at least 30 days in advance, an alternative to the specified monitoring in this permit. No such alternatives are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion under the following conditions:
  - a. The request does not violate a federal requirement;
  - b. The request provides an equivalent or greater degree of actual monitoring to the current requirements; and
  - c. Any such request, if approved, is incorporated in the next permit modification application by the permittee.

[Regulation 18, §18.314(C), Regulation 19, §19.416(C), Regulation 26, §26.1013(C), A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]



# 40 CFR Part 60, Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Source: 72 FR 32759, June 13, 2007, unless otherwise noted.

### § 60.40c Applicability and delegation of authority.

- (a) Except as provided in paragraphs (d), (e), (f), and (g) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).
- (b) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, §60.48c(a)(4) shall be retained by the Administrator and not transferred to a State.
- (c) Steam generating units that meet the applicability requirements in paragraph (a) of this section are not subject to the sulfur dioxide (SO<sub>2</sub>) or particulate matter (PM) emission limits, performance testing requirements, or monitoring requirements under this subpart (§§60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during periods of combustion research, as defined in §60.41c.
- (d) Any temporary change to an existing steam generating unit for the purpose of conducting combustion research is not considered a modification under §60.14.
- (e) Heat recovery steam generators that are associated with combined cycle gas turbines and meet the applicability requirements of subpart KKKK of this part are not subject to this subpart. This subpart will continue to apply to all other heat recovery steam generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only emissions resulting from combustion of fuels in the steam generating unit are subject to this subpart. (The gas turbine emissions are subject to subpart GG or KKKK, as applicable, of this part).
- (f) Any facility covered by subpart AAAA of this part is not subject by this subpart.
- (g) Any facility covered by an EPA approved State or Federal section 111(d)/129 plan implementing subpart BBBB of this part is not subject by this subpart.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5090, Jan. 28, 2009]

#### § 60.41c Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act and in subpart A of this part.

Annual capacity factor means the ratio between the actual heat input to a steam generating unit from an individual fuel or combination of fuels during a period of 12 consecutive calendar months and the potential heat input to the steam generating unit from all fuels had the steam generating unit been operated for 8,760 hours during that 12-month period at the maximum design heat input capacity. In the case of steam generating units that are rented or leased, the actual heat input shall be determined based on the combined heat input from all operations of the affected facility during a period of 12 consecutive calendar months.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17), coal refuse, and petroleum coke. Coal-derived synthetic fuels derived from coal for the purposes of creating useful heat, including but not limited to solvent refined coal, gasified coal not meeting the definition of natural gas, coal-oil mixtures, and coal-water mixtures, are also included in this definition for the purposes of this subpart.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (kJ/kg) (6,000 Btu per pound (Btu/lb) on a dry basis.

Cogeneration steam generating unit means a steam generating unit that simultaneously produces both electrical (or mechanical) and thermal energy from the same primary energy source.

Combined cycle system means a system in which a separate source (such as a stationary gas turbine, internal combustion engine, or kiln) provides exhaust gas to a steam generating unit.

Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient combustion or more effective prevention or control of air pollutant emissions from combustion, provided that, during these periods of research and development, the heat generated is not used for any purpose other than preheating combustion air for use by that steam generating unit (*i.e.*, the heat generated is released to the atmosphere without being used for space heating, process heating, driving pumps, preheating combustion air for other units, generating electricity, or any other purpose).

Conventional technology means wet flue gas desulfurization technology, dry flue gas desulfurization technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology.

Distillate oil means fuel oil that complies with the specifications for fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17) or diesel fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D975 (incorporated by reference, see §60.17).

Dry flue gas desulfurization technology means a SO<sub>2</sub>control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution and forming a dry powder material. This definition includes devices where the dry powder material is subsequently converted to another form. Alkaline reagents used in dry flue gas desulfurization systems include, but are not limited to, lime and sodium compounds.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source (such as a stationary gas turbine, internal combustion engine, kiln, etc.) to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a steam generating unit.

Emerging technology means any SO<sub>2</sub>control system that is not defined as a conventional technology under this section, and for which the owner or operator of the affected facility has received approval from the Administrator to operate as an emerging technology under §60.48c(a)(4).

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Fluidized bed combustion technology means a device wherein fuel is distributed onto a bed (or series of beds) of limestone aggregate (or other sorbent materials) for combustion; and these materials are forced upward in the device by the flow of combustion air and the gaseous products of combustion. Fluidized bed combustion technology includes, but is not limited to, bubbling bed units and circulating bed units.

Fuel pretreatment means a process that removes a portion of the sulfur in a fuel before combustion of the fuel in a steam generating unit.

Heat input means heat derived from combustion of fuel in a steam generating unit and does not include the heat derived from preheated combustion air, recirculated flue gases, or exhaust gases from other sources (such as stationary gas turbines, internal combustion engines, and kilns).

Heat transfer medium means any material that is used to transfer heat from one point to another point.

Maximum design heat input capacity means the ability of a steam generating unit to combust a stated maximum amount of fuel (or combination of fuels) on a steady state basis as determined by the physical design and characteristics of the steam generating unit.

## Natural gas means:

- (1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or
- (2) Liquefied petroleum (LP) gas, as defined by the American Society for Testing and Materials in ASTM D1835 (incorporated by reference, see §60.17); or
- (3) A mixture of hydrocarbons that maintains a gaseous state at ISO conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 34 and 43 megajoules (MJ) per dry standard cubic meter (910 and 1,150 Btu per dry standard cubic foot).

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Oil means crude oil or petroleum, or a liquid fuel derived from crude oil or petroleum, including distillate oil and residual oil.

Potential sulfur dioxide emission rate means the theoretical SO<sub>2</sub>emissions (nanograms per joule (ng/J) or lb/MMBtu heat input) that would result from combusting fuel in an uncleaned state and without using emission control systems.

*Process heater* means a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17).

Steam generating unit means a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart.

Steam generating unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam generating unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Wet flue gas desulfurization technology means an SO<sub>2</sub>control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition includes devices where the liquid material is subsequently converted to another form. Alkaline reagents used in wet flue gas desulfurization systems include, but are not limited to, lime, limestone, and sodium compounds.

Wet scrubber system means any emission control device that mixes an aqueous stream or slurry with the exhaust gases from a steam generating unit to control emissions of PM or SO<sub>2</sub>.

Wood means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including but not limited to sawdust, sanderdust, wood chips, scraps, slabs, millings, shavings, and processed pellets made from wood or other forest residues.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5090, Jan. 28, 2009]

#### § 60.42c Standard for sulfur dioxide (SO<sub>2</sub>).

- (a) Except as provided in paragraphs (b), (c), and (e) of this section, on and after the date on which the performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator of an affected facility that combusts only coal shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO<sub>2</sub>in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO<sub>2</sub>emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO<sub>2</sub>in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO<sub>2</sub>in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO<sub>2</sub>emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO<sub>2</sub>in excess of the emission limit is determined pursuant to paragraph (e)(2) of this section.
- (b) Except as provided in paragraphs (c) and (e) of this section, on and after the date on which the performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator of an affected facility that:
- (1) Combusts only coal refuse alone in a fluidized bed combustion steam generating unit shall neither:
- (i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO<sub>2</sub>in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 20 percent (0.20) of the potential SO<sub>2</sub>emission rate (80 percent reduction); nor

- (ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO<sub>2</sub>in excess of SO<sub>2</sub>in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility subject to paragraph (a) of this section. If oil or any other fuel (except coal) is fired with coal refuse, the affected facility is subject to the 87 ng/J (0.20 lb/MMBtu) heat input SO<sub>2</sub>emissions limit or the 90 percent SO<sub>2</sub>reduction requirement specified in paragraph (a) of this section and the emission limit is determined pursuant to paragraph (e)(2) of this section.
- (2) Combusts only coal and that uses an emerging technology for the control of SO<sub>2</sub>emissions shall neither:
- (i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO<sub>2</sub>in excess of 50 percent (0.50) of the potential SO<sub>2</sub>emission rate (50 percent reduction); nor
- (ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO<sub>2</sub>in excess of 260 ng/J (0.60 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50 percent SO<sub>2</sub>reduction requirement specified in this paragraph and the emission limit determined pursuant to paragraph (e)(2) of this section.
- (c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, alone or in combination with any other fuel, and is listed in paragraphs (c)(1), (2), (3), or (4) of this section shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO<sub>2</sub>in excess of the emission limit determined pursuant to paragraph (e)(2) of this section. Percent reduction requirements are not applicable to affected facilities under paragraphs (c)(1), (2), (3), or (4).
- (1) Affected facilities that have a heat input capacity of 22 MW (75 MMBtu/hr) or less.
- (2) Affected facilities that have an annual capacity for coal of 55 percent (0.55) or less and are subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for coal of 55 percent (0.55) or less.
- (3) Affected facilities located in a noncontinental area.
- (4) Affected facilities that combust coal in a duct burner as part of a combined cycle system where 30 percent (0.30) or less of the heat entering the steam generating unit is from combustion of coal in the duct burner and 70 percent (0.70) or more of the heat entering the steam generating unit is from exhaust gases entering the duct burner.
- (d) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts oil shall cause to be discharged into the atmosphere from

that affected facility any gases that contain SO<sub>2</sub>in excess of 215 ng/J (0.50 lb/MMBtu) heat input; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.

- (e) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, oil, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO<sub>2</sub>in excess of the following:
- (1) The percent of potential SO<sub>2</sub>emission rate or numerical SO<sub>2</sub>emission rate required under paragraph (a) or (b)(2) of this section, as applicable, for any affected facility that
- (i) Combusts coal in combination with any other fuel;
- (ii) Has a heat input capacity greater than 22 MW (75 MMBtu/hr); and
- (iii) Has an annual capacity factor for coal greater than 55 percent (0.55); and
- (2) The emission limit determined according to the following formula for any affected facility that combusts coal, oil, or coal and oil with any other fuel:

$$E_{\epsilon} = \frac{\left(K_{a}H_{a} + K_{b}H_{b} + K_{c}H_{c}\right)}{\left(H_{a} + H_{b} + H_{c}\right)}$$

Where:

E<sub>s</sub>= SO<sub>2</sub>emission limit, expressed in ng/J or lb/MMBtu heat input;

 $K_a = 520 \text{ ng/J } (1.2 \text{ lb/MMBtu});$ 

 $K_b = 260 \text{ ng/J} (0.60 \text{ lb/MMBtu});$ 

 $K_c = 215 \text{ ng/J } (0.50 \text{ lb/MMBtu});$ 

H<sub>a</sub>= Heat input from the combustion of coal, except coal combusted in an affected facility subject to paragraph (b)(2) of this section, in Joules (J) [MMBtu];

 $H_b$ = Heat input from the combustion of coal in an affected facility subject to paragraph (b)(2) of this section, in J (MMBtu); and

H<sub>c</sub>= Heat input from the combustion of oil, in J (MMBtu).

- (f) Reduction in the potential SO<sub>2</sub>emission rate through fuel pretreatment is not credited toward the percent reduction requirement under paragraph (b)(2) of this section unless:
- (1) Fuel pretreatment results in a 50 percent (0.50) or greater reduction in the potential SO<sub>2</sub>emission rate; and
- (2) Emissions from the pretreated fuel (without either combustion or post-combustion SO<sub>2</sub>control) are equal to or less than the emission limits specified under paragraph (b)(2) of this section.
- (g) Except as provided in paragraph (h) of this section, compliance with the percent reduction requirements, fuel oil sulfur limits, and emission limits of this section shall be determined on a 30-day rolling average basis.
- (h) For affected facilities listed under paragraphs (h)(1), (2), or (3) of this section, compliance with the emission limits or fuel oil sulfur limits under this section may be determined based on a certification from the fuel supplier, as described under §60.48c(f), as applicable.
- (1) Distillate oil-fired affected facilities with heat input capacities between 2.9 and 29 MW (10 and 100 MMBtu/hr).
- (2) Residual oil-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).
- (3) Coal-fired facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).
- (i) The SO<sub>2</sub>emission limits, fuel oil sulfur limits, and percent reduction requirements under this section apply at all times, including periods of startup, shutdown, and malfunction.
- (j) For affected facilities located in noncontinental areas and affected facilities complying with the percent reduction standard, only the heat input supplied to the affected facility from the combustion of coal and oil is counted under this section. No credit is provided for the heat input to the affected facility from wood or other fuels or for heat derived from exhaust gases from other sources, such as stationary gas turbines, internal combustion engines, and kilns.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5090, Jan. 28, 2009]

#### § 60.43c Standard for particulate matter (PM).

(a) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or

before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emission limits:

- (1) 22 ng/J (0.051 lb/MMBtu) heat input if the affected facility combusts only coal, or combusts coal with other fuels and has an annual capacity factor for the other fuels of 10 percent (0.10) or less.
- (2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal with other fuels, has an annual capacity factor for the other fuels greater than 10 percent (0.10), and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor greater than 10 percent (0.10) for fuels other than coal.
- (b) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts wood or combusts mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emissions limits:
- (1) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood greater than 30 percent (0.30); or
- (2) 130 ng/J (0.30 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood of 30 percent (0.30) or less and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for wood of 30 percent (0.30) or less.
- (c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that can combust coal, wood, or oil and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity. Owners and operators of an affected facility that elect to install, calibrate, maintain, and operate a continuous emissions monitoring system (CEMS) for measuring PM emissions according to the requirements of this subpart and are subject to a federally enforceable PM limit of 0.030 lb/MMBtu or less are exempt from the opacity standard specified in this paragraph.
- (d) The PM and opacity standards under this section apply at all times, except during periods of startup, shutdown, or malfunction.
- (e)(1) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator

of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 13 ng/J (0.030 lb/MMBtu) heat input, except as provided in paragraphs (e)(2), (e)(3), and (e)(4) of this section.

- (2) As an alternative to meeting the requirements of paragraph (e)(1) of this section, the owner or operator of an affected facility for which modification commenced after February 28, 2005, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005 shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of both:
- (i) 22 ng/J (0.051 lb/MMBtu) heat input derived from the combustion of coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels; and
- (ii) 0.2 percent of the combustion concentration (99.8 percent reduction) when combusting coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels.
- (3) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005, and that combusts over 30 percent wood (by heat input) on an annual basis and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 43 ng/J (0.10 lb/MMBtu) heat input.
- (4) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, an owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only oil that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under §60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO<sub>2</sub>emissions is not subject to the PM limit in this section.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

# § 60.44c Compliance and performance test methods and procedures for sulfur dioxide.

(a) Except as provided in paragraphs (g) and (h) of this section and §60.8(b), performance tests required under §60.8 shall be conducted following the procedures specified in paragraphs (b), (c), (d), (e), and (f) of this section, as applicable. Section 60.8(f) does not

apply to this section. The 30-day notice required in §60.8(d) applies only to the initial performance test unless otherwise specified by the Administrator.

- (b) The initial performance test required under §60.8 shall be conducted over 30 consecutive operating days of the steam generating unit. Compliance with the percent reduction requirements and SO<sub>2</sub>emission limits under §60.42c shall be determined using a 30-day average. The first operating day included in the initial performance test shall be scheduled within 30 days after achieving the maximum production rate at which the affect facility will be operated, but not later than 180 days after the initial startup of the facility. The steam generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but must be representative of future operating conditions.
- (c) After the initial performance test required under paragraph (b) of this section and §60.8, compliance with the percent reduction requirements and SO<sub>2</sub>emission limits under §60.42c is based on the average percent reduction and the average SO<sub>2</sub>emission rates for 30 consecutive steam generating unit operating days. A separate performance test is completed at the end of each steam generating unit operating day, and a new 30-day average percent reduction and SO<sub>2</sub>emission rate are calculated to show compliance with the standard.
- (d) If only coal, only oil, or a mixture of coal and oil is combusted in an affected facility, the procedures in Method 19 of appendix A of this part are used to determine the hourly  $SO_2$ emission rate ( $E_{ho}$ ) and the 30-day average  $SO_2$ emission rate ( $E_{ao}$ ). The hourly averages used to compute the 30-day averages are obtained from the CEMS. Method 19 of appendix A of this part shall be used to calculate  $E_{ao}$ when using daily fuel sampling or Method 6B of appendix A of this part.
- (e) If coal, oil, or coal and oil are combusted with other fuels:
- (1) An adjusted  $E_{ho}(E_{ho}o)$  is used in Equation 19–19 of Method 19 of appendix A of this part to compute the adjusted  $E_{ao}(E_{ao}o)$ . The  $E_{ho}o$  is computed using the following formula:

$$E_{bo} o = \frac{E_{bo} - E_{w}(1 - X_{b})}{X_{b}}$$

Where:

 $E_{ho}o = Adjusted E_{ho}, ng/J (lb/MMBtu);$ 

E<sub>ho</sub>= Hourly SO<sub>2</sub>emission rate, ng/J (lb/MMBtu);

E<sub>w</sub>= SO<sub>2</sub>concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 9 of appendix A of this part, ng/J (lb/MMBtu). The value E<sub>w</sub> for each fuel lot is used for each hourly average

during the time that the lot is being combusted. The owner or operator does not have to measure  $E_w$  if the owner or operator elects to assume  $E_w$ = 0.

 $X_k$ = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

- (2) The owner or operator of an affected facility that qualifies under the provisions of  $\S60.42c(c)$  or (d) (where percent reduction is not required) does not have to measure the parameters  $E_w$  or  $X_k$  if the owner or operator of the affected facility elects to measure emission rates of the coal or oil using the fuel sampling and analysis procedures under Method 19 of appendix A of this part.
- (f) Affected facilities subject to the percent reduction requirements under §60.42c(a) or (b) shall determine compliance with the SO<sub>2</sub>emission limits under §60.42c pursuant to paragraphs (d) or (e) of this section, and shall determine compliance with the percent reduction requirements using the following procedures:
- (1) If only coal is combusted, the percent of potential SO<sub>2</sub>emission rate is computed using the following formula:

$$%P_{f} = 100 \left( 1 - \frac{\%R_{f}}{100} \right) \left( 1 - \frac{\%R_{f}}{100} \right)$$

Where:

%P<sub>s</sub>= Potential SO<sub>2</sub>emission rate, in percent;

%R<sub>g</sub>= SO<sub>2</sub>removal efficiency of the control device as determined by Method 19 of appendix A of this part, in percent; and

 $%R_f = SO_2$  removal efficiency of fuel pretreatment as determined by Method 19 of appendix A of this part, in percent.

- (2) If coal, oil, or coal and oil are combusted with other fuels, the same procedures required in paragraph (f)(1) of this section are used, except as provided for in the following:
- (i) To compute the  $%P_s$ , an adjusted  $%R_g(%R_go)$  is computed from  $E_{ao}o$  from paragraph (e)(1) of this section and an adjusted average  $SO_2$  inlet rate ( $E_{ai}o$ ) using the following formula:

$$%R_{g0} = 100 \left( 1 - \frac{E_{w}^{*}}{E_{w}^{*}} \right)$$

Where:

 $R_g o = Adjusted R_g$ , in percent;

 $E_{ao}o = Adjusted E_{ao}$ , ng/J (lb/MMBtu); and

 $E_{ai}o = Adjusted average SO<sub>2</sub>inlet rate, ng/J (lb/MMBtu).$ 

(ii) To compute  $E_{ai}$ , an adjusted hourly  $SO_2$  inlet rate ( $E_{hi}$ ) is used. The  $E_{hi}$ 0 is computed using the following formula:

$$E_{hiO} = \frac{E_{hi} - E_{w}(1 - X_{h})}{X_{h}}$$

Where:

 $E_{hi}o = Adjusted E_{hi}$ , ng/J (lb/MMBtu);

E<sub>hi</sub>= Hourly SO<sub>2</sub>inlet rate, ng/J (lb/MMBtu);

 $E_w$ = SO<sub>2</sub>concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 19 of appendix A of this part, ng/J (lb/MMBtu). The value  $E_w$  for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure  $E_w$  if the owner or operator elects to assume  $E_w$ = 0; and

 $X_k$ = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

- (g) For oil-fired affected facilities where the owner or operator seeks to demonstrate compliance with the fuel oil sulfur limits under §60.42c based on shipment fuel sampling, the initial performance test shall consist of sampling and analyzing the oil in the initial tank of oil to be fired in the steam generating unit to demonstrate that the oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or operator of the affected facility shall sample the oil in the fuel tank after each new shipment of oil is received, as described under §60.46c(d)(2).
- (h) For affected facilities subject to §60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO<sub>2</sub>standards based on fuel supplier certification, the performance test shall consist of the certification from the fuel supplier, as described in §60.48c(f), as applicable.
- (i) The owner or operator of an affected facility seeking to demonstrate compliance with the SO<sub>2</sub>standards under §60.42c(c)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the

maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(j) The owner or operator of an affected facility shall use all valid  $SO_2$  emissions data in calculating  $P_s$  and  $E_{ho}$  under paragraphs (d), (e), or (f) of this section, as applicable, whether or not the minimum emissions data requirements under 60.46c(f) are achieved. All valid emissions data, including valid data collected during periods of startup, shutdown, and malfunction, shall be used in calculating  $P_s$  or  $E_{ho}$  pursuant to paragraphs (d), (e), or (f) of this section, as applicable.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

# § 60.45c Compliance and performance test methods and procedures for particulate matter.

- (a) The owner or operator of an affected facility subject to the PM and/or opacity standards under §60.43c shall conduct an initial performance test as required under §60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of this section.
- (1) Method 1 of appendix A of this part shall be used to select the sampling site and the number of traverse sampling points.
- (2) Method 3A or 3B of appendix A-2 of this part shall be used for gas analysis when applying Method 5 or 5B of appendix A-3 of this part or 17 of appendix A-6 of this part.
- (3) Method 5, 5B, or 17 of appendix A of this part shall be used to measure the concentration of PM as follows:
- (i) Method 5 of appendix A of this part may be used only at affected facilities without wet scrubber systems.
- (ii) Method 17 of appendix A of this part may be used at affected facilities with or without wet scrubber systems provided the stack gas temperature does not exceed a temperature of 160 °C (320 °F). The procedures of Sections 8.1 and 11.1 of Method 5B of appendix A of this part may be used in Method 17 of appendix A of this part only if Method 17 of appendix A of this part is used in conjunction with a wet scrubber system. Method 17 of appendix A of this part shall not be used in conjunction with a wet scrubber system if the effluent is saturated or laden with water droplets.
- (iii) Method 5B of appendix A of this part may be used in conjunction with a wet scrubber system.

- (4) The sampling time for each run shall be at least 120 minutes and the minimum sampling volume shall be 1.7 dry standard cubic meters (dscm) [60 dry standard cubic feet (dscf)] except that smaller sampling times or volumes may be approved by the Administrator when necessitated by process variables or other factors.
- (5) For Method 5 or 5B of appendix A of this part, the temperature of the sample gas in the probe and filter holder shall be monitored and maintained at  $160 \pm 14$  °C ( $320 \pm 25$  °F).
- (6) For determination of PM emissions, an oxygen (O<sub>2</sub>) or carbon dioxide (CO<sub>2</sub>) measurement shall be obtained simultaneously with each run of Method 5, 5B, or 17 of appendix A of this part by traversing the duct at the same sampling location.
- (7) For each run using Method 5, 5B, or 17 of appendix A of this part, the emission rates expressed in ng/J (lb/MMBtu) heat input shall be determined using:
- (i) The O<sub>2</sub>or CO<sub>2</sub>measurements and PM measurements obtained under this section, (ii) The dry basis F factor, and
- (iii) The dry basis emission rate calculation procedure contained in Method 19 of appendix A of this part.
- (8) Method 9 of appendix A-4 of this part shall be used for determining the opacity of stack emissions.
- (b) The owner or operator of an affected facility seeking to demonstrate compliance with the PM standards under §60.43c(b)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.
- (c) In place of PM testing with Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part, an owner or operator may elect to install, calibrate, maintain, and operate a CEMS for monitoring PM emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor PM emissions instead of conducting performance testing using Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall install, calibrate, maintain, and operate a CEMS and shall comply with the requirements specified in paragraphs (c)(1) through (c)(14) of this section.
- (1) Notify the Administrator 1 month before starting use of the system.

- (2) Notify the Administrator 1 month before stopping use of the system.
- (3) The monitor shall be installed, evaluated, and operated in accordance with §60.13 of subpart A of this part.
- (4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under §60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of CEMS if the owner or operator was previously determining compliance by Method 5, 5B, or 17 of appendix A of this part performance tests, whichever is later.
- (5) The owner or operator of an affected facility shall conduct an initial performance test for PM emissions as required under §60.8 of subpart A of this part. Compliance with the PM emission limit shall be determined by using the CEMS specified in paragraph (d) of this section to measure PM and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19 of appendix A of this part, section 4.1.
- (6) Compliance with the PM emission limit shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emission concentrations using CEMS outlet data.
- (7) At a minimum, valid CEMS hourly averages shall be obtained as specified in paragraph (c)(7)(i) of this section for 75 percent of the total operating hours per 30-day rolling average.
- (i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.
- (ii) [Reserved]
- (8) The 1-hour arithmetic averages required under paragraph (c)(7) of this section shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under §60.13(e)(2) of subpart A of this part.
- (9) All valid CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (c)(7) of this section are not met.
- (10) The CEMS shall be operated according to Performance Specification 11 in appendix B of this part.
- (11) During the correlation testing runs of the CEMS required by Performance Specification 11 in appendix B of this part, PM and O<sub>2</sub>(or CO<sub>2</sub>) data shall be collected

- concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and performance tests conducted using the following test methods.
- (i) For PM, Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall be used; and
- (ii) After July 1, 2010 or after Method 202 of appendix M of part 51 has been revised to minimize artifact measurement and notice of that change has been published in the Federal Register, whichever is later, for condensable PM emissions, Method 202 of appendix M of part 51 shall be used; and
- (iii) For O2 (or CO<sub>2</sub>), Method 3A or 3B of appendix A-2 of this part, as applicable shall be used.
- (12) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit's must be performed annually and Response Correlation Audits must be performed every 3 years.
- (13) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, valid emissions data for a minimum of 75 percent of total operating hours on a 30-day rolling average.
- (14) After July 1, 2011, within 90 days after the date of completing each performance evaluation required by paragraph (c)(11) of this section, the owner or operator of the affected facility must either submit the test data to EPA by successfully entering the data electronically into EPA's WebFIRE data base available at <a href="http://cfpub.epa.gov/oarweb/index.cfm?action=fire.main">http://cfpub.epa.gov/oarweb/index.cfm?action=fire.main</a> or mail a copy to: United States Environmental Protection Agency; Energy Strategies Group; 109 TW Alexander DR; Mail Code: D243-01; RTP, NC 27711.
- (d) The owner or operator of an affected facility seeking to demonstrate compliance under §60.43c(e)(4) shall follow the applicable procedures under §60.48c(f). For residual oil-fired affected facilities, fuel supplier certifications are only allowed for facilities with heat input capacities between 2.9 and 8.7 MW (10 to 30 MMBtu/hr).

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

#### § 60.46c Emission monitoring for sulfur dioxide.

(a) Except as provided in paragraphs (d) and (e) of this section, the owner or operator of an affected facility subject to the SO<sub>2</sub>emission limits under §60.42c shall install, calibrate, maintain, and operate a CEMS for measuring SO<sub>2</sub>concentrations and either O<sub>2</sub>or CO<sub>2</sub>concentrations at the outlet of the SO<sub>2</sub>control device (or the outlet of the steam

generating unit if no SO<sub>2</sub>control device is used), and shall record the output of the system. The owner or operator of an affected facility subject to the percent reduction requirements under §60.42c shall measure SO<sub>2</sub>concentrations and either O<sub>2</sub>or CO<sub>2</sub>concentrations at both the inlet and outlet of the SO<sub>2</sub>control device.

- (b) The 1-hour average SO<sub>2</sub>emission rates measured by a CEMS shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the average emission rates under §60.42c. Each 1-hour average SO<sub>2</sub>emission rate must be based on at least 30 minutes of operation, and shall be calculated using the data points required under §60.13(h)(2). Hourly SO<sub>2</sub>emission rates are not calculated if the affected facility is operated less than 30 minutes in a 1-hour period and are not counted toward determination of a steam generating unit operating day.
- (c) The procedures under §60.13 shall be followed for installation, evaluation, and operation of the CEMS.
- (1) All CEMS shall be operated in accordance with the applicable procedures under Performance Specifications 1, 2, and 3 of appendix B of this part.
- (2) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of appendix F of this part.
- (3) For affected facilities subject to the percent reduction requirements under §60.42c, the span value of the SO<sub>2</sub>CEMS at the inlet to the SO<sub>2</sub>control device shall be 125 percent of the maximum estimated hourly potential SO<sub>2</sub>emission rate of the fuel combusted, and the span value of the SO<sub>2</sub>CEMS at the outlet from the SO<sub>2</sub>control device shall be 50 percent of the maximum estimated hourly potential SO<sub>2</sub>emission rate of the fuel combusted.
- (4) For affected facilities that are not subject to the percent reduction requirements of §60.42c, the span value of the SO<sub>2</sub>CEMS at the outlet from the SO<sub>2</sub>control device (or outlet of the steam generating unit if no SO<sub>2</sub>control device is used) shall be 125 percent of the maximum estimated hourly potential SO<sub>2</sub>emission rate of the fuel combusted.
- (d) As an alternative to operating a CEMS at the inlet to the SO<sub>2</sub>control device (or outlet of the steam generating unit if no SO<sub>2</sub>control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO<sub>2</sub>emission rate by sampling the fuel prior to combustion. As an alternative to operating a CEMS at the outlet from the SO<sub>2</sub>control device (or outlet of the steam generating unit if no SO<sub>2</sub>control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO<sub>2</sub>emission rate by using Method 6B of appendix A of this part. Fuel sampling shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this section. Method 6B of appendix A of this part shall be conducted pursuant to paragraph (d)(3) of this section.
- (1) For affected facilities combusting coal or oil, coal or oil samples shall be collected daily in an as-fired condition at the inlet to the steam generating unit and analyzed for

sulfur content and heat content according the Method 19 of appendix A of this part. Method 19 of appendix A of this part provides procedures for converting these measurements into the format to be used in calculating the average SO<sub>2</sub>input rate.

- (2) As an alternative fuel sampling procedure for affected facilities combusting oil, oil samples may be collected from the fuel tank for each steam generating unit immediately after the fuel tank is filled and before any oil is combusted. The owner or operator of the affected facility shall analyze the oil sample to determine the sulfur content of the oil. If a partially empty fuel tank is refilled, a new sample and analysis of the fuel in the tank would be required upon filling. Results of the fuel analysis taken after each new shipment of oil is received shall be used as the daily value when calculating the 30-day rolling average until the next shipment is received. If the fuel analysis shows that the sulfur content in the fuel tank is greater than 0.5 weight percent sulfur, the owner or operator shall ensure that the sulfur content of subsequent oil shipments is low enough to cause the 30-day rolling average sulfur content to be 0.5 weight percent sulfur or less.
- (3) Method 6B of appendix A of this part may be used in lieu of CEMS to measure SO<sub>2</sub>at the inlet or outlet of the SO<sub>2</sub>control system. An initial stratification test is required to verify the adequacy of the Method 6B of appendix A of this part sampling location. The stratification test shall consist of three paired runs of a suitable SO<sub>2</sub>and CO<sub>2</sub>measurement train operated at the candidate location and a second similar train operated according to the procedures in §3.2 and the applicable procedures in section 7 of Performance Specification 2 of appendix B of this part. Method 6B of appendix A of this part, Method 6A of appendix A of this part, or a combination of Methods 6 and 3 of appendix A of this part or Methods 6C and 3A of appendix A of this part are suitable measurement techniques. If Method 6B of appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of appendix A of this part 24-hour tests, the mean of the absolute difference between the three paired runs must be less than 10 percent (0.10).
- (e) The monitoring requirements of paragraphs (a) and (d) of this section shall not apply to affected facilities subject to §60.42c(h) (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO<sub>2</sub>standards based on fuel supplier certification, as described under §60.48c(f), as applicable.
- (f) The owner or operator of an affected facility operating a CEMS pursuant to paragraph (a) of this section, or conducting as-fired fuel sampling pursuant to paragraph (d)(1) of this section, shall obtain emission data for at least 75 percent of the operating hours in at least 22 out of 30 successive steam generating unit operating days. If this minimum data requirement is not met with a single monitoring system, the owner or operator of the affected facility shall supplement the emission data with data collected with other monitoring systems as approved by the Administrator.

#### § 60.47c Emission monitoring for particulate matter.

- (a) Except as provided in paragraphs (c), (d), (e), (f), and (g) of this section, the owner or operator of an affected facility combusting coal, oil, or wood that is subject to the opacity standards under §60.43c shall install, calibrate, maintain, and operate a continuous opacity monitoring system (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility subject to an opacity standard in §60.43c(c) and that is not required to install a COMS due to paragraphs (c), (d), (e), or (f) of this section that elects not to install a COMS shall conduct a performance test using Method 9 of appendix A–4 of this part and the procedures in §60.11 to demonstrate compliance with the applicable limit in §60.43c and shall comply with either paragraphs (a)(1), (a)(2), or (a)(3) of this section. If during the initial 60 minutes of observation all 6-minute averages are less than 10 percent and all individual 15-second observations are less than or equal to 20 percent, the observation period may be reduced from 3 hours to 60 minutes.
- (1) Except as provided in paragraph (a)(2) and (a)(3) of this section, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of this part performance tests using the procedures in paragraph (a) of this section according to the applicable schedule in paragraphs (a)(1)(i) through (a)(1)(iv) of this section, as determined by the most recent Method 9 of appendix A-4 of this part performance test results.
- (i) If no visible emissions are observed, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted;
- (ii) If visible emissions are observed but the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 6 calendar months from the date that the most recent performance test was conducted;
- (iii) If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 3 calendar months from the date that the most recent performance test was conducted; or
- (iv) If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 30 calendar days from the date that the most recent performance test was conducted.
- (2) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of this part performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this part according to the procedures specified in paragraphs (a)(2)(i) and (ii) of this section.

- (i) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of this part and demonstrate that the sum of the occurrences of any visible emissions is not in excess of 5 percent of the observation period (*i.e.*, 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than 30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the occurrence of visible emissions is greater than 5 percent of the observation period (*i.e.*, 90 seconds per 30 minute period) the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24 hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute observation (*i.e.*, 90 seconds) or conduct a new Method 9 of appendix A-4 of this part performance test using the procedures in paragraph (a) of this section within 30 calendar days according to the requirements in §60.45c(a)(8).
- (ii) If no visible emissions are observed for 30 operating days during which an opacity standard is applicable, observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any visible emissions are observed, daily observations shall be resumed.
- (3) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according to a site-specific monitoring plan approved by the Administrator. The observations shall be similar, but not necessarily identical, to the requirements in paragraph (a)(2) of this section. For reference purposes in preparing the monitoring plan, see OAQPS "Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems." This document is available from the U.S. Environmental Protection Agency (U.S. EPA); Office of Air Quality and Planning Standards; Sector Policies and Programs Division; Measurement Policy Group (D243–02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer Network (TTN) under Emission Measurement Center Preliminary Methods.
- (b) All COMS shall be operated in accordance with the applicable procedures under Performance Specification 1 of appendix B of this part. The span value of the opacity COMS shall be between 60 and 80 percent.
- (c) Owners and operators of an affected facilities that burn only distillate oil that contains no more than 0.5 weight percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.060 lb/MMBtu) heat input or less and that do not use a post-combustion technology to reduce SO2 or PM emissions and that are subject to an opacity standard in §60.43c(c) are not required to operate a COMS if they follow the applicable procedures in §60.48c(f).

- (d) Owners or operators complying with the PM emission limit by using a PM CEMS must calibrate, maintain, operate, and record the output of the system for PM emissions discharged to the atmosphere as specified in §60.45c(c). The CEMS specified in paragraph §60.45c(c) shall be operated and data recorded during all periods of operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments.
- (e) Owners and operators of an affected facility that is subject to an opacity standard in §60.43c(c) and that does not use post-combustion technology (except a wet scrubber) for reducing PM, SO<sub>2</sub>, or carbon monoxide (CO) emissions, burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur, and is operated such that emissions of CO discharged to the atmosphere from the affected facility are maintained at levels less than or equal to 0.15 lb/MMBtu on a boiler operating day average basis is not required to operate a COMS. Owners and operators of affected facilities electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (e)(1) through (4) of this section; or
- (1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (e)(1)(i) through (iv) of this section.
- (i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(i)(3) of subpart Eb of this part.
- (ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).
- (iii) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. The 1-hour averages are calculated using the data points required in §60.13(h)(2).
- (iv) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.
- (2) You must calculate the 1-hour average CO emissions levels for each steam generating unit operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat input to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each steam generating unit operating day.
- (3) You must evaluate the preceding 24-hour average CO emission level each steam generating unit operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate

corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less.

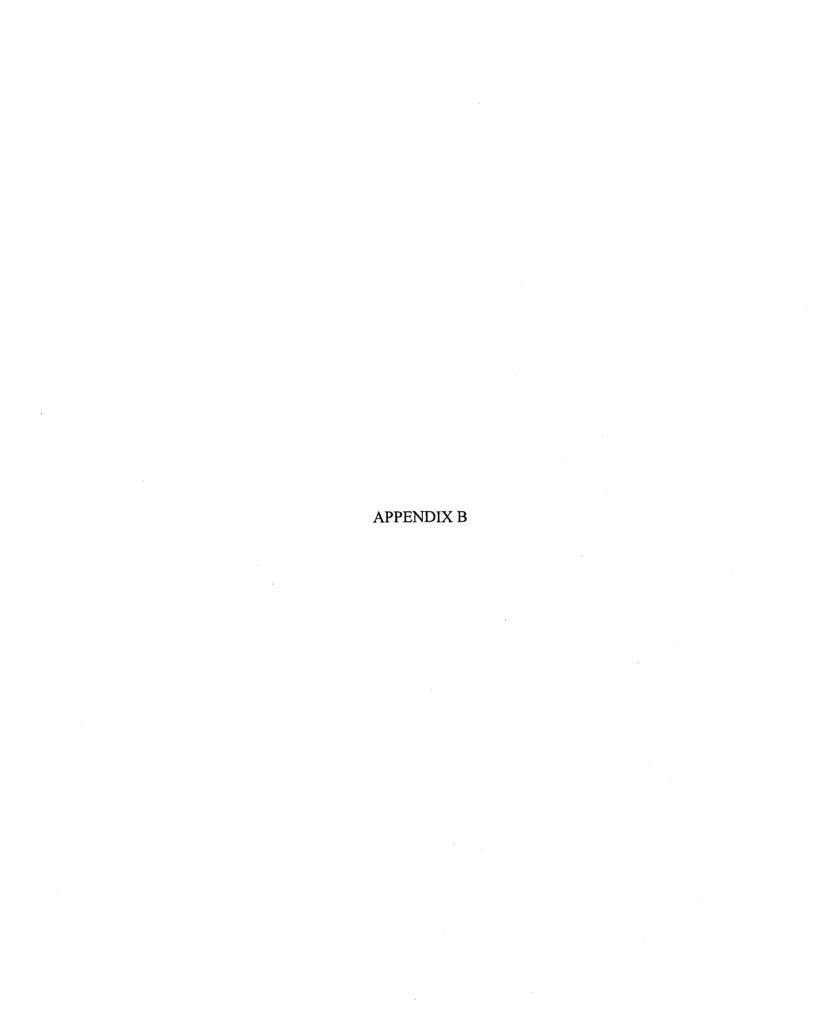
- (4) You must record the CO measurements and calculations performed according to paragraph (e) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the date, time, and description of the corrective action.
- (f) Owners and operators of an affected facility that is subject to an opacity standard in §60.43c(c) and that uses a bag leak detection system to monitor the performance of a fabric filter (baghouse) according to the most recent requirements in section §60.48Da of this part is not required to operate a COMS.
- (g) Owners and operators of an affected facility that is subject to an opacity standard in §60.43c(c) and that burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur and operates according to a written site-specific monitoring plan approved by the permitting authority is not required to operate a COMS. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

## § 60.48c Reporting and recordkeeping requirements.

- (a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by §60.7 of this part. This notification shall include:
- (1) The design heat input capacity of the affected facility and identification of fuels to be combusted in the affected facility.
- (2) If applicable, a copy of any federally enforceable requirement that limits the annual capacity factor for any fuel or mixture of fuels under §60.42c, or §60.43c.
- (3) The annual capacity factor at which the owner or operator anticipates operating the affected facility based on all fuels fired and based on each individual fuel fired.
- (4) Notification if an emerging technology will be used for controlling SO<sub>2</sub>emissions. The Administrator will examine the description of the control device and will determine whether the technology qualifies as an emerging technology. In making this determination, the Administrator may require the owner or operator of the affected facility to submit additional information concerning the control device. The affected facility is subject to the provisions of §60.42c(a) or (b)(1), unless and until this determination is made by the Administrator.

- (b) The owner or operator of each affected facility subject to the SO<sub>2</sub>emission limits of §60.42c, or the PM or opacity limits of §60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of this part.
- (c) In addition to the applicable requirements in §60.7, the owner or operator of an affected facility subject to the opacity limits in §60.43c(c) shall submit excess emission reports for any excess emissions from the affected facility that occur during the reporting period and maintain records according to the requirements specified in paragraphs (c)(1) through (3) of this section, as applicable to the visible emissions monitoring method used.
- (1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(1)(i) through (iii) of this section.
- (i) Dates and time intervals of all opacity observation periods;
- (ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and
- (iii) Copies of all visible emission observer opacity field data sheets;
- (2) For each performance test conducted using Method 22 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(2)(i) through (iv) of this section.
- (i) Dates and time intervals of all visible emissions observation periods;
- (ii) Name and affiliation for each visible emission observer participating in the performance test;
- (iii) Copies of all visible emission observer opacity field data sheets; and
- (iv) Documentation of any adjustments made and the time the adjustments were completed to the affected facility operation by the owner or operator to demonstrate compliance with the applicable monitoring requirements.
- (3) For each digital opacity compliance system, the owner or operator shall maintain records and submit reports according to the requirements specified in the site-specific monitoring plan approved by the Administrator
- (d) The owner or operator of each affected facility subject to the SO<sub>2</sub>emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall submit reports to the Administrator.


- (e) The owner or operator of each affected facility subject to the SO<sub>2</sub>emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall keep records and submit reports as required under paragraph (d) of this section, including the following information, as applicable.
- (1) Calendar dates covered in the reporting period.
- (2) Each 30-day average SO<sub>2</sub>emission rate (ng/J or lb/MMBtu), or 30-day average sulfur content (weight percent), calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of corrective actions taken.
- (3) Each 30-day average percent of potential SO<sub>2</sub>emission rate calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of the corrective actions taken.
- (4) Identification of any steam generating unit operating days for which SO<sub>2</sub>or diluent (O<sub>2</sub>or CO<sub>2</sub>) data have not been obtained by an approved method for at least 75 percent of the operating hours; justification for not obtaining sufficient data; and a description of corrective actions taken.
- (5) Identification of any times when emissions data have been excluded from the calculation of average emission rates; justification for excluding data; and a description of corrective actions taken if data have been excluded for periods other than those during which coal or oil were not combusted in the steam generating unit.
- (6) Identification of the F factor used in calculations, method of determination, and type of fuel combusted.
- (7) Identification of whether averages have been obtained based on CEMS rather than manual sampling methods.
- (8) If a CEMS is used, identification of any times when the pollutant concentration exceeded the full span of the CEMS.
- (9) If a CEMS is used, description of any modifications to the CEMS that could affect the ability of the CEMS to comply with Performance Specifications 2 or 3 of appendix B of this part.
- (10) If a CEMS is used, results of daily CEMS drift tests and quarterly accuracy assessments as required under appendix F, Procedure 1 of this part.
- (11) If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records

of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.

- (f) Fuel supplier certification shall include the following information:
- (1) For distillate oil:
- (i) The name of the oil supplier;
- (ii) A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in §60.41c; and
- (iii) The sulfur content or maximum sulfur content of the oil.
- (2) For residual oil:
- (i) The name of the oil supplier;
- (ii) The location of the oil when the sample was drawn for analysis to determine the sulfur content of the oil, specifically including whether the oil was sampled as delivered to the affected facility, or whether the sample was drawn from oil in storage at the oil supplier's or oil refiner's facility, or other location;
- (iii) The sulfur content of the oil from which the shipment came (or of the shipment itself); and
- (iv) The method used to determine the sulfur content of the oil.
- (3) For coal:
- (i) The name of the coal supplier;
- (ii) The location of the coal when the sample was collected for analysis to determine the properties of the coal, specifically including whether the coal was sampled as delivered to the affected facility or whether the sample was collected from coal in storage at the mine, at a coal preparation plant, at a coal supplier's facility, or at another location. The certification shall include the name of the coal mine (and coal seam), coal storage facility, or coal preparation plant (where the sample was collected);
- (iii) The results of the analysis of the coal from which the shipment came (or of the shipment itself) including the sulfur content, moisture content, ash content, and heat content; and
- (iv) The methods used to determine the properties of the coal.
- (4) For other fuels:

- (i) The name of the supplier of the fuel;
- (ii) The potential sulfur emissions rate or maximum potential sulfur emissions rate of the fuel in ng/J heat input; and
- (iii) The method used to determine the potential sulfur emissions rate of the fuel.
- (g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.
- (2) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility that combusts only natural gas, wood, fuels using fuel certification in §60.48c(f) to demonstrate compliance with the SO<sub>2</sub>standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.
- (3) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in §60.42C to use fuel certification to demonstrate compliance with the SO<sub>2</sub>standard, and/or fuels, excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.
- (h) The owner or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under §60.42c or §60.43c shall calculate the annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.
- (i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.
- (j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]



40 CFR Part 60, Subpart Kb—Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984

Source: 52 FR 11429, Apr. 8, 1987, unless otherwise noted.

# § 60.110b Applicability and designation of affected facility.

- (a) Except as provided in paragraph (b) of this section, the affected facility to which this subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m<sup>3</sup>) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.
- (b) This subpart does not apply to storage vessels with a capacity greater than or equal to 151 m<sup>3</sup> storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (kPa) or with a capacity greater than or equal to 75 m<sup>3</sup> but less than 151 m<sup>3</sup> storing a liquid with a maximum true vapor pressure less than 15.0 kPa.
- (c) [Reserved]
- (d) This subpart does not apply to the following:
- (1) Vessels at coke oven by-product plants.
- (2) Pressure vessels designed to operate in excess of 204.9 kPa and without emissions to the atmosphere.
- (3) Vessels permanently attached to mobile vehicles such as trucks, railcars, barges, or ships.
- (4) Vessels with a design capacity less than or equal to 1,589.874 m<sup>3</sup> used for petroleum or condensate stored, processed, or treated prior to custody transfer.
- (5) Vessels located at bulk gasoline plants.
- (6) Storage vessels located at gasoline service stations.
- (7) Vessels used to store beverage alcohol.
- (8) Vessels subject to subpart GGGG of 40 CFR part 63.
- (e) Alternative means of compliance—(1) Option to comply with part 65. Owners or operators may choose to comply with 40 CFR part 65, subpart C, to satisfy the requirements of §§60.112b through 60.117b for storage vessels that are subject to this subpart that meet the specifications in paragraphs (e)(1)(i) and (ii) of this section. When choosing to comply with 40 CFR part 65, subpart C, the monitoring requirements of

- §60.116b(c), (e), (f)(1), and (g) still apply. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1.
- (i) A storage vessel with a design capacity greater than or equal to 151 m<sup>3</sup> containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than 5.2 kPa; or
- (ii) A storage vessel with a design capacity greater than 75 m<sup>3</sup> but less than 151 m<sup>3</sup> containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than 27.6 kPa.
- (2) Part 60, subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart C, must also comply with §§60.1, 60.2, 60.5, 60.6, 60.7(a)(1) and (4), 60.14, 60.15, and 60.16 for those storage vessels. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph (e)(2) do not apply to owners or operators of storage vessels complying with 40 CFR part 65, subpart C, except that provisions required to be met prior to implementing 40 CFR part 65 still apply. Owners and operators who choose to comply with 40 CFR part 65, subpart C, must comply with 40 CFR part 65, subpart A.
- (3) Internal floating roof report. If an owner or operator installs an internal floating roof and, at initial startup, chooses to comply with 40 CFR part 65, subpart C, a report shall be furnished to the Administrator stating that the control equipment meets the specifications of 40 CFR 65.43. This report shall be an attachment to the notification required by 40 CFR 65.5(b).
- (4) External floating roof report. If an owner or operator installs an external floating roof and, at initial startup, chooses to comply with 40 CFR part 65, subpart C, a report shall be furnished to the Administrator stating that the control equipment meets the specifications of 40 CFR 65.44. This report shall be an attachment to the notification required by 40 CFR 65.5(b).

[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989; 65 FR 78275, Dec. 14, 2000; 68 FR 59332, Oct. 15, 2003]

#### § 60.111b Definitions.

Terms used in this subpart are defined in the Act, in subpart A of this part, or in this subpart as follows:

Bulk gasoline plant means any gasoline distribution facility that has a gasoline throughput less than or equal to 75,700 liters per day. Gasoline throughput shall be the maximum calculated design throughput as may be limited by compliance with an enforceable condition under Federal requirement or Federal, State or local law, and discoverable by the Administrator and any other person.

Condensate means hydrocarbon liquid separated from natural gas that condenses due to changes in the temperature or pressure, or both, and remains liquid at standard conditions.

Custody transfer means the transfer of produced petroleum and/or condensate, after processing and/or treatment in the producing operations, from storage vessels or automatic transfer facilities to pipelines or any other forms of transportation.

Fill means the introduction of VOL into a storage vessel but not necessarily to complete capacity.

Gasoline service station means any site where gasoline is dispensed to motor vehicle fuel tanks from stationary storage tanks.

Maximum true vapor pressure means the equilibrium partial pressure exerted by the volatile organic compounds (as defined in 40 CFR 51.100) in the stored VOL at the temperature equal to the highest calendar-month average of the VOL storage temperature for VOL's stored above or below the ambient temperature or at the local maximum monthly average temperature as reported by the National Weather Service for VOL's stored at the ambient temperature, as determined:

- (1) In accordance with methods described in American Petroleum institute Bulletin 2517, Evaporation Loss From External Floating Roof Tanks, (incorporated by reference—see §60.17); or
- (2) As obtained from standard reference texts; or
- (3) As determined by ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17);
- (4) Any other method approved by the Administrator.

Petroleum means the crude oil removed from the earth and the oils derived from tar sands, shale, and coal.

Petroleum liquids means petroleum, condensate, and any finished or intermediate products manufactured in a petroleum refinery.

Process tank means a tank that is used within a process (including a solvent or raw material recovery process) to collect material discharged from a feedstock storage vessel or equipment within the process before the material is transferred to other equipment within the process, to a product or by-product storage vessel, or to a vessel used to store recovered solvent or raw material. In many process tanks, unit operations such as reactions and blending are conducted. Other process tanks, such as surge control vessels and bottoms receivers, however, may not involve unit operations.

Reid vapor pressure means the absolute vapor pressure of volatile crude oil and volatile nonviscous petroleum liquids except liquified petroleum gases, as determined by ASTM D323-82 or 94 (incorporated by reference—see §60.17).

Storage vessel means each tank, reservoir, or container used for the storage of volatile organic liquids but does not include:

- (1) Frames, housing, auxiliary supports, or other components that are not directly involved in the containment of liquids or vapors;
- (2) Subsurface caverns or porous rock reservoirs; or
- (3) Process tanks.

Volatile organic liquid (VOL) means any organic liquid which can emit volatile organic compounds (as defined in 40 CFR 51.100) into the atmosphere.

Waste means any liquid resulting from industrial, commercial, mining or agricultural operations, or from community activities that is discarded or is being accumulated, stored, or physically, chemically, or biologically treated prior to being discarded or recycled.

[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989; 65 FR 61756, Oct. 17, 2000; 68 FR 59333, Oct. 15, 2003]

# § 60.112b Standard for volatile organic compounds (VOC).

- (a) The owner or operator of each storage vessel either with a design capacity greater than or equal to 151 m<sup>3</sup> containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than 5.2 kPa but less than 76.6 kPa or with a design capacity greater than or equal to 75 m<sup>3</sup> but less than 151 m<sup>3</sup> containing a VOL that, as stored, has a maximum true vapor pressure equal to or greater than 27.6 kPa but less than 76.6 kPa, shall equip each storage vessel with one of the following:
- (1) A fixed roof in combination with an internal floating roof meeting the following specifications:
- (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in complete contact with it) inside a storage vessel that has a fixed roof. The internal floating roof shall be floating on the liquid surface at all times, except during initial fill and during those intervals when the storage vessel is completely emptied or subsequently emptied and refilled. When the roof is resting on the leg supports, the process of filling, emptying, or refilling shall be continuous and shall be accomplished as rapidly as possible.

- (ii) Each internal floating roof shall be equipped with one of the following closure devices between the wall of the storage vessel and the edge of the internal floating roof:
- (A) A foam- or liquid-filled seal mounted in contact with the liquid (liquid-mounted seal). A liquid-mounted seal means a foam- or liquid-filled seal mounted in contact with the liquid between the wall of the storage vessel and the floating roof continuously around the circumference of the tank.
- (B) Two seals mounted one above the other so that each forms a continuous closure that completely covers the space between the wall of the storage vessel and the edge of the internal floating roof. The lower seal may be vapor-mounted, but both must be continuous
- (C) A mechanical shoe seal. A mechanical shoe seal is a metal sheet held vertically against the wall of the storage vessel by springs or weighted levers and is connected by braces to the floating roof. A flexible coated fabric (envelope) spans the annular space between the metal sheet and the floating roof.
- (iii) Each opening in a noncontact internal floating roof except for automatic bleeder vents (vacuum breaker vents) and the rim space vents is to provide a projection below the liquid surface.
- (iv) Each opening in the internal floating roof except for leg sleeves, automatic bleeder vents, rim space vents, column wells, ladder wells, sample wells, and stub drains is to be equipped with a cover or lid which is to be maintained in a closed position at all times (i.e., no visible gap) except when the device is in actual use. The cover or lid shall be equipped with a gasket. Covers on each access hatch and automatic gauge float well shall be bolted except when they are in use.
- (v) Automatic bleeder vents shall be equipped with a gasket and are to be closed at all times when the roof is floating except when the roof is being floated off or is being landed on the roof leg supports.
- (vi) Rim space vents shall be equipped with a gasket and are to be set to open only when the internal floating roof is not floating or at the manufacturer's recommended setting.
- (vii) Each penetration of the internal floating roof for the purpose of sampling shall be a sample well. The sample well shall have a slit fabric cover that covers at least 90 percent of the opening.
- (viii) Each penetration of the internal floating roof that allows for passage of a column supporting the fixed roof shall have a flexible fabric sleeve seal or a gasketed sliding cover.
- (ix) Each penetration of the internal floating roof that allows for passage of a ladder shall have a gasketed sliding cover.

- (2) An external floating roof. An external floating roof means a pontoon-type or double-deck type cover that rests on the liquid surface in a vessel with no fixed roof. Each external floating roof must meet the following specifications:
- (i) Each external floating roof shall be equipped with a closure device between the wall of the storage vessel and the roof edge. The closure device is to consist of two seals, one above the other. The lower seal is referred to as the primary seal, and the upper seal is referred to as the secondary seal.
- (A) The primary seal shall be either a mechanical shoe seal or a liquid-mounted seal. Except as provided in §60.113b(b)(4), the seal shall completely cover the annular space between the edge of the floating roof and tank wall.
- (B) The secondary seal shall completely cover the annular space between the external floating roof and the wall of the storage vessel in a continuous fashion except as allowed in §60.113b(b)(4).
- (ii) Except for automatic bleeder vents and rim space vents, each opening in a noncontact external floating roof shall provide a projection below the liquid surface. Except for automatic bleeder vents, rim space vents, roof drains, and leg sleeves, each opening in the roof is to be equipped with a gasketed cover, seal, or lid that is to be maintained in a closed position at all times (i.e., no visible gap) except when the device is in actual use. Automatic bleeder vents are to be closed at all times when the roof is floating except when the roof is being floated off or is being landed on the roof leg supports. Rim vents are to be set to open when the roof is being floated off the roof legs supports or at the manufacturer's recommended setting. Automatic bleeder vents and rim space vents are to be gasketed. Each emergency roof drain is to be provided with a slotted membrane fabric cover that covers at least 90 percent of the area of the opening.
- (iii) The roof shall be floating on the liquid at all times (i.e., off the roof leg supports) except during initial fill until the roof is lifted off leg supports and when the tank is completely emptied and subsequently refilled. The process of filling, emptying, or refilling when the roof is resting on the leg supports shall be continuous and shall be accomplished as rapidly as possible.
- (3) A closed vent system and control device meeting the following specifications:
- (i) The closed vent system shall be designed to collect all VOC vapors and gases discharged from the storage vessel and operated with no detectable emissions as indicated by an instrument reading of less than 500 ppm above background and visual inspections, as determined in part 60, subpart VV, §60.485(b).
- (ii) The control device shall be designed and operated to reduce inlet VOC emissions by 95 percent or greater. If a flare is used as the control device, it shall meet the specifications described in the general control device requirements (§60.18) of the General Provisions.

- (4) A system equivalent to those described in paragraphs (a)(1), (a)(2), or (a)(3) of this section as provided in §60.114b of this subpart.
- (b) The owner or operator of each storage vessel with a design capacity greater than or equal to 75 m<sup>3</sup> which contains a VOL that, as stored, has a maximum true vapor pressure greater than or equal to 76.6 kPa shall equip each storage vessel with one of the following:
- (1) A closed vent system and control device as specified in §60.112b(a)(3).
- (2) A system equivalent to that described in paragraph (b)(1) as provided in §60.114b of this subpart.
- (c) Site-specific standard for Merck & Co., Inc.'s Stonewall Plant in Elkton, Virginia. This paragraph applies only to the pharmaceutical manufacturing facility, commonly referred to as the Stonewall Plant, located at Route 340 South, in Elkton, Virginia ("site").
- (1) For any storage vessel that otherwise would be subject to the control technology requirements of paragraphs (a) or (b) of this section, the site shall have the option of either complying directly with the requirements of this subpart, or reducing the site-wide total criteria pollutant emissions cap (total emissions cap) in accordance with the procedures set forth in a permit issued pursuant to 40 CFR 52.2454. If the site chooses the option of reducing the total emissions cap in accordance with the procedures set forth in such permit, the requirements of such permit shall apply in lieu of the otherwise applicable requirements of this subpart for such storage vessel.
- (2) For any storage vessel at the site not subject to the requirements of 40 CFR 60.112b (a) or (b), the requirements of 40 CFR 60.116b (b) and (c) and the General Provisions (subpart A of this part) shall not apply.

[52 FR 11429, Apr. 8, 1987, as amended at 62 FR 52641, Oct. 8, 1997]

## § 60.113b Testing and procedures.

The owner or operator of each storage vessel as specified in §60.112b(a) shall meet the requirements of paragraph (a), (b), or (c) of this section. The applicable paragraph for a particular storage vessel depends on the control equipment installed to meet the requirements of §60.112b.

- (a) After installing the control equipment required to meet §60.112b(a)(1) (permanently affixed roof and internal floating roof), each owner or operator shall:
- (1) Visually inspect the internal floating roof, the primary seal, and the secondary seal (if one is in service), prior to filling the storage vessel with VOL. If there are holes, tears, or other openings in the primary seal, the secondary seal, or the seal fabric or defects in the

internal floating roof, or both, the owner or operator shall repair the items before filling the storage vessel.

- (2) For Vessels equipped with a liquid-mounted or mechanical shoe primary seal, visually inspect the internal floating roof and the primary seal or the secondary seal (if one is in service) through manholes and roof hatches on the fixed roof at least once every 12 months after initial fill. If the internal floating roof is not resting on the surface of the VOL inside the storage vessel, or there is liquid accumulated on the roof, or the seal is detached, or there are holes or tears in the seal fabric, the owner or operator shall repair the items or empty and remove the storage vessel from service within 45 days. If a failure that is detected during inspections required in this paragraph cannot be repaired within 45 days and if the vessel cannot be emptied within 45 days, a 30-day extension may be requested from the Administrator in the inspection report required in §60.115b(a)(3). Such a request for an extension must document that alternate storage capacity is unavailable and specify a schedule of actions the company will take that will assure that the control equipment will be repaired or the vessel will be emptied as soon as possible.
- (3) For vessels equipped with a double-seal system as specified in §60.112b(a)(1)(ii)(B):
- (i) Visually inspect the vessel as specified in paragraph (a)(4) of this section at least every 5 years; or
- (ii) Visually inspect the vessel as specified in paragraph (a)(2) of this section.
- (4) Visually inspect the internal floating roof, the primary seal, the secondary seal (if one is in service), gaskets, slotted membranes and sleeve seals (if any) each time the storage vessel is emptied and degassed. If the internal floating roof has defects, the primary seal has holes, tears, or other openings in the seal or the seal fabric, or the secondary seal has holes, tears, or other openings in the seal or the seal fabric, or the gaskets no longer close off the liquid surfaces from the atmosphere, or the slotted membrane has more than 10 percent open area, the owner or operator shall repair the items as necessary so that none of the conditions specified in this paragraph exist before refilling the storage vessel with VOL. In no event shall inspections conducted in accordance with this provision occur at intervals greater than 10 years in the case of vessels conducting the annual visual inspection as specified in paragraphs (a)(2) and (a)(3)(ii) of this section and at intervals no greater than 5 years in the case of vessels specified in paragraph (a)(3)(i) of this section.
- (5) Notify the Administrator in writing at least 30 days prior to the filling or refilling of each storage vessel for which an inspection is required by paragraphs (a)(1) and (a)(4) of this section to afford the Administrator the opportunity to have an observer present. If the inspection required by paragraph (a)(4) of this section is not planned and the owner or operator could not have known about the inspection 30 days in advance or refilling the tank, the owner or operator shall notify the Administrator at least 7 days prior to the refilling of the storage vessel. Notification shall be made by telephone immediately followed by written documentation demonstrating why the inspection was unplanned.

Alternatively, this notification including the written documentation may be made in writing and sent by express mail so that it is received by the Administrator at least 7 days prior to the refilling.

- (b) After installing the control equipment required to meet §60.112b(a)(2) (external floating roof), the owner or operator shall:
- (1) Determine the gap areas and maximum gap widths, between the primary seal and the wall of the storage vessel and between the secondary seal and the wall of the storage vessel according to the following frequency.
- (i) Measurements of gaps between the tank wall and the primary seal (seal gaps) shall be performed during the hydrostatic testing of the vessel or within 60 days of the initial fill with VOL and at least once every 5 years thereafter.
- (ii) Measurements of gaps between the tank wall and the secondary seal shall be performed within 60 days of the initial fill with VOL and at least once per year thereafter.
- (iii) If any source ceases to store VOL for a period of 1 year or more, subsequent introduction of VOL into the vessel shall be considered an initial fill for the purposes of paragraphs (b)(1)(i) and (b)(1)(ii) of this section.
- (2) Determine gap widths and areas in the primary and secondary seals individually by the following procedures:
- (i) Measure seal gaps, if any, at one or more floating roof levels when the roof is floating off the roof leg supports.
- (ii) Measure seal gaps around the entire circumference of the tank in each place where a 0.32-cm diameter uniform probe passes freely (without forcing or binding against seal) between the seal and the wall of the storage vessel and measure the circumferential distance of each such location.
- (iii) The total surface area of each gap described in paragraph (b)(2)(ii) of this section shall be determined by using probes of various widths to measure accurately the actual distance from the tank wall to the seal and multiplying each such width by its respective circumferential distance.
- (3) Add the gap surface area of each gap location for the primary seal and the secondary seal individually and divide the sum for each seal by the nominal diameter of the tank and compare each ratio to the respective standards in paragraph (b)(4) of this section.
- (4) Make necessary repairs or empty the storage vessel within 45 days of identification in any inspection for seals not meeting the requirements listed in (b)(4) (i) and (ii) of this section:

- (i) The accumulated area of gaps between the tank wall and the mechanical shoe or liquid-mounted primary seal shall not exceed 212 Cm<sup>2</sup> per meter of tank diameter, and the width of any portion of any gap shall not exceed 3.81 cm.
- (A) One end of the mechanical shoe is to extend into the stored liquid, and the other end is to extend a minimum vertical distance of 61 cm above the stored liquid surface.
- (B) There are to be no holes, tears, or other openings in the shoe, seal fabric, or seal envelope.
- (ii) The secondary seal is to meet the following requirements:
- (A) The secondary seal is to be installed above the primary seal so that it completely covers the space between the roof edge and the tank wall except as provided in paragraph (b)(2)(iii) of this section.
- (B) The accumulated area of gaps between the tank wall and the secondary seal shall not exceed 21.2 cm<sup>2</sup> per meter of tank diameter, and the width of any portion of any gap shall not exceed 1.27 cm.
- (C) There are to be no holes, tears, or other openings in the seal or seal fabric.
- (iii) If a failure that is detected during inspections required in paragraph (b)(1) of §60.113b(b) cannot be repaired within 45 days and if the vessel cannot be emptied within 45 days, a 30-day extension may be requested from the Administrator in the inspection report required in §60.115b(b)(4). Such extension request must include a demonstration of unavailability of alternate storage capacity and a specification of a schedule that will assure that the control equipment will be repaired or the vessel will be emptied as soon as possible.
- (5) Notify the Administrator 30 days in advance of any gap measurements required by paragraph (b)(1) of this section to afford the Administrator the opportunity to have an observer present.
- (6) Visually inspect the external floating roof, the primary seal, secondary seal, and fittings each time the vessel is emptied and degassed.
- (i) If the external floating roof has defects, the primary seal has holes, tears, or other openings in the seal or the seal fabric, or the secondary seal has holes, tears, or other openings in the seal or the seal fabric, the owner or operator shall repair the items as necessary so that none of the conditions specified in this paragraph exist before filling or refilling the storage vessel with VOL.
- (ii) For all the inspections required by paragraph (b)(6) of this section, the owner or operator shall notify the Administrator in writing at least 30 days prior to the filling or refilling of each storage vessel to afford the Administrator the opportunity to inspect the

storage vessel prior to refilling. If the inspection required by paragraph (b)(6) of this section is not planned and the owner or operator could not have known about the inspection 30 days in advance of refilling the tank, the owner or operator shall notify the Administrator at least 7 days prior to the refilling of the storage vessel. Notification shall be made by telephone immediately followed by written documentation demonstrating why the inspection was unplanned. Alternatively, this notification including the written documentation may be made in writing and sent by express mail so that it is received by the Administrator at least 7 days prior to the refilling.

- (c) The owner or operator of each source that is equipped with a closed vent system and control device as required in §60.112b (a)(3) or (b)(2) (other than a flare) is exempt from §60.8 of the General Provisions and shall meet the following requirements.
- (1) Submit for approval by the Administrator as an attachment to the notification required by §60.7(a)(1) or, if the facility is exempt from §60.7(a)(1), as an attachment to the notification required by §60.7(a)(2), an operating plan containing the information listed below.
- (i) Documentation demonstrating that the control device will achieve the required control efficiency during maximum loading conditions. This documentation is to include a description of the gas stream which enters the control device, including flow and VOC content under varying liquid level conditions (dynamic and static) and manufacturer's design specifications for the control device. If the control device or the closed vent capture system receives vapors, gases, or liquids other than fuels from sources that are not designated sources under this subpart, the efficiency demonstration is to include consideration of all vapors, gases, and liquids received by the closed vent capture system and control device. If an enclosed combustion device with a minimum residence time of 0.75 seconds and a minimum temperature of 816 °C is used to meet the 95 percent requirement, documentation that those conditions will exist is sufficient to meet the requirements of this paragraph.
- (ii) A description of the parameter or parameters to be monitored to ensure that the control device will be operated in conformance with its design and an explanation of the criteria used for selection of that parameter (or parameters).
- (2) Operate the closed vent system and control device and monitor the parameters of the closed vent system and control device in accordance with the operating plan submitted to the Administrator in accordance with paragraph (c)(1) of this section, unless the plan was modified by the Administrator during the review process. In this case, the modified plan applies.
- (d) The owner or operator of each source that is equipped with a closed vent system and a flare to meet the requirements in §60.112b (a)(3) or (b)(2) shall meet the requirements as specified in the general control device requirements, §60.18 (e) and (f).

[52 FR 11429, Apr. 8, 1987, as amended at 54 FR 32973, Aug. 11, 1989]

#### § 60.114b Alternative means of emission limitation.

- (a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in emissions at least equivalent to the reduction in emissions achieved by any requirement in §60.112b, the Administrator will publish in the Federal Registera notice permitting the use of the alternative means for purposes of compliance with that requirement.
- (b) Any notice under paragraph (a) of this section will be published only after notice and an opportunity for a hearing.
- (c) Any person seeking permission under this section shall submit to the Administrator a written application including:
- (1) An actual emissions test that uses a full-sized or scale-model storage vessel that accurately collects and measures all VOC emissions from a given control device and that accurately simulates wind and accounts for other emission variables such as temperature and barometric pressure.
- (2) An engineering evaluation that the Administrator determines is an accurate method of determining equivalence.
- (d) The Administrator may condition the permission on requirements that may be necessary to ensure operation and maintenance to achieve the same emissions reduction as specified in §60.112b.

#### § 60.115b Reporting and recordkeeping requirements.

The owner or operator of each storage vessel as specified in §60.112b(a) shall keep records and furnish reports as required by paragraphs (a), (b), or (c) of this section depending upon the control equipment installed to meet the requirements of §60.112b. The owner or operator shall keep copies of all reports and records required by this section, except for the record required by (c)(1), for at least 2 years. The record required by (c)(1) will be kept for the life of the control equipment.

- (a) After installing control equipment in accordance with §60.112b(a)(1) (fixed roof and internal floating roof), the owner or operator shall meet the following requirements.
- (1) Furnish the Administrator with a report that describes the control equipment and certifies that the control equipment meets the specifications of §60.112b(a)(1) and §60.113b(a)(1). This report shall be an attachment to the notification required by §60.7(a)(3).
- (2) Keep a record of each inspection performed as required by §60.113b (a)(1), (a)(2), (a)(3), and (a)(4). Each record shall identify the storage vessel on which the inspection was performed and shall contain the date the vessel was inspected and the observed

condition of each component of the control equipment (seals, internal floating roof, and fittings).

- (3) If any of the conditions described in §60.113b(a)(2) are detected during the annual visual inspection required by §60.113b(a)(2), a report shall be furnished to the Administrator within 30 days of the inspection. Each report shall identify the storage vessel, the nature of the defects, and the date the storage vessel was emptied or the nature of and date the repair was made.
- (4) After each inspection required by §60.113b(a)(3) that finds holes or tears in the seal or seal fabric, or defects in the internal floating roof, or other control equipment defects listed in §60.113b(a)(3)(ii), a report shall be furnished to the Administrator within 30 days of the inspection. The report shall identify the storage vessel and the reason it did not meet the specifications of §61.112b(a)(1) or §60.113b(a)(3) and list each repair made.
- (b) After installing control equipment in accordance with §61.112b(a)(2) (external floating roof), the owner or operator shall meet the following requirements.
- (1) Furnish the Administrator with a report that describes the control equipment and certifies that the control equipment meets the specifications of §60.112b(a)(2) and §60.113b(b)(2), (b)(3), and (b)(4). This report shall be an attachment to the notification required by §60.7(a)(3).
- (2) Within 60 days of performing the seal gap measurements required by §60.113b(b)(1), furnish the Administrator with a report that contains:
- (i) The date of measurement.
- (ii) The raw data obtained in the measurement.
- (iii) The calculations described in §60.113b (b)(2) and (b)(3).
- (3) Keep a record of each gap measurement performed as required by §60.113b(b). Each record shall identify the storage vessel in which the measurement was performed and shall contain:
- (i) The date of measurement.
- (ii) The raw data obtained in the measurement.
- (iii) The calculations described in §60.113b (b)(2) and (b)(3).
- (4) After each seal gap measurement that detects gaps exceeding the limitations specified by §60.113b(b)(4), submit a report to the Administrator within 30 days of the inspection. The report will identify the vessel and contain the information specified in paragraph

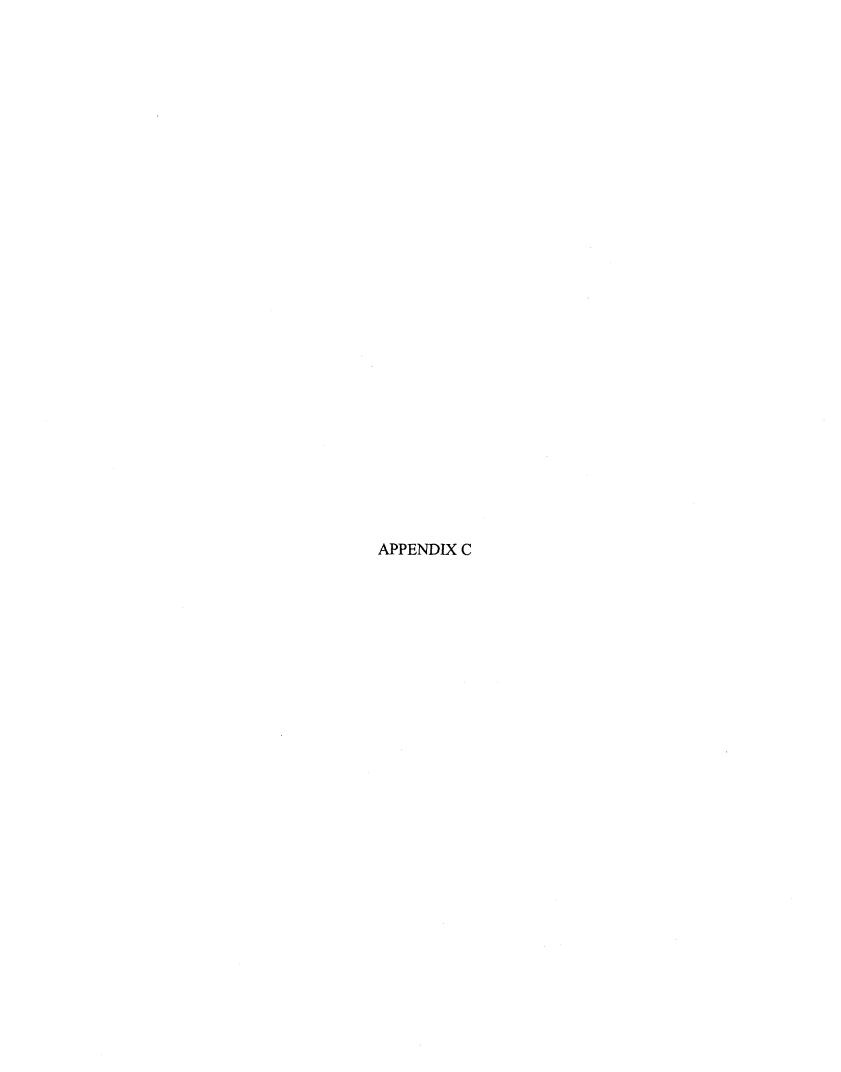
- (b)(2) of this section and the date the vessel was emptied or the repairs made and date of repair.
- (c) After installing control equipment in accordance with §60.112b (a)(3) or (b)(1) (closed vent system and control device other than a flare), the owner or operator shall keep the following records.
- (1) A copy of the operating plan.
- (2) A record of the measured values of the parameters monitored in accordance with §60.113b(c)(2).
- (d) After installing a closed vent system and flare to comply with §60.112b, the owner or operator shall meet the following requirements.
- (1) A report containing the measurements required by §60.18(f) (1), (2), (3), (4), (5), and (6) shall be furnished to the Administrator as required by §60.8 of the General Provisions. This report shall be submitted within 6 months of the initial start-up date.
- (2) Records shall be kept of all periods of operation during which the flare pilot flame is absent.
- (3) Semiannual reports of all periods recorded under §60.115b(d)(2) in which the pilot flame was absent shall be furnished to the Administrator.

#### § 60.116b Monitoring of operations.

- (a) The owner or operator shall keep copies of all records required by this section, except for the record required by paragraph (b) of this section, for at least 2 years. The record required by paragraph (b) of this section will be kept for the life of the source.
- (b) The owner or operator of each storage vessel as specified in §60.110b(a) shall keep readily accessible records showing the dimension of the storage vessel and an analysis showing the capacity of the storage vessel.
- (c) Except as provided in paragraphs (f) and (g) of this section, the owner or operator of each storage vessel either with a design capacity greater than or equal to 151 m<sup>3</sup> storing a liquid with a maximum true vapor pressure greater than or equal to 3.5 kPa or with a design capacity greater than or equal to 75 m<sup>3</sup> but less than 151 m<sup>3</sup> storing a liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of the VOL stored, the period of storage, and the maximum true vapor pressure of that VOL during the respective storage period.
- (d) Except as provided in paragraph (g) of this section, the owner or operator of each storage vessel either with a design capacity greater than or equal to 151 m<sup>3</sup> storing a liquid with a maximum true vapor pressure that is normally less than 5.2 kPa or with a

design capacity greater than or equal to 75 m<sup>3</sup> but less than 151 m<sup>3</sup> storing a liquid with a maximum true vapor pressure that is normally less than 27.6 kPa shall notify the Administrator within 30 days when the maximum true vapor pressure of the liquid exceeds the respective maximum true vapor vapor pressure values for each volume range.

- (e) Available data on the storage temperature may be used to determine the maximum true vapor pressure as determined below.
- (1) For vessels operated above or below ambient temperatures, the maximum true vapor pressure is calculated based upon the highest expected calendar-month average of the storage temperature. For vessels operated at ambient temperatures, the maximum true vapor pressure is calculated based upon the maximum local monthly average ambient temperature as reported by the National Weather Service.
- (2) For crude oil or refined petroleum products the vapor pressure may be obtained by the following:
- (i) Available data on the Reid vapor pressure and the maximum expected storage temperature based on the highest expected calendar-month average temperature of the stored product may be used to determine the maximum true vapor pressure from nomographs contained in API Bulletin 2517 (incorporated by reference—see §60.17), unless the Administrator specifically requests that the liquid be sampled, the actual storage temperature determined, and the Reid vapor pressure determined from the sample(s).
- (ii) The true vapor pressure of each type of crude oil with a Reid vapor pressure less than 13.8 kPa or with physical properties that preclude determination by the recommended method is to be determined from available data and recorded if the estimated maximum true vapor pressure is greater than 3.5 kPa.
- (3) For other liquids, the vapor pressure:
- (i) May be obtained from standard reference texts, or
- (ii) Determined by ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17); or
- (iii) Measured by an appropriate method approved by the Administrator; or
- (iv) Calculated by an appropriate method approved by the Administrator.
- (f) The owner or operator of each vessel storing a waste mixture of indeterminate or variable composition shall be subject to the following requirements.


- (1) Prior to the initial filling of the vessel, the highest maximum true vapor pressure for the range of anticipated liquid compositions to be stored will be determined using the methods described in paragraph (e) of this section.
- (2) For vessels in which the vapor pressure of the anticipated liquid composition is above the cutoff for monitoring but below the cutoff for controls as defined in §60.112b(a), an initial physical test of the vapor pressure is required; and a physical test at least once every 6 months thereafter is required as determined by the following methods:
- (i) ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17); or
- (ii) ASTM D323-82 or 94 (incorporated by reference—see §60.17); or
- (iii) As measured by an appropriate method as approved by the Administrator.
- (g) The owner or operator of each vessel equipped with a closed vent system and control device meeting the specification of §60.112b or with emissions reductions equipment as specified in 40 CFR 65.42(b)(4), (b)(5), (b)(6), or (c) is exempt from the requirements of paragraphs (c) and (d) of this section.

[52 FR 11429, Apr. 8, 1987, as amended at 65 FR 61756, Oct. 17, 2000; 65 FR 78276, Dec. 14, 2000; 68 FR 59333, Oct. 15, 2003]

## § 60.117b Delegation of authority.

- (a) In delegating implementation and enforcement authority to a State under section 111(c) of the Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State.
- (b) Authorities which will not be delegated to States: §§60.111b(f)(4), 60.114b, 60.116b(e)(3)(iii), 60.116b(e)(3)(iv), and 60.116b(f)(2)(iii).

[52 FR 11429, Apr. 8, 1987, as amended at 52 FR 22780, June 16, 1987]



# 40 CFR Part 60, Subpart VVa—Standards of Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which Construction, Reconstruction, or Modification Commenced After November 7, 2006

Source: 72 FR 64883, Nov. 16, 2007, unless otherwise noted.

## § 60.480a Applicability and designation of affected facility.

- (a)(1) The provisions of this subpart apply to affected facilities in the synthetic organic chemicals manufacturing industry.
- (2) The group of all equipment (defined in §60.481a) within a process unit is an affected facility.
- (b) Any affected facility under paragraph (a) of this section that commences construction, reconstruction, or modification after November 7, 2006, shall be subject to the requirements of this subpart.
- (c) Addition or replacement of equipment for the purpose of process improvement which is accomplished without a capital expenditure shall not by itself be considered a modification under this subpart.
- (d)(1) If an owner or operator applies for one or more of the exemptions in this paragraph, then the owner or operator shall maintain records as required in §60.486a(i).
- (2) Any affected facility that has the design capacity to produce less than 1,000 Mg/yr (1,102 ton/yr) of a chemical listed in §60.489 is exempt from §§60.482–1a through 60.482–11a.
- (3) If an affected facility produces heavy liquid chemicals only from heavy liquid feed or raw materials, then it is exempt from §§60.482–11a through 60.482–11a.
- (4) Any affected facility that produces beverage alcohol is exempt from §§60.482–1a through 60.482–11a.
- (5) Any affected facility that has no equipment in volatile organic compounds (VOC) service is exempt from §§60.482–1a through 60.482–11a.
- (e) Alternative means of compliance —(1) Option to comply with part 65. (i) Owners or operators may choose to comply with the provisions of 40 CFR part 65, subpart F, to satisfy the requirements of §§60.482—1a through 60.487a for an affected facility. When choosing to comply with 40 CFR part 65, subpart F, the requirements of §§60.485a(d), (e), and (f), and 60.486a(i) and (j) still apply. Other provisions applying to an owner or operator who chooses to comply with 40 CFR part 65 are provided in 40 CFR 65.1.
- (ii) Part 60, subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart F must also comply with §§60.1, 60.2, 60.5, 60.6, 60.7(a)(1) and (4), 60.14, 60.15, and 60.16 for that equipment. All sections and paragraphs of subpart A of this part that are not mentioned in

this paragraph (e)(1)(ii) do not apply to owners or operators of equipment subject to this subpart complying with 40 CFR part 65, subpart F, except that provisions required to be met prior to implementing 40 CFR part 65 still apply. Owners and operators who choose to comply with 40 CFR part 65, subpart F, must comply with 40 CFR part 65, subpart A.

- (2) Part 63, subpart H. (i) Owners or operators may choose to comply with the provisions of 40 CFR part 63, subpart H, to satisfy the requirements of §§60.482-1a through 60.487a for an affected facility. When choosing to comply with 40 CFR part 63, subpart H, the requirements of §60.485a(d), (e), and (f), and §60.486a(i) and (j) still apply.
- (ii) Part 60, subpart A. Owners or operators who choose to comply with 40 CFR part 63, subpart H must also comply with §§60.1, 60.2, 60.5, 60.6, 60.7(a)(1) and (4), 60.14, 60.15, and 60.16 for that equipment. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph (e)(2)(ii) do not apply to owners or operators of equipment subject to this subpart complying with 40 CFR part 63, subpart H, except that provisions required to be met prior to implementing 40 CFR part 63 still apply. Owners and operators who choose to comply with 40 CFR part 63, subpart H, must comply with 40 CFR part 63, subpart A.
- (f) Stay of standards. (1) Owners or operators that start a new, reconstructed, or modified affected source prior to November 16, 2007 are not required to comply with the requirements in this paragraph until EPA takes final action to require compliance and publishes a document in the Federal Register.
- (i) The definition of "capital expenditure" in §60.481a of this subpart. While the definition of "capital expenditure" is stayed, owners or operators should use the definition found in §60.481 of subpart VV of this part.
- (ii) [Reserved]
- (2) Owners or operators are not required to comply with the requirements in this paragraph until EPA takes final action to require compliance and publishes a document in the Federal Register.
- (i) The definition of "process unit" in §60.481a of this subpart. While the definition of "process unit" is stayed, owners or operators should use the following definition:

Process unit means components assembled to produce, as intermediate or final products, one or more of the chemicals listed in §60.489 of this part. A process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the product.

- (ii) The method of allocation of shared storage vessels in §60.482–1a(g) of this subpart.
- (iii) The standards for connectors in gas/vapor service and in light liquid service in §60.482–11a of this subpart.

[72 FR 64883, Nov. 16, 2007, as amended at 73 FR 31375, June 2, 2008]

#### § 60.481a Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act (CAA) or in subpart A of part 60, and the following terms shall have the specific meanings given them.

Capital expenditure means, in addition to the definition in 40 CFR 60.2, an expenditure for a physical or operational change to an existing facility that:

- (a) Exceeds P, the product of the facility's replacement cost, R, and an adjusted annual asset guideline repair allowance, A, as reflected by the following equation:  $P = R \times A$ , where:
- (1) The adjusted annual asset guideline repair allowance, A, is the product of the percent of the replacement cost, Y, and the applicable basic annual asset guideline repair allowance, B, divided by 100 as reflected by the following equation:

$$A = Y \times (B \div 100);$$

- (2) The percent Y is determined from the following equation:  $Y = 1.0 0.575 \log X$ , where X is 2006 minus the year of construction; and
- (3) The applicable basic annual asset guideline repair allowance, B, is selected from the following table consistent with the applicable subpart:

Table for Determining Applicable Value for B

| Subpart applicable to facility | Value of B to be used in equation |  |  |
|--------------------------------|-----------------------------------|--|--|
| VVa                            | 12.5                              |  |  |
| GGGa                           | 7.0                               |  |  |

Closed-loop system means an enclosed system that returns process fluid to the process.

Closed-purge system means a system or combination of systems and portable containers to capture purged liquids. Containers for purged liquids must be covered or closed when not being filled or emptied.

Closed vent system means a system that is not open to the atmosphere and that is composed of hard-piping, ductwork, connections, and, if necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device or back to a process.

Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a piece of process equipment or that close an opening in a pipe that could be connected to another pipe. Joined fittings welded completely around the circumference of the interface are not considered connectors for the purpose of this regulation.

Control device means an enclosed combustion device, vapor recovery system, or flare.

Distance piece means an open or enclosed casing through which the piston rod travels, separating the compressor cylinder from the crankcase.

Double block and bleed system means two block valves connected in series with a bleed valve or line that can vent the line between the two block valves.

Duct work means a conveyance system such as those commonly used for heating and ventilation systems. It is often made of sheet metal and often has sections connected by screws or crimping. Hard-piping is not ductwork.

Equipment means each pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, and flange or other connector in VOC service and any devices or systems required by this subpart.

First attempt at repair means to take action for the purpose of stopping or reducing leakage of organic material to the atmosphere using best practices.

Fuel gas means gases that are combusted to derive useful work or heat.

Fuel gas system means the offsite and onsite piping and flow and pressure control system that gathers gaseous stream(s) generated by onsite operations, may blend them with other sources of gas, and transports the gaseous stream for use as fuel gas in combustion devices or in-process combustion equipment, such as furnaces and gas turbines, either singly or in combination.

Hard-piping means pipe or tubing that is manufactured and properly installed using good engineering judgment and standards such as ASME B31.3, Process Piping (available from the American Society of Mechanical Engineers, P.O. Box 2300, Fairfield, NJ 07007–2300).

In gas/vapor service means that the piece of equipment contains process fluid that is in the gaseous state at operating conditions.

In heavy liquid service means that the piece of equipment is not in gas/vapor service or in light liquid service.

In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in §60.485a(e).

*In-situ sampling systems* means nonextractive samplers or in-line samplers.

In vacuum service means that equipment is operating at an internal pressure which is at least 5 kilopascals (kPa) (0.7 psia) below ambient pressure.

In VOC service means that the piece of equipment contains or contacts a process fluid that is at least 10 percent VOC by weight. (The provisions of §60.485a(d) specify how to determine that a piece of equipment is not in VOC service.)

Initial calibration value means the concentration measured during the initial calibration at the beginning of each day required in §60.485a(b)(1), or the most recent calibration if the instrument is recalibrated during the day (i.e., the calibration is adjusted) after a calibration drift assessment.

Liquids dripping means any visible leakage from the seal including spraying, misting, clouding, and ice formation.

Open-ended valve or line means any valve, except safety relief valves, having one side of the valve seat in contact with process fluid and one side open to the atmosphere, either directly or through open piping.

Pressure release means the emission of materials resulting from system pressure being greater than set pressure of the pressure relief device.

Process improvement means routine changes made for safety and occupational health requirements, for energy savings, for better utility, for ease of maintenance and operation, for correction of design deficiencies, for bottleneck removal, for changing product requirements, or for environmental control.

Process unit means the components assembled and connected by pipes or ducts to process raw materials and to produce, as intermediate or final products, one or more of the chemicals listed in §60.489. A process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the product. For the purpose of this subpart, process unit includes any feed, intermediate and final product storage vessels (except as specified in §60.482–1a(g)), product transfer racks, and connected ducts and piping. A process unit includes all equipment as defined in this subpart.

Process unit shutdown means a work practice or operational procedure that stops production from a process unit or part of a process unit during which it is technically feasible to clear process material from a process unit or part of a process unit consistent with safety constraints and during which repairs can be accomplished. The following are not considered process unit shutdowns:

- (1) An unscheduled work practice or operational procedure that stops production from a process unit or part of a process unit for less than 24 hours.
- (2) An unscheduled work practice or operational procedure that would stop production from a process unit or part of a process unit for a shorter period of time than would be required to clear the process unit or part of the process unit of materials and start up the unit, and would result in greater emissions than delay of repair of leaking components until the next scheduled process unit shutdown.

(3) The use of spare equipment and technically feasible bypassing of equipment without stopping production.

Quarter means a 3-month period; the first quarter concludes on the last day of the last full month during the 180 days following initial startup.

Repaired means that equipment is adjusted, or otherwise altered, in order to eliminate a leak as defined in the applicable sections of this subpart and, except for leaks identified in accordance with §§60.482–2a(b)(2)(ii) and (d)(6)(ii) and (d)(6)(iii), 60.482–3a(f), and 60.482–10a(f)(1)(ii), is re-monitored as specified in §60.485a(b) to verify that emissions from the equipment are below the applicable leak definition.

Replacement cost means the capital needed to purchase all the depreciable components in a facility.

Sampling connection system means an assembly of equipment within a process unit used during periods of representative operation to take samples of the process fluid. Equipment used to take nonroutine grab samples is not considered a sampling connection system.

Sensor means a device that measures a physical quantity or the change in a physical quantity such as temperature, pressure, flow rate, pH, or liquid level.

Storage vessel means a tank or other vessel that is used to store organic liquids that are used in the process as raw material feedstocks, produced as intermediates or final products, or generated as wastes. Storage vessel does not include vessels permanently attached to motor vehicles, such as trucks, railcars, barges or ships.

Synthetic organic chemicals manufacturing industry means the industry that produces, as intermediates or final products, one or more of the chemicals listed in §60.489.

Transfer rack means the collection of loading arms and loading hoses, at a single loading rack, that are used to fill tank trucks and/or railcars with organic liquids.

Volatile organic compounds or VOC means, for the purposes of this subpart, any reactive organic compounds as defined in §60.2 Definitions.

Effective Date Note: At 73 FR 31376, June 2, 2008, in §60.481a, the definitions of "capital expenditure" and "process unit" were stayed until further notice.

## § 60.482-1a Standards: General.

(a) Each owner or operator subject to the provisions of this subpart shall demonstrate compliance with the requirements of §§60.482–1a through 60.482–10a or §60.480a(e) for all equipment within 180 days of initial startup.

- (b) Compliance with §§60.482-1a to 60.482-10a will be determined by review of records and reports, review of performance test results, and inspection using the methods and procedures specified in §60.485a.
- (c)(1) An owner or operator may request a determination of equivalence of a means of emission limitation to the requirements of §§60.482-2a, 60.482-3a, 60.482-5a, 60.482-6a, 60.482-7a, 60.482-8a, and 60.482-10a as provided in §60.484a.
- (2) If the Administrator makes a determination that a means of emission limitation is at least equivalent to the requirements of §§60.482–2a, 60.482–3a, 60.482–5a, 60.482–6a, 60.482–7a, 60.482–8a, or 60.482–10a, an owner or operator shall comply with the requirements of that determination.
- (d) Equipment that is in vacuum service is excluded from the requirements of §§60.482–2a through 60.482–10a if it is identified as required in §60.486a(e)(5).
- (e) Equipment that an owner or operator designates as being in VOC service less than 300 hr/yr is excluded from the requirements of §§60.482–2a through 60.482–11a if it is identified as required in §60.486a(e)(6) and it meets any of the conditions specified in paragraphs (e)(1) through (3) of this section.
- (1) The equipment is in VOC service only during startup and shutdown, excluding startup and shutdown between batches of the same campaign for a batch process.
- (2) The equipment is in VOC service only during process malfunctions or other emergencies.
- (3) The equipment is backup equipment that is in VOC service only when the primary equipment is out of service.
- (f)(1) If a dedicated batch process unit operates less than 365 days during a year, an owner or operator may monitor to detect leaks from pumps, valves, and open-ended valves or lines at the frequency specified in the following table instead of monitoring as specified in §§60.482–2a, 60.482–7a, and 60.483.2a:

| Operating time (percent of hours during | Equivalent monitoring frequency time in use |                |               |  |
|-----------------------------------------|---------------------------------------------|----------------|---------------|--|
| year)                                   | Monthly                                     | Quarterly      | Semiannually  |  |
| 0 to <25                                | Quarterly                                   | Annually       | Annually.     |  |
| 25 to <50                               | Quarterly                                   | Semiannually   | Annually.     |  |
| 50 to <75                               | Bimonthly                                   | Three quarters | Semiannually. |  |
| 75 to 100                               | Monthly                                     | Quarterly      | Semiannually. |  |

- (2) Pumps and valves that are shared among two or more batch process units that are subject to this subpart may be monitored at the frequencies specified in paragraph (f)(1) of this section, provided the operating time of all such process units is considered.
- (3) The monitoring frequencies specified in paragraph (f)(1) of this section are not requirements for monitoring at specific intervals and can be adjusted to accommodate process operations. An owner or operator may monitor at any time during the specified monitoring period (e.g., month, quarter, year), provided the monitoring is conducted at a reasonable interval after completion of the last monitoring campaign. Reasonable intervals are defined in paragraphs (f)(3)(i) through (iv) of this section.
- (i) When monitoring is conducted quarterly, monitoring events must be separated by at least 30 calendar days.
- (ii) When monitoring is conducted semiannually ( *i.e.*, once every 2 quarters), monitoring events must be separated by at least 60 calendar days.
- (iii) When monitoring is conducted in 3 quarters per year, monitoring events must be separated by at least 90 calendar days.
- (iv) When monitoring is conducted annually, monitoring events must be separated by at least 120 calendar days.
- (g) If the storage vessel is shared with multiple process units, the process unit with the greatest annual amount of stored materials (predominant use) is the process unit the storage vessel is assigned to. If the storage vessel is shared equally among process units, and one of the process units has equipment subject to this subpart, the storage vessel is assigned to that process unit. If the storage vessel is shared equally among process units, none of which have equipment subject to this subpart of this part, the storage vessel is assigned to any process unit subject to subpart VV of this part. If the predominant use of the storage vessel varies from year to year, then the owner or operator must estimate the predominant use initially and reassess every 3 years. The owner or operator must keep records of the information and supporting calculations that show how predominant use is determined. All equipment on the storage vessel must be monitored when in VOC service.

Effective Date Note: At 73 FR 31376, June 2, 2008, in §60.482–1a, paragraph (g) was stayed until further notice.

## § 60.482-2a Standards: Pumps in light liquid service.

(a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the methods specified in §60.485a(b), except as provided in §60.482-1a(c) and (f) and paragraphs (d), (e), and (f) of this section. A pump that begins operation in light liquid service after the initial startup date for the process unit must be monitored for the first time within 30 days after the end of its startup period, except for a pump that replaces a leaking pump and except as provided in §60.482-1a(c) and paragraphs (d), (e), and (f) of this section.

- (2) Each pump in light liquid service shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal, except as provided in §60.482–1a(f).
- (b)(1) The instrument reading that defines a leak is specified in paragraphs (b)(1)(i) and (ii) of this section.
- (i) 5,000 parts per million (ppm) or greater for pumps handling polymerizing monomers;
- (ii) 2,000 ppm or greater for all other pumps.
- (2) If there are indications of liquids dripping from the pump seal, the owner or operator shall follow the procedure specified in either paragraph (b)(2)(i) or (ii) of this section. This requirement does not apply to a pump that was monitored after a previous weekly inspection and the instrument reading was less than the concentration specified in paragraph (b)(1)(i) or (ii) of this section, whichever is applicable.
- (i) Monitor the pump within 5 days as specified in §60.485a(b). A leak is detected if the instrument reading measured during monitoring indicates a leak as specified in paragraph (b)(1)(i) or (ii) of this section, whichever is applicable. The leak shall be repaired using the procedures in paragraph (c) of this section.
- (ii) Designate the visual indications of liquids dripping as a leak, and repair the leak using either the procedures in paragraph (c) of this section or by eliminating the visual indications of liquids dripping.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482–9a.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected. First attempts at repair include, but are not limited to, the practices described in paragraphs (c)(2)(i) and (ii) of this section, where practicable.
- (i) Tightening the packing gland nuts;
- (ii) Ensuring that the seal flush is operating at design pressure and temperature.
- (d) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraph (a) of this section, provided the requirements specified in paragraphs (d)(1) through (6) of this section are met.
- (1) Each dual mechanical seal system is:
- (i) Operated with the barrier fluid at a pressure that is at all times greater than the pump stuffing box pressure; or

- (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of §60.482–10a; or
- (iii) Equipped with a system that purges the barrier fluid into a process stream with zero VOC emissions to the atmosphere.
- (2) The barrier fluid system is in heavy liquid service or is not in VOC service.
- (3) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
- (4)(i) Each pump is checked by visual inspection, each calendar week, for indications of liquids dripping from the pump seals.
- (ii) If there are indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator shall follow the procedure specified in either paragraph (d)(4)(ii)(A) or (B) of this section prior to the next required inspection.
- (A) Monitor the pump within 5 days as specified in §60.485a(b) to determine if there is a leak of VOC in the barrier fluid. If an instrument reading of 2,000 ppm or greater is measured, a leak is detected.
- (B) Designate the visual indications of liquids dripping as a leak.
- (5)(i) Each sensor as described in paragraph (d)(3) is checked daily or is equipped with an audible alarm.
- (ii) The owner or operator determines, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
- (iii) If the sensor indicates failure of the seal system, the barrier fluid system, or both, based on the criterion established in paragraph (d)(5)(ii) of this section, a leak is detected.
- (6)(i) When a leak is detected pursuant to paragraph (d)(4)(ii)(A) of this section, it shall be repaired as specified in paragraph (c) of this section.
- (ii) A leak detected pursuant to paragraph (d)(5)(iii) of this section shall be repaired within 15 days of detection by eliminating the conditions that activated the sensor.
- (iii) A designated leak pursuant to paragraph (d)(4)(ii)(B) of this section shall be repaired within 15 days of detection by eliminating visual indications of liquids dripping.
- (e) Any pump that is designated, as described in §60.486a(e)(1) and (2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraphs (a), (c), and (d) of this section if the pump:

- (1) Has no externally actuated shaft penetrating the pump housing;
- (2) Is demonstrated to be operating with no detectable emissions as indicated by an instrument reading of less than 500 ppm above background as measured by the methods specified in §60.485a(c); and
- (3) Is tested for compliance with paragraph (e)(2) of this section initially upon designation, annually, and at other times requested by the Administrator.
- (f) If any pump is equipped with a closed vent system capable of capturing and transporting any leakage from the seal or seals to a process or to a fuel gas system or to a control device that complies with the requirements of §60.482–10a, it is exempt from paragraphs (a) through (e) of this section.
- (g) Any pump that is designated, as described in §60.486a(f)(1), as an unsafe-to-monitor pump is exempt from the monitoring and inspection requirements of paragraphs (a) and (d)(4) through (6) of this section if:
- (1) The owner or operator of the pump demonstrates that the pump is unsafe-to-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and
- (2) The owner or operator of the pump has a written plan that requires monitoring of the pump as frequently as practicable during safe-to-monitor times, but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in paragraph (c) of this section if a leak is detected.
- (h) Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (a)(2) and (d)(4) of this section, and the daily requirements of paragraph (d)(5) of this section, provided that each pump is visually inspected as often as practicable and at least monthly.

## § 60.482-3a Standards: Compressors.

- (a) Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of VOC to the atmosphere, except as provided in §60.482–1a(c) and paragraphs (h), (i), and (j) of this section.
- (b) Each compressor seal system as required in paragraph (a) of this section shall be:
- (1) Operated with the barrier fluid at a pressure that is greater than the compressor stuffing box pressure; or
- (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of §60.482–10a; or

- (3) Equipped with a system that purges the barrier fluid into a process stream with zero VOC emissions to the atmosphere.
- (c) The barrier fluid system shall be in heavy liquid service or shall not be in VOC service.
- (d) Each barrier fluid system as described in paragraph (a) shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both.
- (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped with an audible alarm.
- (2) The owner or operator shall determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
- (f) If the sensor indicates failure of the seal system, the barrier system, or both based on the criterion determined under paragraph (e)(2) of this section, a leak is detected.
- (g)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482–9a.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (h) A compressor is exempt from the requirements of paragraphs (a) and (b) of this section, if it is equipped with a closed vent system to capture and transport leakage from the compressor drive shaft back to a process or fuel gas system or to a control device that complies with the requirements of §60.482–10a, except as provided in paragraph (i) of this section.
- (i) Any compressor that is designated, as described in §60.486a(e)(1) and (2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraphs (a) through (h) of this section if the compressor:
- (1) Is demonstrated to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the methods specified in §60.485a(c); and
- (2) Is tested for compliance with paragraph (i)(1) of this section initially upon designation, annually, and at other times requested by the Administrator.
- (j) Any existing reciprocating compressor in a process unit which becomes an affected facility under provisions of §60.14 or §60.15 is exempt from paragraphs (a) through (e) and (h) of this section, provided the owner or operator demonstrates that recasting the distance piece or replacing the compressor are the only options available to bring the compressor into compliance with the provisions of paragraphs (a) through (e) and (h) of this section.

# § 60.482-4a Standards: Pressure relief devices in gas/vapor service.

- (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as determined by the methods specified in §60.485a(c).
- (b)(1) After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after the pressure release, except as provided in §60.482–9a.
- (2) No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the conditions of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, by the methods specified in §60.485a(c).
- (c) Any pressure relief device that is routed to a process or fuel gas system or equipped with a closed vent system capable of capturing and transporting leakage through the pressure relief device to a control device as described in §60.482–10a is exempted from the requirements of paragraphs (a) and (b) of this section.
- (d)(1) Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (a) and (b) of this section, provided the owner or operator complies with the requirements in paragraph (d)(2) of this section.
- (2) After each pressure release, a new rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §60.482–9a.

## § 60.482-5a Standards: Sampling connection systems.

- (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent system, except as provided in §60.482-1a(c) and paragraph (c) of this section.
- (b) Each closed-purge, closed-loop, or closed-vent system as required in paragraph (a) of this section shall comply with the requirements specified in paragraphs (b)(1) through (4) of this section.
- (1) Gases displaced during filling of the sample container are not required to be collected or captured.
- (2) Containers that are part of a closed-purge system must be covered or closed when not being filled or emptied.
- (3) Gases remaining in the tubing or piping between the closed-purge system valve(s) and sample container valve(s) after the valves are closed and the sample container is disconnected are not required to be collected or captured.

- (4) Each closed-purge, closed-loop, or closed-vent system shall be designed and operated to meet requirements in either paragraph (b)(4)(i), (ii), (iii), or (iv) of this section.
- (i) Return the purged process fluid directly to the process line.
- (ii) Collect and recycle the purged process fluid to a process.
- (iii) Capture and transport all the purged process fluid to a control device that complies with the requirements of §60.482–10a.
- (iv) Collect, store, and transport the purged process fluid to any of the following systems or facilities:
- (A) A waste management unit as defined in 40 CFR 63.111, if the waste management unit is subject to and operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater streams;
- (B) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266;
- (C) A facility permitted, licensed, or registered by a state to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261;
- (D) A waste management unit subject to and operated in compliance with the treatment requirements of 40 CFR 61.348(a), provided all waste management units that collect, store, or transport the purged process fluid to the treatment unit are subject to and operated in compliance with the management requirements of 40 CFR 61.343 through 40 CFR 61.347; or
- (E) A device used to burn off-specification used oil for energy recovery in accordance with 40 CFR part 279, subpart G, provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261.
- (c) In-situ sampling systems and sampling systems without purges are exempt from the requirements of paragraphs (a) and (b) of this section.

## § 60.482-6a Standards: Open-ended valves or lines.

- (a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve, except as provided in §60.482–1a(c) and paragraphs (d) and (e) of this section.
- (2) The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring process fluid flow through the open-ended valve or line.
- (b) Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed.

- (c) When a double block-and-bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) of this section at all other times.
- (d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b), and (c) of this section.
- (e) Open-ended valves or lines containing materials which would autocatalytically polymerize or would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraphs (a) through (c) of this section.

## § 60.482-7a Standards: Valves in gas/vapor service and in light liquid service.

- (a)(1) Each valve shall be monitored monthly to detect leaks by the methods specified in §60.485a(b) and shall comply with paragraphs (b) through (e) of this section, except as provided in paragraphs (f), (g), and (h) of this section, §60.482–1a(c) and (f), and §§60.483–1a and 60.483–2a.
- (2) A valve that begins operation in gas/vapor service or light liquid service after the initial startup date for the process unit must be monitored according to paragraphs (a)(2)(i) or (ii), except for a valve that replaces a leaking valve and except as provided in paragraphs (f), (g), and (h) of this section, §60.482-1a(c), and §§60.483-1a and 60.483-2a.
- (i) Monitor the valve as in paragraph (a)(1) of this section. The valve must be monitored for the first time within 30 days after the end of its startup period to ensure proper installation.
- (ii) If the existing valves in the process unit are monitored in accordance with §60.483-1a or §60.483-2a, count the new valve as leaking when calculating the percentage of valves leaking as described in §60.483-2a(b)(5). If less than 2.0 percent of the valves are leaking for that process unit, the valve must be monitored for the first time during the next scheduled monitoring event for existing valves in the process unit or within 90 days, whichever comes first.
- (b) If an instrument reading of 500 ppm or greater is measured, a leak is detected.
- (c)(1)(i) Any valve for which a leak is not detected for 2 successive months may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected.
- (ii) As an alternative to monitoring all of the valves in the first month of a quarter, an owner or operator may elect to subdivide the process unit into two or three subgroups of valves and monitor each subgroup in a different month during the quarter, provided each subgroup is monitored every 3 months. The owner or operator must keep records of the valves assigned to each subgroup.

- (2) If a leak is detected, the valve shall be monitored monthly until a leak is not detected for 2 successive months.
- (d)(1) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in §60.482–9a.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (e) First attempts at repair include, but are not limited to, the following best practices where practicable:
- (1) Tightening of bonnet bolts;
- (2) Replacement of bonnet bolts;
- (3) Tightening of packing gland nuts;
- (4) Injection of lubricant into lubricated packing.
- (f) Any valve that is designated, as described in §60.486a(e)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraph (a) of this section if the valve:
- (1) Has no external actuating mechanism in contact with the process fluid,
- (2) Is operated with emissions less than 500 ppm above background as determined by the method specified in §60.485a(c), and
- (3) Is tested for compliance with paragraph (f)(2) of this section initially upon designation, annually, and at other times requested by the Administrator.
- (g) Any valve that is designated, as described in §60.486a(f)(1), as an unsafe-to-monitor valve is exempt from the requirements of paragraph (a) of this section if:
- (1) The owner or operator of the valve demonstrates that the valve is unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section, and
- (2) The owner or operator of the valve adheres to a written plan that requires monitoring of the valve as frequently as practicable during safe-to-monitor times.
- (h) Any valve that is designated, as described in §60.486a(f)(2), as a difficult-to-monitor valve is exempt from the requirements of paragraph (a) of this section if:

- (1) The owner or operator of the valve demonstrates that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters above a support surface.
- (2) The process unit within which the valve is located either:
- (i) Becomes an affected facility through §60.14 or §60.15 and was constructed on or before January 5, 1981; or
- (ii) Has less than 3.0 percent of its total number of valves designated as difficult-to-monitor by the owner or operator.
- (3) The owner or operator of the valve follows a written plan that requires monitoring of the valve at least once per calendar year.

# § 60.482-8a Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service.

- (a) If evidence of a potential leak is found by visual, audible, olfactory, or any other detection method at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service, the owner or operator shall follow either one of the following procedures:
- (1) The owner or operator shall monitor the equipment within 5 days by the method specified in §60.485a(b) and shall comply with the requirements of paragraphs (b) through (d) of this section.
- (2) The owner or operator shall eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 calendar days of detection.
- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482–9a.
- (2) The first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (d) First attempts at repair include, but are not limited to, the best practices described under §§60.482–2a(c)(2) and 60.482–7a(e).

## § 60.482-9a Standards: Delay of repair.

(a) Delay of repair of equipment for which leaks have been detected will be allowed if repair within 15 days is technically infeasible without a process unit shutdown. Repair of this equipment shall occur before the end of the next process unit shutdown. Monitoring to verify repair must occur within 15 days after startup of the process unit.

- (b) Delay of repair of equipment will be allowed for equipment which is isolated from the process and which does not remain in VOC service.
- (c) Delay of repair for valves and connectors will be allowed if:
- (1) The owner or operator demonstrates that emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and
- (2) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with §60.482–10a.
- (d) Delay of repair for pumps will be allowed if:
- (1) Repair requires the use of a dual mechanical seal system that includes a barrier fluid system, and
- (2) Repair is completed as soon as practicable, but not later than 6 months after the leak was detected.
- (e) Delay of repair beyond a process unit shutdown will be allowed for a valve, if valve assembly replacement is necessary during the process unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next process unit shutdown will not be allowed unless the next process unit shutdown occurs sooner than 6 months after the first process unit shutdown.
- (f) When delay of repair is allowed for a leaking pump, valve, or connector that remains in service, the pump, valve, or connector may be considered to be repaired and no longer subject to delay of repair requirements if two consecutive monthly monitoring instrument readings are below the leak definition.

## § 60.482-10a Standards: Closed vent systems and control devices.

- (a) Owners or operators of closed vent systems and control devices used to comply with provisions of this subpart shall comply with the provisions of this section.
- (b) Vapor recovery systems (for example, condensers and absorbers) shall be designed and operated to recover the VOC emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume (ppmv), whichever is less stringent.
- (c) Enclosed combustion devices shall be designed and operated to reduce the VOC emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 ppmv, on a dry basis, corrected to 3 percent oxygen, whichever is less stringent or to provide a minimum residence time of 0.75 seconds at a minimum temperature of 816 °C.
- (d) Flares used to comply with this subpart shall comply with the requirements of §60.18.

- (e) Owners or operators of control devices used to comply with the provisions of this subpart shall monitor these control devices to ensure that they are operated and maintained in conformance with their designs.
- (f) Except as provided in paragraphs (i) through (k) of this section, each closed vent system shall be inspected according to the procedures and schedule specified in paragraphs (f)(1) and (2) of this section.
- (1) If the vapor collection system or closed vent system is constructed of hard-piping, the owner or operator shall comply with the requirements specified in paragraphs (f)(1)(i) and (ii) of this section:
- (i) Conduct an initial inspection according to the procedures in §60.485a(b); and
- (ii) Conduct annual visual inspections for visible, audible, or olfactory indications of leaks.
- (2) If the vapor collection system or closed vent system is constructed of ductwork, the owner or operator shall:
- (i) Conduct an initial inspection according to the procedures in §60.485a(b); and
- (ii) Conduct annual inspections according to the procedures in §60.485a(b).
- (g) Leaks, as indicated by an instrument reading greater than 500 ppmv above background or by visual inspections, shall be repaired as soon as practicable except as provided in paragraph (h) of this section.
- (1) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.
- (2) Repair shall be completed no later than 15 calendar days after the leak is detected.
- (h) Delay of repair of a closed vent system for which leaks have been detected is allowed if the repair is technically infeasible without a process unit shutdown or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be complete by the end of the next process unit shutdown.
- (i) If a vapor collection system or closed vent system is operated under a vacuum, it is exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section.
- (j) Any parts of the closed vent system that are designated, as described in paragraph (l)(1) of this section, as unsafe to inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section if they comply with the requirements specified in paragraphs (j)(1) and (2) of this section:

- (1) The owner or operator determines that the equipment is unsafe to inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (f)(1)(i) or (f)(2) of this section; and
- (2) The owner or operator has a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.
- (k) Any parts of the closed vent system that are designated, as described in paragraph (l)(2) of this section, as difficult to inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section if they comply with the requirements specified in paragraphs (k)(1) through (3) of this section:
- (1) The owner or operator determines that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface; and
- (2) The process unit within which the closed vent system is located becomes an affected facility through §§60.14 or 60.15, or the owner or operator designates less than 3.0 percent of the total number of closed vent system equipment as difficult to inspect; and
- (3) The owner or operator has a written plan that requires inspection of the equipment at least once every 5 years. A closed vent system is exempt from inspection if it is operated under a vacuum.
- (l) The owner or operator shall record the information specified in paragraphs (l)(1) through (5) of this section.
- (1) Identification of all parts of the closed vent system that are designated as unsafe to inspect, an explanation of why the equipment is unsafe to inspect, and the plan for inspecting the equipment.
- (2) Identification of all parts of the closed vent system that are designated as difficult to inspect, an explanation of why the equipment is difficult to inspect, and the plan for inspecting the equipment.
- (3) For each inspection during which a leak is detected, a record of the information specified in §60.486a(c).
- (4) For each inspection conducted in accordance with §60.485a(b) during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (5) For each visual inspection conducted in accordance with paragraph (f)(1)(ii) of this section during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (m) Closed vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.

## § 60.482-11a Standards: Connectors in gas/vapor service and in light liquid service.

- (a) The owner or operator shall initially monitor all connectors in the process unit for leaks by the later of either 12 months after the compliance date or 12 months after initial startup. If all connectors in the process unit have been monitored for leaks prior to the compliance date, no initial monitoring is required provided either no process changes have been made since the monitoring or the owner or operator can determine that the results of the monitoring, with or without adjustments, reliably demonstrate compliance despite process changes. If required to monitor because of a process change, the owner or operator is required to monitor only those connectors involved in the process change.
- (b) Except as allowed in §60.482-1a(c), §60.482-10a, or as specified in paragraph (e) of this section, the owner or operator shall monitor all connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this section.
- (1) The connectors shall be monitored to detect leaks by the method specified in §60.485a(b) and, as applicable, §60.485a(c).
- (2) If an instrument reading greater than or equal to 500 ppm is measured, a leak is detected.
- (3) The owner or operator shall perform monitoring, subsequent to the initial monitoring required in paragraph (a) of this section, as specified in paragraphs (b)(3)(i) through (iii) of this section, and shall comply with the requirements of paragraphs (b)(3)(iv) and (v) of this section. The required period in which monitoring must be conducted shall be determined from paragraphs (b)(3)(i) through (iii) of this section using the monitoring results from the preceding monitoring period. The percent leaking connectors shall be calculated as specified in paragraph (c) of this section.
- (i) If the percent leaking connectors in the process unit was greater than or equal to 0.5 percent, then monitor within 12 months (1 year).
- (ii) If the percent leaking connectors in the process unit was greater than or equal to 0.25 percent but less than 0.5 percent, then monitor within 4 years. An owner or operator may comply with the requirements of this paragraph by monitoring at least 40 percent of the connectors within 2 years of the start of the monitoring period, provided all connectors have been monitored by the end of the 4-year monitoring period.
- (iii) If the percent leaking connectors in the process unit was less than 0.25 percent, then monitor as provided in paragraph (b)(3)(iii)(A) of this section and either paragraph (b)(3)(iii)(B) or (b)(3)(iii)(C) of this section, as appropriate.
- (A) An owner or operator shall monitor at least 50 percent of the connectors within 4 years of the start of the monitoring period.
- (B) If the percent of leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of this section is greater than or equal to 0.35 percent of the monitored connectors,

the owner or operator shall monitor as soon as practical, but within the next 6 months, all connectors that have not yet been monitored during the monitoring period. At the conclusion of monitoring, a new monitoring period shall be started pursuant to paragraph (b)(3) of this section, based on the percent of leaking connectors within the total monitored connectors.

- (C) If the percent of leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of this section is less than 0.35 percent of the monitored connectors, the owner or operator shall monitor all connectors that have not yet been monitored within 8 years of the start of the monitoring period.
- (iv) If, during the monitoring conducted pursuant to paragraphs (b)(3)(i) through (iii) of this section, a connector is found to be leaking, it shall be re-monitored once within 90 days after repair to confirm that it is not leaking.
- (v) The owner or operator shall keep a record of the start date and end date of each monitoring period under this section for each process unit.
- (c) For use in determining the monitoring frequency, as specified in paragraphs (a) and (b)(3) of this section, the percent leaking connectors as used in paragraphs (a) and (b)(3) of this section shall be calculated by using the following equation:

$$%C_I = C_I / C_t * 100$$

Where:

 $%C_L$ = Percent of leaking connectors as determined through periodic monitoring required in paragraphs (a) and (b)(3)(i) through (iii) of this section.

C<sub>L</sub>= Number of connectors measured at 500 ppm or greater, by the method specified in §60.485a(b).

C<sub>1</sub>= Total number of monitored connectors in the process unit or affected facility.

- (d) When a leak is detected pursuant to paragraphs (a) and (b) of this section, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482–9a. A first attempt at repair as defined in this subpart shall be made no later than 5 calendar days after the leak is detected.
- (e) Any connector that is designated, as described in §60.486a(f)(1), as an unsafe-to-monitor connector is exempt from the requirements of paragraphs (a) and (b) of this section if:
- (1) The owner or operator of the connector demonstrates that the connector is unsafe-to-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraphs (a) and (b) of this section; and

- (2) The owner or operator of the connector has a written plan that requires monitoring of the connector as frequently as practicable during safe-to-monitor times but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in paragraph (d) of this section if a leak is detected.
- (f) Inaccessible, ceramic, or ceramic-lined connectors. (1) Any connector that is inaccessible or that is ceramic or ceramic-lined (e.g., porcelain, glass, or glass-lined), is exempt from the monitoring requirements of paragraphs (a) and (b) of this section, from the leak repair requirements of paragraph (d) of this section, and from the recordkeeping and reporting requirements of §§63.1038 and 63.1039. An inaccessible connector is one that meets any of the provisions specified in paragraphs (f)(1)(i) through (vi) of this section, as applicable:
- (i) Buried;
- (ii) Insulated in a manner that prevents access to the connector by a monitor probe;
- (iii) Obstructed by equipment or piping that prevents access to the connector by a monitor probe;
- (iv) Unable to be reached from a wheeled scissor-lift or hydraulic-type scaffold that would allow access to connectors up to 7.6 meters (25 feet) above the ground;
- (v) Inaccessible because it would require elevating the monitoring personnel more than 2 meters (7 feet) above a permanent support surface or would require the erection of scaffold; or
- (vi) Not able to be accessed at any time in a safe manner to perform monitoring. Unsafe access includes, but is not limited to, the use of a wheeled scissor-lift on unstable or uneven terrain, the use of a motorized man-lift basket in areas where an ignition potential exists, or access would require near proximity to hazards such as electrical lines, or would risk damage to equipment.
- (2) If any inaccessible, ceramic, or ceramic-lined connector is observed by visual, audible, olfactory, or other means to be leaking, the visual, audible, olfactory, or other indications of a leak to the atmosphere shall be eliminated as soon as practical.
- (g) Except for instrumentation systems and inaccessible, ceramic, or ceramic-lined connectors meeting the provisions of paragraph (f) of this section, identify the connectors subject to the requirements of this subpart. Connectors need not be individually identified if all connectors in a designated area or length of pipe subject to the provisions of this subpart are identified as a group, and the number of connectors subject is indicated.

Effective Date Note: At 73 FR 31376, June 2, 2008, §60.482–11a was stayed until further notice.

# § 60.483-1a Alternative standards for valves—allowable percentage of valves leaking.

(a) An owner or operator may elect to comply with an allowable percentage of valves leaking of equal to or less than 2.0 percent.

- (b) The following requirements shall be met if an owner or operator wishes to comply with an allowable percentage of valves leaking:
- (1) An owner or operator must notify the Administrator that the owner or operator has elected to comply with the allowable percentage of valves leaking before implementing this alternative standard, as specified in §60.487a(d).
- (2) A performance test as specified in paragraph (c) of this section shall be conducted initially upon designation, annually, and at other times requested by the Administrator.
- (3) If a valve leak is detected, it shall be repaired in accordance with §60.482–7a(d) and (e).
- (c) Performance tests shall be conducted in the following manner:
- (1) All valves in gas/vapor and light liquid service within the affected facility shall be monitored within 1 week by the methods specified in §60.485a(b).
- (2) If an instrument reading of 500 ppm or greater is measured, a leak is detected.
- (3) The leak percentage shall be determined by dividing the number of valves for which leaks are detected by the number of valves in gas/vapor and light liquid service within the affected facility.
- (d) Owners and operators who elect to comply with this alternative standard shall not have an affected facility with a leak percentage greater than 2.0 percent, determined as described in §60.485a(h).

## § 60.483-2a Alternative standards for valves—skip period leak detection and repair.

- (a)(1) An owner or operator may elect to comply with one of the alternative work practices specified in paragraphs (b)(2) and (3) of this section.
- (2) An owner or operator must notify the Administrator before implementing one of the alternative work practices, as specified in §60.487(d)a.
- (b)(1) An owner or operator shall comply initially with the requirements for valves in gas/vapor service and valves in light liquid service, as described in §60.482-7a.
- (2) After 2 consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0, an owner or operator may begin to skip 1 of the quarterly leak detection periods for the valves in gas/vapor and light liquid service.
- (3) After 5 consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0, an owner or operator may begin to skip 3 of the quarterly leak detection periods for the valves in gas/vapor and light liquid service.

- (4) If the percent of valves leaking is greater than 2.0, the owner or operator shall comply with the requirements as described in §60.482–7a but can again elect to use this section.
- (5) The percent of valves leaking shall be determined as described in §60.485a(h).
- (6) An owner or operator must keep a record of the percent of valves found leaking during each leak detection period.
- (7) A valve that begins operation in gas/vapor service or light liquid service after the initial startup date for a process unit following one of the alternative standards in this section must be monitored in accordance with §60.482–7a(a)(2)(i) or (ii) before the provisions of this section can be applied to that valve.

# § 60.484a Equivalence of means of emission limitation.

- (a) Each owner or operator subject to the provisions of this subpart may apply to the Administrator for determination of equivalence for any means of emission limitation that achieves a reduction in emissions of VOC at least equivalent to the reduction in emissions of VOC achieved by the controls required in this subpart.
- (b) Determination of equivalence to the equipment, design, and operational requirements of this subpart will be evaluated by the following guidelines:
- (1) Each owner or operator applying for an equivalence determination shall be responsible for collecting and verifying test data to demonstrate equivalence of means of emission limitation.
- (2) The Administrator will compare test data for demonstrating equivalence of the means of emission limitation to test data for the equipment, design, and operational requirements.
- (3) The Administrator may condition the approval of equivalence on requirements that may be necessary to assure operation and maintenance to achieve the same emission reduction as the equipment, design, and operational requirements.
- (c) Determination of equivalence to the required work practices in this subpart will be evaluated by the following guidelines:
- (1) Each owner or operator applying for a determination of equivalence shall be responsible for collecting and verifying test data to demonstrate equivalence of an equivalent means of emission limitation.
- (2) For each affected facility for which a determination of equivalence is requested, the emission reduction achieved by the required work practice shall be demonstrated.
- (3) For each affected facility, for which a determination of equivalence is requested, the emission reduction achieved by the equivalent means of emission limitation shall be demonstrated.

- (4) Each owner or operator applying for a determination of equivalence shall commit in writing to work practice(s) that provide for emission reductions equal to or greater than the emission reductions achieved by the required work practice.
- (5) The Administrator will compare the demonstrated emission reduction for the equivalent means of emission limitation to the demonstrated emission reduction for the required work practices and will consider the commitment in paragraph (c)(4) of this section.
- (6) The Administrator may condition the approval of equivalence on requirements that may be necessary to assure operation and maintenance to achieve the same emission reduction as the required work practice.
- (d) An owner or operator may offer a unique approach to demonstrate the equivalence of any equivalent means of emission limitation.
- (e)(1) After a request for determination of equivalence is received, the Administrator will publish a notice in the Federal Registerand provide the opportunity for public hearing if the Administrator judges that the request may be approved.
- (2) After notice and opportunity for public hearing, the Administrator will determine the equivalence of a means of emission limitation and will publish the determination in the Federal Register.
- (3) Any equivalent means of emission limitations approved under this section shall constitute a required work practice, equipment, design, or operational standard within the meaning of section 111(h)(1) of the CAA.
- (f)(1) Manufacturers of equipment used to control equipment leaks of VOC may apply to the Administrator for determination of equivalence for any equivalent means of emission limitation that achieves a reduction in emissions of VOC achieved by the equipment, design, and operational requirements of this subpart.
- (2) The Administrator will make an equivalence determination according to the provisions of paragraphs (b), (c), (d), and (e) of this section.

#### § 60.485a Test methods and procedures.

- (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b).
- (b) The owner or operator shall determine compliance with the standards in §§60.482–1a through 60.482–11a, 60.483a, and 60.484a as follows:

- (1) Method 21 shall be used to determine the presence of leaking sources. The instrument shall be calibrated before use each day of its use by the procedures specified in Method 21 of appendix A-7 of this part. The following calibration gases shall be used:
- (i) Zero air (less than 10 ppm of hydrocarbon in air); and
- (ii) A mixture of methane or n-hexane and air at a concentration no more than 2,000 ppm greater than the leak definition concentration of the equipment monitored. If the monitoring instrument's design allows for multiple calibration scales, then the lower scale shall be calibrated with a calibration gas that is no higher than 2,000 ppm above the concentration specified as a leak, and the highest scale shall be calibrated with a calibration gas that is approximately equal to 10,000 ppm. If only one scale on an instrument will be used during monitoring, the owner or operator need not calibrate the scales that will not be used during that day's monitoring.
- (2) A calibration drift assessment shall be performed, at a minimum, at the end of each monitoring day. Check the instrument using the same calibration gas(es) that were used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. Record the instrument reading for each scale used as specified in §60.486a(e)(7). Calculate the average algebraic difference between the three meter readings and the most recent calibration value. Divide this algebraic difference by the initial calibration value and multiply by 100 to express the calibration drift as a percentage. If any calibration drift assessment shows a negative drift of more than 10 percent from the initial calibration value, then all equipment monitored since the last calibration with instrument readings below the appropriate leak definition and above the leak definition multiplied by (100 minus the percent of negative drift/divided by 100) must be re-monitored. If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment since the last calibration with instrument readings above the appropriate leak definition and below the leak definition multiplied by (100 plus the percent of positive drift/divided by 100) may be re-monitored.
- (c) The owner or operator shall determine compliance with the no-detectable-emission standards in §§60.482-2a(e), 60.482-3a(i), 60.482-4a, 60.482-7a(f), and 60.482-10a(e) as follows:
- (1) The requirements of paragraph (b) shall apply.
- (2) Method 21 of appendix A-7 of this part shall be used to determine the background level. All potential leak interfaces shall be traversed as close to the interface as possible. The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared with 500 ppm for determining compliance.
- (d) The owner or operator shall test each piece of equipment unless he demonstrates that a process unit is not in VOC service, i.e., that the VOC content would never be reasonably expected to exceed 10 percent by weight. For purposes of this demonstration, the following methods and procedures shall be used:

- (1) Procedures that conform to the general methods in ASTM E260-73, 91, or 96, E168-67, 77, or 92, E169-63, 77, or 93 (incorporated by reference—see §60.17) shall be used to determine the percent VOC content in the process fluid that is contained in or contacts a piece of equipment.
- (2) Organic compounds that are considered by the Administrator to have negligible photochemical reactivity may be excluded from the total quantity of organic compounds in determining the VOC content of the process fluid.
- (3) Engineering judgment may be used to estimate the VOC content, if a piece of equipment had not been shown previously to be in service. If the Administrator disagrees with the judgment, paragraphs (d)(1) and (2) of this section shall be used to resolve the disagreement.
- (e) The owner or operator shall demonstrate that a piece of equipment is in light liquid service by showing that all the following conditions apply:
- (1) The vapor pressure of one or more of the organic components is greater than 0.3 kPa at 20 °C (1.2 in. H<sub>2</sub>O at 68 °F). Standard reference texts or ASTM D2879–83, 96, or 97 (incorporated by reference—see §60.17) shall be used to determine the vapor pressures.
- (2) The total concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in.  $H_2O$  at 68 °F) is equal to or greater than 20 percent by weight.
- (3) The fluid is a liquid at operating conditions.
- (f) Samples used in conjunction with paragraphs (d), (e), and (g) of this section shall be representative of the process fluid that is contained in or contacts the equipment or the gas being combusted in the flare.
- (g) The owner or operator shall determine compliance with the standards of flares as follows:
- (1) Method 22 of appendix A-7 of this part shall be used to determine visible emissions.
- (2) A thermocouple or any other equivalent device shall be used to monitor the presence of a pilot flame in the flare.
- (3) The maximum permitted velocity for air assisted flares shall be computed using the following equation:

$$V_{max} = K_1 + K_2 H_T$$

Where:

V<sub>max</sub>= Maximum permitted velocity, m/sec (ft/sec).

H<sub>T</sub>= Net heating value of the gas being combusted, MJ/scm (Btu/scf).

 $K_1$ = 8.706 m/sec (metric units) = 28.56 ft/sec (English units).

 $K_2$ = 0.7084 m<sup>4</sup>/(MJ-sec) (metric units) = 0.087 ft<sup>4</sup>/(Btu-sec) (English units).

(4) The net heating value (HT) of the gas being combusted in a flare shall be computed using the following equation:

$$H_{\mathbf{r}} = K \sum_{i=1}^{n} C_{i} H_{i}$$

Where:

K = Conversion constant,  $1.740 \times 10^{-7}$  (g-mole)(MJ)/(ppm-scm-kcal) (metric units) =  $4.674 \times 10^{-6}$  [(g-mole)(Btu)/(ppm-scf-kcal)] (English units).

C<sub>i</sub>= Concentration of sample component "i," ppm

 $H_i$ = net heat of combustion of sample component "i" at 25 °C and 760 mm Hg (77 °F and 14.7 psi), kcal/g-mole.

- (5) Method 18 of appendix A-6 of this part or ASTM D6420-99 (2004) (where the target compound(s) are those listed in Section 1.1 of ASTM D6420-99, and the target concentration is between 150 parts per billion by volume and 100 ppmv) and ASTM D2504-67, 77, or 88 (Reapproved 1993) (incorporated by reference-see §60.17) shall be used to determine the concentration of sample component "i."
- (6) ASTM D2382-76 or 88 or D4809-95 (incorporated by reference-see §60.17) shall be used to determine the net heat of combustion of component "i" if published values are not available or cannot be calculated.
- (7) Method 2, 2A, 2C, or 2D of appendix A-7 of this part, as appropriate, shall be used to determine the actual exit velocity of a flare. If needed, the unobstructed (free) cross-sectional area of the flare tip shall be used.
- (h) The owner or operator shall determine compliance with §60.483–1a or §60.483–2a as follows:
- (1) The percent of valves leaking shall be determined using the following equation:

$$V_{I} = (V_{I}/V_{T}) * 100$$

Where:

 $%V_L$ = Percent leaking valves.

V<sub>L</sub>= Number of valves found leaking.

 $V_T$ = The sum of the total number of valves monitored.

- (2) The total number of valves monitored shall include difficult-to-monitor and unsafe-to-monitor valves only during the monitoring period in which those valves are monitored.
- (3) The number of valves leaking shall include valves for which repair has been delayed.
- (4) Any new valve that is not monitored within 30 days of being placed in service shall be included in the number of valves leaking and the total number of valves monitored for the monitoring period in which the valve is placed in service.
- (5) If the process unit has been subdivided in accordance with §60.482–7a(c)(1)(ii), the sum of valves found leaking during a monitoring period includes all subgroups.
- (6) The total number of valves monitored does not include a valve monitored to verify repair.

## § 60.486a Recordkeeping requirements.

- (a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.
- (2) An owner or operator of more than one affected facility subject to the provisions of this subpart may comply with the recordkeeping requirements for these facilities in one recordkeeping system if the system identifies each record by each facility.
- (3) The owner or operator shall record the information specified in paragraphs (a)(3)(i) through (v) of this section for each monitoring event required by §§60.482-2a, 60.482-3a, 60.482-7a, 60.482-8a, 60.482-11a, and 60.483-2a.
- (i) Monitoring instrument identification.
- (ii) Operator identification.
- (iii) Equipment identification.
- (iv) Date of monitoring.
- (v) Instrument reading.
- (b) When each leak is detected as specified in  $\S\S60.482-2a$ , 60.482-3a, 60.482-7a, 60.482-8a, 60.482-11a, and 60.483-2a, the following requirements apply:
- (1) A weatherproof and readily visible identification, marked with the equipment identification number, shall be attached to the leaking equipment.

- (2) The identification on a valve may be removed after it has been monitored for 2 successive months as specified in §60.482–7a(c) and no leak has been detected during those 2 months.
- (3) The identification on a connector may be removed after it has been monitored as specified in §60.482-11a(b)(3)(iv) and no leak has been detected during that monitoring.
- (4) The identification on equipment, except on a valve or connector, may be removed after it has been repaired.
- (c) When each leak is detected as specified in §§60.482–2a, 60.482–3a, 60.482–7a, 60.482–8a, 60.482–11a, and 60.483–2a, the following information shall be recorded in a log and shall be kept for 2 years in a readily accessible location:
- (1) The instrument and operator identification numbers and the equipment identification number, except when indications of liquids dripping from a pump are designated as a leak.
- (2) The date the leak was detected and the dates of each attempt to repair the leak.
- (3) Repair methods applied in each attempt to repair the leak.
- (4) Maximum instrument reading measured by Method 21 of appendix A-7 of this part at the time the leak is successfully repaired or determined to be nonrepairable, except when a pump is repaired by eliminating indications of liquids dripping.
- (5) "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
- (6) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown.
- (7) The expected date of successful repair of the leak if a leak is not repaired within 15 days.
- (8) Dates of process unit shutdowns that occur while the equipment is unrepaired.
- (9) The date of successful repair of the leak.
- (d) The following information pertaining to the design requirements for closed vent systems and control devices described in §60.482–10a shall be recorded and kept in a readily accessible location:
- (1) Detailed schematics, design specifications, and piping and instrumentation diagrams.
- (2) The dates and descriptions of any changes in the design specifications.

- (3) A description of the parameter or parameters monitored, as required in §60.482–10a(e), to ensure that control devices are operated and maintained in conformance with their design and an explanation of why that parameter (or parameters) was selected for the monitoring.
- (4) Periods when the closed vent systems and control devices required in §§60.482-2a, 60.482-3a, 60.482-4a, and 60.482-5a are not operated as designed, including periods when a flare pilot light does not have a flame.
- (5) Dates of startups and shutdowns of the closed vent systems and control devices required in §§60.482–2a, 60.482–3a, 60.482–4a, and 60.482–5a.
- (e) The following information pertaining to all equipment subject to the requirements in §§60.482-1 a to 60.482-1 a shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for equipment subject to the requirements of this subpart.
- (2)(i) A list of identification numbers for equipment that are designated for no detectable emissions under the provisions of §§60.482–2a(e), 60.482–3a(i), and 60.482–7a(f).
- (ii) The designation of equipment as subject to the requirements of §60.482–2a(e), §60.482–3a(i), or §60.482–7a(f) shall be signed by the owner or operator. Alternatively, the owner or operator may establish a mechanism with their permitting authority that satisfies this requirement.
- (3) A list of equipment identification numbers for pressure relief devices required to comply with \$60.482-4a.
- (4)(i) The dates of each compliance test as required in §§60.482-2a(e), 60.482-3a(i), 60.482-4a, and 60.482-7a(f).
- (ii) The background level measured during each compliance test.
- (iii) The maximum instrument reading measured at the equipment during each compliance test.
- (5) A list of identification numbers for equipment in vacuum service.
- (6) A list of identification numbers for equipment that the owner or operator designates as operating in VOC service less than 300 hr/yr in accordance with §60.482–1a(e), a description of the conditions under which the equipment is in VOC service, and rationale supporting the designation that it is in VOC service less than 300 hr/yr.
- (7) The date and results of the weekly visual inspection for indications of liquids dripping from pumps in light liquid service.

- (8) Records of the information specified in paragraphs (e)(8)(i) through (vi) of this section for monitoring instrument calibrations conducted according to sections 8.1.2 and 10 of Method 21 of appendix A-7 of this part and §60.485a(b).
- (i) Date of calibration and initials of operator performing the calibration.
- (ii) Calibration gas cylinder identification, certification date, and certified concentration.
- (iii) Instrument scale(s) used.
- (iv) A description of any corrective action taken if the meter readout could not be adjusted to correspond to the calibration gas value in accordance with section 10.1 of Method 21 of appendix A-7 of this part.
- (v) Results of each calibration drift assessment required by §60.485a(b)(2) (i.e., instrument reading for calibration at end of monitoring day and the calculated percent difference from the initial calibration value).
- (vi) If an owner or operator makes their own calibration gas, a description of the procedure used.
- (9) The connector monitoring schedule for each process unit as specified in §60.482–11a(b)(3)(v).
- (10) Records of each release from a pressure relief device subject to §60.482-4a.
- (f) The following information pertaining to all valves subject to the requirements of §60.482–7a(g) and (h), all pumps subject to the requirements of §60.482–2a(g), and all connectors subject to the requirements of §60.482–11a(e) shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for valves, pumps, and connectors that are designated as unsafe-to-monitor, an explanation for each valve, pump, or connector stating why the valve, pump, or connector is unsafe-to-monitor, and the plan for monitoring each valve, pump, or connector.
- (2) A list of identification numbers for valves that are designated as difficult-to-monitor, an explanation for each valve stating why the valve is difficult-to-monitor, and the schedule for monitoring each valve.
- (g) The following information shall be recorded for valves complying with §60.483–2a:
- (1) A schedule of monitoring.
- (2) The percent of valves found leaking during each monitoring period.

- (h) The following information shall be recorded in a log that is kept in a readily accessible location:
- (1) Design criterion required in §§60.482–2a(d)(5) and 60.482–3a(e)(2) and explanation of the design criterion; and
- (2) Any changes to this criterion and the reasons for the changes.
- (i) The following information shall be recorded in a log that is kept in a readily accessible location for use in determining exemptions as provided in §60.480a(d):
- (1) An analysis demonstrating the design capacity of the affected facility,
- (2) A statement listing the feed or raw materials and products from the affected facilities and an analysis demonstrating whether these chemicals are heavy liquids or beverage alcohol, and
- (3) An analysis demonstrating that equipment is not in VOC service.
- (j) Information and data used to demonstrate that a piece of equipment is not in VOC service shall be recorded in a log that is kept in a readily accessible location.
- (k) The provisions of §60.7(b) and (d) do not apply to affected facilities subject to this subpart.

## § 60.487a Reporting requirements.

- (a) Each owner or operator subject to the provisions of this subpart shall submit semiannual reports to the Administrator beginning 6 months after the initial startup date.
- (b) The initial semiannual report to the Administrator shall include the following information:
- (1) Process unit identification.
- (2) Number of valves subject to the requirements of §60.482–7a, excluding those valves designated for no detectable emissions under the provisions of §60.482–7a(f).
- (3) Number of pumps subject to the requirements of §60.482–2a, excluding those pumps designated for no detectable emissions under the provisions of §60.482–2a(e) and those pumps complying with §60.482–2a(f).
- (4) Number of compressors subject to the requirements of §60.482–3a, excluding those compressors designated for no detectable emissions under the provisions of §60.482–3a(i) and those compressors complying with §60.482–3a(h).
- (5) Number of connectors subject to the requirements of §60.482–11a.

- (c) All semiannual reports to the Administrator shall include the following information, summarized from the information in §60.486a:
- (1) Process unit identification.
- (2) For each month during the semiannual reporting period,
- (i) Number of valves for which leaks were detected as described in §60.482-7a(b) or §60.483-2a,
- (ii) Number of valves for which leaks were not repaired as required in §60.482–7a(d)(1),
- (iii) Number of pumps for which leaks were detected as described in §60.482–2a(b), (d)(4)(ii)(A) or (B), or (d)(5)(iii),
- (iv) Number of pumps for which leaks were not repaired as required in §60.482-2a(c)(1) and (d)(6),
- (v) Number of compressors for which leaks were detected as described in §60.482–3a(f),
- (vi) Number of compressors for which leaks were not repaired as required in §60.482–3a(g)(1),
- (vii) Number of connectors for which leaks were detected as described in §60.482–11a(b)
- (viii) Number of connectors for which leaks were not repaired as required in §60.482-11a(d), and
- (ix)-(x) [Reserved]
- (xi) The facts that explain each delay of repair and, where appropriate, why a process unit shutdown was technically infeasible.
- (3) Dates of process unit shutdowns which occurred within the semiannual reporting period.
- (4) Revisions to items reported according to paragraph (b) of this section if changes have occurred since the initial report or subsequent revisions to the initial report.
- (d) An owner or operator electing to comply with the provisions of §§60.483–1a or 60.483–2a shall notify the Administrator of the alternative standard selected 90 days before implementing either of the provisions.
- (e) An owner or operator shall report the results of all performance tests in accordance with §60.8 of the General Provisions. The provisions of §60.8(d) do not apply to affected facilities subject to the provisions of this subpart except that an owner or operator must notify the Administrator of the schedule for the initial performance tests at least 30 days before the initial performance tests.

(f) The requirements of paragraphs (a) through (c) of this section remain in force until and unless EPA, in delegating enforcement authority to a state under section 111(c) of the CAA, approves reporting requirements or an alternative means of compliance surveillance adopted by such state. In that event, affected sources within the state will be relieved of the obligation to comply with the requirements of paragraphs (a) through (c) of this section, provided that they comply with the requirements established by the state.

#### § 60.488a Reconstruction.

For the purposes of this subpart:

- (a) The cost of the following frequently replaced components of the facility shall not be considered in calculating either the "fixed capital cost of the new components" or the "fixed capital costs that would be required to construct a comparable new facility" under §60.15: Pump seals, nuts and bolts, rupture disks, and packings.
- (b) Under §60.15, the "fixed capital cost of new components" includes the fixed capital cost of all depreciable components (except components specified in §60.488a(a)) which are or will be replaced pursuant to all continuous programs of component replacement which are commenced within any 2-year period following the applicability date for the appropriate subpart. (See the "Applicability and designation of affected facility" section of the appropriate subpart.) For purposes of this paragraph, "commenced" means that an owner or operator has undertaken a continuous program of component replacement or that an owner or operator has entered into a contractual obligation to undertake and complete, within a reasonable time, a continuous program of component replacement.

## § 60.489a List of chemicals produced by affected facilities.

Process units that produce, as intermediates or final products, chemicals listed in §60.489 are covered under this subpart. The applicability date for process units producing one or more of these chemicals is November 8, 2006.



# 40 CFR Part 61, Subpart C-National Emission Standard for Beryllium

## § 61.30 Applicability.

The provisions of this subpart are applicable to the following stationary sources:

- (a) Extraction plants, ceramic plants, foundries, incinerators, and propellant plants which process beryllium ore, beryllium, beryllium oxide, beryllium alloys, or beryllium-containing waste.
- (b) Machine shops which process beryllium, beryllium oxides, or any alloy when such alloy contains more than 5 percent beryllium by weight.

[38 FR 8826, Apr. 6, 1973, as amended at 65 FR 62151, Oct. 17, 2000]

## § 61.31 Definitions.

Terms used in this subpart are defined in the act, in subpart A of this part, or in this section as follows:

- (a) *Beryllium* means the element beryllium. Where weights or concentrations are specified, such weights or concentrations apply to beryllium only, excluding the weight or concentration of any associated elements.
- (b) Extraction plant means a facility chemically processing beryllium ore to beryllium metal, alloy, or oxide, or performing any of the intermediate steps in these processes.
- (c) Beryllium ore means any naturally occurring material mined or gathered for its beryllium content.
- (d) *Machine shop* means a facility performing cutting, grinding, turning, honing, milling, deburring, lapping, electrochemical machining, etching, or other similar operations.
- (e) Ceramic plant means a manufacturing plant producing ceramic items.
- (f) Foundry means a facility engaged in the melting or casting of beryllium metal or alloy.
- (g) Beryllium-containing waste means material contaminated with beryllium and/or beryllium compounds used or generated during any process or operation performed by a source subject to this subpart.
- (h) *Incinerator* means any furnace used in the process of burning waste for the primary purpose of reducing the volume of the waste by removing combustible matter.

- (i) *Propellant* means a fuel and oxidizer physically or chemically combined which undergoes combustion to provide rocket propulsion.
- (j) Beryllium alloy means any metal to which beryllium has been added in order to increase its beryllium content and which contains more than 0.1 percent beryllium by weight.
- (k) Propellant plant means any facility engaged in the mixing, casting, or machining of propellant.

## § 61.32 Emission standard.

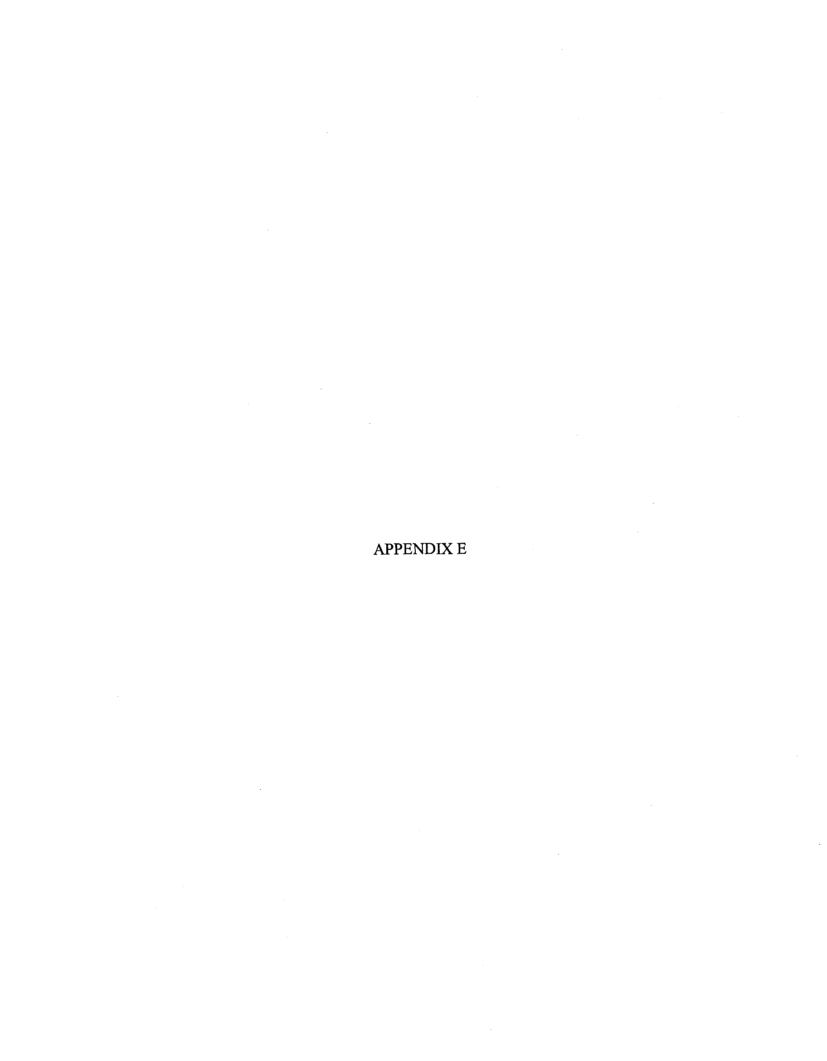
- (a) Emissions to the atmosphere from stationary sources subject to the provisions of this subpart shall not exceed 10 grams (0.022 lb) of beryllium over a 24-hour period, except as provided in paragraph (b) of this section.
- (b) Rather than meet the requirement of paragraph (a) of this section, an owner or operator may request approval from the Administrator to meet an ambient concentration limit on beryllium in the vicinity of the stationary source of  $0.01 \, \mu g/m^3 \, (4.37 \times 10^{-6} \text{gr/ft}^3)$ , averaged over a 30-day period.
- (1) Approval of such requests may be granted by the Administrator provided that:
- (i) At least 3 years of data is available which in the judgment of the Administrator demonstrates that the future ambient concentrations of beryllium in the vicinity of the stationary source will not exceed  $0.01~\mu g/m^3$  ( $4.37\times10^{-6} gr/ft^3$ ), averaged over a 30-day period. Such 3-year period shall be the 3 years ending 30 days before the effective date of this standard.
- (ii) The owner or operator requests such approval in writing within 30 days after the effective date of this standard.
- (iii) The owner or operator submits a report to the Administrator within 45 days after the effective date of this standard which report includes the following information:
- (a) Description of sampling method including the method and frequency of calibration.
- (b) Method of sample analysis.
- (c) Averaging technique for determining 30-day average concentrations.
- (d) Number, identity, and location (address, coordinates, or distance and heading from plant) of sampling sites.
- (e) Ground elevations and height above ground of sampling inlets.

- (f) Plant and sampling area plots showing emission points and sampling sites. Topographic features significantly affecting dispersion including plant building heights and locations shall be included.
- (g) Information necessary for estimating dispersion including stack height, inside diameter, exit gas temperature, exit velocity or flow rate, and beryllium concentration.
- (h) A description of data and procedures (methods or models) used to design the air sampling network (i.e., number and location of sampling sites).
- (i) Air sampling data indicating beryllium concentrations in the vicinity of the stationary source for the 3-year period specified in paragraph (b)(1) of this section. This data shall be presented chronologically and include the beryllium concentration and location of each individual sample taken by the network and the corresponding 30-day average beryllium concentrations.
- (2) Within 60 days after receiving such report, the Administrator will notify the owner or operator in writing whether approval is granted or denied. Prior to denying approval to comply with the provisions of paragraph (b) of this section, the Administrator will consult with representatives of the statutory source for which the demonstration report was submitted.
- (c) The burning of beryllium and/or beryllium-containing waste, except propellants, is prohibited except in incinerators, emissions from which must comply with the standard.

[38 FR 8826, Apr. 6, 1973, as amended at 65 FR 62151, Oct. 17, 2000]

#### § 61.33 Stack sampling.

- (a) Unless a waiver of emission testing is obtained under §61.13, each owner or operator required to comply with §61.32(a) shall test emissions from the source according to Method 104 of appendix B to this part. Method 103 of appendix B to this part is approved by the Administrator as an alternative method for sources subject to §61.32(a). The emission test shall be performed—
- (1) Within 90 days of the effective date in the case of an existing source or a new source which has an initial startup date preceding the effective date; or
- (2) Within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.
- (b) The Administrator shall be notified at least 30 days prior to an emission test so that he may at his option observe the test.
- (c) Samples shall be taken over such a period or periods as are necessary to accurately determine the maximum emissions which will occur in any 24-hour period. Where


emissions depend upon the relative frequency of operation of different types of processes, operating hours, operating capacities, or other factors, the calculation of maximum 24-hour-period emissions will be based on that combination of factors which is likely to occur during the subject period and which result in the maximum emissions. No changes in the operation shall be made, which would potentially increase emissions above that determined by the most recent source test, until a new emission level has been estimated by calculation and the results reported to the Administrator.

- (d) All samples shall be analyzed and beryllium emissions shall be determined within 30 days after the source test. All determinations shall be reported to the Administrator by a registered letter dispatched before the close of the next business day following such determination.
- (e) Records of emission test results and other data needed to determine total emissions shall be retained at the source and made available, for inspection by the Administrator, for a minimum of 2 years.

[38 FR 8826, Apr. 6, 1973, as amended at 50 FR 46294, Nov. 7, 1985]

## § 61.34 Air sampling.

- (a) Stationary sources subject to §61.32(b) shall locate air sampling sites in accordance with a plan approved by the Administrator. Such sites shall be located in such a manner as is calculated to detect maximum concentrations of beryllium in the ambient air.
- (b) All monitoring sites shall be operated continuously except for a reasonable time allowance for instrument maintenance and calibration, for changing filters, or for replacement of equipment needing major repair.
- (c) Filters shall be analyzed and concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling sites and other data needed to determine such concentrations shall be retained at the source and made available, for inspection by the Administrator, for a minimum of 2 years.
- (d) Concentrations measured at all sampling sites shall be reported to the Administrator every 30 days by a registered letter.
- (e) The Administrator may at any time require changes in, or expansion of, the sampling network.



|  |  | 1   |
|--|--|-----|
|  |  | l l |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |

## 40 CFR Part 61, Subpart E—National Emission Standard for Mercury

## § 61.50 Applicability.

The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge.

[40 FR 48302, Oct. 14, 1975]

#### § 61.51 Definitions.

Terms used in this subpart are defined in the act, in subpart A of this part, or in this section as follows:

- (a) *Mercury* means the element mercury, excluding any associated elements, and includes mercury in particulates, vapors, aerosols, and compounds.
- (b) Mercury ore means a mineral mined specifically for its mercury content.
- (c) Mercury ore processing facility means a facility processing mercury ore to obtain mercury.
- (d) Condenser stack gases mean the gaseous effluent evolved from the stack of processes utilizing heat to extract mercury metal from mercury ore.
- (e) Mercury chlor-alkali cell means a device which is basically composed of an electrolyzer section and a denuder (decomposer) section and utilizes mercury to produce chlorine gas, hydrogen gas, and alkali metal hydroxide.
- (f) Mercury chlor-alkali electrolyzer means an electrolytic device which is part of a mercury chlor-alkali cell and utilizes a flowing mercury cathode to produce chlorine gas and alkali metal amalgam.
- (g) *Denuder* means a horizontal or vertical container which is part of a mercury chloralkali cell and in which water and alkali metal amalgam are converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction.
- (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder.
- (i) End box means a container(s) located on one or both ends of a mercury chlor-alkali electrolyzer which serves as a connection between the electrolyzer and denuder for rich and stripped amalgam.

- (j) End box ventilation system means a ventilation system which collects mercury emissions from the end-boxes, the mercury pump sumps, and their water collection systems.
- (k) Cell room means a structure(s) housing one or more mercury electrolytic chlor-alkali cells.
- (l) Sludge means sludge produced by a treatment plant that processes municipal or industrial waste waters.
- (m) Sludge dryer means a device used to reduce the moisture content of sludge by heating to temperatures above 65 °C (ca. 150 °F) directly with combustion gases.

[38 FR 8826, Apr. 6, 1973, as amended at 40 FR 48302, Oct. 14, 1975]

#### § 61.52 Emission standard.

- (a) Emissions to the atmosphere from mercury ore processing facilities and mercury cell chlor-alkali plants shall not exceed 2.3 kg (5.1 lb) of mercury per 24-hour period.
- (b) Emissions to the atmosphere from sludge incineration plants, sludge drying plants, or a combination of these that process wastewater treatment plant sludges shall not exceed 3.2 kg (7.1 lb) of mercury per 24-hour period.

[40 FR 48302, Oct. 14, 1975, as amended at 65 FR 62151, Oct. 17, 2000]

#### § 61.53 Stack sampling.

- (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under §61.13, each owner or operator processing mercury ore shall test emissions from the source according to Method 101 of appendix B to this part. The emission test shall be performed—
- (i) Within 90 days of the effective date in the case of an existing source or a new source which has an initial start-up date preceding the effective date; or
- (ii) Within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.
- (2) The Administrator shall be notified at least 30 days prior to an emission test, so that he may at his option observe the test.
- (3) Samples shall be taken over such a period or periods as are necessary to accurately determine the maximum emissions which will occur in a 24-hour period. No changes in the operation shall be made, which would potentially increase emissions above that

determined by the most recent source test, until the new emission level has been estimated by calculation and the results reported to the Administrator.

- (4) All samples shall be analyzed and mercury emissions shall be determined within 30 days after the stack test. Each determination shall be reported to the Administrator by a registered letter dispatched within 15 calendar days following the date such determination is completed.
- (5) Records of emission test results and other data needed to determine total emissions shall be retained at the source and made available, for inspection by the Administrator, for a minimum of 2 years.
- (b) Mercury chlor-alkali plant—hydrogen and end-box ventilation gas streams. (1) Unless a waiver of emission testing is obtained under §61.13, each owner or operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to Method 102 and from end-box ventilation gas streams according to Method 101 of appendix B to this part. The emission test shall be performed—
- (i) Within 90 days of the effective date in the case of an existing source or a new source which has an initial startup date preceding the effective date; or
- (ii) Within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.
- (2) The Administrator shall be notified at least 30 days prior to an emission test, so that he may at his option observe the test.
- (3) Samples shall be taken over such a period or periods as are necessary to accurately determine the maximum emissions which will occur in a 24-hour period. No changes in the operation shall be made, which would potentially increase emissions above that determined by the most recent source test, until the new emission has been estimated by calculation and the results reported to the Administrator.
- (4) All samples shall be analyzed and mercury emissions shall be determined within 30 days after the stack test. Each determination shall be reported to the Administrator by a registered letter dispatched within 15 calendar days following the date such determination is completed.
- (5) Records of emission test results and other data needed to determine total emissions shall be retained at the source and made available, for inspection by the Administrator, for a minimum of 2 years.
- (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury chlor-alkali cells may test cell room emissions in accordance with paragraph (c)(2) of this section or demonstrate compliance with paragraph (c)(4) of this section and assume ventilation emissions of 1.3 kg/day (2.9 lb/day) of mercury.

- (2) Unless a waiver of emission testing is obtained under §61.13, each owner or operator shall pass all cell room air in force gas streams through stacks suitable for testing and shall test emissions from the source according to Method 101 in appendix B to this part. The emission test shall be performed—
- (i) Within 90 days of the effective date in the case of an existing source or a new source which has an initial startup date preceding the effective date; or
- (ii) Within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.
- (3) The Administrator shall be notified at least 30 days prior to an emission test, so that he may at his option observe the test.
- (4) An owner or operator may carry out approved design, maintenance, and housekeeping practices. A list of approved practices is provided in appendix A of "Review of National Emission Standards for Mercury," EPA-450/3-84-014a, December 1984. Copies are available from EPA's Central Docket Section, Docket item number A-84-41, III-B-1.
- (d) Sludge incineration and drying plants. (1) Unless a waiver of emission testing is obtained under §61.13, each owner or operator of a source subject to the standard in §61.52(b) shall test emissions from that source. Such tests shall be conducted in accordance with the procedures set forth either in paragraph (d) of this section or in §61.54.
- (2) Method 101A in appendix B to this part shall be used to test emissions as follows:
- (i) The test shall be performed within 90 days of the effective date of these regulations in the case of an existing source or a new source which has an initial startup date preceding the effective date.
- (ii) The test shall be performed within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.
- (3) The Administrator shall be notified at least 30 days prior to an emission test, so that he may at his option observe the test.
- (4) Samples shall be taken over such a period or periods as are necessary to determine accurately the maximum emissions which will occur in a 24-hour period. No changes shall be made in the operation which would potentially increase emissions above the level determined by the most recent stack test, until the new emission level has been estimated by calculation and the results reported to the Administrator.
- (5) All samples shall be analyzed and mercury emissions shall be determined within 30 days after the stack test. Each determination shall be reported to the Administrator by a

registered letter dispatched within 15 calendar days following the date such determination is completed.

(6) Records of emission test results and other data needed to determine total emissions shall be retained at the source and shall be made available, for inspection by the Administrator, for a minimum of 2 years.

[38 FR 8826, Apr. 6, 1973, as amended at 40 FR 48302, Oct. 14, 1975; 47 FR 24704, June 8, 1982; 50 FR 46294, Nov. 7, 1985; 52 FR 8726, Mar. 19, 1987; 65 FR 62151, Oct. 17, 2000]

## § 61.54 Sludge sampling.

- (a) As an alternative means for demonstrating compliance with §61.52(b), an owner or operator may use Method 105 of appendix B and the procedures specified in this section.
- (1) A sludge test shall be conducted within 90 days of the effective date of these regulations in the case of an existing source or a new source which has an initial startup date preceding the effective date; or
- (2) A sludge test shall be conducted within 90 days of startup in the case of a new source which did not have an initial startup date preceding the effective date.
- (b) The Administrator shall be notified at least 30 days prior to a sludge sampling test, so that he may at his option observe the test.
- (c) Sludge shall be sampled according to paragraph (c)(1) of this section, sludge charging rate for the plant shall be determined according to paragraph (c)(2) of this section, and the sludge analysis shall be performed according to paragraph (c)(3) of this section.
- (1) The sludge shall be sampled according to Method 105—Determination of Mercury in Wastewater Treatment Plant Sewage Sludges. A total of three composite samples shall be obtained within an operating period of 24 hours. When the 24-hour operating period is not continuous, the total sampling period shall not exceed 72 hours after the first grab sample is obtained. Samples shall not be exposed to any condition that may result in mercury contamination or loss.
- (2) The maximum 24-hour period sludge incineration or drying rate shall be determined by use of a flow rate measurement device that can measure the mass rate of sludge charged to the incinerator or dryer with an accuracy of  $\pm 5$  percent over its operating range. Other methods of measuring sludge mass charging rates may be used if they have received prior approval by the Administrator.
- (3) The sampling, handling, preparation, and analysis of sludge samples shall be accomplished according to Method 105 in appendix B of this part.

(d) The mercury emissions shall be determined by use of the following equation.

$$E_{Hg} = \frac{MQ F_{sm(avg)}}{1000}$$

where:

E<sub>Hg</sub>=Mercury emissions, g/day.

M=Mercury concentration of sludge on a dry solids basis, µg/g.

Q=Sludge changing rate, kg/day.

F<sub>sm</sub>=Weight fraction of solids in the collected sludge after mixing.

1000=Conversion factor, kg  $\mu$ g/g<sup>2</sup>.

- (e) No changes in the operation of a plant shall be made after a sludge test has been conducted which would potentially increase emissions above the level determined by the most recent sludge test, until the new emission level has been estimated by calculation and the results reported to the Administrator.
- (f) All sludge samples shall be analyzed for mercury content within 30 days after the sludge sample is collected. Each determination shall be reported to the Administrator by a registered letter dispatched within 15 calendar days following the date such determination is completed.
- (g) Records of sludge sampling, charging rate determination and other data needed to determine mercury content of wastewater treatment plant sludges shall be retained at the source and made available, for inspection by the Administrator, for a minimum of 2 years.

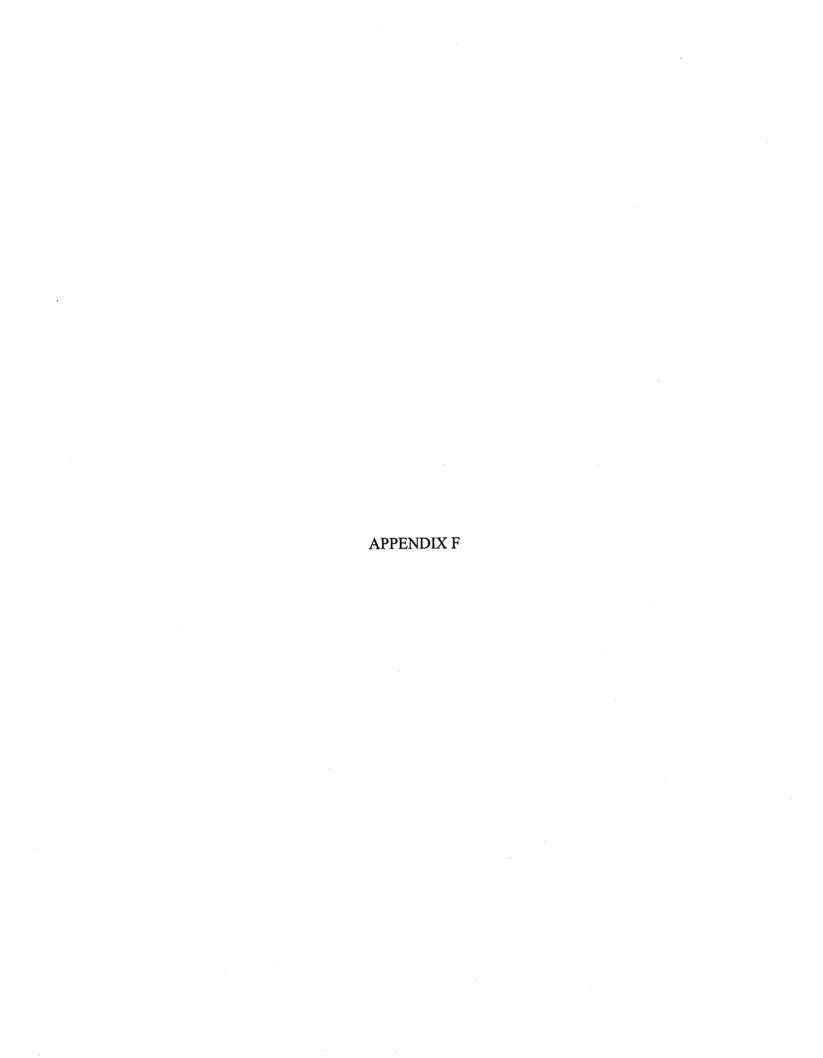
[40 FR 48303, Oct. 14, 1975, as amended at 49 FR 35770, Sept. 12, 1984; 52 FR 8727, Mar. 19, 1987; 53 FR 36972, Sept. 23, 1988]

## § 61.55 Monitoring of emissions and operations.

(a) Wastewater treatment plant sludge incineration and drying plants. All the sources for which mercury emissions exceed 1.6 kg (3.5 lb) per 24-hour period, demonstrated either by stack sampling according to §61.53 or sludge sampling according to §61.54, shall monitor mercury emissions at intervals of at least once per year by use of Method 105 of appendix B or the procedures specified in §61.53 (d) (2) and (4). The results of monitoring shall be reported and retained according to §61.53(d) (5) and (6) or §61.54 (f) and (g).

- (b) Mercury cell chlor-alkali plants—hydrogen and end-box ventilation gas streams. (1) The owner or operator of each mercury cell chlor-alkali plant shall, within 1 year of the date of publication of these amendments or within 1 year of startup for a plant with initial startup after the date of publication, perform a mercury emission test that demonstrates compliance with the emission limits in §61.52, on the hydrogen stream by Method 102 and on the end-box stream by Method 101 for the purpose of establishing limits for parameters to be monitored.
- (2) During tests specified in paragraph (b)(1) of this section, the following control device parameters shall be monitored, except as provided in paragraph (c) of this section, and recorded manually or automatically at least once every 15 minutes:
- (i) The exit gas temperature from uncontrolled streams;
- (ii) The outlet temperature of the gas stream for the final (i.e., the farthest downstream) cooling system when no control devices other than coolers and demisters are used;
- (iii) The outlet temperature of the gas stream from the final cooling system when the cooling system is followed by a molecular sieve or carbon adsorber;
- (iv) Outlet concentration of available chlorine, pH, liquid flow rate, and inlet gas temperature of chlorinated brine scrubbers and hypochlorite scrubbers;
- (v) The liquid flow rate and exit gas temperature for water scrubbers;
- (vi) The inlet gas temperature of carbon adsorption systems; and
- (vii) The temperature during the heating phase of the regeneration cycle for carbon adsorbers or molecular sieves.
- (3) The recorded parameters in paragraphs (b)(2)(i) through (b)(2)(vi) of this section shall be averaged over the test period (a minimum of 6 hours) to provide an average number. The highest temperature reading that is measured in paragraph (b)(2)(vii) of this section is to be identified as the reference temperature for use in paragraph (b)(6)(ii) of this section.
- (4)(i) Immediately following completion of the emission tests specified in paragraph (b)(1) of this section, the owner or operator of a mercury cell chlor-alkali plant shall monitor and record manually or automatically at least once per hour the same parameters specified in paragraphs (b)(2)(i) through (b)(2)(vi) of this section.
- (ii) Immediately following completion of the emission tests specified in paragraph (b)(1) of this section, the owner or operator shall monitor and record manually or automatically, during each heating phase of the regeneration cycle, the temperature specified in paragraph (b)(2)(vii) of this section.

- (5) Monitoring devices used in accordance with paragraphs (b)(2) and (b)(4) of this section shall be certified by their manufacturer to be accurate to within 10 percent, and shall be operated, maintained, and calibrated according to the manufacturer's instructions. Records of the certifications and calibrations shall be retained at the chlor-alkali plant and made available for inspection by the Administrator as follows: Certification, for as long as the device is used for this purpose; calibration for a minimum of 2 years.
- (6)(i) When the hourly value of a parameter monitored in accordance with paragraph (b)(4)(i) of this section exceeds, or in the case of liquid flow rate and available chlorine falls below the value of that same parameter determined in paragraph (b)(2) of this section for 24 consecutive hours, the Administrator is to be notified within the next 10 days.
- (ii) When the maximum hourly value of the temperature measured in accordance with paragraph (b)(4)(ii) of this section is below the reference temperature recorded according to paragraph (b)(3) of this section for three consecutive regeneration cycles, the Administrator is to be notified within the next 10 days.
- (7) Semiannual reports shall be submitted to the Administrator indicating the time and date on which the hourly value of each parameter monitored according to paragraphs (b)(4)(i) and (b)(4)(ii) of this section fell outside the value of that same parameter determined under paragraph (b)(3) of this section; and corrective action taken, and the time and date of the corrective action. Parameter excursions will be considered unacceptable operation and maintenance of the emission control system. In addition, while compliance with the emission limits is determined primarily by conducting a performance test according to the procedures in §61.53(b), reports of parameter excursions may be used as evidence in judging the duration of a violation that is determined by a performance test.
- (8) Semiannual reports required in paragraph (b)(7) of this section shall be submitted to the Administrator on September 15 and March 15 of each year. The first semiannual report is to be submitted following the first full 6 month reporting period. The semiannual report due on September 15 (March 15) shall include all excursions monitored through August 31 (February 28) of the same calendar year.
- (c) As an alternative to the monitoring, recordkeeping, and reporting requirements in paragraphs (b)(2) through (8) of this section, an owner or operator may develop and submit for the Administrator's review and approval a plant-specific monitoring plan. To be approved, such a plan must ensure not only compliance with the emission limits of §61.52(a) but also proper operation and maintenance of emissions control systems. Any site-specific monitoring plan submitted must, at a minimum, include the following:
- (1) Identification of the critical parameter or parameters for the hydrogen stream and for the end-box ventilation stream that are to be monitored and an explanation of why the critical parameter(s) selected is the best indicator of proper control system performance and of mercury emission rates.


- (2) Identification of the maximum or minimum value of each parameter (e.g., degrees temperature, concentration of mercury) that is not to be exceeded. The level(s) is to be directly correlated to the results of a performance test, conducted no more than 180 days prior to submittal of the plan, when the facility was in compliance with the emission limits of §61.52(a).
- (3) Designation of the frequency for recording the parameter measurements, with justification if the frequency is less than hourly. A longer recording frequency must be justified on the basis of the amount of time that could elapse during periods of process or control system upsets before the emission limits would be exceeded, and consideration is to be given to the time that would be necessary to repair the failure.
- (4) Designation of the immediate actions to be taken in the event of an excursion beyond the value of the parameter established in paragraph (c)(2) of this section.
- (5) Provisions for reporting, semiannually, parameter excursions and the corrective actions taken, and provisions for reporting within 10 days any significant excursion.
- (6) Identification of the accuracy of the monitoring device(s) or of the readings obtained.
- (7) Recordkeeping requirements for certifications and calibrations.
- (d) Mercury cell chlor-alkali plants—cell room ventilation system. (1) Stationary sources determining cell room emissions in accordance with §61.53(c)(4) shall maintain daily records of all leaks or spills of mercury. The records shall indicate the amount, location, time, and date the leaks or spills occurred, identify the cause of the leak or spill, state the immediate steps taken to minimize mercury emissions and steps taken to prevent future occurrences, and provide the time and date on which corrective steps were taken.
- (2) The results of monitoring shall be recorded, retained at the source, and made available for inspection by the Administrator for a minimum of 2 years.
- [52 FR 8727, Mar. 19, 1987, as amended at 65 FR 62151, Oct. 17, 2000]

# § 61.56 Delegation of authority.

- (a) In delegating implementation and enforcement authority to a State under section 112(d) of the Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State.
- (b) Authorities which will not be delegated to States: Sections 61.53(c)(4) and 61.55(d). The authorities not delegated to States listed are in addition to the authorities in the General Provisions, subpart A of 40 CFR part 61, that will not be delegated to States (§§61.04(b), 61.12(d)(1), and 61.13(h)(1)(ii)).

[52 FR 8728, Mar. 19, 1987]

|  | , |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |



# 40 CFR Part 61, Subpart V—National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

Source: 49 FR 23513, June 6, 1984, unless otherwise noted.

# § 61.240 Applicability and designation of sources.

- (a) The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart.
- (b) The provisions of this subpart apply to the sources listed in paragraph (a) after the date of promulgation of a specific subpart in part 61.
- (c) While the provisions of this subpart are effective, a source to which this subpart applies that is also subject to the provisions of 40 CFR part 60 only will be required to comply with the provisions of this subpart.
- (d) Alternative means of compliance —(1) Option to comply with part 65. Owners or operators may choose to comply with 40 CFR part 65 to satisfy the requirements of §§61.242–1 through 61.247 for equipment that is subject to this subpart and that is part of the same process unit. When choosing to comply with 40 CFR part 65, the requirements of §§61.245(d) and 61.246(i) and (j) still apply. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1.
- (2) Part 65, subpart C or F. For owners or operators choosing to comply with 40 CFR part 65, each surge control vessel and bottoms receiver subject to this subpart that meets the conditions specified in table 1 or table 2 of this subpart shall meet the requirements for storage vessels in 40 CFR part 65, subpart C; all other equipment subject to this subpart shall meet the requirements in 40 CFR part 65, subpart F.
- (3) Part 61, subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart C or F, must also comply with §§61.01, 61.02, 61.05 through 61.08, 61.10(b) through (d), 61.11, and 61.15 for that equipment. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph (d)(3) do not apply to owners or operators of equipment subject to this subpart complying with 40 CFR part 65, subpart C or F, except that provisions required to be met prior to implementing 40 CFR part 65 still apply. Owners and operators who choose to comply with 40 CFR part 65, subpart C or F, must comply with 40 CFR part 65, subpart A.
- (4) Rules referencing this subpart. Owners or operators referenced to this subpart from subpart F or J of this part may choose to comply with 40 CFR part 65 for all equipment listed in paragraph (a) of this section.

[49 FR 23513, June 6, 1984, as amended at 65 FR 78280, Dec. 14, 2000]

#### § 61.241 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act, in subpart A of part 61, or in specific subparts of part 61; and the following terms shall have specific meaning given them:

Bottoms receiver means a tank that collects distillation bottoms before the stream is sent for storage or for further downstream processing.

Closed-vent system means a system that is not open to atmosphere and that is composed of hard-piping, ductwork, connections, and, if necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device or back to a process.

Connector means flanged, screwed, welded, or other joined fittings used to connect two pipe lines or a pipe line and a piece of equipment. For the purpose of reporting and recordkeeping, connector means flanged fittings that are not covered by insulation or other materials that prevent location of the fittings.

Control device means an enclosed combustion device, vapor recovery system, or flare.

Double block and bleed system means two block valves connected in series with a bleed valve or line that can vent the line between the two block valves.

*Duct work* means a conveyance system such as those commonly used for heating and ventilation systems. It is often made of sheet metal and often has sections connected by screws or crimping. Hard-piping is not ductwork.

Equipment means each pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, valve, connector, surge control vessel, bottoms receiver in VHAP service, and any control devices or systems required by this subpart.

First attempt at repair means to take rapid action for the purpose of stopping or reducing leakage of organic material to atmosphere using best practices.

*In gas/vapor service* means that a piece of equipment contains process fluid that is in the gaseous state at operating conditions.

Fuel gas means gases that are combusted to derive useful work or heat.

Fuel gas system means the offsite and onsite piping and flow and pressure control system that gathers gaseous stream(s) generated by onsite operations, may blend them with other sources of gas, and transports the gaseous stream for use as fuel gas in combustion devices or in-process combustion equipment, such as furnaces and gas turbines, either singly or in combination.

Hard-piping means pipe or tubing that is manufactured and properly installed using good engineering judgement and standards such as ASME B31.3, Process Piping (available from the American Society of Mechanical Engineers, PO Box 2900, Fairfield, NJ 07007–2900).

In liquid service means that a piece of equipment is not in gas/vapor service.

*In-situ* sampling systems means nonextractive samplers or in-line samplers.

In vacuum service means that equipment is operating at an internal pressure which is at least 5 kilopascals (kPa) (0.7 psia) below ambient pressure.

In VHAP service means that a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight a volatile hazardous air pollutant (VHAP) as determined according to the provisions of §61.245(d). The provisions of §61.245(d) also specify how to determine that a piece of equipment is not in VHAP service.

In VOC service means, for the purposes of this subpart, that (a) the piece of equipment contains or contacts a process fluid that is at least 10 percent VOC by weight (see 40 CFR 60.2 for the definition of volatile organic compound or VOC and 40 CFR 60.485(d) to determine whether a piece of equipment is not in VOC service) and (b) the piece of equipment is not in heavy liquid service as defined in 40 CFR 60.481.

Maximum true vapor pressure means the equilibrium partial pressure exerted by the total VHAP in the stored or transferred liquid at the temperature equal to the highest calendar-month average of the liquid storage or transfer temperature for liquids stored or transferred above or below the ambient temperature or at the local maximum monthly average temperature as reported by the National Weather Service for liquids stored or transferred at the ambient temperature, as determined:

- (1) In accordance with methods described in American Petroleum Institute Publication 2517, Evaporative Loss From External Floating-Roof Tanks (incorporated by reference as specified in §61.18); or
- (2) As obtained from standard reference texts; or
- (3) As determined by the American Society for Testing and Materials Method D2879–83, Standard Test Method for Vapor Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids by Isoteniscope (incorporated by reference as specified in §61.18); or
- (4) Any other method approved by the Administrator.

Open-ended valve or line means any valve, except pressure relief valves, having one side of the valve seat in contact with process fluid and one side open to atmosphere, either directly or through open piping.

*Pressure release* means the emission of materials resulting from the system pressure being greater than the set pressure of the pressure relief device.

Process unit means equipment assembled to produce a VHAP or its derivatives as intermediates or final products, or equipment assembled to use a VHAP in the production of a product. A process unit can operate independently if supplied with sufficient feed or raw materials and sufficient product storage facilities.

*Process unit shutdown* means a work practice or operational procedure that stops production from a process unit or part of a process unit. An unscheduled work practice or operational procedure that stops production from a process unit or part of a process unit for less than 24 hours is not a process unit shutdown. The use of spare equipment and technically feasible bypassing of equipment without stopping production are not process unit shutdowns.

Repaired means that equipment is adjusted, or otherwise altered, to eliminate a leak.

Sampling connection system means an assembly of equipment within a process unit used during periods of representative operation to take samples of the process fluid. Equipment used to take non-routine grab samples is not considered a sampling connection system.

Semiannual means a 6-month period; the first semiannual period concludes on the last day of the last month during the 180 days following initial startup for new sources; and the first semiannual period concludes on the last day of the last full month during the 180 days after the effective date of a specific subpart that references this subpart for existing sources.

Sensor means a device that measures a physical quantity or the change in a physical quantity, such as temperature, pressure, flow rate, pH, or liquid level.

Stuffing box pressure means the fluid (liquid or gas) pressure inside the casing or housing of a piece of equipment, on the process side of the inboard seal.

Surge control vessel means feed drums, recycle drums, and intermediate vessels. Surge control vessels are used within a process unit when in-process storage, mixing, or management of flow rates of volumes is needed on a recurring or ongoing basis to assist in production of a product.

Volatile hazardous air pollutant or VHAP means a substance regulated under this part for which a standard for equipment leaks of the substance has been proposed and promulgated. Benzene is a VHAP. Vinyl chloride is a VHAP.

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 51 FR 34915, Sept. 30, 1986; 54 FR 38076, Sept. 14, 1989; 65 FR 62158, Oct. 17, 2000; 65 FR 78280, Dec. 14, 2000]

## § 61.242-1 Standards: General.

- (a) Each owner or operator subject to the provisions of this subpart shall demonstrate compliance with the requirements of §§61.242–1 to 61.242–11 for each new and existing source as required in 40 CFR 61.05, except as provided in §§61.243 and 61.244.
- (b) Compliance with this subpart will be determined by review of records, review of performance test results, and inspection using the methods and procedures specified in §61.245.
- (c)(1) An owner or operator may request a determination of alternative means of emission limitation to the requirements of §§61.242–2, 61.242–3, 61.242–5, 61.242–6, 61.242–7, 61.242–8, 61.242–9 and 61.242–11 as provided in §61.244.
- (2) If the Administrator makes a determination that a means of emission limitation is at least a permissible alternative to the requirements of §61.242–2, 61.242–3, 61.242–5, 61.242–6, 61.242–7, 61.242–8, 61.242–9 or 61.242–11, an owner or operator shall comply with the requirements of that determination.
- (d) Each piece of equipment to which this subpart applies shall be marked in such a manner that it can be distinguished readily from other pieces of equipment.
- (e) Equipment that is in vacuum service is excluded from the requirements of §61.242–2, to §61.242–11 if it is identified as required in §61.246(e)(5).

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984]

#### § 61.242-2 Standards: Pumps.

- (a)(1) Each pump shall be monitored monthly to detect leaks by the methods specified in §61.245(b), except as provided in §61.242–1(c) and paragraphs (d), (e), (f) and (g) of this section.
- (2) Each pump shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal.
- (b)(1) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.

- (2) If there are indications of liquids dripping from the pump seal, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (d) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraphs (a) and (b) of this section, provided the following requirements are met:
- (1) Each dual mechanical seal system is:
- (i) Operated with the barrier fluid at a pressure that is at all times greater than the pump stuffing box pressure; or
- (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of §61.242–11; or
- (iii) Equipped with a system that purges the barrier fluid into a process stream with zero VHAP emissions to atmosphere.
- (2) The barrier fluid is not in VHAP service and, if the pump is covered by standards under 40 CFR part 60, is not in VOC service.
- (3) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
- (4) Each pump is checked by visual inspection each calendar week for indications of liquids dripping from the pump seal.
- (i) If there are indications of liquid dripping from the pump seal at the time of the weekly inspection, the pump shall be monitored as specified in §61.245 to determine the presence of VOC and VHAP in the barrier fluid.
- (ii) If the monitor reading (taking into account any background readings) indicates the presence of VHAP, a leak is detected. For the purpose of this paragraph, the monitor may be calibrated with VHAP, or may employ a gas chromatography column to limit the response of the monitor to VHAP, at the option of the owner or operator.
- (iii) If an instrument reading of 10,000 ppm or greater (total VOC) is measured, a leak is detected.
- (5) Each sensor as described in paragraph (d)(3) of this section is checked daily or is equipped with an audible alarm.
- (6)(i) The owner or operator determines, based on design considerations and operating experience, criteria applicable to the presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or both.

- (ii) If indications of liquids dripping from the pump seal exceed the criteria established in paragraph (d)(6)(i) of this section, or if, based on the criteria established in paragraph (d)(6)(i) of this section, the sensor indicates failure of the seal system, the barrier fluid system, or both, a leak is detected.
- (iii) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (iv) A first attempt at repair shall be made no later than five calendar days after each leak is detected.
- (e) Any pump that is designated, as described in §61.246(e)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraphs (a), (c), and (d) if the pump:
- (1) Has no externally actuated shaft penetrating the pump housing,
- (2) Is demonstrated to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c), and
- (3) Is tested for compliance with paragraph (e)(2) initially upon designation, annually, and at other times requested by the Administrator.
- (f) If any pump is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal or seals to a process or fuel gas system or to a control device that complies with the requirements of §61.242–11, it is exempt from the requirements of paragraphs (a) through (e) of this section.
- (g) Any pump that is designated, as described in §61.246(f)(1), as an unsafe-to-monitor pump is exempt from the monitoring and inspection requirements of paragraphs (a) and (d)(4) through (6) of this section if:
- (1) The owner or operator of the pump demonstrates that the pump is unsafe-to-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and
- (2) The owner or operator of the pump has a written plan that requires monitoring of the pump as frequently as practicable during safe-to-monitor times but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in paragraph (c) of this section if a leak is detected.
- (h) Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (a)(2) and (d)(4) of this section, and the daily requirements of paragraph (d)(5) of this section, provided that each pump is visually inspected as often as practicable and at least monthly.
- [49 FR 23513, June 6, 1984, as amended at 49 FR 38946, Oct. 2, 1984; 55 FR 28349, July 10, 1990; 65 FR 78281, Dec. 14, 2000]

## § 61.242-3 Standards: Compressors.

- (a) Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to atmosphere, except as provided in §61.242–1(c) and paragraphs (h) and (i) of this section.
- (b) Each compressor seal system as required in paragraph (a) shall be:
- (1) Operated with the barrier fluid at a pressure that is greater than the compressor stuffing box pressure; or
- (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of §61.242–11; or
- (3) Equipped with a system that purges the barrier fluid into a process stream with zero VHAP emissions to atmosphere.
- (c) The barrier fluid shall not be in VHAP service and, if the compressor is covered by standards under 40 CFR part 60, shall not be in VOC service.
- (d) Each barrier fluid system as described in paragraphs (a)–(c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both.
- (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped with an audible alarm unless the compressor is located within the boundary of an unmanned plant site.
- (2) The owner or operator shall determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
- (f) If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined under paragraph (e)(2) of this section, a leak is detected.
- (g)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (2) A first attempt at repair shall be made no later than 5 calendar days after eack leak is detected.
- (h) A compressor is exempt from the requirements of paragraphs (a) and (b) of this section if it is equipped with a closed-vent system to capture and transport leakage from the compressor drive shaft back to a process or fuel gas system or to a control device that complies with the requirements of §61.242–11, except as provided in paragraph (i) of this section.
- (i) Any Compressor that is designated, as described in §61.246(e)(2), for no detectable emission as indicated by an instrument reading of less than 500 ppm above background is exempt from the requirements of paragraphs (a)–(h) if the compressor:
- (1) Is demonstrated to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c); and

(2) Is tested for compliance with paragraph (i)(1) initially upon designation, annually, and at other times requested by the Administrator.

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 65 FR 78281, Dec. 14, 2000]

#### § 61.242-4 Standards: Pressure relief devices in gas/vapor service.

- (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c).
- (b)(1) After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §61.242–10.
- (2) No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in §61.245(c).
- (c) Any pressure relief device that is routed to a process or fuel gas system or equipped with a closed-vent system capable of capturing and transporting leakage from the pressure relief device to a control device as described in §61.242–11 is exempt from the requirements of paragraphs (a) and (b) of this section.
- (d)(1) Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (a) and (b) of this section, provided the owner or operator complies with the requirements in paragraph (d)(2) of this section.
- (2) After each pressure release, a new rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §61.242–10.

[49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 65 FR 78281, Dec. 14, 2000]

#### § 61.242-5 Standards: Sampling connecting systems.

- (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed vent system, except as provided in §61.242–1(c). Gases displaced during filling of the sample container are not required to be collected or captured.
- (b) Each closed-purge, closed-loop, or closed vent system as required in paragraph (a) of this section shall comply with the requirements specified in paragraphs (b)(1) through (4) of this section:
- (1) Return the purged process fluid directly to the process line; or
- (2) Collect and recycle the purged process fluid; or

- (3) Be designed and operated to capture and transport all the purged process fluid to a control device that complies with the requirements of §61.242–11; or
- (4) Collect, store, and transport the purged process fluid to any of the following systems or facilities:
- (i) A waste management unit as defined in 40 CFR 63.111 if the waste management unit is subject to and operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater streams; or
- (ii) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266; or
- (iii) A facility permitted, licensed, or registered by a State to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261.
- (c) In-situ sampling systems and sampling systems without purges are exempt from the requirements of paragraphs (a) and (b) of this section.

[65 FR 78281, Dec. 14, 2000]

#### § 61.242-6 Standards: Open-ended valves or lines.

- (a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve, except as provided in §61.242–1(c).
- (2) The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring process fluid flow through the open-ended valve or line.
- (b) Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed.
- (c) When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) at all other times.
- (d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b) and (c) of this section.
- (e) Open-ended valves or lines containing materials which would autocatalytically polymerize or would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraphs (a) through (c) of this section.

[49 FR 23513, June 6, 1984, as amended at 65 FR 78282, Dec. 14, 2000]

#### § 61.242-7 Standards: Valves.

(a) Each valve shall be monitored monthly to detect leaks by the method specified in §61.245(b) and shall comply with paragraphs (b)–(e), except as provided in paragraphs (f), (g), and (h) of this section, §61.243–1 or §61.243–2, and §61.242–1(c).

- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) Any valve for which a leak is not detected for 2 successive months may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected.
- (2) If a leak is detected, the valve shall be monitored monthly until a leak is not detected for 2 successive months.
- (d)(1) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in §61.242–10.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (e) First attempts at repair include, but are not limited to, the following best practices where practicable:
- (1) Tightening of bonnet bolts;
- (2) Replacement of bonnet bolts;
- (3) Tightening of packing gland nuts; and
- (4) Injection of lubricant into lubricated packing.
- (f) Any valve that is designated, as described in §61.246(e)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraph (a) if the valve:
- (1) Has no external actuating mechanism in contact with the process fluid;
- (2) Is operated with emissions less than 500 ppm above background, as measured by the method specified in §61.245(c); and
- (3) Is tested for compliance with paragraph (f)(2) initially upon designation, annually, and at other times requested by the Administrator.
- (g) Any valve that is designated, as described in §61.246(f)(1), as an unsafe-to-monitor valve is exempt from the requirements of paragraph (a) if:
- (1) The owner or operator of the valve demonstrates that the valve is unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a); and
- (2) The owner or operator of the valve has a written plan that requires monitoring of the valve as frequent as practicable during safe-to-monitor times.
- (h) Any valve that is designated, as described in §61.246(f)(2), as a difficult-to-monitor valve is exempt from the requirements of paragraph (a) if:
- (1) The owner or operator of the valve demonstrates that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters above a support surface;

- (2) The process unit within which the valve is located is an existing process unit; and
- (3) The owner or operator of the valve follows a written plan that requires monitoring of the valve at least once per calendar year.

## § 61.242-8 Standards: Pressure relief services in liquid service and connectors.

- (a) If evidence of a potential leak is found by visual, audible, olfactory, or any other detection method at pressure relief devices in liquid service and connectors, the owner or operator shall follow either one of the following procedures, except as provided in §61.242–1(c):
- (1) The owner or operator shall monitor the equipment within 5 days by the method specified in §61.245(b) and shall comply with the requirements of paragraphs (b) through (d) of this section.
- (2) The owner or operator shall eliminate the visual, audible, olfactory, or other indication of a potential leak.
- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §61.242–10.
- (2) The first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (d) First attempts at repair include, but are not limited to, the best practices described under §61.242–7(e).
- [49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 65 FR 78282, Dec. 14, 2000]

#### § 61.242-9 Standards: Surge control vessels and bottoms receivers.

Each surge control vessel or bottoms receiver that is not routed back to the process and that meets the conditions specified in table 1 or table 2 of this subpart shall be equipped with a closed-vent system capable of capturing and transporting any leakage from the vessel back to the process or to a control device as described in §61.242–11, except as provided in §61.242–1(c); or comply with the requirements of 40 CFR 63.119(b) or (c).

[65 FR 78282, Dec. 14, 2000]

#### § 61.242-10 Standards: Delay of repair.

- (a) Delay of repair of equipment for which leaks have been detected will be allowed if repair within 15 days is technically infeasible without a process unit shutdown. Repair of this equipment shall occur before the end of the next process unit shutdown.
- (b) Delay of repair of equipment for which leaks have been detected will be allowed for equipment that is isolated from the process and that does not remain in VHAP service.
- (c) Delay of repair for valves will be allowed if:

- (1) The owner or operator demonstrates that emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and
- (2) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with §61.242–11.
- (d) Delay of repair for pumps will be allowed if:
- (1) Repair requires the use of a dual mechanical seal system that includes a barrier fluid system, and
- (2) Repair is completed as soon as practicable, but not later than 6 months after the leak was detected.
- (e) Delay of repair beyond a process unit shutdown will be allowed for a valve if valve assembly replacement is necessary during the process unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next process unit shutdown will not be allowed unless the next process unit shutdown occurs sooner than 6 months after the first process unit shutdown.

[49 FR 23513, June 6, 1984, as amended at 65 FR 78282, Dec. 14, 2000]

#### § 61.242-11 Standards: Closed-vent systems and control devices.

- (a) Owners or operators of closed-vent systems and control devices used to comply with provisions of this subpart shall comply with the provisions of this section, except as provided in §61.242–1(c).
- (b) Vapor recovery systems (for example, condensers and absorbers) shall be designed and operated to recover the organic vapors vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, whichever is less stringent.
- (c) Enclosed combustion devices shall be designed and operated to reduce the VHAP emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, on a dry basis, corrected to 3 percent oxygen, whichever is less stringent, or to provide a minimum residence time of 0.50 seconds at a minimum temperature of 760 °C.
- (d) Flares shall used to comply with this subpart shall comply with the requirements of §60.18.
- (e) Owners or operators of control devices that are used to comply with the provisions of this supbart shall monitor these control devices to ensure that they are operated and maintained in conformance with their design.
- (f) Except as provided in paragraphs (i) through (k) of this section, each closed vent system shall be inspected according to the procedures and schedule specified in paragraph (f)(1) or (2) of this section, as applicable.
- (1) If the vapor collection system or closed vent system is constructed of hard-piping, the owner or operator shall comply with the following requirements:
- (i) Conduct an initial inspection according to the procedures in §61.245(b); and

- (ii) Conduct annual visual inspections for visible, audible, or olfactory indications of leaks.
- (2) If the vapor collection system or closed vent system is constructed of ductwork, the owner or operator shall:
- (i) Conduct an initial inspection according to the procedures in §61.245(b); and
- (ii) Conduct annual inspections according to the procedures in §61.245(b).
- (g) Leaks, as indicated by an instrument reading greater than 500 parts per million by volume above background or by visual inspections, shall be repaired as soon as practicable except as provided in paragraph (h) of this section.
- (1) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.
- (2) Repair shall be completed no later than 15 calendar days after the leak is detected.
- (h) Delay of repair of a closed vent system for which leaks have been detected is allowed if the repair is technically infeasible without a process unit shutdown, or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be complete by the end of the next process unit shutdown.
- (i) If a vapor collection system or closed vent system is operated under a vacuum, it is exempt from the inspection requirements of paragraphs (f)(1)(i) and (2) of this section.
- (j) Any parts of the closed vent system that are designated, as described in paragraph (l)(1) of this section, as unsafe-to-inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (2) of this section if they comply with the following requirements:
- (1) The owner or operator determines that the equipment is unsafe-to-inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraph (f)(1)(i) or (2) of this section; and
- (2) The owner or operator has a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.
- (k) Any parts of the closed vent system that are designated, as described in paragraph (I)(2) of this section, as difficult-to-inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (2) of this section if they comply with the following requirements:
- (1) The owner or operator determines that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface; and
- (2) The owner or operator has a written plan that requires inspection of the equipment at least once every 5 years. A closed vent system is exempt from inspection if it is operated under a vacuum.
- (I) The owner or operator shall record the following information:

- (1) Identification of all parts of the closed vent system that are designated as unsafe-to-inspect, an explanation of why the equipment is unsafe-to-inspect, and the plan for inspecting the equipment.
- (2) Identification of all parts of the closed vent system that are designated as difficult-to-inspect, an explanation of why the equipment is difficult-to-inspect, and the plan for inspecting the equipment.
- (3) For each inspection during which a leak is detected, a record of the information specified in §61.246(c).
- (4) For each inspection conducted in accordance with §61.245(b) during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (5) For each visual inspection conducted in accordance with paragraph (f)(1)(ii) of this section during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (m) Closed vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.
- [49 FR 23513, June 6, 1984; 49 FR 38946, Oct. 2, 1984, as amended at 51 FR 2702, Jan. 21, 1986; 65 FR 62158, Oct. 17, 2000; 65 FR 78282, Dec. 14, 2000]

# § 61.243-1 Alternative standards for valves in VHAP service—allowable percentage of valves leaking.

- (a) An owner or operator may elect to have all valves within a process unit to comply with an allowable percentage of valves leaking of equal to or less than 2.0 percent.
- (b) The following requirements shall be met if an owner or operator decides to comply with an allowable percentage of valves leaking:
- (1) An owner or operator must notify the Administrator that the owner or operator has elected to have all valves within a process unit to comply with the allowable percentage of valves leaking before implementing this alternative standard, as specified in §61.247(d).
- (2) A performance test as specified in paragraph (c) of this section shall be conducted initially upon designation, annually, and at other times requested by the Administrator.
- (3) If a valve leak is detected, it shall be repaired in accordance with §61.242-7(d) and (e).
- (c) Performance tests shall be conducted in the following manner:
- (1) All valves in VHAP service within the process unit shall be monitored within 1 week by the methods specified in §61.245(b).
- (2) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (3) The leak percentage shall be determined by dividing the number of valves in VHAP service for which leaks are detected by the number of valves in VHAP service within the process unit.

- (d) Owner or operators who elect to have all valves comply with this alternative standard shall not have a process unit with a leak percentage greater than 2.0 percent.
- (e) If an owner or operator decides no longer to comply with §61.243–1, the owner or operator must notify the Administrator in writing that the work practice standard described in §61.242–7(a)-(e) will be followed.

# § 61.243-2 Alternative standards for valves in VHAP service—skip period leak detection and repair.

- (a)(1) An owner or operator may elect for all valves within a process unit to comply with one of the alternative work practices specified in paragraphs (b)(2) and (3) of this section.
- (2) An owner or operator must notify the Administrator before implementing one of the alternative work practices, as specified in §61.247(d).
- (b)(1) An owner or operator shall comply initially with the requirements for valves, as described in §61.242–7.
- (2) After 2 consecutive quarterly leak detection periods with the percentage of valves leaking equal to or less than 2.0, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves in VHAP service.
- (3) After five consecutive quarterly leak detection periods with the percentage of valves leaking equal to or less than 2.0, an owner or operator may begin to skip three of the quarterly leak detection periods for the valves in VHAP service.
- (4) If the percentage of valves leaking is greater than 2.0, the owner or operator shall comply with the requirements as described in §61.242–7 but may again elect to use this section.

[49 FR 23513, June 6, 1984, as amended at 65 FR 62158, Oct. 17, 2000]

## § 61.244 Alternative means of emission limitation.

- (a) Permission to use an alternative means of emission limitation under section 112(e)(3) of the Clean Air Act shall be governed by the following procedures:
- (b) Where the standard is an equipment, design, or operational requirement:
- (1) Each owner or operator applying for permission shall be responsible for collecting and verifying test data for an alternative means of emission limitation to test data for the equipment, design, and operational requirements.
- (2) The Administrator may condition the permission on requirements that may be necessary to assure operation and maintenance to achieve the same emission reduction as the equipment, design, and operational requirements.
- (c) Where the standard is a work practice:
- (1) Each owner or operator applying for permission shall be responsible for collecting and verifying test data for an alternative means of emission limitation.

- (2) For each source for which permission is requested, the emission reduction achieved by the required work practices shall be demonstrated for a minimum period of 12 months.
- (3) For each source for which permission is requested, the emission reduction achieved by the alternative means of emission limitation shall be demonstrated.
- (4) Each owner or operator applying for permission shall commit in writing each source to work practices that provide for emission reductions equal to or greater than the emission reductions achieved by the required work practices.
- (5) The Administrator will compare the demonstrated emission reduction for the alternative means of emission limitation to the demonstrated emission reduction for the required work practices and will consider the commitment in paragraph (c)(4).
- (6) The Administrator may condition the permission on requirements that may be necessary to assure operation and maintenance to achieve the same emission reduction as the required work practices of this subpart.
- (d) An owner or operator may offer a unique approach to demonstrate the alternative means of emission limitation.
- (e)(1) Manufacturers of equipment used to control equipment leaks of a VHAP may apply to the Administrator for permission for an alternative means of emission limitation that achieves a reduction in emissions of the VHAP achieved by the equipment, design, and operational requirements of this subpart.
- (2) The Administrator will grant permission according to the provisions of paragraphs (b), (c), and (d).

[49 FR 23513, June 6, 1984, as amended at 65 FR 62158, Oct. 17, 2000]

#### § 61.245 Test methods and procedures.

- (a) Each owner or operator subject to the provisions of this subpart shall comply with the test methods and procedures requirements provided in this section.
- (b) Monitoring, as required in §§61.242, 61.243, 61.244, and 61.135, shall comply with the following requirements:
- (1) Monitoring shall comply with Method 21 of appendix A of 40 CFR part 60.
- (2) The detection instrument shall meet the performance criteria of Method 21.
- (3) The instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21.
- (4) Calibration gases shall be:
- (i) Zero air (less than 10 ppm of hydrocarbon in air); and
- (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane.

- (5) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Method 21.
- (c) When equipment is tested for compliance with or monitored for no detectable emissions, the owner or operator shall comply with the following requirements:
- (1) The requirements of paragraphs (b) (1) through (4) shall apply.
- (2) The background level shall be determined, as set forth in Method 21.
- (3) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Method 21.
- (4) The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared with 500 ppm for determining compliance.
- (d)(1) Each piece of equipment within a process unit that can conceivably contain equipment in VHAP service is presumed to be in VHAP service unless an owner or operator demonstrates that the piece of equipment is not in VHAP service. For a piece of equipment to be considered not in VHAP service, it must be determined that the percent VHAP content can be reasonably expected never to exceed 10 percent by weight. For purposes of determining the percent VHAP content of the process fluid that is contained in or contacts equipment, procedures that conform to the methods described in ASTM Method D–2267 (incorporated by the reference as specified in §61.18) shall be used.
- (2)(i) An owner or operator may use engineering judgment rather than the procedures in paragraph (d)(1) of this section to demonstrate that the percent VHAP content does not exceed 10 percent by weight, provided that the engineering judgment demonstrates that the VHAP content clearly does not exceed 10 percent by weight. When an owner or operator and the Administrator do not agree on whether a piece of equipment is not in VHAP service, however, the procedures in paragraph (d)(1) of this section shall be used to resolve the disagreement.
- (ii) If an owner or operator determines that a piece of equipment is in VHAP service, the determination can be revised only after following the procedures in paragraph (d)(1) of this section.
- (3) Samples used in determining the percent VHAP content shall be representative of the process fluid that is contained in or contacts the equipment or the gas being combusted in the flare.
- (e)(1) Method 22 of appendix A of 40 CFR part 60 shall be used to determine compliance of flares with the visible emission provisions of this subpart.
- (2) The presence of a flare pilot flame shall be monitored using a thermocouple or any other equivalent device to detect the presence of a flame.
- (3) The net heating value of the gas being combusted in a flare shall be calculated using the following equation:

$$H_T = K \left( \sum_{i=1}^n C_i H_i \right)$$

#### Where:

 $H_T$ = Net heating value of the sample, MJ/scm (BTU/scf); where the net enthalpy per mole of offgas is based on combustion at 25 °C and 760 mm Hg (77 °F and 14.7 psi), but the standard temperature for determining the volume corresponding to one mole is 20 °C (68 °F).

K = conversion constant,  $1.740 \times 10^7$  (g-mole) (MJ)/(ppm-scm-kcal) (metric units); or  $4.674 \times 10^8$  ((g-mole) (Btu)/(ppm-scf-kcal)) (English units)

Ci = Concentration of sample component "i" in ppm, as measured by Method 18 of appendix A to 40 CFR part 60 and ASTM D2504–67, 77, or 88 (Reapproved 1993) (incorporated by reference as specified in §61.18).

H<sub>i</sub>= net heat of combustion of sample component "i" at 25 °C and 760 mm Hg (77 °F and 14.7 psi), kcal/g-mole. The heats of combustion may be determined using ASTM D2382–76 or 88 or D4809–95 (incorporated by reference as specified in §61.18) if published values are not available or cannot be calculated.

- (4) The actual exit velocity of a flare shall be determined by dividing the volumetric flowrate (in units of standard temperature and pressure), as determined by Method 2, 2A, 2C, or 2D, as appropriate, by the unobstructed (free) cross section area of the flare tip.
- (5) The maximum permitted velocity,  $V_{max}$ , for air-assisted flares shall be determined by the following equation:

$$V_{\text{max}} = K_1 + K_2 H_T$$

Where:

V<sub>max</sub>= Maximum permitted velocity, m/sec (ft/sec).

 $H_T$ = Net heating value of the gas being combusted, as determined in paragraph (e)(3) of this section, MJ/scm (Btu/scf).

K<sub>1</sub>= 8.706 m/sec (metric units)

= 28.56 ft/sec (English units)

 $K_2 = 0.7084 \text{ m}^4 / (\text{MJ-sec}) \text{ (metric units)}$ 

= 0.087 ft<sup>4</sup> /(Btu-sec) (English units)

[49 FR 23513, June 6, 1984, as amended at 49 FR 38946, Oct. 2, 1984; 49 FR 43647, Oct. 31, 1984; 53 FR 36972, Sept. 23, 1988; 54 FR 38077, Sept. 14, 1989; 65 FR 62158, Oct. 17, 2000]

# § 61.246 Recordkeeping requirements.

(a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.

- (2) An owner or operator of more than one process unit subject to the provisions of this subpart may comply with the recordkeeping requirements for these process units in one recordkeeping system if the system identifies each record by each process unit.
- (b) When each leak is detected as specified in §§61.242–2, 61.242–3, 61.242–7, 61.242–8, and 61.135, the following requirements apply:
- (1) A weatherproof and readily visible identification, marked with the equipment identification number, shall be attached to the leaking equipment.
- (2) The identification on a valve may be removed after it has been monitored for 2 successive months as specified in §61.242–7(c) and no leak has been detected during those 2 months.
- (3) The identification on equipment, except on a valve, may be removed after it has been repaired.
- (c) When each leak is detected as specified in §§61.242–2, 61.242–3. 61.242–7, 61.242–8, and 61.135, the following information shall be recorded in a log and shall be kept for 2 years in a readily accessible location:
- (1) The instrument and operator identification numbers and the equipment identification number.
- (2) The date the leak was detected and the dates of each attempt to repair the leak.
- (3) Repair methods applied in each attempt to repair the leak.
- (4) "Above 10,000" if the maximum instrument reading measured by the methods specified in §61.245(a) after each repair attempt is equal to or greater than 10,000 ppm.
- (5) "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
- (6) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown.
- (7) The expected date of successful repair of the leak if a leak is not repaired within 15 calendar days.
- (8) Dates of process unit shutdowns that occur while the equipment is unrepaired.
- (9) The date of successful repair of the leak.
- (d) The following information pertaining to the design requirements for closed-vent systems and control devices described in §61.242–11 shall be recorded and kept in a readily accessible location:
- (1) Detailed schematics, design specifications, and piping and instrumentation diagrams.
- (2) The dates and descriptions of any changes in the design specifications.

- (3) A description of the parameter or parameters monitored, as required in §61.242–11(e), to ensure that control devices are operated and maintained in conformance with their design and an explanation of why that parameter (or parameters) was selected for the monitoring.
- (4) Periods when the closed-vent systems and control devices required in §§61.242–2, 61.242–3, 61.242–4, 61.242–5 and 61.242–9 are not operated as designed, including periods when a flare pilot light does not have a flame.
- (5) Dates of startups and shutdowns of the closed-vent systems and control devices required in §§61.242–2, 61.242–3, 61.242–4, 61.242–5 and 61.242–9.
- (e) The following information pertaining to all equipment to which a standard applies shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for equipment (except welded fittings) subject to the requirements of this subpart.
- (2)(i) A list of identification numbers for equipment that the owner or operator elects to designate for no detectable emissions as indicated by an instrument reading of less than 500 ppm above background.
- (ii) The designation of this equipment for no detectable emissions shall be signed by the owner or operator.
- (3) A list of equipment identification numbers for pressure relief devices required to comply with §61.242–4(a).
- (4)(i) The dates of each compliance test required in §§61.242–2(e), 61.242–3(i), 61.242–4, 61.242–7(f), and 61.135(g).
- (ii) The background level measured during each compliance test.
- (iii) The maximum instrument reading measured at the equipment during each compliance test.
- (5) A list of identification numbers for equipment in vacuum service.
- (f) The following information pertaining to all valves subject to the requirements of §61.242–7(g) and (h) and to all pumps subject to the requirements of §61.242–2(g) shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for valves and pumps that are designated as unsafe to monitor, an explanation for each valve or pump stating why the valve or pump is unsafe to monitor, and the plan for monitoring each valve or pump.
- (2) A list of identification numbers for valves that are designated as difficult to monitor, an explanation for each valve stating why the valve is difficult to monitor, and the planned schedule for monitoring each valve.
- (g) The following information shall be recorded for valves complying with §61.243–2:
- (1) A schedule of monitoring.

- (2) The percent of valves found leaking during each monitoring period.
- (h) The following information shall be recorded in a log that is kept in a readily accessible location:
- (1) Design criterion required in §§61.242–2(d)(5), 61.242–3(e)(2), and 61.135(e)(4) and an explanation of the design criterion; and
- (2) Any changes to this criterion and the reasons for the changes.
- (i) The following information shall be recorded in a log that is kept in a readily accessible location for use in determining exemptions as provided in the applicability section of this subpart and other specific subparts:
- (1) An analysis demonstrating the design capacity of the process unit, and
- (2) An analysis demonstrating that equipment is not in VHAP service.
- (j) Information and data used to demonstrate that a piece of equipment is not in VHAP service shall be recorded in a log that is kept in a readily accessible location.

[49 FR 23513, June 6, 1984, as amended at 49 FR 38946, Oct. 2, 1984; 54 FR 38077, Sept. 14, 1989; 65 FR 78283, Dec. 14, 2000]

#### § 61.247 Reporting requirements.

- (a)(1) An owner or operator of any piece of equipment to which this subpart applies shall submit a statement in writing notifying the Administrator that the requirements of §§61.242, 61.245, 61.246, and 61.247 are being implemented.
- (2) In the case of an existing source or a new source which has an initial startup date preceding the effective date, the statement is to be submitted within 90 days of the effective date, unless a waiver of compliance is granted under §61.11, along with the information required under §61.10. If a waiver of compliance is granted, the statement is to be submitted on a date scheduled by the Administrator.
- (3) In the case of new sources which did not have an initial startup date preceding December 14, 2000, the statement required under paragraph (a)(1) of this section shall be submitted with the application for approval of construction, as described in §61.07.
- (4) For owners and operators complying with 40 CFR part 65, subpart C or F, the statement required under paragraph (a)(1) of this section shall notify the Administrator that the requirements of 40 CFR part 65, subpart C or F, are being implemented.
- (5) The statement is to contain the following information for each source:
- (i) Equipment identification number and process unit identification.
- (ii) Type of equipment (for example, a pump or pipeline valve).
- (iii) Percent by weight VHAP in the fluid at the equipment.

- (iv) Process fluid state at the equipment (gas/vapor or liquid).
- (v) Method of compliance with the standard (for example, "monthly leak detection and repair" or "equipped with dual mechanical seals").
- (b) A report shall be submitted to the Administrator semiannually starting 6 months after the initial report required in paragraph (a) of this section, that includes the following information:
- (1) Process unit identification.
- (2) For each month during the semiannual reporting period,
- (i) Number of valves for which leaks were detected as described in §61.242-7(b) of §61.243-2.
- (ii) Number of valves for which leaks were not repaired as required in §61.242–7(d).
- (iii) Number of pumps for which leaks were detected as described in §61.242-2 (b) and (d)(6).
- (iv) Number of pumps for which leaks were not repaired as required in §61.242-2 (c) and (d)(6).
- (v) Number of compressors for which leaks were detected as described in §61.242–3(f).
- (vi) Number of compressors for which leaks were not repaired as required in §61.242–3(g).
- (vii) The facts that explain any delay of repairs and, where appropriate, why a process unit shutdown was technically infeasible.
- (3) Dates of process unit shutdowns which occurred within the semiannual reporting period.
- (4) Revisions to items reported according to paragraph (a) if changes have occurred since the initial report or subsequent revisions to the initial report.

Note: Compliance with the requirements of §61.10(c) is not required for revisions documented under this paragraph.

- (5) The results of all performance tests and monitoring to determine compliance with no detectable emissions and with §§61.243–1 and 61.243–2 conducted within the semiannual reporting period.
- (c) In the first report submitted as required in paragraph (a) of this section, the report shall include a reporting schedule stating the months that semiannual reports shall be submitted. Subsequent reports shall be submitted according to that schedule, unless a revised schedule has been submitted in a previous semiannual report.
- (d) An owner or operator electing to comply with the provisions of §§61.243–1 and 61.243–2 shall notify the Administrator of the alternative standard selected 90 days before implementing either of the provisions.
- (e) An application for approval of construction or modification, §§61.05(a) and 61.07, will not be required if—
- (1) The new source complies with the standard, §61.242;

- (2) The new source is not part of the construction of a process unit; and
- (3) In the next semiannual report required by paragraph (b) of this section, the information in paragraph (a)(5) of this section is reported.
- (f) For owners or operators choosing to comply with 40 CFR part 65, subpart C or F, an application for approval of construction or modification, as required under §§61.05 and 61.07 will not be required if:
- (1) The new source complies with 40 CFR 65.106 through 65.115 and with 40 CFR part 65, subpart C, for surge control vessels and bottoms receivers;
- (2) The new source is not part of the construction of a process unit; and
- (3) In the next semiannual report required by 40 CFR 65.120(b) and 65.48(b), the information in paragraph (a)(5) of this section is reported.

[49 FR 23513, June 6, 1984, as amended at 49 FR 38947, Oct. 2, 1984; 54 FR 38077, Sept. 14, 1989; 65 FR 78283, Dec. 14, 2000]

Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources

| Vessel capacity<br>(cubic meters) | Vapor<br>pressure <sup>1</sup><br>(kilopascals) |  |  |
|-----------------------------------|-------------------------------------------------|--|--|
| 75 ≤ capacity < 151               | ≥ 13.1                                          |  |  |
| 151 ≤ capacity                    | ≥ 5.2                                           |  |  |

<sup>&</sup>lt;sup>1</sup>Maximum true vapor pressure as defined in §61.241.


[65 FR 78283, Dec. 14, 2000]

Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources

| Vessel capacity<br>(cubic meters) | Vapor<br>pressure <sup>1</sup><br>(kilopascals) |  |  |
|-----------------------------------|-------------------------------------------------|--|--|
| 38 ≤ capacity < 151               | ≥ 13.1                                          |  |  |
| 151 ≤ capacity                    | ≥ 0.7                                           |  |  |

<sup>&</sup>lt;sup>1</sup>Maximum true vapor pressure as defined in §61.241.

[65 FR 78283, Dec. 14, 2000]



# 40 CFR Part 61, Subpart FF-National Emission Standard for Benzene Waste Operations

Source: 55 FR 8346, Mar. 7, 1990, unless otherwise noted.

# § 61.340 Applicability.

- (a) The provisions of this subpart apply to owners and operators of chemical manufacturing plants, coke by-product recovery plants, and petroleum refineries.
- (b) The provisions of this subpart apply to owners and operators of hazardous waste treatment, storage, and disposal facilities that treat, store, or dispose of hazardous waste generated by any facility listed in paragraph (a) of this section. The waste streams at hazardous waste treatment, storage, and disposal facilities subject to the provisions of this subpart are the benzene-containing hazardous waste from any facility listed in paragraph (a) of this section. A hazardous waste treatment, storage, and disposal facility is a facility that must obtain a hazardous waste management permit under subtitle C of the Solid Waste Disposal Act.
- (c) At each facility identified in paragraph (a) or (b) of this section, the following waste is exempt from the requirements of this subpart:
- (1) Waste in the form of gases or vapors that is emitted from process fluids:
- (2) Waste that is contained in a segregated stormwater sewer system.
- (d) At each facility identified in paragraph (a) or (b) of this section, any gaseous stream from a waste management unit, treatment process, or wastewater treatment system routed to a fuel gas system, as defined in §61.341, is exempt from this subpart. No testing, monitoring, recordkeeping, or reporting is required under this subpart for any gaseous stream from a waste management unit, treatment process, or wastewater treatment unit routed to a fuel gas system.

[55 FR 8346, Mar. 7, 1990, as amended at 55 FR 37231, Sept. 10, 1990; 58 FR 3095, Jan. 7, 1993; 67 FR 68531, Nov. 12, 2002]

# § 61.341 Definitions.

Benzene concentration means the fraction by weight of benzene in a waste as determined in accordance with the procedures specified in §61.355 of this subpart.

Car-seal means a seal that is placed on a device that is used to change the position of a valve (e.g., from opened to closed) in such a way that the position of the valve cannot be changed without breaking the seal.

Chemical manufacturing plant means any facility engaged in the production of chemicals by chemical, thermal, physical, or biological processes for use as a product, co-product, by-product, or intermediate including but not limited to industrial organic chemicals, organic pesticide products, pharmaceutical preparations, paint and allied products, fertilizers, and agricultural

chemicals. Examples of chemical manufacturing plants include facilities at which process units are operated to produce one or more of the following chemicals: benzenesulfonic acid, benzene, chlorobenzene, cumene, cyclohexane, ethylene, ethylbenzene, hydroquinone, linear alklylbenzene, nitrobenzene, resorcinol, sulfolane, or styrene.

Closed-vent system means a system that is not open to the atmosphere and is composed of piping, ductwork, connections, and, if necessary, flow inducing devices that transport gas or vapor from an emission source to a control device.

Coke by-product recovery plant means any facility designed and operated for the separation and recovery of coal tar derivatives (by-products) evolved from coal during the coking process of a coke oven battery.

Container means any portable waste management unit in which a material is stored, transported, treated, or otherwise handled. Examples of containers are drums, barrels, tank trucks, barges, dumpsters, tank cars, dump trucks, and ships.

Control device means an enclosed combustion device, vapor recovery system, or flare.

Cover means a device or system which is placed on or over a waste placed in a waste management unit so that the entire waste surface area is enclosed and sealed to minimize air emissions. A cover may have openings necessary for operation, inspection, and maintenance of the waste management unit such as access hatches, sampling ports, and gauge wells provided that each opening is closed and sealed when not in use. Example of covers include a fixed roof installed on a tank, a lid installed on a container, and an air-supported enclosure installed over a waste management unit.

External floating roof means a pontoon-type or double-deck type cover with certain rim sealing mechanisms that rests on the liquid surface in a waste management unit with no fixed roof.

Facility means all process units and product tanks that generate waste within a stationary source, and all waste management units that are used for waste treatment, storage, or disposal within a stationary source.

Fixed roof means a cover that is mounted on a waste management unit in a stationary manner and that does not move with fluctuations in liquid level.

Floating roof means a cover with certain rim sealing mechanisms consisting of a double deck, pontoon single deck, internal floating cover or covered floating roof, which rests upon and is supported by the liquid being contained, and is equipped with a closure seal or seals to close the space between the roof edge and unit wall.

Flow indicator means a device which indicates whether gas flow is present in a line or vent system.

Fuel gas system means the offsite and onsite piping and control system that gathers gaseous streams generated by facility operations, may blend them with sources of gas, if available, and transports the blended gaseous fuel at suitable pressures for use as fuel in heaters, furnaces, boilers, incinerators, gas turbines, and other combustion devices located within or outside the facility. The fuel is piped directly to each individual combustion device, and the system typically operates at pressures over atmospheric.

Individual drain system means the system used to convey waste from a process unit, product storage tank, or waste management unit to a waste management unit. The term includes all process drains and common junction boxes, together with their associated sewer lines and other junction boxes, down to the receiving waste management unit.

Internal floating roof means a cover that rests or floats on the liquid surface inside a waste management unit that has a fixed roof.

Liquid-mounted seal means a foam or liquid-filled primary seal mounted in contact with the liquid between the waste management unit wall and the floating roof continuously around the circumference.

Loading means the introduction of waste into a waste management unit but not necessarily to complete capacity (also referred to as filling).

Maximum organic vapor pressure means the equilibrium partial pressure exerted by the waste at the temperature equal to the highest calendar-month average of the waste storage temperature for waste stored above or below the ambient temperature or at the local maximum monthly average temperature as reported by the National Weather Service for waste stored at the ambient temperature, as determined:

- (1) In accordance with §60.17(c); or
- (2) As obtained from standard reference texts; or
- (3) In accordance with §60.17(a)(37); or
- (4) Any other method approved by the Administrator.

No detectable emissions means less than 500 parts per million by volume (ppmv) above background levels, as measured by a detection instrument reading in accordance with the procedures specified in §61.355(h) of this subpart.

Oil-water separator means a waste management unit, generally a tank or surface impoundment, used to separate oil from water. An oil-water separator consists of not only the separation unit but also the forebay and other separator basins, skimmers, weirs, grit chambers, sludge hoppers, and bar screens that are located directly after the individual drain system and prior to additional treatment units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an

oil-water separator incude an API separator, parallel-plate interceptor, and corrugated-plate interceptor with the associated ancillary equipment.

Petroleum refinery means any facility engaged in producing gasoline, kerosene, distillate fuel oils, residual fuel oils, lubricants, or other products through the distillation of petroleum, or through the redistillation, cracking, or reforming of unfinished petroleum derivatives.

Petroleum means the crude oil removed from the earth and the oils derived from tar sands, shale, and coal.

Point of waste generation means the location where the waste stream exits the process unit component or storage tank prior to handling or treatment in an operation that is not an integral part of the production process, or in the case of waste management units that generate new wastes after treatment, the location where the waste stream exits the waste management unit component.

*Process unit* means equipment assembled and connected by pipes or ducts to produce intermediate or final products. A process unit can be operated independently if supplied with sufficient fuel or raw materials and sufficient product storage facilities.

Process unit turnaround means the shutting down of the operations of a process unit, the purging of the contents of the process unit, the maintenance or repair work, followed by restarting of the process.

Process unit turnaround waste means a waste that is generated as a result of a process unit turnaround.

Process wastewater means water which comes in contact with benzene during manufacturing or processing operations conducted within a process unit. Process wastewater is not organic wastes, process fluids, product tank drawdown, cooling tower blowdown, steam trap condensate, or landfill leachate.

*Process wastewater stream* means a waste stream that contains only process wastewater.

Product tank means a stationary unit that is designed to contain an accumulation of materials that are fed to or produced by a process unit, and is constructed primarily of non-earthen materials (e.g., wood, concrete, steel, plastic) which provide structural support.

Product tank drawdown means any material or mixture of materials discharged from a product tank for the purpose of removing water or other contaminants from the product tank.

Safety device means a closure device such as a pressure relief valve, frangible disc, fusible plug, or any other type of device which functions exclusively to prevent physical damage or permanent deformation to a unit or its air emission control equipment by venting gases or vapors directly to the atmosphere during unsafe conditions resulting from an unplanned, accidental, or emergency event. For the purpose of this subpart, a safety device is not used for routine venting of gases or

vapors from the vapor headspace underneath a cover such as during filling of the unit or to adjust the pressure in this vapor headspace in response to normal daily diurnal ambient temperature fluctuations. A safety device is designed to remain in a closed position during normal operations and open only when the internal pressure, or another relevant parameter, exceeds the device threshold setting applicable to the air emission control equipment as determined by the owner or operator based on manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, ignitable, explosive, reactive, or hazardous materials.

Segregated stormwater sewer system means a drain and collection system designed and operated for the sole purpose of collecting rainfall runoff at a facility, and which is segregated from all other individual drain systems.

Sewer line means a lateral, trunk line, branch line, or other enclosed conduit used to convey waste to a downstream waste management unit.

Slop oil means the floating oil and solids that accumulate on the surface of an oil-water separator.

Sour water stream means a stream that:

- (1) Contains ammonia or sulfur compounds (usually hydrogen sulfide) at concentrations of 10 ppm by weight or more;
- (2) Is generated from separation of water from a feed stock, intermediate, or product that contained ammonia or sulfur compounds; and
- (3) Requires treatment to remove the ammonia or sulfur compounds.

Sour water stripper means a unit that:

- (1) Is designed and operated to remove ammonia or sulfur compounds (usually hydrogen sulfide) from sour water streams;
- (2) Has the sour water streams transferred to the stripper through hard piping or other enclosed system; and
- (3) Is operated in such a manner that the offgases are sent to a sulfur recovery unit, processing unit, incinerator, flare, or other combustion device.

Surface impoundment means a waste management unit which is a natural topographic depression, man-made excavation, or diked area formed primarily of earthen materials (although it may be lined with man-made materials), which is designed to hold an accumulation of liquid wastes or waste containing free liquids, and which is not an injection well. Examples of surface impoundments are holding, storage, settling, and aeration pits, ponds, and lagoons.

Tank means a stationary waste management unit that is designed to contain an accumulation of waste and is constructed primarily of nonearthen materials (e.g., wood, concrete, steel, plastic) which provide structural support.

Treatment process means a stream stripping unit, thin-film evaporation unit, waste incinerator, or any other process used to comply with §61.348 of this subpart.

Vapor-mounted seal means a foam-filled primary seal mounted continuously around the perimeter of a waste management unit so there is an annular vapor space underneath the seal. The annular vapor space is bounded by the bottom of the primary seal, the unit wall, the liquid surface, and the floating roof.

Waste means any material resulting from industrial, commercial, mining or agricultural operations, or from community activities that is discarded or is being accumulated, stored, or physically, chemically, thermally, or biologically treated prior to being discarded, recycled, or discharged.

Waste management unit means a piece of equipment, structure, or transport mechanism used in handling, storage, treatment, or disposal of waste. Examples of a waste management unit include a tank, surface impoundment, container, oil-water separator, individual drain system, steam stripping unit, thin-film evaporation unit, waste incinerator, and landfill.

Waste stream means the waste generated by a particular process unit, product tank, or waste management unit. The characteristics of the waste stream (e.g., flow rate, benzene concentration, water content) are determined at the point of waste generation. Examples of a waste stream include process wastewater, product tank drawdown, sludge and slop oil removed from waste management units, and landfill leachate.

Wastewater treatment system means any component, piece of equipment, or installation that receives, manages, or treats process wastewater, product tank drawdown, or landfill leachate prior to direct or indirect discharge in accordance with the National Pollutant Discharge Elimination System permit regulations under 40 CFR part 122. These systems typically include individual drain systems, oil-water separators, air flotation units, equalization tanks, and biological treatment units.

Water seal controls means a seal pot, p-leg trap, or other type of trap filled with water (e.g., flooded sewers that maintain water levels adequate to prevent air flow through the system) that creates a water barrier between the sewer line and the atmosphere. The water level of the seal must be maintained in the vertical leg of a drain in order to be considered a water seal.

[55 FR 8346, Mar. 7, 1990; 55 FR 12444, Apr. 3, 1990, as amended at 58 FR 3095, Jan. 7, 1993; 67 FR 68531, Nov. 12, 2002]

### § 61.342 Standards: General.

- (a) An owner or operator of a facility at which the total annual benzene quantity from facility waste is less than 10 megagrams per year (Mg/yr) (11 ton/yr) shall be exempt from the requirements of paragraphs (b) and (c) of this section. The total annual benzene quantity from facility waste is the sum of the annual benzene quantity for each waste stream at the facility that has a flow-weighted annual average water content greater than 10 percent or that is mixed with water, or other wastes, at any time and the mixture has an annual average water content greater than 10 percent. The benzene quantity in a waste stream is to be counted only once without multiple counting if other waste streams are mixed with or generated from the original waste stream. Other specific requirements for calculating the total annual benzene waste quantity are as follows:
- (1) Wastes that are exempted from control under §§61.342(c)(2) and 61.342(c)(3) are included in the calculation of the total annual benzene quantity if they have an annual average water content greater than 10 percent, or if they are mixed with water or other wastes at any time and the mixture has an annual average water content greater than 10 percent.
- (2) The benzene in a material subject to this subpart that is sold is included in the calculation of the total annual benzene quantity if the material has an annual average water content greater than 10 percent.
- (3) Benzene in wastes generated by remediation activities conducted at the facility, such as the excavation of contaminated soil, pumping and treatment of groundwater, and the recovery of product from soil or groundwater, are not included in the calculation of total annual benzene quantity for that facility. If the facility's total annual benzene quantity is 10 Mg/yr (11 ton/yr) or more, wastes generated by remediation activities are subject to the requirements of paragraphs (c) through (h) of this section. If the facility is managing remediation waste generated offsite, the benzene in this waste shall be included in the calculation of total annual benzene quantity in facility waste, if the waste streams have an annual average water content greater than 10 percent, or if they are mixed with water or other wastes at any time and the mixture has an annual average water content greater than 10 percent.
- (4) The total annual benzene quantity is determined based upon the quantity of benzene in the waste before any waste treatment occurs to remove the benzene except as specified in §61.355(c)(1)(i) (A) through (C).
- (b) Each owner or operator of a facility at which the total annual benzene quantity from facility waste is equal to or greater than 10 Mg/yr (11 ton/yr) as determined in paragraph (a) of this section shall be in compliance with the requirements of paragraphs (c) through (h) of this section no later than 90 days following the effective date, unless a waiver of compliance has been obtained under §61.11, or by the initial startup for a new source with an initial startup after the effective date.
- (1) The owner or operator of an existing source unable to comply with the rule within the required time may request a waiver of compliance under §61.10.

- (2) As part of the waiver application, the owner or operator shall submit to the Administrator a plan under §61.10(b)(3) that is an enforceable commitment to obtain environmental benefits to mitigate the benzene emissions that result from extending the compliance date. The plan shall include the following information:
- (i) A description of the method of compliance, including the control approach, schedule for installing controls, and quantity of the benzene emissions that result from extending the compliance date;
- (ii) If the control approach involves a compliance strategy designed to obtain integrated compliance with multiple regulatory requirements, a description of the other regulations involved and their effective dates; and
- (iii) A description of the actions to be taken at the facility to obtain mitigating environmental benefits, including how the benefits will be obtained, the schedule for these actions, and an estimate of the quantifiable benefits that directly result from these actions.
- (c) Each owner or operator of a facility at which the total annual benzene quantity from facility waste is equal to or greater than 10 Mg/yr (11 ton/yr) as determined in paragraph (a) of this section shall manage and treat the facility waste as follows:
- (1) For each waste stream that contains benzene, including (but not limited to) organic waste streams that contain less than 10 percent water and aqueous waste streams, even if the wastes are not discharged to an individual drain system, the owner or operator shall:
- (i) Remove or destroy the benzene contained in the waste using a treatment process or wastewater treatment system that complies with the standards specified in §61.348 of this subpart.
- (ii) Comply with the standards specified in §§61.343 through 61.347 of this subpart for each waste management unit that receives or manages the waste stream prior to and during treatment of the waste stream in accordance with paragraph (c)(1)(i) of this section.
- (iii) Each waste management unit used to manage or treat waste streams that will be recycled to a process shall comply with the standards specified in §§61.343 through 61.347. Once the waste stream is recycled to a process, including to a tank used for the storage of production process feed, product, or product intermediates, unless this tank is used primarily for the storage of wastes, the material is no longer subject to paragraph (c) of this section.
- (2) A waste stream is exempt from paragraph (c)(1) of this section provided that the owner or operator demonstrates initially and, thereafter, at least once per year that the flow-weighted annual average benzene concentration for the waste stream is less than 10 ppmw as determined by the procedures specified in §61.355(c)(2) or §61.355(c)(3).

- (3) A waste stream is exempt from paragraph (c)(1) of this section provided that the owner or operator demonstrates initially and, thereafter, at least once per year that the conditions specified in either paragraph (c)(3)(i) or (c)(3)(ii) of this section are met.
- (i) The waste stream is process wastewater that has a flow rate less than 0.02 liters per minute (0.005 gallons per minute) or an annual wastewater quantity of less than 10 Mg/yr (11 ton/yr); or
- (ii) All of the following conditions are met:
- (A) The owner or operator does not choose to exempt process wastewater under paragraph (c)(3)(i) of this section,
- (B) The total annual benzene quantity in all waste streams chosen for exemption in paragraph (c)(3)(ii) of this section does not exceed 2.0 Mg/yr (2.2 ton/yr) as determined in the procedures in §61.355(j), and
- (C) The total annual benzene quantity in a waste stream chosen for exemption, including process unit turnaround waste, is determined for the year in which the waste is generated.
- (d) As an alternative to the requirements specified in paragraphs (c) and (e) of this section, an owner or operator of a facility at which the total annual benzene quantity from facility waste is equal to or greater than 10 Mg/yr (11 ton/yr) as determined in paragraph (a) of this section may elect to manage and treat the facility waste as follows:
- (1) The owner or operator shall manage and treat facility waste other than process wastewater in accordance with the requirements of paragraph (c)(1) of this section.
- (2) The owner or operator shall manage and treat process wastewater in accordance with the following requirements:
- (i) Process wastewater shall be treated to achieve a total annual benzene quantity from facility process wastewater less than 1 Mg/yr (1.1 ton/yr). Total annual benzene from facility process wastewater shall be determined by adding together the annual benzene quantity at the point of waste generation for each untreated process wastewater stream plus the annual benzene quantity exiting the treatment process for each process wastewater stream treated in accordance with the requirements of paragraph (c)(1)(i) of this section.
- (ii) Each treated process wastewater stream identified in paragraph (d)(2)(i) of this section shall be managed and treated in accordance with paragraph (c)(1) of this section.
- (iii) Each untreated process wastewater stream identified in paragraph (d)(2)(i) of this section is exempt from the requirements of paragraph (c)(1) of this section.
- (e) As an alternative to the requirements specified in paragraphs (c) and (d) of this section, an owner or operator of a facility at which the total annual benzene quantity from facility waste is

equal to or greater than 10 Mg/yr (11 ton/yr) as determined in paragraph (a) of this section may elect to manage and treat the facility waste as follows:

- (1) The owner or operator shall manage and treat facility waste with a flow-weighted annual average water content of less than 10 percent in accordance with the requirements of paragraph (c)(1) of this section; and
- (2) The owner or operator shall manage and treat facility waste (including remediation and process unit turnaround waste) with a flow-weighted annual average water content of 10 percent or greater, on a volume basis as total water, and each waste stream that is mixed with water or wastes at any time such that the resulting mixture has an annual water content greater than 10 percent, in accordance with the following:
- (i) The benzene quantity for the wastes described in paragraph (e)(2) of this section must be equal to or less than 6.0 Mg/yr (6.6 ton/yr), as determined in §61.355(k). Wastes as described in paragraph (e)(2) of this section that are transferred offsite shall be included in the determination of benzene quantity as provided in §61.355(k). The provisions of paragraph (f) of this section shall not apply to any owner or operator who elects to comply with the provisions of paragraph (e) of this section.
- (ii) The determination of benzene quantity for each waste stream defined in paragraph (e)(2) of this section shall be made in accordance with §61.355(k).
- (f) Rather than treating the waste onsite, an owner or operator may elect to comply with paragraph (c)(1)(i) of this section by transferring the waste offsite to another facility where the waste is treated in accordance with the requirements of paragraph (c)(1)(i) of this section. The owner or operator transferring the waste shall:
- (1) Comply with the standards specified in §§61.343 through 61.347 of this subpart for each waste management unit that receives or manages the waste prior to shipment of the waste offsite.
- (2) Include with each offsite waste shipment a notice stating that the waste contains benzene which is required to be managed and treated in accordance with the provisions of this subpart.
- (g) Compliance with this subpart will be determined by review of facility records and results from tests and inspections using methods and procedures specified in §61.355 of this subpart.
- (h) Permission to use an alternative means of compliance to meet the requirements of §§61.342 through 61.352 of this subpart may be granted by the Administrator as provided in §61.353 of this subpart.
- [55 FR 8346, Mar. 7, 1990, as amended at 58 FR 3095, Jan. 7, 1993; 65 FR 62159, 62160, Oct. 17, 2000]

### § 61.343 Standards: Tanks.

- (a) Except as provided in paragraph (b) of this section and in §61.351, the owner or operator must meet the standards in paragraph (a)(1) or (2) of this section for each tank in which the waste stream is placed in accordance with §61.342 (c)(1)(ii). The standards in this section apply to the treatment and storage of the waste stream in a tank, including dewatering.
- (1) The owner or operator shall install, operate, and maintain a fixed-roof and closed-vent system that routes all organic vapors vented from the tank to a control device.
- (i) The fixed-roof shall meet the following requirements:
- (A) The cover and all openings (e.g., access hatches, sampling ports, and gauge wells) shall be designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart.
- (B) Each opening shall be maintained in a closed, sealed position (e.g., covered by a lid that is gasketed and latched) at all times that waste is in the tank except when it is necessary to use the opening for waste sampling or removal, or for equipment inspection, maintenance, or repair.
- (C) If the cover and closed-vent system operate such that the tank is maintained at a pressure less than atmospheric pressure, then paragraph (a)(1)(i)(B) of this section does not apply to any opening that meets all of the following conditions:
- (1) The purpose of the opening is to provide dilution air to reduce the explosion hazard;
- (2) The opening is designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h); and
- (3) The pressure is monitored continuously to ensure that the pressure in the tank remains below atmospheric pressure.
- (ii) The closed-vent system and control device shall be designed and operated in accordance with the requirements of §61.349 of this subpart.
- (2) The owner or operator must install, operate, and maintain an enclosure and closed-vent system that routes all organic vapors vented from the tank, located inside the enclosure, to a control device in accordance with the requirements specified in paragraph (e) of this section.
- (b) For a tank that meets all the conditions specified in paragraph (b)(1) of this section, the owner or operator may elect to comply with paragraph (b)(2) of this section as an alternative to the requirements specified in paragraph (a)(1) of this section.

- (1) The waste managed in the tank complying with paragraph (b)(2) of this section shall meet all of the following conditions:
- (i) Each waste stream managed in the tank must have a flow-weighted annual average water content less than or equal to 10 percent water, on a volume basis as total water.
- (ii) The waste managed in the tank either:
- (A) Has a maximum organic vapor pressure less than 5.2 kilopascals (kPa) (0.75 pounds per square inch (psi));
- (B) Has a maximum organic vapor pressure less than 27.6 kPa (4.0 psi) and is managed in a tank having design capacity less than 151 m<sup>3</sup> (40,000 gal); or
- (C) Has a maximum organic vapor pressure less than 76.6 kPa (11.1 psi) and is managed in a tank having a design capacity less than 75 m<sup>3</sup> (20,000 gal).
- (2) The owner or operator shall install, operate, and maintain a fixed roof as specified in paragraph (a)(1)(i).
- (3) For each tank complying with paragraph (b) of this section, one or more devices which vent directly to the atmosphere may be used on the tank provided each device remains in a closed, sealed position during normal operations except when the device needs to open to prevent physical damage or permanent deformation of the tank or cover resulting from filling or emptying the tank, diurnal temperature changes, atmospheric pressure changes or malfunction of the unit in accordance with good engineering and safety practices for handling flammable, explosive, or other hazardous materials.
- (c) Each fixed-roof, seal, access door, and all other openings shall be checked by visual inspection initially and quarterly thereafter to ensure that no cracks or gaps occur and that access doors and other openings are closed and gasketed properly.
- (d) Except as provided in §61.350 of this subpart, when a broken seal or gasket or other problem is identified, or when detectable emissions are measured, first efforts at repair shall be made as soon as practicable, but not later than 45 calendar days after identification.
- (e) Each owner or operator who controls air pollutant emissions by using an enclosure vented through a closed-vent system to a control device must meet the requirements specified in paragraphs (e)(1) through (4) of this section.
- (1) The tank must be located inside a total enclosure. The enclosure must be designed and operated in accordance with the criteria for a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" in 40 CFR 52.741, appendix B. The enclosure may have permanent or temporary openings to allow worker access; passage of material into or out of the enclosure by conveyor, vehicles, or other mechanical means; entry of permanent mechanical or electrical equipment; or direct airflow into

the enclosure. The owner or operator must perform the verification procedure for the enclosure as specified in section 5.0 of Procedure T initially when the enclosure is first installed and, thereafter, annually. A facility that has conducted an initial compliance demonstration and that performs annual compliance demonstrations in accordance with the requirements for Tank Level 2 control requirements 40 CFR 264.1084(i) or 40 CFR 265(i) is not required to make repeat demonstrations of initial and continuous compliance for the purposes of this subpart.

- (2) The enclosure must be vented through a closed-vent system to a control device that is designed and operated in accordance with the standards for control devices specified in §61.349.
- (3) Safety devices, as defined in this subpart, may be installed and operated as necessary on any enclosure, closed-vent system, or control device used to comply with the requirements of paragraphs (e)(1) and (2) of this section.
- (4) The closed-vent system must be designed and operated in accordance with the requirements of §61.349.

[55 FR 8346, Mar. 7, 1990, as amended at 55 FR 18331, May 2, 1990; 58 FR 3096, Jan. 7, 1993; 67 FR 68532, Nov. 12, 2002; 68 FR 6082, Feb. 6, 2003; 68 FR 67935, Dec. 4, 2003]

### § 61.344 Standards: Surface impoundments.

- (a) The owner or operator shall meet the following standards for each surface impoundment in which waste is placed in accordance with §61.342(c)(1)(ii) of this subpart:
- (1) The owner or operator shall install, operate, and maintain on each surface impoundment a cover (e.g., air-supported structure or rigid cover) and closed-vent system that routes all organic vapors vented from the surface impoundment to a control device.
- (i) The cover shall meet the following requirements:
- (A) The cover and all openings (e.g., access hatches, sampling ports, and gauge wells) shall be designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart.
- (B) Each opening shall be maintained in a closed, sealed position (e.g., covered by a lid that is gasketed and latched) at all times that waste is in the surface impoundment except when it is necessary to use the opening for waste sampling or removal, or for equipment inspection, maintenance, or repair.
- (C) If the cover and closed-vent system operate such that the enclosure of the surface impoundment is maintained at a pressure less than atmospheric pressure, then paragraph (a)(1)(i)(B) of this section does not apply to any opening that meets all of the following conditions:

- (1) The purpose of the opening is to provide dilution air to reduce the explosion hazard;
- (2) The opening is designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart; and
- (3) The pressure is monitored continuously to ensure that the pressure in the enclosure of the surface impoundment remains below atmospheric pressure.
- (D) The cover shall be used at all times that waste is placed in the surface impoundment except during removal of treatment residuals in accordance with 40 CFR 268.4 or closure of the surface impoundment in accordance with 40 CFR 264.228. (Note: the treatment residuals generated by these activities may be subject to the requirements of this part.)
- (ii) The closed-vent system and control device shall be designed and operated in accordance with §61.349 of this subpart.
- (b) Each cover seal, access hatch, and all other openings shall be checked by visual inspection initially and quarterly thereafter to ensure that no cracks or gaps occur and that access hatches and other openings are closed and gasketed properly.
- (c) Except as provided in §61.350 of this subpart, when a broken seal or gasket or other problem is identified, or when detectable emissions are measured, first efforts at repair shall be made as soon as practicable, but not later than 15 calendar days after identification.

[55 FR 8346, Mar. 7, 1990, as amended at 58 FR 3097, Jan. 7, 1993]

### § 61.345 Standards: Containers.

- (a) The owner or operator shall meet the following standards for each container in which waste is placed in accordance with §61.342(c)(1)(ii) of this subpart:
- (1) The owner or operator shall install, operate, and maintain a cover on each container used to handle, transfer, or store waste in accordance with the following requirements:
- (i) The cover and all openings (e.g., bungs, hatches, and sampling ports) shall be designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart.
- (ii) Except as provided in paragraph (a)(4) of this section, each opening shall be maintained in a closed, sealed position (e.g., covered by a lid that is gasketed and latched) at all times that waste is in the container except when it is necessary to use the opening for waste loading, removal, inspection, or sampling.

- (2) When a waste is transferred into a container by pumping, the owner or operator shall perform the transfer using a submerged fill pipe. The submerged fill pipe outlet shall extend to within two fill pipe diameters of the bottom of the container while the container is being loaded. During loading of the waste, the cover shall remain in place and all openings shall be maintained in a closed, sealed position except for those openings required for the submerged fill pipe, those openings required for venting of the container to prevent physical damage or permanent deformation of the container or cover, and any openings complying with paragraph (a)(4) of this section.
- (3) Treatment of a waste in a container, including aeration, thermal or other treatment, must be performed by the owner or operator in a manner such that while the waste is being treated the container meets the standards specified in paragraphs (a)(3)(i) through (iii) of this section, except for covers and closed-vent systems that meet the requirements in paragraph (a)(4) of this section.
- (i) The owner or operator must either:
- (A) Vent the container inside a total enclosure which is exhausted through a closed-vent system to a control device in accordance with the requirements of paragraphs (a)(3)(ii)(A) and (B) of this section; or
- (B) Vent the covered or closed container directly through a closed-vent system to a control device in accordance with the requirements of paragraphs (a)(3)(ii)(B) and (C) of this section.
- (ii) The owner or operator must meet the following requirements, as applicable to the type of air emission control equipment selected by the owner or operator:
- (A) The total enclosure must be designed and operated in accordance with the criteria for a permanent total enclosure as specified in section 5 of the "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" in 40 CFR 52.741, appendix B. The enclosure may have permanent or temporary openings to allow worker access; passage of containers through the enclosure by conveyor or other mechanical means; entry of permanent mechanical or electrical equipment; or direct airflow into the enclosure. The owner or operator must perform the verification procedure for the enclosure as specified in section 5.0 of "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" initially when the enclosure is first installed and, thereafter, annually. A facility that has conducted an initial compliance demonstration and that performs annual compliance demonstrations in accordance with the Container Level 3 control requirements in 40 CFR 264.1086(e)(2)(i) or 40 CFR 265.1086(e)(2)(i) is not required to make repeat demonstrations of initial and continuous compliance for the purposes of this subpart.
- (B) The closed-vent system and control device must be designed and operated in accordance with the requirements of §61.349.
- (C) For a container cover, the cover and all openings (e.g., doors, hatches) must be designed to operate with no detectable emissions as indicated by an instrument reading of less than 500

ppmv above background, initially and thereafter at least once per year by the methods specified in §61.355(h).

- (iii) Safety devices, as defined in this subpart, may be installed and operated as necessary on any container, enclosure, closed-vent system, or control device used to comply with the requirements of paragraph (a)(3)(i) of this section.
- (4) If the cover and closed-vent system operate such that the container is maintained at a pressure less than atmospheric pressure, the owner or operator may operate the system with an opening that is not sealed and kept closed at all times if the following conditions are met:
- (i) The purpose of the opening is to provide dilution air to reduce the explosion hazard;
- (ii) The opening is designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by methods specified in §61.355(h); and
- (iii) The pressure is monitored continuously to ensure that the pressure in the container remains below atmospheric pressure.
- (b) Each cover and all openings shall be visually inspected initially and quarterly thereafter to ensure that they are closed and gasketed properly.
- (c) Except as provided in §61.350 of this subpart, when a broken seal or gasket or other problem is identified, first efforts at repair shall be made as soon as practicable, but not later than 15 calendar days after identification.
- [55 FR 8346, Mar. 7, 1990, as amended at 58 FR 3097, Jan. 7, 1993; 67 FR 68532, Nov. 12, 2002; 68 FR 67936, Dec. 4, 2003]

### § 61.346 Standards: Individual drain systems.

- (a) Except as provided in paragraph (b) of this section, the owner or operator shall meet the following standards for each individual drain system in which waste is placed in accordance with §61.342(c)(1)(ii) of this subpart:
- (1) The owner or operator shall install, operate, and maintain on each drain system opening a cover and closed-vent system that routes all organic vapors vented from the drain system to a control device.
- (i) The cover shall meet the following requirements:
- (A) The cover and all openings (e.g., access hatches, sampling ports) shall be designed to operate with no detactable emissions as indicated by an instrument reading of less than 500 ppmv above background, initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart.

- (B) Each opening shall be maintained in a closed, sealed position (e.g., covered by a lid that is gasketed and latched) at all times that waste is in the drain system except when it is necessary to use the opening for waste sampling or removal, or for equipment inspection, maintenance, or repair.
- (C) If the cover and closed-vent system operate such that the individual drain system is maintained at a pressure less than atmospheric pressure, then paragraph (a)(1)(i)(B) of this section does not apply to any opening that meets all of the following conditions:
- (1) The purpose of the opening is to provide dilution air to reduce the explosion hazard;
- (2) The opening is designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h); and
- (3) The pressure is monitored continuously to ensure that the pressure in the individual drain system remains below atmospheric pressure.
- (ii) The closed-vent system and control device shall be designed and operated in accordance with §61.349 of this subpart.
- (2) Each cover seal, access hatch, and all other openings shall be checked by visual inspection initially and quarterly thereafter to ensure that no cracks or gaps occur and that access hatches and other openings are closed and gasketed properly.
- (3) Except as provided in §61.350 of this subpart, when a broken seal or gasket or other problem is identified, or when detectable emissions are measured, first efforts at repair shall be made as soon as practicable, but not later than 15 calendar days after identification.
- (b) As an alternative to complying with paragraph (a) of this section, an owner or operator may elect to comply with the following requirements:
- (1) Each drain shall be equipped with water seal controls or a tightly sealed cap or plug.
- (2) Each junction box shall be equipped with a cover and may have a vent pipe. The vent pipe shall be at least 90 cm (3 ft) in length and shall not exceed 10.2 cm (4 in) in diameter.
- (i) Junction box covers shall have a tight seal around the edge and shall be kept in place at all times, except during inspection and maintenance.
- (ii) One of the following methods shall be used to control emissions from the junction box vent pipe to the atmosphere:
- (A) Equip the junction box with a system to prevent the flow of organic vapors from the junction box vent pipe to the atmosphere during normal operation. An example of such a system includes use of water seal controls on the junction box. A flow indicator shall be installed, operated, and

maintained on each junction box vent pipe to ensure that organic vapors are not vented from the junction box to the atmosphere during normal operation.

- (B) Connect the junction box vent pipe to a closed-vent system and control device in accordance with §61.349 of this subpart.
- (3) Each sewer line shall not be open to the atmosphere and shall be covered or enclosed in a manner so as to have no visual gaps or cracks in joints, seals, or other emission interfaces.
- (4) Equipment installed in accordance with paragraphs (b)(1), (b)(2), or (b)(3) of this section shall be inspected as follows:
- (i) Each drain using water seal controls shall be checked by visual or physical inspection initially and thereafter quarterly for indications of low water levels or other conditions that would reduce the effectiveness of water seal controls.
- (ii) Each drain using a tightly sealed cap or plug shall be visually inspected initially and thereafter quarterly to ensure caps or plugs are in place and properly installed.
- (iii) Each junction box shall be visually inspected initially and thereafter quarterly to ensure that the cover is in place and to ensure that the cover has a tight seal around the edge.
- (iv) The unburied portion of each sewer line shall be visually inspected initially and thereafter quarterly for indication of cracks, gaps, or other problems that could result in benzene emissions.
- (5) Except as provided in §61.350 of this subpart, when a broken seal, gap, crack or other problem is identified, first efforts at repair shall be made as soon as practicable, but not later than 15 calendar days after identification.
- [55 FR 8346, Mar. 7, 1990, as amended at 55 FR 37231, Sept. 10, 1990; 58 FR 3097, Jan. 7, 1993]

## § 61.347 Standards: Oil-water separators.

- (a) Except as provided in §61.352 of this subpart, the owner or operator shall meet the following standards for each oil-water separator in which waste is placed in accordance with §61.342(c)(1)(ii) of this subpart:
- (1) The owner or operator shall install, operate, and maintain a fixed-roof and closed-vent system that routes all organic vapors vented from the oil-water separator to a control device.
- (i) The fixed-roof shall meet the following requirements:
- (A) The cover and all openings (e.g., access hatches, sampling ports, and gauge wells) shall be designed to operate with no detectable emissions as indicated by an instrument reading of less

than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart.

- (B) Each opening shall be maintained in a closed, sealed position (e.g., covered by a lid that is gasketed and latched) at all times that waste is in the oil-water separator except when it is necessary to use the opening for waste sampling or removal, or for equipment inspection, maintenance, or repair.
- (C) If the cover and closed-vent system operate such that the oil-water separator is maintained at a pressure less than atmospheric pressure, then paragraph (a)(1)(i)(B) of this section does not apply to any opening that meets all of the following conditions:
- (1) The purpose of the opening is to provide dilution air to reduce the explosion hazard;
- (2) The opening is designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h); and
- (3) The pressure is monitored continuously to ensure that the pressure in the oil-water separator remains below atmospheric pressure.
- (ii) The closed-vent system and control device shall be designed and operated in accordance with the requirements of §61.349 of this subpart.
- (b) Each cover seal, access hatch, and all other openings shall be checked by visual inspection initially and quarterly thereafter to ensure that no cracks or gaps occur between the cover and oilwater separator wall and that access hatches and other openings are closed and gasketed properly.
- (c) Except as provided in §61.350 of this subpart, when a broken seal or gasket or other problem is identified, or when detectable emissions are measured, first efforts at repair shall be made as soon as practicable, but not later than 15 calendar days after identification.

[55 FR 8346, Mar. 7, 1990, as amended at 58 FR 3098, Jan. 7, 1993]

### § 61.348 Standards: Treatment processes.

- (a) Except as provided in paragraph (a)(5) of this section, the owner or operator shall treat the waste stream in accordance with the following requirements:
- (1) The owner or operator shall design, install, operate, and maintain a treatment process that either:
- (i) Removes benzene from the waste stream to a level less than 10 parts per million by weight (ppmw) on a flow-weighted annual average basis,

- (ii) Removes benzene from the waste stream by 99 percent or more on a mass basis, or
- (iii) Destroys benzene in the waste stream by incinerating the waste in a combustion unit that achieves a destruction efficiency of 99 percent or greater for benzene.
- (2) Each treatment process complying with paragraphs (a)(1)(i) or (a)(1)(ii) of this section shall be designed and operated in accordance with the appropriate waste management unit standards specified in §§61.343 through 61.347 of this subpart. For example, if a treatment process is a tank, then the owner or operator shall comply with §61.343 of this subpart.
- (3) For the purpose of complying with the requirements specified in paragraph (a)(1)(i) of this section, the intentional or unintentional reduction in the benzene concentration of a waste stream by dilution of the waste stream with other wastes or materials is not allowed.
- (4) An owner or operator may aggregate or mix together individual waste streams to create a combined waste stream for the purpose of facilitating treatment of waste to comply with the requirements of paragraph (a)(1) of this section except as provided in paragraph (a)(5) of this section.
- (5) If an owner or operator aggregates or mixes any combination of process wastewater, product tank drawdown, or landfill leachate subject to §61.342(c)(1) of this subpart together with other waste streams to create a combined waste stream for the purpose of facilitating management or treatment of waste in a wastewater treatment system, then the wastewater treatment system shall be operated in accordance with paragraph (b) of this section. These provisions apply to aboveground wastewater treatment systems as well as those that are at or below ground level.
- (b) Except for facilities complying with §61.342(e), the owner or operator that aggregates or mixes individual waste streams as defined in paragraph (a)(5) of this section for management and treatment in a wastewater treatment system shall comply with the following requirements:
- (1) The owner or operator shall design and operate each waste management unit that comprises the wastewater treatment system in accordance with the appropriate standards specified in §§61.347 of this subpart.
- (2) The provisions of paragraph (b)(1) of this section do not apply to any waste management unit that the owner or operator demonstrates to meet the following conditions initially and, thereafter, at least once per year:
- (i) The benzene content of each waste stream entering the waste management unit is less than 10 ppmw on a flow-weighted annual average basis as determined by the procedures specified in §61.355(c) of this subpart; and
- (ii) The total annual benzene quantity contained in all waste streams managed or treated in exempt waste management units comprising the facility wastewater treatment systems is less than 1 Mg/yr (1.1 ton/yr). For this determination, total annual benzene quantity shall be calculated as follows:

- (A) The total annual benzene quantity shall be calculated as the sum of the individual benzene quantities determined at each location where a waste stream first enters an exempt waste management unit. The benzene quantity discharged from an exempt waste management unit shall not be included in this calculation.
- (B) The annual benzene quantity in a waste stream managed or treated in an enhanced biodegradation unit shall not be included in the calculation of the total annual benzene quantity, if the enhanced biodegradation unit is the first exempt unit in which the waste is managed or treated. A unit shall be considered enhanced biodegradation if it is a suspended-growth process that generates biomass, uses recycled biomass, and periodically removes biomass from the process. An enhanced biodegradation unit typically operates at a food-to-microorganism ratio in the range of 0.05 to 1.0 kg of biological oxygen demand per kg of biomass per day, a mixed liquor suspended solids ratio in the range of 1 to 8 grams per liter (0.008 to 0.7 pounds per liter), and a residence time in the range of 3 to 36 hours.
- (c) The owner and operator shall demonstrate that each treatment process or wastewater treatment system unit, except as provided in paragraph (d) of this section, achieves the appropriate conditions specified in paragraphs (a) or (b) of this section in accordance with the following requirements:
- (1) Engineering calculations in accordance with requirements specified in §61.356(e) of this subpart; or
- (2) Performance tests conducted using the test methods and procedures that meet the requirements specified in §61.355 of this subpart.
- (d) A treatment process or waste stream is in compliance with the requirements of this subpart and exempt from the requirements of paragraph (c) of this section provided that the owner or operator documents that the treatment process or waste stream is in compliance with other regulatory requirements as follows:
- (1) The treatment process is a hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 264, subpart O;
- (2) The treatment process is an industrial furnace or boiler burning hazardous waste for energy recovery for which the owner or operator has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 266, subpart D;
- (3) The waste stream is treated by a means or to a level that meets benzene-specific treatment standards in accordance with the Land Disposal Restrictions under 40 CFR part 268, and the treatment process is designed and operated with a closed-vent system and control device meeting the requirements of §61.349 of this subpart;
- (4) The waste stream is treated by a means or to a level that meets benzene-specific effluent limitations or performance standards in accordance with the Effluent Guidelines and Standards

under 40 CFR parts 401–464, and the treatment process is designed and operated with a closed-vent system and control device meeting the requirements of §61.349 of this subpart; or

- (5) The waste stream is discharged to an underground injection well for which the owner or operator has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 122.
- (e) Except as specified in paragraph (e)(3) of this section, if the treatment process or wastewater treatment system unit has any openings (e.g., access doors, hatches, etc.), all such openings shall be sealed (e.g., gasketed, latched, etc.) and kept closed at all times when waste is being treated, except during inspection and maintenance.
- (1) Each seal, access door, and all other openings shall be checked by visual inspections initially and quarterly thereafter to ensure that no cracks or gaps occur and that openings are closed and gasketed properly.
- (2) Except as provided in §61.350 of this subpart, when a broken seal or gasket or other problem is identified, first efforts at repair shall be made as soon as practicable, but not later than 15 calendar days after identification.
- (3) If the cover and closed-vent system operate such that the treatment process and wastewater treatment system unit are maintained at a pressure less than atmospheric pressure, the owner or operator may operate the system with an opening that is not sealed and kept closed at all times if the following conditions are met:
- (i) The purpose of the opening is to provide dilution air to reduce the explosion hazard;
- (ii) The opening is designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h); and
- (iii) The pressure is monitored continuously to ensure that the pressure in the treatment process and wastewater treatment system unit remain below atmospheric pressure.
- (f) Except for treatment processes complying with paragraph (d) of this section, the Administrator may request at any time an owner or operator demonstrate that a treatment process or wastewater treatment system unit meets the applicable requirements specified in paragraphs (a) or (b) of this section by conducting a performance test using the test methods and procedures as required in §61.355 of this subpart.
- (g) The owner or operator of a treatment process or wastewater treatment system unit that is used to comply with the provisions of this section shall monitor the unit in accordance with the applicable requirements in §61.354 of this subpart.
- [55 FR 8346, Mar. 7, 1990, as amended at 55 FR 37231, Sept. 10, 1990; 58 FR 3098, Jan. 7, 1993; 65 FR 62160, Oct. 17, 2000]

# § 61.349 Standards: Closed-ventsystems and control devices.

- (a) For each closed-vent system and control device used to comply with standards in accordance with §§61.343 through 61.348 of this subpart, the owner or operator shall properly design, install, operate, and maintain the closed-vent system and control device in accordance with the following requirements:
- (1) The closed-vent system shall:
- (i) Be designed to operate with no detectable emissions as indicated by an instrument reading of less than 500 ppmv above background, as determined initially and thereafter at least once per year by the methods specified in §61.355(h) of this subpart.
- (ii) Vent systems that contain any bypass line that could divert the vent stream away from a control device used to comply with the provisions of this subpart shall install, maintain, and operate according to the manufacturer's specifications a flow indicator that provides a record of vent stream flow away from the control device at least once every 15 minutes, except as provided in paragraph (a)(1)(ii)(B) of this section.
- (A) The flow indicator shall be installed at the entrance to any bypass line that could divert the vent stream away from the control device to the atmosphere.
- (B) Where the bypass line valve is secured in the closed position with a car-seal or a lock-and-key type configuration, a flow indicator is not required.
- (iii) All gauging and sampling devices shall be gas-tight except when gauging or sampling is taking place.
- (iv) For each closed-vent system complying with paragraph (a) of this section, one or more devices which vent directly to the atmosphere may be used on the closed-vent system provided each device remains in a closed, sealed position during normal operations except when the device needs to open to prevent physical damage or permanent deformation of the closed-vent system resulting from malfunction of the unit in accordance with good engineering and safety practices for handling flammable, explosive, or other hazardous materials.
- (2) The control device shall be designed and operated in accordance with the following conditions:
- (i) An enclosed combustion device (e.g., a vapor incinerator, boiler, or process heater) shall meet one of the following conditions:
- (A) Reduce the organic emissions vented to it by 95 weight percent or greater;
- (B) Achieve a total organic compound concentration of 20 ppmv (as the sum of the concentrations for individual compounds using Method 18) on a dry basis corrected to 3 percent oxygen; or

- (C) Provide a minimum residence time of 0.5 seconds at a minimum temperature of 760 °C (1,400 °F). If a boiler or process heater issued as the control device, then the vent stream shall be introduced into the flame zone of the boiler or process heater.
- (ii) A vapor recovery system (e.g., a carbon adsorption system or a condenser) shall recover or control the organic emissions vented to it with an efficiency of 95 weight percent or greater, or shall recover or control the benzene emissions vented to it with an efficiency of 98 weight percent or greater.
- (iii) A flare shall comply with the requirements of 40 CFR 60.18.
- (iv) A control device other than those described in paragraphs (a)(2) (i) through (iii) of this section may be used provided that the following conditions are met:
- (A) The device shall recover or control the organic emissions vented to it with an efficiency of 95 weight percent or greater, or shall recover or control the benzene emissions vented to it with an efficiency of 98 weight percent or greater.
- (B) The owner or operator shall develop test data and design information that documents the control device will achieve an emission control efficiency of either 95 percent or greater for organic compounds or 98 percent or greater for benzene.
- (C) The owner or operator shall identify:
- (1) The critical operating parameters that affect the emission control performance of the device;
- (2) The range of values of these operating parameters that ensure the emission control efficiency specified in paragraph (a)(2)(iv)(A) of this section is maintained during operation of the device; and
- (3) How these operating parameters will be monitored to ensure the proper operation and maintenance of the device.
- (D) The owner or operator shall submit the information and data specified in paragraphs (a)(2)(iv) (B) and (C) of this section to the Administrator prior to operation of the alternative control device.
- (E) The Administrator will determine, based on the information submitted under paragraph (a)(2)(iv)(D) of this section, if the control device subject to paragraph (a)(2)(iv) of this section meets the requirements of §61.349. The control device subject to paragraph (a)(2)(iv) of this section may be operated prior to receiving approval from the Administrator. However, if the Administrator determines that the control device does not meet the requirements of §61.349, the facility may be subject to enforcement action beginning from the time the control device began operation.

- (b) Each closed-vent system and control device used to comply with this subpart shall be operated at all times when waste is placed in the waste management unit vented to the control device except when maintenance or repair of the waste management unit cannot be completed without a shutdown of the control device.
- (c) An owner and operator shall demonstrate that each control device, except for a flare, achieves the appropriate conditions specified in paragraph (a)(2) of this section by using one of the following methods:
- (1) Engineering calculations in accordance with requirements specified in §61.356(f) of this subpart; or
- (2) Performance tests conducted using the test methods and procedures that meet the requirements specified in §61.355 of this subpart.
- (d) An owner or operator shall demonstrate compliance of each flare in accordance with paragraph (a)(2)(iii) of this section.
- (e) The Administrator may request at any time an owner or operator demonstrate that a control device meets the applicable conditions specified in paragraph (a)(2) of this section by conducting a performance test using the test methods and procedures as required in §61.355, and for control devices subject to paragraph (a)(2)(iv) of this section, the Administrator may specify alternative test methods and procedures, as appropriate.
- (f) Each closed-vent system and control device shall be visually inspected initially and quarterly thereafter. The visual inspection shall include inspection of ductwork and piping and connections to covers and control devices for evidence of visable defects such as holes in ductwork or piping and loose connections.
- (g) Except as provided in §61.350 of this subpart, if visible defects are observed during an inspection, or if other problems are identified, or if detectable emissions are measured, a first effort to repair the closed-vent system and control device shall be made as soon as practicable but no later than 5 calendar days after detection. Repair shall be completed no later than 15 calendar days after the emissions are detected or the visible defect is observed.
- (h) The owner or operator of a control device that is used to comply with the provisions of this section shall monitor the control device in accordance with §61.354(c) of this subpart.
- [55 FR 8346, Mar. 7, 1990; 55 FR 12444, Apr. 3, 1990, as amended at 55 FR 37231, Sept. 10, 1990; 58 FR 3098, Jan. 7, 1993; 65 FR 62160, Oct. 17, 2000]

## § 61.350 Standards: Delay of repair.

(a) Delay of repair of facilities or units that are subject to the provisions of this subpart will be allowed if the repair is technically impossible without a complete or partial facility or unit shutdown.

(b) Repair of such equipment shall occur before the end of the next facility or unit shutdown.

# § 61.351 Alternative standards for tanks.

- (a) As an alternative to the standards for tanks specified in §61.343 of this subpart, an owner or operator may elect to comply with one of the following:
- (1) A fixed roof and internal floating roof meeting the requirements in 40 CFR 60.112b(a)(1);
- (2) An external floating roof meeting the requirements of 40 CFR 60.112b (a)(2); or
- (3) An alternative means of emission limitation as described in 40 CFR 60.114b.
- (b) If an owner or operator elects to comply with the provisions of this section, then the owner or operator is exempt from the provisions of §61.343 of this subpart applicable to the same facilities.

[55 FR 8346, Mar. 7, 1990, as amended at 55 FR 37231, Sept. 10, 1990]

### § 61.352 Alternative standards for oil-water separators.

- (a) As an alternative to the standards for oil-water separators specified in §61.347 of this subpart, an owner or operator may elect to comply with one of the following:
- (1) A floating roof meeting the requirements in 40 CFR 60.693–2(a); or
- (2) An alternative means of emission limitation as described in 40 CFR 60.694.
- (b) For portions of the oil-water separator where it is infeasible to construct and operate a floating roof, such as over the weir mechanism, a fixed roof vented to a vapor control device that meets the requirements in §§61.347 and 61.349 of this subpart shall be installed and operated.
- (c) Except as provided in paragraph (b) of this section, if an owner or operator elects to comply with the provisions of this section, then the owner or operator is exempt from the provisions in §61.347 of this subpart applicable to the same facilities.

#### § 61.353 Alternative means of emission limitation.

(a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in benzene emissions at least equivalent to the reduction in benzene emissions from the source achieved by the applicable design, equipment, work practice, or operational requirements in §§61.342 through 61.349, the Administrator will publish in the Federal Registera notice permitting the use of the alternative means for purposes of compliance with that requirement. The notice may condition the permission on requirements related to the operation and maintenance of the alternative means.

- (b) Any notice under paragraph (a) of this section shall be published only after public notice and an opportunity for a hearing.
- (c) Any person seeking permission under this section shall collect, verify, and submit to the Administrator information showing that the alternative means achieves equivalent emission reductions.

[55 FR 8346, Mar. 7, 1990, as amended at 58 FR 3099, Jan. 7, 1993]

### § 61.354 Monitoring of operations.

- (a) Except for a treatment process or waste stream complying with §61.348(d), the owner or operator shall monitor each treatment process or wastewater treatment system unit to ensure the unit is properly operated and maintained by one of the following monitoring procedures:
- (1) Measure the benzene concentration of the waste stream exiting the treatment process complying with §61.348(a)(1)(i) at least once per month by collecting and analyzing one or more samples using the procedures specified in §61.355(c)(3).
- (2) Install, calibrate, operate, and maintain according to manufacturer's specifications equipment to continuously monitor and record a process parameter (or parameters) for the treatment process or wastewater treatment system unit that indicates proper system operation. The owner or operator shall inspect at least once each operating day the data recorded by the monitoring equipment (e.g., temperature monitor or flow indicator) to ensure that the unit is operating properly.
- (b) If an owner or operator complies with the requirements of §61.348(b), then the owner or operator shall monitor each wastewater treatment system to ensure the unit is properly operated and maintained by the appropriate monitoring procedure as follows:
- (1) For the first exempt waste management unit in each waste treatment train, other than an enhanced biodegradation unit, measure the flow rate, using the procedures of §61.355(b), and the benzene concentration of each waste stream entering the unit at least once per month by collecting and analyzing one or more samples using the procedures specified in §61.355(c)(3).
- (2) For each enhanced biodegradation unit that is the first exempt waste management unit in a treatment train, measure the benzene concentration of each waste stream entering the unit at least once per month by collecting and analyzing one or more samples using the procedures specified in §61.355(c)(3).
- (c) An owner or operator subject to the requirements in §61.349 of this subpart shall install, calibrate, maintain, and operate according to the manufacturer's specifications a device to continuously monitor the control device operation as specified in the following paragraphs, unless alternative monitoring procedures or requirements are approved for that facility by the Administrator. The owner or operator shall inspect at least once each operating day the data

recorded by the monitoring equipment (e.g., temperature monitor or flow indicator) to ensure that the control device is operating properly.

- (1) For a thermal vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of  $\pm 1$  percent of the temperature being monitored in °C or  $\pm 0.5$  °C, whichever is greater. The temperature sensor shall be installed at a representative location in the combustion chamber.
- (2) For a catalytic vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature at two locations, and have an accuracy of  $\pm 1$  percent of the temperature being monitored in °C or  $\pm 0.5$  °C, whichever is greater. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed outlet.
- (3) For a flare, a monitoring device in accordance with 40 CFR 60.18(f)(2) equipped with a continuous recorder.
- (4) For a boiler or process heater having a design heat input capacity less than 44 MW ( $150 \times 10^6$  BTU/hr), a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of  $\pm 1$  percent of the temperature being monitored in °C or  $\pm 0.5$  °C, whichever is greater. The temperature sensor shall be installed at a representative location in the combustion chamber.
- (5) For a boiler or process heater having a design heat input capacity greater than or equal to 44 MW ( $150 \times 10^6$  BTU/hr), a monitoring device equipped with a continuous recorder to measure a parameter(s) that indicates good combustion operating practices are being used.
- (6) For a condenser, either:
- (i) A monitoring device equipped with a continuous recorder to measure either the concentration level of the organic compounds or the concentration level of benzene in the exhaust vent stream from the condenser; or
- (ii) A temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature at two locations, and have an accuracy of  $\pm 1$  percent of the temperature being monitored in °C or  $\pm 0.5$  °C, whichever is greater. One temperature sensor shall be installed at a location in the exhaust stream from the condenser, and a second temperature sensor shall be installed at a location in the coolant fluid exiting the condenser.
- (7) For a carbon adsorption system that regenerates the carbon bed directly in the control device such as a fixed-bed carbon adsorber, either:
- (i) A monitoring device equipped with a continuous recorder to measure either the concentration level of the organic compounds or the benzene concentration level in the exhaust vent stream from the carbon bed; or

- (ii) A monitoring device equipped with a continuous recorder to measure a parameter that indicates the carbon bed is regenerated on a regular, predetermined time cycle.
- (8) For a vapor recovery system other than a condenser or carbon adsorption system, a monitoring device equipped with a continuous recorder to measure either the concentration level of the organic compounds or the benzene concentration level in the exhaust vent stream from the control device.
- (9) For a control device subject to the requirements of §61.349(a)(2)(iv), devices to monitor the parameters as specified in §61.349(a)(2)(iv)(C).
- (d) For a carbon adsorption system that does not regenerate the carbon bed directly on site in the control device (e.g., a carbon canister), either the concentration level of the organic compounds or the concentration level of benzene in the exhaust vent stream from the carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be replaced with fresh carbon immediately when carbon breakthrough is indicated. The device shall be monitored on a daily basis or at intervals no greater than 20 percent of the design carbon replacement interval, whichever is greater. As an alternative to conducting this monitoring, an owner or operator may replace the carbon in the carbon adsorption system with fresh carbon at a regular predetermined time interval that is less than the carbon replacement interval that is determined by the maximum design flow rate and either the organic concentration or the benzene concentration in the gas stream vented to the carbon adsorption system.
- (e) An alternative operation or process parameter may be monitored if it can be demonstrated that another parameter will ensure that the control device is operated in conformance with these standards and the control device's design specifications.
- (f) Owners or operators using a closed-vent system that contains any bypass line that could divert a vent stream from a control device used to comply with the provisions of this subpart shall do the following:
- (1) Visually inspect the bypass line valve at least once every month, checking the position of the valve and the condition of the car-seal or closure mechanism required under §61.349(a)(1)(ii) to ensure that the valve is maintained in the closed position and the vent stream is not diverted through the bypass line.
- (2) Visually inspect the readings from each flow monitoring device required by §61.349(a)(1)(ii) at least once each operating day to check that vapors are being routed to the control device as required.
- (g) Each owner or operator who uses a system for emission control that is maintained at a pressure less than atmospheric pressure with openings to provide dilution air shall install, calibrate, maintain, and operate according to the manufacturer's specifications a device equipped with a continuous recorder to monitor the pressure in the unit to ensure that it is less than atmospheric pressure.

[55 FR 8346, Mar. 7, 1990, as amended at 58 FR 3099, Jan. 7, 1993; 65 FR 62160, Oct. 17, 2000]

### § 61.355 Test methods, procedures, and compliance provisions.

- (a) An owner or operator shall determine the total annual benzene quantity from facility waste by the following procedure:
- (1) For each waste stream subject to this subpart having a flow-weighted annual average water content greater than 10 percent water, on a volume basis as total water, or is mixed with water or other wastes at any time and the resulting mixture has an annual average water content greater than 10 percent as specified in §61.342(a), the owner or operator shall:
- (i) Determine the annual waste quantity for each waste stream using the procedures specified in paragraph (b) of this section.
- (ii) Determine the flow-weighted annual average benzene concentration for each waste stream using the procedures specified in paragraph (c) of this section.
- (iii) Calculate the annual benzene quantity for each waste stream by multiplying the annual waste quantity of the waste stream times the flow-weighted annual average benzene concentration.
- (2) Total annual benzene quantity from facility waste is calculated by adding together the annual benzene quantity for each waste stream generated during the year and the annual benzene quantity for each process unit turnaround waste annualized according to paragraph (b)(4) of this section.
- (3) If the total annual benzene quantity from facility waste is equal to or greater than 10 Mg/yr (11 ton/yr), then the owner or operator shall comply with the requirements of §61.342 (c), (d), or (e).
- (4) If the total annual benzene quantity from facility waste is less than 10 Mg/yr (11 ton/yr) but is equal to or greater than 1 Mg/yr (1.1 ton/yr), then the owner or operator shall:
- (i) Comply with the recordkeeping requirements of §61.356 and reporting requirements of §61.357 of this subpart; and
- (ii) Repeat the determination of total annual benzene quantity from facility waste at least once per year and whenever there is a change in the process generating the waste that could cause the total annual benzene quantity from facility waste to increase to 10 Mg/yr (11 ton/yr) or more.
- (5) If the total annual benzene quantity from facility waste is less than 1 Mg/yr (1.1 ton/yr), then the owner or operator shall:
- (i) Comply with the recordkeeping requirements of §61.356 and reporting requirements of §61.357 of this subpart; and

- (ii) Repeat the determination of total annual benzene quantity from facility waste whenever there is a change in the process generating the waste that could cause the total annual benzene quantity from facility waste to increase to 1 Mg/yr (1.1 ton/yr) or more.
- (6) The benzene quantity in a waste stream that is generated less than one time per year, except as provided for process unit turnaround waste in paragraph (b)(4) of this section, shall be included in the determination of total annual benzene quantity from facility waste for the year in which the waste is generated unless the waste stream is otherwise excluded from the determination of total annual benzene quantity from facility waste in accordance with paragraphs (a) through (c) of this section. The benzene quantity in this waste stream shall not be annualized or averaged over the time interval between the activities that resulted in generation of the waste, for purposes of determining the total annual benzene quantity from facility waste.
- (b) For purposes of the calculation required by paragraph (a) of this section, an owner or operator shall determine the annual waste quantity at the point of waste generation, unless otherwise provided in paragraphs (b) (1), (2), (3), and (4) of this section, by one of the methods given in paragraphs (b) (5) through (7) of this section.
- (1) The determination of annual waste quantity for sour water streams that are processed in sour water strippers shall be made at the point that the water exits the sour water stripper.
- (2) The determination of annual waste quantity for wastes at coke by-product plants subject to and complying with the control requirements of §61.132, 61.133, 61.134, or 61.139 of subpart L of this part shall be made at the location that the waste stream exits the process unit component or waste management unit controlled by that subpart or at the exit of the ammonia still, provided that the following conditions are met:
- (i) The transfer of wastes between units complying with the control requirements of subpart L of this part, process units, and the ammonia still is made through hard piping or other enclosed system.
- (ii) The ammonia still meets the definition of a sour water stripper in §61.341.
- (3) The determination of annual waste quantity for wastes that are received at hazardous waste treatment, storage, or disposal facilities from offsite shall be made at the point where the waste enters the hazardous waste treatment, storage, or disposal facility.
- (4) The determination of annual waste quantity for each process unit turnaround waste generated only at 2 year or greater intervals, may be made by dividing the total quantity of waste generated during the most recent process unit turnaround by the time period (in the nearest tenth of a year) between the turnaround resulting in generation of the waste and the most recent preceding process turnaround for the unit. The resulting annual waste quantity shall be included in the calculation of the annual benzene quantity as provided in paragraph (a)(1)(iii) of this section for the year in which the turnaround occurs and for each subsequent year until the unit undergoes the next process turnaround. For estimates of total annual benzene quantity as specified in the 90-day report, required under §61.357(a)(1), the owner or operator shall estimate the waste quantity

generated during the most recent turnaround, and the time period between turnarounds in accordance with good engineering practices. If the owner or operator chooses not to annualize process unit turnaround waste, as specified in this paragraph, then the process unit turnaround waste quantity shall be included in the calculation of the annual benzene quantity for the year in which the turnaround occurs.

- (5) Select the highest annual quantity of waste managed from historical records representing the most recent 5 years of operation or, if the facility has been in service for less than 5 years but at least 1 year, from historical records representing the total operating life of the facility;
- (6) Use the maximum design capacity of the waste management unit; or
- (7) Use measurements that are representative of maximum waste generation rates.
- (c) For the purposes of the calculation required by §§61.355(a) of this subpart, an owner or operator shall determine the flow-weighted annual average ben-zene concentration in a manner that meets the requirements given in paragraph (c)(1) of this section using either of the methods given in paragraphs (c)(2) and (c)(3) of this section.
- (1) The determination of flow-weighted annual average benzene concentration shall meet all of the following criteria:
- (i) The determination shall be made at the point of waste generation except for the specific cases given in paragraphs (c)(1)(i)(A) through (D) of this section.
- (A) The determination for sour water streams that are processed in sour water strippers shall be made at the point that the water exits the sour water stripper.
- (B) The determination for wastes at coke by-product plants subject to and complying with the control requirements of §61.132, 61.133, 61.134, or 61.139 of subpart L of this part shall be made at the location that the waste stream exits the process unit component or waste management unit controlled by that subpart or at the exit of the ammonia still, provided that the following conditions are met:
- (1) The transfer of wastes between units complying with the control requirements of subpart L of this part, process units, and the ammonia still is made through hard piping or other enclosed system.
- (2) The ammonia still meets the definition of a sour water stripper in §61.341.
- (C) The determination for wastes that are received from offsite shall be made at the point where the waste enters the hazardous waste treatment, storage, or disposal facility.
- (D) The determination of flow-weighted annual average benzene concentration for process unit turnaround waste shall be made using either of the methods given in paragraph (c)(2) or (c)(3) of this section. The resulting flow-weighted annual average benzene concentration shall be included

in the calculation of annual benzene quantity as provided in paragraph (a)(1)(iii) of this section for the year in which the turnaround occurs and for each subsequent year until the unit undergoes the next process unit turnaround.

- (ii) Volatilization of the benzene by exposure to air shall not be used in the determination to reduce the benzene concentration.
- (iii) Mixing or diluting the waste stream with other wastes or other materials shall not be used in the determination—to reduce the benzene concentration.
- (iv) The determination shall be made prior to any treatment of the waste that removes benzene, except as specified in paragraphs (c)(1)(i)(A) through (D) of this section.
- (v) For wastes with multiple phases, the determination shall provide the weighted-average benzene concentration based on the benzene concentration in each phase of the waste and the relative proportion of the phases.
- (2) Knowledge of the waste. The owner or operator shall provide sufficient information to document the flow-weighted annual average benzene concentration of each waste stream. Examples of information that could constitute knowledge include material balances, records of chemicals purchases, or previous test results provided the results are still relevant to the current waste stream conditions. If test data are used, then the owner or operator shall provide documentation describing the testing protocol and the means by which sampling variability and analytical variability were accounted for in the determination of the flow-weighted annual average benzene concentration for the waste stream. When an owner or operator and the Administrator do not agree on determinations of the flow-weighted annual average benzene concentration based on knowledge of the waste, the procedures under paragraph (c)(3) of this section shall be used to resolve the disagreement.
- (3) Measurements of the benzene concentration in the waste stream in accordance with the following procedures:
- (i) Collect a minimum of three representative samples from each waste stream. Where feasible, samples shall be taken from an enclosed pipe prior to the waste being exposed to the atmosphere.
- (ii) For waste in enclosed pipes, the following procedures shall be used:
- (A) Samples shall be collected prior to the waste being exposed to the atmosphere in order to minimize the loss of benzene prior to sampling.
- (B) A static mixer shall be installed in the process line or in a by-pass line unless the owner or operator demonstrates that installation of a static mixer in the line is not necessary to accurately determine the benzene concentration of the waste stream.
- (C) The sampling tap shall be located within two pipe diameters of the static mixer outlet.

- (D) Prior to the initiation of sampling, sample lines and cooling coil shall be purged with at least four volumes of waste.
- (E) After purging, the sample flow shall be directed to a sample container and the tip of the sampling tube shall be kept below the surface of the waste during sampling to minimize contact with the atmosphere.
- (F) Samples shall be collected at a flow rate such that the cooling coil is able to maintain a waste temperature less than 10 °C (50 °F).
- (G) After filling, the sample container shall be capped immediately (within 5 seconds) to leave a minimum headspace in the container.
- (H) The sample containers shall immediately be cooled and maintained at a temperature below 10 °C (50 °F) for transfer to the laboratory.
- (iii) When sampling from an enclosed pipe is not feasible, a minimum of three representative samples shall be collected in a manner to minimize exposure of the sample to the atmosphere and loss of benzene prior to sampling.
- (iv) Each waste sample shall be analyzed using one of the following test methods for determining the benzene concentration in a waste stream:
- (A) Method 8020, Aromatic Volatile Organics, in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846 (incorporation by reference as specified in §61.18 of this part);
- (B) Method 8021, Volatile Organic Compounds in Water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrolytic Conductivity Detectors in Series in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846 (incorporation by reference as specified in §61.18 of this part);
- (C) Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW–846 (incorporation by reference as specified in §61.18 of this part);
- (D) Method 8260, Gas Chromatography/Mass Spectrometry for Volatile Organics: Capillary Column Technique in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846 (incorporation by reference as specified in §61.18 of this part);
- (E) Method 602, Purgeable Aromatics, as described in 40 CFR part 136, appendix A, Test Procedures for Analysis of Organic Pollutants, for wastewaters for which this is an approved EPA methods; or
- (F) Method 624, Purgeables, as described in 40 CFR part 136, appendix A, Test Procedures for Analysis of Organic Pollutants, for wastewaters for which this is an approved EPA method.

(v) The flow-weighted annual average benzene concentration shall be calculated by averaging the results of the sample analyses as follows:

$$\overline{C} = \frac{1}{Q} \times \sum_{i=1}^{n} (Q_i)(C_i)$$

Where:

C=Flow-weighted annual average benzene concentration for waste stream, ppmw.

Q<sub>t</sub>=Total annual waste quantity for waste stream, kg/yr (lb/yr).

n=Number of waste samples (at least 3).

Q<sub>i</sub>=Annual waste quantity for waste stream represented by C<sub>i</sub>, kg/yr (lb/yr).

C<sub>i</sub>=Measured concentration of benzene in waste sample i, ppmw.

- (d) An owner or operator using performance tests to demonstrate compliance of a treatment process with §61.348 (a)(1)(i) shall measure the flow-weighted annual average benzene concentration of the waste stream exiting the treatment process by collecting and analyzing a minimum of three representative samples of the waste stream using the procedures in paragraph (c)(3) of this section. The test shall be conducted under conditions that exist when the treatment process is operating at the highest inlet waste stream flow rate and benzene content expected to occur. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a test. The owner or operator shall record all process information as is necessary to document the operating conditions during the test.
- (e) An owner or operator using performance tests to demonstrate compliance of a treatment process with §61.348(a)(1)(ii) of this subpart shall determine the percent reduction of benzene in the waste stream on a mass basis by the following procedure:
- (1) The test shall be conducted under conditions that exist when the treatment process is operating at the highest inlet waste stream flow rate and benzene content expected to occur. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a test. The owner or operator shall record all process information as is necessary to document the operating conditions during the test.
- (2) All testing equipment shall be prepared and installed as specified in the appropriate test methods.
- (3) The mass flow rate of benzene entering the treatment process  $(E_b)$  shall be determined by computing the product of the flow rate of the waste stream entering the treatment process, as determined by the inlet flow meter, and the benzene concentration of the waste stream, as determined using the sampling and analytical procedures specified in paragraph (c)(2) or (c)(3) of this section. Three grab samples of the waste shall be taken at equally spaced time intervals

over a 1-hour period. Each 1-hour period constitutes a run, and the performance test shall consist of a minimum of 3 runs conducted over a 3-hour period. The mass flow rate of benzene entering the treatment process is calculated as follows:

$$E_b = \frac{K}{n \times 10^6} \left[ \sum_{i=1}^{n} V_i C_i \right]$$

Where:

 $E_b$ = Mass flow rate of benzene entering the treatment process, kg/hr (lb/hr).

K = Density of the waste stream, kg/m<sup>3</sup> (lb/ft<sup>3</sup>).

 $V_i$ = Average volume flow rate of waste entering the treatment process during each run i, m<sup>3</sup> /hr (ft<sup>3</sup> /hr).

C<sub>i</sub>= Average concentration of benzene in the waste stream entering the treatment process during each run i, ppmw.

n = Number of runs.

 $10^6$  = Conversion factor for ppmw.

(4) The mass flow rate of benzene exiting the treatment process (E<sub>a</sub>) shall be determined by computing the product of the flow rate of the waste stream exiting the treatment process, as determined by the outlet flow meter or the inlet flow meter, and the benzene concentration of the waste stream, as determined using the sampling and analytical procedures specified in paragraph (c)(2) or (c)(3) of this section. Three grab samples of the waste shall be taken at equally spaced time intervals over a 1-hour period. Each 1-hour period constitutes a run, and the performance test shall consist of a minimum of 3 runs conducted over the same 3-hour period at which the mass flow rate of benzene entering the treatment process is determined. The mass flow rate of benzene exiting the treatment process is calculated as follows:

$$E_{a} = \frac{K}{n \times 10^{6}} \left[ \sum_{i=1}^{n} V_{i} C_{i} \right]$$

Where:

E<sub>a</sub>= Mass flow rate of benzene exiting the treatment process, kg/hr (lb/hr).

K = Density of the waste stream, kg/m<sup>3</sup> (lb/ft<sup>3</sup>).

 $V_i$ = Average volume flow rate of waste exiting the treatment process during each run i, m<sup>3</sup>/hr (ft<sup>3</sup>/hr).

C<sub>i</sub>= Average concentration of benzene in the waste stream exiting the treatment process during each run i, ppmw.

n = Number of runs.

 $10^6$  = Conversion factor for ppmw.

- (f) An owner or operator using performance tests to demonstrate compliance of a treatment process with §61.348(a)(1)(iii) of this subpart shall determine the benzene destruction efficiency for the combustion unit by the following procedure:
- (1) The test shall be conducted under conditions that exist when the combustion unit is operating at the highest inlet waste stream flow rate and benzene content expected to occur. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a test. The owner or operator shall record all process information necessary to document the operating conditions during the test.
- (2) All testing equipment shall be prepared and installed as specified in the appropriate test methods.
- (3) The mass flow rate of benzene entering the combustion unit shall be determined by computing the product of the flow rate of the waste stream entering the combustion unit, as determined by the inlet flow meter, and the benzene concentration of the waste stream, as determined using the sampling procedures in paragraph (c)(2) or (c)(3) of this section. Three grab samples of the waste shall be taken at equally spaced time intervals over a 1-hour period. Each 1-hour period constitutes a run, and the performance test shall consist of a minimum of 3 runs conducted over a 3-hour period. The mass flow rate of benzene into the combustion unit is calculated as follows:

$$E_b = \frac{K}{n \times 10^6} \left[ \sum_{i=1}^{n} V_i C_i \right]$$

Where:

E<sub>b</sub>= Mass flow rate of benzene entering the combustion unit, kg/hr (lb/hr).

K = Density of the waste stream, kg/m<sup>3</sup> (lb/ft<sup>3</sup>).

 $V_i$ = Average volume flow rate of waste entering the combustion unit during each run i, m<sup>3</sup> /hr ( $ft^3$  /hr).

C<sub>i</sub>= Average concentration of benzene in the waste stream entering the combustion unit during each run i, ppmw.

n = Number of runs.

 $10^6$  = Conversion factor for ppmw.

- (4) The mass flow rate of benzene exiting the combustion unit exhaust stack shall be determined as follows:
- (i) The time period for the test shall not be less than 3 hours during which at least 3 stack gas samples are collected and be the same time period at which the mass flow rate of benzene entering the treatment process is determined. Each sample shall be collected over a 1-hour period (e.g., in a tedlar bag) to represent a time-integrated composite sample and each 1-hour period shall correspond to the periods when the waste feed is sampled.
- (ii) A run shall consist of a 1-hour period during the test. For each run:
- (A) The reading from each measurement shall be recorded;
- (B) The volume exhausted shall be determined using Method 2, 2A, 2C, or 2D from appendix A of 40 CFR part 60, as appropriate.
- (C) The average benzene concentration in the exhaust downstream of the combustion unit shall be determined using Method 18 from appendix A of 40 CFR part 60.
- (iii) The mass of benzene emitted during each run shall be calculated as follows:

$$M_i = D_b VC(10^{-6})$$

Where:

M<sub>i</sub>= Mass of benzene emitted during run i, kg (lb).

V = Volume of air-vapor mixture exhausted at standard conditions, m<sup>3</sup> (ft<sup>3</sup>).

C = Concentration of benzene measured in the exhaust, ppmv.

 $D_b$ = Density of benzene, 3.24 kg/m<sup>3</sup> (0.202 lb/ft<sup>3</sup>).

 $10^6$  = Conversion factor for ppmv.

(iv) The benzene mass emission rate in the exhaust shall be calculated as follows:

$$E_a = \left(\sum_{i=1}^n M_i\right)/T$$

Where:

 $E_a$ = Mass flow rate of benzene emitted from the combustion unit, kg/hr (lb/hr).

M<sub>i</sub>= Mass of benzene emitted from the combustion unit during run i, kg (lb).

T = Total time of all runs, hr.

n = Number of runs.

(5) The benzene destruction efficiency for the combustion unit shall be calculated as follows:

$$R = \frac{E_b - E_a}{E_b} \times 100$$

Where:

R = Benzene destruction efficiency for the combustion unit, percent.

 $E_b$ = Mass flow rate of benzene entering the combustion unit, kg/hr (lb/hr).

 $E_a$ = Mass flow rate of benzene emitted from the combustion unit, kg/hr (lb/hr).

- (g) An owner or operator using performance tests to demonstrate compliance of a wastewater treatment system unit with §61.348(b) shall measure the flow-weighted annual average benzene concentration of the wastewater stream where the waste stream enters an exempt waste management unit by collecting and analyzing a minimum of three representative samples of the waste stream using the procedures in paragraph (c)(3) of this section. The test shall be conducted under conditions that exist when the wastewater treatment system is operating at the highest inlet wastewater stream flow rate and benzene content expected to occur. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a test. The owner or operator shall record all process information as is necessary to document the operating conditions during the test.
- (h) An owner or operator shall test equipment for compliance with no detectable emissions as required in §§61.343 through 61.347, and §61.349 of this subpart in accordance with the following requirements:
- (1) Monitoring shall comply with Method 21 from appendix A of 40 CFR part 60.
- (2) The detection instrument shall meet the performance criteria of Method 21.
- (3) The instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21.
- (4) Calibration gases shall be:
- (i) Zero air (less than 10 ppm of hydrocarbon in air); and

- (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane.
- (5) The background level shall be determined as set forth in Method 21.
- (6) The instrument probe shall be traversed around all potential leak interfaces as close as possible to the interface as described in Method 21.
- (7) The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared to 500 ppm for determining compliance.
- (i) An owner or operator using a performance test to demonstrate compliance of a control device with either the organic reduction efficiency requirement or the benzene reduction efficiency requirement specified under §61.349(a)(2) shall use the following procedures:
- (1) The test shall be conducted under conditions that exist when the waste management unit vented to the control device is operating at the highest load or capacity level expected to occur. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a test. The owner or operator shall record all process information necessary to document the operating conditions during the test.
- (2) Sampling sites shall be selected using Method 1 or 1A from appendix A of 40 CFR part 60, as appropriate.
- (3) The mass flow rate of either the organics or benzene entering and exiting the control device shall be determined as follows:
- (i) The time period for the test shall not be less than 3 hours during which at least 3 stack gas samples are collected. Samples of the vent stream entering and exiting the control device shall be collected during the same time period. Each sample shall be collected over a 1-hour period (e.g., in a tedlar bag) to represent a time-integrated composite sample.
- (ii) A run shall consist of a 1-hour period during the test. For each run:
- (A) The reading from each measurement shall be recorded;
- (B) The volume exhausted shall be determined using Method 2, 2A, 2C, or 2D from appendix A of 40 CFR part 60, as appropriate;
- (C) The organic concentration or the benzene concentration, as appropriate, in the vent stream entering and exiting the control shall be determined using Method 18 from appendix A of 40 CFR part 60.
- (iii) The mass of organics or benzene entering and exiting the control device during each run shall be calculated as follows:

$$M_{qj} = \frac{K_l V_{qj}}{10^6} \left( \sum_{i=1}^{n} C_{qi} MW_i \right)$$

$$M_{bj} = \frac{K_i V_{bj}}{10^6} \left( \sum_{i=1}^{n} C_{bi} M W_i \right)$$

 $M_{aj}$ = Mass of organics or benzene in the vent stream entering the control device during run j, kg (lb).

 $M_{bj}$ = Mass of organics or benzene in the vent stream exiting the control device during run j, kg (lb).

 $V_{aj}$ = Volume of vent stream entering the control device during run j, at standard conditions,  $m^3$  ( $ft^3$ ).

 $V_{bj}$ = Volume of vent stream exiting the control device during run j, at standard conditions,  $m^3$  ( ${\rm ft}^3$ ).

C<sub>ai</sub>= Organic concentration of compound i or the benzene concentration measured in the vent stream entering the control device as determined by Method 18, ppm by volume on a dry basis.

C<sub>bi</sub>= Organic concentration of compound i or the benzene concentration measured in the vent stream exiting the control device as determined by Method 18, ppm by volume on a dry basis.

MW<sub>i</sub>= Molecular weight of organic compound i in the vent stream, or the molecular weight of benzene, kg/kg-mol (lb/lb-mole).

n = Number of organic compounds in the vent stream; if benzene reduction efficiency is being demonstrated, then <math>n=1.

 $K_1$ = Conversion factor for molar volume at standard conditions (293 K and 760 mm Hg (527 R and 14.7 psia))

 $= 0.0416 \text{ kg-mol/m}^3 (0.00118 \text{ lb-mol/ft}^3)$ 

10<sup>-6</sup>=Conversion factor for ppmv.

(iv) The mass flow rate of organics or benzene entering and exiting the control device shall be calculated as follows:

$$\mathbb{E}_{\mathbf{a}} - \left(\sum_{\mathbf{j}=1}^{\mathbf{n}} M_{\mathbf{a}\mathbf{j}}\right) / \mathbf{T}$$

$$E_{b} - \left(\sum_{j=1}^{n} M_{bj}\right) / T$$

Where:

E<sub>a</sub>= Mass flow rate of organics or benzene entering the control device, kg/hr (lb/hr).

 $E_b$ = Mass flow rate of organics or benzene exiting the control device, kg/hr (lb/hr).

M<sub>aj</sub>= Mass of organics or benzene in the vent stream entering the control device during run j, kg (lb).

M<sub>bj</sub>= Mass of organics or benzene in the vent stream exiting the control device during run j, kg (lb).

T = Total time of all runs, hr.

n = Number of runs.

(4) The organic reduction efficiency or the benzene reduction efficiency for the control device shall be calculated as follows:

$$R = \frac{E_a - E_b}{E_a} \times 100$$

Where:

R = Total organic reduction of efficiency or benzene reduction efficiency for the control device, percent.

E<sub>b</sub>= Mass flow rate of organics or benzene entering the control device, kg/hr (lb/hr).

E<sub>a</sub>= Mass flow rate of organic or benzene emitted from the control device, kg/hr (lb/hr).

- (j) An owner or operator shall determine the benzene quantity for the purposes of the calculation required by §61.342 (c)(3)(ii)(B) according to the provisions of paragraph (a) of this section, except that the procedures in paragraph (a) of this section shall also apply to wastes with a water content of 10 percent or less.
- (k) An owner or operator shall determine the benzene quantity for the purposes of the calculation required by §61.342(e)(2) by the following procedure:

- (1) For each waste stream that is not controlled for air emissions in accordance with §61.343. 61.344, 61.345, 61.346, 61.347, or 61.348(a), as applicable to the waste management unit that manages the waste, the benzene quantity shall be determined as specified in paragraph (a) of this section, except that paragraph (b)(4) of this section shall not apply, i.e., the waste quantity for process unit turnaround waste is not annualized but shall be included in the determination of benzene quantity for the year in which the waste is generated for the purposes of the calculation required by §61.342(e)(2).
- (2) For each waste stream that is controlled for air emissions in accordance with  $\S61.343$ . 61.344, 61.345, 61.346, 61.347, or 61.348(a), as applicable to the waste management unit that manages the waste, the determination of annual waste quantity and flow-weighted annual average benzene concentration shall be made at the first applicable location as described in paragraphs (k)(2)(i), (k)(2)(ii), and (k)(2)(iii) of this section and prior to any reduction of benzene concentration through volatilization of the benzene, using the methods given in (k)(2)(iv) and (k)(2)(v) of this section.
- (i) Where the waste stream enters the first waste management unit not complying with §§61.343, 61.344, 61.345, 61.346, 61.347, and 61.348(a) that are applicable to the waste management unit,
- (ii) For each waste stream that is managed or treated only in compliance with §§61.343 through 61.348(a) up to the point of final direct discharge from the facility, the determination of benzene quantity shall be prior to any reduction of benzene concentration through volatilization of the benzene, or
- (iii) For wastes managed in units controlled for air emissions in accordance with §§61.343, 61.344, 61.345, 61.346, 61.347, and 61.348(a), and then transferred offsite, facilities shall use the first applicable offsite location as described in paragraphs (k)(2)(i) and (k)(2)(ii) of this section if they have documentation from the offsite facility of the benzene quantity at this location. Facilities without this documentation for offsite wastes shall use the benzene quantity determined at the point where the transferred waste leaves the facility.
- (iv) Annual waste quantity shall be determined using the procedures in paragraphs (b)(5), (6), or (7) of this section, and
- (v) The flow-weighted annual average benzene concentration shall be determined using the procedures in paragraphs (c)(2) or (3) of this section.
- (3) The benzene quantity in a waste stream that is generated less than one time per year, including process unit turnaround waste, shall be included in the determination of benzene quantity as determined in paragraph (k)(6) of this section for the year in which the waste is generated. The benzene quantity in this waste stream shall not be annualized or averaged over the time interval between the activities that resulted in generation of the waste for purposes of determining benzene quantity as determined in paragraph (k)(6) of this section.

- (4) The benzene in waste entering an enhanced biodegradation unit, as defined in §61.348(b)(2)(ii)(B), shall not be included in the determination of benzene quantity, determined in paragraph (k)(6) of this section, if the following conditions are met:
- (i) The benzene concentration for each waste stream entering the enhanced biodegradation unit is less than 10 ppmw on a flow-weighted annual average basis, and
- (ii) All prior waste management units managing the waste comply with §§61.343, 61.344, 61.345, 61.346, 61.347 and 61.348(a).
- (5) The benzene quantity for each waste stream in paragraph (k)(2) of this section shall be determined by multiplying the annual waste quantity of each waste stream times its flow-weighted annual average benzene concentration.
- (6) The total benzene quantity for the purposes of the calculation required by §61.342(e)(2) shall be determined by adding together the benzene quantities determined in paragraphs (k)(1) and (k)(5) of this section for each applicable waste stream.
- (7) If the benzene quantity determined in paragraph (6) of this section exceeds 6.0 Mg/yr (6.6 ton/yr) only because of multiple counting of the benzene quantity for a waste stream, the owner or operator may use the following procedures for the purposes of the calculation required by §61.342(e)(2):
- (i) Determine which waste management units are involved in the multiple counting of benzene;
- (ii) Determine the quantity of benzene that is emitted, recovered, or removed from the affected units identified in paragraph (k)(7)(i) of this section, or destroyed in the units if applicable, using either direct measurements or the best available estimation techniques developed or approved by the Administrator.
- (iii) Adjust the benzene quantity to eliminate the multiple counting of benzene based on the results from paragraph (k)(7)(ii) of this section and determine the total benzene quantity for the purposes of the calculation required by §61.342(e)(2).
- (iv) Submit in the annual report required under §61.357(a) a description of the methods used and the resulting calculations for the alternative procedure under paragraph (k)(7) of this section, the benzene quantity determination from paragraph (k)(6) of this section, and the adjusted benzene quantity determination from paragraph (k)(7)(iii) of this section.

[55 FR 8346, Mar. 7, 1990; 55 FR 12444, Apr. 3, 1990, as amended at 55 FR 37231, Sept. 10, 1990; 58 FR 3099, Jan. 7, 1993; 65 FR 62160, Oct. 17, 2000]

#### § 61.356 Recordkeeping requirements.

(a) Each owner or operator of a facility subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section. Each record shall be maintained in a readily

accessible location at the facility site for a period not less than two years from the date the information is recorded unless otherwise specified.

- (b) Each owner or operator shall maintain records that identify each waste stream at the facility subject to this subpart, and indicate whether or not the waste stream is controlled for benzene emissions in accordance with this subpart. In addition the owner or operator shall maintain the following records:
- (1) For each waste stream not controlled for benzene emissions in accordance with this subpart, the records shall include all test results, measurements, calculations, and other documentation used to determine the following information for the waste stream: waste stream identification, water content, whether or not the waste stream is a process wastewater stream, annual waste quantity, range of benzene concentrations, annual average flow-weighted benzene concentration, and annual benzene quantity.
- (2) For each waste stream exempt from §61.342(c)(1) in accordance with §61.342(c)(3), the records shall include:
- (i) All measurements, calculations, and other documentation used to determine that the continuous flow of process wastewater is less than 0.02 liters (0.005 gallons) per minute or the annual waste quantity of process wastewater is less than 10 Mg/yr (11 ton/yr) in accordance with §61.342(c)(3)(i), or
- (ii) All measurements, calculations, and other documentation used to determine that the sum of the total annual benzene quantity in all exempt waste streams does not exceed 2.0 Mg/yr (2.2 ton/yr) in accordance with §61.342(c)(3)(ii).
- (3) For each facility where process wastewater streams are controlled for benzene emissions in accordance with §61.342(d) of this subpart, the records shall include for each treated process wastewater stream all measurements, calculations, and other documentation used to determine the annual benzene quantity in the process wastewater stream exiting the treatment process.
- (4) For each facility where waste streams are controlled for benzene emissions in accordance with §61.342(e), the records shall include for each waste stream all measurements, including the locations of the measurements, calculations, and other documentation used to determine that the total benzene quantity does not exceed 6.0 Mg/yr (6.6 ton/yr).
- (5) For each facility where the annual waste quantity for process unit turnaround waste is determined in accordance with §61.355(b)(5), the records shall include all test results, measurements, calculations, and other documentation used to determine the following information: identification of each process unit at the facility that undergoes turnarounds, the date of the most recent turnaround for each process unit, identification of each process unit turnaround waste, the water content of each process unit turnaround waste, the annual waste quantity determined in accordance with §61.355(b)(5), the range of benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste, and the annual benzene quantity calculated in accordance with §61.355(a)(1)(iii) of this section.

- (6) For each facility where wastewater streams are controlled for benzene emissions in accordance with §61.348(b)(2), the records shall include all measurements, calculations, and other documentation used to determine the annual benzene content of the waste streams and the total annual benzene quantity contained in all waste streams managed or treated in exempt waste management units.
- (c) An owner or operator transferring waste off-site to another facility for treatment in accordance with §61.342(f) shall maintain documentation for each offsite waste shipment that includes the following information: Date waste is shipped offsite, quantity of waste shipped offsite, name and address of the facility receiving the waste, and a copy of the notice sent with the waste shipment.
- (d) An owner or operator using control equipment in accordance with §§61.343 through 61.347 shall maintain engineering design documentation for all control equipment that is installed on the waste management unit. The documentation shall be retained for the life of the control equipment. If a control device is used, then the owner or operator shall maintain the control device records required by paragraph (f) of this section.
- (e) An owner or operator using a treatment process or wastewater treatment system unit in accordance with §61.348 of this subpart shall maintain the following records. The documentation shall be retained for the life of the unit.
- (1) A statement signed and dated by the owner or operator certifying that the unit is designed to operate at the documented performance level when the waste stream entering the unit is at the highest waste stream flow rate and benzene content expected to occur.
- (2) If engineering calculations are used to determine treatment process or wastewater treatment system unit performance, then the owner or operator shall maintain the complete design analysis for the unit. The design analysis shall include for example the following information: Design specifications, drawings, schematics, piping and instrumentation diagrams, and other documentation necessary to demonstrate the unit performance.
- (3) If performance tests are used to determine treatment process or wastewater treatment system unit performance, then the owner or operator shall maintain all test information necessary to demonstrate the unit performance.
- (i) A description of the unit including the following information: type of treatment process; manufacturer name and model number; and for each waste stream entering and exiting the unit, the waste stream type (e.g., process wastewater, sludge, slurry, etc.), and the design flow rate and benzene content.
- (ii) Documentation describing the test protocol and the means by which sampling variability and analytical variability were accounted for in the determination of the unit performance. The description of the test protocol shall include the following information: sampling locations, sampling method, sampling frequency, and analytical procedures used for sample analysis.

- (iii) Records of unit operating conditions during each test run including all key process parameters.
- (iv) All test results.
- (4) If a control device is used, then the owner or operator shall maintain the control device records required by paragraph (f) of this section.
- (f) An owner or operator using a closed-vent system and control device in accordance with §61.349 of this subpart shall maintain the following records. The documentation shall be retained for the life of the control device.
- (1) A statement signed and dated by the owner or operator certifying that the closed-vent system and control device is designed to operate at the documented performance level when the waste management unit vented to the control device is or would be operating at the highest load or capacity expected to occur.
- (2) If engineering calculations are used to determine control device performance in accordance with §61.349(c), then a design analysis for the control device that includes for example:
- (i) Specifications, drawings, schematics, and piping and instrumentation diagrams prepared by the owner or operator, or the control device manufacturer or vendor that describe the control device design based on acceptable engineering texts. The design analysis shall address the following vent stream characteristics and control device operating parameters:
- (A) For a thermal vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average temperature in the combustion zone and the combustion zone residence time.
- (B) For a catalytic vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average temperatures across the catalyst bed inlet and outlet.
- (C) For a boiler or process heater, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average flame zone temperatures, combustion zone residence time, and description of method and location where the vent stream is introduced into the flame zone.
- (D) For a flare, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also consider the requirements specified in 40 CFR 60.18.
- (E) For a condenser, the design analysis shall consider the vent stream composition, constituent concentration, flow rate, relative humidity, and temperature. The design analysis shall also establish the design outlet organic compound concentration level or the design outlet benzene

concentration level, design average temperature of the condenser exhaust vent stream, and the design average temperatures of the coolant fluid at the condenser inlet and outlet.

- (F) For a carbon adsorption system that regenerates the carbon bed directly on-site in the control device such as a fixed-bed adsorber, the design analysis shall consider the vent stream composition, constituent concentration, flow rate, relative humidity, and temperature. The design analysis shall also establish the design exhaust vent stream organic compound concentration level or the design exhaust vent stream benzene concentration level, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total steam flow over the period of each complete carbon bed regeneration cycle, duration of the carbon bed steaming and cooling/drying cycles, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life of carbon.
- (G) For a carbon adsorption system that does not regenerate the carbon bed directly on-site in the control device, such as a carbon canister, the design analysis shall consider the vent stream composition, constituent concentration, flow rate, relative humidity, and temperature. The design analysis shall also establish the design exhaust vent stream organic compound concentration level or the design exhaust vent stream benzene concentration level, capacity of carbon bed, type and working capacity of activated carbon used for carbon bed, and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule.
- (H) For a control device subject to the requirements of §61.349(a)(2)(iv), the design analysis shall consider the vent stream composition, constituent concentration, and flow rate. The design analysis shall also include all of the information submitted under §61.349 (a)(2)(iv).
- (ii) [Reserved]
- (3) If performance tests are used to determine control device performance in accordance with §61.349(c) of this subpart:
- (i) A description of how it is determined that the test is conducted when the waste management unit or treatment process is operating at the highest load or capacity level. This description shall include the estimated or design flow rate and organic content of each vent stream and definition of the acceptable operating ranges of key process and control parameters during the test program.
- (ii) A description of the control device including the type of control device, control device manufacturer's name and model number, control device dimensions, capacity, and construction materials.
- (iii) A detailed description of sampling and monitoring procedures, including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical procedures for sample analysis.
- (iv) All test results.

- (g) An owner or operator shall maintain a record for each visual inspection required by §§61.343 through 61.347 of this subpart that identifies a problem (such as a broken seal, gap or other problem) which could result in benzene emissions. The record shall include the date of the inspection, waste management unit and control equipment location where the problem is identified, a description of the problem, a description of the corrective action taken, and the date the corrective action was completed.
- (h) An owner or operator shall maintain a record for each test of no detectable emissions required by §§61.343 through 61.347 and §61.349 of this subpart. The record shall include the following information: date the test is performed, background level measured during test, and maximum concentration indicated by the instrument reading measured for each potential leak interface. If detectable emissions are measured at a leak interface, then the record shall also include the waste management unit, control equipment, and leak interface location where detectable emissions were measured, a description of the problem, a description of the corrective action taken, and the date the corrective action was completed.
- (i) For each treatment process and wastewater treatment system unit operated to comply with §61.348, the owner or operator shall maintain documentation that includes the following information regarding the unit operation:
- (1) Dates of startup and shutdown of the unit.
- (2) If measurements of waste stream benzene concentration are performed in accordance with §61.354(a)(1) of this subpart, the owner or operator shall maintain records that include date each test is performed and all test results.
- (3) If a process parameter is continuously monitored in accordance with §61.354(a)(2) of this subpart, the owner or operator shall maintain records that include a description of the operating parameter (or parameters) to be monitored to ensure that the unit will be operated in conformance with these standards and the unit's design specifications, and an explanation of the criteria used for selection of that parameter (or parameters). This documentation shall be kept for the life of the unit.
- (4) If measurements of waste stream benzene concentration are performed in accordance with §61.354(b), the owner or operator shall maintain records that include the date each test is performed and all test results.
- (5) Periods when the unit is not operated as designed.
- (j) For each control device, the owner or operator shall maintain documentation that includes the following information regarding the control device operation:
- (1) Dates of startup and shutdown of the closed-vent system and control device.
- (2) A description of the operating parameter (or parameters) to be monitored to ensure that the control device will be operated in conformance with these standards and the control device's

design specifications and an explanation of the criteria used for selection of that parameter (or parameters). This documentation shall be kept for the life of the control device.

- (3) Periods when the closed-vent system and control device are not operated as designed including all periods and the duration when:
- (i) Any valve car-seal or closure mechanism required under §61.349(a)(1)(ii) is broken or the bypass line valve position has changed.
- (ii) The flow monitoring devices required under §61.349(a)(1)(ii) indicate that vapors are not routed to the control device as required.
- (4) If a thermal vapor incinerator is used, then the owner or operator shall maintain continuous records of the temperature of the gas stream in the combustion zone of the incinerator and records of all 3-hour periods of operation during which the average temperature of the gas stream in the combustion zone is more than 28 °C (50 °F) below the design combustion zone temperature.
- (5) If a catalytic vapor incinerator is used, then the owner or operator shall maintain continuous records of the temperature of the gas stream both upstream and downstream of the catalyst bed of the incinerator, records of all 3-hour periods of operation during which the average temperature measured before the catalyst bed is more than 28 °C (50 °F) below the design gas stream temperature, and records of all 3-hour periods of operation during which the average temperature difference across the catalyst bed is less than 80 percent of the design temperature difference.
- (6) If a boiler or process heater is used, then the owner or operator shall maintain records of each occurrence when there is a change in the location at which the vent stream is introduced into the flame zone as required by §61.349(a)(2)(i)(C). For a boiler or process heater having a design heat input capacity less than 44 MW (150 × 106 BTU/hr), the owner or operator shall maintain continuous records of the temperature of the gas stream in the combustion zone of the boiler or process heater and records of all 3-hour periods of operation during which the average temperature of the gas stream in the combustion zone is more than 28 °C (50 °F) below the design combustion zone temperature. For a boiler or process heater having a design heat input capacity greater than or equal to 44 MW (150 × 106 BTU/hr), the owner or operator shall maintain continuous records of the parameter(s) monitored in accordance with the requirements of §61.354(c)(5).
- (7) If a flare is used, then the owner or operator shall maintain continuous records of the flare pilot flame monitoring and records of all periods during which the pilot flame is absent.
- (8) If a condenser is used, then the owner or operator shall maintain records from the monitoring device of the parameters selected to be monitored in accordance with §61.354(c)(6). If concentration of organics or concentration of benzene in the control device outlet gas stream is monitored, then the owner or operator shall record all 3-hour periods of operation during which the concentration of organics or the concentration of benzene in the exhaust stream is more than 20 percent greater than the design value. If the temperature of the condenser exhaust stream and

coolant fluid is monitored, then the owner or operator shall record all 3-hour periods of operation during which the temperature of the condenser exhaust vent stream is more than 6 °C (11 °F) above the design average exhaust vent stream temperature, or the temperature of the coolant fluid exiting the condenser is more than 6 °C (11 °F) above the design average coolant fluid temperature at the condenser outlet.

- (9) If a carbon adsorber is used, then the owner or operator shall maintain records from the monitoring device of the concentration of organics or the concentration of benzene in the control device outlet gas stream. If the concentration of organics or the concentration of benzene in the control device outlet gas stream is monitored, then the owner or operator shall record all 3-hour periods of operation during which the concentration of organics or the concentration of benzene in the exhaust stream is more than 20 percent greater than the design value. If the carbon bed regeneration interval is monitored, then the owner or operator shall record each occurrence when the vent stream continues to flow through the control device beyond the predetermined carbon bed regeneration time.
- (10) If a carbon adsorber that is not regenerated directly on site in the control device is used, then the owner or operator shall maintain records of dates and times when the control device is monitored, when breakthrough is measured, and shall record the date and time then the existing carbon in the control device is replaced with fresh carbon.
- (11) If an alternative operational or process parameter is monitored for a control device, as allowed in §61.354(e) of this subpart, then the owner or operator shall maintain records of the continuously monitored parameter, including periods when the device is not operated as designed.
- (12) If a control device subject to the requirements of §61.349(a)(2)(iv) is used, then the owner or operator shall maintain records of the parameters that are monitored and each occurrence when the parameters monitored are outside the range of values specified in §61.349(a)(2)(iv)(C), or other records as specified by the Administrator.
- (k) An owner or operator who elects to install and operate the control equipment in §61.351 of this subpart shall comply with the recordkeeping requirements in 40 CFR 60.115b.
- (1) An owner or operator who elects to install and operate the control equipment in §61.352 of this subpart shall maintain records of the following:
- (1) The date, location, and corrective action for each visual inspection required by 40 CFR 60.693–2(a)(5), during which a broken seal, gap, or other problem is identified that could result in benzene emissions.
- (2) Results of the seal gap measurements required by 40 CFR 60.693-2(a).
- (m) If a system is used for emission control that is maintained at a pressure less than atmospheric pressure with openings to provide dilution air, then the owner or operator shall maintain records

of the monitoring device and records of all periods during which the pressure in the unit is operated at a pressure that is equal to or greater than atmospheric pressure.

- (n) Each owner or operator using a total enclosure to comply with control requirements for tanks in §61.343 or the control requirements for containers in §61.345 must keep the records required in paragraphs (n)(1) and (2) of this section. Owners or operators may use records as required in 40 CFR 264.1089(b)(2)(iv) or 40 CFR 265.1090(b)(2)(iv) for a tank or as required in 40 CFR 264.1089(d)(1) or 40 CFR 265.1090(d)(1) for a container to meet the recordkeeping requirement in paragraph (n)(1) of this section. The owner or operator must make the records of each verification of a total enclosure available for inspection upon request.
- (1) Records of the most recent set of calculations and measurements performed to verify that the enclosure meets the criteria of a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" in 40 CFR 52.741, appendix B;
- (2) Records required for a closed-vent system and control device according to the requirements in paragraphs (d) (f), and (j) of this section.

[55 FR 8346, Mar. 7, 1990; 55 FR 12444, Apr. 3, 1990; 55 FR 18331, May 2, 1990, as amended at 58 FR 3103, Jan. 7, 1993; 65 FR 62161, Oct. 17, 2000; 67 FR 68533, Nov. 12, 2002]

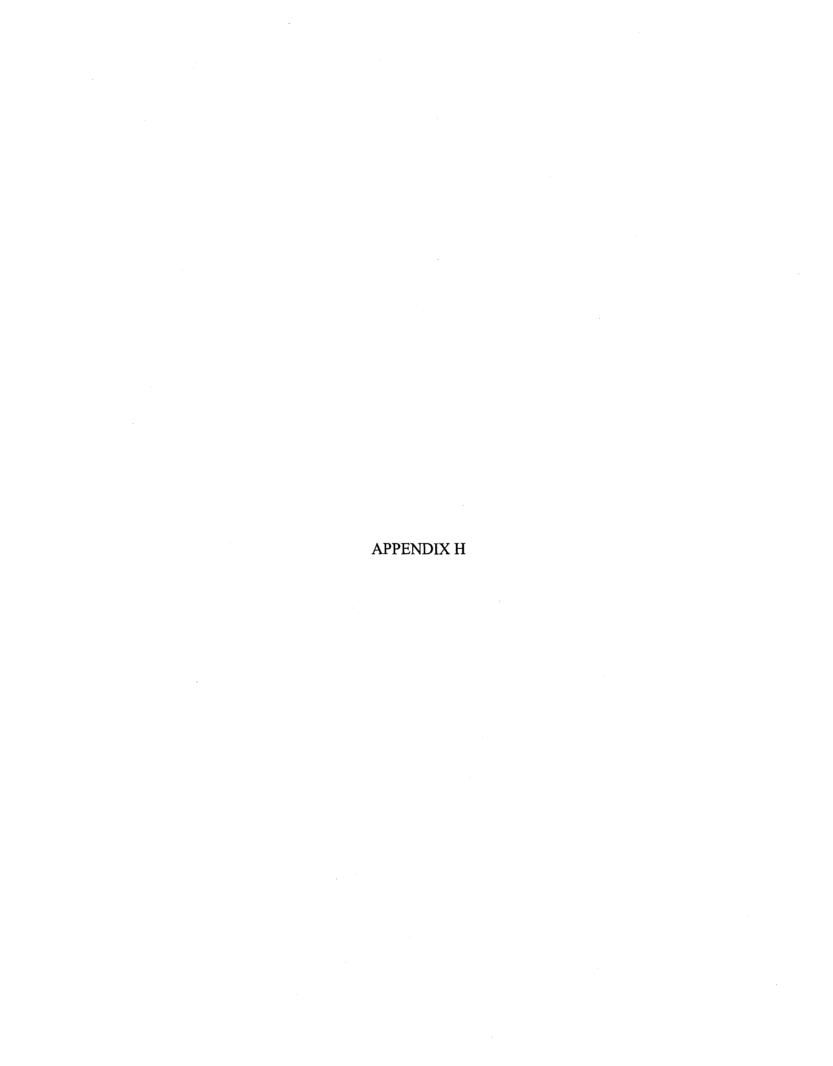
# § 61.357 Reporting requirements.

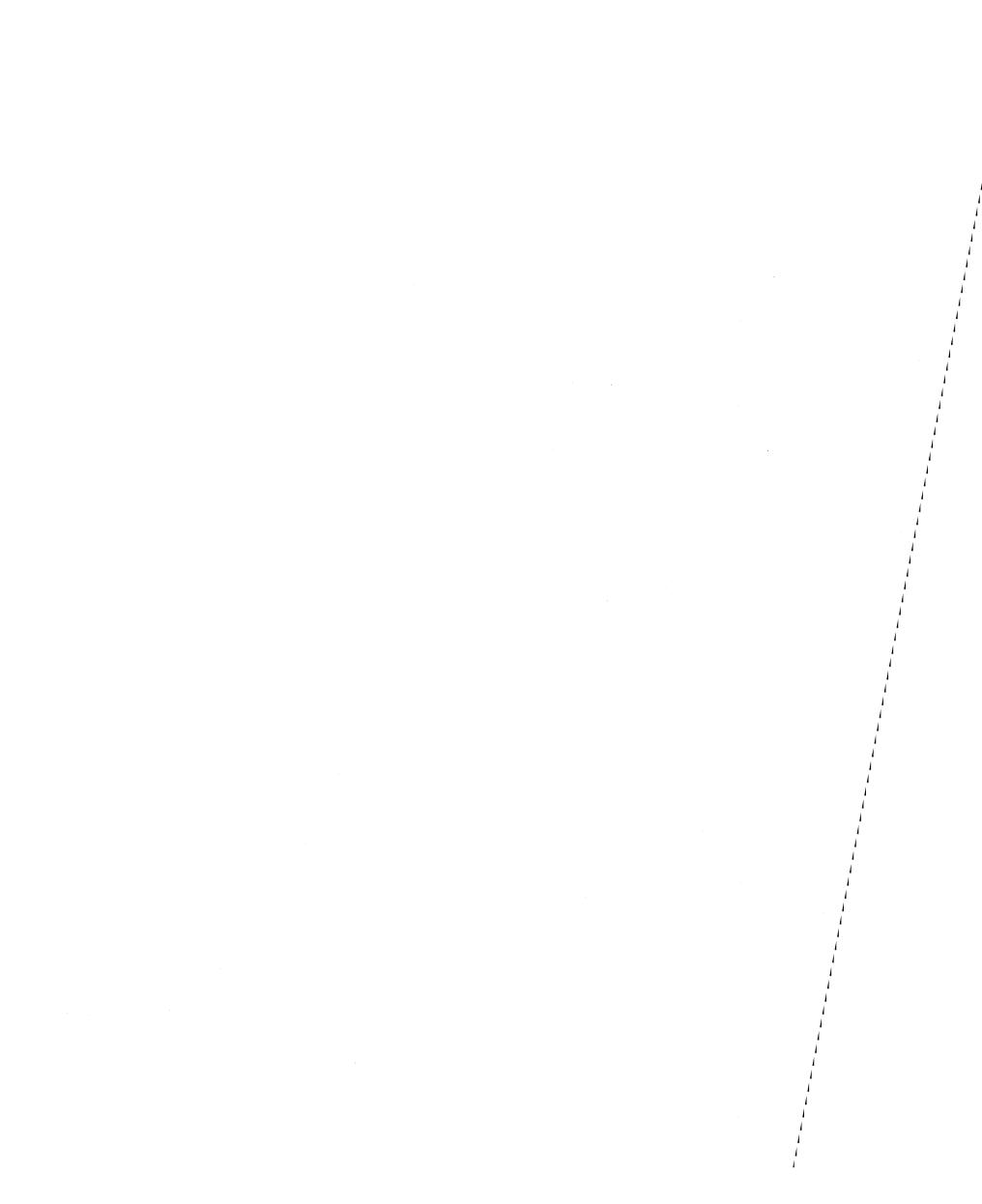
- (a) Each owner or operator of a chemical plant, petroleum refinery, coke by-product recovery plant, and any facility managing wastes from these industries shall submit to the Administrator within 90 days after January 7, 1993, or by the initial startup for a new source with an initial startup after the effective date, a report that summarizes the regulatory status of each waste stream subject to §61.342 and is determined by the procedures specified in §61.355(c) to contain benzene. Each owner or operator subject to this subpart who has no benzene onsite in wastes, products, by-products, or intermediates shall submit an initial report that is a statement to this effect. For all other owners or operators subject to this subpart, the report shall include the following information:
- (1) Total annual benzene quantity from facility waste determined in accordance with §61.355(a) of this subpart.
- (2) A table identifying each waste stream and whether or not the waste stream will be controlled for benzene emissions in accordance with the requirements of this subpart.
- (3) For each waste stream identified as not being controlled for benzene emissions in accordance with the requirements of this subpart the following information shall be added to the table:
- (i) Whether or not the water content of the waste stream is greater than 10 percent;

- (ii) Whether or not the waste stream is a process wastewater stream, product tank drawdown, or landfill leachate;
- (iii) Annual waste quantity for the waste stream;
- (iv) Range of benzene concentrations for the waste stream;
- (v) Annual average flow-weighted benzene concentration for the waste stream; and
- (vi) Annual benzene quantity for the waste stream.
- (4) The information required in paragraphs (a) (1), (2), and (3) of this section should represent the waste stream characteristics based on current configuration and operating conditions. An owner or operator only needs to list in the report those waste streams that contact materials containing benzene. The report does not need to include a description of the controls to be installed to comply with the standard or other information required in §61.10(a).
- (b) If the total annual benzene quantity from facility waste is less than 1 Mg/yr (1.1 ton/yr), then the owner or operator shall submit to the Administrator a report that updates the information listed in paragraphs (a)(1) through (a)(3) of this section whenever there is a change in the process generating the waste stream that could cause the total annual benzene quantity from facility waste to increase to 1 Mg/yr (1.1 ton/yr) or more.
- (c) If the total annual benzene quantity from facility waste is less than 10 Mg/yr (11 ton/yr) but is equal to or greater than 1 Mg/yr (1.1 ton/yr), then the owner or operator shall submit to the Administrator a report that updates the information listed in paragraphs (a)(1) through (a)(3) of this section. The report shall be submitted annually and whenever there is a change in the process generating the waste stream that could cause the total annual benzene quantity from facility waste to increase to 10 Mg/yr (11 ton/yr) or more. If the information in the annual report required by paragraphs (a)(1) through (a)(3) of this section is not changed in the following year, the owner or operator may submit a statement to that effect.
- (d) If the total annual benzene quantity from facility waste is equal to or greater than 10 Mg/yr (11 ton/yr), then the owner or operator shall submit to the Administrator the following reports:
- (1) Within 90 days after January 7, 1993, unless a waiver of compliance under §61.11 of this part is granted, or by the date of initial startup for a new source with an initial startup after the effective date, a certification that the equipment necessary to comply with these standards has been installed and that the required initial inspections or tests have been carried out in accordance with this subpart. If a waiver of compliance is granted under §61.11, the certification of equipment necessary to comply with these standards shall be submitted by the date the waiver of compliance expires.
- (2) Beginning on the date that the equipment necessary to comply with these standards has been certified in accordance with paragraph (d)(1) of this section, the owner or operator shall submit annually to the Administrator a report that updates the information listed in paragraphs (a)(1)

through (a)(3) of this section. If the information in the annual report required by paragraphs (a)(1) through (a)(3) of this section is not changed in the following year, the owner or operator may submit a statement to that effect.

- (3) If an owner or operator elects to comply with the requirements of §61.342(c)(3)(ii), then the report required by paragraph (d)(2) of this section shall include a table identifying each waste stream chosen for exemption and the total annual benzene quantity in these exempted streams.
- (4) If an owner or operator elects to comply with the alternative requirements of §61.342(d) of this subpart, then he shall include in the report required by paragraph (d)(2) of this section a table presenting the following information for each process wastewater stream:
- (i) Whether or not the process wastewater stream is being controlled for benzene emissions in accordance with the requirements of this subpart;
- (ii) For each process wastewater stream identified as not being controlled for benzene emissions in accordance with the requirements of this subpart, the table shall report the following information for the process wastewater stream as determined at the point of waste generation: annual waste quantity, range of benzene concentrations, annual average flow-weighted benzene concentration, and annual benzene quantity;
- (iii) For each process wastewater stream identified as being controlled for benzene emissions in accordance with the requirements of this subpart, the table shall report the following information for the process wastewater stream as determined at the exit to the treatment process: Annual waste quantity, range of benzene concentrations, annual average flow-weighted benzene concentration, and annual benzene quantity.
- (5) If an owner or operator elects to comply with the alternative requirements of §61.342(e), then the report required by paragraph (d)(2) of this section shall include a table presenting the following information for each waste stream:
- (i) For each waste stream identified as not being controlled for benzene emissions in accordance with the requirements of this subpart; the table shall report the following information for the waste stream as determined at the point of waste generation: annual waste quantity, range of benzene concentrations, annual average flow-weighted benzene concentration, and annual benzene quantity;
- (ii) For each waste stream identified as being controlled for benzene emissions in accordance with the requirements of this subpart; the table shall report the following information for the waste stream as determined at the applicable location described in §61.355(k)(2): Annual waste quantity, range of benzene concentrations, annual average flow-weighted benzene concentration, and annual benzene quantity.
- (6) Beginning 3 months after the date that the equipment necessary to comply with these standards has been certified in accordance with paragraph (d)(1) of this section, the owner or


- operator shall submit quarterly to the Administrator a certification that all of the required inspections have been carried out in accordance with the requirements of this subpart.
- (7) Beginning 3 months after the date that the equipment necessary to comply with these standards has been certified in accordance with paragraph (d)(1) of this section, the owner or operator shall submit a report quarterly to the Administrator that includes:
- (i) If a treatment process or wastewater treatment system unit is monitored in accordance with §61.354(a)(1) of this subpart, then each period of operation during which the concentration of benzene in the monitored waste stream exiting the unit is equal to or greater than 10 ppmw.
- (ii) If a treatment process or wastewater treatment system unit is monitored in accordance with §61.354(a)(2) of this subpart, then each 3-hour period of operation during which the average value of the monitored parameter is outside the range of acceptable values or during which the unit is not operating as designed.
- (iii) If a treatment process or wastewater treatment system unit is monitored in accordance with §61.354(b), then each period of operation during which the flow-weighted annual average concentration of benzene in the monitored waste stream entering the unit is equal to or greater than 10 ppmw and/or the total annual benzene quantity is equal to or greater than 1.0 mg/yr.
- (iv) For a control device monitored in accordance with §61.354(c) of this subpart, each period of operation monitored during which any of the following conditions occur, as applicable to the control device:
- (A) Each 3-hour period of operation during which the average temperature of the gas stream in the combustion zone of a thermal vapor incinerator, as measured by the temperature monitoring device, is more than 28 °C (50 °F) below the design combustion zone temperature.
- (B) Each 3-hour period of operation during which the average temperature of the gas stream immediately before the catalyst bed of a catalytic vapor incinerator, as measured by the temperature monitoring device, is more than 28 °C (50 °F) below the design gas stream temperature, and any 3-hour period during which the average temperature difference across the catalyst bed (i.e., the difference between the temperatures of the gas stream immediately before and after the catalyst bed), as measured by the temperature monitoring device, is less than 80 percent of the design temperature difference.
- (C) Each 3-hour period of operation during which the average temperature of the gas stream in the combustion zone of a boiler or process heater having a design heat input capacity less than 44 MW ( $150 \times 106 \text{ BTU/hr}$ ), as mesured by the temperature monitoring device, is more than 28 °C (50 °F) below the design combustion zone temperature.
- (D) Each 3-hour period of operation during which the average concentration of organics or the average concentration of benzene in the exhaust gases from a carbon adsorber, condenser, or other vapor recovery system is more than 20 percent greater than the design concentration level of organics or benzene in the exhaust gas.


- (E) Each 3-hour period of operation during which the temperature of the condenser exhaust vent stream is more than 6 °C (11 °F) above the design average exhaust vent stream temperature, or the temperature of the coolant fluid exiting the condenser is more than 6 °C (11 °F) above the design average coolant fluid temperature at the condenser outlet.
- (F) Each period in which the pilot flame of a flare is absent.
- (G) Each occurrence when there is a change in the location at which the vent stream is introduced into the flame zone of a boiler or process heater as required by §61.349(a)(2)(i)(C) of this subpart.
- (H) Each occurrence when the carbon in a carbon adsorber system that is regenerated directly on site in the control device is not regenerated at the predetermined carbon bed regeneration time.
- (I) Each occurrence when the carbon in a carbon adsorber system that is not regenerated directly on site in the control device is not replaced at the predetermined interval specified in §61.354(c) of this subpart.
- (J) Each 3-hour period of operation during which the parameters monitored are outside the range of values specified in §61.349(a)(2)(iv)(C), or any other periods specified by the Administrator for a control device subject to the requirements of §61.349(a)(2)(iv).
- (v) For a cover and closed-vent system monitored in accordance with §61.354(g), the owner or operator shall submit a report quarterly to the Administrator that identifies any period in which the pressure in the waste management unit is equal to or greater than atmospheric pressure.
- (8) Beginning one year after the date that the equipment necessary to comply with these standards has been certified in accordance with paragraph (d)(1) of this section, the owner or operator shall submit annually to the Administrator a report that summarizes all inspections required by §§61.342 through 61.354 during which detectable emissions are measured or a problem (such as a broken seal, gap or other problem) that could result in benzone emissions is identified, including information about the repairs or corrective action taken.
- (e) An owner or operator electing to comply with the provisions of §§61.351 or 61.352 of this subpart shall notify the Administrator of the alternative standard selected in the report required under §61.07 or §61.10 of this part.
- (f) An owner or operator who elects to install and operate the control equipment in §61.351 of this subpart shall comply with the reporting requirements in 40 CFR 60.115b.
- (g) An owner or operator who elects to install and operate the control equipment in §61.352 of this subpart shall submit initial and quarterly reports that identify all seal gap measurements, as required in 40 CFR 60.693–2(a), that are outside the prescribed limits.
- [55 FR 8346, Mar. 7 1990; 55 FR 12444, Apr. 3, 1990, as amended at 55 FR 37231, Sept. 10, 1990; 58 FR 3105, Jan. 7, 1993; 65 FR 62161, Oct. 17, 2000]

# § 61.358 Delegation of authority.

- (a) In delegating implementation and enforcement authority to a State under section 112(d) of the Clean Air Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State.
- (b) Alternative means of emission limitation under §61.353 of this subpart will not be delegated to States.

§ 61.359 [Reserved]





# 40 CFR Part 63, Subpart DD—National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations

Source: 61 FR 34158, July 1, 1996, unless otherwise noted.

# § 63.680 Applicability and designation of affected sources.

- (a) The provisions of this subpart apply to the owner and operator of a plant site for which both of the conditions specified in paragraphs (a)(1) and (a)(2) of this section are applicable. If either one of these conditions does not apply to the plant site, then the owner and operator of the plant site are not subject to the provisions of this subpart.
- (1) The plant site is a major source of hazardous air pollutant (HAP) emissions as defined in 40 CFR 63.2.
- (2) At the plant site is located one or more of operations that receives off-site materials as specified in paragraph (b) of this section and the operations is one of the following waste management operations or recovery operations as specified in paragraphs (a)(2)(i) through (a)(2)(vi) of this section.
- (i) A waste management operation that receives off-site material and the operation is regulated as a hazardous waste treatment, storage, and disposal facility (TSDF) under either 40 CFR part 264 or part 265.
- (ii) A waste management operation that treats wastewater which is an off-site material and the operation is exempted from regulation as a hazardous waste treatment, storage, and disposal facility under 40 CFR 264.1(g)(6) or 40 CFR 265.1(c)(10).
- (iii) A waste management operation that treats wastewater which is an off-site material and the operation meets both of the following conditions:
- (A) The operation is subject to regulation under either section 402 or 307(b) of the Clean Water Act but is not owned by a "state" or "municipality" as defined by section 502(3) and 502(4), respectively, of the Clean Water Act; and
- (B) The treatment of wastewater received from off-site is the predominant activity performed at the plant site.
- (iv) A recovery operation that recycles or reprocesses hazardous waste which is an off-site material and the operation is exempted from regulation as a hazardous waste treatment, disposal, and storage facility under 40 CFR 264.1(g)(2) or 40 CFR 265.1(c)(6).
- (v) A recovery operation that recycles or reprocesses used solvent which is an off-site material and the operation is not part of a chemical, petroleum, or other manufacturing process that is required to use air emission controls by another subpart of 40 CFR part 63 or 40 CFR part 61.

- (vi) A recovery operation that re-refines or reprocesses used oil which is an off-site material and the operation is regulated under 40 CFR 279 subpart F—Standards for Used Oil Processors and Refiners.
- (b) For the purpose of implementing this subpart, an off-site material is a material that meets all of the criteria specified in paragraph (b)(1) of this section but is not one of the materials specified in paragraph (b)(2) of this section.
- (1) An off-site material is a material that meets all of the criteria specified in paragraphs (b)(1)(i) through (b)(1)(iii) of this section. If any one of these criteria do not apply to the material, then the material is not an off-site material subject to this subpart.
- (i) The material is a waste, used oil, or used solvent as defined in §63.681 of this subpart;
- (ii) The waste, used oil, or used solvent is not produced or generated within the plant site, but the material is delivered, transferred, or otherwise moved to the plant site from a location outside the boundaries of the plant site; and
- (iii) The waste, used oil, or used solvent contains one or more of the hazardous air pollutants (HAP) listed in Table 1 of this subpart based on the composition of the material at the point-of-delivery, as defined in §63.681 of this subpart.
- (2) For the purpose of implementing this subpart, the following materials are not off-site materials:
- (i) Household waste as defined in 40 CFR 258.2.
- (ii) Radioactive mixed waste managed in accordance with all applicable regulations under Atomic Energy Act and Nuclear Waste Policy Act authorities.
- (iii) Waste that is generated as a result of implementing remedial activities required under the Resource Conservation and Recovery Act (RCRA) corrective action authorities (RCRA sections 3004(u), 3004(v), or 3008(h)), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) authorities, or similar Federal or State authorities.
- (iv) Waste containing HAP that is generated by residential households (e.g., old paint, home garden pesticides) and subsequently is collected as a community service by government agencies, businesses, or other organizations for the purpose of promoting the proper disposal of this waste.
- (v) Waste that is transferred from a chemical manufacturing plant or other facility for which both of the following conditions apply to the waste:
- (A) The management of the waste at the facility is required either under part 63 subpart F—National Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry or under another subpart in 40 CFR part 63 to meet the air

emission control standards for process wastewater specified in 40 CFR 63.132 through 63.147; and

- (B) The owner or operator of the facility from which the waste is transferred has complied with the provisions of 40 CFR 63.132(g)(1)(ii) and (g)(2).
- (vi) Waste that is transferred from a chemical manufacturing plant, petroleum refinery, or coke by-product recovery plant which is subject to 40 CFR part 61, subpart FF—National Emission Standards for Benzene Waste Operations, and for which both of the following conditions apply to the waste:
- (A) The waste is generated at a facility that is not exempted under the provisions of 40 CFR 61.342(a) from meeting the air emission control standards of 40 CFR part 61, subpart FF; and
- (B) The owner or operator of the facility from which the waste is transferred has complied with the provisions of 40 CFR 61.342(f)(2).
- (vii) Ship ballast water pumped from a ship to an onshore wastewater treatment facility.
- (viii) Hazardous waste that is stored for 10 days or less at a transfer facility in compliance with the provisions of 40 CFR 263.12.
- (c) Affected sources —(1) Off-site material management units. For each operation specified in paragraphs (a)(2)(i) through (a)(2)(vi) of this section that is located at the plant site, the affected source is the entire group of off-site material management units associated with the operation. An off-site material management unit is a tank, container, surface impoundment, oil-water separator, organic-water separator, or transfer system used to manage off-site material. For the purpose of implementing the standards under this subpart, a unit that meets the definition of a tank or container but also is equipped with a vent that serves as a process vent for any of the processes listed in paragraphs (c)(2)(i) through (c)(2)(vi) of this section is not an off-site material management unit but instead is a process vent and is to be included in the appropriate affected source group under paragraph (c)(2) of this section. Examples of such a unit may include, but are not limited to, a distillate receiver vessel, a primary condenser, a bottoms receiver vessel, a surge control tank, a separator tank, and a hot well.
- (2) Process vents. For each operation specified in paragraphs (a)(2)(i) through (a)(2)(vi) of this section that is located at the plant site, the affected source is the entire group of process equipment associated with the process vents for the processes listed in paragraphs (c)(2)(i) through (c)(2)(vi) of this section.
- (i) Distillation process used for the treatment, recycling, or recovery of off-site material. Distillation means a process, either batch or continuous, separating one or more off-site material feed streams into two or more exit streams having different component concentrations from those in the feed stream or streams. The separation is achieved by the redistribution of the components between the liquid and vapor phases as they approach equilibrium within the distillation unit.

- (ii) Fractionation process used for the treatment, recycling, or recovery of off-site material. Fractionation means a liquid mixture separation process or method used to separate a mixture of several volatile components of different boiling points in successive stages, each stage removing from the mixture some proportion of one of the components.
- (iii) Thin-film evaporation process used for the treatment, recycling, or recovery of off-site material. Thin-film evaporation means a liquid mixture separation process or method that uses a heating surface consisting of a large diameter tube that may be either straight or tapered, horizontal or vertical. Liquid is spread on the tube wall by a rotating assembly of blades that maintain a close clearance from the wall or actually ride on the film of liquid on the wall.
- (iv) Solvent extraction process used for the treatment, recycling, or recovery of off-site material. Solvent extraction means a separation process or method in which a solid or a solution is contacted with a liquid solvent (the material and the solvent being relatively insoluble in each other) to preferentially dissolve and transfer one or more components into the solvent.
- (v) Steam stripping process used for the treatment, recycling, or recovery of off-site material. Steam stripping means a liquid mixture separation process or method in which vaporization of the volatile components of a liquid mixture occurs by the introduction of steam directly into the process.
- (vi) Gas stripping process used for the treatment, recycling, or recovery of off-site material. Gas stripping means a desorption process or method used to transfer one or more volatile components from a liquid mixture into a gas stream either with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap, sieve, or valve-type plate towers are examples of the process configurations used for contacting the gas and a liquid.
- (3) Equipment leaks. For each operation specified in paragraphs (a)(2)(i) through (a)(2)(vi) of this section that is located at the plant site, the affected source is the entire group of equipment components for which each component meets all of the conditions specified in paragraphs (c)(3)(i) through (c)(3)(iii) of this section. If any one of these conditions do not apply to an equipment component, then that component is not part of the affected source for equipment leaks.
- (i) The equipment component is a pump, compressor, agitator, pressure relief device, sampling connection system, open-ended valve or line, valve, connector, or instrumentation system;
- (ii) The equipment component contains or contacts off-site material having a total HAP concentration equal to or greater than 10 percent by weight; and
- (iii) The equipment component is intended to operate for 300 hours or more during a calendar year in off-site material service, as defined in §63.681 of this subpart.
- (d) Facility-wide exemption. The owner or operator of affected sources subject to this subpart is exempted from the requirements of §§63.682 through 63.699 of this subpart in situations when the total annual quantity of the HAP that is contained in the off-site material received at the plant

site is less than 1 megagram per year. For a plant site to be exempted under the provisions of this paragraph (d), the owner or operator must meet the requirements in paragraphs (d)(1) through (d)(3) of this section.

- (1) The owner or operator must prepare an initial determination of the total annual HAP quantity in the off-site material received at the plant site. This determination is based on the total quantity of the HAP listed in Table 1 of this subpart as determined at the point-of-delivery for each off-site material stream.
- (2) The owner or operator must prepare a new determination whenever the extent of changes to the quantity or composition of the off-site material received at the plant site could cause the total annual HAP quantity in the off-site material received at the plant site to exceed the limit of 1 megagram per year.
- (3) The owner or operator must maintain documentation to support the owner's or operator's determination of the total annual HAP quantity in the off-site material received at the plant site. This documentation must include the basis and data used for determining the HAP content of the off-site material.
- (e) Compliance dates —(1) Existing sources. The owner or operator of an affected source that commenced construction or reconstruction before October 13, 1994, must achieve compliance with the provisions of this subpart on or before the date specified in paragraph (e)(1)(i) or (e)(1)(ii) of this section as applicable to the affected source.
- (i) For an affected source that commenced construction or reconstruction before October 13, 1994 and receives off-site material for the first time before February 1, 2000, the owner or operator of this affected source must achieve compliance with the provisions of the subpart on or before February 1, 2000 unless an extension has been granted by the Administrator as provided in 40 CFR 63.6(i).
- (ii) For an affected source that commenced construction or reconstruction before October 13, 1994, but receives off-site material for the first time on or after February 1, 2000, the owner or operator of the affected source must achieve compliance with the provisions of this subpart upon the first date that the affected source begins to manage off-site material.
- (2) New sources. The owner or operator of an affected source for which construction or reconstruction commences on or after October 13, 1994, must achieve compliance with the provisions of this subpart on or before July 1, 1996, or upon initial startup of operations, whichever date is later as provided in 40 CFR 63.6(b).
- (f) The provisions of 40 CFR part 63, subpart A—General Provisions that apply and those that do not apply to this subpart are specified in Table 2 of this subpart.
- [61 FR 34158, July 1, 1996, as amended at 65 FR 38963, July 20, 1999]

#### § 63.681 Definitions.

All terms used in this subpart shall have the meaning given to them in this section, 40 CFR 63.2 of this part, and the Act.

Boiler means an enclosed combustion device that extracts useful energy in the form of steam and is not an incinerator or a process heater.

Closed-vent system means a system that is not open to the atmosphere and is composed of hard-piping, ductwork, connections, and, if necessary, fans, blowers, or other flow-inducing devices that conveys gas or vapor from an emission point to a control device.

Closure device means a cap, hatch, lid, plug, seal, valve, or other type of fitting that prevents or reduces air pollutant emissions to the atmosphere by blocking an opening in a cover when the device is secured in the closed position. Closure devices include devices that are detachable from the cover (e.g., a sampling port cap), manually operated (e.g., a hinged access lid or hatch), or automatically operated (e.g., a spring-loaded pressure relief valve).

Container means a portable unit used to hold material. Examples of containers include but are not limited to drums, dumpsters, roll-off boxes, bulk cargo containers commonly known as "portable tanks" or "totes", cargo tank trucks, and tank rail cars.

Continuous record means documentation of data values measured at least once every 15 minutes and recorded at the frequency specified in this subpart.

Continuous recorder means a data recording device that either records an instantaneous data value at least once every 15 minutes or records 15-minutes or more frequent block averages.

Continuous seal means a seal that forms a continuous closure that completely covers the space between the edge of the floating roof and the wall of a tank. A continuous seal may be a vapor-mounted seal, liquid-mounted seal, or metallic shoe seal. A continuous seal may be constructed of fastened segments so as to form a continuous seal.

Control device means equipment used for recovering, removing, oxidizing, or destroying organic vapors. Examples of such equipment include but are not limited to carbon adsorbers, condensers, vapor incinerators, flares, boilers, and process heaters.

Cover means a device or system that provides a continuous barrier over the material managed in an off-site material management unit to prevent or reduce air pollutant emissions to the atmosphere. A cover may have openings needed for operation, inspection, sampling, maintenance, and repair of the unit provided that each opening is closed when not in use (e.g., access hatches, sampling ports). A cover may be a separate piece of equipment which can be detached and removed from the unit or a cover may be formed by structural features permanently integrated into the design of the unit.

Emission point means an individual tank, surface impoundment, container, oil-water or organic-water separator, transfer system, process vent, or enclosure.

Enclosure means a structure that surrounds a tank or container, captures organic vapors emitted from the tank or container, and vents the captured vapor through a closed vent system to a control device.

External floating roof means a pontoon-type or double-deck type cover that rests on the liquid surface in a tank with no fixed roof.

Fixed roof means a cover that is mounted on a unit in a stationary position and does not move with fluctuations in the level of the liquid managed in the unit.

Flame zone means the portion of the combustion chamber in a boiler or process heater occupied by the flame envelope.

Floating roof means a cover consisting of a double deck, pontoon single deck, or internal floating cover which rests upon and is supported by the liquid being contained, and is equipped with a continuous seal.

Flow indicator means a device that indicates whether gas is flowing, or whether the valve position would allow gas to flow in a bypass line.

*Hard-piping* means pipe or tubing that is manufactured and properly installed in accordance with relevant standards and good engineering practices.

Hazardous air pollutants or HAP means the specific organic chemical compounds, isomers, and mixtures listed in Table 1 of this subpart.

Hazardous waste means a waste that is determined to be hazardous under the Resource Conservation and Recovery Act (PL 94–580) (RCRA), as implemented by 40 CFR parts 260 and 261.

Individual drain system means a stationary system used to convey wastewater streams or residuals to a waste management unit or to discharge or disposal. The term includes hard-piping, all drains and junction boxes, together with their associated sewer lines and other junction boxes (e.g., manholes, sumps, and lift stations) conveying wastewater streams or residuals. For the purpose of this subpart, an individual drain system is not a drain and collection system that is designed and operated for the sole purpose of collecting rainfall runoff (e.g., stormwater sewer system) and is segregated from all other individual drain systems.

Internal floating roof means a cover that rests or floats on the liquid surface (but not necessarily in complete contact with it inside a tank that has a fixed roof).

Light-material service means the container is used to manage an off-site material for which both of the following conditions apply: the vapor pressure of one or more of the organic constituents

in the off-site material is greater than 0.3 kilopascals (kPa) at 20 °C; and the total concentration of the pure organic constituents having a vapor pressure greater than 0.3 kPa at 20 °C is equal to or greater than 20 percent by weight.

Liquid-mounted seal means a foam- or liquid-filled continuous seal mounted in contact with the liquid in a unit.

Maximum HAP vapor pressure means the sum of the individual HAP equilibrium partial pressure exerted by an off-site material at the temperature equal to either: the local maximum monthly average temperature as reported by the National Weather Service when the off-site material is stored or treated at ambient temperature; or the highest calendar-month average temperature of the off-site material when the off-site material is stored at temperatures above the ambient temperature or when the off-site material is stored or treated at temperatures below the ambient temperature. For the purpose of this subpart, maximum HAP vapor pressure is determined using the procedures specified in §63.694(j) of this subpart.

Metallic shoe seal means a continuous seal that is constructed of metal sheets which are held vertically against the wall of the tank by springs, weighted levers, or other mechanisms and is connected to the floating roof by braces or other means. A flexible coated fabric (envelope) spans the annular space between the metal sheet and the floating roof.

No detectable organic emissions means no escape of organics to the atmosphere as determined using the procedure specified in §63.694(k) of this subpart.

Off-site material means a material that meets all of the criteria specified in paragraph §63.680(b)(1) of this subpart but is not one of the materials specified in §63.680(b)(2) of this subpart.

Off-site material management unit means a tank, container, surface impoundment, oil-water separator, organic-water separator, or transfer system used to manage off-site material.

Off-site material service means any time when a pump, compressor, agitator, pressure relief device, sampling connection system, open-ended valve or line, valve, connector, or instrumentation system contains or contacts off-site material.

Off-site material stream means an off-site material produced or generated by a particular process or source such that the composition and form of the material comprising the stream remain consistent. An off-site material stream may be delivered, transferred, or otherwise moved to the plant site in a continuous flow of material (e.g., wastewater flowing through a pipeline) or in a series of discrete batches of material (e.g., a truckload of drums all containing the same off-site material or multiple bulk truck loads of an off-site material produced by the same process).

Oil-water separator means a separator as defined for this subpart that is used to separate oil from water.

Operating parameter value means a minimum or maximum value established for a control device or treatment process parameter which, if achieved by itself or in combination with one or more other operating parameter values, determines that an owner or operator has complied with an applicable emission limitation or standard.

Organic-water separator means a separator as defined for this subpart that is used to separate organics from water.

Plant site means all contiguous or adjoining property that is under common control including properties that are separated only by a road or other public right-of-way. Common control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, or any combination thereof. A unit or group of units within a contiguous property that are not under common control (e.g., a wastewater treatment unit or solvent recovery unit located at the site but is sold to a different company) is a different plant site.

Point-of-delivery means the point at the boundary or within the plant site where the owner or operator first accepts custody, takes possession, or assumes responsibility for the management of an off-site material stream managed in a waste management operation or recovery operation specified in §63.680 (a)(2)(i) through (a)(2)(vi) of this subpart. The characteristics of an off-site material stream are determined prior to combining the off-site material stream with other off-site material streams or with any other materials.

Point-of-treatment means a point after the treated material exits the treatment process but before the first point downstream of the treatment process exit where the organic constituents in the treated material have the potential to volatilize and be released to the atmosphere. For the purpose of applying this definition to this subpart, the first point downstream of the treatment process exit is not a fugitive emission point due to an equipment leak from any of the following equipment components: pumps, compressors, valves, connectors, instrumentation systems, or safety devices.

*Process heater* means an enclosed combustion device that transfers heat released by burning fuel directly to process streams or to heat transfer liquids other than water.

Process vent means an open-ended pipe, stack, or duct through which a gas stream containing HAP is continuously or intermittently discharged to the atmosphere from any of the processes listed in §63.680(c)(2)(i) through (c)(2)(vi) of this section. For the purpose of this subpart, a process vent is none of the following: a pressure-relief vent or other vent that is used as a safety device (as defined in this section); an open-ended line or other vent that is subject to the equipment leak control requirements under §63.691 of this subpart; or a stack or other vent that is used to exhaust combustion products from a boiler, furnace, process heater, incinerator, or other combustion device.

Recovery operation means the collection of off-site material management units, process vents, and equipment components used at a plant site to manage an off-site material stream from the point-of-delivery through the point where the material has been recycled, reprocessed, or re-

refined to obtain the intended product or to remove the physical and chemical impurities of concern.

Safety device means a closure device such as a pressure relief valve, frangible disc, fusible plug, or any other type of device which functions to prevent physical damage or permanent deformation to equipment by venting gases or vapors during unsafe conditions resulting from an unplanned, accidental, or emergency event. For the purpose of this subpart, a safety device is not used for routine venting of gases or vapors from the vapor headspace underneath a cover such as during filling of the unit or to adjust the pressure in this vapor headspace in response to normal daily diurnal ambient temperature fluctuations. A safety device is designed to remain in a closed position during normal operations and open only when the internal pressure, or another relevant parameter, exceeds the device threshold setting applicable to the equipment as determined by the owner or operator based on manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials.

Separator means a waste management unit, generally a tank, used to separate oil or organics from water. A separator consists of not only the separation unit but also the forebay and other separator basins, skimmers, weirs, grit chambers, sludge hoppers, and bar screens that are located directly after the individual drain system and prior to any additional treatment units such as an air flotation unit clarifier or biological treatment unit. Examples of a separator include, but are not limited to, an API separator, parallel-plate interceptor, and corrugated-plate interceptor with the associated ancillary equipment.

Single-seal system means a floating roof having one continuous seal. This seal may be vapor-mounted, liquid-mounted, or a metallic shoe seal.

Surface impoundment means a unit that is a natural topographical depression, man-made excavation, or diked area formed primarily of earthen materials (although it may be lined with man-made materials), which is designed to hold an accumulation of liquids. Examples of surface impoundments include holding, storage, settling, and aeration pits, ponds, and lagoons.

Tank means a stationary unit that is constructed primarily of nonearthen materials (such as wood, concrete, steel, fiberglass, or plastic) which provide structural support and is designed to hold an accumulation of liquids or other materials.

Transfer system means a stationary system for which the predominant function is to convey liquids or solid materials from one point to another point within a waste management operation or recovery operation. For the purpose of this subpart, the conveyance of material using a container (as defined for this subpart) or a self-propelled vehicle (e.g., a front-end loader) is not a transfer system. Examples of a transfer system include but are not limited to a pipeline, an individual drain system, a gravity-operated conveyor (such as a chute), and a mechanically-powered conveyor (such as a belt or screw conveyor).

Temperature monitoring device means a piece of equipment used to monitor temperature and having an accuracy of  $\pm 1$  percent of the temperature being monitored expressed in degrees Celsius (°C) or  $\pm 1.2$  degrees °C, whichever value is greater.

Treatment process means a process in which an off-site material stream is physically, chemically, thermally, or biologically treated to destroy, degrade, or remove hazardous air pollutants contained in the off-site material. A treatment process can be composed of a single unit (e.g., a steam stripper) or a series of units (e.g., a wastewater treatment system). A treatment process can be used to treat one or more off-site material streams at the same time.

Used oil means any oil refined from crude oil or any synthetic oil that has been used and as a result of such use is contaminated by physical or chemical impurities. This definition is the same definition of "used oil" in 40 CFR 279.1.

*Used solvent* means a mixture of aliphatic hydrocarbons or a mixture of one and two ring aromatic hydrocarbons that has been used as a solvent and as a result of such use is contaminated by physical or chemical impurities.

Vapor-mounted seal means a continuous seal that is mounted such that there is a vapor space between the liquid in the unit and the bottom of the seal.

Volatile organic hazardous air pollutant concentration or VOHAP concentration means the fraction by weight of those compounds listed in Table 1 of this subpart that are in an off-site material as measured using Method 305 in appendix A of this part and expressed in terms of parts per million (ppm). As an alternative to using Method 305, an owner or operator may determine the HAP concentration of an off-site material using any one of the other test methods specified in  $\S63.694(b)(2)(ii)$  of this subpart. When a test method specified in  $\S63.694(b)(2)(ii)$  of this subpart other than Method 305 is used to determine the speciated HAP concentration of an off-site material, the individual compound concentration may be adjusted by the corresponding  $f_{m305}$ value listed in Table 1 of this subpart to determine a VOHAP concentration.

Waste means a material generated from industrial, commercial, mining, or agricultural operations or from community activities that is discarded, discharged, or is being accumulated, stored, or physically, chemically, thermally, or biologically treated prior to being discarded or discharged.

Waste management operation means the collection of off-site material management units, process vents, and equipment components used at a plant site to manage an off-site material stream from the point-of-delivery to the point where the waste exits or is discharged from the plant site or the waste is placed for on-site disposal in a unit not subject to this subpart (e.g., a waste incinerator, a land disposal unit).

Waste stabilization process means any physical or chemical process used to either reduce the mobility of hazardous constituents in a waste or eliminate free liquids as determined by Test Method 9095—Paint Filter Liquids Test in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846, Third Edition, September 1986, as amended by Update I, November 15, 1992. (As an alternative, an owner or operator may use any

more recent, updated version of Method 9095 approved by the EPA.) A waste stabilization process includes mixing the waste with binders or other materials and curing the resulting waste and binder mixture. Other synonymous terms used to refer to this process are "waste fixation" or "waste solidification." A waste stabilization process does not include the adding of absorbent materials to the surface of a waste, without mixing, agitation, or subsequent curing, to absorb free liquid.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38964, July 20, 1999]

#### § 63.682 [Reserved]

## § 63.683 Standards: General.

- (a) The general standards under this section apply to owners and operators of affected sources as designated in §63.680(c) of this subpart.
- (b) Off-site material management units. (1) For each off-site material management unit that is part of an affected source, the owner or operator must meet the requirements in either paragraph (b)(1)(i), (b)(1)(ii), or (b)(1)(iii) of this section except for those off-site material management units exempted under paragraph (b)(2) of this section.
- (i) The owner or operator controls air emissions from the off-site material management unit in accordance with the applicable standards specified in §§63.685 through 63.689 of this subpart.
- (ii) The owner or operator removes or destroys HAP in the off-site material before placing the material in the off-site material management unit by treating the material in accordance with the standards specified in §63.684 of this subpart.
- (iii) The owner or operator determines before placing off-site material in the off-site material management unit that the average VOHAP concentration of the off-site material is less than 500 parts per million by weight (ppmw) at the point-of-delivery. The owner or operator must perform an initial determination of the average VOHAP concentration of the off-site material using the procedures specified in §63.694(b) of this subpart. This initial determination must be performed either before the first time any portion of the off-site material stream is placed in the unit or by the compliance date, whichever date is later. Thereafter, the owner or operator must review and update, as necessary, this determination at least once every calendar year following the date of the initial determination for the off-site material stream.
- (2) An off-site material management unit is exempted from the requirements in paragraph (b)(1) of this section when the owner or operator meets one of the exemptions provided in paragraphs (b)(2)(i) through (b)(2)(iv) of this section as applicable to the unit.
- (i) An off-site material management unit is exempted from the requirements in paragraph (b)(1) of this section if the off-site material management unit is also subject to another subpart under 40 CFR part 63 or 40 CFR part 61, and the owner or operator is controlling the HAP listed in Table

- 1 of this subpart that are emitted from the unit in compliance with the provisions specified in the other applicable subpart under part 61 or part 63.
- (ii) At the discretion of the owner or operator, one or a combination of off-site material management units may be exempted from the requirements in paragraph (b)(1) of this section when these units meet the condition that the total annual quantity of HAP contained in the off-site material placed in the units exempted under this paragraph (b)(2)(ii) is less than 1 megagram per year. For the off-site material management units selected by the owner or operator to be exempted from the requirements in paragraph (b)(1) of this section, the owner or operator must meet the requirements in paragraphs (b)(2)(ii)(A) and (b)(2)(ii)(B) of this section. An owner or operator may change the off-site material management units selected to be exempted under this paragraph (b)(2)(ii) by preparing a new designation for the exempt-units as required by paragraph (b)(2)(ii)(A) of this section and performing a new determination as required by paragraph (b)(2)(ii)(B) of this section.
- (A) The owner or operator must designate each of the off-site material management units selected by the owner or operator to be exempt under paragraph (b)(2)(ii) of this section by either submitting to the Administrator a written notification identifying the exempt-units or permanently marking the exempt-units at the plant site. If an owner or operator chooses to prepare and submit a written notification, this notification must include a site plan, process diagram, or other appropriate documentation identifying each of the exempt-units. If an owner or operator chooses to permanently mark the exempt-units, each exempt-unit must be marked in such a manner that it can be readily identified as an exempt-unit from the other off-site material management units located at the plant site.
- (B) The owner or operator must prepare an initial determination of the total annual HAP quantity in the off-site material placed in the units exempted under this paragraph (b)(2)(ii). This determination is based on the total quantity of the HAP listed in Table 1 of this subpart as determined at the point where the off-site material is placed in each exempted unit. The owner or operator must perform a new determination whenever the extent of changes to the quantity or composition of the off-site material placed in the exempted units could cause the total annual HAP content in the off-site material to exceed 1 megagram per year. The owner or operator must maintain documentation to support the most recent determination of the total annual HAP quantity. This documentation must include the basis and data used for determining the HAP content of the off-site material.
- (iii) A tank or surface impoundment is exempted from the requirements in paragraph (b)(1) of this section if the unit is used for a biological treatment process that meets the requirements in either paragraph (b)(2)(iii)(A) or (b)(2)(iii)(B) of this section and the owner or operator complies with the monitoring requirements in §63.684(e)(4) of this subpart.
- (A) The HAP biodegradation efficiency ( $R_{bio}$ ) for the biological treatment process is equal to or greater than 95 percent. The HAP biodegradation efficiency ( $R_{bio}$ ) shall be determined in accordance with the requirements of §63.694(h) of this subpart.

- (B) The total actual HAP mass removal rate ( $MR_{bio}$ ) for the off-site material treated by the biological treatment process is equal to or greater than the required HAP mass removal rate (RMR) for the off-site material. The total actual HAP mass removal rate ( $MR_{bio}$ ) must be determined in accordance with the requirements of §63.694(i) of this subpart. The required HAP mass removal rate (RMR) must be determined in accordance with the requirements of §63.694(e) of this subpart.
- (iv) An off-site material management unit is exempted from the requirements in paragraph (b)(1) of this section if the off-site material placed in the unit is a hazardous waste that meets the conditions specified in either paragraph (b)(2)(iv)(A) or (b)(2)(iv)(B) of this section.
- (A) The hazardous waste meets the numerical organic concentration limits, applicable to the hazardous waste, as specified in 40 CFR part 268—Land Disposal Restrictions, listed in the table, "Treatment Standards for Hazardous Waste" in 40 CFR 268.40.
- (B) The organic hazardous constituents in the hazardous waste have been treated by the treatment technology established by the EPA for the hazardous waste in 40 CFR 268.42(a), or have been removed or destroyed by an equivalent method of treatment approved by the EPA under 40 CFR 268.42(b).
- (v) A tank used for bulk feed of off-site material to a waste incinerator is exempted from the requirements specified in paragraph (b)(1) of this section if the tank meets all of the conditions specified in paragraphs (b)(2)(v)(A) through (b)(2)(v)(C) of this section.
- (A) The tank is located inside an enclosure vented to a control device that is designed and operated in accordance with all applicable requirements specified under 40 CFR part 61, subpart FF—National Emission Standards for Benzene Waste Operations for a facility at which the total annual benzene quantity from the facility waste is equal to or greater than 10 megagrams per year;
- (B) The enclosure and control device serving the tank were installed and began operation prior to July 1, 1996; and
- (C) The enclosure is designed and operated in accordance with the criteria for a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" under 40 CFR 52.741, appendix B. The enclosure may have permanent or temporary openings to allow worker access; passage of material into or out of the enclosure by conveyor, vehicles, or other mechanical or electrical equipment; or to direct air flow into the enclosure. The owner or operator must annually perform the verification procedure for the enclosure as specified in Section 5.0 to "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure."
- (c) Process vents. (1) For each process vent that is part of an affected source, the owner or operator must meet the requirements in either paragraph (c)(1)(i) or (c)(1)(ii) of this section except for those process vents exempted under paragraph (c)(2) of this section.

- (i) The owner or operator controls air emissions from the process vent in accordance with the standards specified in §63.690 of this subpart.
- (ii) The owner or operator determines before placing off-site material in the process equipment associated with the process vent that the average VOHAP concentration of the off-site material is less than ppmw at the point-of-delivery. The owner or operator must perform an initial determination of the average VOHAP concentration of the off-site material using the procedures specified in §63.694(b) of this subpart before any portion of the off-site material stream is placed in the unit. Thereafter, the owner or operator must review and update, as necessary, this determination at least once every calendar year following the date of the initial determination for the off-site material stream.
- (2) A process vent is exempted from the requirements of paragraph (c)(1) of this section when the owner or operator meets one of the exemptions provided in paragraphs (c)(2)(i) through (c)(2)(iii) of this section.
- (i) A process vent is exempted from the requirements in paragraph (c)(1) of this section if the process vent is also subject to another subpart under part 63 or 40 CFR part 61, and the owner or operator is controlling the HAP listed in Table 1 of this subpart that are emitted from the process vent in compliance with the provisions specified in the other applicable subpart under part 61 or part 63.
- (ii) A process vent is exempted from the requirements specified in paragraph (c)(1) of this section if the owner or operator determines that the process vent stream flow rate is less than 0.005 cubic meters per minute (m³/min) at standard conditions (as defined in 40 CFR 63.2). The process vent stream flow rate shall be determined in accordance with the procedures specified in §63.694(m) of this subpart. Documentation must be prepared by the owner or operator and maintained at the plant site to support the determination of the process vent stream flow rate. This documentation must include identification of each process vent exempted under this paragraph and the test results used to determine the process vent stream flow rate.
- (iii) A process vent is exempted from the requirements specified in paragraph (c)(1) of this section if the owner or operator determines that the process vent stream flow rate is less than 6.0 m³/min at standard conditions (as defined in 40 CFR 63.2) and the total HAP concentration is less than 20 ppmv. The process vent stream flow rate and total HAP concentration shall be determined in accordance with the procedures specified in §63.694(m) of this subpart. Documentation must be prepared by the owner or operator and maintained at the plant site to support the determination of the process vent stream flow rate and total HAP concentration. This documentation must include identification of each process vent exempted under this paragraph (c)(2)(iii) and the test results used to determine the process vent stream flow rate and total HAP concentration. The owner or operator must perform a new determination of the process vent stream flow rate and total HAP concentration when the extent of changes to operation of the unit on which the process vent is used could cause either the process vent stream flow rate to exceed the limit of 6.0 m³/min or the total HAP concentration to exceed the limit of 20 ppmv.

(d) Equipment leaks. The owner or operator must control equipment leaks from each equipment component that is part of the affected source specified in §63.680(c)(3) of this subpart by implementing leak detection and control measures in accordance with the standards specified in §63.691 of this subpart.

[64 FR 38965, July 20, 1999]

## § 63.684 Standards: Off-site material treatment.

- (a) The provisions of this section apply to the treatment of off-site material to remove or destroy HAP for which §63.683(b)(1)(ii) of this subpart references the requirements of this section for such treatment.
- (b) The owner or operator shall remove or destroy the HAP contained in off-site material streams to be managed in the off-site material management unit in accordance with §63.683(b)(1)(ii) of this subpart using a treatment process that continuously achieves, under normal operations, one or more of the performance levels specified in paragraphs (b)(1) through (b)(5) of this section (as applicable to the type of treatment process) for the range of off-site material stream compositions and quantities expected to be treated.
- (1) VOHAP concentration. The treatment process shall reduce the VOHAP concentration of the off-site material using a means, other than by dilution, to achieve one of the following performance levels, as applicable:
- (i) In the case when every off-site material stream entering the treatment process has an average VOHAP concentration equal to or greater than 500 ppmw at the point-of-delivery, then the VOHAP concentration of the off-site material shall be reduced to a level that is less than 500 ppmw at the point-of-treatment.
- (ii) In the case when off-site material streams entering the treatment process are a mixture of off-site material streams having an average VOHAP concentration equal to or greater than 500 ppmw at the point-of-delivery with off-site material streams having average VOHAP concentrations less than 500 ppmw at the point-of-delivery, then the VOHAP concentration of the off-site material must be reduced to a level at the point-of-treatment that meets the performance level specified in either paragraph (b)(1)(ii)(A) or (B) of this section.
- (A) Less than the VOHAP concentration limit ( $C_R$ ) established for the treatment process using the procedure specified in §63.694(d); or
- (B) Less than the lowest VOHAP concentration determined for each of the off-site material streams entering the treatment process as determined by the VOHAP concentration of the off-site material at the point-of-delivery.
- (2) HAP mass removal. The treatment process shall achieve a performance level such that the total quantity of HAP actually removed from the off-site material stream (MR) is equal to or greater than the required mass removal (RMR) established for the off-site material stream using

the procedure specified in §63.694(e) of this subpart. The MR for the off-site material streams shall be determined using the procedures specified in §63.694(f) of this subpart.

- (3) HAP reduction efficiency. For any treatment process except a treatment process that uses biological degradation and is performed in an open tank or surface impoundment, the treatment process must achieve the applicable performance level specified in either paragraph (b)(3)(i) or (b)(3)(ii) of this section.
- (i) In the case when the owner or operator determines that off-site material stream entering the treatment process has an average VOHAP concentration less than 10,000 ppmw at the point-of-delivery, then the treatment process shall achieve a performance level such that the total quantity of HAP in the off-site material stream is reduced by 95 percent or more. The HAP reduction efficiency (R) for the treatment process shall be determined using the procedure specified in §63.694(g) of this subpart. The average VOHAP concentration of the off-site material stream at the point-of-delivery shall be determined using the procedure specified in §63.694(b) of this subpart.
- (ii) In the case when the off-site material stream entering the treatment process has an average VOHAP concentration equal to or greater than 10,000 ppmw at the point-of-delivery, then the treatment process shall achieve a performance level such that the total quantity of HAP in the off-site material stream is reduced by 95 percent or more, and the average VOHAP concentration of the off-site material at the point-of-treatment is less than 100 parts per million by weight (ppmw). The HAP reduction efficiency (R) for the treatment process shall be determined using the procedure specified in §63.694(g) of this subpart. The average VOHAP concentration of the off-site material stream at the point-of-treatment shall be determined using the procedure specified in §63.694(c) of this subpart.
- (4) Biological degradation performed in an open tank or surface impoundment. A treatment process using biological degradation and performed in an open tank or surface impoundment must achieve the performance level specified in either paragraph (b)(4)(i) or (b)(4)(ii) of this section.
- (i) The HAP reduction efficiency (R) for the treatment process is equal to or greater than 95 percent, and the HAP biodegradation efficiency ( $R_{bio}$ ) for the treatment process is equal to or greater than 95 percent. The HAP reduction efficiency (R) shall be determined using the procedure specified in  $\S63.694(g)$  of this subpart. The HAP biodegradation efficiency ( $R_{bio}$ ) shall be determined in accordance with the requirements of  $\S63.694(h)$  of this subpart.
- (ii) The total quantity of HAP actually removed from the off-site material stream by biological degradation (MR<sub>bio</sub>) shall be equal to or greater than the required mass removal (RMR) established for the off-site material stream using the procedure specified in §63.694(e) of this subpart. The MR<sub>bio</sub>of the off-site material stream shall be determined using the procedures specified in §63.694(i) of this subpart.

- (5) Incineration. The treatment process must destroy the HAP contained in the off-site material stream using one of the combustion devices specified in paragraphs (b)(5)(i) through (b)(5)(iv) of this section.
- (i) An incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270, and the incinerator is designed and operated in accordance with the requirements of 40 CFR part 264, subpart O—Incinerators, or
- (ii) An incinerator for which the owner or operator has certified compliance with the interim status requirements of 40 CFR part 265, subpart O—Incinerators.
- (iii) A boiler or industrial furnace for which the owner or operator has been issued a final permit under 40 CFR part 270, and the combustion unit is designed and operated in accordance with the requirements of 40 CFR part 266, subpart H—Hazardous Waste Burned in Boilers and Industrial Furnaces.
- (iv) A boiler or industrial furnace for which the owner or operator has certified compliance with the interim status requirements of 40 CFR part 266, subpart H Hazardous Waste Burned in Boilers and Industrial Furnaces.
- (c) For a treatment process that removes the HAP from the off-site material by a means other than thermal destruction or biological degradation to achieve one of the performances levels specified in paragraph (b)(1), (b)(2), or (b)(3) of this section, the owner or operator shall manage the HAP removed from the off-site material in such a manner to minimize release of these HAP to the atmosphere, to the extent practical. Examples of HAP emission control measures that meet the requirements of this paragraph include managing the HAP removed from the off-site material in units that use air emission controls in accordance with the standards specified in §§63.685 through 63.689 of this subpart, as applicable to the unit.
- (d) When the owner or operator treats the off-site material to meet one of the performance levels specified in paragraphs (b)(1) through (b)(4) of this section, the owner or operator shall demonstrate that the treatment process achieves the selected performance level for the range of expected off-site material stream compositions expected to be treated. An initial demonstration shall be performed as soon as possible but no later than 30 days after first time an owner or operator begins using the treatment process to manage off-site material streams in accordance with the requirements of either §63.683(b)(1)(ii) or §63.683(b)(2)(ii) of this subpart as applicable to the affected off-site material management unit or process equipment. Thereafter, the owner or operator shall review and update, as necessary, this demonstration at least once every calendar year following the date of the initial demonstration.
- (e) When the owner or operator treats the off-site material to meet one of the performance levels specified in paragraphs (b)(1) through (b)(4) of this section, the owner or operator shall ensure that the treatment process is achieving the applicable performance requirements by continuously monitoring the operation of the process when it is used to treat off-site material by complying with paragraphs (e)(1) through (e)(3) or, for biological treatment units, paragraph (e)(4) of this section:

- (1) A continuous monitoring system shall be installed and operated for each treatment that measures operating parameters appropriate for the treatment process technology. This system shall include a continuous recorder that records the measured values of the selected operating parameters. The monitoring equipment shall be installed, calibrated, and maintained in accordance with the equipment manufacturer's specifications. The continuous recorder shall be a data recording device that is capable of recording either an instantaneous data value at least once every 15 minutes or an average value for intervals of 15 minutes or less.
- (2) For each monitored operating parameter, the owner or operator shall establish a minimum operating parameter value or a maximum operating parameter value, as appropriate, to define the range of conditions at which the treatment process must be operated to continuously achieve the applicable performance requirements of this section.
- (3) When the treatment process is operating to treat off-site material, the owner or operator shall inspect the data recorded by the continuous monitoring system on a routine basis and operate the treatment process such that the actual value of each monitored operating parameter is greater than the minimum operating parameter value or less than the maximum operating parameter value, as appropriate, established for the treatment process.
- (4) When the treatment process is a biological treatment process that is complying with paragraph (b)(4) of this section, the owner or operator must establish and implement a written procedure to monitor the appropriate parameters that demonstrate proper operation of the biological treatment unit in accordance with the evaluation required in §63.694(h) of this subpart. The written procedure must list the operating parameters that will be monitored and state the frequency of monitoring to ensure that the biological treatment unit is operating between the minimum operating parameter values and maximum operating parameter values to establish that the biological treatment unit is continuously achieving the performance requirement.
- (f) The owner or operator must maintain records for each treatment process in accordance with the requirements of §63.696(a) of this subpart.
- (g) The owner or operator must prepare and submit reports for each treatment process in accordance with the requirements of §63.697(a) of this subpart.
- (h) The Administrator may at any time conduct or request that the owner or operator conduct testing necessary to demonstrate that a treatment process is achieving the applicable performance requirements of this section. The testing shall be conducted in accordance with the applicable requirements of this section. The Administrator may elect to have an authorized representative observe testing conducted by the owner or operator.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38967, July 20, 1999; 66 FR 1266, Jan. 8, 2001; 68 FR 37351, June 23, 2003]

# § 63.685 Standards: Tanks.

- (a) The provisions of this section apply to the control of air emissions from tanks for which §63.683(b)(1)(i) of this subpart references the use of this section for such air emission control.
- (b) The owner or operator shall control air emissions from each tank subject to this section in accordance with the following applicable requirements:
- (1) For a tank that is part of an existing affected source but the tank is not used to manage off-site material having a maximum HAP vapor pressure kilopascal (kPa) that is equal to or greater than 76.6 kPa nor is the tank used for a waste stabilization process as defined in §63.681 of this subpart, the owner or operator shall determine whether the tank is required to use either Tank Level 1 controls or Tank Level 2 controls as specified for the tank by Table 3 of this subpart based on the off-site material maximum HAP vapor pressure and the tank's design capacity. The owner or operator shall control air emissions from a tank required by Table 3 to use Tank Level 1 controls in accordance with the requirements of paragraph (c) of this section. The owner or operator shall control air emissions from a tank required by Table 3 to use Tank Level 2 controls in accordance with the requirements of paragraph (d) of this section.
- (2) For a tank that is part of a new affected source but the tank is not used to manage off-site material having a maximum HAP vapor pressure that is equal to or greater than 76.6 kPa nor is the tank used for a waste stabilization process as defined in §63.681 of this subpart, the owner or operator shall determine whether the tank is required to use either Tank Level 1 controls or Tank Level 2 controls as specified for the tank by Table 4 of this subpart based on the off-site material maximum HAP vapor pressure and the tank's design capacity. The owner or operator shall control air emissions from a tank required by Table 4 to use Tank Level 1 controls in accordance with the requirements of paragraph (c) of this section. The owner or operator shall control air emissions from a tank required by Table 4 to use Tank Level 2 controls in accordance with the requirements of paragraph (d) of this section.
- (3) For a tank that is used for a waste stabilization process, the owner or operator shall control air emissions from the tank by using Tank Level 2 controls in accordance with the requirements of paragraph (d) of this section.
- (4) For a tank that manages off-site material having a maximum HAP vapor pressure that is equal to or greater than 76.6 kPa, the owner or operator must control air emissions by using one of the tanks specified in paragraphs (b)(4)(i) through (b)(4)(ii) of this section.
- (i) A tank vented through a closed-vent system to a control device in accordance with the requirements specified in paragraph (g) of this section;
- (ii) A pressure tank designed and operated in accordance with the requirements specified in paragraph (h) of this section; or

- (iii) A tank located inside an enclosure that is vented through a closed-vent system to an enclosed combustion control device in accordance with the requirements specified in paragraph (i) of this section.
- (c) Owners and operators controlling air emissions from a tank using Tank Level 1 controls shall meet the following requirements:
- (1) The owner or operator shall determine the maximum HAP vapor pressure for an off-site material to be managed in the tank using Tank Level 1 controls before the first time the off-site material is placed in the tank. The maximum HAP vapor pressure shall be determined using the procedures specified in §63.694(j) of this subpart. Thereafter, the owner or operator shall perform a new determination whenever changes to the off-site material managed in the tank could potentially cause the maximum HAP vapor pressure to increase to a level that is equal to or greater than the maximum HAP vapor pressure limit for the tank design capacity category specified in Table 3 or Table 4 of this subpart, as applicable to the tank.
- (2) The owner or operator must control air emissions from the tank in accordance with the requirements in either paragraph (c)(2)(i), (c)(2)(ii), or (c)(2)(iii) of this section, as applicable to the tank.
- (i) The owner or operator controls air emissions from the tank in accordance with the provisions specified in subpart 00 of 40 CFR part 63—National Emission Standards for Tanks—Level 1.
- (ii) As an alternative to meeting the requirements in paragraph (c)(2)(i) of this section, an owner or operator may control air emissions from the tank in accordance with the provisions for Tank Level 2 controls as specified in paragraph (d) of this section.
- (iii) As an alternative to meeting the requirements in paragraph (c)(2)(i) of this section when a tank is used as an interim transfer point to transfer off-site material from containers to another off-site material management unit, an owner or operator may control air emissions from the tank in accordance with the requirements in paragraphs (c)(2)(iii)(A) and (c)(2)(iii)(B) of this section. An example of such a tank is an in-ground tank into which organic-contaminated debris is dumped from roll-off boxes or dump trucks, and then this debris is promptly transferred from the tank to a macroencapsulation unit by a backhoe.
- (A) During those periods of time when the material transfer activity is occurring, the tank may be operated without a cover.
- (B) At all other times, air emissions from the tank must be controlled in accordance with the provisions specified in 40 CFR part 67, subpart 00—National Emission Standards for Tanks—Level 1.
- (d) Owners and operators controlling air emissions from a tank using Tank Level 2 controls shall use one of the following tanks:

- (1) A fixed-roof tank equipped with an internal floating roof in accordance with the requirements specified in paragraph (e) of this section;
- (2) A tank equipped with an external floating roof in accordance with the requirements specified in paragraph (f) of this section;
- (3) A tank vented through a closed-vent system to a control device in accordance with the requirements specified in paragraph (g) of this section;
- (4) A pressure tank designed and operated in accordance with the requirements specified in paragraph (h) of this section; or
- (5) A tank located inside an enclosure that is vented through a closed-vent system to an enclosed combustion control device in accordance with the requirements specified in paragraph (i) of this section.
- (e) The owner or operator who elects to control air emissions from a tank using a fixed-roof with an internal floating roof shall meet the requirements specified in paragraphs (e)(1) through (e)(3) of this section.
- (1) The tank shall be equipped with a fixed roof and an internal floating roof in accordance with the following requirements:
- (i) The internal floating roof shall be designed to float on the liquid surface except when the floating roof must be supported by the leg supports.
- (ii) The internal floating roof shall be equipped with a continuous seal between the wall of the tank and the floating roof edge that meets either of the following requirements:
- (A) A single continuous seal that is either a liquid-mounted seal or a metallic shoe seal, as defined in §63.681 of this subpart; or
- (B) Two continuous seals mounted one above the other. The lower seal may be a vapor-mounted seal.
- (iii) The internal floating roof shall meet the following specifications:
- (A) Each opening in a noncontact internal floating roof except for automatic bleeder vents (vacuum breaker vents) and the rim space vents is to provide a projection below the liquid surface.
- (B) Each opening in the internal floating roof shall be equipped with a gasketed cover or a gasketed lid except for leg sleeves, automatic bleeder vents, rim space vents, column wells, ladder wells, sample wells, and stub drains.

- (C) Each penetration of the internal floating roof for the purpose of sampling shall have a slit fabric cover that covers at least 90 percent of the opening.
- (D) Each automatic bleeder vent and rim space vent shall be gasketed.
- (E) Each penetration of the internal floating roof that allows for passage of a ladder shall have a gasketed sliding cover.
- (F) Each penetration of the internal floating roof that allows for passage of a column supporting the fixed roof shall have a flexible fabric sleeve seal or a gasketed sliding cover.
- (2) The owner or operator shall operate the tank in accordance with the following requirements:
- (i) When the floating roof is resting on the leg supports, the process of filling, emptying, or refilling shall be continuous and shall be accomplished as soon as practical.
- (ii) Automatic bleeder vents are to be set closed at all times when the roof is floating, except when the roof is being floated off or is being landed on the leg supports.
- (iii) Prior to filling the tank, each cover, access hatch, gauge float well or lid on any opening in the internal floating roof shall be bolted or fastened closed (i.e., no visible gaps). Rim spaces vents are to be set to open only when the internal floating roof is not floating or when the pressure beneath the rim exceeds the manufacturer's recommended setting.
- (3) The owner or operator shall inspect the internal floating roof in accordance with the procedures specified in §63.695(b) of this subpart.
- (f) The owner or operator who elects to control tank emissions by using an external floating roof shall meet the requirements specified in paragraphs (f)(1) through (f)(3) of this section.
- (1) The owner or operator shall design the external floating roof in accordance with the following requirements:
- (i) The external floating roof shall be designed to float on the liquid surface except when the floating roof must be supported by the leg supports.
- (ii) The floating roof shall be equipped with two continuous seals, one above the other, between the wall of the tank and the roof edge. The lower seal is referred to as the primary seal, and the upper seal is referred to as the secondary seal.
- (A) The primary seal shall be a liquid-mounted seal or a metallic shoe seal, as defined in §63.681 of this subpart. The total area of the gaps between the tank wall and the primary seal shall not exceed 212 square centimeters (cm2) per meter of tank diameter, and the width of any portion of these gaps shall not exceed 3.8 centimeters (cm). If a metallic shoe seal is used for the primary seal, the metallic shoe seal shall be designed so that one end extends into the liquid in the tank

and the other end extends a vertical distance of at least 61 centimeters (24 inches) above the liquid surface.

- (B) The secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof and the wall of the tank. The total area of the gaps between the tank wall and the secondary seal shall not exceed 21.2 square centimeters (cm<sup>2</sup>) per meter of tank diameter, and the width of any portion of these gaps shall not exceed 1.3 centimeters (cm).
- (iii) The external floating roof shall be meet the following specifications:
- (A) Except for automatic bleeder vents (vacuum breaker vents) and rim space vents, each opening in a noncontact external floating roof shall provide a projection below the liquid surface.
- (B) Except for automatic bleeder vents, rim space vents, roof drains, and leg sleeves, each opening in the roof shall be equipped with a gasketed cover, seal, or lid.
- (C) Each access hatch and each gauge float wells shall be equipped with covers designed to be bolted or fastened when the cover is secured in the closed position.
- (D) Each automatic bleeder vent and each rim space vents shall be equipped with a gasket.
- (E) Each roof drain that empties into the liquid managed in the tank shall be equipped with a slotted membrane fabric cover that covers at least 90 percent of the area of the opening.
- (F) Each unslotted and slotted guide pole well shall be equipped with a gasketed sliding cover or a flexible fabric sleeve seal.
- (G) Each unslotted guide pole shall be equipped with a gasketed cap on the end of the pole.
- (H) Each slotted guide pole shall be equipped with a gasketed float or other device which closes off the surface from the atmosphere.
- (I) Each gauge hatch and each sample well shall be equipped with a gasketed cover.
- (2) The owner or operator shall operate the tank in accordance with the following requirements:
- (i) When the floating roof is resting on the leg supports, the process of filling, emptying, or refilling shall be continuous and shall be accomplished as soon as practical.
- (ii) Except for automatic bleeder vents, rim space vents, roof drains, and leg sleeves, each opening in the roof shall be secured and maintained in a closed position at all times except when the closure device must be open for access.
- (iii) Covers on each access hatch and each gauge float well shall be bolted or fastened when secured in the closed position.

- (iv) Automatic bleeder vents shall be set closed at all times when the roof is floating, except when the roof is being floated off or is being landed on the leg supports.
- (v) Rim space vents shall be set to open only at those times that the roof is being floated off the roof leg supports or when the pressure beneath the rim seal exceeds the manufacturer's recommended setting.
- (vi) The cap on the end of each unslotted guide pole shall be secured in the closed position at all times except when measuring the level or collecting samples of the liquid in the tank.
- (vii) The cover on each gauge hatch or sample well shall be secured in the closed position at all times except when the hatch or well must be opened for access.
- (viii) Both the primary seal and the secondary seal shall completely cover the annular space between the external floating roof and the wall of the tank in a continuous fashion except during inspections.
- (3) The owner or operator shall inspect the external floating roof in accordance with the procedures specified in §63.695(b) of this subpart.
- (g) The owner or operator who controls tank air emissions by venting to a control device shall meet the requirements specified in paragraphs (g)(1) through (g)(3) of this section.
- (1) The tank shall be covered by a fixed roof and vented directly through a closed-vent system to a control device in accordance with the following requirements:
- (i) The fixed roof and its closure devices shall be designed to form a continuous barrier over the entire surface area of the liquid in the tank.
- (ii) Each opening in the fixed roof not vented to the control device shall be equipped with a closure device. If the pressure in the vapor headspace underneath the fixed roof is less than atmospheric pressure when the control device is operating, the closure devices shall be designed to operate such that when the closure device is secured in the closed position there are no visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the cover opening and the closure device. If the pressure in the vapor headspace underneath the fixed roof is equal to or greater than atmospheric pressure when the control device is operating, the closure device shall be designed to operate with no detectable organic emissions.
- (iii) The fixed roof and its closure devices shall be made of suitable materials that will minimize exposure of the off-site material to the atmosphere, to the extent practical, and will maintain the integrity of the equipment throughout its intended service life. Factors to be considered when selecting the materials for and designing the fixed roof and closure devices shall include: organic vapor permeability, the effects of any contact with the liquid and its vapor managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank on which the fixed roof is installed.

- (iv) The closed-vent system and control device shall be designed and operated in accordance with the requirements of §63.693 of this subpart.
- (2) Whenever an off-site material is in the tank, the fixed roof shall be installed with each closure device secured in the closed position and the vapor headspace underneath the fixed roof vented to the control device except as follows:
- (i) Venting to the control device is not required, and opening of closure devices or removal of the fixed roof is allowed at the following times:
- (A) To provide access to the tank for performing routine inspection, maintenance, or other activities needed for normal operations. Examples of such activities include those times when a worker needs to open a port to sample liquid in the tank, or when a worker needs to open a hatch to maintain or repair equipment. Following completion of the activity, the owner or operator shall promptly secure the closure device in the closed position or reinstall the cover, as applicable, to the tank.
- (B) To remove accumulated sludge or other residues from the bottom of the tank.
- (ii) Opening of a safety device, as defined in §63.681 of this subpart, is allowed at any time conditions require it to do so to avoid an unsafe condition.
- (3) The owner or operator shall inspect and monitor the air emission control equipment in accordance with the procedures specified in §63.695 of this subpart.
- (h) The owner or operator who elects to control tank air emissions by using a pressure tank shall meet the following requirements.
- (1) The tank shall be designed not to vent to the atmosphere as a result of compression of the vapor headspace in the tank during filling of the tank to its design capacity.
- (2) All tank openings shall be equipped with closure devices designed to operate with no detectable organic emissions as determined using the procedure specified in §63.694(k) of this subpart.
- (3) Whenever an off-site material is in the tank, the tank shall be operated as a closed system that does not vent to the atmosphere except under either of the following conditions as specified in paragraph (h)(3)(i) or (h)(3)(ii) of this section.
- (i) At those times when opening of a safety device, as defined in §63.681 of this subpart, is required to avoid an unsafe condition.
- (ii) At those times when purging of inerts from the tank is required and the purge stream is routed to a closed-vent system and control device designed and operated in accordance with the requirements of §63.693 of this subpart.

- (i) The owner or operator who elects to control air emissions by using an enclosure vented through a closed-vent system to an enclosed combustion control device shall meet the requirements specified in paragraphs (i)(1) through (4) of this section.
- (1) The tank shall be located inside an enclosure. The enclosure shall be designed and operated in accordance with the criteria for a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" under 40 CFR 52.741, appendix B. The enclosure may have permanent or temporary openings to allow worker access; passage of material into or out of the enclosure by conveyor, vehicles, or other mechanical means; entry of permanent mechanical or electrical equipment; or to direct airflow into the enclosure. The owner or operator shall perform the verification procedure for the enclosure as specified in Section 5.0 to "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" initially when the enclosure is first installed and, thereafter, annually.
- (2) The enclosure shall be vented through a closed-vent system to an enclosed combustion control device that is designed and operated in accordance with the standards for either a vapor incinerator, boiler, or process heater specified in §63.693 of this subpart.
- (3) Opening of a safety device, as defined in §63.681 of this subpart, is allowed at any time conditions require it to do so to avoid an unsafe condition.
- (4) The owner or operator shall inspect and monitor the closed-vent system and control device as specified in §63.693.
- [61 FR 34158, July 1, 1996, as amended at 64 FR 38968, July 20, 1999; 66 FR 1266, Jan. 8, 2001]

### § 63.686 Standards: Oil-water and organic-water separators.

- (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which §63.683(b)(1)(i) of this subpart references the use of this section for such air emission control.
- (b) The owner or operator shall control air emissions from each separator subject to this section by using one of the following:
- (1) A floating roof in accordance with all applicable provisions specified in 40 CFR 63 subpart VV—National Emission Standards for Oil-Water Separators and Organic-Water Separators. For portions of the separator where it is infeasible to install and operate a floating roof, such as over a weir mechanism, the owner or operator shall comply with the requirements specified in paragraph (b)(2) of this section.
- (2) A fixed-roof that is vented through a closed-vent system to a control device in accordance with all applicable provisions specified in 40 CFR 63 subpart VV—National Emission Standards for Oil-Water Separators and Organic-Water Separators.

(3) A pressurized separator that operates as a closed system in accordance with all applicable provisions specified in 40 CFR part 63, subpart VV—National Emission Standards for Oil-Water Separators and Organic-Water Separators.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38969, July 20, 1999]

### § 63.687 Standards: Surface impoundments.

- (a) The provisions of this section apply to the control of air emissions from surface impoundments for which §63.683(b)(1)(i) of this subpart references the use of this section for such air emission control.
- (b) The owner or operator shall control air emissions from each surface impoundment subject to this section by using one of the following:
- (1) A floating membrane cover in accordance with the applicable provisions specified in 40 CFR 63 subpart QQ—National Emission Standards for Surface Impoundments; or
- (2) A cover that is vented through a closed-vent system to a control device in accordance with all applicable provisions specified in 40 CFR 63 subpart QQ—National Emission Standards for Surface Impoundments.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38969, July 20, 1999]

### § 63.688 Standards: Containers.

- (a) The provisions of this section apply to the control of air emissions from containers for which §63.683(b)(1)(i) of this subpart references the use of this section for such air emission control.
- (b) The owner or operator shall control air emissions from each container subject to this section in accordance with the following requirements, as applicable to the container, except when the special provisions for waste stabilization processes specified in paragraph (c) of this section apply to the container.
- (1) For a container having a design capacity greater than 0.1 m<sup>3</sup> and less than or equal to 0.46 m<sup>3</sup>, the owner or operator must control air emissions from the container in accordance with the requirements in either paragraph (b)(1)(i) or (b)(1)(ii) of this section.
- (i) The owner or operator controls air emissions from the container in accordance with the standards for Container Level 1 controls as specified in 40 CFR part 63, subpart PP—National Emission Standards for Containers.
- (ii) As an alternative to meeting the requirements in paragraph (b)(1)(i) of this section, an owner or operator may choose to control air emissions from the container in accordance with the standards for either Container Level 2 controls or Container Level 3 controls as specified in subpart PP of this part 63—National Emission Standards for Containers.

- (2) For a container having a design capacity greater than 0.46 m<sup>3</sup> and the container is not in light-material service as defined in §63.681 of this subpart, the owner or operator must control air emissions from the container in accordance with the requirements in either paragraph (b)(1)(i) or (b)(1)(ii) of this section.
- (3) For a container having a design capacity greater than 0.46 m<sup>3</sup> and the container is in light-material service as defined in §63.681 of this subpart, the owner or operator must control air emissions from the container in accordance with the requirements in either paragraph (b)(3)(i) or (b)(3)(ii) of this section.
- (i) The owner or operator controls air emissions from the container in accordance with the standards for Container Level 2 controls as specified in 40 CFR part 63, subpart PP—National Emission Standards for Containers.
- (ii) As an alternative to meeting the requirements in paragraph (b)(3)(i) of this section, an owner or operator may choose to control air emissions from the container in accordance with the standards for Container Level 3 controls as specified in 40 CFR part 63, subpart PP—National Emission Standards for Containers.
- (c) When a container subject to this subpart and having a design capacity greater than 0.1 m<sup>3</sup> is used for treatment of an off-site material by a waste stabilization process as defined in §63.681 of this subpart, the owner or operator shall control air emissions from the container at those times during the process when the off-site material in the container is exposed to the atmosphere in accordance with the standards for Container Level 3 controls as specified in 40 CFR part 63, subpart PP—National Emission Standards for Containers.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38969, July 20, 1999]

## § 63.689 Standards: Transfer systems.

- (a) The provisions of this section apply to the control of air emissions from transfer systems for which §63.683(b)(1)(i) of this subpart references the use of this section for such air emission control.
- (b) For each transfer system that is subject to this section and is an individual drain system, the owner or operator shall control air emissions in accordance with the standards specified in 40 CFR part 63, subpart RR—National Emission Standards for Individual Drain Systems.
- (c) For each transfer system that is subject to this section but is not an individual drain system, the owner or operator shall control air emissions by using one of the transfer systems specified in paragraphs (c)(1) through (c)(3) of this section.
- (1) A transfer system that uses covers in accordance with the requirements specified in paragraph (d) of this section.

- (2) A transfer system that consists of continuous hard-piping. All joints or seams between the pipe sections shall be permanently or semi-permanently sealed (e.g., a welded joint between two sections of metal pipe or a bolted and gasketed flange).
- (3) A transfer system that is enclosed and vented through a closed-vent system to a control device in accordance with the requirements specified in paragraphs (c)(3)(i) and (c)(3)(ii) of this section.
- (i) The transfer system is designed and operated such that an internal pressure in the vapor headspace in the enclosure is maintained at a level less than atmospheric pressure when the control device is operating, and
- (ii) The closed-vent system and control device are designed and operated in accordance with the requirements of §63.693 of this subpart.
- (d) Owners and operators controlling air emissions from a transfer system using covers in accordance with the provisions of paragraph (c)(1) of this section shall meet the requirements specified in paragraphs (d)(1) through (d)(6) of this section.
- (1) The cover and its closure devices shall be designed to form a continuous barrier over the entire surface area of the off-site material as it is conveyed by the transfer system except for the openings at the inlet and outlet to the transfer system through which the off-site material passes. The inlet and outlet openings used for passage of the off-site material through the transfer system shall be the minimum size required for practical operation of the transfer system.
- (2) The cover shall be installed in a manner such that there are no visible cracks, holes, gaps, or other open spaces between cover section joints or between the interface of the cover edge and its mounting.
- (3) Except for the inlet and outlet openings to the transfer system through which the off-site material passes, each opening in the cover shall be equipped with a closure device designed to operate such that when the closure device is secured in the closed position there are no visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the opening and the closure device.
- (4) The cover and its closure devices shall be made of suitable materials that will minimize exposure of the off-site material to the atmosphere, to the extent practical, and will maintain the integrity of the equipment throughout its intended service life. Factors to be considered when selecting the materials for and designing the cover and closure devices shall include: organic vapor permeability; the effects of any contact with the material or its vapors conveyed in the transfer system; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the transfer system on which the cover is installed.
- (5) Whenever an off-site material is in the transfer system, the cover shall be installed with each closure device secured in the closed position except as specified in paragraph (d)(5)(i) or (d)(5)(ii) of this section.

- (i) Opening of closure devices or removal of the cover is allowed to provide access to the transfer system for performing routine inspection, maintenance, repair, or other activities needed for normal operations. Examples of such activities include those times when a worker needs to open a hatch or remove the cover to repair conveyance equipment mounted under the cover or to clear a blockage of material inside the system. Following completion of the activity, the owner or operator shall promptly secure the closure device in the closed position or reinstall the cover, as applicable.
- (ii) Opening of a safety device, as defined in §63.681 of this subpart, is allowed at any time conditions require it to do so to avoid an unsafe condition.
- (6) The owner or operator shall inspect the air emission control equipment in accordance with the requirements specified in §63.695 of this subpart.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38970, July 20, 1999]

# § 63.690 Standards: Process vents.

- (a) The provisions of this section apply to the control of air emissions from process vents for which §63.683(c)(1)(i) of this subpart references the use of this section for such air emission control.
- (b) The owner or operator must route the vent stream from each affected process vent through a closed-vent system to a control device that meets the standards specified in §63.693 of this subpart. For the purpose of complying with this paragraph (b), a primary condenser is not a control device; however, a second condenser or other organic recovery device that is operated downstream of the primary condenser is considered a control device.

[64 FR 38970, July 20, 1999]

### § 63.691 Standards: Equipment leaks.

- (a) The provisions of this section apply to the control of air emissions from equipment leaks for which §63.683(d) references the use of this section for such air emissions control.
- (b) The owner or operator shall control the HAP emitted from equipment leaks in accordance with the applicable provisions specified in either paragraph (b)(1) or (b)(2) of this section.
- (1) The owner or operator controls the HAP emitted from equipment leaks in accordance with §61.242 through §61.247 in 40 CFR part 61, subpart V—National Emission Standards for Equipment Leaks; or

(2) The owner or operator controls the HAP emitted from equipment leaks in accordance with §63.162 through §63.182 in subpart H—National Emission Standards for Organic Hazardous Air Pollutants from Equipment Leaks.

[64 FR 38970, July 20, 1999, as amended at 66 FR 1266, Jan. 8, 2001]

# § 63.692 [Reserved]

# § 63.693 Standards: Closed-vent systems and control devices.

- (a) The provisions of this section apply to closed-vent systems and control devices used to control air emissions for which another standard references the use of this section for such air emission control.
- (b) For each closed-vent system and control device used to comply with this section, the owner or operator shall meet the following requirements:
- (1) The owner or operator must use a closed-vent system that meets the requirements specified in paragraph (c) of this section.
- (2) The owner or operator must use a control device that meets the requirements specified in paragraphs (d) through (h) of this section as applicable to the type and design of the control device selected by the owner or operator to comply with the provisions of this section.
- (3) Whenever gases or vapors containing HAP are vented through a closed-vent system connected to a control device used to comply with this section, the control device must be operating except at those times listed in either paragraph (b)(3)(i) or (b)(3)(ii) of this section.
- (i) The control device may be bypassed for the purpose of performing planned routine maintenance of the closed-vent system or control device in situations when the routine maintenance cannot be performed during periods that the emission point vented to the control device is shutdown. On an annual basis, the total time that the closed-vent system or control device is bypassed to perform routine maintenance shall not exceed 240 hours per each calendar year.
- (ii) The control device may be bypassed for the purpose of correcting a malfunction of the closed-vent system or control device. The owner or operator shall perform the adjustments or repairs necessary to correct the malfunction as soon as practicable after the malfunction is detected.
- (4) The owner or operator must inspect and monitor each closed-vent system in accordance with the requirements specified in either paragraph (b)(4)(i) or (b)(4)(ii) of this section.
- (i) The owner or operator inspects and monitors the closed-vent system in accordance with the requirements specified in §63.695(c) of this subpart, and complies with the applicable

recordkeeping requirements in §63.696 of this subpart and the applicable reporting requirements in §63.697 of this subpart.

- (ii) As an alternative to meeting the requirements specified in paragraph (b)(4)(i) of this section, the owner or operator may choose to inspect and monitor the closed-vent system in accordance with the requirements under 40 CFR part 63, subpart H—National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks as specified in 40 CFR 63.172(f) through (h), and complies with the applicable recordkeeping requirements in 40 CFR 63.181 and the applicable reporting requirements in 40 CFR 63.182.
- (5) The owner or operator must monitor the operation of each control device in accordance with the requirements specified in paragraphs (d) through (h) of this section as applicable to the type and design of the control device selected by the owner or operator to comply with the provisions of this section.
- (6) The owner or operator shall maintain records for each control device in accordance with the requirements of §63.696 of this subpart.
- (7) The owner or operator shall prepare and submit reports for each control device in accordance with the requirements of §63.697 of this subpart.
- (8) In the case when an owner or operator chooses to use a design analysis to demonstrate compliance of a control device with the applicable performance requirements specified in this section as provided for in paragraphs (d) through (g) of this section, the Administrator may request that the design analysis be revised or amended by the owner or operator to correct any deficiencies identified by the Administrator. If the owner or operator and the Administrator do not agree on the acceptability of using the design analysis (including any changes requested by the Administrator) to demonstrate that the control device achieves the applicable performance requirements, then the disagreement must be resolved using the results of a performance test conducted by the owner or operator in accordance with the requirements of §63.694(l) of this subpart. The Administrator may choose to have an authorized representative observe the performance test conducted by the owner or operator. Should the results of this performance test not agree with the determination of control device performance based on the design analysis, then the results of the performance test will be used to establish compliance with this subpart.
- (c) Closed-vent system requirements.
- (1) The vent stream required to be controlled shall be conveyed to the control device by either of the following closed-vent systems:
- (i) A closed-vent system that is designed to operate with no detectable organic emissions using the procedure specified in §63.694(k) of this subpart; or
- (ii) A closed-vent system that is designed to operate at a pressure below atmospheric pressure. The system shall be equipped with at least one pressure gage or other pressure measurement

device that can be read from a readily accessible location to verify that negative pressure is being maintained in the closed-vent system when the control device is operating.

- (2) In situations when the closed-vent system includes bypass devices that could be used to divert a vent stream from the closed-vent system to the atmosphere at a point upstream of the control device inlet, each bypass device must be equipped with either a flow indicator as specified in paragraph (c)(2)(i) of this section or a seal or locking device as specified in paragraph (c)(2)(ii) of this section. For the purpose of complying with this paragraph (c)(2), low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, or pressure relief valves needed for safety reasons are not subject to the requirements of this paragraph (c)(2).
- (i) If a flow indicator is used, the indicator must be installed at the entrance to the bypass line used to divert the vent stream from the closed-vent system to the atmosphere. The flow indicator must indicate a reading at least once every 15 minutes. The owner or operator must maintain records of the following information: hourly records of whether the flow indicator was operating and whether flow was detected at any time during the hour; and records of all periods when flow is detected or the flow indicator is not operating.
- (ii) If a seal or locking device is used to comply with paragraph (c)(2) of this section, the device shall be placed on the mechanism by which the bypass device position is controlled (e.g., valve handle, damper lever) when the bypass device is in the closed position such that the bypass device cannot be opened without breaking the seal or removing the lock. Examples of such devices include, but are not limited to, a car-seal or a lock-and-key configuration valve.
- (d) Carbon adsorption control device requirements.
- (1) The carbon adsorption system must achieve the performance specifications in either paragraph (d)(1)(i) or (d)(1)(i) of this section.
- (i) Recover 95 percent or more, on a weight-basis, of the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the carbon adsorption system; or
- (ii) Recover 95 percent or more, on a weight-basis, of the total HAP listed in Table 1 of this subpart contained in the vent stream entering the carbon adsorption system.
- (2) The owner or operator must demonstrate that the carbon adsorption system achieves the performance requirements in paragraph (d)(1) of this section by either performing a performance test as specified in paragraph (d)(2)(i) of this section or a design analysis as specified in paragraph (d)(2)(ii) of this section.
- (i) An owner or operator choosing to use a performance test to demonstrate compliance must conduct the test in accordance with the requirements of §63.694(l) of this subpart.
- (ii) An owner or operator choosing to use a design analysis to demonstrate compliance must include as part of this design analysis the information specified in either paragraph (d)(2)(ii)(A) or (d)(2)(ii)(B) of this section as applicable to the carbon adsorption system design.

- (A) For a regenerable carbon adsorption system, the design analysis shall address the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature and shall establish the design exhaust vent stream organic compound concentration, adsorption cycle time, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total regeneration steam flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life of the carbon.
- (B) For a nonregenerable carbon adsorption system (e.g., a carbon canister), the design analysis shall address the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature and shall establish the design exhaust vent stream organic compound concentration, carbon bed capacity, activated carbon type and working capacity, and design carbon replacement interval based on the total carbon working capacity of the control device and emission point operating schedule.
- (3) The owner or operator must monitor the operation of the carbon adsorption system in accordance with the requirements of  $\S63.695(e)$  using one of the continuous monitoring systems specified in paragraphs (d)(3)(i) through (iii) of this section. Monitoring the operation of a nonregenerable carbon adsorption system (e.g., a carbon canister) using a continuous monitoring system is not required when the carbon canister or the carbon in the control device is replaced on a regular basis according to the requirements in paragraph (d)(4)(iii) of this section.
- (i) For a regenerative-type carbon adsorption system:
- (A) A continuous parameter monitoring system to measure and record the average total regeneration stream mass flow or volumetric flow during each carbon bed regeneration cycle. The integrating regenerating stream flow monitoring device must have an accuracy of  $\pm 10$  percent; and
- (B) A continuous parameter monitoring system to measure and record the average carbon bed temperature for the duration of the carbon bed steaming cycle and to measure the actual carbon bed temperature after regeneration and within 15 minutes of completing the cooling cycle. The accuracy of the temperature monitoring device must be  $\pm 1$  percent of the temperature being measured, expressed in degrees Celsius or  $\pm 5$  °C, whichever is greater.
- (ii) A continuous monitoring system to measure and record the daily average concentration level of organic compounds in the exhaust gas stream from the control device. The organic monitoring system must comply either with Performance Specification 8 or 9 in 40 CFR part 60, appendix B. The relative accuracy provision of Performance Specification 8, Sections 2.4 and 3 need not be conducted.
- (iii) A continuous monitoring system that measures other alternative operating parameters upon approval of the Administrator as specified in 40 CFR 63.8(f)(1) through (f)(5) of this part.
- (4) The owner or operator shall manage the carbon used for the carbon adsorption system, as follows:

- (i) Following the initial startup of the control device, all carbon in the control device shall be replaced with fresh carbon on a regular, predetermined time interval that is no longer than the carbon service life established for the carbon adsorption system. The provisions of this paragraph (d)(4)(i) do not apply to a nonregenerable carbon adsorption system (e.g., a carbon canister) for which the carbon canister or the carbon in the control device is replaced on a regular basis according to the requirements in paragraph (d)(4)(iii) of this section.
- (ii) The spent carbon removed from the carbon adsorption system must be either regenerated, reactivated, or burned in one of the units specified in paragraphs (d)(4)(ii)(A) through (d)(4)(ii)(G) of this section.
- (A) Regenerated or reactivated in a thermal treatment unit for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart X.
- (B) Regenerated or reactivated in a thermal treatment unit equipped with and operating air emission controls in accordance with this section.
- (C) Regenerated or reactivated in a thermal treatment unit equipped with and operating organic air emission controls in accordance with a national emission standard for hazardous air pollutants under another subpart in 40 CFR part 63 or 40 CFR part 61.
- (D) Burned in a hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart O.
- (E) Burned in a hazardous waste incinerator for which the owner or operator has designed and operates the incinerator in accordance with the interim status requirements of 40 CFR part 265, subpart O.
- (F) Burned in a boiler or industrial furnace for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 266, subpart H.
- (G) Burned in a boiler or industrial furnace for which the owner or operator has designed and operates the unit in accordance with the interim status requirements of 40 CFR part 266, subpart H.
- (iii) As an alternative to meeting the requirements in paragraphs (d)(3) and (d)(4)(i) of this section, an owner or operator of a nonregenerable carbon adsorption system may choose to replace on a regular basis the carbon canister or the carbon in the control device using the procedures in either paragraph (d)(4)(iii)(A) or (d)(4)(iii)(B) of this section. For the purpose of complying with this paragraph (d)(4)(iii), a nonregenerable carbon adsorption system means a carbon adsorption system that does not regenerate the carbon bed directly onsite in the control device, such as a carbon canister. The spent carbon removed from the nonregenerable carbon

adsorption system must be managed according to the requirements in paragraph (d)(4)(ii) of this section.

- (A) Monitor the concentration level of the organic compounds in the exhaust vent from the carbon adsorption system on a regular schedule, and when carbon breakthrough is indicated, immediately replace either the existing carbon canister with a new carbon canister or replace the existing carbon in the control device with fresh carbon. Measurement of the concentration level of the organic compounds in the exhaust vent stream must be made with a detection instrument that is appropriate for the composition of organic constituents in the vent stream and is routinely calibrated to measure the organic concentration level expected to occur at breakthrough. The monitoring frequency must be daily or at an interval no greater than 20 percent of the time required to consume the total carbon working capacity established as a requirement of paragraph (d)(2)(ii)(B) of this section, whichever is longer.
- (B) Replace either the existing carbon canister with a new carbon canister or replace the existing carbon in the control device with fresh carbon at a regular, predetermined time interval that is less than the design carbon replacement interval established as a requirement of paragraph (d)(2)(ii)(B) of this section.
- (e) Condenser control device requirements.
- (1) The condenser must achieve the performance specifications in either paragraph (e)(1)(i) or (e)(1)(ii) of this section.
- (i) Recover 95 percent or more, on a weight-basis, of the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the condenser; or
- (ii) Recover 95 percent or more, on a weight-basis, of the total HAP, listed in Table 1 of this subpart, contained in the vent stream entering the condenser.
- (2) The owner or operator must demonstrate that the condenser achieves the performance requirements in paragraph (e)(1) of this section by either performing a performance test as specified in paragraph (e)(2)(i) of this section or a design analysis as specified in paragraph (e)(2)(ii) of this section.
- (i) An owner or operator choosing to use a performance tests to demonstrate compliance must conduct the test in accordance with the requirements of §63.694(1) of this subpart.
- (ii) An owner or operator choosing to use a design analysis to demonstrate compliance must include as part of this design analysis the following information: description of the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature; and specification of the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream, and the design average temperatures of the coolant fluid at the condenser inlet and outlet.

- (3) The owner or operator must monitor the operation of the condenser in accordance with the requirements of §63.695(e) of this subpart using one of the continuous monitoring systems specified in paragraphs (e)(3)(i) through (e)(3)(iii) of this section.
- (i) A continuous parameter monitoring system to measure and record the daily average temperature of the exhaust gases from the control device. The accuracy of the temperature monitoring device shall be  $\pm 1$  percent of the temperature being measured, expressed in degrees Celsius or  $\pm 5$  °C, whichever is greater.
- (ii) A continuous monitoring system to measure and record the daily average concentration level of organic compounds in the exhaust gas stream from the control device. The organic monitoring system must comply either with Performance Specification 8 or 9 in 40 CFR part 60, appendix B. The relative accuracy provision of Performance Specification 8, Sections 2.4 and 3 need not be conducted.
- (iii) A continuous monitoring system that measures other alternative operating parameters upon approval of the Administrator as specified in 40 CFR 63.8(f)(1) through (f)(5) of this part.
- (f) Vapor incinerator control device requirements.
- (1) The vapor incinerator must achieve the performance specifications in either paragraph (f)(1)(i), (f)(1)(ii), or (f)(1)(iii) of this section.
- (i) Destroy the total organic compounds (TOC), less methane and ethane, contained in the vent stream entering the vapor incinerator either:
- (A) By 95 percent or more, on a weight-basis, or
- (B) To achieve a total incinerator outlet concentration for the TOC, less methane and ethane, of less than or equal to ppmy on a dry basis corrected to 3 percent oxygen.
- (ii) Destroy the HAP listed in Table 1 of this subpart contained in the vent stream entering the vapor incinerator either:
- (A) By 95 percent or more, on a total HAP weight-basis, or
- (B) To achieve a total incinerator outlet concentration for the HAP, listed in Table 1 of this subpart, of less than or equal to ppmv on a dry basis corrected to 3 percent oxygen.
- (iii) Maintain the conditions in the vapor incinerator combustion chamber at a residence time of 0.5 seconds or longer and at a temperature of 760°C or higher.
- (2) The owner or operator must demonstrate that the vapor incinerator achieves the performance requirements in paragraph (f)(1) of this section by either performing a performance test as specified in paragraph (f)(2)(i) of this section or a design analysis as specified in paragraph (f)(2)(i) of this section.

- (i) An owner or operator choosing to use a performance test to demonstrate compliance must conduct the test in accordance with the requirements of §63.694(1) of this subpart.
- (ii) An owner or operator choosing to use a design analysis to demonstrate compliance must include as part of this design analysis the information specified in either paragraph (f)(2)(ii)(A) or (f)(2)(ii)(B) of this section as applicable to the vapor incinerator design.
- (A) For a thermal vapor incinerator, the design analysis shall address the vent stream composition, constituent concentrations, and flow rate and shall establish the design minimum and average temperatures in the combustion chamber and the combustion chamber residence time.
- (B) For a catalytic vapor incinerator, the design analysis shall address the vent stream composition, constituent concentrations, and flow rate and shall establish the design minimum and average temperatures across the catalyst bed inlet and outlet, and the design service life of the catalyst.
- (3) The owner or operator must monitor the operation of the vapor incinerator in accordance with the requirements of  $\S63.695(e)$  of this subpart using one of the continuous monitoring systems specified in paragraphs (f)(3)(i) through (f)(3)(i) of this section as applicable to the type of vapor incinerator used.
- (i) For a thermal vapor incinerator, a continuous parameter monitoring system to measure and record the daily average temperature of the exhaust gases from the control device. The accuracy of the temperature monitoring device must be  $\pm 1$  percent of the temperature being measured, expressed in degrees Celsius of  $\pm 0.5$  °C, whichever is greater.
- (ii) For a catalytic vapor incinerator, a temperature monitoring device capable of monitoring temperature at two locations equipped with a continuous recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed outlet.
- (iii) For either type of vapor incinerator, a continuous monitoring system to measure and record the daily average concentration of organic compounds in the exhaust vent stream from the control device. The organic monitoring system must comply either with Performance Specification 8 or 9 in 40 CFR part 60, appendix B. The relative accuracy provision of Performance Specification 8, Sections 2.4 and 3 need not be conducted.
- (iv) For either type of vapor incinerator, a continuous monitoring system that measures alternative operating parameters other than those specified in paragraph (f)(3)(i) or (f)(3)(ii) of this section upon approval of the Administrator as specified in 40 CFR 63.8(f)(1) through (f)(5) of this part.
- (g) Boilers and process heaters control device requirements.

- (1) The boiler or process heater must achieve the performance specifications in either paragraph (g)(1)(i), (g)(1)(ii), (g)(1)(iii), (g)(1)(iii), (g)(1)(iv), or (g)(1)(v) of this section.
- (i) Destroy the total organic compounds (TOC), less methane and ethane, contained in the vent stream introduced into the flame zone of the boiler or process heater either:
- (A) By 95 percent or more, on a weight-basis, or
- (B) To achieve in the exhausted combustion gases a total concentration for the TOC, less methane and ethane, of less than or equal to 20 parts ppmv on a dry basis corrected to 3 percent oxygen.
- (ii) Destroy the HAP listed in Table 1 of this subpart contained in the vent stream entering the vapor incinerator either:
- (A) By 95 percent or more, on a total HAP weight-basis, or
- (B) To achieve in the exhausted combustion gases a total concentration for the HAP, listed in Table 1 of the subpart, of less than or equal to 20 ppmv on a dry basis corrected to 3 percent oxygen.
- (iii) Introduce the vent stream into the flame zone of the boiler or process heater and maintain the conditions in the combustion chamber at a residence time of 0.5 seconds or longer and at a temperature of 760°C or higher.
- (iv) Introduce the vent stream with the fuel that provides the predominate heat input to the boiler or process heater (i.e., the primary fuel); or
- (v) Introduce the vent stream to a boiler or process heater for which the owner or operator either has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 266, subpart H of this chapter; or has certified compliance with the interim status requirements of 40 CFR part 266, subpart H of this chapter.
- (2) The owner or operator must demonstrate that the boiler or process heater achieves the performance specifications in paragraph (g)(1) of this section chosen by the owner or operator using the applicable method specified in paragraph (g)(2)(i) or (g)(2)(ii) of this section.
- (i) If an owner or operator chooses to comply with the performance specifications in either paragraph (g)(1)(i), (g)(1)(ii), or (g)(1)(iii) of this section, the owner or operator must demonstrate compliance with the applicable performance specifications by either performing a performance test as specified in paragraph (g)(2)(i)(A) of this section or a design analysis as specified in paragraph (g)(2)(i)(B) of this section.
- (A) An owner or operator choosing to use a performance test to demonstrate compliance must conduct the test in accordance with the requirements of §63.694(1) of this subpart.

- (B) An owner or operator choosing to use a design analysis to demonstrate compliance must include as part of this design analysis the following information: description of the vent stream composition, constituent concentrations, and flow rate; specification of the design minimum and average flame zone temperatures and combustion zone residence time; and description of the method and location by which the vent stream is introduced into the flame zone.
- (ii) If an owner or operator chooses to comply with the performance specifications in either paragraph (g)(1)(iv) or (g)(1)(v) of this section, the owner or operator must demonstrate compliance by maintaining the records that document that the boiler or process heater is designed and operated in accordance with the applicable requirements of this section.
- (3) For a boiler or process heater complying with the performance specifications in either paragraph (g)(1)(i), (g)(1)(ii), or (g)(1)(iii) of this section, the owner or operator must monitor the operation of a boiler or process heater in accordance with the requirements of §63.695(e) of this subpart using one of the continuous monitoring systems specified in paragraphs (g)(3)(ii) through (g)(3)(iii) of this section.
- (i) A continuous parameter monitoring system to measure and record the daily average combustion zone temperature. The accuracy of the temperature sensor must be  $\pm 1$  percent of the temperature being measured, expressed in degrees Celsius or  $\pm 0.5$  °C, whichever is greater;
- (ii) A continuous monitoring system to measure and record the daily average concentration of organic compounds in the exhaust vent stream from the control device. The organic monitoring system must comply either with Performance Specification 8 or 9 in 40 CFR part 60, appendix B. The relative accuracy provision of Performance Specification 8, Sections 2.4 and 3 need not be conducted.
- (iii) A continuous monitoring system that measures alternative operating parameters other than those specified in paragraph (g)(3)(i) or (g)(3)(ii) of this section upon approval of the Administrator as specified in 40 CFR 63.8(f)(1) through (f)(5) of this part.
- (h) Flare control device requirements.
- (1) The flare must be designed and operated in accordance with the requirements in 40 CFR 63.11(b).
- (2) The owner or operator must demonstrate that the flare achieves the requirements in paragraph (h)(1) of this section by performing the procedures specified in paragraph (h)(2)(i) of this section. A previous compliance demonstration for the flare that meets all of the conditions specified in paragraph (h)(2)(ii) of this section may be used by an owner or operator to demonstrate compliance with this paragraph (h)(2).
- (i) To demonstrate that a flare achieves the requirements in paragraph (h)(1) of this section, the owner or operator performs all of the procedures specified in paragraphs (h)(2)(i)(A) through (h)(2)(i)(C) of this section.

- (A) The owner or operator conducts a visible emission test for the flare in accordance with the requirements specified in 40 CFR 63.11(b)(4).
- (B) The owner or operator determines the net heating value of the gas being combusted in the flare in accordance with the requirements specified in 40 CFR 63.11(b)(6); and
- (C) The owner or operator determines the flare exit velocity in accordance with the requirements applicable to the flare design as specified in 40 CFR 63.11(b)(7) or 40 CFR 63.11(b)(8).
- (ii) A previous compliance demonstration for the flare may be used by an owner or operator to demonstrate compliance with paragraph (h)(2) of this section provided that all conditions for the compliance determination and subsequent flare operation are met as specified in paragraphs (h)(2)(ii)(A) and (h)(2)(ii)(B) of this section.
- (A) The owner or operator conducted the compliance determination using the procedures specified in paragraph (h)(2)(i) of this section.
- (B) No flare operating parameter or process changes have occurred since completion of the compliance determination which could affect the compliance determination results.
- (3) The owner or operator must monitor the operation of the flare using a heat sensing monitoring device (including but not limited to a thermocouple, ultraviolet beam sensor, or infrared sensor) that continuously detects the presence of a pilot flame. The owner or operator must record, for each 1-hour period, whether the monitor was continuously operating and whether a pilot flame was continuously present during each hour as required in §63.696(b)(3) of this subpart.

[64 FR 38970, July 20, 1999, as amended at 66 FR 1266, Jan. 8, 2001; 68 FR 37351, June 23, 2003]

# § 63.694 Testing methods and procedures.

- (a) This section specifies the testing methods and procedures required for this subpart to perform the following:
- (1) To determine the average VOHAP concentration for off-site material streams at the point-of-delivery for compliance with standards specified §63.683 of this subpart, the testing methods and procedures are specified in paragraph (b) of this section.
- (2) To determine the average VOHAP concentration for treated off-site material streams at the point-of-treatment for compliance with standards specified §63.684 of this subpart, the testing methods and procedures are specified in paragraph (c) of this section.
- (3) To determine the treatment process VOHAP concentration limit (C<sub>R</sub>) for compliance with standards specified §63.684 of this subpart, the testing methods and procedures are specified in paragraph (d) of this section.

- (4) To determine treatment process required HAP removal rate (RMR) for compliance with standards specified §63.684 of this subpart, the testing methods and procedures are specified in paragraph (e) of this section.
- (5) To determine treatment process actual HAP removal rate (MR) for compliance with standards specified §63.684 of this subpart, the testing methods and procedures are specified in paragraph (f) of this section.
- (6) To determine treatment process required HAP reduction efficiency (R) for compliance with standards specified in §63.684 of this subpart, the testing methods and procedures are specified in paragraph (g) of this section.
- (7) To determine treatment process required HAP biodegradation efficiency (R<sub>bio</sub>) for compliance with standards specified in §63.684 of this subpart, the testing methods and procedures are specified in paragraph (h) of this section.
- (8) To determine treatment process required actual HAP mass removal rate (MR<sub>bio</sub>) for compliance with standards specified in §63.684 of this subpart, the testing methods and procedures are specified in paragraph (i) of this section.
- (9) To determine maximum organic HAP vapor pressure of off-site materials in tanks for compliance with the standards specified in §63.685 of this subpart, the testing methods and procedures are specified in paragraph (j) of this section.
- (10) To determine no detectable organic emissions, the testing methods and procedures are specified in paragraph (k) of this section.
- (11) To determine closed-vent system and control device performance for compliance with the standards specified in §63.693 of this subpart, the testing methods and procedures are specified in paragraph (1) of this section.
- (12) To determine process vent stream flow rate and total organic HAP concentration for compliance with the standards specified in §63.693 of this subpart, the testing methods and procedures are specified in paragraph (m) of this section.
- (b) Testing methods and procedures to determine average VOHAP concentration of an off-site material stream at the point-of-delivery.
- (1) The average VOHAP concentration of an off-site material at the point-of-delivery shall be determined using either direct measurement as specified in paragraph (b)(2) of this section or by knowledge as specified in paragraph (b)(3) of this section.
- (2) Direct measurement to determine VOHAP concentration—(i) Sampling. Samples of the off-site material stream shall be collected from the container, pipeline, or other device used to deliver the off-site material stream to the plant site in a manner such that volatilization of

organics contained in the sample is minimized and an adequately representative sample is collected and maintained for analysis by the selected method.

- (A) The averaging period to be used for determining the average VOHAP concentration for the off-site material stream on a mass-weighted average basis shall be designated and recorded. The averaging period can represent any time interval that the owner or operator determines is appropriate for the off-site material stream but shall not exceed 1 year.
- (B) A sufficient number of samples, but no less than four samples, shall be collected to represent the complete range of HAP compositions and HAP quantities that occur in the off-site material stream during the entire averaging period due to normal variations in the operating conditions for the source or process generating the off-site material stream. Examples of such normal variations are seasonal variations in off-site material quantity or fluctuations in ambient temperature.
- (C) All samples shall be collected and handled in accordance with written procedures prepared by the owner or operator and documented in a site sampling plan. This plan shall describe the procedure by which representative samples of the off-site material stream are collected such that a minimum loss of organics occurs throughout the sample collection and handling process and by which sample integrity is maintained. A copy of the written sampling plan shall be maintained on-site in the plant site operating records. An example of an acceptable sampling plan includes a plan incorporating sample collection and handling procedures in accordance with the requirements specified in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW–846 or Method 25D in 40 CFR part 60, appendix A.
- (ii) Analysis. Each collected sample must be prepared and analyzed in accordance with one of the following methods as applicable to the sampled off-site material for the purpose of measuring the HAP listed in Table 1 of this subpart:
- (A) Method 305 in 40 CFR part 63, appendix A.
- (B) Method 25D in 40 CFR part 60, appendix A.
- (C) Method 624 in 40 CFR part 136, appendix A. If this method is used to analyze one or more compounds that are not on the method's published list of approved compounds, the Alternative Test Procedure specified in 40 CFR 136.4 and 40 CFR 136.5 must be followed.
- (D) Method 625 in 40 CFR part 136, appendix A. For the purpose of using this method to comply with this subpart, the owner or operator must perform corrections to these compounds based on the "accuracy as recovery" using the factors in Table 7 of the method. If this method is used to analyze one or more compounds that are not on the method's published list of approved compounds, the Alternative Test Procedure specified in 40 CFR 136.4 and 40 CFR 136.5 must be followed.
- (E) Method 1624 in 40 CFR part 136, appendix A.
- (F) Method 1625 in 40 CFR part 136, appendix A.

- (G) Method 8260 in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846, Third Edition, September 1986, as amended by Update I, November 15, 1992. As an alternative, an owner or operator may use any more recent, updated version of Method 8260 approved by the EPA. For the purpose of using Method 8260 to comply with this subpart, the owner or operator must maintain a formal quality assurance program consistent with section 8 of Method 8260, and this program must include the following elements related to measuring the concentrations of volatile compounds:
- (1) Documentation of site-specific procedures to minimize the loss of compounds due to volatilization, biodegradation, reaction, or sorption during the sample collection, storage, and preparation steps.
- (2) Documentation of specific quality assurance procedures followed during sampling, sample preparation, sample introduction, and analysis.
- (3) Measurement of the average accuracy and precision of the specific procedures, including field duplicates and field spiking of the off-site material source before or during sampling with compounds having similar chemical characteristics to the target analytes.
- (H) Method 8270 in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846, Third Edition, September 1986, as amended by Update I, November 15, 1992. As an alternative, an owner or operator may use any more recent, updated version of Method 8270 approved by the EPA. For the purpose of using Method 8270 to comply with this subpart, the owner or operator must maintain a formal quality assurance program consistent with Method 8270, and this program must include the following elements related to measuring the concentrations of volatile compounds:
- (1) Documentation of site-specific procedures to minimize the loss of compounds due to volatilization, biodegradation, reaction, or sorption during the sample collection, storage, and preparation steps.
- (2) Documentation of specific quality assurance procedures followed during sampling, sample preparation, sample introduction, and analysis.
- (3) Measurement of the average accuracy and precision of the specific procedures, including field duplicates and field spiking of the off-site material source before or during sampling with compounds having similar chemical characteristics to the target analytes.
- (I) Any other analysis method that has been validated in accordance with the procedures specified in section 5.1 and section 5.3 and the corresponding calculations in section 6.1 or section 6.3 of Method 301 in appendix A in 40 CFR part 63. The data are acceptable if they meet the criteria specified in section 6.1.5 or section 6.3.3 of Method 301. If correction is required under section 6.3.3 of Method 301, the data are acceptable if the correction factor is within the range of 0.7 to 1.30. Other sections of Method 301 are not required.

(iii) Calculations. The average VOHAP concentration (C) on a mass-weighted basis shall be calculated by using the results for all samples analyzed in accordance with paragraph (b)(2)(ii) of this section and the following equation. An owner or operator using a test method that provides species-specific chemical concentrations may adjust the measured concentrations to the corresponding concentration values which would be obtained had the off-site material samples been analyzed using Method 305. To adjust these data, the measured concentration for each individual HAP chemical species contained in the off-site material is multiplied by the appropriate species-specific adjustment factor  $(f_{m305})$  listed in Table 1 of this subpart.

$$C = \frac{1}{Q_r} \times \sum_{i=1}^{n} (Q_i \times C_i)$$

Where:

C = Average VOHAP concentration of the off-site material at the point-of-delivery on a mass-weighted basis, ppmw.

i = Individual sample "i" of the off-site material.

n = Total number of samples of the off-site material collected (at least 4) for the averaging period (not to exceed 1 year).

O<sub>i</sub>= Mass quantity of off-site material stream represented by C<sub>i</sub>, kg/hr.

Q<sub>T</sub>= Total mass quantity of off-site material during the averaging period, kg/hr.

C<sub>i</sub>= Measured VOHAP concentration of sample "i" as determined in accordance with the requirements of §63.694(a), ppmw.

- (3) Knowledge of the off-site material to determine VOHAP concentration.
- (i) Documentation shall be prepared that presents the information used as the basis for the owner's or operator's knowledge of the off-site material stream's average VOHAP concentration. Examples of information that may be used as the basis for knowledge include: material balances for the source or process generating the off-site material stream; species-specific chemical test data for the off-site material stream from previous testing that are still applicable to the current off-site material stream; previous test data for other locations managing the same type of off-site material stream; or other knowledge based on information in documents such as manifests, shipping papers, or waste certification notices.
- (ii) If test data are used as the basis for knowledge, then the owner or operator shall document the test method, sampling protocol, and the means by which sampling variability and analytical variability are accounted for in the determination of the average VOHAP concentration. For example, an owner or operator may use HAP concentration test data for the off-site material stream that are validated in accordance with Method 301 in 40 CFR part 63, appendix A of this part as the basis for knowledge of the off-site material.

- (iii) An owner or operator using species-specific chemical concentration test data as the basis for knowledge of the off-site material may adjust the test data to the corresponding average VOHAP concentration value which would be obtained had the off-site material samples been analyzed using Method 305. To adjust these data, the measured concentration for each individual HAP chemical species contained in the off-site material is multiplied by the appropriate species-specific adjustment factor (f<sub>m305</sub>) listed in Table 1 of this subpart.
- (iv) In the event that the Administrator and the owner or operator disagree on a determination of the average VOHAP concentration for an off-site material stream using knowledge, then the results from a determination of VOHAP concentration using direct measurement as specified in paragraph (b)(2) of this section shall be used to establish compliance with the applicable requirements of this subpart. The Administrator may perform or request that the owner or operator perform this determination using direct measurement.
- (c) Determination of average VOHAP concentration of an off-site material stream at the point-of-treatment.
- (1) Sampling. Samples of the off-site material stream shall be collected at the point-of-treatment in a manner such that volatilization of organics contained in the sample is minimized and an adequately representative sample is collected and maintained for analysis by the selected method.
- (i) The averaging period to be used for determining the average VOHAP concentration for the off-site material stream on a mass-weighted average basis shall be designated and recorded. The averaging period can represent any time interval that the owner or operator determines is appropriate for the off-site material stream but shall not exceed 1 year.
- (ii) A sufficient number of samples, but no less than four samples, shall be collected to represent the complete range of HAP compositions and HAP quantities that occur in the off-site material stream during the entire averaging period due to normal variations in the operating conditions for the treatment process. Examples of such normal variations are seasonal variations in off-site material quantity or fluctuations in ambient temperature.
- (iii) All samples shall be collected and handled in accordance with written procedures prepared by the owner or operator and documented in a site sampling plan. This plan shall describe the procedure by which representative samples of the off-site material stream are collected such that a minimum loss of organics occurs throughout the sample collection and handling process and by which sample integrity is maintained. A copy of the written sampling plan shall be maintained on-site in the plant site operating records. An example of an acceptable sampling plan includes a plan incorporating sample collection and handling procedures in accordance with the requirements specified in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW–846 or Method 25D in 40 CFR part 60, appendix A.
- (2) Analysis. Each collected sample must be prepared and analyzed in accordance with one of the methods specified in paragraphs (b)(2)(ii)(A) through (b)(2)(ii)(I) of this section, as applicable to

the sampled off-site material, for the purpose of measuring the HAP listed in Table 1 of this subpart.

(3) Calculations. The average VOHAP concentration (C) a mass-weighted basis shall be calculated by using the results for all samples analyzed in accordance with paragraph (c)(2) of this section and the following equation. An owner or operator using a test method that provides species-specific chemical concentrations may adjust the measured concentrations to the corresponding concentration values which would be obtained had the off-site material samples been analyzed using Method 305. To adjust these data, the measured concentration for each individual HAP chemical species contained in the off-site material is multiplied by the appropriate species-specific adjustment factor (f<sub>m305</sub>) listed in Table 1 of this subpart.

$$\bar{C} = \frac{1}{Q_r} \times \sum_{i=1}^{n} (Q_i \times C_i)$$

Where:

C= Average VOHAP concentration of the off-site material on a mass-weighted basis, ppmw.

i = Individual sample "i" of the off-site material.

n = Total number of samples of the off-site material collected (at least 4) for the averaging period (not to exceed 1 year).

Q<sub>i</sub>= Mass quantity of off-site material stream represented by C<sub>i</sub>, kg/hr.

Q<sub>T</sub>= Total mass quantity of off-site material during the averaging period, kg/hr.

C<sub>i</sub>= Measured VOHAP concentration of sample "i" as determined in accordance with the requirements of §63.694(a), ppmw.

- (d) Determination of treatment process VOHAP concentration limit (C<sub>R</sub>). (1) All of the off-site material streams entering the treatment process shall be identified.
- (2) The average VOHAP concentration of each off-site material stream at the point-of-delivery shall be determined using the procedures specified in paragraph (b) of this section.
- (3) The VOHAP concentration limit  $(C_R)$  shall be calculated by using the results determined for each individual off-site material stream and the following equation:

$$C_R = \frac{\sum_{x=1}^{m} (Q_x \times \overline{C}_x) + \sum_{y=1}^{n} (Q_y \times 500 ppmw)}{\sum_{x=1}^{m} Q_x + \sum_{y=1}^{n} Q_y}$$

where:

C<sub>R</sub>=VOHAP concentration limit, ppmw.

x=Individual off-site material stream "x" that has a VOHAP concentration less than 500 ppmw at the point-of-delivery.

y=Individual off-site material stream "y" that has a VOHAP concentration equal to or greater than 500 ppmw at the point-of-delivery.

m=Total number of "x" off-site material streams treated by process.

n=Total number of "y" off-site material streams treated by process.

Q<sub>x</sub>=Total mass quantity of off-site material stream "x", kg/yr.

Q<sub>y</sub>=Total mass quantity of off-site material stream "y", kg/yr.

C<sub>x</sub>=VOHAP concentration of off-site material stream "x" at the point-of-delivery, ppmw.

- (e) Determination of required HAP mass removal rate (RMR).
- (1) Each individual stream containing HAP that enters the treatment process shall be identified.
- (2) The average VOHAP concentration at the point-of-delivery for each stream identified in paragraph (e)(1) of this section shall be determined using the test methods and procedures specified in paragraph (b) of this section.
- (3) For each stream identified in paragraph (e)(1) of this section that has an average VOHAP concentration equal to or greater than 500 ppmw at the point-of-delivery, the average volumetric flow rate and the density of the off-site material stream at the point-of-delivery shall be determined.
- (4) The required HAP mass removal rate (RMR) shall be calculated by using the average VOHAP concentration, average volumetric flow rate, and density determined in paragraph (e)(3) of this section for each stream and the following equation:

$$RMR = \sum_{y=1}^{n} \left[ V_{y} \times k_{y} \times \frac{\left(\overline{C} - 500 \text{ ppmw}\right)}{y} \right]$$

Where:

RMR = Required HAP mass removal rate, kg/hr.

y = Individual stream "y" that has a VOHAP concentration equal to or greater than 500 ppmw at the point-of-delivery as determined in §63.694(b).

n = Total number of "y" streams treated by process.

V<sub>v</sub>= Average volumetric flow rate of stream "y" at the point-of-delivery, m<sup>3</sup>/hr.

k<sub>v</sub>= Density of stream "y", kg/m<sup>3</sup>.

 $C_y$ = Average VOHAP concentration of stream "y" at the point-of-delivery as determined in  $\S63.694(b)(2)$ , ppmw.

- (f) Determination of actual HAP mass removal rate (MR).
- (1) The actual HAP mass removal rate (MR) shall be determined based on results for a minimum of three consecutive runs. The sampling time for each run shall be 1 hour.
- (2) The HAP mass flow entering the process (E<sub>b</sub>) and the HAP mass flow exiting the process (E<sub>a</sub>) shall be determined using the test methods and procedures specified in paragraphs (g)(2) through (g)(4) of this section.
- (3) The actual mass removal rate shall be calculated using the HAP mass flow rates determined in paragraph (f)(2) of this section and the following equation:

 $MR = E_b - E_a$ 

where:

MR = Actual HAP mass removal rate, kg/hr.

 $E_b$ = HAP mass flow entering process as determined in paragraph (f)(2) of this section, kg/hr.

 $E_a$ = HAP mass flow exiting process as determined in paragraph (f)(2) of this section, kg/hr.

- (g) Determination of treatment process HAP reduction efficiency (R).
- (1) The HAP reduction efficiency (R) for a treatment process shall be determined based on results for a minimum of three consecutive runs.
- (2) Each individual stream containing HAP that enters the treatment process shall be identified. Each individual stream containing HAP that exits the treatment process shall be identified. The

owner or operator shall prepare a sampling plan for measuring the identified streams that accurately reflects the retention time of the material in the process.

- (3) For each run, information shall be determined for each stream identified in paragraph (g)(2) of this section as specified in paragraphs (g)(3)(i) through (g)(3)(iii) of this section.
- (i) The mass quantity shall be determined for each stream identified in paragraph (g)(2) of this section as entering the process  $(Q_b)$ . The mass quantity shall be determined for each stream identified in paragraph (g)(2) of this section as exiting the process  $(Q_a)$ .
- (ii) The average VOHAP concentration at the point-of-delivery shall be determined for each stream entering the process (C<sub>b</sub>) (as identified in paragraph (g)(2) of this section) using the test methods and procedures specified in paragraph (b) of this section.
- (iii) The average VOHAP concentration at the point-of-treatment shall be determined for each stream exiting the process (C<sub>a</sub>) (as identified in paragraph (g)(2) of this section) using the test methods and procedures specified in paragraph (c) of this section.
- (4) The HAP mass flow entering the process  $(E_b)$  and the HAP mass flow exiting the process  $(E_a)$  shall be calculated using the results determined in paragraph (g)(3) of this section and the following equations:

$$E_a = \frac{1}{10^6} \sum_{i=1}^{\infty} \left( Q_{ai} \times \overline{C_{ai}} \right)$$

$$E_b = \frac{1}{10^6} \sum_{i=1}^{m} \left( Q_{bi} \times \overline{C_{bi}} \right)$$

Where:

E<sub>b</sub>= HAP mass flow entering process, kg/hr.

E<sub>a</sub>= HAP mass flow exiting process, kg/hr.

m = Total number of runs (at least 3)

j = Individual run "j"

Q<sub>bj</sub>= Mass quantity of material entering process during run "j", kg/hr.

Q<sub>aj</sub>= Average mass quantity of material exiting process during run "j", kg/hr.

 $C_{aj}$ = Average VOHAP concentration of material exiting process during run "j" as determined in 63.694(c), ppmw.

C<sub>bj</sub>= Average VOHAP concentration of material entering process during run "j" as determined in §63.694(b)(2), ppmw.

(5) The HAP reduction efficiency (R) shall be calculated using the HAP mass flow rates determined in paragraph (g)(4) of this section and the following equation:

$$R = \frac{E_b - E_a}{E_b} \times 100$$

Where:

R = HAP reduction efficiency, percent.

 $E_b$ = HAP mass flow entering process as determined in paragraph (g)(4) of this section, kg/hr.

 $E_a$ = HAP mass flow exiting process as determined in accordance with the requirements of paragraph (g)(4) of this section, kg/hr.

- (h) Determination of HAP biodegradation efficiency (R<sub>bio</sub>).
- (1) The fraction of HAP biodegraded ( $F_{bio}$ ) shall be determined using one of the procedures specified in appendix C of this part 63.
- (2) The HAP biodegradation efficiency (R<sub>bio</sub>) shall be calculated by using the following equation:

$$R_{bio}-F_{bio}\times 100$$

where:

R<sub>bio</sub>= HAP biodegradation efficiency, percent.

 $F_{bio}$ = Fraction of HAP biodegraded as determined in paragraph (h)(1) of this section.

- (i) Determination of actual HAP mass removal rate (MR<sub>bio</sub>).
- (1) The actual HAP mass removal rate (MR<sub>bio</sub>) shall be determined based on results for a minimum of three consecutive runs. The sampling time for each run shall be 1 hour.
- (2) The HAP mass flow entering the process (E<sub>b</sub>) shall be determined using the test methods and procedures specified in paragraphs (g)(2) through (g)(4) of this section.
- (3) The fraction of HAP biodegraded (F<sub>bio</sub>) shall be determined using the procedure specified in 40 CFR part 63, appendix C of this part.

(4) The actual mass removal rate shall be calculated by using the HAP mass flow rates and fraction of HAP biodegraded determined in paragraphs (i)(2) and (i)(3), respectively, of this section and the following equation:

$$MR_{bio} = E^b \times F_{bio}$$

Where:

MR<sub>bio</sub>= Actual HAP mass removal rate, kg/hr.

 $E_b$ = HAP mass flow entering process, kg/hr.

F<sub>bio</sub>= Fraction of HAP biodegraded.

- (j) Determination of maximum HAP vapor pressure for off-site material in a tank. (1) The maximum HAP vapor pressure of the off-site material composition managed in a tank shall be determined using either direct measurement as specified in paragraph (j)(2) of this section or by knowledge of the off-site material as specified by paragraph (j)(3) of this section.
- (2) Direct measurement to determine the maximum HAP vapor pressure of an off-site material.
- (i) Sampling. A sufficient number of samples shall be collected to be representative of the off-site material contained in the tank. All samples shall be collected and handled in accordance with written procedures prepared by the owner or operator and documented in a site sampling plan. This plan shall describe the procedure by which representative samples of the off-site material is collected such that a minimum loss of organics occurs throughout the sample collection and handling process and by which sample integrity is maintained. A copy of the written sampling plan shall be maintained on-site in the plant site operating records. An example of an acceptable sampling plan includes a plan incorporating sample collection and handling procedures in accordance with the requirements specified in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW–846 or Method 25D in 40 CFR part 60, appendix A.
- (ii) Analysis. Any one of the following methods may be used to analyze the samples and compute the maximum HAP vapor pressure of the off-site material:
- (A) Method 25E in 40 CFR part 60 appendix A;
- (B) Methods described in American Petroleum Institute Bulletin 2517, "Evaporation Loss from External Floating Roof Tanks,";
- (C) Methods obtained from standard reference texts;
- (D) ASTM Method 2879-83; or
- (E) Any other method approved by the Administrator.

- (3) Use of knowledge to determine the maximum HAP vapor pressure of the off-site material. Documentation shall be prepared and recorded that presents the information used as the basis for the owner's or operator's knowledge that the maximum HAP vapor pressure of the off-site material is less than the maximum vapor pressure limit listed in Table 3 or Table 4 of this subpart for the applicable tank design capacity category. Examples of information that may be used include: the off-site material is generated by a process for which at other locations it previously has been determined by direct measurement that the off-site material maximum HAP vapor pressure is less than the maximum vapor pressure limit for the appropriate tank design capacity category.
- (k) Procedure for determining no detectable organic emissions for the purpose of complying with this subpart.
- (1) The test shall be conducted in accordance with the procedures specified in Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak interfaces that are associated with covers and closure devices include, but are not limited to: the interface of the cover and its foundation mounting; the periphery of any opening on the cover and its associated closure device; and the sealing seat interface on a spring-loaded pressure-relief valve.
- (2) The test shall be performed when the unit contains a material having a total organic concentration representative of the range of concentrations for the materials expected to be managed in the unit. During the test, the cover and closure devices shall be secured in the closed position.
- (3) The detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the organic constituents in the material placed in the unit, not for each individual organic constituent.
- (4) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix A.
- (5) Calibration gases shall be as follows:
- (i) Zero air (less than 10 ppmv hydrocarbon in air); and
- (ii) A mixture of methane or n-hexane in air at a concentration of approximately, but less than, 10,000 ppmv.
- (6) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A.

- (7) Each potential leak interface shall be checked by traversing the instrument probe around the potential leak interface as close to the interface as possible, as described in Method 21. In the case when the configuration of the cover or closure device prevents a complete traverse of the interface, all accessible portions of the interface shall be sampled. In the case when the configuration of the closure device prevents any sampling at the interface and the device is equipped with an enclosed extension or horn (e.g., some pressure relief devices), the instrument probe inlet shall be placed at approximately the center of the exhaust area to the atmosphere.
- (8) An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (k)(8)(i) or (k)(8)(ii) of this section.
- (i) If an owner or operator chooses not to adjust the detection instrument readings for the background organic concentration level, then the maximum organic concentration value measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (k)(9) of this section.
- (ii) If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (k)(6) of this section is compared with the applicable value for the potential leak interface as specified in paragraph (k)(9) of this section.
- (9) A potential leak interface is determined to operate with no detectable emissions using the applicable criteria specified in paragraphs (k)(9)(i) and (k)(9)(ii) of this section.
- (i) For a potential leak interface other than a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (k)(8) is less than 500 ppmv.
- (ii) For a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (k)(8) is less than 10,000 ppmv.
- (1) Control device performance test procedures.
- (1) Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the sampling sites at the inlet and outlet of the control device.
- (i) To determine compliance with a control device percent reduction requirement, sampling sites shall be located at the inlet of the control device as specified in paragraphs (l)(1)(i)(A) and (l)(1)(i)(B) of this section, and at the outlet of the control device.
- (A) The control device inlet sampling site shall be located after the final product recovery device.

- (B) If a vent stream is introduced with the combustion air or as an auxiliary fuel into a boiler or process heater, the location of the inlet sampling sites shall be selected to ensure that the measurement of total HAP concentration or TOC concentration, as applicable, includes all vent streams and primary and secondary fuels introduced into the boiler or process heater.
- (ii) To determine compliance with an enclosed combustion device concentration limit, the sampling site shall be located at the outlet of the device.
- (2) The gas volumetric flow rate shall be determined using Method 2, 2A, 2C, or 2D of 40 CFR part 60, appendix A, as appropriate.
- (3) To determine compliance with the control device percent reduction requirement, the owner or operator shall use Method 18 of 40 CFR part 60, appendix A of this chapter; alternatively, any other method or data that has been validated according to the applicable procedures in Method 301 in 40 CFR part 63, appendix A of this part may be used. The following procedures shall be used to calculate percent reduction efficiency:
- (i) The minimum sampling time for each run shall be 1 hour in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time such as 15 minute intervals during the run.
- (ii) The mass rate of either TOC (minus methane and ethane) or total HAP ( $E_i$  and  $E_o$ , respectively) shall be computed.
- (A) The following equations shall be used:

$$E_i = K_2 \times Q_i \times \sum_{j=1}^{n} \left( C_{ij} \times M_{ij} \right)$$

$$E_o = K_2 \times Q_o \times \sum_{j=1}^{n} (C_{oj} \times M_{oj})$$

Where:

 $C_{ij}$ ,  $C_{oj}$ = Concentration of sample component j of the gas stream at the inlet and outlet of the control device, respectively, dry basis, parts per million by volume.

E<sub>i</sub>, E<sub>o</sub>= Mass rate of TOC (minus methane and ethane) or total HAP at the inlet and outlet of the control device, respectively, dry basis, kilogram per hour.

M<sub>ij</sub>, M<sub>oj</sub>= Molecular weight of sample component j of the gas stream at the inlet and outlet of the control device, respectively, gram/gram-mole.

 $Q_i$ ,  $Q_o$ = Flow rate of gas stream at the inlet and outlet of the control device, respectively, dry standard cubic meter per minute.

 $K_2$ = Constant,  $2.494 \times 10^{-6}$  (parts per million)<sup>-1</sup> (gram-mole per standard cubic meter) (kilogram/gram) (minute/hour), where standard temperature (gram-mole per standard cubic meter) is 20 °C.

- (B) When the TOC mass rate is calculated, all organic compounds (minus methane and ethane) measured by Method 18 of 40 CFR part 60, appendix A shall be summed using the equation in paragraph (1)(3)(ii)(A) of this section.
- (C) When the total HAP mass rate is calculated, only the HAP constituents shall be summed using the equation in paragraph (1)(3)(ii)(A) of this section.
- (iii) The percent reduction in TOC (minus methane and ethane) or total HAP shall be calculated as follows:

$$R_{cd} = \frac{E_i - E_o}{E_i} \times 100$$

where:

R<sub>cd</sub>=Control efficiency of control device, percent.

E<sub>i</sub>=Mass rate of TOC (minus methane and ethane) or total HAP at the inlet to the control device as calculated under paragraph (l)(3)(ii) of this section, kilograms TOC per hour or kilograms HAP per hour.

E<sub>0</sub>=Mass rate of TOC (minus methane and ethane) or total HAP at the outlet of the control device, as calculated under paragraph (l)(3)(ii) of this section, kilograms TOC per hour or kilograms HAP per hour.

- (iv) If the vent stream entering a boiler or process heater is introduced with the combustion air or as a secondary fuel, the weight-percent reduction of total HAP or TOC (minus methane and ethane) across the device shall be determined by comparing the TOC (minus methane and ethane) or total HAP in all combusted vent streams and primary and secondary fuels with the TOC (minus methane and ethane) or total HAP exiting the device, respectively.
- (4) To determine compliance with the enclosed combustion device total HAP concentration limit of this subpart, the owner or operator shall use Method 18 of 40 CFR part 60, appendix A to measure either TOC (minus methane and ethane) or total HAP. Alternatively, any other method or data that has been validated according to Method 301 in appendix A of this part, may be used. The following procedures shall be used to calculate parts per million by volume concentration, corrected to 3 percent oxygen:
- (i) The minimum sampling time for each run shall be 1 hour in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time, such as 15 minute intervals during the run.

- (ii) The TOC concentration or total HAP concentration shall be calculated according to paragraph (m)(4)(ii)(A) or (m)(4)(ii)(B) of this section.
- (A) The TOC concentration ( $C_{TOC}$ ) is the sum of the concentrations of the individual components and shall be computed for each run using the following equation:

$$C_{TOC} = \sum_{i=1}^{x} \frac{\sum_{j=1}^{n} C_{jj}}{x}$$

where:

C<sub>TOC</sub>=Concentration of total organic compounds minus methane and ethane, dry basis, parts per million by volume.

C<sub>ii</sub>=Concentration of sample components j of sample i, dry basis, parts per million by volume.

n=Number of components in the sample.

x=Number of samples in the sample run.

- (B) The total HAP concentration ( $C_{HAP}$ ) shall be computed according to the equation in paragraph (l)(4)(ii)(A) of this section except that only HAP constituents shall be summed.
- (iii) The measured TOC concentration or total HAP concentration shall be corrected to 3 percent oxygen as follows:
- (A) The emission rate correction factor or excess air, integrated sampling and analysis procedures of Method 3B of 40 CFR part 60, appendix A shall be used to determine the oxygen concentration (%O<sub>2dry</sub>). The samples shall be collected during the same time that the samples are collected for determining TOC concentration or total HAP concentration.
- (B) The concentration corrected to 3 percent oxygen (C<sub>c</sub>) shall be computed using the following equation:

$$C_c = C_m \left[ \frac{17.9}{20.9 - \%0_{2dy}} \right]$$

where:

C<sub>c</sub>=TOC concentration or total HAP concentration corrected to 3 percent oxygen, dry basis, parts per million by volume.

C<sub>m</sub>=Measured TOC concentration or total HAP concentration, dry basis, parts per million by volume.

%O<sub>2dry</sub>=Concentration of oxygen, dry basis, percent by volume.

- (m) Determination of process vent stream flow rate and total HAP concentration.
- (1) Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate, must be used for selection of the sampling site.
- (2) No traverse site selection method is needed for vents smaller than 0.10 meter in diameter.
- (3) Process vent stream gas volumetric flow rate must be determined using Method 2, 2A, 2C, or 2D of 40 CFR part 60, appendix A, as appropriate.
- (4) Process vent stream total HAP concentration must be measured using the following procedures:
- (i) Method 18 of 40 CFR part 60, appendix A, must be used to measure the total HAP concentration. Alternatively, any other method or data that has been validated according to the protocol in Method 301 of appendix A of this part may be used.
- (ii) Where Method 18 of 40 CFR part 60, appendix A, is used, the following procedures must be used to calculate parts per million by volume concentration:
- (A) The minimum sampling time for each run must be 1 hour in which either an integrated sample or four grab samples must be taken. If grab sampling is used, then the samples must be taken at approximately equal intervals in time, such as 15 minute intervals during the run.
- (B) The total HAP concentration (C<sub>HAP</sub>) must be computed according to the following equation:

$$C_{HAP} = \frac{\sum_{i=1}^{x} \left( \sum_{j=1}^{x} C_{ji} \right)}{X}$$

Where:

 $C_{HAP}$  = Total concentration of HAP compounds listed in Table 1 of this subpart, dry basis, parts per million by volume.

 $C_{ji}$  = Concentration of sample component j of the sample i, dry basis, parts per million by volume.

n = Number of components in the sample.

- x = Number of samples in the sample run.
- [61 FR 34158, July 1, 1996, as amended at 64 FR 38974, July 20, 1999; 66 FR 1267, Jan. 8, 2001]

# § 63.695 Inspection and monitoring requirements.

- (a) This section specifies the inspection and monitoring procedures required to perform the following:
- (1) To inspect tank fixed roofs and floating roofs for compliance with the Tank Level 2 controls standards specified in §63.685 of this subpart, the inspection procedures are specified in paragraph (b) of this section.
- (2) To inspect and monitor closed-vent systems for compliance with the standards specified in §63.693 of this subpart, the inspection and monitoring procedures are specified in paragraph (c) of this section.
- (3) To inspect and monitor transfer system covers for compliance with the standards specified in §63.689(c)(1) of this subpart, the inspection and monitoring procedures are specified in paragraph (d) of this section.
- (4) To monitor and record off-site material treatment processes for compliance with the standards specified in 63.684(e), the monitoring procedures are specified in paragraph (e) of this section.
- (b) Tank Level 2 fixed roof and floating roof inspection requirements.
- (1) Owners and operators that use a tank equipped with an internal floating roof in accordance with the provisions of §63.685(e) of this subpart shall meet the following inspection requirements:
- (i) The floating roof and its closure devices shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to, the internal floating roof is not floating on the surface of the liquid inside the tank; liquid has accumulated on top of the internal floating roof; any portion of the roof seals have detached from the roof rim; holes, tears, or other openings are visible in the seal fabric; the gaskets no longer close off the waste surfaces from the atmosphere; or the slotted membrane has more than 10 percent open area.
- (ii) The owner or operator shall inspect the internal floating roof components as follows except as provided for in paragraph (b)(1)(iii) of this section:
- (A) Visually inspect the internal floating roof components through openings on the fixed-roof (e.g., manholes and roof hatches) at least once every calendar year after initial fill, and

- (B) Visually inspect the internal floating roof, primary seal, secondary seal (if one is in service), gaskets, slotted membranes, and sleeve seals (if any) each time the tank is emptied and degassed and at least every 10 years. Prior to each inspection, the owner or operator shall notify the Administrator in accordance with the reporting requirements specified in §63.697 of this subpart.
- (iii) As an alternative to performing the inspections specified in paragraph (b)(1)(ii) of this section for an internal floating roof equipped with two continuous seals mounted one above the other, the owner or operator may visually inspect the internal floating roof, primary and secondary seals, gaskets, slotted membranes, and sleeve seals (if any) each time the tank is emptied and degassed and at least every 5 years. Prior to each inspection, the owner or operator shall notify the Administrator in accordance with the reporting requirements specified in §63.697 of this subpart.
- (iv) In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (b)(4) of this section.
- (v) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696 of this subpart.
- (2) Owners and operators that use a tank equipped with an external floating roof in accordance with the provisions of §63.685(f) of this subpart shall meet the following requirements:
- (i) The owner or operator shall measure the external floating roof seal gaps in accordance with the following requirements:
- (A) The owner or operator shall perform measurements of gaps between the tank wall and the primary seal within 60 days after initial operation of the tank following installation of the floating roof and, thereafter, at least once every 5 years. Prior to each inspection, the owner or operator shall notify the Administrator in accordance with the reporting requirements specified in §63.697 of this subpart.
- (B) The owner or operator shall perform measurements of gaps between the tank wall and the secondary seal within 60 days after initial operation of the separator following installation of the floating roof and, thereafter, at least once every year. Prior to each inspection, the owner or operator shall notify the Administrator in accordance with the reporting requirements specified in §63.697 of this subpart.
- (C) If a tank ceases to hold off-site material for a period of 1 year or more, subsequent introduction of off-site material into the tank shall be considered an initial operation for the purposes of paragraphs (b)(2)(i)(A) and (b)(2)(i)(B) of this section.
- (D) The owner shall determine the total surface area of gaps in the primary seal and in the secondary seal individually using the following procedure.
- (1) The seal gap measurements shall be performed at one or more floating roof levels when the roof is floating off the roof supports.

- (2) Seal gaps, if any, shall be measured around the entire perimeter of the floating roof in each place where a 0.32-centimeter (cm) (1/8-inch) diameter uniform probe passes freely (without forcing or binding against the seal) between the seal and the wall of the tank and measure the circumferential distance of each such location.
- (3) For a seal gap measured under paragraph (b)(2) of this section, the gap surface area shall be determined by using probes of various widths to measure accurately the actual distance from the tank wall to the seal and multiplying each such width by its respective circumferential distance.
- (4) The total gap area shall be calculated by adding the gap surface areas determined for each identified gap location for the primary seal and the secondary seal individually, and then dividing the sum for each seal type by the nominal diameter of the tank. These total gap areas for the primary seal and secondary seal are then compared to the respective standards for the seal type as specified in §63.685(f)(1) of this subpart.
- (E) In the event that the seal gap measurements do not conform to the specifications in §63.685(f)(1) of this subpart, the owner or operator shall repair the defect in accordance with the requirements of paragraph (b)(4) of this section.
- (F) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696 of this subpart.
- (ii) The owner or operator shall visually inspect the external floating roof in accordance with the following requirements:
- (A) The floating roof and its closure devices shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to: holes, tears, or other openings in the rim seal or seal fabric of the floating roof; a rim seal detached from the floating roof; all or a portion of the floating roof deck being submerged below the surface of the liquid in the tank; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices.
- (B) The owner or operator shall perform the inspections following installation of the external floating roof and, thereafter, at least once every year.
- (C) In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (b)(4) of this section.
- (D) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696(d) of this subpart.
- (3) Owners and operators that use a tank equipped with a fixed roof in accordance with the provisions of §63.685(g) of this subpart shall meet the following requirements:
- (i) The fixed roof and its closure devices shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to, visible

cracks, holes, or gaps in the roof sections or between the roof and the separator wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the case when a tank is buried partially or entirely underground, inspection is required only for those portions of the cover that extend to or above the ground surface, and those connections that are on such portions of the cover (e.g., fill ports, access hatches, gauge wells, etc.) and can be opened to the atmosphere.

- (ii) The owner or operator must perform an initial inspection following installation of the fixed roof. Thereafter, the owner or operator must perform the inspections at least once every calendar year except as provided for in paragraph (f) of this section.
- (iii) In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (b)(4) of this section.
- (iv) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696(e) of this subpart.
- (4) The owner or operator shall repair each defect detected during an inspection performed in accordance with the requirements of paragraph (b)(1), (b)(2), or (b)(3) of this section in the following manner:
- (i) The owner or operator shall within 45 calendar days of detecting the defect either repair the defect or empty the tank and remove it from service. If within this 45-day period the defect cannot be repaired or the tank cannot be removed from service without disrupting operations at the plant site, the owner or operator is allowed two 30-day extensions. In cases when an owner or operator elects to use a 30-day extension, the owner or operator shall prepare and maintain documentation describing the defect, explaining why alternative storage capacity is not available, and specify a schedule of actions that will ensure that the control equipment will be repaired or the tank emptied as soon as possible.
- (ii) When a defect is detected during an inspection of a tank that has been emptied and degassed, the owner or operator shall repair the defect before refilling the tank.
- (c) Owners and operators that use a closed-vent system in accordance with the provisions of §63.693 of this subpart shall meet the following inspection and monitoring requirements:
- (1) Each closed-vent system that is used to comply with §63.693(c)(1)(i) of this subpart shall be inspected and monitored in accordance with the following requirements:
- (i) At initial startup, the owner or operator shall monitor the closed-vent system components and connections using the procedures specified in §63.694(k) of this subpart to demonstrate that the closed-vent system operates with no detectable organic emissions.
- (ii) After initial startup, the owner or operator shall inspect and monitor the closed-vent system as follows:

- (A) Closed-vent system joints, seams, or other connections that are permanently or semi-permanently sealed (e.g., a welded joint between two sections of hard piping or a bolted and gasketed ducting flange) shall be visually inspected at least once per year to check for defects that could result in air emissions. The owner or operator shall monitor a component or connection using the procedures specified in §63.694(k) of this subpart to demonstrate that it operates with no detectable organic emissions following any time the component is repaired or replaced (e.g., a section of damaged hard piping is replaced with new hard piping) or the connection is unsealed (e.g., a flange is unbolted).
- (B) Closed-vent system components or connections other than those specified in paragraph (c)(1)(ii)(A) of this section, shall be monitored at least once per year using the procedures specified in §63.694(k) of this subpart to demonstrate that components or connections operate with no detectable organic emissions.
- (C) The continuous monitoring system required by §63.693(b)(4)(i) shall monitor and record either an instantaneous data value at least once every 15 minutes or an average value for intervals of 15 minutes or less.
- (D) The owner or operator shall visually inspect the seal or closure mechanism required by §63.693(c)(2)(ii) at least once every month to verify that the bypass mechanism is maintained in the closed position.
- (iii) In the event that a defect or leak is detected, the owner or operator shall repair the defect or leak in accordance with the requirements of paragraph (c)(3) of this section.
- (iv) The owner or operator shall maintain a record of the inspection and monitoring in accordance with the requirements specified in §63.696 of this subpart.
- (2) Each closed-vent system that is used to comply with §63.693(c)(1)(ii) of this subpart shall be inspected and monitored in accordance with the following requirements:
- (i) The closed-vent system shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in ductwork or piping; loose connections; or broken or missing caps or other closure devices.
- (ii) The owner or operator must perform an initial inspection following installation of the closed-vent system. Thereafter, the owner or operator must perform the inspections at least once every calendar year except as provided for in paragraph (f) of this section.
- (iii) In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (c)(3) of this section.
- (iv) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696 of this subpart.

- (3) The owner or operator shall repair all detected defects as follows:
- (i) The owner or operator shall make first efforts at repair of the defect no later than 5 calendar days after detection and repair shall be completed as soon as possible but no later than 45 calendar days after detection.
- (ii) Repair of a defect may be delayed beyond 45 calendar days if either of the conditions specified in paragraph (c)(3)(ii)(A) or (c)(3)(ii)(B) occurs. In this case, the owner or operator must repair the defect the next time the process or unit that vents to the closed-vent system is shutdown. Repair of the defect must be completed before the process or unit resumes operation.
- (A) Completion of the repair is technically infeasible without the shutdown of the process or unit that vents to the closed-vent system.
- (B) The owner or operator determines that the air emissions resulting from the repair of the defect within the specified period would be greater than the fugitive emissions likely to result by delaying the repair until the next time the process or unit that vents to the closed-vent system is shutdown.
- (iii) The owner or operator shall maintain a record of the defect repair in accordance with the requirements specified in §63.696 of this subpart.
- (d) Owners and operators that use a transfer system equipped with a cover in accordance with the provisions of §63.689(c)(1) of this subpart shall meet the following inspection requirements:
- (1) The cover and its closure devices shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the cover sections or between the cover and its mounting; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the case when a transfer system is buried partially or entirely underground, inspection is required only for those portions of the cover that extend to or above the ground surface, and those connections that are on such portions of the cover (e.g., access hatches, etc.) and can be opened to the atmosphere.
- (2) The owner or operator must perform an initial inspection following installation of the cover. Thereafter, the owner or operator must perform the inspections at least once every calendar year except as provided for in paragraph (f) of this section.
- (3) In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (d)(5) of this section.
- (4) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.696 of this subpart.
- (5) The owner or operator shall repair all detected defects as follows:

- (i) The owner or operator shall make first efforts at repair of the defect no later than 5 calendar days after detection and repair shall be completed as soon as possible but no later than 45 calendar days after detection except as provided in paragraph (d)(5)(ii) of this section.
- (ii) Repair of a defect may be delayed beyond 45 calendar days if the owner or operator determines that repair of the defect requires emptying or temporary removal from service of the transfer system and no alternative transfer system is available at the site to accept the material normally handled by the system. In this case, the owner or operator shall repair the defect the next time the process or unit that is generating the material handled by the transfer system stops operation. Repair of the defect must be completed before the process or unit resumes operation.
- (iii) The owner or operator shall maintain a record of the defect repair in accordance with the requirements specified in §63.696 of this subpart.
- (e) Control device monitoring requirements. For each control device required under §63.693 of this subpart to be monitored in accordance with the provisions of this paragraph (e), the owner or operator must ensure that each control device operates properly by monitoring the control device in accordance with the requirements specified in paragraphs (e)(1) through (e)(7) of this section.
- (1) A continuous parameter monitoring system must be used to measure the operating parameter or parameters specified for the control device in §63.693(d) through §63.693(g) of this subpart as applicable to the type and design of the control device. The continuous parameter monitoring system must meet the following specifications and requirements:
- (i) The continuous parameter monitoring system must measure either an instantaneous value at least once every 15 minutes or an average value for intervals of 15 minutes or less and continuously record either:
- (A) Each measured data value; or
- (B) Each block average value for each 1-hour period or shorter periods calculated from all measured data values during each period. If values are measured more frequently than once per minute, a single value for each minute may be used to calculate the hourly (or shorter period) block average instead of all measured values.
- (ii) The monitoring system must be installed, calibrated, operated, and maintained in accordance with the manufacturer's specifications or other written procedures that provide reasonable assurance that the monitoring equipment is operating properly.
- (2) Using the data recorded by the monitoring system, the owner or operator must calculate the daily average value for each monitored operating parameter for each operating day. If operation of the control device is continuous, the operating day is a 24-hour period. If control device operation is not continuous, the operating day is the total number of hours of control device operation per 24-hour period. Valid data points must be available for 75 percent of the operating hours in an operating day to compute the daily average.

- (3) For each monitored operating parameter, the owner or operator must establish a minimum operating parameter value or a maximum operating parameter value, as appropriate, to define the range of conditions at which the control device must be operated to continuously achieve the applicable performance requirements specified in §63.693(b)(2) of this subpart. Each minimum or maximum operating parameter value must be established in accordance with the requirements in paragraphs (e)(3)(i) and (e)(3)(ii) of this section.
- (i) If the owner or operator conducts a performance test to demonstrate control device performance, then the minimum or maximum operating parameter value must be established based on values measured during the performance test and supplemented, as necessary, by the control device design specifications, manufacturer recommendations, or other applicable information.
- (ii) If the owner or operator uses a control device design analysis to demonstrate control device performance, then the minimum or maximum operating parameter value must be established based on the control device design analysis and supplemented, as necessary, by the control device manufacturer recommendations or other applicable information.
- (4) An excursion for a given control device is determined to have occurred when the monitoring data or lack of monitoring data result in any one of the criteria specified in paragraphs (e)(4)(i) through (e)(4)(iii) of this section being met. When multiple operating parameters are monitored for the same control device and during the same operating day more than one of these operating parameters meets an excursion criterion specified in paragraphs (e)(4)(i) through (e)(4)(ii) of this section, then a single excursion is determined to have occurred for the control device for that operating day.
- (i) An excursion occurs when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit) established for the operating parameter in accordance with the requirements of paragraph (e)(3) of this section.
- (ii) An excursion occurs when the period of control device operation is 4 hours or greater in an operating day and the monitoring data are insufficient to constitute a valid hour of data for at least 75 percent of the operating hours. Monitoring data are insufficient to constitute a valid hour of data if measured values are unavailable for any of the 15-minute periods within the hour.
- (iii) An excursion occurs when the period of control device operation is less than 4 hours in an operating day and more than 1 of the hours during the period does not constitute a valid hour of data due to insufficient monitoring data. Monitoring data are insufficient to constitute a valid hour of data if measured values are unavailable for any of the 15-minute periods within the hour.
- (5) For each excursion, except as provided for in paragraph (e)(6) of this section, the owner or operator shall be deemed to have failed to have applied control in a manner that achieves the required operating parameter limits. Failure to achieve the required operating parameter limits is a violation of this standard.

- (6) An excursion is not a violation of this standard under any one of the conditions specified in paragraphs (e)(6)(i) and (e)(6)(ii) of this section.
- (i) An excursion is not a violation nor does it count toward the number of excused excursions allowed under paragraph (e)(6)(ii) of this section when the excursion occurs during any one of the following periods:
- (A) During a period of startup, shutdown, or malfunction when the affected facility is operated during such period in accordance with §63.6(e)(1); or
- (B) During periods of non-operation of the unit or the process that is vented to the control device (resulting in cessation of HAP emissions to which the monitoring applies).
- (ii) For each control device, one excused excursion is allowed per semiannual period for any reason. The initial semiannual period is the 6-month reporting period addressed by the first semiannual report submitted by the owner or operator in accordance with §63.697(b)(4) of this subpart.
- (7) Nothing in paragraphs (e)(1) through (e)(6) of this section shall be construed to allow or excuse a monitoring parameter excursion caused by any activity that violates other applicable provisions of this subpart.
- (f) Alternative inspection and monitoring interval. Following the initial inspection and monitoring of a piece of air pollution control equipment in accordance with the applicable provisions of this section, subsequent inspection and monitoring of the equipment may be performed at intervals longer than 1 year when an owner or operator determines that performing the required inspection or monitoring procedures would expose a worker to dangerous, hazardous, or otherwise unsafe conditions and the owner or operator complies with the requirements specified in paragraphs (f)(1) and (f)(2) of this section.
- (1) The owner or operator must prepare and maintain at the plant site written documentation identifying the specific air pollution control equipment designated as "unsafe to inspect and monitor." The documentation must include for each piece of air pollution control equipment designated as such a written explanation of the reasons why the equipment is unsafe to inspect or monitor using the applicable procedures under this section.
- (2) The owner or operator must develop and implement a written plan and schedule to inspect and monitor the air pollution control equipment using the applicable procedures specified in this section during times when a worker can safely access the air pollution control equipment. The required inspections and monitoring must be performed as frequently as practicable but do not need to be performed more frequently than the periodic schedule that would be otherwise applicable to the air pollution control equipment under the provisions of this section. A copy of the written plan and schedule must be maintained at the plant site.

[64 FR 38977, July 20, 1999, as amended at 68 FR 37352, June 23, 2003; 71 FR 20457, Apr. 20, 2006]

## § 63.696 Recordkeeping requirements.

- (a) The owner or operator subject to this subpart shall comply with the recordkeeping requirements in §63.10 under 40 CFR 63 subpart A—General Provisions that are applicable to this subpart as specified in Table 2 of this subpart.
- (b) The owner or operator of a control device subject to this subpart shall maintain the records in accordance with the requirements of 40 CFR 63.10 of this part.

## (c) [Reserved]

- (d) Each owner or operator using an internal floating roof to comply with the tank control requirements specified in §63.685(e) of this subpart or using an external floating roof to comply with the tank control requirements specified in §63.685(f) of this subpart shall prepare and maintain the following records:
- (1) Documentation describing the floating roof design and the dimensions of the tank.
- (2) A record for each inspection required by §63.695(b) of this subpart, as applicable to the tank, that includes the following information: a tank identification number (or other unique identification description as selected by the owner or operator) and the date of inspection.
- (3) The owner or operator shall record for each defect detected during inspections required by §63.695(b) of this subpart the following information: the location of the defect, a description of the defect, the date of detection, and corrective action taken to repair the defect. In the event that repair of the defect is delayed in accordance with the provisions of §63.695(b)(4) of this section, the owner or operator shall also record the reason for the delay and the date that completion of repair of the defect is expected.
- (4) Owners and operators that use a tank equipped with an external floating roof in accordance with the provisions of §63.685(f) of this subpart shall prepare and maintain records for each seal gap inspection required by §63.695(b) describing the results of the seal gap measurements. The records shall include the date of that the measurements are performed, the raw data obtained for the measurements, and the calculations of the total gap surface area. In the event that the seal gap measurements do not conform to the specifications in §63.695(b) of this subpart, the records shall include a description of the repairs that were made, the date the repairs were made, and the date the separator was emptied, if necessary.
- (e) Each owner or operator using a fixed roof to comply with the tank control requirements specified in §63.685(g) of this subpart shall prepare and maintain the following records:
- (1) A record for each inspection required by §63.695(b) of this subpart, as applicable to the tank, that includes the following information: a tank identification number (or other unique identification description as selected by the owner or operator) and the date of inspection.

- (2) The owner or operator shall record for each defect detected during inspections required by §63.695(b) of this subpart the following information: the location of the defect, a description of the defect, the date of detection, and corrective action taken to repair the defect. In the event that repair of the defect is delayed in accordance with the provisions of §63.695(b)(4) of this section, the owner or operator shall also record the reason for the delay and the date that completion of repair of the defect is expected.
- (f) Each owner or operator using an enclosure to comply with the tank control requirements specified in §63.685(i) of this subpart shall prepare and maintain records for the most recent set of calculations and measurements performed by the owner or operator to verify that the enclosure meets the criteria of a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" under 40 CFR 52.741, appendix B.
- (g) An owner or operator shall record, on a semiannual basis, the information specified in paragraphs (g)(1) and (g)(2) of this section for those planned routine maintenance operations that would require the control device not to meet the requirements of §63.693(d) through (h) of this subpart, as applicable.
- (1) A description of the planned routine maintenance that is anticipated to be performed for the control device during the next 6 months. This description shall include the type of maintenance necessary, planned frequency of maintenance, and lengths of maintenance periods.
- (2) A description of the planned routine maintenance that was performed for the control device during the previous 6 months. This description shall include the type of maintenance performed and the total number of hours during these 6 months that the control device did not meet the requirement of §63.693 (d) through (h) of this subpart, as applicable, due to planned routine maintenance.
- (h) An owner or operator shall record the information specified in paragraphs (h)(1) through (h)(3) of this section for those unexpected control device system malfunctions that would require the control device not to meet the requirements of §63.693 (d) through (h) of this subpart, as applicable.
- (1) The occurrence and duration of each malfunction of the control device system.
- (2) The duration of each period during a malfunction when gases, vapors, or fumes are vented from the waste management unit through the closed-vent system to the control device while the control device is not properly functioning.
- (3) Actions taken during periods of malfunction to restore a malfunctioning control device to its normal or usual manner of operation.

## § 63.697 Reporting requirements.

- (a) Each owner or operator of an affected source subject to this subpart must comply with the notification requirements specified in paragraph (a)(1) of this section and the reporting requirements specified in paragraph (a)(2) of this section.
- (1) The owner or operator of an affected source must submit notices to the Administrator in accordance with the applicable notification requirements in 40 CFR 63.9 as specified in Table 2 of this subpart. For the purpose of this subpart, an owner or operator subject to the initial notification requirements under 40 CFR 63.9(b)(2) must submit the required notification on or before October 19, 1999.
- (2) The owner or operator of an affected source must submit reports to the Administrator in accordance with the applicable reporting requirements in 40 CFR 63.10 as specified in Table 2 of this subpart.
- (b) The owner or operator of a control device used to meet the requirements of §63.693 of this subpart shall submit the following notifications and reports to the Administrator:
- (1) A Notification of Performance Tests specified in §63.7 and §63.9(g) of this part,
- (2) Performance test reports specified in §63.10(d)(2) of this part, and
- (3) Startup, shutdown, and malfunction reports specified in §63.10(d)(5) of this part.
- (i) If actions taken by an owner or operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are not completely consistent with the procedures specified in the source's startup, shutdown, and malfunction plan specified in §63.6(e)(3) of this part, the owner or operator shall state such information in the report. The startup, shutdown, or malfunction report shall consist of a letter, containing the name, title, and signature of the responsible official who is certifying its accuracy, that shall be submitted to the Administrator, and
- (ii) Separate startup, shutdown, or malfunction reports are not required if the information is included in the summary report specified in paragraph (b)(4) of this section.
- (4) A summary report specified in §63.10(e)(3) of this part shall be submitted on a semiannual basis (i.e., once every 6-month period). The summary report must include a description of all excursions as defined in §63.695(e) of this subpart that have occurred during the 6-month reporting period. For each excursion caused when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit), the report must include the daily average values of the monitored parameter, the applicable operating parameter limit, and the date and duration of the period that the exceedance occurred. For each excursion caused by lack of monitoring data, the report must include the date and duration of period when the monitoring data were not collected and the reason why the data were not collected.

- (c) Each owner or operator using an internal floating roof or external floating roof to comply with the Tank Level 2 control requirements specified in §63.685(d) of this subpart shall notify the Administrator in advance of each inspection required under §63.695(b) of this subpart to provide the Administrator with the opportunity to have an observer present during the inspection. The owner or operator shall notify the Administrator of the date and location of the inspection as follows:
- (1) Prior to each inspection to measure external floating roof seal gaps as required under §63.695(b) of this subpart, written notification shall be prepared and sent by the owner or operator so that it is received by the Administrator at least 30 calendar days before the date the measurements are scheduled to be performed.
- (2) Prior to each visual inspection of an internal floating roof or external floating roof in a tank that has been emptied and degassed, written notification shall be prepared and sent by the owner or operator so that it is received by the Administrator at least 30 calendar days before refilling the tank except when an inspection is not planned as provided for in paragraph (c)(3) of this section.
- (3) When a visual inspection is not planned and the owner or operator could not have known about the inspection 30 calendar days before refilling the tank, the owner or operator shall notify the Administrator as soon as possible, but no later than 7 calendar days before refilling of the tank. This notification may be made by telephone and immediately followed by a written explanation for why the inspection is unplanned. Alternatively, written notification, including the explanation for the unplanned inspection, may be sent so that it is received by the Administrator at least 7 calendar days before refilling the tank.

[61 FR 34158, July 1, 1996, as amended at 64 FR 38981, July 20, 1999]

## § 63.698 Implementation and enforcement.

- (a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as the applicable State, local, or Tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or Tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if this subpart is delegated to a State, local, or Tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or Tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or Tribal agency.
- (c) The authorities that cannot be delegated to State, local, or Tribal agencies are as specified in paragraphs (c)(1) through (4) of this section.

- (1) Approval of alternatives to the requirements in §§63.680, 63.683 through 63.691, and 63.693. Where these standards reference another subpart, the cited provisions will be delegated according to the delegation provisions of the referenced subpart.
- (2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f), as defined in §63.90, and as required in this subpart.
- (3) Approval of major alternatives to monitoring under §63.8(f), as defined in §63.90, and as required in this subpart.
- (4) Approval of major alternatives to recordkeeping and reporting under §63.10(f), as defined in §63.90, and as required in this subpart.

[68 FR 37352, June 23, 2003]

Table 1 to Subpart DD of Part 63—List of Hazardous Air Pollutants (HAP) for Subpart DD

| CAS<br>No. <sup>a</sup>   | Chemical name                          | f <sub>m</sub> 305 |
|---------------------------|----------------------------------------|--------------------|
| 75070                     | Acetaldehyde                           | 1.000              |
| 75–05–8                   | Acetonitrile                           | 0.989              |
| 98–86–2                   | Acetophenone                           | 0.314              |
| 107–02–<br>8              | Acrolein                               | 1.000              |
| 107–13–<br>1              | Acrylonitrile                          | 0.999              |
| 10705<br>1                | Allyl chloride                         | 1.000              |
| 71–43–2                   | Benzene (includes benzene in gasoline) | 1.000              |
| 98–07–7                   | Benzotrichloride (isomers and mixture) | 0.958              |
| 100 <del>-44</del> -<br>7 | Benzyl chloride                        | 1.000              |
| 92–52–4                   | Biphenyl                               | 0.864              |
| 542-88-<br>1              | Bis(chloromethyl)ether <sup>b</sup>    | 0.999              |
| 75–25–2                   | Bromoform                              | 0.998              |
| 106–99–<br>0              | 1,3-Butadiene                          | 1.000              |

| CAS<br>No.ª  | Chemical name                                 | f <sub>m</sub> 305 |
|--------------|-----------------------------------------------|--------------------|
| 75–15–0      | Carbon disulfide                              | 1.000              |
| 56–23–5      | Carbon tetrachloride                          | 1.000              |
| 43-58-1      | Carbonyl sulfide                              | 1.000              |
| 133–90–<br>4 | Chloramben                                    | 0.633              |
| 108–90–<br>7 | Chlorobenzene                                 | 1.000              |
| 67–66–3      | Chloroform                                    | 1.000              |
| 107–30–<br>2 | Chloromethyl methyl ether <sup>b</sup>        | 1.000              |
| 126–99–<br>8 | Chloroprene                                   | 1.000              |
| 98–82–8      | Cumene                                        | 1.000              |
| 94–75–7      | 2,4-D, salts and esters                       | 0.167              |
| 334–88–<br>3 | Diazomethane <sup>c</sup>                     | 0.999              |
| 132–64–<br>9 | Dibenzofurans                                 | 0.967              |
| 96–12–8      | 1,2-Dibromo-3-chloropropane                   | 1.000              |
| 106–46–<br>7 | 1,4-Dichlorobenzene(p)                        | 1.000              |
| 107–06–<br>2 | Dichloroethane (Ethylene dichloride)          | 1.000              |
| 111–44–<br>4 | Dichloroethyl ether (Bis(2-chloroethyl ether) | 0.757              |
| 54275-<br>6  | 1,3-Dichloropropene                           | 1.000              |
| 79–44–7      | Dimethyl carbamoyl chloride <sup>c</sup>      | 0.150              |
| 64-67-5      | Diethyl sulfate                               | 0.0025             |
| 77–78–1      | Dimethyl sulfate                              | 0.086              |
| 121–69–<br>7 | N,N-Dimethylaniline                           | 0.0008             |

| CAS<br>No. <sup>a</sup> | Chemical name                                                                                                                                                 | f <sub>m</sub> 305 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                         | 2,4-Dinitrophenol                                                                                                                                             | 0.0077             |
|                         | 2,4-Dinitrotoluene                                                                                                                                            | 0.0848             |
| 123–91–<br>1            | 1,4-Dioxane (1,4-Diethyleneoxide)                                                                                                                             | 0.869              |
| 106–89–<br>8            | Epichlorohydrin (1-Chloro-2,3-epoxypropane)                                                                                                                   | 0.939              |
| 106–88–<br>7            | 1,2-Epoxybutane                                                                                                                                               | 1.000              |
| 140–88–<br>5            | Ethyl acrylate                                                                                                                                                | 1.000              |
| 100–41–<br>4            | Ethyl benzene                                                                                                                                                 | 1.000              |
| 75003                   | Ethyl chloride (Chloroethane)                                                                                                                                 | 1.000              |
| 106–93–<br>4            | Ethylene dibromide (Dibromoethane)                                                                                                                            | 0.999              |
| 107–06–<br>2            | Ethylene dichloride (1,2-Dichloroethane)                                                                                                                      | 1.000              |
| 151–56–<br>4            | Ethylene imine (Aziridine)                                                                                                                                    | 0.867              |
| 75–21–8                 | Ethylene oxide                                                                                                                                                | 1.000              |
| 75–34–3                 | Ethylidene dichloride (1,1-Dichloroethane)                                                                                                                    | 1.000              |
|                         | Glycol ethers <sup>d</sup> that have a Henry's Law constant value equal to or greater than 0.1 Y/X (1.8×10 <sup>-6</sup> atm/gm-mole/m <sup>3</sup> ) at 25°C | (e)                |
| 118–74–<br>1            | Hexachlorobenzene                                                                                                                                             | 0.97               |
| 87683                   | Hexachlorobutadiene                                                                                                                                           | 0.88               |
| 67–72–1                 | Hexachloroethane                                                                                                                                              | 0.499              |
| 110–54–<br>3            | Hexane                                                                                                                                                        | 1.000              |
| 78-59-1                 | Isophorone                                                                                                                                                    | 0.506              |
| 58–89–9                 | Lindane (all isomers)                                                                                                                                         | 1.000              |
| 67–56–1                 | Methanol                                                                                                                                                      | 0.855              |

| CAS<br>No.ª   | Chemical name                              | f <sub>m</sub> 305 |
|---------------|--------------------------------------------|--------------------|
| 74–83–9       | Methyl bromide (Bromomethane)              | 1.000              |
| 74–87–3       | Methyl chloride (Choromethane)             | 1.000              |
| 71–55–6       | Methyl chloroform (1,1,1-Trichloroethane)  | 1.000              |
| 78–93–3       | Methyl ethyl ketone (2-Butanone)           | 0.990              |
| 74–88–4       | Methyl iodide (Iodomethane)                | 1.0001             |
| 108–10–<br>1  | Methyl isobutyl ketone (Hexone)            | 0.9796             |
| 624–83–<br>9  | Methyl isocyanate                          | 1.000              |
| 80–62–6       | Methyl methacrylate                        | 0.916              |
| 1634–<br>04–4 | Methyl tert butyl ether                    | 1.000              |
| 75–09–2       | Methylene chloride (Dichloromethane)       | 1.000              |
| 91–20–3       | Naphthalene                                | 0.994              |
| 98–95–3       | Nitrobenzene                               | 0.394              |
| 79–46–9       | 2-Nitropropane                             | 0.989              |
| 82–68–8       | Pentachloronitrobenzene (Quintobenzene)    | 0.839              |
| 87–86–5       | Pentachlorophenol                          | 0.0898             |
| 75–44–5       | Phosgene <sup>c</sup>                      | 1.000              |
| 123–38–<br>6  | Propionaldehyde                            | 0.999              |
| 78–87–5       | Propylene dichloride (1,2–Dichloropropane) | 1.000              |
| 75–56–9       | Propylene oxide                            | 1.000              |
| 75–55–8       | 1,2-Propylenimine (2-Methyl aziridine)     | 0.945              |
| 100–42–<br>5  | Styrene                                    | 1.000              |
| 96–09–3       | Styrene oxide                              | 0.830              |
| 79–34–5       | 1,1,2,2—Tetrachloroethane                  | 0.999              |
| 127–18–<br>4  | Tetrachloroethylene (Perchloroethylene)    | 1.000              |
| 108-88-       | Toluene                                    | 1.000              |

| CAS<br>No. <sup>a</sup> | Chemical name                              | f <sub>m</sub> 305 |  |  |
|-------------------------|--------------------------------------------|--------------------|--|--|
| 3                       |                                            |                    |  |  |
| 95-53-4                 | o-Toluidine                                | 0.152              |  |  |
| 120–82–<br>1            | 1,2,4 Trichlorobenzene                     | 1.000              |  |  |
| 71–55–6                 | 1,1,1-Trichloroethane (Methyl chlorform)   | 1.000              |  |  |
| 79005                   | 1,1,2-Trichloroethane (Vinyl trichloride)  | 1.000              |  |  |
| 79–01–6                 | Trichloroethylene                          | 1.000              |  |  |
| 95–95–4                 | 2,4,5–Trichlorophenol                      | 0.108              |  |  |
| 88-06-2                 | 2,4,6-Trichlorophenol                      | 0.132              |  |  |
| 121–44–<br>8            | Triethylamine                              | 1.000              |  |  |
| 540–84–<br>1            | 2,2,4—Trimethylpentane                     | 1.000              |  |  |
| 108-05-<br>4            | Vinyl acetate                              | 1.000              |  |  |
| 593–60–<br>2            | Vinyl bromide                              | 1.000              |  |  |
| 75–01–4                 | Vinyl chloride                             | 1.000              |  |  |
| 75–35–4                 | Vinylidene chloride (1,1–Dichloroethylene) | 1.000              |  |  |
| 1330–<br>20–7           | Xylenes (isomers and mixture)              |                    |  |  |
| 95–47–6                 | o-Xylenes                                  | 1.000              |  |  |
| 108–38–<br>3            | m-Xylenes                                  | 1.000              |  |  |
| 106–42–<br>3            | p-Xylenes                                  | 1.000              |  |  |

# Notes:

 $f_{m 305}$ = Method 305 fraction measure factor.

a. CAS numbers refer to the Chemical Abstracts Services registry number assigned to specific compounds, isomers, or mixtures of compounds.

- b. Denotes a HAP that hydrolyzes quickly in water, but the hydrolysis products are also HAP chemicals.
- c. Denotes a HAP that may react violently with water, exercise caustic is an expected analyte.
- d. Denotes a HAP that hydrolyzes slowly in water.
- e. The  $f_{m\,305}$  factors for some of the more common glycol ethers can be obtained by contacting the Waste and Chemical Processes Group, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711.

[64 FR 38981, July 20, 1999]

Table 2 to Subpart DD of Part 63—Applicability of Paragraphs in Subpart A of This Part 63—General Provisions to Subpart DD

| Subpart A reference   | Applies to<br>Subpart DD | Explanation                                                                                   |
|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------|
| 63.1(a)(1)            | Yes                      |                                                                                               |
| 63.1(a)(2)            | Yes                      |                                                                                               |
| 63.1(a)(3)            | Yes                      |                                                                                               |
| 63.1(a)(4)            | No                       | Subpart DD (this table) specifies applicability of each paragraph in subpart A to subpart DD. |
| 63.1(a)(5)–63.1(a)(9) | No                       |                                                                                               |
| 63.1(a)(10)           | Yes                      |                                                                                               |
| 63.1(a)(11)           | Yes                      |                                                                                               |
| 63.1(a)(12)           | Yes                      |                                                                                               |
| 63.1(a)(13)           | Yes                      |                                                                                               |
| 63.1(a)(14)           | Yes                      |                                                                                               |
| 63.1(b)(1)            | No                       | Subpart DD specifies its own applicability.                                                   |
| 63.1(b)(2)            | Yes                      |                                                                                               |
| 63.1(b)(3)            | No                       |                                                                                               |
| 63.1(c)(1)            | No                       | Subpart DD explicitly specifies requirements that apply.                                      |
| 63.1(c)(2)            | No                       | Area sources are not subject to subpart DD.                                                   |
| 63.1(c)(3)            | No                       |                                                                                               |

| Subpart A reference   | Applies to Subpart DD | Explanation                                                                                                                           |
|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 63.1(c)(4)            | Yes                   |                                                                                                                                       |
| 63.1(c)(5)            | Yes                   | Except that sources are not required to submit notifications overridden by this table.                                                |
| 63.1(d)               | No                    |                                                                                                                                       |
| 63.1(e)               | No                    |                                                                                                                                       |
| 63.2                  | Yes                   | §63.681 of subpart DD specifies that if the same term is defined in subparts A and DD, it shall have the meaning given in subpart DD. |
| 63.3                  | Yes                   |                                                                                                                                       |
| 63.4(a)(1)–63.4(a)(3) | Yes                   |                                                                                                                                       |
| 63.4(a)(4)            | No                    | Reserved.                                                                                                                             |
| 63.4(a)(5)            | Yes                   |                                                                                                                                       |
| 63.4(b)               | Yes                   |                                                                                                                                       |
| 63.4(c)               | Yes                   |                                                                                                                                       |
| 63.5(a)(1)            | Yes                   | Except replace term "source" and "stationary source" in §63.5(a)(1) of subpart A with "affected source."                              |
| 63.5(a)(2)            | Yes                   |                                                                                                                                       |
| 63.5(b)(1)            | Yes                   |                                                                                                                                       |
| 63.5(b)(2)            | No                    | Reserved.                                                                                                                             |
| 63.5(b)(3)            | Yes                   |                                                                                                                                       |
| 63.5(b)(4)            | Yes                   | Except the cross-reference to §63.9(b) is changed to §63.9(b)(4) and (5). Subpart DD overrides §63.9(b)(2) and (b)(3).                |
| 63.5(b)(5)            | Yes                   | ·                                                                                                                                     |
| 63.5(b)(6)            | Yes                   |                                                                                                                                       |
| 63.5(c)               | No                    | Reserved.                                                                                                                             |
| 63.5(d)(1)(i)         | Yes                   |                                                                                                                                       |
| 63.5(d)(1)(ii)        | Yes                   |                                                                                                                                       |
| 63.5(d)(1)(iii)       | Yes                   |                                                                                                                                       |

| Subpart A reference                  | Applies to Subpart DD | Explanation                                                                                |
|--------------------------------------|-----------------------|--------------------------------------------------------------------------------------------|
| 63.5(d)(2)                           | No                    |                                                                                            |
| 63.5(d)(3)                           | Yes                   |                                                                                            |
| 63.5(d)(4)                           | Yes                   |                                                                                            |
| 63.5(e)                              | Yes                   |                                                                                            |
| 63.5(f)(1)                           | Yes                   |                                                                                            |
| 63.5(f)(2)                           | Yes                   |                                                                                            |
| 63.6(a)                              | Yes                   |                                                                                            |
| 63.6(b)(1)                           | No                    | Subpart DD specifies compliance dates for sources subject to subpart DD.                   |
| 63.6(b)(2)                           | No                    |                                                                                            |
| 63.6(b)(3)                           | Yes                   |                                                                                            |
| 63.6(b)(4)                           | No                    | May apply when standards are proposed under section 112(f) of the Clean Air Act.           |
| 63.6(b)(5)                           | No                    | §63.697 of subpart DD includes notification requirements.                                  |
| 63.6(b)(6)                           | No                    |                                                                                            |
| 63.6(b)(7)                           | No                    |                                                                                            |
| 63.6(c)(1)                           | No                    | §63.680 of subpart DD specifies the compliance date.                                       |
| 63.6(c)(2)-63.6(c)(4)                | No                    |                                                                                            |
| 63.6(c)(5)                           | Yes                   |                                                                                            |
| 63.6(d)                              | No                    |                                                                                            |
| 63.6(e)                              | Yes                   |                                                                                            |
| 63.6(f)(1)                           | Yes                   |                                                                                            |
| 63.6(f)(2)(i)                        | Yes                   |                                                                                            |
| 63.6(f)(2)(ii)                       | Yes                   | Subpart DD specifies the use of monitoring data in determining compliance with subpart DD. |
| 63.6(f)(2)(iii) (A),<br>(B), and (C) | Yes                   |                                                                                            |
| 63.6(f)(2)(iii) (D)                  | No                    |                                                                                            |

| Subpart A reference | Applies to<br>Subpart DD | Explanation                                                                    |
|---------------------|--------------------------|--------------------------------------------------------------------------------|
| 63.6(f)(2)(iv)      | Yes                      |                                                                                |
| 63.6(f)(2)(v)       | Yes                      |                                                                                |
| 63.6(f)(3)          | Yes                      |                                                                                |
| 63.6(g)             | Yes                      |                                                                                |
| 63.6(h)             | No                       | Subpart DD does not require opacity and visible emission standards.            |
| 63.6(i)             | Yes                      | Except for §63.6(i)(15), which is reserved.                                    |
| 63.6(j)             | Yes                      |                                                                                |
| 63.7(a)(1)          | No                       | Subpart DD specifies required testing and compliance demonstration procedures. |
| 63.7(a)(2)          | Yes                      |                                                                                |
| 63.7(a)(3)          | Yes                      |                                                                                |
| 63.7(b)             | No                       |                                                                                |
| 63.7(c)             | No                       |                                                                                |
| 63.7(d)             | Yes                      |                                                                                |
| 63.7(e)(1)          | Yes                      |                                                                                |
| 63.7(e)(2)          | Yes                      |                                                                                |
| 63.7(e)(3)          | No                       | Subpart DD specifies test methods and procedures.                              |
| 63.7(e)(4)          | Yes                      |                                                                                |
| 63.7(f)             | No                       | Subpart DD specifies applicable methods and provides alternatives.             |
| 63.7(g)             | Yes                      |                                                                                |
| 63.7(h)(1)          | Yes                      |                                                                                |
| 63.7(h)(2)          | Yes                      |                                                                                |
| 63.7(h)(3)          | Yes                      |                                                                                |
| 63.7(h)(4)          | No                       |                                                                                |
| 63.7(h)(5)          | Yes                      |                                                                                |
| 63.8(a)             | No                       |                                                                                |

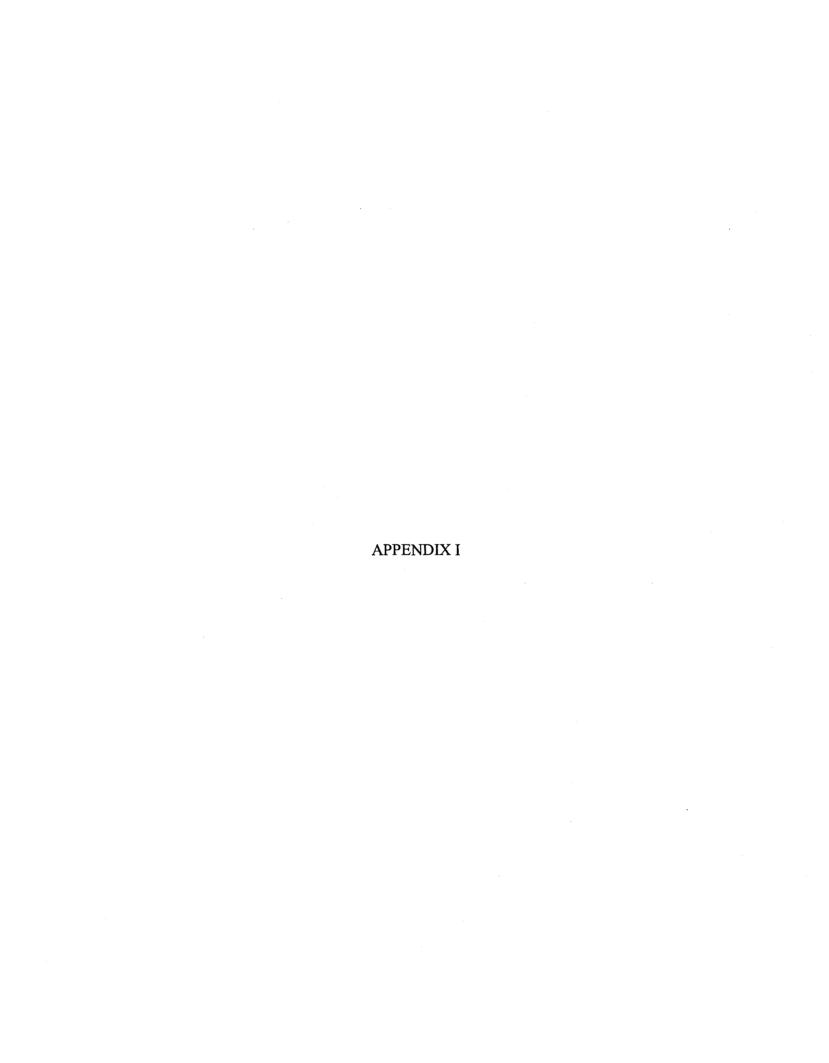
| Subpart A reference   | Applies to Subpart DD | Explanation                                           |
|-----------------------|-----------------------|-------------------------------------------------------|
| 63.8(b)(1)            | Yes                   |                                                       |
| 63.8(b)(2)            | No                    | Subpart DD specifies locations to conduct monitoring. |
| 63.8(b)(3)            | Yes                   |                                                       |
| 63.8(c)(1)(i)         | Yes                   |                                                       |
| 63.8(c)(1)(ii)        | Yes                   |                                                       |
| 63.8(c)(1)(iii)       | Yes                   |                                                       |
| 63.8(c)(2)            | Yes                   |                                                       |
| 63.8(c)(3)            | Yes                   |                                                       |
| 63.8(c)(4)            | No                    | Subpart DD specifies monitoring frequency             |
| 63.8(c)(5)-63.8(c)(8) | No                    |                                                       |
| 63.8(d)               | No                    |                                                       |
| 63.8(e)               | No                    |                                                       |
| 63.8(f)(1)            | Yes                   |                                                       |
| 63.8(f)(2)            | Yes                   |                                                       |
| 63.8(f)(3)            | Yes                   |                                                       |
| 63.8(f)(4)(i)         | Yes                   |                                                       |
| 63.8(f)(4)(ii)        | Yes                   |                                                       |
| 63.8(f)(4)(iii)       | No                    |                                                       |
| 63.8(f)(5)(i)         | Yes                   | ·                                                     |
| 63.8(f)(5)(ii)        | No                    |                                                       |
| 63.8(f)(5)(iii)       | Yes                   |                                                       |
| 63.8(f)(6)            | Yes                   |                                                       |
| 63.8(g)               | Yes                   |                                                       |
| 63.9(a)               | Yes                   |                                                       |
| 63.9(b)(1)(i)         | Yes                   |                                                       |
| 63.9(b)(1)(ii)        | No                    |                                                       |
| 63.9(b)(2)            | Yes                   |                                                       |

| Subpart A reference         | Applies to Subpart DD | Explanation |
|-----------------------------|-----------------------|-------------|
| 63.9(b)(3)                  | No                    |             |
| 63.9(b)(4)                  | Yes                   |             |
| 63.9(b)(5)                  | Yes                   |             |
| 63.9(c)                     | Yes                   |             |
| 63.9(d)                     | Yes                   |             |
| 63.9(e)                     | No                    |             |
| 63.9(f)                     | No                    |             |
| 63.9(g)                     | No                    |             |
| 63.9(h)                     | Yes                   |             |
| 63.9(i)                     | Yes                   |             |
| 63.9(j)                     | No                    |             |
| 63.10(a)                    | Yes                   |             |
| 63.10(b)(1)                 | Yes                   |             |
| 63.10(b)(2)(i)              | Yes                   |             |
| 63.10(b)(2)(ii)             | Yes                   |             |
| 63.10(b)(2)(iii)            | No                    |             |
| 63.10(b)(2)(iv)             | Yes                   |             |
| 63.10(b)(2)(v)              | Yes                   |             |
| 63.10(b)(2)(vi)–(ix)        | Yes                   |             |
| 63.10(b)(2)(x)–(xi)         | Yes                   |             |
| 63.10(b)(2) (xii)–<br>(xiv) | No                    |             |
| 63.10(b)(3)                 | Yes                   |             |
| 63.10(c)                    | No                    |             |
| 63.10(d)(1)                 | No                    |             |
| 63.10(d)(2)                 | Yes                   |             |
| 63.10(d)(3)                 | No                    |             |

| Subpart A reference | Applies to<br>Subpart DD | Explanation |
|---------------------|--------------------------|-------------|
| 63.10(d)(4)         | Yes                      |             |
| 63.10(d)(5)(i)      | Yes                      |             |
| 63.10(d)(5)(ii)     | Yes                      |             |
| 63.10(e)            | No                       |             |
| 63.10(f)            | Yes                      |             |
| 63.11–63.15         | Yes                      |             |

<sup>&</sup>lt;sup>a</sup>Wherever subpart A specifies "postmark" dates, submittals may be sent by methods other than the U.S. Mail (e.g., by fax or courier). Submittals shall be sent by the specified dates, but a postmark is not required.

[64 FR 38983, July 20, 1999, as amended at 66 FR 1267, Jan. 8, 2001]


Table 3 to Subpart DD of Part 63—Tank Control Levels for Tanks at Existing Affected Sources as Required by 40 CFR 63.685(b)(1)

| Tank design capacity (cubic meters)                                                         | Maximum HAP vapor pressure of off-site material managed in tank (kilopascals) | Tank<br>control level |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|
| Design capacity less than 75 m <sup>3</sup>                                                 | Maximum HAP vapor pressure less than 76.6 kPa                                 | Level 1.              |
| Design capacity equal to or greater than 75 m <sup>3</sup> and less than 151 m <sup>3</sup> | Maximum HAP vapor pressure less than 27.6 kPa                                 | Level 1.              |
|                                                                                             | Maximum HAP vapor pressure equal to or greater than 27.6 kPa                  | Level 2.              |
| Design capacity equal to or greater than 151 m <sup>3</sup>                                 | Maximum HAP vapor pressures less than 5.2 kPa                                 | Level 1.              |
|                                                                                             | Maximum HAP vapor pressure equal to or greater than 5.2 kPa                   | Level 2.              |

Table 4 to Subpart DD of Part 63—Tank Control Levels for Tanks at New Affected Sources as Required by 40 CFR 63.685(b)(2)

| Tank design capacity (cubic meters)         | Maximum HAP vapor pressure of off-site<br>material managed in tank (kilopascals) | Tank<br>control<br>level |
|---------------------------------------------|----------------------------------------------------------------------------------|--------------------------|
| Design capacity less than 38 m <sup>3</sup> | Maximum HAP vapor pressure less than 76.6 kPa                                    | Level 1.                 |
| 1 2 3                                       | Maximum HAP vapor pressure less than 13.1 kPa                                    | Level 1.                 |
|                                             | Maximum HAP vapor pressure equal to or greater than 13.1 kPa                     | Level 2.                 |
|                                             | Maximum HAP vapor pressure less than 0.7<br>kPa                                  | Level 1.                 |
|                                             | Maximum HAP vapor pressure equal to or greater than 0.7 kPa                      | Level 2.                 |





| ************************************** |  |
|----------------------------------------|--|
|                                        |  |
|                                        |  |
|                                        |  |

## 40 CFR Part 63, Subpart OO-National Emission Standards for Tanks-Level 1

Source: 61 FR 34184, July 1, 1996, unless otherwise noted.

### § 63.900 Applicability.

The provisions of this subpart apply to the control of air emissions from tanks for which another subpart of 40 CFR parts 60, 61, or 63 references the use of this subpart for such air emission control. These air emission standards for tanks are placed here for administrative convenience and only apply to those owners and operators of facilities subject to the other subparts that reference this subpart. The provisions of 40 CFR part 63, subpart A—General Provisions do not apply to this subpart except as noted in the subpart that references this subpart.

## § 63.901 Definitions.

All terms used in this subpart shall have the meaning given to them in the Act and in this section. If a term is defined in both this section and in another subpart that references the use of this subpart, then the definition in this subpart shall take precedence when implementing this subpart.

Closure device means a cap, hatch, lid, plug, seal, valve, or other type of fitting that, when the device is secured in the closed position, prevents or reduces air emissions to the atmosphere by blocking an opening in a fixed roof. Closure devices include devices that are detachable from the cover (e.g., a sampling port cap), manually operated (e.g., a hinged access lid or hatch), or automatically operated (e.g., a spring-loaded pressure relief valve).

Fixed roof means a cover that is mounted on a tank in a stationary position and does not move with fluctuations in the level of the liquid managed in the tank.

No detectable organic emissions means no escape of organics to the atmosphere as determined using the procedure specified in §63.905(a) of this subpart.

Regulated-material means the material (e.g. waste, wastewater, off-site material) required to be managed in tanks using air emission controls in accordance with the standards specified in this subpart.

Safety device means a closure device such as a pressure relief valve, frangible disc, fusible plug, or any other type of device which functions to prevent physical damage or permanent deformation to equipment by venting gases or vapors during unsafe conditions resulting from an unplanned, accidental, or emergency event. For the purpose of this subpart, a safety device is not used for routine venting of gases or vapors from the vapor headspace underneath a cover such as during filling of the unit or to adjust the pressure in this vapor headspace in response to normal daily diurnal ambient temperature fluctuations. A safety device is designed to remain in a closed position during normal operations and open only when the internal pressure, or another relevant parameter, exceeds the device threshold setting applicable to the equipment as determined by the owner or operator based on manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials.

Tank means a stationary unit that is constructed primarily of nonearthen materials (such as wood, concrete, steel, fiberglass, or plastic) which provide structural support and is designed to hold an accumulation of liquids or other materials.

[61 FR 34184, July 1, 1996, as amended at 64 FR 38985, July 20, 1999]

#### § 63.902 Standards—Tank fixed roof.

- (a) This section applies to owners and operators subject to this subpart and controlling air emissions from a tank using a fixed roof. This section does not apply to a fixed-roof tank that is also equipped with an internal floating roof.
- (b) The tank shall be equipped with a fixed roof designed to meet the following specifications:
- (1) The fixed roof and its closure devices shall be designed to form a continuous barrier over the entire surface area of the liquid in the tank. The fixed roof may be a separate cover installed on the tank (e.g., a removable cover mounted on an open-top tank) or may be an integral part of the tank structural design (e.g., a horizontal cylindrical tank equipped with a hatch).
- (2) The fixed roof shall be installed in a manner such that there are no visible cracks, holes, gaps, or other open spaces between roof section joints or between the interface of the roof edge and the tank wall.
- (3) Each opening in the fixed roof, and any manifold system associated with the fixed roof, shall be either:
- (i) equipped with a closure device designed to operate such that when the closure device is secured in the closed position there are no visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the opening and the closure device; or
- (ii) connected by a closed-vent system that is vented to a control device. The control device shall remove or destroy organics in the vent stream, and shall be operating whenever regulated material is managed in the tank.
- (4) The fixed roof and its closure devices shall be made of suitable materials that will minimize exposure of the regulated-material to the atmosphere, to the extent practical, and will maintain the integrity of the equipment throughout its intended service life. Factors to be considered when selecting the materials for and designing the fixed roof and closure devices shall include: organic vapor permeability, the effects of any contact with the liquid or its vapors managed in the tank; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for the tank on which the fixed roof is installed.
- (c) Whenever a regulated-material is in the tank, the fixed roof shall be installed with each closure device secured in the closed position except as follows:
- (1) Opening of closure devices or removal of the fixed roof is allowed at the following times:
- (i) To provide access to the tank for performing routine inspection, maintenance, or other activities needed for normal operations. Examples of such activities include those times when a worker needs to open a port to sample the liquid in the tank, or when a worker needs to open a hatch to maintain or repair equipment. Following completion of the activity, the owner or operator shall promptly secure the closure device in the closed position or reinstall the cover, as applicable, to the tank.

- (ii) To remove accumulated sludge or other residues from the bottom of tank.
- (2) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure relief device which vents to the atmosphere is allowed during normal operations for the purpose of maintaining the tank internal pressure in accordance with the tank design specifications. The device shall be designed to operate with no detectable organic emissions when the device is secured in the closed position. The settings at which the device opens shall be established such that the device remains in the closed position whenever the tank internal pressure is within the internal pressure operating range determined by the owner or operator based on the tank manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials. Examples of normal operating conditions that may require these devices to open are during those times when the container internal pressure exceeds the internal pressure operating range for the tank as a result of loading operations or diurnal ambient temperature fluctuations.
- (3) Opening of a safety device, as defined in §63.901 of this subpart, is allowed at any time conditions require it to do so to avoid an unsafe condition.
- (d) The owner or operator shall inspect the air emission control equipment in accordance with the requirements specified in §63.906(a) of this subpart.
- [61 FR 34184, July 1, 1996, as amended at 64 FR 38986, July 20, 1999]

## §§ 63.903-63.904 [Reserved]

#### § 63.905 Test methods and procedures.

- (a) Procedure for determining no detectable organic emissions for the purpose of complying with this subpart.
- (1) The test shall be conducted in accordance with the procedures specified in Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak interfaces that are associated with covers and closure devices include, but are not limited to: the interface of the cover and its foundation mounting; the periphery of any opening on the cover and its associated closure device; and the sealing seat interface on a spring-loaded pressure-relief valve.
- (2) The test shall be performed when the unit contains a material having a total organic concentration representative of the range of concentrations for the materials expected to be managed in the unit. During the test, the cover and closure devices shall be secured in the closed position.
- (3) The detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the organic constituents in the material placed in the unit, not for each individual organic constituent.
- (4) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix A.
- (5) Calibration gases shall be as follows:

- (i) Zero air (less than 10 ppmv hydrocarbon in air); and
- (ii) A mixture of methane or n-hexane in air at a concentration of approximately, but less than 10,000 ppmv.
- (6) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A.
- (7) Each potential leak interface shall be checked by traversing the instrument probe around the potential leak interface as close to the interface as possible, as described in Method 21. In the case when the configuration of the cover or closure device prevents a complete traverse of the interface, all accessible portions of the interface shall be sampled. In the case when the configuration of the closure device prevents any sampling at the interface and the device is equipped with an enclosed extension or horn (e.g., some pressure relief devices), the instrument probe inlet shall be placed at approximately the center of the exhaust area to the atmosphere.
- (8) An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (a)(8)(i) or (a)(8)(ii) of this section.
- (i) If an owner or operator chooses not to adjust the detection instrument readings for the background organic concentration level, then the maximum organic concentration value measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (a)(9) of this section.
- (ii) If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (a)(6) of this section is compared with the applicable value for the potential leak interface as specified in paragraph (a)(9) of this section.
- (9) A potential leak interface is determined to operate with no detectable emissions using the applicable criteria specified in paragraphs (a)(9)(i) and (a)(9)(ii) of this section.
- (i) For a potential leak interface other than a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (a)(8) is less than 500 ppmv.
- (ii) For a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (a)(8) is less than 10,000 ppmv.
- (b) [Reserved]

[64 FR 38986, July 20, 1999]

#### § 63.906 Inspection and monitoring requirements.

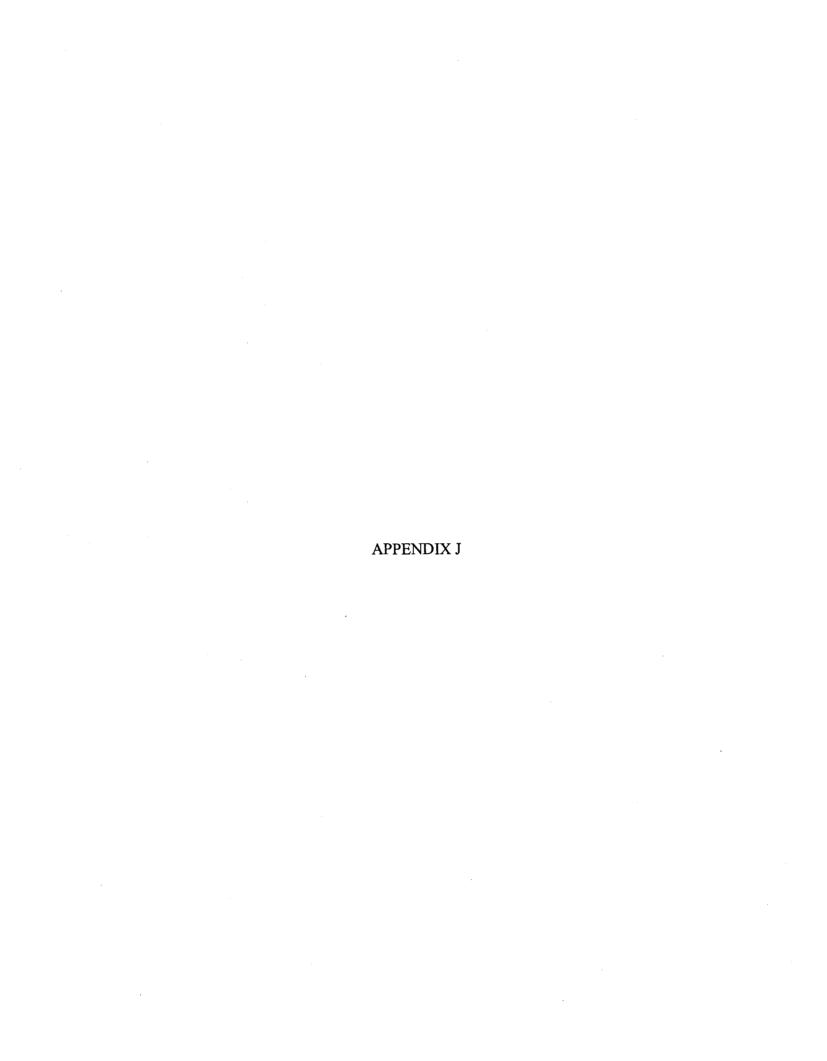
(a) Owners and operators that use a tank equipped with a fixed roof in accordance with the provisions of §63.902 of this subpart shall meet the following requirements:

- (1) The fixed roof and its closure devices shall be visually inspected by the owner or operator to check for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the roof sections or between the roof and the tank wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices.
- (2) The owner or operator must perform an initial inspection following installation of the fixed roof. Thereafter, the owner or operator must perform the inspections at least once every calendar year except as provided for in paragraph (d) of this section.
- (3) In the event that a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (b) of this section.
- (4) The owner or operator shall maintain a record of the inspection in accordance with the requirements specified in §63.907 (a) of this subpart.
- (b) The owner or operator shall repair all detected defects as follows:
- (1) The owner or operator shall make first efforts at repair of the defect no later than 5 calendar days after detection and repair shall be completed as soon as possible but no later than 45 calendar days after detection except as provided in paragraph (b)(2) of this section.
- (2) Repair of a defect may be delayed beyond 45 calendar days if the owner or operator determines that repair of the defect requires emptying or temporary removal from service of the tank and no alternative tank capacity is available at the site to accept the regulated material normally managed in the tank. In this case, the owner or operator shall repair the defect the next time alternative tank capacity becomes available and the tank can be emptied or temporarily removed from service, as necessary to complete the repair.
- (c) The owner or operator shall maintain a record of the defect repair in accordance with the requirements specified in §63.907(b) of this subpart.
- (d) Alternative inspection and monitoring interval. Following the initial inspection and monitoring of a fixed roof in accordance with this section, subsequent inspection and monitoring of the equipment may be performed at intervals longer than 1 year when an owner or operator determines that performing the required inspection or monitoring procedures would expose a worker to dangerous, hazardous, or otherwise unsafe conditions and the owner or operator complies with the requirements specified in paragraphs (d)(1) and (d)(2) of this section.
- (1) The owner or operator must prepare and maintain at the plant site written documentation identifying the specific air pollution control equipment designated as "unsafe to inspect and monitor." The documentation must include for each piece of air pollution control equipment designated as such a written explanation of the reasons why the equipment is unsafe to inspect or monitor using the applicable procedures under this section.

(2) The owner or operator must develop and implement a written plan and schedule to inspect and monitor the air pollution control equipment using the applicable procedures specified in this section during times when a worker can safely access the air pollution control equipment. The required inspections and monitoring must be performed as frequently as practicable but do not need to be performed more frequently than the periodic schedule that would be otherwise applicable to the air pollution control equipment under the provisions of this section. A copy of the written plan and schedule must be maintained at the plant site.

[61 FR 34184, July 1, 1996, as amended at 64 FR 38986, July 20, 1999]

#### § 63.907 Recordkeeping requirements.


- (a) Each owner or operator shall prepare and maintain a record for each tank that includes the following information:
- (1) A tank identification number (or other unique identification description as selected by the owner or operator).
- (2) A description of the tank dimensions and the tank design capacity.
- (3) The date that each inspection required by §63.906 of this subpart is performed.
- (b) The owner or operator shall record the following information for each defect detected during inspections required by §63.906 of this subpart: the location of the defect, a description of the defect, the date of detection, and corrective action taken to repair the defect. In the event that repair of the defect is delayed in accordance with the provisions of §63.907(b)(2) of this section, the owner or operator shall also record the reason for the delay and the date that completion of repair of the defect is expected.

#### § 63.908 Implementation and enforcement.

- (a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as the applicable State, local, or Tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or Tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if this subpart is delegated to a State, local, or Tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or Tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or Tribal agency.
- (c) The authorities that cannot be delegated to State, local, or Tribal agencies are as specified in paragraphs (c)(1) through (4) of this section.
- (1) Approval of alternatives to the requirements in §§63.900 and 63.902.
- (2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f), as defined in §63.90, and as required in this subpart.
- (3) Approval of major alternatives to monitoring under §63.8(f), as defined in §63.90, and as required in this subpart.

(4) Approval of major alternatives to recordkeeping and reporting under  $\S63.10(f)$ , as defined in  $\S63.90$ , and as required in this subpart.

[68 FR 37354, June 23, 2003]



# 40 CFR Part 63, Subpart PP—National Emission Standards for Containers

**Source:** 61 FR 34186, July 1, 1996, unless otherwise noted.

## § 63.920 Applicability.

The provisions of this subpart apply to the control of air emissions from containers for which another subpart of 40 CFR parts 60, 61, or 63 references the use of this subpart for such air emission control. These air emission standards for containers are placed here for administrative convenience and only apply to those owners and operators of facilities subject to the other subparts that reference this subpart. The provisions of 40 CFR Part 63, subpart A—General Provisions do not apply to this subpart except as noted in the subpart that references this subpart.

### § 63.921 Definitions.

All terms used in this subpart shall have the meaning given to them in the Act and in this section. If a term is defined in both this section and in another subpart that references the use of this subpart, then the definition in this subpart shall take precedence when implementing this subpart.

Container means a portable unit in which a material can be stored, transported, treated, disposed of, or otherwise handled. Examples of containers include but are not limited to drums, dumpsters, roll-off boxes, bulk cargo containers commonly known as "portable tanks" or "totes," cargo tank trucks, and tank railcars.

Closure device means a cover, cap, hatch, lid, plug, seal, valve, or other type of fitting that prevents or reduces air emissions to the atmosphere by blocking an opening in a container or its cover when the device is secured in the closed position. Closure devices include devices that are detachable from the container (e.g., a drum head, a threaded plug), manually operated (e.g., a hinged dumpster lid, a truck tank hatch), or automatically operated (e.g., a spring loaded pressure relief valve).

Empty container means a container for which either of the following conditions exists: the container meets the conditions for an empty container specified in 40 CFR 261.7(b); or all regulated-material has been removed from the container except for any regulated-material that remains on the interior surfaces of the container as clingage or in pools on the container bottom due to irregularities in the container.

No detectable organic emissions means no escape of organics to the atmosphere as determined using the procedure specified in §63.925(a) of this subpart.

Regulated-material means the material (e.g. waste, wastewater, off-site material) required to be managed in containers using air emission controls in accordance with the standards specified in this subpart.

Safety device means a closure device such as a pressure relief valve, frangible disc, fusible plug, or any other type of device which functions to prevent physical damage or permanent deformation to equipment by venting gases or vapors during unsafe conditions resulting from an unplanned, accidental, or emergency event. For the purpose of this subpart, a safety device is not used for routine venting of gases or vapors from the vapor headspace underneath a cover such as during filling of the unit or to adjust the pressure in this vapor headspace in response to normal daily diurnal ambient temperature fluctuations. A safety device is designed to remain in a closed position during normal operations and open only when the internal pressure, or another relevant

parameter, exceeds the device threshold setting applicable to the equipment as determined by the owner or operator based on manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials.

[61 FR 34186, July 1, 1996, as amended at 64 FR 38987, July 20, 1999]

### § 63.922 Standards—Container Level 1 controls.

- (a) This section applies to owners and operators subject to this subpart and required to control air emissions from containers using Container Level 1 controls.
- (b) A container using Container Level 1 controls is one of the following:
- (1) A container that meets the applicable U.S. Department of Transportation (DOT) regulations on packaging hazardous materials for transportation as specified in paragraph (f) of this section.
- (2) A container equipped with a cover and closure devices that form a continuous barrier over the container openings such that when the cover and closure devices are secured in the closed position there are no visible holes, gaps, or other open spaces into the interior of the container. The cover may be a separate cover installed on the container (e.g., a lid on a drum, a suitably secured tarp on a roll-off box) or may be an integral part of the container structural design (e.g., a bulk cargo container equipped with a screw-type cap).
- (3) An open-top container in which an organic vapor-suppressing barrier is placed on or over the regulated-material in the container such that no regulated-material is exposed to the atmosphere. One example of such a barrier is application of a suitable organic-vapor suppressing foam.
- (c) A container used to meet the requirements of either paragraph (b)(2) or (b)(3) of this section shall be equipped with covers and closure devices, as applicable to the container, that are composed of suitable materials to minimize exposure of the regulated-material to the atmosphere and to maintain the equipment integrity for as long as it is in service. Factors to be considered when selecting the materials for and designing the cover and closure devices shall include: organic vapor permeability, the effects of contact with the material or its vapor managed in the container; the effects of outdoor exposure to wind, moisture, and sunlight; and the operating practices used for container on which the cover is installed.
- (d) Whenever a regulated-material is in a container using Container Level 1 controls, the owner or operator shall install all covers and closure devices for the container, and secure and maintain each closure device in the closed position except as follows:
- (1) Opening of a closure device or cover is allowed for the purpose of adding material to the container as follows:
- (i) In the case when the container is filled to the intended final level in one continuous operation, the owner or operator shall promptly secure the closure devices in the closed position and install the covers, as applicable to the container, upon conclusion of the filling operation.
- (ii) In the case when discrete quantities or batches of material intermittently are added to the container over a period of time, the owner or operator shall promptly secure the closure devices in the closed position and install covers, as applicable to the container, upon either: the container being filled to the intended final level; the completion of a batch loading after which no additional

material will be added to the container within 15 minutes; the person performing the loading operation leaves the immediate vicinity of the container; or the shutdown of the process generating the material being added to the container, whichever condition occurs first.

- (2) Opening of a closure device or cover is allowed for the purpose of removing material from the container as follows:
- (i) For the purpose of meeting the requirements of this section, an empty container as defined in §63.921 of this subpart may be open to the atmosphere at any time (e.g., covers and closure devices are not required to be secured in the closed position on an empty container).
- (ii) In the case when discrete quantities or batches of material are removed from the container but the container does not meet the conditions to be an empty container as defined in §63.921 of this subpart, the owner or operator shall promptly secure the closure devices in the closed position and install covers, as applicable to the container, upon the completion of a batch removal after which no additional material will be removed from the container within 15 minutes, or the person performing the unloading operation leaves the immediate vicinity of the container, whichever condition occurs first.
- (3) Opening of a closure device or cover is allowed when access inside the container is needed to perform routine activities other than transfer of regulated-material. Examples of such activities include those times when a worker needs to open a port to measure the depth of or sample the material in the container, or when a worker needs to open a manhole hatch to access equipment inside the container. Following completion of the activity, the owner or operator shall promptly secure the closure device in the closed position or reinstall the cover, as applicable to the container.
- (4) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure relief device which vents to the atmosphere is allowed during normal operations for the purpose of maintaining the container internal pressure in accordance with the container design specifications. The device shall be designed to operate with no detectable organic emissions when the device is secured in the closed position. The settings at which the device opens shall be established such that the device remains in the closed position whenever the container internal pressure is within the internal pressure operating range determined by the owner or operator based on container manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, ignitable, explosive, reactive, or hazardous materials. Examples of normal operating conditions that may require these devices to open are during those times when the container internal pressure exceeds the internal pressure operating range for the container as a result of loading operations or diurnal ambient temperature fluctuations.
- (5) Opening of a safety device, as defined in §63.921 of this subpart, is allowed at any time conditions require it to do so to avoid an unsafe condition.
- (e) The owner or operator shall inspect containers using Container Level 1 controls in accordance with the procedures specified in §63.926(a) of this subpart.
- (f) For the purpose of compliance with paragraph (b)(1) of this section, containers shall be used that meet the applicable U.S. DOT regulations on packaging hazardous materials for transportation as follows:
- (1) The container meets the applicable requirements specified in 49 CFR part 178—Specifications for Packagings or 49 CFR part 179—Specifications for Tank Cars.

- (2) Regulated-material is managed in the container in accordance with the applicable requirements specified in 49 CFR part 107 subpart B—Exemptions; 49 CFR part 172—Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, and Training Requirements; 49 CFR part 173—Shippers—General Requirements for Shipments and Packaging; and 49 CFR part 180—Continuing Qualification and Maintenance of Packagings.
- (3) For the purpose of complying with this subpart, no exceptions to the 49 CFR part 178 or part 179 regulations are allowed except as provided for in paragraph (f)(4) of this section.
- (4) For a lab pack that is managed in accordance with the requirements of 49 CFR part 178 for the purpose of complying with this subpart, an owner or operator may comply with the exceptions for those packagings specified in 49 CFR 173.12(b).

#### § 63.923 Standards—Container Level 2 controls.

- (a) This section applies to owners and operators subject to this subpart and required to control air emissions from containers using Container Level 2 controls.
- (b) A container using Container Level 2 controls is one of the following:
- (1) A container that meets the applicable U.S. Department of Transportation (DOT) regulations on packaging hazardous materials for transportation as specified in paragraph (f) of this section.
- (2) A container that has been demonstrated to operate with no detectable organic emissions as defined in §63.921 of this subpart.
- (3) A container that has been demonstrated within the preceding 12 months to be vapor-tight by using Method 27 in appendix A of 40 CFR part 60 in accordance with the procedure specified in §63.925(b) of this subpart.
- (c) Transfer of regulated-material in to or out of a container using Container Level 2 controls shall be conducted in such a manner as to minimize exposure of the regulated-material to the atmosphere, to the extent practical, considering the physical properties of the regulated-material and good engineering and safety practices for handling flammable, ignitable, explosive, or other hazardous materials. Examples of container loading procedures that meet the requirements of this paragraph include using any one of the following: a submerged-fill pipe or other submerged-fill method to load liquids into the container; a vapor-balancing system or a vapor-recovery system to collect and control the vapors displaced from the container during filling operations; or a fitted opening in the top of a container through which the regulated-material is filled, with subsequent purging of the transfer line before removing it from the container opening.
- (d) Whenever a regulated-material is in a container using Container Level 2 controls, the owner or operator shall install all covers and closure devices for the container, and secure and maintain each closure device in the closed position except as follows:
- (1) Opening of a closure device or cover is allowed for the purpose of adding material to the container as follows:
- (i) In the case when the container is filled to the intended final level in one continuous operation, the owner or operator shall promptly secure the closure devices in the closed position and install the covers, as applicable to the container, upon conclusion of the filling operation.

- (ii) In the case when discrete quantities or batches of material intermittently are added to the container over a period of time, the owner or operator shall promptly secure the closure devices in the closed position and install covers, as applicable to the container, upon either the container being filled to the intended final level, the completion of a batch loading after which no additional material will be added to the container within 15 minutes, the person performing the loading operation leaves the immediate vicinity of the container, or the shutdown of the process generating the material being added to the container, whichever condition occurs first.
- (2) Opening of a closure device or cover is allowed for the purpose of removing material from the container as follows:
- (i) For the purpose of meeting the requirements of this section, an empty container as defined in §63.921 of this subpart may be open to the atmosphere at any time (e.g., covers and closure devices are not required to be secured in the closed position on an empty container).
- (ii) In the case when discrete quantities or batches of material are removed from the container but the container does not meet the conditions to be an empty container as defined in §63.921 of this subpart, the owner or operator shall promptly secure the closure devices in the closed position and install covers, as applicable to the container, upon the completion of a batch removal after which no additional material will be removed from the container within 15 minutes or the person performing the unloading operation leaves the immediate vicinity of the container, whichever condition occurs first.
- (3) Opening of a closure device or cover is allowed when access inside the container is needed to perform routine activities other than transfer of regulated-material. Examples of such activities include those times when a worker needs to open a port to measure the depth of or sample the material in the container, or when a worker needs to open a manhole hatch to access equipment inside the container. Following completion of the activity, the owner or operator shall promptly secure the closure device in the closed position or reinstall the cover, as applicable to the container.
- (4) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure relief device which vents to the atmosphere is allowed during normal operations for the purpose of maintaining the container internal pressure in accordance with the container design specifications. The device shall be designed to operate with no detectable organic emissions when the device is secured in the closed position. The settings at which the device opens shall be established such that the device remains in the closed position whenever the container internal pressure is within the internal pressure operating range determined by the owner or operator based on container manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials. Examples of normal operating conditions that may require these devices to open are during those times when the container internal pressure exceeds the internal pressure operating range for the container as a result of loading operations or diurnal ambient temperature fluctuations.
- (5) Opening of a safety device, as defined in §63.921 of this subpart, is allowed at any time conditions require it to do so to avoid an unsafe condition.
- (e) The owner or operator shall inspect containers using Container Level 2 controls in accordance with the procedures specified in §63.926(a) of this subpart.
- (f) For the purpose of compliance with paragraph (b)(1) of this section, containers shall be used that meet the applicable U.S. DOT regulations on packaging hazardous materials for transportation as follows:

- (1) The container meets the applicable requirements specified in 49 CFR part 178—Specifications for Packagings or 49 CFR part 179—Specifications for Tank Cars.
- (2) Regulated-material is managed in the container in accordance with the applicable requirements specified in 49 CFR part 107 subpart B—Exemptions; 49 CFR part 172—Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, and Training Requirements; 49 CFR part 173—Shippers—General Requirements for Shipments and Packaging; and 49 CFR part 180—Continuing Qualification and Maintenance of Packagings.
- (3) For the purpose of complying with this subpart, no exceptions to the 49 CFR part 178 or part 179 regulations are allowed except as provided for in paragraph (f)(4) of this section.
- (4) For a lab pack that is managed in accordance with the requirements of 49 CFR part 178 for the purpose of complying with this subpart, an owner or operator may comply with the exceptions for those packagings specified in 49 CFR 173.12(b).

#### § 63.924 Standards—Container Level 3 controls.

- (a) This section applies to owners and operators subject to this subpart and required to control air emissions from containers using Container Level 3 controls.
- (b) A container using Container Level 3 controls is one of the following:
- (1) A container that is vented directly through a closed-vent system to a control device in accordance with the requirements of paragraphs (c)(2) of this section.
- (2) A container that is vented inside an enclosure which is exhausted through a closed-vent system to a control device in accordance with the requirements of paragraphs (c)(1) and (c)(2) of this section.
- (c) The owner or operator shall meet the following requirements as applicable to the type of air emission control equipment selected by the owner or operator:
- (1) The enclosure shall be designed and operated in accordance with the criteria for a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" under 40 CFR 52.741, appendix B. The enclosure may have permanent or temporary openings to allow worker access; passage of containers through the enclosure by conveyor or other mechanical means; entry of permanent mechanical or electrical equipment; or to direct airflow into the enclosure. The owner or operator shall perform the verification procedure for the enclosure as specified in Section 5.0 to "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" initially when the enclosure is first installed and, thereafter, annually.
- (2) The closed-vent system and control device shall be designed and operated in accordance with the requirements of §63.693.
- (d) Safety devices, as defined in §63.921 of this subpart, may be installed and operated as necessary on any container, enclosure, closed-vent system, or control device used to comply with this section.
- [61 FR 34184, July 1, 1996, as amended at 66 FR 1267, Jan. 8, 2001]

## § 63.925 Test methods and procedures.

- (a) Procedures for determining no detectable organic emissions for the purpose of complying with this subpart.
- (1) The test shall be conducted in accordance with the procedures specified in Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak interfaces that are associated with covers and closure devices include, but are not limited to: the interface of the cover and its foundation mounting; the periphery of any opening on the cover and its associated closure device; and the sealing seat interface on a spring-loaded pressure-relief valve.
- (2) The test shall be performed when the unit contains a material having a total organic concentration representative of the range of concentrations for the materials expected to be managed in the unit. During the test, the cover and closure devices shall be secured in the closed position.
- (3) The detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the organic constituents in the material placed in the unit, not for each individual organic constituent.
- (4) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix A.
- (5) Calibration gases shall be as follows:
- (i) Zero air (less than 10 ppmv hydrocarbon in air); and
- (ii) A mixture of methane or n-hexane in air at a concentration of approximately, but less than 10,000 ppmv.
- (6) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A.
- (7) Each potential leak interface shall be checked by traversing the instrument probe around the potential leak interface as close to the interface as possible, as described in Method 21. In the case when the configuration of the cover or closure device prevents a complete traverse of the interface, all accessible portions of the interface shall be sampled. In the case when the configuration of the closure device prevents any sampling at the interface and the device is equipped with an enclosed extension or horn (e.g., some pressure relief devices), the instrument probe inlet shall be placed at approximately the center of the exhaust area to the atmosphere.
- (8) An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (a)(8)(i) or (a)(8)(ii) of this section.
- (i) If an owner or operator chooses not to adjust the detection instrument readings for the background organic concentration level, then the maximum organic concentration value

measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (a)(9) of this section.

- (ii) If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (a)(6) of this section is compared with the applicable value for the potential leak interface as specified in paragraph (a)(9) of this section.
- (9) A potential leak interface is determined to operate with no detectable emissions using the applicable criteria specified in paragraphs (a)(9)(i) and (a)(9)(ii) of this section.
- (i) For a potential leak interface other than a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (a)(8) is less than 500 ppmv.
- (ii) For a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (a)(8) is less than 10,000 ppmv.
- (b) Procedure for determining a container to be vapor-tight for the purpose of complying with this subpart.
- (1) The test shall be performed in accordance with Method 27 of 40 CFR part 60, appendix A of this chapter.
- (2) A pressure measurement device shall be used that has a precision of  $\pm$  2.5 mm water and that is capable of measuring above the pressure at which the container is to be tested for vapor tightness.
- (3) If the test results determined by Method 27 indicate that the container sustains a pressure change less than or equal to 750 Pascals within 5 minutes after it is pressurized to a minimum of 4,500 Pascals, then the container is determined to be vapor-tight.
- [61 FR 34186, July 1, 1996, as amended at 64 FR 38987, July 20, 1999]

#### § 63.926 Inspection and monitoring requirements.

- (a) Owners and operators of containers using either Container Level 1 or Container Level 2 controls in accordance with the provisions of §63.922 and §63.923 of this subpart, respectively, shall inspect the container and its cover and closure devices as follows:
- (1) In the case when a regulated-material already is in the container at the time the owner or operator first accepts possession of the container at the facility site and the container is not emptied (i.e., does not meet the conditions for an empty container as defined in §63.921 of this subpart) within 24 hours after the container has been accepted at the facility site, the container and its cover and closure devices shall be visually inspected by the owner or operator to check for visible cracks, holes, gaps, or other open spaces into the interior of the container when the cover and closure devices are secured in the closed position. This inspection of the container must be conducted on or before the date that the container is accepted at the facility (i.e., the date that the container becomes subject to the standards under this subpart). For the purpose of this requirement, the date of acceptance is the date of signature of the facility owner or operator

on the manifest or shipping papers accompanying the container. If a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (a)(3) of this section.

- (2) In the case when a container filled or partially filled with regulated-material remains unopened at the facility site for a period of 1 year or more, the container and its cover and closure devices shall be visually inspected by the owner or operator initially and thereafter, at least once every calendar year, to check for visible cracks, holes, gaps, or other open spaces into the interior of the container when the cover and closure devices are secured in the closed position. If a defect is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (a)(3) of this section.
- (3) When a defect is detected for the container, cover, or closure devices, the owner or operator must either empty the regulated-material from the defective container in accordance with paragraph (a)(3)(i) of this section or repair the defective container in accordance with paragraph (a)(3)(ii) of this section.
- (i) If the owner or operator elects to empty the regulated-material from the defective container, the owner or operator must remove the regulated-material from the defective container to meet the conditions for an empty container (as defined in §63.921 of this subpart) and transfer the removed regulated-material to either a container that meets the applicable standards under this subpart or to a tank, process, or treatment unit that meets the applicable standards under the subpart referencing this subpart. Transfer of the regulated-material must be completed no later than 5 calendar days after detection of the defect. The emptied defective container must be either repaired, destroyed, or used for purposes other than management of regulated-material.
- (ii) If the owner or operator elects not to empty the regulated-material from the defective container, the owner or operator must repair the defective container. First efforts at repair of the defect must be made no later than 24 hours after detection and repair must be completed as soon as possible but no later than 5 calendar days after detection. If repair of a defect cannot be completed within 5 calendar days, then the regulated-material must be emptied from the container and the container must not be used to manage regulated-material until the defect is repaired.
- (b) Owners and operators using Container Level 3 controls in accordance with the provisions of §63.924 of this subpart shall inspect and monitor the closed-vent systems and control devices in accordance with the requirements of §63.693 in 40 CFR part 63, Subpart DD—National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations.

[61 FR 34186, July 1, 1996, as amended at 64 FR 38988, July 20, 1999]

### § 63.927 Recordkeeping requirements.

- (a) Owners and operators that use Container Level 3 controls in accordance with the provisions of §63.924 of this subpart shall prepare and maintain the following records:
- (1) Records for the most recent set of calculations and measurements performed by the owner or operator to verify that the enclosure meets the criteria of a permanent total enclosure as specified in "Procedure T—Criteria for and Verification of a Permanent or Temporary Total Enclosure" under 40 CFR 52.741, appendix B.
- (2) Records required for the closed-vent system and control device in accordance with the requirements of §63.693 in 40 CFR part 63, Subpart DD—National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations.

### (b) [Reserved]

# § 63.928 Reporting requirements.

(a) For owners and operators that use Container Level 3 controls in accordance with the provisions of §63.924 of this subpart, the owner or operator shall prepare and submit to the Administrator the reports required for closed-vent systems and control devices in accordance with the requirements of §63.693 in 40 CFR part 63, Subpart DD—National Emission Standards for Hazardous Air Pollutant Standards from Off-Site Waste and Recovery Operations.

### (b) [Reserved]

#### § 63.929 Implementation and enforcement.

- (a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as the applicable State, local, or Tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or Tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if this subpart is delegated to a State, local, or Tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or Tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or Tribal agency.
- (c) The authorities that cannot be delegated to State, local, or Tribal agencies are as specified in paragraphs (c)(1) through (4) of this section.
- (1) Approval of alternatives to the requirements in §§63.920 and 63.922 through 63.924. Where these standards reference another subpart, the cited provisions will be delegated according to the delegation provisions of the referenced subpart.
- (2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f), as defined in §63.90, and as required in this subpart.
- (3) Approval of major alternatives to monitoring under §63.8(f), as defined in §63.90, and as required in this subpart.
- (4) Approval of major alternatives to recordkeeping and reporting under §63.10(f), as defined in §63.90, and as required in this subpart.

[68 FR 37355, June 23, 2003]



į.

# 40 CFR Part 63, Subpart EEE—National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors

**Source:** 64 FR 53038, Sept. 30, 1999, unless otherwise noted.

## General

# § 63.1200 Who is subject to these regulations?

The provisions of this subpart apply to all hazardous waste combustors: hazardous waste incinerators, hazardous waste cement kilns, hazardous waste lightweight aggregate kilns, hazardous waste solid fuel boilers, hazardous waste liquid fuel boilers, and hazardous waste hydrochloric acid production furnaces. Hazardous waste combustors are also subject to applicable requirements under parts 260 through 270 of this chapter.

- (a) What if I am an area source? (1) Both area sources and major sources are subject to this subpart.
- (2) Both area sources and major sources subject to this subpart, but not previously subject to title V, are immediately subject to the requirement to apply for and obtain a title V permit in all States, and in areas covered by part 71 of this chapter.
- (b) These regulations in this subpart do not apply to sources that meet the criteria in Table 1 of this Section, as follows:

Table 1 to §63.1200—Hazardous Waste Combustors Exempt From Subpart EEE

| If                                       | And if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Then                                                                                    |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| (1) You are a previously affected source | (i) You ceased feeding hazardous waste for a period of time greater than the hazardous waste residence time (i.e., hazardous waste no longer resides in the combustion chamber); (ii) You have initiated the closure requirements of subpart G, parts 264 or 265 of this chapter; (iii) You begin complying with the requirements of all other applicable standards of this part (Part 63); and (iv) You notify the Administrator in writing that you are no longer an affected source under this subpart (Subpart EEE) | You are no longer subject to this subpart (Subpart EEE).                                |
| (2) You are a research, development, and | You operate for no longer than one year after first burning hazardous waste (Note that the Administrator can extend this                                                                                                                                                                                                                                                                                                                                                                                                | You are not subject to this subpart (Subpart EEE). This exemption applies even if there |

| If                                                                                                  | And if                                                                                                                                                                                                                                     | Then                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | one-year restriction on a case-by-case basis upon your written request documenting when you first burned hazardous waste and the justification for needing additional time to perform research, development, or demonstration operations). | is a hazardous waste combustor at the plant site that is regulated under this subpart. You still, however, remain subject to \$270.65 of this chapter. |
| (3) The only hazardous wastes you burn are exempt from regulation under §266.100(c) of this chapter |                                                                                                                                                                                                                                            | You are not subject to the requirements of this subpart (Subpart EEE).                                                                                 |
| (4) You meet the definition of a small quantity burner under §266.108 of this chapter               |                                                                                                                                                                                                                                            | You are not subject to the requirements of this subpart (Subpart EEE).                                                                                 |

(c) Table 1 of this section specifies the provisions of subpart A (General Provisions, §§63.1–63.15) that apply and those that do not apply to sources affected by this subpart.

[64 FR 53038, Sept. 30, 1999, as amended at 65 FR 42297, July 10, 2000; 67 FR 6986, Feb. 14, 2002; 70 FR 59540, Oct. 12, 2005]

# § 63.1201 Definitions and acronyms used in this subpart.

(a) The terms used in this subpart are defined in the Act, in subpart A of this part, or in this section as follows:

Air pollution control system means the equipment used to reduce the release of particulate matter and other pollutants to the atmosphere.

Automatic waste feed cutoff (AWFCO) system means a system comprised of cutoff valves, actuator, sensor, data manager, and other necessary components and electrical circuitry designed, operated and maintained to stop the flow of hazardous waste to the combustion unit automatically and immediately (except as provided by §63.1206(c)(3)(viii)) when any operating requirement is exceeded.

Btu means British Thermal Units.

By-pass duct means a device which diverts a minimum of 10 percent of a cement kiln's off gas, or a device which the Administrator determines on a case-by-case basis diverts a sample of kiln

gas that contains levels of carbon monoxide or hydrocarbons representative of the levels in the kiln.

Combustion chamber means the area in which controlled flame combustion of hazardous waste occurs.

Continuous monitor means a device which continuously samples the regulated parameter specified in §63.1209 without interruption, evaluates the detector response at least once every 15 seconds, and computes and records the average value at least every 60 seconds, except during allowable periods of calibration and except as defined otherwise by the CEMS Performance Specifications in appendix B, part 60 of this chapter.

Dioxin/furan and dioxins and furans mean tetra-, penta-, hexa-, hepta-, and octa-chlorinated dibenzo dioxins and furans.

Existing source means any affected source that is not a new source.

Feedrate operating limits means limits on the feedrate of materials (e.g., metals, chlorine) to the combustor that are established based on comprehensive performance testing. The limits are established and monitored by knowing the concentration of the limited material (e.g., chlorine) in each feedstream and the flowrate of each feedstream.

Feedstream means any material fed into a hazardous waste combustor, including, but not limited to, any pumpable or nonpumpable solid, liquid, or gas.

Flowrate means the rate at which a feedstream is fed into a hazardous waste combustor.

Hazardous waste is defined in §261.3 of this chapter.

Hazardous waste burning cement kiln means a rotary kiln and any associated preheater or precalciner devices that produce clinker by heating limestone and other materials for subsequent production of cement for use in commerce, and that burns hazardous waste at any time.

Hazardous waste combustor means a hazardous waste incinerator, hazardous waste burning cement kiln, hazardous waste burning lightweight aggregate kiln, hazardous waste liquid fuel boiler, hazardous waste solid fuel boiler, or hazardous waste hydrochloric acid production furnace.

Hazardous waste hydrochloric acid production furnace and Hazardous Waste HCl production furnace mean a halogen acid furnace defined under §260.10 of this chapter that produces aqueous hydrochloric acid (HCl) product and that burns hazardous waste at any time.

Hazardous waste incinerator means a device defined as an incinerator in §260.10 of this chapter and that burns hazardous waste at any time. For purposes of this subpart, the hazardous waste incinerator includes all associated firing systems and air pollution control devices, as well as the combustion chamber equipment.

Hazardous waste lightweight aggregate kiln means a rotary kiln that produces clinker by heating materials such as slate, shale and clay for subsequent production of lightweight aggregate used in commerce, and that burns hazardous waste at any time.

Hazardous waste liquid fuel boiler means a boiler defined under §260.10 of this chapter that does not burn solid fuels and that burns hazardous waste at any time. Liquid fuel boiler includes boilers that only burn gaseous fuel.

Hazardous waste residence time means the time elapsed from cutoff of the flow of hazardous waste into the combustor (including, for example, the time required for liquids to flow from the cutoff valve into the combustor) until solid, liquid, and gaseous materials from the hazardous waste (excluding residues that may adhere to combustion chamber surfaces and excluding wastederived recycled materials such as cement kiln dust and internally recycled metals) exit the combustion chamber. For combustors with multiple firing systems whereby the residence time may vary for the firing systems, the hazardous waste residence time for purposes of complying with this subpart means the longest residence time for any firing system in use at the time of the waste cutoff.

Hazardous waste solid fuel boiler means a boiler defined under §260.10 of this chapter that burns a solid fuel and that burns hazardous waste at any time.

*Initial comprehensive performance test* means the comprehensive performance test that is used as the basis for initially demonstrating compliance with the standards.

*In-line kiln raw mill* means a hazardous waste burning cement kiln design whereby kiln gas is ducted through the raw material mill for portions of time to facilitate drying and heating of the raw material.

*Instantaneous monitoring* for combustion system leak control means detecting and recording pressure, without use of an averaging period, at a frequency adequate to detect combustion system leak events from hazardous waste combustion.

Monovent means an exhaust configuration of a building or emission control device (e.g. positive pressure fabric filter) that extends the length of the structure and has a width very small in relation to its length (i.e., length to width ratio is typically greater than 5:1). The exhaust may be an open vent with or without a roof, louvered vents, or a combination of such features.

MTEC means maximum theoretical emissions concentration of metals or HCl/Cl, expressed as  $\mu$ g/dscm, and is calculated by dividing the feedrate by the gas flowrate.

New source means any affected source the construction or reconstruction of which is commenced after the dates specified under §§63.1206(a)(1)(i)(B), (a)(1)(ii)(B), and (a)(2)(ii).

*One-minute average* means the average of detector responses calculated at least every 60 seconds from responses obtained at least every 15 seconds.

Operating record means a documentation retained at the facility for ready inspection by authorized officials of all information required by the standards to document and maintain compliance with the applicable regulations, including data and information, reports, notifications, and communications with regulatory officials.

Operating requirements means operating terms or conditions, limits, or operating parameter limits developed under this subpart that ensure compliance with the emission standards.

Preheater tower combustion gas monitoring location means a location within the preheater tower of a dry process cement kiln downstream (in terms of gas flow) of all hazardous waste firing locations and where a representative sample of combustion gas to measure combustion efficiency can be monitored.

Raw material feed means the prepared and mixed materials, which include but are not limited to materials such as limestone, clay, shale, sand, iron ore, mill scale, cement kiln dust and flyash, that are fed to a cement or lightweight aggregate kiln. Raw material feed does not include the fuels used in the kiln to produce heat to form the clinker product.

Research, development, and demonstration source means a source engaged in laboratory, pilot plant, or prototype demonstration operations:

- (1) Whose primary purpose is to conduct research, development, or short-term demonstration of an innovative and experimental hazardous waste treatment technology or process; and
- (2) Where the operations are under the close supervision of technically-trained personnel.

Rolling average means the average of all one-minute averages over the averaging period.

Run means the net period of time during which an air emission sample is collected under a given set of operating conditions. Three or more runs constitutes a test. Unless otherwise specified, a run may be either intermittent or continuous.

Run average means the average of the one-minute average parameter values for a run.

System removal efficiency means [1 – Emission Rate (mass/time) / Feedrate (mass/time)] X 100.

TEQ means the international method of expressing toxicity equivalents for dioxins and furans as defined in U.S. EPA, Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and -dibenzofurans (CDDs and CDFs) and 1989 Update, March 1989.

You means the owner or operator of a hazardous waste combustor.

(b) The acronyms used in this subpart refer to the following:

AWFCO means automatic waste feed cutoff.

CAS means chemical abstract services registry.

CEMS means continuous emissions monitoring system.

CMS means continuous monitoring system.

DRE means destruction and removal efficiency.

MACT means maximum achievable control technology.

MTEC means maximum theoretical emissions concentration.

NIC means notification of intent to comply.

[64 FR 53038, Sept. 30, 1999, as amended at 65 FR 42297, July 10, 2000; 65 FR 67271, Nov. 9, 2000; 66 FR 35103, July 3, 2001; 67 FR 6986, Feb. 14, 2002; 67 FR 77691, Dec. 19, 2002; 70 FR 59540, Oct. 12, 2005]

# § 63.1202 [Reserved]

Interim Emissions Standards and Operating Limits For Incinerators, Cement Kilns, and Lightweight Aggregate Kilns

# § 63.1203 What are the standards for hazardous waste incinerators that are effective until compliance with the standards under §63.1219?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Emissions in excess of 0.40 ng TEQ/dscm corrected to 7 percent oxygen provided that the combustion gas temperature at the inlet to the initial particulate matter control device is 400 °F or lower based on the average of the test run average temperatures. (For purposes of compliance, operation of a wet particulate control device is presumed to meet the 400 °F or lower requirement);
- (2) Mercury in excess of 130 μg/dscm corrected to 7 percent oxygen;
- (3) Lead and cadmium in excess of 240 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 97  $\mu$ g/dscm, combined emissions, corrected to 7 percent oxygen;

- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrochloric acid and chlorine gas in excess of 77 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter in excess of 34 mg/dscm corrected to 7 percent oxygen.
- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) Dioxins and furans in excess of 0.20 ng TEQ/dscm, corrected to 7 percent oxygen;
- (2) Mercury in excess of 45 µg/dscm corrected to 7 percent oxygen;
- (3) Lead and cadmium in excess of 120 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 97 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or

- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter in excess of 34 mg/dscm corrected to 7 percent oxygen.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a destruction and removal efficiency (DRE) of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

$$DRE = [1-(W_{out}/W_{in})] \times 100\%$$

Where:

W<sub>in</sub>= mass feedrate of one principal organic hazardous constituent (POHC) in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a destruction and removal efficiency (DRE) of 99.9999% for each principle organic hazardous constituent (POHC) that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo- p dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituents (POHCs). (i) You must treat the Principal Organic Hazardous Constituents (POHCs) in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations

using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.

- (e) The provisions of this section no longer apply after any of the following dates, whichever occurs first:
- (1) The date that your source begins to comply with §63.1219 by placing a Documentation of Compliance in the operating record pursuant to §63.1211(c);
- (2) The date that your source begins to comply with §63.1219 by submitting a Notification of Compliance pursuant to §63.1210(b); or
- (3) The date for your source to comply with §63.1219 pursuant to §63.1206 and any extensions granted there under.
- [67 FR 6809, Feb. 13, 2002, as amended at 70 FR 59541, Oct. 12, 2005; 73 FR 18979, Apr. 8, 2008]

# § 63.1204 What are the standards for hazardous waste burning cement kilns that are effective until compliance with the standards under §63.1220?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Emissions in excess of 0.40 ng TEQ/dscm corrected to 7 percent oxygen provided that the combustion gas temperature at the inlet to the initial dry particulate matter control device is 400 °F or lower based on the average of the test run average temperatures;
- (2) Mercury in excess of 120 µg/dscm corrected to 7 percent oxygen;
- (3) Lead and cadmium in excess of 330 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 56  $\mu$ g/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) For kilns equipped with a by-pass duct or midkiln gas sampling system, either:
- (A) Carbon monoxide in the by-pass duct or mid-kiln gas sampling system in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to

comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(i)(B) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons in the by-pass duct or mid-kiln gas sampling system do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or

- (B) Hydrocarbons in the by-pass duct or midkiln gas sampling system in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (ii) For kilns not equipped with a by-pass duct or midkiln gas sampling system, either:
- (A) Hydrocarbons in the main stack in excess of 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (B) Carbon monoxide in the main stack in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii)(A) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons in the main stack do not exceed 20 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.
- (6) Hydrochloric acid and chlorine gas in excess of 130 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis, corrected to 7 percent oxygen; and
- (7) Particulate matter in excess of 0.15 kg/Mg dry feed and opacity greater than 20 percent.
- (i) You must use suitable methods to determine the kiln raw material feedrate.
- (ii) Except as provided in paragraph (a)(7)(iii) of this section, you must compute the particulate matter emission rate, E, from the following equation:

$$E=(C_s\times Q_{sd})/P$$

Where:

E=emission rate of particulate matter, kg/Mg of kiln raw material feed;

C<sub>s</sub>=concentration of particulate matter, kg/dscm;

Q<sub>sd</sub>=volumetric flowrate of effluent gas, dscm/hr; and

P=total kiln raw material feed (dry basis), Mg/hr.

(iii) If you operate a preheater or preheater/precalciner kiln with dual stacks, you must test simultaneously and compute the combined particulate matter emission rate, E<sub>c</sub>, from the following equation:

$$E_c = (C_{sk} \times Q_{sdk} + C_{sb} \times Q_{sdb})/P$$

Where:

E<sub>c</sub>=the combined emission rate of particulate matter from the kiln and bypass stack, kg/Mg of kiln raw material feed;

C<sub>sk</sub>=concentration of particulate matter in the kiln effluent, kg/dscm;

Q<sub>sdk</sub>=volumetric flowrate of kiln effluent gas, dscm/hr;

C<sub>sb</sub>=concentration of particulate matter in the bypass stack effluent, kg/dscm;

Q<sub>sdb</sub>=volumetric flowrate of bypass stack effluent gas, dscm/hr; and

P = total kiln raw material feed (dry basis), Mg/hr.

- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Emissions in excess of 0.40 ng TEQ/dscm corrected to 7 percent oxygen provided that the combustion gas temperature at the inlet to the initial dry particulate matter control device is 400 °F or lower based on the average of the test run average temperatures;
- (2) Mercury in excess of 120 µg/dscm corrected to 7 percent oxygen;
- (3) Lead and cadmium in excess of 180 µg/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 54  $\mu$ g/dscm, combined emissions, corrected to 7 percent oxygen;

- (5) Carbon monoxide and hydrocarbons. (i) For kilns equipped with a by-pass duct or midkiln gas sampling system, carbon monoxide and hydrocarbons emissions are limited in both the bypass duct or midkiln gas sampling system and the main stack as follows:
- (A) Emissions in the by-pass or midkiln gas sampling system are limited to either:
- (1) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(i)(A)(2) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (2) Hydrocarbons in the by-pass duct or midkiln gas sampling system in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; and
- (B) Hydrocarbons in the main stack are limited, if construction of the kiln commenced after April 19, 1996 at a plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over a 30-day block average (monitored continuously with a continuous monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.
- (ii) For kilns not equipped with a by-pass duct or midkiln gas sampling system, hydrocarbons and carbon monoxide are limited in the main stack to either:
- (A) Hydrocarbons not exceeding 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (B)(1) Carbon monoxide not exceeding 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen; and
- (2) Hydrocarbons not exceeding 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane at any time during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7); and
- (3) If construction of the kiln commenced after April 19, 1996 at a plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, hydrocarbons are limited to 50 parts per million by volume, over a 30-day block average (monitored continuously with a

continuous monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.

- (6) Hydrochloric acid and chlorine gas in excess of 86 parts per million, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter in excess of 0.15 kg/Mg dry feed and opacity greater than 20 percent.
- (i) You must use suitable methods to determine the kiln raw material feedrate.
- (ii) Except as provided in paragraph (a)(7)(iii) of this section, you must compute the particulate matter emission rate, E, from the equation specified in paragraph (a)(7)(ii) of this section.
- (iii) If you operate a preheater or preheater/precalciner kiln with dual stacks, you must test simultaneously and compute the combined particulate matter emission rate, E<sub>c</sub>, from the equation specified in paragraph (a)(7)(iii) of this section.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a destruction and removal efficiency (DRE) of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

$$DRE=[1-(W_{out}/W_{in})]\times 100\%$$

#### Where:

W<sub>in</sub>=mass feedrate of one principal organic hazardous constituent (POHC) in a waste feedstream; and

W<sub>out</sub>=mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a destruction and removal efficiency (DRE) of 99.9999% for each principle organic hazardous constituent (POHC) that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo-p-dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituents (POHCs). (i) You must treat the Principal Organic Hazardous Constituents (POHCs) in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.

- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Cement kilns with in-line kiln raw mills —(1) General. (i) You must conduct performance testing when the raw mill is on-line and when the mill is off-line to demonstrate compliance with the emission standards, and you must establish separate operating parameter limits under §63.1209 for each mode of operation, except as provided by paragraph (d)(1)(iv) of this section.
- (ii) You must document in the operating record each time you change from one mode of operation to the alternate mode and begin complying with the operating parameter limits for that alternate mode of operation.
- (iii) You must calculate rolling averages for operating parameter limits as provided by §63.1209(q)(2).
- (iv) If your in-line kiln raw mill has dual stacks, you may assume that the dioxin/furan emission levels in the by-pass stack and the operating parameter limits determined during performance testing of the by-pass stack when the raw mill is off-line are the same as when the mill is on-line.
- (2) *Emissions averaging*. You may comply with the mercury, semivolatile metal, low volatile metal, and hydrochloric acid/chlorine gas emission standards on a time-weighted average basis under the following procedures:
- (i) Averaging methodology. You must calculate the time-weighted average emission concentration with the following equation:

 $C_{total} = \{Cmill-off \times (Tmill-off + Tmill-on)\} + \{Cmill-on \times (Tmill-on / (Tmill-off + Tmill-on))\}$ 

## Where:

C<sub>total</sub>=time-weighted average concentration of a regulated constituent considering both raw mill on time and off time;

Cmill-off=average performance test concentration of regulated constituent with the raw mill off-line:

Cmill-on=average performance test concentration of regulated constituent with the raw mill online;

Tmill-off-time when kiln gases are not routed through the raw mill; and

Tmill-on=time when kiln gases are routed through the raw mill.

- (ii) Compliance. (A) If you use this emission averaging provision, you must document in the operating record compliance with the emission standards on an annual basis by using the equation provided by paragraph (d)(2) of this section.
- (B) Compliance is based on one-year block averages beginning on the day you submit the initial notification of compliance.
- (iii) *Notification*. (A) If you elect to document compliance with one or more emission standards using this emission averaging provision, you must notify the Administrator in the initial comprehensive performance test plan submitted under §63.1207(e).
- (B) You must include historical raw mill operation data in the performance test plan to estimate future raw mill down-time and document in the performance test plan that estimated emissions and estimated raw mill down-time will not result in an exceedance of an emission standard on an annual basis.
- (C) You must document in the notification of compliance submitted under §63.1207(j) that an emission standard will not be exceeded based on the documented emissions from the performance test and predicted raw mill down-time.
- (e) Preheater or preheater/precalciner kilns with dual stacks—(1) General. You must conduct performance testing on each stack to demonstrate compliance with the emission standards, and you must establish operating parameter limits under §63.1209 for each stack, except as provided by paragraph (d)(1)(iv) of this section for dioxin/furan emissions testing and operating parameter limits for the by-pass stack of in-line raw mills.
- (2) *Emissions averaging*. You may comply with the mercury, semivolatile metal, low volatile metal, and hydrochloric acid/chlorine gas emission standards specified in this section on a gas flowrate-weighted average basis under the following procedures:
- (i) Averaging methodology. You must calculate the gas flowrate-weighted average emission concentration using the following equation:

$$C_{tot} = \{C_{main} \times (Q_{main} + Q_{bypass})\} + \{C_{bypass} \times (Q_{bypass} / (Q_{main} + Q_{bypass}))\}$$

Where:

C<sub>tot</sub>= gas flowrate-weighted average concentration of the regulated constituent;

C<sub>main</sub>= average performance test concentration demonstrated in the main stack;

C<sub>bypass</sub>= average performance test concentration demonstrated in the bypass stack;

Q<sub>main</sub>= volumetric flowrate of main stack effluent gas; and

Q<sub>bypass</sub>= volumetric flowrate of bypass effluent gas.

- (ii) Compliance. (A) You must demonstrate compliance with the emission standard(s) using the emission concentrations determined from the performance tests and the equation provided by paragraph (e)(1) of this section; and
- (B) You must develop operating parameter limits for bypass stack and main stack flowrates that ensure the emission concentrations calculated with the equation in paragraph (e)(1) of this section do not exceed the emission standards on a 12-hour rolling average basis. You must include these flowrate limits in the Notification of Compliance.
- (iii) *Notification*. If you elect to document compliance under this emissions averaging provision, you must:
- (A) Notify the Administrator in the initial comprehensive performance test plan submitted under §63.1207(e). The performance test plan must include, at a minimum, information describing the flowrate limits established under paragraph (e)(2)(ii)(B) of this section; and
- (B) Document in the Notification of Compliance submitted under §63.1207(j) the demonstrated gas flowrate-weighted average emissions that you calculate with the equation provided by paragraph (e)(2) of this section.
- (f) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.
- (g) [Reserved]
- (h) When you comply with the particulate matter requirements of paragraphs (a)(7) or (b)(7) of this section, you are exempt from the New Source Performance Standard for particulate matter and opacity under §60.60 of this chapter.
- (i) The provisions of this section no longer apply after any of the following dates, whichever occurs first:
- (1) The date that your source begins to comply with §63.1220 by placing a Documentation of Compliance in the operating record pursuant to §63.1211(c);
- (2) The date that your source begins to comply with §63.1220 by submitting a Notification of Compliance pursuant to §63.1210(b); or
- (3) The date for your source to comply with §63.1220 pursuant to §63.1206 and any extensions granted there under.
- [67 FR 6809, Feb. 13, 2002, as amended at 67 FR 6987, Feb. 14, 2002; 70 FR 59541, Oct. 12, 2005; 73 FR 18979, Apr. 8, 2008]

## § 63.1205 What are the standards for hazardous waste burning lightweight aggregate kilns that are effective until compliance with the standards under §63.1221?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Rapid quench of the combustion gas temperature at the exit of the (last) combustion chamber (or exit of any waste heat recovery system) to 400 °F or lower based on the average of the test run average temperatures. You must also notify in writing the RCRA authority that you are complying with this option;
- (2) Mercury in excess of 120 µg/dscm corrected to 7 percent oxygen;
- (3) Lead and cadmium in excess of 250 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 110 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 20 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 20 parts per million by volume, over an hourly rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrochloric acid and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter in excess of 57 mg/dscm corrected to 7 percent oxygen.
- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans:

- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Rapid quench of the combustion gas temperature at the exit of the (last) combustion chamber (or exit of any waste heat recovery system) to 400 °F or lower based on the average of the test run average temperatures. You must also notify in writing the RCRA authority that you are complying with this option;
- (2) Mercury in excess of 120 µg/dscm corrected to 7 percent oxygen;
- (3) Lead and cadmium in excess of 43 µg/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 110 μg/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 20 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 20 parts per million by volume, over an hourly rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrochloric acid and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter in excess of 57 mg/dscm corrected to 7 percent oxygen.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a destruction and removal efficiency (DRE) of 99.99% for each principal organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

$$DRE = [1-(W_{out}/W_{in})] \times 100\%$$

Where:

W<sub>in</sub>= mass feedrate of one principal organic hazardous constituent (POHC) in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a destruction and removal efficiency (DRE) of 99.9999% for each principal organic hazardous constituent (POHC) that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo-dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to burn hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituents (POHCs). (i) You must treat the Principal Organic Hazardous Constituents (POHCs) in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.
- (e) The provisions of this section no longer apply after any of the following dates, whichever occurs first:
- (1) The date that your source begins to comply with §63.1221 by placing a Documentation of Compliance in the operating record pursuant to §63.1211(c);
- (2) The date that your source begins to comply with §63.1221 by submitting a Notification of Compliance pursuant to §63.1210(b); or
- (3) The date for your source to comply with §63.1221 pursuant to §63.1206 and any extensions granted there under.
- [67 FR 6812, Feb. 13, 2002, as amended at 67 FR 77691, Dec. 19, 2002; 70 FR 59541, Oct. 12, 2005; 73 FR 18979, Apr. 8, 2008]

## **Monitoring and Compliance Provisions**

## § 63.1206 When and how must you comply with the standards and operating requirements?

- (a) Compliance dates —(1) Compliance dates for incinerators, cement kilns, and lightweight aggregate kilns that burn hazardous waste —(i) Compliance date for standards under §§63.1203, 63.1204, and 63.1205 —(A) Compliance dates for existing sources. You must comply with the emission standards under §§63.1203, 63.1204, and 63.1205 and the other requirements of this subpart no later than the compliance date, September 30, 2003, unless the Administrator grants you an extension of time under §63.6(i) or §63.1213, except:
- (1) Cement kilns are exempt from the bag leak detection system requirements under paragraph (c)(8) of this section;
- (2) The bag leak detection system required under §63.1206(c)(8) must be capable of continuously detecting and recording particulate matter emissions at concentrations of 1.0 milligram per actual cubic meter unless you demonstrate under §63.1209(g)(1) that a higher detection limit would adequately detect bag leaks, in lieu of the requirement for the higher detection limit under paragraph (c)(8)(ii)(A) of this section; and
- (3) The excessive exceedances notification requirements for bag leak detection systems under paragraph (c)(8)(iv) of this section are waived.
- (B) New or reconstructed sources. (1) If you commenced construction or reconstruction of your hazardous waste combustor after April 19, 1996, you must comply with the emission standards under §§63.1203, 63.1204, and 63.1205 and the other requirements of this subpart by the later of September 30, 1999 or the date the source starts operations, except as provided by paragraphs (a)(1)(i)(A)(1) through (3) and (a)(1)(i)(B)(2) of this section. The costs of retrofitting and replacement of equipment that is installed specifically to comply with this subpart, between April 19, 1996 and a source's compliance date, are not considered to be reconstruction costs.
- (2) For a standard under §§63.1203, 63.1204, and 63.1205 that is more stringent than the standard proposed on April 19, 1996, you may achieve compliance no later than September 30, 2003 if you comply with the standard proposed on April 19, 1996 after September 30, 1999. This exception does not apply, however, to new or reconstructed area source hazardous waste combustors that become major sources after September 30, 1999. As provided by §63.6(b)(7), such sources must comply with the standards under §§63.1203, 63.1204, and 63.1205 at startup.
- (ii) Compliance date for standards under §§63.1219, 63.1220, and 63.1221 —(A) Compliance dates for existing sources. You must comply with the emission standards under §§63.1219, 63.1220, and 63.1221 and the other requirements of this subpart no later than the compliance date, October 14, 2008, unless the Administrator grants you an extension of time under §63.6(i) or §63.1213.

- (B) New or reconstructed sources. (1) If you commenced construction or reconstruction of your hazardous waste combustor after April 20, 2004, you must comply with the new source emission standards under §§63.1219, 63.1220, and 63.1221 and the other requirements of this subpart by the later of October 12, 2005 or the date the source starts operations, except as provided by paragraphs (a)(1)(ii)(B)(2) and (a)(1)(ii)(B)(3) of this section. The costs of retrofitting and replacement of equipment that is installed specifically to comply with this subpart, between April 20, 2004, and a source's compliance date, are not considered to be reconstruction costs.
- (2) For a standard under §§63.1219, 63.1220, and 63.1221 that is more stringent than the standard proposed on April 20, 2004, you may achieve compliance no later than October 14, 2008, if you comply with the standard proposed on April 20, 2004, after October 12, 2005. This exception does not apply, however, to new or reconstructed area source hazardous waste combustors that become major sources after October 14, 2008. As provided by §63.6(b)(7), such sources must comply with the standards under §§63.1219, 63.1220, and 63.1221 at startup.
- (3) If you commenced construction or reconstruction of a cement kiln after April 20, 2004, you must comply with the new source emission standard for particulate matter under §63.1220(b)(7)(i) by the later of October 28, 2008 or the date the source starts operations.
- (2) Compliance date for solid fuel boilers, liquid fuel boilers, and hydrochloric acid production furnaces that burn hazardous waste for standards under §§63.1216, 63.1217, and 63.1218. (i) Compliance date for existing sources. You must comply with the standards of this subpart no later than the compliance date, October 14, 2008, unless the Administrator grants you an extension of time under §63.6(i) or §63.1213.
- (ii) New or reconstructed sources. (A) If you commenced construction or reconstruction of your hazardous waste combustor after April 20, 2004, you must comply with the new source emission standards of this subpart by the later of October 12, 2005, or the date the source starts operations, except as provided by paragraph (a)(2)(ii)(B) of this section. The costs of retrofitting and replacement of equipment that is installed specifically to comply with this subpart, between April 20, 2004, and a source's compliance date, are not considered to be reconstruction costs.
- (B) For a standard in the subpart that is more stringent than the standard proposed on April 20, 2004, you may achieve compliance no later than October 14, 2008, if you comply with the standard proposed on April 20, 2004, after October 12, 2005. This exception does not apply, however, to new or reconstructed area source hazardous waste combustors that become major sources after October 14, 2008. As provided by §63.6(b)(7), such sources must comply with this subpart at startup.
- (3) Early compliance. If you choose to comply with the emission standards of this subpart prior to the dates specified in paragraphs (a)(1) and (a)(2) of this section, your compliance date is the earlier of the date you postmark the Notification of Compliance under §63.1207(j)(1) or the dates specified in paragraphs (a)(1) and (a)(2) of this section.
- (b) Compliance with standards —(1) Applicability. The emission standards and operating requirements set forth in this subpart apply at all times except:

- (i) During periods of startup, shutdown, and malfunction; and
- (ii) When hazardous waste is not in the combustion chamber (i.e., the hazardous waste feed to the combustor has been cut off for a period of time not less than the hazardous waste residence time) and you have documented in the operating record that you are complying with all otherwise applicable requirements and standards promulgated under authority of sections 112 (e.g., 40 CFR part 63, subparts LLL, DDDDD, and NNNNN) or 129 of the Clean Air Act in lieu of the emission standards under §§63.1203, 63.1204, 63.1205, 63.1215, 63.1216, 63.1217, 63.1218, 63.1219, 63.1220, and 63.1221; the monitoring and compliance standards of this section and §§63.1207 through 63.1209, except the modes of operation requirements of §63.1209(q); and the notification, reporting, and recordkeeping requirements of §§63.1210 through 63.1212.
- (2) Methods for determining compliance. The Administrator will determine compliance with the emission standards of this subpart as provided by §63.6(f)(2). Conducting performance testing under operating conditions representative of the extreme range of normal conditions is consistent with the requirements of §§63.6(f)(2)(iii)(B) and 63.7(e)(1) to conduct performance testing under representative operating conditions.
- (3) Finding of compliance. The Administrator will make a finding concerning compliance with the emission standards and other requirements of this subpart as provided by §63.6(f)(3).
- (4) Extension of compliance with emission standards. The Administrator may grant an extension of compliance with the emission standards of this subpart as provided by §§63.6(i) and 63.1213.
- (5) Changes in design, operation, or maintenance—(i) Changes that may adversely affect compliance. If you plan to change (as defined in paragraph (b)(5)(iii) of this section) the design, operation, or maintenance practices of the source in a manner that may adversely affect compliance with any emission standard that is not monitored with a CEMS:
- (A) *Notification*. You must notify the Administrator at least 60 days prior to the change, unless you document circumstances that dictate that such prior notice is not reasonably feasible. The notification must include:
- (1) A description of the changes and which emission standards may be affected; and
- (2) A comprehensive performance test schedule and test plan under the requirements of §63.1207(f) that will document compliance with the affected emission standard(s);
- (B) *Performance test*. You must conduct a comprehensive performance test under the requirements of §§63.1207(f)(1) and (g)(1) to document compliance with the affected emission standard(s) and establish operating parameter limits as required under §63.1209, and submit to the Administrator a Notification of Compliance under §63.1207(j) and 63.1210(d); and
- (C) Restriction on waste burning. (1) Except as provided by paragraph (b)(5)(i)(C)(2) of this section, after the change and prior to submitting the notification of compliance, you must not

burn hazardous waste for more than a total of 720 hours (renewable at the discretion of the Administrator) and only for the purposes of pretesting or comprehensive performance testing. Pretesting is defined at §63.1207(h)(2)(i) and (ii).

- (2) You may petition the Administrator to obtain written approval to burn hazardous waste in the interim prior to submitting a Notification of Compliance for purposes other than testing or pretesting. You must specify operating requirements, including limits on operating parameters, that you determine will ensure compliance with the emission standards of this subpart based on available information. The Administrator will review, modify as necessary, and approve if warranted the interim operating requirements.
- (ii) Changes that will not affect compliance. If you determine that a change will not adversely affect compliance with the emission standards or operating requirements, you must document the change in the operating record upon making such change. You must revise as necessary the performance test plan, Documentation of Compliance, Notification of Compliance, and start-up, shutdown, and malfunction plan to reflect these changes.
- (iii) Definition of "change." For purposes of paragraph (b)(5) of this section, "change" means any change in design, operation, or maintenance practices that were documented in the comprehensive performance test plan, Notification of Compliance, or startup, shutdown, and malfunction plan.
- (6) Compliance with the carbon monoxide and hydrocarbon emission standards. This paragraph applies to sources that elect to comply with the carbon monoxide and hydrocarbon emissions standards of this subpart by documenting continuous compliance with the carbon monoxide standard using a continuous emissions monitoring system and documenting compliance with the hydrocarbon standard during the destruction and removal efficiency (DRE) performance test or its equivalent.
- (i) If a DRE test performed pursuant to §63.1207(c)(2) is acceptable as documentation of compliance with the DRE standard, you may use the highest hourly rolling average hydrocarbon level achieved during the DRE test runs to document compliance with the hydrocarbon standard. An acceptable DRE test is any test for which the data and results are determined to meet quality assurance objectives (on a site-specific basis) such that the results adequately demonstrate compliance with the DRE standard.
- (ii) If during this acceptable DRE test you did not obtain hydrocarbon emissions data sufficient to document compliance with the hydrocarbon standard, you must either:
- (A) Perform, as part of the performance test, an "equivalent DRE test" to document compliance with the hydrocarbon standard. An equivalent DRE test is comprised of a minimum of three runs each with a minimum duration of one hour during which you operate the combustor as close as reasonably possible to the operating parameter limits that you established based on the initial DRE test. You must use the highest hourly rolling average hydrocarbon emission level achieved during the equivalent DRE test to document compliance with the hydrocarbon standard; or

- (B) Perform a DRE test as part of the performance test.
- (7) Compliance with the DRE standard. (i) Except as provided in paragraphs (b)(7)(ii) and (b)(7)(iii) of this section:
- (A) You must document compliance with the Destruction and Removal Efficiency (DRE) standard under this subpart only once provided that you do not modify the source after the DRE test in a manner that could affect the ability of the source to achieve the DRE standard.
- (B) You may use any DRE test data that documents that your source achieves the required level of DRE provided:
- (1) You have not modified the design or operation of your source in a manner that could effect the ability of your source to achieve the DRE standard since the DRE test was performed; and,
- (2) The DRE test data meet quality assurance objectives determined on a site-specific basis.
- (ii) Sources that feed hazardous waste at locations other than the normal flame zone. (A) Except as provided by paragraph (b)(7)(ii)(B) of this section, if you feed hazardous waste at a location in the combustion system other than the normal flame zone, then you must demonstrate compliance with the DRE standard during each comprehensive performance test;
- (B)( I ) A cement kiln that feeds hazardous waste at a location other than the normal flame zone need only demonstrate compliance with the DRE standard during three consecutive comprehensive performance tests provided that:
- (i) All three tests achieve the DRE standard in this subpart; and
- ( ii ) The design, operation, and maintenance features of each of the three tests are similar;
- (iii) The data in lieu restriction of §63.1207(c)(2)(iv) does not apply when complying with the provisions of paragraph (b)(7)(ii)(B) of this section;
- (2) If at any time you change your design, operation, and maintenance features in a manner that could reasonably be expected to affect your ability to meet the DRE standard, then you must comply with the requirements of paragraph (b)(7)(ii)(A) of this section.
- (iii) For sources that do not use DRE previous testing to document conformance with the DRE standard pursuant to §63.1207(c)(2), you must perform DRE testing during the initial comprehensive performance test.
- (8) Applicability of particulate matter and opacity standards during particulate matter CEMS correlation tests. (i) Any particulate matter and opacity standards of parts 60, 61, 63, 264, 265, and 266 of this chapter ( i.e., any title 40 particulate or opacity standards) applicable to a hazardous waste combustor do not apply while you conduct particulate matter continuous

emissions monitoring system (CEMS) correlation tests (*i.e.*, correlation with manual stack methods) under the conditions of paragraphs (b)(8)(iii) through (vii) of this section.

- (ii) Any permit or other emissions or operating parameter limits or conditions, including any limitation on workplace practices, that are applicable to hazardous waste combustors to ensure compliance with any particulate matter and opacity standards of parts 60, 61, 63, 264, 265, and 266 of this chapter (*i.e.*, any title 40 particulate or opacity standards) do not apply while you conduct particulate matter CEMS correlation tests under the conditions of paragraphs (b)(8)(iii) through (vii) of this section.
- (iii) For the provisions of this section to apply, you must:
- (A) Develop a particulate matter CEMS correlation test plan that includes the following information. This test plan may be included as part of the comprehensive performance test plan required under §§63.1207(e) and (f):
- (1) Number of test conditions and number of runs for each test condition;
- (2) Target particulate matter emission level for each test condition;
- (3) How you plan to modify operations to attain the desired particulate matter emission levels; and
- (4) Anticipated normal particulate matter emission levels; and
- (B) Submit the test plan to the Administrator for approval at least 90 calendar days before the correlation test is scheduled to be conducted.
- (iv) The Administrator will review and approve/disapprove the correlation test plan under the procedures for review and approval of the site-specific test plan provided by §63.7(c)(3)(i) and (iii). If the Administrator fails to approve or disapprove the correlation test plan within the time period specified by §63.7(c)(3)(i), the plan is considered approved, unless the Administrator has requested additional information.
- (v) The particulate matter and opacity standards and associated operating limits and conditions will not be waived for more than 96 hours, in the aggregate, for a correlation test, including all runs of all test conditions, unless more time is approved by the Administrator.
- (vi) The stack sampling team must be on-site and prepared to perform correlation testing no later than 24 hours after you modify operations to attain the desired particulate matter emissions concentrations, unless you document in the correlation test plan that a longer period of conditioning is appropriate.
- (vii) You must return to operating conditions indicative of compliance with the applicable particulate matter and opacity standards as soon as possible after correlation testing is completed.

- (9) Alternative standards for existing or new hazardous waste burning lightweight aggregate kilns using MACT. (i) You may petition the Administrator to request alternative standards to the mercury or hydrogen chloride/chlorine gas emission standards of this subpart, to the semivolatile metals emission standards under §§63.1205, 63.1221(a)(3)(ii), or 63.1221(b)(3)(ii), or to the low volatile metals emissions standards under §§63.1205, 63.1221(a)(4)(ii), or 63.1221(b)(4)(ii) if:
- (A) You cannot achieve one or more of these standards while using maximum achievable control technology (MACT) because of raw material contributions to emissions of mercury, semivolatile metals, low volatile metals, or hydrogen chloride/chlorine gas; or
- (B) You determine that mercury is not present at detectable levels in your raw material.
- (ii) The alternative standard that you recommend under paragraph (b)(9)(i)(A) of this section may be an operating requirement, such as a hazardous waste feedrate limitation for metals and/or chlorine, and/or an emission limitation.
- (iii) The alternative standard must include a requirement to use MACT, or better, applicable to the standard for which the source is seeking relief, as defined in paragraphs (b)(9)(viii) and (ix) of this section.
- (iv) Documentation required. (A) The alternative standard petition you submit under paragraph (b)(9)(i)(A) of this section must include data or information documenting that raw material contributions to emissions prevent you from complying with the emission standard even though the source is using MACT, as defined under paragraphs (b)(9)(viii) and (ix) of this section, for the standard for which you are seeking relief.
- (B) Alternative standard petitions that you submit under paragraph (b)(9)(i)(B) of this section must include data or information documenting that mercury is not present at detectable levels in raw materials.
- (v) You must include data or information with semivolatile metal and low volatility metal alternative standard petitions that you submit under paragraph (b)(9)(i)(A) of this section documenting that increased chlorine feedrates associated with the burning of hazardous waste, when compared to non-hazardous waste operations, do not significantly increase metal emissions attributable to raw materials.
- (vi) You must include data or information with semivolatile metals, low volatile metals, and hydrogen chloride/chlorine gas alternative standard petitions that you submit under paragraph (b)(9)(i)(A) of this section documenting that semivolatile metals, low volatile metals, and hydrogen chloride/chlorine gas emissions attributable to the hazardous waste only will not exceed the emission standards of this subpart.
- (vii) You must not operate pursuant to your recommended alternative standards in lieu of emission standards specified in this subpart:

- (A) Unless the Administrator approves the provisions of the alternative standard petition request or establishes other alternative standards; and
- (B) Until you submit a revised Notification of Compliance that incorporates the revised standards.
- (viii) For purposes of this alternative standard provision, MACT for existing hazardous waste burning lightweight aggregate kilns is defined as:
- (A) For mercury, a hazardous waste feedrate corresponding to an MTEC of 24 μg/dscm or less;
- (B) For semivolatile metals, a hazardous waste feedrate corresponding to an MTEC of 280,000  $\mu$ g/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 57 mg/dscm or less;
- (C) For low volatile metals, a hazardous waste feedrate corresponding to an MTEC of 120,000  $\mu$ g/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 57 mg/dscm or less; and
- (D) For hydrogen chloride/chlorine gas, a hazardous waste chlorine feedrate corresponding to an MTEC of  $2,000,000~\mu gm/dscm$  or less, and use of an air pollution control device with a hydrogen chloride/chlorine gas removal efficiency of 85 percent or greater.
- (ix) For purposes of this alternative standard provision, MACT for new hazardous waste burning lightweight aggregate kilns is defined as:
- (A) For mercury, a hazardous waste feedrate corresponding to an MTEC of 4 µg/dscm or less;
- (B) For semivolatile metals, a hazardous waste feedrate corresponding to an MTEC of 280,000  $\mu$ g/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 57 mg/dscm or less;
- (C) For low volatile metals, a hazardous waste feedrate corresponding to an MTEC of 46,000  $\mu g/dscm$  or less, and use of a particulate matter control device that achieves particulate matter emissions of 57 mg/dscm or less;
- (D) For hydrogen chloride/chlorine gas, a hazardous waste chlorine feedrate corresponding to an MTEC of 14,000,000  $\mu$ gm/dscm or less, and use of an air pollution control device with a hydrogen chloride/chlorine gas removal efficiency of 99.6 percent or greater.
- (10) Alternative standards for existing or new hazardous waste burning cement kilns using MACT. (i) You may petition the Administrator to request alternative standards to the mercury or hydrogen chloride/chlorine gas emission standards of this subpart, to the semivolatile metals emission standards under §§63.1204, 63.1220(a)(3)(ii), or 63.1220(b)(3)(ii), or to the low volatile metals emissions standards under §§63.1204, 63.1220(a)(4)(ii), or 63.1220(b)(4)(ii) if:

- (A) You cannot achieve one or more of these standards while using maximum achievable control technology (MACT) because of raw material contributions to emissions of mercury, semivolatile metals, low volatile metals, or hydrogen chloride/chlorine gas; or
- (B) You determine that mercury is not present at detectable levels in your raw material.
- (ii) The alternative standard that you recommend under paragraph (b)(10)(i)(A) of this section may be an operating requirement, such as a hazardous waste feedrate limitation for metals and/or chlorine, and/or an emission limitation.
- (iii) The alternative standard must include a requirement to use MACT, or better, applicable to the standard for which the source is seeking relief, as defined in paragraphs (b)(10)(viii) and (ix) of this section.
- (iv) Documentation required. (A) The alternative standard petition you submit under paragraph (b)(10)(i)(A) of this section must include data or information documenting that raw material contributions to emissions prevent you from complying with the emission standard even though the source is using MACT, as defined in paragraphs (b)(10)(viii) and (ix) of this section, for the standard for which you are seeking relief.
- (B) Alternative standard petitions that you submit under paragraph (b)(10)(i)(B) of this section must include data or information documenting that mercury is not present at detectable levels in raw materials.
- (v) You must include data or information with semivolatile metal and low volatile metal alternative standard petitions that you submit under paragraph (b)(10)(i)(A) of this section documenting that increased chlorine feedrates associated with the burning of hazardous waste, when compared to non-hazardous waste operations, do not significantly increase metal emissions attributable to raw materials.
- (vi) You must include data or information with semivolatile metals, low volatile metals, and hydrogen chloride/chlorine gas alternative standard petitions that you submit under paragraph (b)(10)(i)(A) of this section documenting that emissions of the regulated metals and hydrogen chloride/chlorine gas attributable to the hazardous waste only will not exceed the emission standards in this subpart.
- (vii) You must not operate pursuant to your recommended alternative standards in lieu of emission standards specified in this subpart:
- (A) Unless the Administrator approves the provisions of the alternative standard petition request or establishes other alternative standards; and
- (B) Until you submit a revised Notification of Compliance that incorporates the revised standards.

- (viii) For purposes of this alternative standard provision, MACT for existing hazardous waste burning cement kilns is defined as:
- (A) For mercury, a hazardous waste feedrate corresponding to an MTEC of 88 μg/dscm or less;
- (B) For semivolatile metals, a hazardous waste feedrate corresponding to an MTEC of 31,000 μg/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 0.15 kg/Mg dry feed or less;
- (C) For low volatile metals, a hazardous waste feedrate corresponding to an MTEC of 54,000 µg/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 0.15 kg/Mg dry feed or less; and
- (D) For hydrogen chloride/chlorine gas, a hazardous waste chlorine feedrate corresponding to an MTEC of 720,000 µgm/dscm or less.
- (ix) For purposes of this alternative standard provision, MACT for new hazardous waste burning cement kilns is defined as:
- (A) For mercury, a hazardous waste feedrate corresponding to an MTEC of 7 μg/dscm or less;
- (B) For semivolatile metals, a hazardous waste feedrate corresponding to an MTEC of 31,000  $\mu$ g/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 0.15 kg/Mg dry feed or less;
- (C) For low volatile metals, a hazardous waste feedrate corresponding to an MTEC of 15,000  $\mu$ g/dscm or less, and use of a particulate matter control device that achieves particulate matter emissions of 0.15 kg/Mg dry feed or less;
- (D) For hydrogen chloride/chlorine gas, a hazardous waste chlorine feedrate corresponding to an MTEC of  $420,000~\mu gm/dscm$  or less.
- (11) Calculation of hazardous waste residence time. You must calculate the hazardous waste residence time and include the calculation in the performance test plan under §63.1207(f) and the operating record. You must also provide the hazardous waste residence time in the Documentation of Compliance under §63.1211(c) and the Notification of Compliance under §83.1207(j) and 63.1210(d).
- (12) Documenting compliance with the standards based on performance testing. (i) You must conduct a minimum of three runs of a performance test required under §63.1207 to document compliance with the emission standards of this subpart.
- (ii) You must document compliance with the emission standards based on the arithmetic average of the emission results of each run, except that you must document compliance with the destruction and removal efficiency standard for each run of the comprehensive performance test individually.

- (13) Cement kilns and lightweight aggregate kilns that feed hazardous waste at a location other than the end where products are normally discharged and where fuels are normally fired. (i) Cement kilns that feed hazardous waste at a location other than the end where products are normally discharged and where fuels are normally fired must comply with the carbon monoxide and hydrocarbon standards of this subpart as follows:
- (A) For existing sources, you must not discharge or cause combustion gases to be emitted into the atmosphere that contain either:
- (1) Hydrocarbons in the main stack in excess of 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (2) Hydrocarbons both in the by-pass duct and at a preheater tower combustion gas monitoring location in excess of 10 parts per million by volume, at each location, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (3) If the only firing location of hazardous waste upstream (in terms of gas flow) of the point where combustion gases are diverted into the bypass duct is at the kiln end where products are normally discharged, then both hydrocarbons at the preheater tower combustion gas monitoring location in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, and either hydrocarbons in the by-pass duct in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, or carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, and corrected to 7 percent oxygen. If you comply with the carbon monoxide standard of 100 parts per million by volume in the by-pass duct, then you must also not discharge or cause combustion gases to be emitted into the atmosphere that contain hydrocarbons in the by-pass duct in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, at any time during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7).
- (B) For new sources, you must not discharge or cause combustion gases to be emitted into the atmosphere that contain either:
- (1) Hydrocarbons in the main stack in excess of 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (2)(i) Hydrocarbons both in the by-pass duct and at a preheater tower combustion gas monitoring location in excess of 10 parts per million by volume, at each location, over an hourly

rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, and

- ( *ii* ) Hydrocarbons in the main stack, if construction of the kiln commenced after April 19, 1996 at a plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over a 30-day block average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (3)(i) If the only firing location of hazardous waste upstream (in terms of gas flow) of the point where combustion gases are diverted into the bypass duct is at the kiln end where products are normally discharged, then both hydrocarbons at the preheater tower combustion gas monitoring location in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, and either hydrocarbons in the by-pass duct in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, or carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, and corrected to 7 percent oxygen. If you comply with the carbon monoxide standard of 100 parts per million by volume in the by-pass duct, then you must also not discharge or cause combustion gases to be emitted into the atmosphere that contain hydrocarbons in the by-pass duct in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane, at any time during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7).
- (ii) If construction of the kiln commenced after April 19, 1996 at a plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, hydrocarbons are limited to 50 parts per million by volume, over a 30-day block average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.
- (ii) Lightweight aggregate kilns that feed hazardous waste at a location other than the end where products are normally discharged and where fuels are normally fired must comply with the hydrocarbon standards of this subpart as follows:
- (A) Existing sources must comply with the 20 parts per million by volume hydrocarbon standard of this subpart;
- (B) New sources must comply with the 20 parts per million by volume hydrocarbon standard of this subpart.
- (14) Alternative to the particulate matter standard for incinerators—(i) General. In lieu of complying with the particulate matter standards under §63.1203, you may elect to comply with the following alternative metal emission control requirements:

- (ii) Alternative metal emission control requirements for existing incinerators. (A) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of 240 μgm/dscm, combined emissions, corrected to 7 percent oxygen; and,
- (B) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 97 µgm/dscm, combined emissions, corrected to 7 percent oxygen.
- (iii) Alternative metal emission control requirements for new incinerators. (A) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of 24 μgm/dscm, combined emissions, corrected to 7 percent oxygen; and,
- (B) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 97 μgm/dscm, combined emissions, corrected to 7 percent oxygen.
- (iv) Operating limits. Semivolatile and low volatile metal operating parameter limits must be established to ensure compliance with the alternative emission limitations described in paragraphs (b)(14)(ii) and (iii) of this section pursuant to §63.1209(n), except that semivolatile metal feedrate limits apply to lead, cadmium, and selenium, combined, and low volatile metal feedrate limits apply to arsenic, beryllium, chromium, antimony, cobalt, manganese, and nickel, combined.
- (15) Alternative to the interim standards for mercury for cement and lightweight aggregate kilns.

  —(i) General. In lieu of complying with the applicable mercury standards of §§63.1204(a)(2) and (b)(2) for existing and new cement kilns and §§63.1205(a)(2) and (b)(2) for existing and new lightweight aggregate kilns, you may instead elect to comply with the alternative mercury standard described in paragraphs (b)(15)(ii) through (b)(15)(v) of this section.
- (ii) Operating requirement. You must not exceed a hazardous waste feedrate corresponding to a maximum theoretical emission concentration (MTEC) of 120  $\mu$ g/dscm on a twelve-hour rolling average.
- (iii) To document compliance with the operating requirement of paragraph (b)(15)(ii) of this section, you must:
- (A) Monitor and record the feedrate of mercury for each hazardous waste feedstream according to §63.1209(c);
- (B) Monitor with a CMS and record in the operating record the gas flowrate (either directly or by monitoring a surrogate parameter that you have correlated to gas flowrate);
- (C) Continuously calculate and record in the operating record a MTEC assuming mercury from all hazardous waste feedstreams is emitted;

- (D) Interlock the MTEC calculated in paragraph (b)(15)(iii)(C) of this section to the AWFCO system to stop hazardous waste burning when the MTEC exceeds the operating requirement of paragraph (b)(15)(ii) of this section.
- (iv) In lieu of the requirement in paragraph (b)(15)(iii) of this section, you may:
- (A) Identify in the Notification of Compliance a minimum gas flowrate limit and a maximum feedrate limit of mercury from all hazardous waste feedstreams that ensures the MTEC calculated in paragraph (b)(15)(iii)(C) of this section is below the operating requirement of paragraph (b)(15)(ii) of this section; and
- (B) Interlock the minimum gas flowrate limit and maximum feedrate limits in paragraph (b)(15)(iv)(A) of this section to the AWFCO system to stop hazardous waste burning when the gas flowrate or mercury feedrate exceeds the limits in paragraph (b)(15)(iv)(A) of this section.
- (v) *Notification requirement*. You must notify in writing the RCRA authority that you intend to comply with the alternative standard.
- (16) Compliance with subcategory standards for liquid fuel boilers. You must comply with the mercury, semivolatile metals, low volatile metals, and hydrogen chloride and chlorine standards for liquid fuel boilers under §63.1217 as follows:
- (i) You must determine the as-fired heating value of each batch of hazardous waste fired by each firing system of the boiler so that you know the mass-weighted heating value of the hazardous waste fired at all times.
- (ii) If the as-fired heating value of the hazardous waste is 10,000 Btu per pound or greater, you are subject to the thermal emission concentration standards (lb/million Btu) under §63.1217.
- (iii) If the as-fired heating value of the hazardous waste is less than 10,000 Btu/lb, you are subject to the mass or volume emission concentration standards (μgm/dscm or ppmv) under §63.1217.
- (iv) If the as-fired heating value of hazardous wastes varies above and below 10,000 Btu/lb over time, you are subject to the thermal concentration standards when the heating value is 10,000 Btu/lb or greater and the mass concentration standards when the heating value is less than 10,000 Btu/lb. You may elect to comply at all times with the more stringent operating requirements that ensure compliance with both the thermal emission concentration standards and the mass or volume emission concentration standards.
- (c) Operating requirements —(1) General. (i) You must operate only under the operating requirements specified in the Documentation of Compliance under §63.1211(c) or the Notification of Compliance under §863.1207(j) and 63.1210(d), except:
- (A) During performance tests under approved test plans according to §63.1207(e), (f), and (g), and

- (B) Under the conditions of paragraph (b)(1)(i) or (ii) of this section;
- (ii) The Documentation of Compliance and the Notification of Compliance must contain operating requirements including, but not limited to, the operating requirements in this section and §63.1209
- (iii) Failure to comply with the operating requirements is failure to ensure compliance with the emission standards of this subpart;
- (iv) Operating requirements in the Notification of Compliance are applicable requirements for purposes of parts 70 and 71 of this chapter;
- (v) The operating requirements specified in the Notification of Compliance will be incorporated in the title V permit.
- (2) Startup, shutdown, and malfunction plan. (i) You are subject to the startup, shutdown, and malfunction plan requirements of §63.6(e)(3).
- (ii) If you elect to comply with §§270.235(a)(1)(iii), 270.235(a)(2)(iii), or 270.235(b)(1)(ii) of this chapter to address RCRA concerns that you minimize emissions of toxic compounds from startup, shutdown, and malfunction events (including releases from emergency safety vents):
- (A) The startup, shutdown, and malfunction plan must include a description of potential causes of malfunctions, including releases from emergency safety vents, that may result in significant releases of hazardous air pollutants, and actions the source is taking to minimize the frequency and severity of those malfunctions.
- (B) You must submit the startup, shutdown, and malfunction plan to the Administrator for review and approval.
- (1) Approval procedure. The Administrator will notify you of approval or intention to deny approval of the startup, shutdown, and malfunction plan within 90 calendar days after receipt of the original request and within 60 calendar days after receipt of any supplemental information that you submit. Before disapproving the plan, the Administrator will notify you of the Administrator's intention to disapprove the plan together with:
- (i) Notice of the information and findings on which intended disapproval is based; and
- ( ii ) Notice of opportunity for you to present additional information to the Administrator before final action on disapproval of the plan. At the time the Administrator notifies you of intention to disapprove the plan, the Administrator will specify how much time you will have after being notified on the intended disapproval to submit additional information.
- (2) Responsibility of owners and operators. You are responsible for ensuring that you submit any supplementary and additional information supporting your plan in a timely manner to enable the Administrator to consider whether to approve the plan. Neither your submittal of the plan,

nor the Administrator's failure to approve or disapprove the plan, relieves you of the responsibility to comply with the provisions of this subpart.

- (C) Changes to the plan that may significantly increase emissions. (1) You must request approval in writing from the Administrator within 5 days after making a change to the startup, shutdown, and malfunction plan that may significantly increase emissions of hazardous air pollutants.
- (2) To request approval of such changes to the startup, shutdown, and malfunction plan, you must follow the procedures provided by paragraph (c)(2)(ii)(B) of this section for initial approval of the plan.
- (iii) You must identify in the plan a projected oxygen correction factor based on normal operations to use during periods of startup and shutdown.
- (iv) You must record the plan in the operating record.
- (v) Operating under the startup, shutdown, and malfunction plan. (A) Compliance with AWFCO requirements during malfunctions. (1) During malfunctions, the automatic waste feed cutoff requirements of §63.1206(c)(3) continue to apply, except for paragraphs (c)(3)(v) and (c)(3)(vi) of this section. If you exceed a part 63, Subpart EEE, of this chapter emission standard monitored by a CEMS or COMs or operating limit specified under §63.1209, the automatic waste feed cutoff system must immediately and automatically cutoff the hazardous waste feed, except as provided by paragraph (c)(3)(viii) of this section. If the malfunction itself prevents immediate and automatic cutoff of the hazardous waste feed, however, you must cease feeding hazardous waste as quickly as possible.
- (2) Although the automatic waste feed cutoff requirements continue to apply during a malfunction, an exceedance of an emission standard monitored by a CEMS or COMS or operating limit specified under §63.1209 is not a violation of this subpart if you take the corrective measures prescribed in the startup, shutdown, and malfunction plan.
- (3) Excessive exceedances during malfunctions. For each set of 10 exceedances of an emission standard or operating requirement while hazardous waste remains in the combustion chamber ( *i.e.*, when the hazardous waste residence time has not transpired since the hazardous waste feed was cutoff) during a 60-day block period, you must:
- (i) Within 45 days of the 10th exceedance, complete an investigation of the cause of each exceedance and evaluation of approaches to minimize the frequency, duration, and severity of each exceedance, and revise the startup, shutdown, and malfunction plan as warranted by the evaluation to minimize the frequency, duration, and severity of each exceedance; and
- (ii) Record the results of the investigation and evaluation in the operating record, and include a summary of the investigation and evaluation, and any changes to the startup, shutdown, and malfunction plan, in the excess emissions report required under §63.10(e)(3).

- (B) Compliance with AWFCO requirements when burning hazardous waste during startup and shutdown. (1) If you feed hazardous waste during startup or shutdown, you must include waste feed restrictions (e.g., type and quantity), and other appropriate operating conditions and limits in the startup, shutdown, and malfunction plan.
- (2) You must interlock the operating limits you establish under paragraph (c)(2)(v)(B)(1) of this section with the automatic waste feed cutoff system required under  $\S63.1206(c)(3)$ , except for paragraphs (c)(3)(v) and (c)(3)(vi) of this section.
- (3) When feeding hazardous waste during startup or shutdown, the automatic waste feed cutoff system must immediately and automatically cutoff the hazardous waste feed if you exceed the operating limits you establish under paragraph (c)(2)(v)(B)(1) of this section, except as provided by paragraph (c)(3)(viii) of this section.
- (4) Although the automatic waste feed cutoff requirements of this paragraph apply during startup and shutdown, an exceedance of an emission standard or operating limit is not a violation of this subpart if you comply with the operating procedures prescribed in the startup, shutdown, and malfunction plan.
- (3) Automatic waste feed cutoff (AWFCO) (i) General. Upon the compliance date, you must operate the hazardous waste combustor with a functioning system that immediately and automatically cuts off the hazardous waste feed, except as provided by paragraph (c)(3)(viii) of this section:
- (A) When any of the following are exceeded: Operating parameter limits specified under §63.1209; an emission standard monitored by a CEMS; and the allowable combustion chamber pressure;
- (B) When the span value of any CMS detector, except a CEMS, is met or exceeded;
- (C) Upon malfunction of a CMS monitoring an operating parameter limit specified under §63.1209 or an emission level; or
- (D) When any component of the automatic waste feed cutoff system fails.
- (ii) Ducting of combustion gases. During an AWFCO, you must continue to duct combustion gasses to the air pollution control system while hazardous waste remains in the combustion chamber ( *i.e.*, if the hazardous waste residence time has not transpired since the hazardous waste feed cutoff system was activated).
- (iii) Restarting waste feed. You must continue to monitor during the cutoff the operating parameters for which limits are established under §63.1209 and the emissions required under that section to be monitored by a CEMS, and you must not restart the hazardous waste feed until the operating parameters and emission levels are within the specified limits.

- (iv) Failure of the AWFCO system. If the AWFCO system fails to automatically and immediately cutoff the flow of hazardous waste upon exceedance of a parameter required to be interlocked with the AWFCO system under paragraph (c)(3)(i) of this section, you have failed to comply with the AWFCO requirements of paragraph (c)(3) of this section. If an equipment or other failure prevents immediate and automatic cutoff of the hazardous waste feed, however, you must cease feeding hazardous waste as quickly as possible.
- (v) Corrective measures. If, after any AWFCO, there is an exceedance of an emission standard or operating requirement, irrespective of whether the exceedance occurred while hazardous waste remained in the combustion chamber (i.e., whether the hazardous waste residence time has transpired since the hazardous waste feed cutoff system was activated), you must investigate the cause of the AWFCO, take appropriate corrective measures to minimize future AWFCOs, and record the findings and corrective measures in the operating record.
- (vi) Excessive exceedance reporting. (A) For each set of 10 exceedances of an emission standard or operating requirement while hazardous waste remains in the combustion chamber (*i.e.*, when the hazardous waste residence time has not transpired since the hazardous waste feed was cutoff) during a 60-day block period, you must submit to the Administrator a written report within 5 calendar days of the 10th exceedance documenting the exceedances and results of the investigation and corrective measures taken.
- (B) On a case-by-case basis, the Administrator may require excessive exceedance reporting when fewer than 10 exceedances occur during a 60-day block period.
- (vii) *Testing*. The AWFCO system and associated alarms must be tested at least weekly to verify operability, unless you document in the operating record that weekly inspections will unduly restrict or upset operations and that less frequent inspection will be adequate. At a minimum, you must conduct operability testing at least monthly. You must document and record in the operating record AWFCO operability test procedures and results.
- (viii) Ramping down waste feed. (A) You may ramp down the waste feedrate of pumpable hazardous waste over a period not to exceed one minute, except as provided by paragraph (c)(3)(viii)(B) of this section. If you elect to ramp down the waste feed, you must document ramp down procedures in the operating and maintenance plan. The procedures must specify that the ramp down begins immediately upon initiation of automatic waste feed cutoff and the procedures must prescribe a bona fide ramping down. If an emission standard or operating limit is exceeded during the ramp down, you have failed to comply with the emission standards or operating requirements of this subpart.
- (B) If the automatic waste feed cutoff is triggered by an exceedance of any of the following operating limits, you may not ramp down the waste feed cutoff: Minimum combustion chamber temperature, maximum hazardous waste feedrate, or any hazardous waste firing system operating limits that may be established for your combustor.
- (4) ESV openings—(i) Failure to meet standards. If an emergency safety vent (ESV) opens when hazardous waste remains in the combustion chamber (i.e., when the hazardous waste

residence time has not expired) during an event other than a malfunction as defined in the startup, shutdown, and malfunction plan such that combustion gases are not treated as during the most recent comprehensive performance test (e.g., if the combustion gas by-passes any emission control device that was operating during the performance test), you must document in the operating record whether you remain in compliance with the emission standards of this subpart considering emissions during the ESV opening event.

- (ii) ESV operating plan. (A) You must develop an ESV operating plan, comply with the operating plan, and keep the plan in the operating record.
- (B) The ESV operating plan must provide detailed procedures for rapidly stopping the waste feed, shutting down the combustor, and maintaining temperature and negative pressure in the combustion chamber during the hazardous waste residence time, if feasible. The plan must include calculations and information and data documenting the effectiveness of the plan's procedures for ensuring that combustion chamber temperature and negative pressure are maintained as is reasonably feasible.
- (iii) Corrective measures. After any ESV opening that results in a failure to meet the emission standards as defined in paragraph (c)(4)(i) of this section, you must investigate the cause of the ESV opening, take appropriate corrective measures to minimize such future ESV openings, and record the findings and corrective measures in the operating record.
- (iv) Reporting requirements. You must submit to the Administrator a written report within 5 days of an ESV opening that results in failure to meet the emission standards of this subpart (as determined in paragraph (c)(4)(i) of this section) documenting the result of the investigation and corrective measures taken.
- (5) Combustion system leaks. (i) Combustion system leaks of hazardous air pollutants must be controlled by:
- (A) Keeping the combustion zone sealed to prevent combustion system leaks; or
- (B) Maintaining the maximum combustion zone pressure lower than ambient pressure using an instantaneous monitor; or
- (C) Upon prior written approval of the Administrator, an alternative means of control to provide control of combustion system leaks equivalent to maintenance of combustion zone pressure lower than ambient pressure; or
- (D) Upon prior written approval of the Administrator, other technique(s) which can be demonstrated to prevent fugitive emissions without use of instantaneous pressure limits; and
- (ii) You must specify in the performance test workplan and Notification of Compliance the method that will be used to control combustion system leaks. If you control combustion system leaks by maintaining the combustion zone pressure lower than ambient pressure using an instantaneous monitor, you must also specify in the performance test workplan and Notification

- of Compliance the monitoring and recording frequency of the pressure monitor, and specify how the monitoring approach will be integrated into the automatic waste feed cutoff system.
- (6) Operator training and certification. (i) You must establish training programs for all categories of personnel whose activities may reasonably be expected to directly affect emissions of hazardous air pollutants from the source. Such persons include, but are not limited to, chief facility operators, control room operators, continuous monitoring system operators, persons that sample and analyze feedstreams, persons that manage and charge feedstreams to the combustor, persons that operate emission control devices, and ash and waste handlers. Each training program shall be of a technical level commensurate with the person's job duties specified in the training manual. Each commensurate training program shall require an examination to be administered by the instructor at the end of the training course. Passing of this test shall be deemed the "certification" for personnel, except that, for control room operators, the training and certification program shall be as specified in paragraphs (c)(6)(iii) through (c)(6)(vi) of this section.
- (ii) You must ensure that the source is operated and maintained at all times by persons who are trained and certified to perform these and any other duties that may affect emissions of hazardous air pollutants. A certified control room operator must be on duty at the site at all times the source is in operation.
- (iii) Hazardous waste incinerator control room operators must:
- (A) Be trained and certified under a site-specific, source-developed and implemented program that meets the requirements of paragraph (c)(6)(v) of this section; or
- (B) Be trained under the requirements of, and certified under, one of the following American Society of Mechanical Engineers (ASME) standards: QHO-1-1994, QHO-1a-1996, or QHO-1-2004 (Standard for the Qualification and Certification of Hazardous Waste Incinerator Operators). If you elect to use the ASME program:
- (1) Control room operators must, prior to the compliance date, achieve provisional certification, and must submit an application to ASME and be scheduled for the full certification exam. Within one year of the compliance date, control room operators must achieve full certification;
- (2) New operators and operators of new sources must, before assuming their duties, achieve provisional certification, and must submit an application to ASME, and be scheduled for the full certification exam. Within one year of assuming their duties, these operators must achieve full certification; or
- (C) Be trained and certified under a State program.
- (iv) Control room operators of cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers, and hydrochloric acid production furnaces must be trained and certified under:

- (A) A site-specific, source-developed and implemented program that meets the requirements of paragraph (c)(6)(v) of this section; or
- (B) A State program.
- (v) Site-specific, source developed and implemented training programs for control room operators must include the following elements:
- (A) Training on the following subjects:
- (1) Environmental concerns, including types of emissions;
- (2) Basic combustion principles, including products of combustion;
- (3) Operation of the specific type of combustor used by the operator, including proper startup, waste firing, and shutdown procedures;
- (4) Combustion controls and continuous monitoring systems;
- (5) Operation of air pollution control equipment and factors affecting performance;
- (6) Inspection and maintenance of the combustor, continuous monitoring systems, and air pollution control devices;
- (7) Actions to correct malfunctions or conditions that may lead to malfunction;
- (8) Residue characteristics and handling procedures; and
- (9) Applicable Federal, state, and local regulations, including Occupational Safety and Health Administration workplace standards; and
- (B) An examination designed and administered by the instructor; and
- (C) Written material covering the training course topics that may serve as reference material following completion of the course.
- (vi) To maintain control room operator qualification under a site-specific, source developed and implemented training program as provided by paragraph (c)(6)(v) of this section, control room operators must complete an annual review or refresher course covering, at a minimum, the following topics:
- (A) Update of regulations;
- (B) Combustor operation, including startup and shutdown procedures, waste firing, and residue handling;

- (C) Inspection and maintenance;
- (D) Responses to malfunctions or conditions that may lead to malfunction; and
- (E) Operating problems encountered by the operator.
- (vii) You must record the operator training and certification program in the operating record.
- (7) Operation and maintenance plan —(i) You must prepare and at all times operate according to an operation and maintenance plan that describes in detail procedures for operation, inspection, maintenance, and corrective measures for all components of the combustor, including associated pollution control equipment, that could affect emissions of regulated hazardous air pollutants.
- (ii) The plan must prescribe how you will operate and maintain the combustor in a manner consistent with good air pollution control practices for minimizing emissions at least to the levels achieved during the comprehensive performance test.
- (iii) This plan ensures compliance with the operation and maintenance requirements of §63.6(e) and minimizes emissions of pollutants, automatic waste feed cutoffs, and malfunctions.
- (iv) You must record the plan in the operating record.
- (8) Bag leak detection system requirements. (i) If your combustor is equipped with a baghouse (fabric filter), you must continuously operate either:
- (A) A bag leak detection system that meets the specifications and requirements of paragraph (c)(8)(ii) of this section and you must comply with the corrective measures and notification requirements of paragraphs (c)(8)(iii) and (iv) of this section; or
- (B) A particulate matter detection system under paragraph (c)(9) of this section.
- (ii) Bag leak detection system specification and requirements. (A) The bag leak detection system must be certified by the manufacturer to be capable of continuously detecting and recording particulate matter emissions at concentrations of 1.0 milligrams per actual cubic meter unless you demonstrate, under §63.1209(g)(1), that a higher detection limit would routinely detect particulate matter loadings during normal operations;
- (B) The bag leak detection system shall provide output of relative or absolute particulate matter loadings;
- (C) The bag leak detection system shall be equipped with an alarm system that will sound an audible alarm when an increase in relative particulate loadings is detected over a preset level;
- (D) The bag leak detection system shall be installed and operated in a manner consistent with available written guidance from the U.S. Environmental Protection Agency or, in the absence of

such written guidance, the manufacturer's written specifications and recommendations for installation, operation, and adjustment of the system;

- (E) The initial adjustment of the system shall, at a minimum, consist of establishing the baseline output by adjusting the sensitivity (range) and the averaging period of the device, and establishing the alarm set points and the alarm delay time;
- (F) Following initial adjustment, you must not adjust the sensitivity or range, averaging period, alarm set points, or alarm delay time, except as detailed in the operation and maintenance plan required under paragraph (c)(7) of this section. You must not increase the sensitivity by more than 100 percent or decrease the sensitivity by more than 50 percent over a 365 day period unless such adjustment follows a complete baghouse inspection which demonstrates the baghouse is in good operating condition;
- (G) For negative pressure or induced air baghouses, and positive pressure baghouses that are discharged to the atmosphere through a stack, the bag leak detector shall be installed downstream of the baghouse and upstream of any wet acid gas scrubber; and
- (H) Where multiple detectors are required, the system's instrumentation and alarm system may be shared among the detectors.
- (iii) Bag leak detection system corrective measures requirements. The operating and maintenance plan required by paragraph (c)(7) of this section must include a corrective measures plan that specifies the procedures you will follow in the case of a bag leak detection system alarm or malfunction. The corrective measures plan must include, at a minimum, the procedures used to determine and record the time and cause of the alarm or bag leak detection system malfunction in accordance with the requirements of paragraph (c)(8)(iii)(A) of this section as well as the corrective measures taken to correct the control device or bag leak detection system malfunction or to minimize emissions in accordance with the requirements of paragraph (c)(8)(iii)(B) of this section. Failure to initiate the corrective measures required by this paragraph is failure to ensure compliance with the emission standards in this subpart.
- (A) You must initiate the procedures used to determine the cause of the alarm or bag leak detection system malfunction within 30 minutes of the time the alarm first sounds; and
- (B) You must alleviate the cause of the alarm or bag leak detection system malfunction by taking the necessary corrective measure(s) which may include, but are not to be limited to, the following:
- (1) Inspecting the baghouse for air leaks, torn or broken filter elements, or any other malfunction that may cause an increase in emissions;
- (2) Sealing off defective bags or filter media;
- (3) Replacing defective bags or filter media, or otherwise repairing the control device;

- (4) Sealing off a defective baghouse compartment;
- (5) Cleaning the bag leak detection system probe, or otherwise repairing the bag leak detection system; or
- (6) Shutting down the combustor.
- (iv) Excessive exceedances notification. If you operate the combustor when the detector response exceeds the alarm set-point or the bag leak detection system is malfunctioning more than 5 percent of the time during any 6-month block time period, you must submit a notification to the Administrator within 30 days of the end of the 6-month block time period that describes the causes of the exceedances and bag leak detection system malfunctions and the revisions to the design, operation, or maintenance of the combustor, baghouse, or bag leak detection system you are taking to minimize exceedances and bag leak detection system malfunctions. To document compliance with this requirement:
- (A) You must keep records of the date, time, and duration of each alarm and bag leak detection system malfunction, the time corrective action was initiated and completed, and a brief description of the cause of the alarm or bag leak detection system malfunction and the corrective action taken;
- (B) You must record the percent of the operating time during each 6-month period that the alarm sounds and the bag leak detection system malfunctions;
- (C) If inspection of the fabric filter demonstrates that no corrective action is required, then no alarm time is counted; and
- (D) If corrective action is required, each alarm shall be counted as a minimum of 1 hour. Each bag leak detection system malfunction shall also be counted as a minimum of 1 hour.
- (9) Particulate matter detection system requirements. You must continuously operate a particulate matter detection system (PMDS) that meets the specifications and requirements of paragraphs (c)(9)(i) through (v) of this section and you must comply with the corrective measures and notification requirements of paragraphs (c)(9)(vii) and (viii) of this section if your combustor either: Is equipped with an electrostatic precipitator or ionizing wet scrubber and you do not establish site-specific control device operating parameter limits under §63.1209(m)(1)(iv) that are linked to the automatic waste feed cutoff system under paragraph (c)(3) of this section, or is equipped with a baghouse (fabric filter) and you do not operate a bag leak detection system as provided by paragraph (c)(8)(i)(B) of this section.
- (i) PMDS requirements.—(A) The PMDS must be certified by the manufacturer to be capable of continuously detecting and recording particulate matter emissions at concentrations of 1.0 milligrams per actual cubic meter unless you demonstrate, under §63.1209(g)(1), that a higher detection limit would routinely detect particulate matter loadings during normal operations;

- (B) The particulate matter detector shall provide output of relative or absolute particulate matter loadings;
- (C) The PMDS shall be equipped with an alarm system that will sound an audible alarm when an increase in relative or absolute particulate loadings is detected over the set-point;
- (D) You must install, operate, and maintain the PMDS in a manner consistent with the provisions of paragraph (c)(9) of this section and available written guidance from the U.S. Environmental Protection Agency or, in the absence of such written guidance, the manufacturer's written specifications and recommendations for installation, operation, maintenance and quality assurance of the system.
- (1) Set-points established without extrapolation. If you establish the alarm set-point without extrapolation under paragraph (c)(9)(iii)(A) of this section, you must request approval from the regulatory authority, in the continuous monitoring system test plan, of the quality assurance procedures that will reasonably ensure that PMDS response values below the alarm set-point correspond to PM emission concentrations below those demonstrated during the comprehensive performance test. Your recommended quality assurance procedures may include periodic testing under as-found conditions (i.e., normal operations) to obtain additional PM concentration and PMDS response run pairs, as warranted.
- (2) Set-points established with extrapolation. If you establish the alarm set-point by extrapolation under paragraph (c)(9)(iii)(B) of this section, you must request approval from the regulatory authority, in the continuous monitoring system test plan, of the quality assurance procedures that will reasonably ensure that PMDS response values below the alarm set-point correspond to PM emission concentrations below the value that correlates to the alarm set-point.
- (E) You must include procedures for installation, operation, maintenance, and quality assurance of the PMDS in the site-specific continuous monitoring system test plan required under §§63.1207(e) and 63.8(e)(3);
- (F) Where multiple detectors are required to monitor multiple control devices, the system's instrumentation and alarm system may be shared among the detectors.
- (G) You must establish the alarm set-point as a 6-hour rolling average as provided by paragraphs (c)(9)(ii), (c)(9)(iii), and (c)(9)(iv) of this section;
- (H) Your PMDS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must update the 6-hour rolling average of the detector response each hour with a one-hour block average that is the average of the detector responses over each 15-minute block; and
- (I) If you exceed the alarm set-point (or if your PMDS malfunctions), you must comply with the corrective measures under paragraph (c)(9)(vii) of this section.

- (ii) Establishing the alarm set-point for operations under the Documentation of Compliance. You must establish the alarm set-point for operations under the Documentation of Compliance (i.e., after the compliance date but prior to submitting a Notification of Compliance subsequent to conducting the initial comprehensive performance test) of an existing source as follows:
- (A) You must obtain a minimum of three pairs of Method 5 or 5I data, provided in appendix A-3 to part 60 of this chapter, and PMDS data to establish an approximate correlation curve. Data obtained up to 60 months prior to the compliance date may be used provided that the design and operation of the combustor or PMDS has not changed in a manner that may adversely affect the correlation of PM concentrations and PMDS response.
- (B) You must request approval from the regulatory authority, in the continuous monitoring system test plan, of your determination whether multiple correlation curves are needed considering the design and operation of your combustor and PMDS.
- (C) You must approximate the correlation of the reference method data to the PMDS data.
- (1) You may assume a linear correlation of the PMDS response to particulate matter emission concentrations;
- (2) You may include a zero point correlation value. To establish a zero point, you must follow one or more of the following steps:
- (i) Zero point data for in-situ instruments should be obtained, to the extent possible, by removing the instrument from the stack and monitoring ambient air on a test bench;
- ( ii ) Zero point data for extractive instruments should be obtained by removing the extractive probe from the stack and drawing in clean ambient air;
- ( *iii* ) Zero point data also can be obtained by performing manual reference method measurements when the flue gas is free of PM emissions or contains very low PM concentrations (e.g., when your process is not operating, but the fans are operating or your source is combusting only natural gas); and
- ( iv ) If none of the steps in paragraphs (c)(9)(ii)(B)(2)(i) through ( iii ) of this section are possible, you must estimate the monitor response when no PM is in the flue gas (e.g., 4 mA = 0 mg/acm).
- (3) For reference method data that were obtained from runs during a test condition where controllable operating factors were held constant, you must average the test run averages of PM concentrations and PMDS responses to obtain a single pair of data for PM concentration and PMDS response. You may use this pair of data and the zero point to define a linear correlation model for the PMDS.
- (D) You must establish the alarm set-point as the PMDS response that corresponds to a PM concentration that is 50% of the PM emission standard or 125% of the highest PM concentration

used to develop the correlation, whichever is greater. For reference method data that were obtained from runs during a test condition where controllable operating factors were held constant, you must use the average of the test run averages of PM concentrations for extrapolating the alarm set-point. The PM emission concentration used to extrapolate the alarm set-point must not exceed the PM emission standard, however.

- (iii) Establishing the initial alarm set-point for operations under the Notification of Compliance. You must establish the initial alarm set-point for operations under the Notification of Compliance as provided by either paragraph (c)(9)(iii)(A) or paragraph (c)(9)(iii)(B) of this section. You must periodically revise the alarm set-point as provided by paragraph (c)(9)(iv) of this section.
- (A) Establishing the initial set-point without extrapolation. (1) If you establish the initial alarm set-point without extrapolation, the alarm set-point is the average of the test run averages of the PMDS response during the runs of the comprehensive performance test that document compliance with the PM emission standard.
- (2) During the comprehensive performance test, you may simulate PM emission concentrations at the upper end of the range of normal operations by means including feeding high levels of ash and detuning the emission control equipment.
- (B) Establishing the initial set-point by extrapolation. You may extrapolate the particulate matter detector response to establish the alarm set-point under the following procedures:
- (1) You must request approval from the regulatory authority, in the continuous monitoring system test plan, of the procedures you will use to establish an approximate correlation curve using the three pairs of Method 5 or 5I data (see methods in appendix A-3 of part 60 of this chapter) and PMDS data from the comprehensive performance test, the data pairs used to establish the correlation curve for the Documentation of Compliance under paragraph (c)(9)(ii) of this section, and additional data pairs, as warranted.
- (2) You must request approval from the regulatory authority, in the continuous monitoring system test plan, of your determination of whether multiple correlation curves are needed considering the design and operation of your combustor and PMDS. If so, you must recommend the number of data pairs needed to establish those correlation curves and how the data will be obtained.
- (3) During the comprehensive performance test, you may simulate PM emission concentrations at the upper end of the range of normal operations by means including feeding high levels of ash and detuning the emission control equipment.
- (4) Data obtained up to 60 months prior to the comprehensive performance test may be used provided that the design and operation of the combustor or PMDS has not changed in a manner that may adversely affect the correlation of PM concentrations and PMDS response.

- (5) You may include a zero point correlation value. To establish a zero point, you must follow the procedures under paragraph (c)(9)(ii)(C)(2) of this section.
- (6) You must use a least-squares regression model to correlate PM concentrations to PMDS responses for data pairs. You may assume a linear regression model approximates the relationship between PM concentrations and PMDS responses.
- (7) You must establish the alarm set-point as the PMDS response that corresponds to a PM concentration that is 50% of the PM emission standard or 125% of the highest PM concentration used to develop the correlation, whichever is greater. The emission concentration used to extrapolate the PMDS response must not exceed the PM emission standard.
- (iv) Revising the Notification of Compliance alarm set-point —(A) Revising set-points established without extrapolation. If you establish the alarm set-point without extrapolation under paragraph (c)(9)(iii)(A) of this section, you must establish a new alarm set-point in the Notification of Compliance following each comprehensive performance test as the average of the test run averages of the PMDS response during the runs of the comprehensive performance test that document compliance with the PM emission standard.
- (B) Revising set-points established with extrapolation. If you establish the alarm set-point by extrapolation under paragraph (c)(9)(iii)(B) of this section, you must request approval from the regulatory authority, in the continuous monitoring system test plan, of the procedures for periodically revising the alarm set-point, considering the additional data pairs obtained during periodic comprehensive performance tests and data pairs obtained from other tests, such as for quality assurance.
- (v) Quality assurance —(A) Set-points established without extrapolation. If you establish the alarm set-point without extrapolation under paragraph (c)(9)(iii)(A) of this section, you must request approval from the regulatory authority, in the continuous monitoring system test plan, of the quality assurance procedures that reasonably ensure that PMDS response values below the alarm set-point correspond to PM emission concentrations below the average of the PM concentrations demonstrated during the comprehensive performance test. Your recommended quality assurance procedures may include periodic testing under as-found conditions (i.e., normal operations) to obtain additional PM concentration and PMDS response run pairs, as warranted.
- (B) Set-points established with extrapolation. If you establish the alarm set-point by extrapolation under paragraph (c)(9)(iii)(B) of this section, you must request approval from the regulatory authority, in the continuous monitoring system test plan, of the quality assurance procedures that reasonably ensure that PMDS response values below the alarm set-point correspond to PM emission concentrations below the value that correlated to the alarm set-point.
- (vi) PMDS are used for compliance assurance only. For a PMDS for which the alarm set-point is established by extrapolation using a correlation curve under paragraphs (c)(9)(ii), (c)(9)(iii)(B), and (c)(9)(iv)(B) of this section, an exceedance of the PMDS response that appears to correlate with a PM concentration that exceeds the PM emission standard is not by itself evidence that the standard has been exceeded.

- (vii) *PMDS corrective measures requirements*. The operating and maintenance plan required by paragraph (c)(7) of this section must include a corrective measures plan that specifies the procedures you will follow in the case of a PMDS alarm or malfunction. The corrective measures plan must include, at a minimum, the procedures used to determine and record the time and cause of the alarm or PMDS malfunction as well as the corrective measures taken to correct the control device or PMDS malfunction or minimize emissions as specified below. Failure to initiate the corrective measures required by this paragraph is failure to ensure compliance with the emission standards in this subpart.
- (A) You must initiate the procedures used to determine the cause of the alarm or PMDS malfunction within 30 minutes of the time the alarm first sounds or the PMDS malfunctions; and
- (B) You must alleviate the cause of the alarm or the PMDS malfunction by taking the necessary corrective measure(s) which may include shutting down the combustor.
- (viii) Excessive exceedances notification. If you operate the combustor when the detector response exceeds the alarm set-point or when the PMDS is malfunctioning more than 5 percent of the time during any 6-month block time period, you must submit a notification to the Administrator within 30 days of the end of the 6-month block time period that describes the causes of the exceedances and the revisions to the design, operation, or maintenance of the combustor, emission control device, or PMDS you are taking to minimize exceedances. To document compliance with this requirement:
- (A) You must keep records of the date, time, and duration of each alarm and PMDS malfunction, the time corrective action was initiated and completed, and a brief description of the cause of the alarm or PMDS malfunction and the corrective action taken;
- (B) You must record the percent of the operating time during each 6-month period that the alarm sounds and the PMDS malfunctions;
- (C) If inspection of the emission control device demonstrates that no corrective action is required, then no alarm time is counted; and
- (D) If corrective action to the emission control device is required, each alarm shall be counted as a minimum of 1 hour. Each PMDS malfunction shall also be counted as a minimum of 1 hour.

[64 FR 53038, Sept. 30, 1999, as amended at 65 FR 42298, July 10, 2000; 65 FR 67271, Nov. 9, 2000; 66 FR 24272, May 14, 2001; 66 FR 35103, July 3, 2001; 66 FR 63317, Dec. 7, 2001; 67 FR 6813, Feb. 13, 2002; 67 FR 6989, Feb. 14, 2002; 67 FR 77691, Dec. 19, 2002; 70 FR 59541, Oct. 12, 2005; 70 FR 75047, Dec. 19, 2005; 71 FR 20459, Apr. 20, 2006; 71 FR 62393, Oct. 25, 2006; 73 FR 18979, Apr. 8, 2008; 73 FR 64094, Oct. 28, 2008]

## § 63.1207 What are the performance testing requirements?

(a) General. The provisions of §63.7 apply, except as noted below.

- (b) Types of performance tests —(1) Comprehensive performance test. You must conduct comprehensive performance tests to demonstrate compliance with the emission standards provided by this subpart, establish limits for the operating parameters provided by §63.1209, and demonstrate compliance with the performance specifications for continuous monitoring systems.
- (2) Confirmatory performance test. You must conduct confirmatory performance tests to:
- (i) Demonstrate compliance with the dioxin/furan emission standard when the source operates under normal operating conditions; and
- (ii) Conduct a performance evaluation of continuous monitoring systems required for compliance assurance with the dioxin/furan emission standard under §63.1209(k).
- (3) One-Time Dioxin/Furan Test for Sources Not Subject to a Numerical Dioxin/Furan Standard. For solid fuel boilers and hydrochloric acid production furnaces, for lightweight aggregate kilns that are not subject to a numerical dioxin/furan emission standard under §63.1221, and liquid fuel boilers that are not subject to a numerical dioxin/furan emission standard under §63.1217, you must conduct a one-time emission test for dioxin/furan under feed and operating conditions that are most likely to reflect daily maximum operating variability, similar to a dioxin/furan comprehensive performance test.
- (i) You must conduct the dioxin/furan emissions test no later than the deadline for conducting the initial comprehensive performance test.
- (ii) You may use dioxin/furan emissions data from previous testing to meet this requirement, provided that:
- (A) The testing was conducted under feed and operating conditions that are most likely to reflect daily maximum operating variability, similar to a dioxin/furan compliance test;
- (B) You have not changed the design or operation of the source in a manner that could significantly affect stack gas dioxin/furan emission concentrations; and
- (C) The data meet quality assurance objectives that may be determined on a site-specific basis.
- (iii) You may use dioxin/furan emissions data from a source to represent emissions from another on-site source in lieu of testing (i.e., data in lieu of testing) if the design and operation, including hazardous waste feed and other feedstreams, of the sources are identical.
- (iv) You must include the results of the one-time dioxin/furan emissions test with the results of the initial comprehensive performance test in the Notification of Compliance.
- (v) You must repeat the dioxin/furan emissions test if you change the design or operation of the source in a manner that may increase dioxin/furan emissions.

- (vi) Sources that are required to perform the one-time dioxin/furan test pursuant to paragraph (b)(3) of this section are not required to perform confirmatory performance tests.
- (c) Initial comprehensive performance test —(1) Test date. Except as provided by paragraphs (c)(2) and (c)(3) of this section, you must commence the initial comprehensive performance test not later than six months after the compliance date.
- (2) Data in lieu of the initial comprehensive performance test. (i) You may request that previous emissions test data serve as documentation of conformance with the emission standards of this subpart provided that the previous testing:
- (A) Was initiated after 54 months prior to the compliance date, except as provided by paragraphs (c)(2)(iii) or (c)(2)(iv) of this section;
- (B) Results in data that meet quality assurance objectives (determined on a site-specific basis) such that the results demonstrate compliance with the applicable standards;
- (C) Was in conformance with the requirements of paragraph (g)(1) of this section; and
- (D) Was sufficient to establish the applicable operating parameter limits under §63.1209.
- (ii) You must submit data in lieu of the initial comprehensive performance test in lieu of (i.e., if the data are in lieu of all performance testing) or with the notification of performance test required under paragraph (e) of this section.
- (iii) The data in lieu test age restriction provided in paragraph (c)(2)(i)(A) of this section does not apply for the duration of the interim standards (i.e., the standards published in the Federal Registeron February 13, 2002, 67 FR 6792). See 40 CFR parts 63, 264, 265, 266, 270, and 271 revised as of July 1, 2002. Paragraph (c)(2)(i)(A) of this section does not apply until EPA promulgates permanent replacement standards pursuant to the Settlement Agreement noticed in the Federal Registeron November 16, 2001 (66 FR 57715).
- (iv) The data in lieu test age restriction provided in paragraph (c)(2)(i)(A) of this section does not apply to DRE data provided you do not feed hazardous waste at a location in the combustion system other than the normal flame zone.
- (3) For incinerators, cement kilns, and lightweight aggregate kilns, you must commence the initial comprehensive performance test to demonstrate compliance with the standards under §§63.1219, 63.1220, and 63.1221 not later than 12 months after the compliance date.
- (d) Frequency of testing. Except as otherwise specified in paragraph (d)(4) of this section, you must conduct testing periodically as prescribed in paragraphs (d)(1) through (d)(3) of this section. The date of commencement of the initial comprehensive performance test is the basis for establishing the deadline to commence the initial confirmatory performance test and the next comprehensive performance test. You may conduct performance testing at any time prior to the required date. The deadline for commencing subsequent confirmatory and comprehensive

performance testing is based on the date of commencement of the previous comprehensive performance test. Unless the Administrator grants a time extension under paragraph (i) of this section, you must conduct testing as follows:

- (1) Comprehensive performance testing. Except as otherwise specified in paragraph (d)(4) of this section, you must commence testing no later than 61 months after the date of commencing the previous comprehensive performance test used to show compliance with §§63.1216, 63.1217, 63.1218, 63.1219, 63.1220, or 63.1221. If you submit data in lieu of the initial performance test, you must commence the subsequent comprehensive performance test within 61 months of commencing the test used to provide the data in lieu of the initial performance test.
- (2) Confirmatory performance testing. Except as otherwise specified in paragraph (d)(4) of this section, you must commence confirmatory performance testing no later than 31 months after the date of commencing the previous comprehensive performance test used to show compliance with §§63.1217, 63.1219, 63.1220, or 63.1221. If you submit data in lieu of the initial performance test, you must commence the initial confirmatory performance test within 31 months of the date six months after the compliance date. To ensure that the confirmatory test is conducted approximately midway between comprehensive performance tests, the Administrator will not approve a test plan that schedules testing within 18 months of commencing the previous comprehensive performance test.
- (3) *Duration of testing*. You must complete performance testing within 60 days after the date of commencement, unless the Administrator determines that a time extension is warranted based on your documentation in writing of factors beyond your control that prevent you from meeting the 60-day deadline.
- (4) Applicable testing requirements under the interim standards —(i) Waiver of periodic comprehensive performance tests. Except as provided by paragraph (c)(2) of this section, you must conduct only an initial comprehensive performance test under the interim standards (§§63.1203 through 63.1205); all subsequent comprehensive performance testing requirements are waived under the interim standards. The provisions in the introductory text to paragraph (d) and in paragraph (d)(1) of this section apply only to tests used to demonstrate compliance with the standards under §§63.1219 through 63.1221.
- (ii) Waiver of confirmatory performance tests. You are not required to conduct a confirmatory test under the interim standards (§§63.1203 through 63.1205). The confirmatory testing requirements in the introductory text to paragraph (d) and in paragraph (d)(2) of this section apply only after you have demonstrated compliance with the standards under §§63.1219 through 63.1221.
- (e) Notification of performance test and CMS performance evaluation, and approval of test plan and CMS performance evaluation plan. (1) The provisions of §63.7(b) and (c) and §63.8(e) apply, except:
- (i) Comprehensive performance test. You must submit to the Administrator a notification of your intention to conduct a comprehensive performance test and CMS performance evaluation and a

site-specific test plan and CMS performance evaluation test plan at least one year before the performance test and performance evaluation are scheduled to begin.

- (A) The Administrator will notify you of approval or intent to deny approval of the site-specific test plan and CMS performance evaluation test plan within 9 months after receipt of the original plan.
- (B) You must submit to the Administrator a notification of your intention to conduct the comprehensive performance test at least 60 calendar days before the test is scheduled to begin.
- (ii) Confirmatory performance test. You must submit to the Administrator a notification of your intention to conduct a confirmatory performance test and CMS performance evaluation and a site-specific test plan and CMS performance evaluation test plan at least 60 calendar days before the performance test is scheduled to begin. The Administrator will notify you of approval or intent to deny approval of the site-specific test plan and CMS performance evaluation test plan within 30 calendar days after receipt of the original test plans.
- (2) You must make your site-specific test plan and CMS performance evaluation test plan available to the public for review no later than 60 calendar days before initiation of the test. You must issue a public notice to all persons on your facility/public mailing list (developed pursuant to 40 CFR 70.7(h), 71.11(d)(3)(i)(E) and 124.10(c)(1)(ix)) announcing the availability of the test plans and the location where the test plans are available for review. The test plans must be accessible to the public for 60 calendar days, beginning on the date that you issue your public notice. The location must be unrestricted and provide access to the public during reasonable hours and provide a means for the public to obtain copies. The notification must include the following information at a minimum:
- (i) The name and telephone number of the source's contact person;
- (ii) The name and telephone number of the regulatory agency's contact person;
- (iii) The location where the test plans and any necessary supporting documentation can be reviewed and copied;
- (iv) The time period for which the test plans will be available for public review; and
- (v) An expected time period for commencement and completion of the performance test and CMS performance evaluation test.
- (3) Petitions for time extension if Administrator fails to approve or deny test plans. You may petition the Administrator under §63.7(h) to obtain a "waiver" of any performance test—initial or periodic performance test; comprehensive or confirmatory test. The "waiver" would be implemented as an extension of time to conduct the performance test at a later date.

- (i) Qualifications for the waiver. (A) You may not petition the Administrator for a waiver under this section if the Administrator has issued a notification of intent to deny your test plan(s) under §63.7(c)(3)(i)(B);
- (B) You must submit a site-specific emissions testing plan and a continuous monitoring system performance evaluation test plan at least one year before a comprehensive performance test is scheduled to begin as required by paragraph (c)(1) of this section, or at least 60 days before a confirmatory performance test is scheduled to begin as required by paragraph (d) of this section. The test plans must include all required documentation, including the substantive content requirements of paragraph (f) of this section and §63.8(e); and
- (C) You must make a good faith effort to accommodate the Administrator's comments on the test plans.
- (ii) Procedures for obtaining a waiver and duration of the waiver. (A) You must submit to the Administrator a waiver petition or request to renew the petition under §63.7(h) separately for each source at least 60 days prior to the scheduled date of the performance test;
- (B) The Administrator will approve or deny the petition within 30 days of receipt and notify you promptly of the decision;
- (C) The Administrator will not approve an individual waiver petition for a duration exceeding 6 months;
- (D) The Administrator will include a sunset provision in the waiver ending the waiver within 6 months;
- (E) You may submit a revised petition to renew the waiver under §63.7(h)(3)(iii) at least 60 days prior to the end date of the most recently approved waiver petition;
- (F) The Administrator may approve a revised petition for a total waiver period up to 12 months.
- (iii) Content of the waiver. (A) You must provide documentation to enable the Administrator to determine that the source is meeting the relevant standard(s) on a continuous basis as required by §63.7(h)(2). For extension requests for the initial comprehensive performance test, you must submit your Documentation of Compliance to assist the Administrator in making this determination.
- (B) You must include in the petition information justifying your request for a waiver, such as the technical or economic infeasibility, or the impracticality, of the affected source performing the required test, as required by §63.7(h)(3)(iii).
- (iv) *Public notice*. At the same time that you submit your petition to the Administrator, you must notify the public (e.g., distribute a notice to the facility/public mailing list developed pursuant to 40 CFR 70.7(h), 71.11(d)(3)(i)(E) and 124.10(c)(1)(ix)) of your petition to waive a performance test. The notification must include all of the following information at a minimum:

- (A) The name and telephone number of the source's contact person;
- (B) The name and telephone number of the regulatory agency's contact person;
- (C) The date the source submitted its site-specific performance test plan and CMS performance evaluation test plans; and
- (D) The length of time requested for the waiver.
- (f) Content of performance test plan. The provisions of §§63.7(c)(2)(i)–(iii) and (v) regarding the content of the test plan apply. In addition, you must include the following information in the test plan:
- (1) Content of comprehensive performance test plan. (i) An analysis of each feedstream, including hazardous waste, other fuels, and industrial furnace feedstocks, as fired, that includes:
- (A) Heating value, levels of ash (for hazardous waste incinerators only), levels of semivolatile metals, low volatile metals, mercury, and total chlorine (organic and inorganic); and
- (B) Viscosity or description of the physical form of the feedstream;
- (ii) For organic hazardous air pollutants established by 42 U.S.C. 7412(b)(1), excluding caprolactam (CAS number 105602) as provided by §63.60:
- (A) Except as provided by paragraph (f)(1)(ii)(D) of this section, an identification of such organic hazardous air pollutants that are present in each hazardous waste feedstream. You need not analyze for organic hazardous air pollutants that would reasonably not be expected to be found in the feedstream. You must identify any constituents you exclude from analysis and explain the basis for excluding them. You must conduct the feedstream analysis according to §63.1208(b)(8);
- (B) An approximate quantification of such identified organic hazardous air pollutants in the hazardous waste feedstreams, within the precision produced by analytical procedures of §63.1208(b)(8); and
- (C) A description of blending procedures, if applicable, prior to firing the hazardous waste feedstream, including a detailed analysis of the materials prior to blending, and blending ratios.
- (D) The Administrator may approve on a case-by-case basis a hazardous waste feedstream analysis for organic hazardous air pollutants in lieu of the analysis required under paragraph (f)(1)(ii)(A) of this section if the reduced analysis is sufficient to ensure that the POHCs used to demonstrate compliance with the applicable DRE standards of this subpart continue to be representative of the most difficult to destroy organic compounds in your hazardous waste feedstreams;
- (iii) A detailed engineering description of the hazardous waste combustor, including:

- (A) Manufacturer's name and model number of the hazardous waste combustor;
- (B) Type of hazardous waste combustor;
- (C) Maximum design capacity in appropriate units;
- (D) Description of the feed system for each feedstream;
- (E) Capacity of each feed system;
- (F) Description of automatic hazardous waste feed cutoff system(s);
- (G) Description of the design, operation, and maintenance practices for any air pollution control system; and
- (H) Description of the design, operation, and maintenance practices of any stack gas monitoring and pollution control monitoring systems;
- (iv) A detailed description of sampling and monitoring procedures including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical procedures for sample analysis;
- (v) A detailed test schedule for each hazardous waste for which the performance test is planned, including date(s), duration, quantity of hazardous waste to be burned, and other relevant factors;
- (vi) A detailed test protocol, including, for each hazardous waste identified, the ranges of hazardous waste feedrate for each feed system, and, as appropriate, the feedrates of other fuels and feedstocks, and any other relevant parameters that may affect the ability of the hazardous waste combustor to meet the emission standards:
- (vii) A description of, and planned operating conditions for, any emission control equipment that will be used;
- (viii) Procedures for rapidly stopping the hazardous waste feed and controlling emissions in the event of an equipment malfunction;
- (ix) A determination of the hazardous waste residence time as required by §63.1206(b)(11);
- (x) If you are requesting to extrapolate metal feedrate limits from comprehensive performance test levels under §§63.1209(l)(1)(v) or 63.1209(n)(2)(vii):
- (A) A description of the extrapolation methodology and rationale for how the approach ensures compliance with the emission standards;
- (B) Documentation of the historical range of normal ( *i.e.*, other than during compliance testing) metals feedrates for each feedstream;

- (C) Documentation that the level of spiking recommended during the performance test will mask sampling and analysis imprecision and inaccuracy to the extent that the extrapolated feedrate limits adequately assure compliance with the emission standards;
- (xi) If you do not continuously monitor regulated constituents in natural gas, process air feedstreams, and feedstreams from vapor recovery systems under §63.1209(c)(5), you must include documentation of the expected levels of regulated constituents in those feedstreams;
- (xii) Documentation justifying the duration of system conditioning required to ensure the combustor has achieved steady-state operations under performance test operating conditions, as provided by paragraph (g)(1)(iii) of this section;
- (xiii) For cement kilns with in-line raw mills, if you elect to use the emissions averaging provision of this subpart, you must notify the Administrator of your intent in the initial (and subsequent) comprehensive performance test plan, and provide the information required by the emission averaging provision;
- (xiv) For preheater or preheater/precalciner cement kilns with dual stacks, if you elect to use the emissions averaging provision of this subpart, you must notify the Administrator of your intent in the initial (and subsequent) comprehensive performance test plan, and provide the information required by the emission averaging provision;
- (xv) If you request to use Method 23 for dioxin/furan you must provide the information required under §63.1208(b)(1)(i)(B);
- (xvi) If you are not required to conduct performance testing to document compliance with the mercury, semivolatile metals, low volatile metals, or hydrogen chloride/chlorine gas emission standards under paragraph (m) of this section, you must include with the comprehensive performance test plan documentation of compliance with the provisions of that section.
- (xvii) If you propose to use a surrogate for measuring or monitoring gas flowrate, you must document in the comprehensive performance test plan that the surrogate adequately correlates with gas flowrate, as required by paragraph (m)(7) of this section, and  $\S63.1209(j)(2)$ , (k)(3), (m)(2)(i), (n)(5)(i), and (o)(2)(i).
- (xviii) You must submit an application to request alternative monitoring under §63.1209(g)(1) not later than with the comprehensive performance test plan, as required by §63.1209(g)(1)(iii)(A).
- (xix) You must document the temperature location measurement in the comprehensive performance test plan, as required by §§63.1209(j)(1)(i) and 63.1209(k)(2)(i).
- (xx) If your source is equipped with activated carbon injection, you must document in the comprehensive performance test plan:

- (A) The manufacturer specifications for minimum carrier fluid flowrate or pressure drop, as required by §63.1209(k)(6)(ii); and
- (B) Key parameters that affect carbon adsorption, and the operating limits you establish for those parameters based on the carbon used during the performance test, if you elect not to specify and use the brand and type of carbon used during the comprehensive performance test, as required by §63.1209(k)(6)(iii).
- (xxi) If your source is equipped with a carbon bed system, and you elect not to specify and use the brand and type of carbon used during the comprehensive performance test, you must include in the comprehensive performance test plan key parameters that affect carbon adsorption, and the operating limits you establish for those parameters based on the carbon used during the performance test, as required by §63.1209(k)(7)(ii).
- (xxii) If you feed a dioxin/furan inhibitor into the combustion system, you must document in the comprehensive performance test plan key parameters that affect the effectiveness of the inhibitor, and the operating limits you establish for those parameters based on the inhibitor fed during the performance test, if you elect not to specify and use the brand and type of inhibitor used during the comprehensive performance test, as required by §63.1209(k)(9)(ii).
- (xxiii) If your source is equipped with a wet scrubber and you elect to monitor solids content of the scrubber liquid manually but believe that hourly monitoring of solids content is not warranted, you must support an alternative monitoring frequency in the comprehensive performance test plan, as required by §63.1209(m)(1)(i)(B)(1)(i).
- (xxiv) If your source is equipped with a particulate matter control device other than a wet scrubber, baghouse, or electrostatic precipitator, you must include in the comprehensive performance test plan:
- (A) Documentation to support the operating parameter limits you establish for the control device, as required by  $\S63.1209(m)(1)(iv)(A)(4)$ ; and
- (B) Support for the use of manufacturer specifications if you recommend such specifications in lieu of basing operating limits on performance test operating levels, as required by §63.1209(m)(1)(iv)(D).
- (xxv) If your source is equipped with a dry scrubber to control hydrogen chloride and chlorine gas, you must document in the comprehensive performance test plan key parameters that affect adsorption, and the limits you establish for those parameters based on the sorbent used during the performance test, if you elect not to specify and use the brand and type of sorbent used during the comprehensive performance test, as required by §63.1209(o)(4)(iii)(A); and
- (xxvi) For purposes of calculating semivolatile metal, low volatile metal, mercury, and total chlorine (organic and inorganic), and ash feedrate limits, a description of how you will handle performance test feedstream analytical results that determines these constituents are not present at detectable levels.

- (xxvii) Such other information as the Administrator reasonably finds necessary to determine whether to approve the performance test plan.
- (2) Content of confirmatory test plan. (i) A description of your normal hydrocarbon or carbon monoxide operating levels, as specified in paragraph (g)(2)(i) of this section, and an explanation of how these normal levels were determined;
- (ii) A description of your normal applicable operating parameter levels, as specified in paragraph (g)(2)(ii) of this section, and an explanation of how these normal levels were determined;
- (iii) A description of your normal chlorine operating levels, as specified in paragraph (g)(2)(iii) of this section, and an explanation of how these normal levels were determined;
- (iv) If you use carbon injection or a carbon bed, a description of your normal cleaning cycle of the particulate matter control device, as specified in paragraph (g)(2)(iv) of this section, and an explanation of how these normal levels were determined;
- (v) A detailed description of sampling and monitoring procedures including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical procedures for sample analysis;
- (vi) A detailed test schedule for each hazardous waste for which the performance test is planned, including date(s), duration, quantity of hazardous waste to be burned, and other relevant factors;
- (vii) A detailed test protocol, including, for each hazardous waste identified, the ranges of hazardous waste feedrate for each feed system, and, as appropriate, the feedrates of other fuels and feedstocks, and any other relevant parameters that may affect the ability of the hazardous waste combustor to meet the dioxin/furan emission standard;
- (viii) A description of, and planned operating conditions for, any emission control equipment that will be used;
- (ix) Procedures for rapidly stopping the hazardous waste feed and controlling emissions in the event of an equipment malfunction; and
- (x) Such other information as the Administrator reasonably finds necessary to determine whether to approve the confirmatory test plan.
- (g) Operating conditions during testing. You must comply with the provisions of §63.7(e). Conducting performance testing under operating conditions representative of the extreme range of normal conditions is consistent with the requirement of §63.7(e)(1) to conduct performance testing under representative operating conditions.
- (1) Comprehensive performance testing—(i) Operations during testing. For the following parameters, you must operate the combustor during the performance test under normal conditions (or conditions that will result in higher than normal emissions):

- (A) Chlorine feedrate. You must feed normal (or higher) levels of chlorine during the dioxin/furan performance test;
- (B) Ash feedrate. For hazardous waste incinerators, you must conduct the following tests when feeding normal (or higher) levels of ash: The semivolatile metal and low volatile metal performance tests; and the dioxin/furan and mercury performance tests if activated carbon injection or a carbon bed is used; and
- (C) Cleaning cycle of the particulate matter control device. You must conduct the following tests when the particulate matter control device undergoes its normal (or more frequent) cleaning cycle: The particulate matter, semivolatile metal, and low volatile metal performance tests; and the dioxin/furan and mercury performance tests if activated carbon injection or a carbon bed is used.
- (ii) *Modes of operation*. Given that you must establish limits for the applicable operating parameters specified in §63.1209 based on operations during the comprehensive performance test, you may conduct testing under two or more operating modes to provide operating flexibility.
- (iii) Steady-state conditions. (A) Prior to obtaining performance test data, you must operate under performance test conditions until you reach steady-state operations with respect to emissions of pollutants you must measure during the performance test and operating parameters under §63.1209 for which you must establish limits. During system conditioning, you must ensure that each operating parameter for which you must establish a limit is held at the level planned for the performance test. You must include documentation in the performance test plan under paragraph (f) of this section justifying the duration of system conditioning.
- (B) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (*i.e.*, cement kiln dust) into the kiln, you must sample and analyze the recycled particulate matter prior to obtaining performance test data for levels of selected metals that must be measured during performance testing to document that the system has reached steady-state conditions (*i.e.*, that metals levels have stabilized). You must document the rationale for selecting metals that are indicative of system equilibrium and include the information in the performance test plan under paragraph (f) of this section. To determine system equilibrium, you must sample and analyze the recycled particulate matter hourly for each selected metal, unless you submit in the performance test plan a justification for reduced sampling and analysis and the Administrator approves in writing a reduced sampling and analysis frequency.
- (2) Confirmatory performance testing. You must conduct confirmatory performance testing for dioxin/furan under normal operating conditions for the following parameters:
- (i) Carbon monoxide (or hydrocarbon) CEMS emissions levels must be within the range of the average value to the maximum value allowed, except as provided by paragraph (g)(2)(v) of this section. The average value is defined as the sum of the hourly rolling average values recorded (each minute) over the previous 12 months, divided by the number of rolling averages recorded

during that time. The average value must not include calibration data, startup data, shutdown data, malfunction data, and data obtained when not burning hazardous waste;

- (ii) Each operating limit (specified in §63.1209) established to maintain compliance with the dioxin/furan emission standard must be held within the range of the average value over the previous 12 months and the maximum or minimum, as appropriate, that is allowed, except as provided by paragraph (g)(2)(v) of this section. The average value is defined as the sum of the rolling average values recorded over the previous 12 months, divided by the number of rolling averages recorded during that time. The average value must not include calibration data, startup data, shutdown data, malfunction data, and data obtained when not burning hazardous waste;
- (iii) You must feed chlorine at normal feedrates or greater; and
- (iv) If the combustor is equipped with carbon injection or carbon bed, normal cleaning cycle of the particulate matter control device.
- (v) The Administrator may approve an alternative range to that required by paragraphs (g)(2)(i) and (ii) of this section if you document in the confirmatory performance test plan that it may be problematic to maintain the required range during the test. In addition, when making the finding of compliance, the Administrator may consider test conditions outside of the range specified in the test plan based on a finding that you could not reasonably maintain the range specified in the test plan and considering factors including whether the time duration and level of the parameter when operations were out of the specified range were such that operations during the confirmatory test are determined to be reasonably representative of normal operations. In addition, the Administrator will consider the proximity of the emission test results to the standard.
- (h) Operating conditions during subsequent testing. (1) Current operating parameter limits established under §63.1209 are waived during subsequent comprehensive performance testing.
- (2) Current operating parameter limits are also waived during pretesting prior to comprehensive performance testing for an aggregate time not to exceed 720 hours of operation (renewable at the discretion of the Administrator) under an approved test plan or if the source records the results of the pretesting. Pretesting means:
- (i) Operations when stack emissions testing for dioxin/furan, mercury, semivolatile metals, low volatile metals, particulate matter, or hydrogen chloride/chlorine gas is being performed; and
- (ii) Operations to reach steady-state operating conditions prior to stack emissions testing under paragraph (g)(1)(iii) of this section.
- (i) Time extension for subsequent performance tests. After the initial comprehensive performance test, you may request up to a one-year time extension for conducting a comprehensive or confirmatory performance test to consolidate performance testing with other state or federally required emission testing, or for other reasons deemed acceptable by the Administrator. If the Administrator grants a time extension for a comprehensive performance test, the deadlines for

commencing the next comprehensive and confirmatory tests are based on the date that the subject comprehensive performance test commences.

- (1) You must submit in writing to the Administrator any request under this paragraph for a time extension for conducting a performance test.
- (2) You must include in the request for an extension for conducting a performance test the following:
- (i) A description of the reasons for requesting the time extension;
- (ii) The date by which you will commence performance testing.
- (3) The Administrator will notify you in writing of approval or intention to deny approval of your request for an extension for conducting a performance test within 30 calendar days after receipt of sufficient information to evaluate your request. The 30-day approval or denial period will begin after you have been notified in writing that your application is complete. The Administrator will notify you in writing whether the application contains sufficient information to make a determination within 30 calendar days after receipt of the original application and within 30 calendar days after receipt of any supplementary information that you submit.
- (4) When notifying you that your application is not complete, the Administrator will specify the information needed to complete the application. The Administrator will also provide notice of opportunity for you to present, in writing, within 30 calendar days after notification of the incomplete application, additional information or arguments to the Administrator to enable further action on the application.
- (5) Before denying any request for an extension for performance testing, the Administrator will notify you in writing of the Administrator's intention to issue the denial, together with:
- (i) Notice of the information and findings on which the intended denial is based; and
- (ii) Notice of opportunity for you to present in writing, within 15 calendar days after notification of the intended denial, additional information or arguments to the Administrator before further action on the request.
- (6) The Administrator's final determination to deny any request for an extension will be in writing and will set forth specific grounds upon which the denial is based. The final determination will be made within 30 calendar days after the presentation of additional information or argument (if the application is complete), or within 30 calendar days after the final date specified for the presentation if no presentation is made.
- (j) Notification of compliance —(1) Comprehensive performance test. (i) Except as provided by paragraphs (j)(4) and (j)(5) of this section, within 90 days of completion of a comprehensive performance test, you must postmark a Notification of Compliance documenting compliance

- with the emission standards and continuous monitoring system requirements, and identifying operating parameter limits under §63.1209.
- (ii) Upon postmark of the Notification of Compliance, you must comply with all operating requirements specified in the Notification of Compliance in lieu of the limits specified in the Documentation of Compliance required under §63.1211(c).
- (2) Confirmatory performance test. Except as provided by paragraph (j)(4) of this section, within 90 days of completion of a confirmatory performance test, you must postmark a Notification of Compliance documenting compliance or noncompliance with the applicable dioxin/furan emission standard.
- (3) See §§63.7(g), 63.9(h), and 63.1210(d) for additional requirements pertaining to the Notification of Compliance (e.g., you must include results of performance tests in the Notification of Compliance).
- (4) *Time extension*. You may submit a written request to the Administrator for a time extension documenting that, for reasons beyond your control, you may not be able to meet the 90-day deadline for submitting the Notification of Compliance after completion of testing. The Administrator will determine whether a time extension is warranted.
- (5) Early compliance. If you conduct the initial comprehensive performance test prior to the compliance date, you must postmark the Notification of Compliance within 90 days of completion of the performance test or by the compliance date, whichever is later.
- (k) Failure to submit a timely notification of compliance. (1) If you fail to postmark a Notification of Compliance by the specified date, you must cease hazardous waste burning immediately.
- (2) Prior to submitting a revised Notification of Compliance as provided by paragraph (k)(3) of this section, you may burn hazardous waste only for the purpose of pretesting or comprehensive performance testing and only for a maximum of 720 hours (renewable at the discretion of the Administrator).
- (3) You must submit to the Administrator a Notification of Compliance subsequent to a new comprehensive performance test before resuming hazardous waste burning.
- (l) Failure of performance test —(1) Comprehensive performance test. The provisions of this paragraph do not apply to the initial comprehensive performance test if you conduct the test prior to your compliance date.
- (i) If you determine (based on CEM recordings, results of analyses of stack samples, or results of CMS performance evaluations) that you have exceeded any emission standard during a comprehensive performance test for a mode of operation, you must cease hazardous waste burning immediately under that mode of operation. You must make this determination within 90 days following completion of the performance test.

- (ii) If you have failed to demonstrate compliance with the emission standards for any mode of operation:
- (A) Prior to submitting a revised Notification of Compliance as provided by paragraph (l)(1)(ii)(C) of this section, you may burn hazardous waste only for the purpose of pretesting or comprehensive performance testing under revised operating conditions, and only for a maximum of 720 hours (renewable at the discretion of the Administrator), except as provided by paragraph (l)(3) of this section;
- (B) You must conduct a comprehensive performance test under revised operating conditions following the requirements for performance testing of this section; and
- (C) You must submit to the Administrator a Notification of Compliance subsequent to the new comprehensive performance test.
- (2) Confirmatory performance test. If you determine (based on CEM recordings, results of analyses of stack samples, or results of CMS performance evaluations) that you have failed the dioxin/furan emission standard during a confirmatory performance test, you must cease burning hazardous waste immediately. You must make this determination within 90 days following completion of the performance test. To burn hazardous waste in the future:
- (i) You must submit to the Administrator for review and approval a test plan to conduct a comprehensive performance test to identify revised limits on the applicable dioxin/furan operating parameters specified in §63.1209(k);
- (ii) You must submit to the Administrator a Notification of Compliance with the dioxin/furan emission standard under the provisions of paragraphs (j) and (k) of this section and this paragraph (l). You must include in the Notification of Compliance the revised limits on the applicable dioxin/furan operating parameters specified in §63.1209(k); and
- (iii) Until the Notification of Compliance is submitted, you must not burn hazardous waste except for purposes of pretesting or confirmatory performance testing, and for a maximum of 720 hours (renewable at the discretion of the Administrator), except as provided by paragraph (l)(3) of this section.
- (3) You may petition the Administrator to obtain written approval to burn hazardous waste in the interim prior to submitting a Notification of Compliance for purposes other than testing or pretesting. You must specify operating requirements, including limits on operating parameters, that you determine will ensure compliance with the emission standards of this subpart based on available information including data from the failed performance test. The Administrator will review, modify as necessary, and approve if warranted the interim operating requirements. An approval of interim operating requirements will include a schedule for submitting a Notification of Compliance.
- (m) Waiver of performance test. You are not required to conduct performance tests to document compliance with the mercury, semivolatile metals, low volatile metals, or hydrogen

chloride/chlorine gas emission standards under the conditions specified in paragraphs (m)(1) or (m)(2) of this section. The waiver provisions of this paragraph apply in addition to the provisions of §63.7(h).

- (1) Emission standards based on exhaust gas flow rate. (i) You are deemed to be in compliance with an emission standard based on the volumetric flow rate of exhaust gas (i.e., µg/dscm or ppmv) if the maximum theoretical emission concentration (MTEC) does not exceed the emission standard over the relevant averaging period specified under §63.1209(l), (n), and (o) of this section for the standard:
- (A) Determine the feedrate of mercury, semivolatile metals, low volatile metals, or total chlorine and chloride from all feedstreams;
- (B) Determine the stack gas flowrate; and
- (C) Calculate a MTEC for each standard assuming all mercury, semivolatile metals, low volatile metals, or total chlorine (organic and inorganic) from all feedstreams is emitted;
- (ii) To document compliance with this provision, you must:
- (A) Monitor and record the feedrate of mercury, semivolatile metals, low volatile metals, and total chlorine and chloride from all feedstreams according to §63.1209(c);
- (B) Monitor with a CMS and record in the operating record the gas flowrate (either directly or by monitoring a surrogate parameter that you have correlated to gas flowrate);
- (C) Continuously calculate and record in the operating record the MTEC under the procedures of paragraph (m)(1)(i) of this section; and
- (D) Interlock the MTEC calculated in paragraph (m)(1)(i)(C) of this section to the AWFCO system to stop hazardous waste burning when the MTEC exceeds the emission standard.
- (iii) In lieu of the requirement in paragraphs (m)(1)(ii)(C) and (D) of this section, you may:
- (A) Identify in the Notification of Compliance a minimum gas flowrate limit and a maximum feedrate limit of mercury, semivolatile metals, low volatile metals, and/or total chlorine and chloride from all feedstreams that ensures the MTEC as calculated in paragraph (m)(1)(i)(C) of this section is below the applicable emission standard; and
- (B) Interlock the minimum gas flowrate limit and maximum feedrate limit of paragraph (m)(1)(iii)(A) of this section to the AWFCO system to stop hazardous waste burning when the gas flowrate or mercury, semivolatile metals, low volatile metals, and/or total chlorine and chloride feedrate exceeds the limits of paragraph (m)(1)(iii)(A) of this section.
- (2) Emission standards based on hazardous waste thermal concentration. (i) You are deemed to be in compliance with an emission standard specified on a hazardous waste thermal

concentration basis (i.e., pounds emitted per million Btu of heat input) if the HAP thermal concentration in the waste feed does not exceed the allowable HAP thermal concentration emission rate.

- (ii) To document compliance with this provision, you must:
- (A) Monitor and record the feedrate of mercury, semivolatile metals, low volatile metals, and total chlorine and chloride from all hazardous waste feedstreams in accordance with \$63.1209(c);
- (B) Determine and record the higher heating value of each hazardous waste feed;
- (C) Continuously calculate and record the thermal feed rate of all hazardous waste feedstreams by summing the products of each hazardous waste feed rate multiplied by the higher heating value of that hazardous waste;
- (D) Continuously calculate and record the total HAP thermal feed concentration for each constituent by dividing the HAP feedrate determined in paragraph (m)(2)(ii)(A) of this section by the thermal feed rate determined in paragraph (m)(2)(ii)(C) of this section for all hazardous waste feedstreams;
- (E) Interlock the HAP thermal feed concentration for each constituent with the AWFCO to stop hazardous waste feed when the thermal feed concentration exceeds the applicable thermal emission standard.
- (3) When you determine the feedrate of mercury, semivolatile metals, low volatile metals, or total chlorine and chloride for purposes of this provision, except as provided by paragraph (m)(4) of this section, you must assume that the analyte is present at the full detection limit when the feedstream analysis determines that the analyte in not detected in the feedstream.
- (4) Owners and operators of hazardous waste burning cement kilns and lightweight aggregate kilns may assume that mercury is present in raw material at half the detection limit when the raw material feedstream analysis determines that mercury is not detected.
- (5) You must state in the site-specific test plan that you submit for review and approval under paragraph (e) of this section that you intend to comply with the provisions of this paragraph. You must include in the test plan documentation that any surrogate that is proposed for gas flowrate adequately correlates with the gas flowrate.
- [64 FR 53038, Sept. 30, 1999, as amended at 65 FR 42299, July 10, 2000; 65 FR 67271, Nov. 9, 2000; 66 FR 35106, July 3, 2001; 66 FR 63318, Dec. 6, 2001; 67 FR 6814, Feb. 13, 2002; 67 FR 6990, Feb. 14, 2002; 67 FR 77691, Dec. 19, 2002; 70 FR 59546, Oct. 12, 2005; 73 FR 18980, Apr. 8, 2008; 73 FR 64096, Oct. 28, 2008]

## § 63.1208 What are the test methods?

- (a) [Reserved]
- (b) *Test methods*. You must use the following test methods to determine compliance with the emissions standards of this subpart:
- (1) Dioxins and furans. (i) To determine compliance with the emission standard for dioxins and furans, you must use:
- (A) Method 0023A, Sampling Method for Polychlorinated Dibenzo- *p* -Dioxins and Polychlorinated Dibenzofurans emissions from Stationary Sources, EPA Publication SW–846 (incorporated by reference—see §63.14); or
- (B) Method 23, provided in appendix A, part 60 of this chapter, after approval by the Administrator.
- (1) You may request approval to use Method 23 in the performance test plan required under §63.1207(e)(i) and (ii).
- (2) In determining whether to grant approval to use Method 23, the Administrator may consider factors including whether dioxin/furan were detected at levels substantially below the emission standard in previous testing, and whether previous Method 0023 analyses detected low levels of dioxin/furan in the front half of the sampling train.
- (3) Sources that emit carbonaceous particulate matter, such as coal-fired boilers, and sources equipped with activated carbon injection, will be deemed not suitable for use of Method 23 unless you document that there would not be a significant improvement in quality assurance with Method 0023A.
- (ii) You must sample for a minimum of three hours, and you must collect a minimum sample volume of 2.5 dscm;
- (iii) You may assume that nondetects are present at zero concentration.
- (2) Mercury. You must use Method 29, provided in appendix A, part 60 of this chapter, to demonstrate compliance with emission standard for mercury.
- (3) Cadmium and lead. You must use Method 29, provided in appendix A, part 60 of this chapter, to determine compliance with the emission standard for cadmium and lead (combined).
- (4) Arsenic, beryllium, and chromium. You must use Method 29, provided in appendix A, part 60 of this chapter, to determine compliance with the emission standard for arsenic, beryllium, and chromium (combined).

- (5) Hydrogen chloride and chlorine gas—(i) Compliance with MACT standards. To determine compliance with the emission standard for hydrogen chloride and chlorine gas (combined), you must use:
- (A) Method 26/26A as provided in appendix A, part 60 of this chapter; or
- (B) Methods 320 or 321 as provided in appendix A, part 63 of this chapter, or
- (C) ASTM D 6735–01, Standard Test Method for Measurement of Gaseous Chlorides and Fluorides from Mineral Calcining Exhaust Sources—Impinger Method to measure emissions of hydrogen chloride, and Method 26/26A to measure emissions of chlorine gas, provided that you follow the provisions in paragraphs (b)(5)(C)(1) through (6) of this section. ASTM D 6735–01 is available for purchase from at least one of the following addresses: American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, Post Office Box C700, West Conshohocken, PA 19428–2959; or ProQuest, 300 North Zeeb Road, Ann Arbor, MI 48106.
- (1) A test must include three or more runs in which a pair of samples is obtained simultaneously for each run according to section 11.2.6 of ASTM Method D6735–01.
- (2) You must calculate the test run standard deviation of each set of paired samples to quantify data precision, according to Equation 1 of this section:

$$RSD_{a} = (100) Absolute V alue \left[ \frac{Cl_{a} - C2_{a}}{Cl_{a} + C2_{a}} \right] \qquad (Eq. 1)$$

Where:

RSD<sub>a</sub>= The test run relative standard deviation of sample pair a, percent.

Cl<sub>a</sub>and C2<sub>a</sub>= The HCl concentrations, milligram/dry standard cubic meter (mg/dscm), from the paired samples.

(3) You must calculate the test average relative standard deviation according to Equation 2 of this section:

$$RSD_{IA} = \frac{\sum_{a=1}^{p} RSD_{a}}{p} \qquad (E \neq 2)$$

Where:

 $RSD_{TA}$ = The test average relative standard deviation, percent.

RSD<sub>a</sub>= The test run relative standard deviation for sample pair a.

p =The number of test runs,  $\geq 3$ .

- (4) If RSDTA is greater than 20 percent, the data are invalid and the test must be repeated.
- (5) The post-test analyte spike procedure of section 11.2.7 of ASTM Method D6735–01 is conducted, and the percent recovery is calculated according to section 12.6 of ASTM Method D6735–01.
- (6) If the percent recovery is between 70 percent and 130 percent, inclusive, the test is valid. If the percent recovery is outside of this range, the data are considered invalid, and the test must be repeated.
- (ii) Compliance with risk-based limits under §63.1215. To demonstrate compliance with emission limits established under §63.1215, you must use Method 26/26A as provided in appendix A, part 60 of this chapter, Method 320 as provided in appendix A, part 63 of this chapter, Method 321 as provided in appendix A, part 63 of this chapter, or ASTM D 6735–01, Standard Test Method for Measurement of Gaseous Chlorides and Fluorides from Mineral Calcining Exhaust Sources—Impinger Method (following the provisions of paragraphs (b)(5)(C)(1) through (6) of this section), except:
- (A) For cement kilns and sources equipped with a dry acid gas scrubber, you must use Methods 320 or 321 as provided in appendix A, part 63 of this chapter, or ASTM D 6735–01 to measure hydrogen chloride, and the back-half, caustic impingers of Method 26/26A as provided in appendix A, part 60 of this chapter to measure chlorine gas; and
- (B) For incinerators, boilers, and lightweight aggregate kilns, you must use Methods 320 or 321 as provided in appendix A, part 63 of this chapter, or ASTM D 6735–01 to measure hydrogen chloride, and Method 26/26A as provided in appendix A, part 60 of this chapter to measure total chlorine, and calculate chlorine gas by difference if:
- (1) The bromine/chlorine ratio in feedstreams is greater than 5 percent; or
- (2) The sulfur/chlorine ratio in feedstreams is greater than 50 percent.
- (6) Particulate matter. You must use Methods 5 or 5I, provided in appendix A, part 60 of this chapter, to demonstrate compliance with the emission standard for particulate matter.
- (7) Other test methods. You may use applicable test methods in EPA Publication SW-846, as incorporated by reference in paragraph (a) of this section, as necessary to demonstrate compliance with requirements of this subpart, except as otherwise specified in paragraphs (b)(2)-(b)(6) of this section.
- (8) Feedstream analytical methods. You may use any reliable analytical method to determine feedstream concentrations of metals, chlorine, and other constituents. It is your responsibility to ensure that the sampling and analysis procedures are unbiased, precise, and that the results are representative of the feedstream.

(9) Opacity. If you determine compliance with the opacity standard under the monitoring requirements of §§63.1209(a)(1)(iv) and (a)(1)(v), you must use Method 9, provided in appendix A, part 60 of this chapter.

[64 FR 53038, Sept. 30, 1999, as amended at 69 FR 18803, Apr. 9, 2004; 70 FR 34555, June 14, 2005; 70 FR 59547, Oct. 12, 2005]

## § 63.1209 What are the monitoring requirements?

- (a) Continuous emissions monitoring systems (CEMS) and continuous opacity monitoring systems (COMS). (1)(i) You must use either a carbon monoxide or hydrocarbon CEMS to demonstrate and monitor compliance with the carbon monoxide and hydrocarbon standard under this subpart. You must also use an oxygen CEMS to continuously correct the carbon monoxide or hydrocarbon level to 7 percent oxygen.
- (ii) (A) Cement kilns under §63.1204. Except as provided by paragraphs (a)(1)(iv) and (a)(1)(v) of the section, you must use a COMS to demonstrate and monitor compliance with the opacity standard under §§63.1204(a)(7) and (b)(7) at each point where emissions are vented from these affected sources including the bypass stack of a preheater or preheater/precalciner kiln with dual stacks.
- (B) Cement kilns under §63.1220. Except as provided by paragraphs (a)(1)(iv) and (a)(1)(v) of the section and unless your source is equipped with a bag leak detection system under §63.1206(c)(8) or a particulate matter detection system under §63.1206(c)(9), you must use a COMS to demonstrate and monitor compliance with the opacity standard under §63.1220(a)(7) and (b)(7) at each point where emissions are vented from these affected sources including the bypass stack of a preheater or preheater/precalciner kiln with dual stacks.
- (C) You must maintain and operate each COMS in accordance with the requirements of §63.8(c) except for the requirements under §63.8(c)(3). The requirements of §63.1211(c) shall be complied with instead of §63.8(c)(3); and
- (D) Compliance is based on a six-minute block average.
- (iii) You must install, calibrate, maintain, and operate a particulate matter CEMS to demonstrate and monitor compliance with the particulate matter standards under this subpart. However, compliance with the requirements in this section to install, calibrate, maintain and operate the PM CEMS is not required until such time that the Agency promulgates all performance specifications and operational requirements applicable to PM CEMS.
- (iv) If you operate a cement kiln subject to the provisions of this subpart and use a fabric filter with multiple stacks or an electrostatic precipitator with multiple stacks, you may, in lieu of installing the COMS required by paragraph (a)(1)(ii) of this section, comply with the opacity standard in accordance with the procedures of Method 9 to part 60 of this chapter:

- (A) You must conduct the Method 9 test while the affected source is operating at the highest load or capacity level reasonably expected to occur within the day;
- (B) The duration of the Method 9 test shall be at least 30 minutes each day;
- (C) You must use the Method 9 procedures to monitor and record the average opacity for each six-minute block period during the test; and
- (D) To remain in compliance, all six-minute block averages must not exceed the opacity standard.
- (v) If you operate a cement kiln subject to the provisions of this subpart and use a particulate matter control device that exhausts through a monovent, or if the use of a COMS in accordance with the installation specification of Performance Specification 1 (PS-1) of appendix B to part 60 of this chapter is not feasible, you may, in lieu of installing the COMS required by paragraph (a)(1)(ii) of this section, comply with the opacity standard in accordance with the procedures of Method 9 to part 60 of this chapter:
- (A) You must conduct the Method 9 test while the affected source is operating at the highest load or capacity level reasonably expected to occur within the day;
- (B) The duration of the Method 9 test shall be at least 30 minutes each day;
- (C) You must use the Method 9 procedures to monitor and record the average opacity for each six-minute block period during the test; and
- (D) To remain in compliance, all six-minute block averages must not exceed the opacity standard.
- (2) *Performance specifications*. You must install, calibrate, maintain, and continuously operate the CEMS and COMS in compliance with the quality assurance procedures provided in the appendix to this subpart and Performance Specifications 1 (opacity), 4B (carbon monoxide and oxygen), and 8A (hydrocarbons) in appendix B, part 60 of this chapter.
- (3) Carbon monoxide readings exceeding the span. (i) Except as provided by paragraph (a)(3)(ii) of this section, if a carbon monoxide CEMS detects a response that results in a one-minute average at or above the 3,000 ppmv span level required by Performance Specification 4B in appendix B, part 60 of this chapter, the one-minute average must be recorded as 10,000 ppmv. The one-minute 10,000 ppmv value must be used for calculating the hourly rolling average carbon monoxide level.
- (ii) Carbon monoxide CEMS that use a span value of 10,000 ppmv when one-minute carbon monoxide levels are equal to or exceed 3,000 ppmv are not subject to paragraph (a)(3)(i) of this section. Carbon monoxide CEMS that use a span value of 10,000 are subject to the same CEMS performance and equipment specifications when operating in the range of 3,000 ppmv to 10,000

ppmv that are provided by Performance Specification 4B for other carbon monoxide CEMS, except:

- (A) Calibration drift must be less than 300 ppmy; and
- (B) Calibration error must be less than 500 ppmv.
- (4) Hydrocarbon readings exceeding the span. (i) Except as provided by paragraph (a)(4)(ii) of this section, if a hydrocarbon CEMS detects a response that results in a one-minute average at or above the 100 ppmv span level required by Performance Specification 8A in appendix B, part 60 of this chapter, the one-minute average must be recorded as 500 ppmv. The one-minute 500 ppmv value must be used for calculating the hourly rolling average HC level.
- (ii) Hydrocarbon CEMS that use a span value of 500 ppmv when one-minute hydrocarbon levels are equal to or exceed 100 ppmv are not subject to paragraph (a)(4)(i) of this section. Hydrocarbon CEMS that use a span value of 500 ppmv are subject to the same CEMS performance and equipment specifications when operating in the range of 100 ppmv to 500 ppmv that are provided by Performance Specification 8A for other hydrocarbon CEMS, except:
- (A) The zero and high-level calibration gas must have a hydrocarbon level of between 0 and 100 ppmv, and between 250 and 450 ppmv, respectively;
- (B) The strip chart recorder, computer, or digital recorder must be capable of recording all readings within the CEM measurement range and must have a resolution of 2.5 ppmv;
- (C) The CEMS calibration must not differ by more than  $\pm 15$  ppmv after each 24-hour period of the seven day test at both zero and high levels;
- (D) The calibration error must be no greater than 25 ppmv; and
- (E) The zero level, mid-level, and high level calibration gas used to determine calibration error must have a hydrocarbon level of 0–200 ppmv, 150–200 ppmv, and 350–400 ppmv, respectively.
- (5) Petitions to use CEMS for other standards. You may petition the Administrator to use CEMS for compliance monitoring for particulate matter, mercury, semivolatile metals, low volatile metals, and hydrogen chloride and chlorine gas under §63.8(f) in lieu of compliance with the corresponding operating parameter limits under this section.
- (6) Calculation of rolling averages —(i) Calculation of rolling averages initially. The carbon monoxide or hydrocarbon CEMS must begin recording one-minute average values by 12:01 a.m. and hourly rolling average values by 1:01 a.m., when 60 one-minute values will be available for calculating the initial hourly rolling average for those sources that come into compliance on the regulatory compliance date. Sources that elect to come into compliance before the regulatory compliance date must begin recording one-minute and hourly rolling average values within 60 seconds and 60 minutes (when 60 one-minute values will be available for calculating the initial hourly rolling average), respectively, from the time at which compliance begins.

- (ii) Calculation of rolling averages upon intermittent operations. You must ignore periods of time when one-minute values are not available for calculating the hourly rolling average. When one-minute values become available again, the first one-minute value is added to the previous 59 values to calculate the hourly rolling average.
- (iii) Calculation of rolling averages when the hazardous waste feed is cutoff. (A) Except as provided by paragraph (a)(6)(iii)(B) of this section, you must continue monitoring carbon monoxide and hydrocarbons when the hazardous waste feed is cutoff if the source is operating. You must not resume feeding hazardous waste if the emission levels exceed the standard.
- (B) You are not subject to the CEMS requirements of this subpart during periods of time you meet the requirements of §63.1206(b)(1)(ii) (compliance with emissions standards for nonhazardous waste burning sources when you are not burning hazardous waste).
- (7) Operating parameter limits for hydrocarbons. If you elect to comply with the carbon monoxide and hydrocarbon emission standard by continuously monitoring carbon monoxide with a CEMS, you must demonstrate that hydrocarbon emissions during the comprehensive performance test do not exceed the hydrocarbon emissions standard. In addition, the limits you establish on the destruction and removal efficiency (DRE) operating parameters required under paragraph (j) of this section also ensure that you maintain compliance with the hydrocarbon emission standard. If you do not conduct the hydrocarbon demonstration and DRE tests concurrently, you must establish separate operating parameter limits under paragraph (j) of this section based on each test and the more restrictive of the operating parameter limits applies.
- (b) Other continuous monitoring systems (CMS). (1) You must use CMS (e.g., thermocouples, pressure transducers, flow meters) to document compliance with the applicable operating parameter limits under this section.
- (2) Except as specified in paragraphs (b)(2)(i) and (ii) of this section, you must install and operate continuous monitoring systems other than CEMS in conformance with §63.8(c)(3) that requires you, at a minimum, to comply with the manufacturer's written specifications or recommendations for installation, operation, and calibration of the system:
- (i) Calibration of thermocouples and pyrometers. The calibration of thermocouples must be verified at a frequency and in a manner consistent with manufacturer specifications, but no less frequent than once per year. You must operate and maintain optical pyrometers in accordance with manufacturer specifications unless otherwise approved by the Administrator. You must calibrate optical pyrometers in accordance with the frequency and procedures recommended by the manufacturer, but no less frequent than once per year, unless otherwise approved by the Administrator. And,
- (ii) Accuracy and calibration of weight measurement devices for activated carbon injection systems. If you operate a carbon injection system, the accuracy of the weight measurement device must be  $\pm$  1 percent of the weight being measured. The calibration of the device must be verified at least once each calendar quarter at a frequency of approximately 120 days.

- (3) CMS must sample the regulated parameter without interruption, and evaluate the detector response at least once each 15 seconds, and compute and record the average values at least every 60 seconds.
- (4) The span of the non-CEMS CMS detector must not be exceeded. You must interlock the span limits into the automatic waste feed cutoff system required by §63.1206(c)(3).
- (5) Calculation of rolling averages —(i) Calculation of rolling averages initially. Continuous monitoring systems must begin recording one-minute average values by 12:01 a.m., hourly rolling average values by 1:01 a.m.(e.g., when 60 one-minute values will be available for calculating the initial hourly rolling average), and twelve-hour rolling averages by 12:01 p.m.(e.g., when 720 one-minute averages are available to calculate a 12-hour rolling average), for those sources that come into compliance on the regulatory compliance date. Sources that elect to come into compliance before the regulatory compliance date must begin recording one-minute, hourly rolling average, and 12-hour rolling average values within 60 seconds, 60 minutes (when 60 one-minute values will be available for calculating the initial hourly rolling average), and 720 minutes (when 720 one-minute values will be available for calculating the initial 12-hour hourly rolling average) respectively, from the time at which compliance begins.
- (ii) Calculation of rolling averages upon intermittent operations. You must ignore periods of time when one-minute values are not available for calculating rolling averages. When one-minute values become available again, the first one-minute value is added to the previous one-minute values to calculate rolling averages.
- (iii) Calculation of rolling averages when the hazardous waste feed is cutoff. (A) Except as provided by paragraph (b)(5)(iii)(B) of this section, you must continue monitoring operating parameter limits with a CMS when the hazardous waste feed is cutoff if the source is operating. You must not resume feeding hazardous waste if an operating parameter exceeds its limit.
- (B) You are not subject to the CMS requirements of this subpart during periods of time you meet the requirements of §63.1206(b)(1)(ii) (compliance with emissions standards for nonhazardous waste burning sources when you are not burning hazardous waste).
- (c) Analysis of feedstreams —(1) General. Prior to feeding the material, you must obtain an analysis of each feedstream that is sufficient to document compliance with the applicable feedrate limits provided by this section.
- (2) Feedstream analysis plan. You must develop and implement a feedstream analysis plan and record it in the operating record. The plan must specify at a minimum:
- (i) The parameters for which you will analyze each feedstream to ensure compliance with the operating parameter limits of this section;
- (ii) Whether you will obtain the analysis by performing sampling and analysis or by other methods, such as using analytical information obtained from others or using other published or documented data or information;

- (iii) How you will use the analysis to document compliance with applicable feedrate limits ( e.g., if you blend hazardous wastes and obtain analyses of the wastes prior to blending but not of the blended, as-fired, waste, the plan must describe how you will determine the pertinent parameters of the blended waste);
- (iv) The test methods which you will use to obtain the analyses;
- (v) The sampling method which you will use to obtain a representative sample of each feedstream to be analyzed using sampling methods described in appendix IX, part 266 of this chapter, or an equivalent method; and
- (vi) The frequency with which you will review or repeat the initial analysis of the feedstream to ensure that the analysis is accurate and up to date.
- (3) Review and approval of analysis plan. You must submit the feedstream analysis plan to the Administrator for review and approval, if requested.
- (4) Compliance with feedrate limits. To comply with the applicable feedrate limits of this section, you must monitor and record feedrates as follows:
- (i) Determine and record the value of the parameter for each feedstream by sampling and analysis or other method;
- (ii) Determine and record the mass or volume flowrate of each feedstream by a CMS. If you determine flowrate of a feedstream by volume, you must determine and record the density of the feedstream by sampling and analysis (unless you report the constituent concentration in units of weight per unit volume (e.g., mg/l)); and
- (iii) Calculate and record the mass feedrate of the parameter per unit time.
- (5) Waiver of monitoring of constituents in certain feedstreams. You are not required to monitor levels of metals or chlorine in the following feedstreams to document compliance with the feedrate limits under this section provided that you document in the comprehensive performance test plan the expected levels of the constituent in the feedstream and account for those assumed feedrate levels in documenting compliance with feedrate limits: natural gas, process air, and feedstreams from vapor recovery systems.
- (d) *Performance evaluations*. (1) The requirements of §§63.8(d) (Quality control program) and (e) (Performance evaluation of continuous monitoring systems) apply, except that you must conduct performance evaluations of components of the CMS under the frequency and procedures (for example, submittal of performance evaluation test plan for review and approval) applicable to performance tests as provided by §63.1207.
- (2) You must comply with the quality assurance procedures for CEMS prescribed in the appendix to this subpart.

- (e) Conduct of monitoring. The provisions of §63.8(b) apply.
- (f) Operation and maintenance of continuous monitoring systems. The provisions of §63.8(c) apply except:
- (1) Section 63.8(c)(3). The requirements of §63.1211(c), that requires CMSs to be installed, calibrated, and operational on the compliance date, shall be complied with instead of section 63.8(c)(3);
- (2) Section 63.8(c)(4)(ii). The performance specifications for carbon monoxide, hydrocarbon, and oxygen CEMSs in subpart B, part 60 of this chapter that requires detectors to measure the sample concentration at least once every 15 seconds for calculating an average emission rate once every 60 seconds shall be complied with instead of section 63.8(c)(4)(ii); and
- (3) Sections 63.8(c)(4)(i), (c)(5), and (c)(7)(i)(C) pertaining to COMS apply only to owners and operators of hazardous waste burning cement kilns.
- (g) Alternative monitoring requirements other than continuous emissions monitoring systems (CEMS)—(1) Requests to use alternatives to operating parameter monitoring requirements. (i) You may submit an application to the Administrator under this paragraph for approval of alternative operating parameter monitoring requirements to document compliance with the emission standards of this subpart. For requests to use additional CEMS, however, you must use paragraph (a)(5) of this section and §63.8(f). Alternative requests to operating parameter monitoring requirements that include unproven monitoring methods may not be made under this paragraph and must be made under §63.8(f).
- (ii) You may submit an application to waive an operating parameter limit specified in this section based on documentation that neither that operating parameter limit nor an alternative operating parameter limit is needed to ensure compliance with the emission standards of this subpart.
- (iii) You must comply with the following procedures for applications submitted under paragraphs (g)(1)(i) and (ii) of this section:
- (A) *Timing of the application*. You must submit the application to the Administrator not later than with the comprehensive performance test plan.
- (B) Content of the application. You must include in the application:
- (1) Data or information justifying your request for an alternative monitoring requirement (or for a waiver of an operating parameter limit), such as the technical or economic infeasibility or the impracticality of using the required approach;
- (2) A description of the proposed alternative monitoring requirement, including the operating parameter to be monitored, the monitoring approach/technique (e.g., type of detector, monitoring location), the averaging period for the limit, and how the limit is to be calculated; and

- (3) Data or information documenting that the alternative monitoring requirement would provide equivalent or better assurance of compliance with the relevant emission standard, or that it is the monitoring requirement that best assures compliance with the standard and that is technically and economically practicable.
- (C) Approval of request to use an alternative monitoring requirement or waive an operating parameter limit. The Administrator will notify you of approval or intention to deny approval of the request within 90 calendar days after receipt of the original request and within 60 calendar days after receipt of any supplementary information that you submit. The Administrator will not approve an alternative monitoring request unless the alternative monitoring requirement provides equivalent or better assurance of compliance with the relevant emission standard, or is the monitoring requirement that best assures compliance with the standard and that is technically and economically practicable. Before disapproving any request, the Administrator will notify you of the Administrator's intention to disapprove the request together with:
- (1) Notice of the information and findings on which the intended disapproval is based; and
- (2) Notice of opportunity for you to present additional information to the Administrator before final action on the request. At the time the Administrator notifies you of intention to disapprove the request, the Administrator will specify how much time you will have after being notified of the intended disapproval to submit the additional information.
- (D) Responsibility of owners and operators. You are responsible for ensuring that you submit any supplementary and additional information supporting your application in a timely manner to enable the Administrator to consider your application during review of the comprehensive performance test plan. Neither your submittal of an application, nor the Administrator's failure to approve or disapprove the application, relieves you of the responsibility to comply with the provisions of this subpart.
- (iv) Dual standards that incorporate the interim standards for HAP metals—(A) Semivolatile and low volatile metals. You may petition the Administrator to waive a feedrate operating parameter limit under paragraph (n)(2) of this section for either the emission standards expressed in a thermal emissions format or the interim standards based on documentation that the feedrate operating parameter limit is not needed to ensure compliance with the relevant standard on a continuous basis.
- (B) Mercury. You may petition the Administrator to waive a feedrate operating parameter limit under paragraph (l)(1) of this section for either the feed concentration standard under §§63.1220(a)(2)(i) and (b)(2)(i) or the interim standards based on documentation that the feedrate operating parameter limit is not needed to ensure compliance with the relevant standard on a continuous basis.
- (2) Administrator's discretion to specify additional or alternative requirements. The Administrator may determine on a case-by-case basis at any time (e.g., during review of the comprehensive performance test plan, during compliance certification review) that you may need to limit additional or alternative operating parameters (e.g., opacity in addition to or in lieu of

operating parameter limits on the particulate matter control device) or that alternative approaches to establish limits on operating parameters may be necessary to document compliance with the emission standards of this subpart.

- (h) Reduction of monitoring data. The provisions of §63.8(g) apply.
- (i) When an operating parameter is applicable to multiple standards. Paragraphs (j) through (p) of this section require you to establish limits on operating parameters based on comprehensive performance testing to ensure you maintain compliance with the emission standards of this subpart. For several parameters, you must establish a limit for the parameter to ensure compliance with more than one emission standard. An example is a limit on minimum combustion chamber temperature to ensure compliance with both the DRE standard of paragraph (j) of this section and the dioxin/furan standard of paragraph (k) of this section. If the performance tests for such standards are not performed simultaneously, the most stringent limit for a parameter derived from independent performance tests applies.
- (j) *DRE*. To remain in compliance with the destruction and removal efficiency (DRE) standard, you must establish operating limits during the comprehensive performance test (or during a previous DRE test under provisions of §63.1206(b)(7)) for the following parameters, unless the limits are based on manufacturer specifications, and comply with those limits at all times that hazardous waste remains in the combustion chamber (*i.e.*, the hazardous waste residence time has not transpired since the hazardous waste feed cutoff system was activated):
- (1) Minimum combustion chamber temperature. (i) You must measure the temperature of each combustion chamber at a location that best represents, as practicable, the bulk gas temperature in the combustion zone. You must document the temperature measurement location in the test plan you submit under §63.1207(e);
- (ii) You must establish a minimum hourly rolling average limit as the average of the test run averages;
- (2) Maximum flue gas flowrate or production rate. (i) As an indicator of gas residence time in the control device, you must establish and comply with a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that you document in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run.
- (ii) You must comply with this limit on a hourly rolling average basis;
- (3) Maximum hazardous waste feedrate. (i) You must establish limits on the maximum pumpable and total (i.e., pumpable and nonpumpable) hazardous waste feedrate for each location where hazardous waste is fed.
- (ii) You must establish the limits as the average of the maximum hourly rolling averages for each run.

- (iii) You must comply with the feedrate limit(s) on a hourly rolling average basis;
- (4) Operation of waste firing system. You must specify operating parameters and limits to ensure that good operation of each hazardous waste firing system is maintained.
- (k) *Dioxins and furans*. You must comply with the dioxin and furans emission standard by establishing and complying with the following operating parameter limits. You must base the limits on operations during the comprehensive performance test, unless the limits are based on manufacturer specifications.
- (1) Gas temperature at the inlet to a dry particulate matter control device. (i) For sources other than a lightweight aggregate kiln, if the combustor is equipped with an electrostatic precipitator, baghouse (fabric filter), or other dry emissions control device where particulate matter is suspended in contact with combustion gas, you must establish a limit on the maximum temperature of the gas at the inlet to the device on an hourly rolling average. You must establish the hourly rolling average limit as the average of the test run averages.
- (ii) For hazardous waste burning lightweight aggregate kilns, you must establish a limit on the maximum temperature of the gas at the exit of the (last) combustion chamber (or exit of any waste heat recovery system) on an hourly rolling average. The limit must be established as the average of the test run averages;
- (2) Minimum combustion chamber temperature. (i) For sources other than cement kilns, you must measure the temperature of each combustion chamber at a location that best represents, as practicable, the bulk gas temperature in the combustion zone. You must document the temperature measurement location in the test plan you submit under §§63.1207(e) and (f);
- (ii) You must establish a minimum hourly rolling average limit as the average of the test run averages.
- (3) Maximum flue gas flowrate or production rate. (i) As an indicator of gas residence time in the control device, you must establish and comply with a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that you document in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run.
- (ii) You must comply with this limit on a hourly rolling average basis;
- (4) Maximum hazardous waste feedrate. (i) You must establish limits on the maximum pumpable and total (pumpable and nonpumpable) hazardous waste feedrate for each location where waste is fed.
- (ii) You must establish the limits as the average of the maximum hourly rolling averages for each run.
- (iii) You must comply with the feedrate limit(s) on a hourly rolling average basis;

- (5) Particulate matter operating limit. If your combustor is equipped with an activated carbon injection system, you must establish operating parameter limits on the particulate matter control device as specified by paragraph (m)(1) of this section;
- (6) Activated carbon injection parameter limits. If your combustor is equipped with an activated carbon injection system:
- (i) Carbon feedrate. You must establish a limit on minimum carbon injection rate on an hourly rolling average calculated as the average of the test run averages. If your carbon injection system injects carbon at more than one location, you must establish a carbon feedrate limit for each location.
- (ii) Carrier fluid. You must establish a limit on minimum carrier fluid (gas or liquid) flowrate or pressure drop as an hourly rolling average based on the manufacturer's specifications. You must document the specifications in the test plan you submit under §§63.1207(e) and (f);
- (iii) Carbon specification. (A) You must specify and use the brand (i.e., manufacturer) and type of carbon used during the comprehensive performance test until a subsequent comprehensive performance test is conducted, unless you document in the site-specific performance test plan required under §§63.1207(e) and (f) key parameters that affect adsorption and establish limits on those parameters based on the carbon used in the performance test.
- (B) You may substitute at any time a different brand or type of carbon provided that the replacement has equivalent or improved properties compared to the carbon used in the performance test and conforms to the key sorbent parameters you identify under paragraph (k)(6)(iii)(A) of this section. You must include in the operating record documentation that the substitute carbon will provide the same level of control as the original carbon.
- (7) Carbon bed parameter limits. If your combustor is equipped with a carbon bed system:
- (i) *Monitoring bed life.* You must:
- (A) Monitor performance of the carbon bed consistent with manufacturer's specifications and recommendations to ensure the carbon bed (or bed segment for sources with multiple segments) has not reached the end of its useful life to minimize dioxin/furan and mercury emissions at least to the levels required by the emission standards;
- (B) Document the monitoring procedures in the operation and maintenance plan;
- (C) Record results of the performance monitoring in the operating record; and
- (D) Replace the bed or bed segment before it has reached the end of its useful life to minimize dioxin/furan and mercury emissions at least to the levels required by the emission standards.
- (ii) Carbon specification. (A) You must specify and use the brand (i.e., manufacturer) and type of carbon used during the comprehensive performance test until a subsequent comprehensive

performance test is conducted, unless you document in the site-specific performance test plan required under §§63.1207(e) and (f) key parameters that affect adsorption and establish limits on those parameters based on the carbon used in the performance test.

- (B) You may substitute at any time a different brand or type of carbon provided that the replacement has equivalent or improved properties compared to the carbon used in the performance test. You must include in the operating record documentation that the substitute carbon will provide an equivalent or improved level of control as the original carbon.
- (iii) *Maximum temperature*. You must measure the temperature of the carbon bed at either the bed inlet or exit and you must establish a maximum temperature limit on an hourly rolling average as the average of the test run averages.
- (8) Catalytic oxidizer parameter limits. If your combustor is equipped with a catalytic oxidizer, you must establish limits on the following parameters:
- (i) Minimum flue gas temperature at the entrance of the catalyst. You must establish a limit on minimum flue gas temperature at the entrance of the catalyst on an hourly rolling average as the average of the test run averages.
- (ii) Maximum time in-use. You must replace a catalytic oxidizer with a new catalytic oxidizer when it has reached the maximum service time specified by the manufacturer.
- (iii) Catalyst replacement specifications. When you replace a catalyst with a new one, the new catalyst must be equivalent to or better than the one used during the previous comprehensive test, as measured by:
- (A) Catalytic metal loading for each metal;
- (B) Space time, expressed in the units s<sup>-1</sup>, the maximum rated volumetric flow of combustion gas through the catalyst divided by the volume of the catalyst; and
- (C) Substrate construction, including materials of construction, washcoat type, and pore density.
- (iv) Maximum flue gas temperature. You must establish a maximum flue gas temperature limit at the entrance of the catalyst as an hourly rolling average, based on manufacturer's specifications.
- (9) *Inhibitor feedrate parameter limits*. If you feed a dioxin/furan inhibitor into the combustion system, you must establish limits for the following parameters:
- (i) Minimum inhibitor feedrate. You must establish a limit on minimum inhibitor feedrate on an hourly rolling average as the average of the test run averages.
- (ii) *Inhibitor specifications*. (A) You must specify and use the brand (*i.e.*, manufacturer) and type of inhibitor used during the comprehensive performance test until a subsequent comprehensive performance test is conducted, unless you document in the site-specific

performance test plan required under §§63.1207(e) and (f) key parameters that affect the effectiveness of the inhibitor and establish limits on those parameters based on the inhibitor used in the performance test.

- (B) You may substitute at any time a different brand or type of inhibitor provided that the replacement has equivalent or improved properties compared to the inhibitor used in the performance test and conforms to the key parameters you identify under paragraph (k)(9)(ii)(A) of this section. You must include in the operating record documentation that the substitute inhibitor will provide the same level of control as the original inhibitor.
- (l) *Mercury*. You must comply with the mercury emission standard by establishing and complying with the following operating parameter limits. You must base the limits on operations during the comprehensive performance test, unless the limits are based on manufacturer specifications.
- (1) Feedrate of mercury. (i) For incinerators and solid fuel boilers, when complying with the mercury emission standards under §§63.1203, 63.1216 and 63.1219, you must establish a 12-hour rolling average limit for the total feedrate of mercury in all feedstreams as the average of the test run averages.
- (ii) For liquid fuel boilers, when complying with the mercury emission standards of §63.1217, you must establish a rolling average limit for the mercury feedrate as follows on an averaging period not to exceed an annual rolling average:
- (A) You must calculate a mercury system removal efficiency for each test run and calculate the average system removal efficiency of the test run averages. If emissions exceed the mercury emission standard during the comprehensive performance test, it is not a violation because the averaging period for the mercury emission standard is (not-to-exceed) one year and compliance is based on compliance with the mercury feedrate limit with an averaging period not-to-exceed one year.
- (B) If you burn hazardous waste with a heating value of 10,000 Btu/lb or greater, you must calculate the mercury feedrate limit as follows:
- (l) The mercury feedrate limit is the emission standard divided by [1 system removal efficiency].
- (2) The mercury feedrate limit is a hazardous waste thermal concentration limit expressed as pounds of mercury in hazardous waste feedstreams per million Btu of hazardous waste fired.
- (3) You must comply with the hazardous waste mercury thermal concentration limit by determining the feedrate of mercury in all hazardous waste feedstreams (lb/hr) at least once a minute and the hazardous waste thermal feedrate (MM Btu/hr) at least once a minute to calculate a 60-minute average thermal emission concentration as [hazardous waste mercury feedrate (lb/hr) / hazardous waste thermal feedrate (MM Btu/hr)].

- (4) You must calculate a rolling average hazardous waste mercury thermal concentration that is updated each hour.
- (5) If you select an averaging period for the feedrate limit that is greater than a 12-hour rolling average, you must calculate the initial rolling average as though you had selected a 12-hour rolling average, as provided by paragraph (b)(5)(i) of this section. Thereafter, you must calculate rolling averages using either one-minute or one-hour updates. Hourly updates shall be calculated using the average of the one-minute average data for the preceding hour. For the period beginning with initial operation under this standard until the source has operated for the full averaging period that you select, the average feedrate shall be based only on actual operation under this standard.
- (C) If you burn hazardous waste with a heating value of less than 10,000 Btu/lb, you must calculate the mercury feedrate limit as follows:
- (1) You must calculate the mercury feedrate limit as the mercury emission standard divided by [1 System Removal Efficiency].
- (2) The feedrate limit is expressed as a mass concentration per unit volume of stack gas (µgm/dscm) and is converted to a mass feedrate (lb/hr) by multiplying it by the average stack gas flowrate of the test run averages.
- (3) You must comply with the feedrate limit by determining the mercury feedrate (lb/hr) at least once a minute to calculate a 60-minute average feedrate.
- (4) You must update the rolling average feedrate each hour with this 60-minute feedrate measurement.
- (5) If you select an averaging period for the feedrate limit that is greater than a 12-hour rolling average, you must calculate the initial rolling average as though you had selected a 12-hour rolling average, as provided by paragraph (b)(5)(i) of this section. Thereafter, you must calculate rolling averages using either one-minute or one-hour updates. Hourly updates shall be calculated using the average of the one-minute average data for the preceding hour. For the period beginning with initial operation under this standard until the source has operated for the full averaging period that you select, the average feedrate shall be based only on actual operation under this standard.
- (D) If your boiler is equipped with a wet scrubber, you must comply with the following unless you document in the performance test plan that you do not feed chlorine at rates that may substantially affect the system removal efficiency of mercury for purposes of establishing a mercury feedrate limit based on the system removal efficiency during the test:
- (1) Scrubber blowdown must be minimized during a pretest conditioning period and during the performance test:

- (2) Scrubber water must be preconditioned so that mercury in the water is at equilibrium with stack gas at the mercury feedrate level of the performance test; and
- (3) You must establish an operating limit on minimum pH of scrubber water as the average of the test run averages and comply with the limit on an hourly rolling average.
- (iii) For cement kilns:
- (A) When complying with the emission standards under §§63.1220(a)(2)(i) and (b)(2)(i), you must:
- (1) Comply with the mercury hazardous waste feed concentration operating requirement on a twelve-hour rolling average;
- (2) Monitor and record in the operating record the as-fired mercury concentration in the hazardous waste (or the weighted-average mercury concentration for multiple hazardous waste feedstreams);
- (3) Initiate an automatic waste feed cutoff that immediately and automatically cuts off the hazardous waste feed when the as-fired mercury concentration operating requirement is exceeded;
- (B) When complying with the emission standards under §§63.1204 and 63.1220(a)(2)(ii)(A) and (b)(2)(ii)(A), you must establish a 12-hour rolling average limit for the feedrate of mercury in all feedstreams as the average of the test run averages;
- (C) Except as provided by paragraph (l)(1)(iii)(D) of this section, when complying with the hazardous waste maximum theoretical emission concentration (MTEC) under §63.1220(a)(2)(ii)(B) and (b)(2)(ii)(B), you must:
- (1) Comply with the MTEC operating requirement on a twelve-hour rolling average;
- (2) Monitor and record the feedrate of mercury for each hazardous waste feedstream according to §63.1209(c);
- (3) Monitor with a CMS and record in the operating record the gas flowrate (either directly or by monitoring a surrogate parameter that you have correlated to gas flowrate);
- (4) Continuously calculate and record in the operating record a MTEC assuming mercury from all hazardous waste feedstreams is emitted;
- (5) Initiate an automatic waste feed cutoff that immediately and automatically cuts off the hazardous waste feed when the MTEC operating requirement is exceeded;
- (D) In lieu of complying with paragraph (l)(1)(iii)(C) of this section, you may:

- (1) Identify in the Notification of Compliance a minimum gas flowrate limit and a maximum feedrate limit of mercury from all hazardous waste feedstreams that ensures the MTEC calculated in paragraph (l)(1)(iii)(C)(4) of this section is below the operating requirement under paragraphs §§63.1220(a)(2)(ii)(B) and (b)(2)(ii)(B); and
- (2) Initiate an automatic waste feed cutoff that immediately and automatically cuts off the hazardous waste feed when either the gas flowrate or mercury feedrate exceeds the limits identified in paragraph (l)(1)(iii)(D)(1) of this section.
- (iv) For lightweight aggregate kilns:
- (A) When complying with the emission standards under §§63.1205, 63.1221(a)(2)(i) and (b)(2)(i), you must establish a 12-hour rolling average limit for the total feedrate of mercury in all feedstreams as the average of the test run averages;
- (B) Except as provided by paragraph (l)(1)(iv)(C) of this section, when complying with the hazardous waste feedrate corresponding to a maximum theoretical emission concentration (MTEC) under §§63.1221(a)(2)(ii) and (b)(2)(ii), you must:
- (1) Comply with the MTEC operating requirement on a twelve-hour rolling average;
- (2) Monitor and record the feedrate of mercury for each hazardous waste feedstream according to §63.1209(c);
- (3) Monitor with a CMS and record in the operating record the gas flowrate (either directly or by monitoring a surrogate parameter that you have correlated to gas flowrate);
- (4) Continuously calculate and record in the operating record a MTEC assuming mercury from all hazardous waste feedstreams is emitted;
- (5) Initiate an automatic waste feed cutoff that immediately and automatically cuts off the hazardous waste feed when the MTEC operating requirement is exceeded;
- (C) In lieu of complying with paragraph (l)(l)(iv)(B) of this section, you may:
- (1) Identify in the Notification of Compliance a minimum gas flowrate limit and a maximum feedrate limit of mercury from all hazardous waste feedstreams that ensures the MTEC calculated in paragraph (l)(l)(iv)(B)(4) of this section is below the operating requirement under paragraphs §§63.1221(a)(2)(ii) and (b)(2)(ii); and
- (2) Initiate an automatic waste feed cutoff that immediately and automatically cuts off the hazardous waste feed when either the gas flowrate or mercury feedrate exceeds the limits identified in paragraph (1)(1)(iv)(C)(1) of this section.
- (v) Extrapolation of feedrate levels. In lieu of establishing mercury feedrate limits as specified in paragraphs (l)(1)(i) through (iv) of this section, you may request as part of the performance test

plan under §§63.7(b) and (c) and §§63.1207 (e) and (f) to use the mercury feedrates and associated emission rates during the comprehensive performance test to extrapolate to higher allowable feedrate limits and emission rates. The extrapolation methodology will be reviewed and approved, as warranted, by the Administrator. The review will consider in particular whether:

- (A) Performance test metal feedrates are appropriate ( *i.e.* , whether feedrates are at least at normal levels; depending on the heterogeneity of the waste, whether some level of spiking would be appropriate; and whether the physical form and species of spiked material is appropriate); and
- (B) Whether the extrapolated feedrates you request are warranted considering historical metal feedrate data.
- (2) Wet scrubber. If your combustor is equipped with a wet scrubber, you must establish operating parameter limits prescribed by paragraph (o)(3) of this section, except for paragraph (o)(3)(iv).
- (3) Activated carbon injection. If your combustor is equipped with an activated carbon injection system, you must establish operating parameter limits prescribed by paragraphs (k)(5) and (k)(6) of this section.
- (4) Activated carbon bed. If your combustor is equipped with an activated carbon bed system, you must comply with the requirements of (k)(7) of this section to assure compliance with the mercury emission standard.
- (m) *Particulate matter*. You must comply with the particulate matter emission standard by establishing and complying with the following operating parameter limits. You must base the limits on operations during the comprehensive performance test, unless the limits are based on manufacturer specifications.
- (1) Control device operating parameter limits (OPLs)—(i) Wet scrubbers. For sources equipped with wet scrubbers, including ionizing wet scrubbers, high energy wet scrubbers such as venturi, hydrosonic, collision, or free jet wet scrubbers, and low energy wet scrubbers such as spray towers, packed beds, or tray towers, you must establish limits on the following parameters:
- (A) For high energy scrubbers only, minimum pressure drop across the wet scrubber on an hourly rolling average, established as the average of the test run averages;
- (B) For all wet scrubbers:
- (1) To ensure that the solids content of the scrubber liquid does not exceed levels during the performance test, you must either:
- (i) Establish a limit on solids content of the scrubber liquid using a CMS or by manual sampling and analysis. If you elect to monitor solids content manually, you must sample and analyze the

scrubber liquid hourly unless you support an alternative monitoring frequency in the performance test plan that you submit for review and approval; or

- ( ii ) Establish a minimum blowdown rate using a CMS and either a minimum scrubber tank volume or liquid level using a CMS.
- (2) For maximum solids content monitored with a CMS, you must establish a limit on a twelve-hour rolling average as the average of the test run averages.
- (3) For maximum solids content measured manually, you must establish an hourly limit, as measured at least once per hour, unless you support an alternative monitoring frequency in the performance test plan that you submit for review and approval. You must establish the maximum hourly limit as the average of the manual measurement averages for each run.
- (4) For minimum blowdown rate and either a minimum scrubber tank volume or liquid level using a CMS, you must establish a limit on an hourly rolling average as the average of the test run averages.
- (C) For high energy wet scrubbers only, you must establish limits on either the minimum liquid to gas ratio or the minimum scrubber water flowrate and maximum flue gas flowrate on an hourly rolling average. If you establish limits on maximum flue gas flowrate under this paragraph, you need not establish a limit on maximum flue gas flowrate under paragraph (m)(2) of this section. You must establish these hourly rolling average limits as the average of the test run averages; and

## (ii)–(iii) [Reserved]

- (iv) Other particulate matter control devices. For each particulate matter control device that is not a fabric filter or high energy wet scrubber, or is not an electrostatic precipitator or ionizing wet scrubber for which you elect to monitor particulate matter loadings under §63.1206(c)(9) of this chapter for process control, you must ensure that the control device is properly operated and maintained as required by §63.1206(c)(7) and by monitoring the operation of the control device as follows:
- (A) During each comprehensive performance test conducted to demonstrate compliance with the particulate matter emissions standard, you must establish a range of operating values for the control device that is a representative and reliable indicator that the control device is operating within the same range of conditions as during the performance test. You must establish this range of operating values as follows:
- (1) You must select a set of operating parameters appropriate for the control device design that you determine to be a representative and reliable indicator of the control device performance.
- (2) You must measure and record values for each of the selected operating parameters during each test run of the performance test. A value for each selected parameter must be recorded using a continuous monitor.

- (3) For each selected operating parameter measured in accordance with the requirements of paragraph (m)(1)(iv)(A)(1) of this section, you must establish a minimum operating parameter limit or a maximum operating parameter limit, as appropriate for the parameter, to define the operating limits within which the control device can operate and still continuously achieve the same operating conditions as during the performance test.
- (4) You must prepare written documentation to support the operating parameter limits established for the control device and you must include this documentation in the performance test plan that you submit for review and approval. This documentation must include a description for each selected parameter and the operating range and monitoring frequency required to ensure the control device is being properly operated and maintained.
- (B) You must install, calibrate, operate, and maintain a monitoring device equipped with a recorder to measure the values for each operating parameter selected in accordance with the requirements of paragraph (m)(1)(iv)(A)(1) of this section. You must install, calibrate, and maintain the monitoring equipment in accordance with the equipment manufacturer's specifications. The recorder must record the detector responses at least every 60 seconds, as required in the definition of continuous monitor.
- (C) You must regularly inspect the data recorded by the operating parameter monitoring system at a sufficient frequency to ensure the control device is operating properly. An excursion is determined to have occurred any time that the actual value of a selected operating parameter is less than the minimum operating limit (or, if applicable, greater than the maximum operating limit) established for the parameter in accordance with the requirements of paragraph (m)(1)(iv)(A)(3) of this section.
- (D) Operating parameters selected in accordance with paragraph (m)(1)(iv) of this section may be based on manufacturer specifications provided you support the use of manufacturer specifications in the performance test plan that you submit for review and approval.
- (2) Maximum flue gas flowrate or production rate. (i) As an indicator of gas residence time in the control device, you must establish a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that you document in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run.
- (ii) You must comply with this limit on a hourly rolling average basis;
- (3) Maximum ash feedrate. Owners and operators of hazardous waste incinerators, solid fuel boilers, and liquid fuel boilers must establish a maximum ash feedrate limit as a 12-hour rolling average based on the average of the test run averages. This requirement is waived, however, if you comply with the particulate matter detection system requirements under §63.1206(c)(9).
- (n) Semivolatile metals and low volatility metals. You must comply with the semivolatile metal (cadmium and lead) and low volatile metal (arsenic, beryllium, and chromium) emission standards by establishing and complying with the following operating parameter limits. You

must base the limits on operations during the comprehensive performance test, unless the limits are based on manufacturer specifications.

- (1) Maximum inlet temperature to dry particulate matter air pollution control device. You must establish a limit on the maximum inlet temperature to the primary dry metals emissions control device (e.g., electrostatic precipitator, baghouse) on an hourly rolling average basis as the average of the test run averages.
- (2) Maximum feedrate of semivolatile and low volatile metals —(i) General. You must establish feedrate limits for semivolatile metals (cadmium and lead) and low volatile metals (arsenic, beryllium, and chromium) as follows, except as provided by paragraph (n)(2)(vii) of this section.
- (ii) For incinerators, cement kilns, and lightweight aggregate kilns, when complying with the emission standards under §§63.1203, 63.1204, 63.1205, and 63.1219, and for solid fuel boilers when complying with the emission standards under §63.1216, you must establish 12-hour rolling average limits for the total feedrate of semivolatile and low volatile metals in all feedstreams as the average of the test run averages.
- (iii) Cement kilns under §63.1220. (A) When complying with the emission standards under §63.1220(a)(3)(i), (a)(4)(i), (b)(3)(i), and (b)(4)(i), you must establish 12-hour rolling average feedrate limits for semivolatile and low volatile metals as the thermal concentration of semivolatile metals or low volatile metals in all hazardous waste feedstreams. You must calculate hazardous waste thermal concentrations for semivolatile metals and low volatile metals for each run as the total mass feedrate of semivolatile metals or low volatile metals for all hazardous waste feedstreams divided by the total heat input rate for all hazardous waste feedstreams. The 12-hour rolling average feedrate limits for semivolatile metals and low volatile metals are the average of the test run averages, calculated on a thermal concentration basis, for all hazardous waste feeds.
- (B) When complying with the emission standards under §§63.1220(a)(3)(ii), (a)(4)(ii), (b)(3)(ii), and (b)(4)(ii), you must establish 12-hour rolling average limits for the total feedrate of semivolatile and low volatile metals in all feedstreams as the average of the test run averages.
- (iv) Lightweight aggregate kilns under §63.1221. (A) When complying with the emission standards under §§63.1221(a)(3)(i), (a)(4)(i), (b)(3)(i), and (b)(4)(i), you must establish 12-hour rolling average feedrate limits for semivolatile and low volatile metals as the thermal concentration of semivolatile metals or low volatile metals in all hazardous waste feedstreams as specified in paragraphs (n)(2)(iii)(A) of this section.
- (B) When complying with the emission standards under §§63.1221(a)(3)(ii), (a)(4)(ii), (b)(3)(ii), and (b)(4)(ii), you must establish 12-hour rolling average limits for the total feedrate of semivolatile and low volatile metals in all feedstreams as the average of the test run averages.
- (v) Liquid fuel boilers under §63.1217. (A) Semivolatile metals. You must establish a rolling average limit for the semivolatile metal feedrate as follows on an averaging period not to exceed an annual rolling average.

- (1) System removal efficiency. You must calculate a semivolatile metal system removal efficiency for each test run and calculate the average system removal efficiency of the test run averages. If emissions exceed the semivolatile metal emission standard during the comprehensive performance test, it is not a violation because the averaging period for the semivolatile metal emission standard is one year and compliance is based on compliance with the semivolatile metal feedrate limit that has an averaging period not to exceed an annual rolling average.
- (2) Boilers that feed hazardous waste with a heating value of 10,000 Btu/lb or greater. You must calculate the semivolatile metal feedrate limit as the semivolatile metal emission standard divided by [1 System Removal Efficiency].
- (*i*) The feedrate limit is a hazardous waste thermal concentration limit expressed as pounds of semivolatile metals in all hazardous waste feedstreams per million Btu of hazardous waste fed to the boiler.
- (ii) You must comply with the hazardous waste semivolatile metal thermal concentration limit by determining the feedrate of semivolatile metal in all hazardous waste feedstreams (lb/hr) and the hazardous waste thermal feedrate (MM Btu/hr) at least once a minute to calculate a 60-minute average thermal emission concentration as [hazardous waste semivolatile metal feedrate (lb/hr) / hazardous waste thermal feedrate (MM Btu/hr)].
- ( iii ) You must calculate a rolling average hazardous waste semivolatile metal thermal concentration that is updated each hour.
- (iv) If you select an averaging period for the feedrate limit that is greater than a 12-hour rolling average, you must calculate the initial rolling average as though you had selected a 12-hour rolling average, as provided by paragraph (b)(5)(i) of this section. Thereafter, you must calculate rolling averages using either one-minute or one-hour updates. Hourly updates shall be calculated using the average of the one-minute average data for the preceding hour. For the period beginning with initial operation under this standard until the source has operated for the full averaging period that you select, the average feedrate shall be based only on actual operation under this standard.
- (3) Boilers that feed hazardous waste with a heating value less than 10,000 Btu/lb. (i) You must calculate the semivolatile metal feedrate limit as the semivolatile metal emission standard divided by [1 System Removal Efficiency].
- ( ii ) The feedrate limit is expressed as a mass concentration per unit volume of stack gas (µgm/dscm) and is converted to a mass feedrate (lb/hr) by multiplying it by the average stack gas flowrate (dscm/hr) of the test run averages.
- (*iii*) You must comply with the feedrate limit by determining the semivolatile metal feedrate (lb/hr) at least once a minute to calculate a 60-minute average feedrate.

- ( *iv* ) You must update the rolling average feedrate each hour with this 60-minute feedrate measurement.
- ( $\nu$ ) If you select an averaging period for the feedrate limit that is greater than a 12-hour rolling average, you must calculate the initial rolling average as though you had selected a 12-hour rolling average, as provided by paragraph (b)(5)(i) of this section. Thereafter, you must calculate rolling averages using either one-minute or one-hour updates. Hourly updates shall be calculated using the average of the one-minute average data for the preceding hour. For the period beginning with initial operation under this standard until the source has operated for the full averaging period that you select, the average feedrate shall be based only on actual operation under this standard.
- (B) Chromium —(1) Boilers that feed hazardous waste with a heating value of 10,000 Btu/lb or greater. (i) The 12-hour rolling average feedrate limit is a hazardous waste thermal concentration limit expressed as pounds of chromium in all hazardous waste feedstreams per million Btu of hazardous waste fed to the boiler. You must establish the 12-hour rolling average feedrate limit as the average of the test run averages.
- (ii) You must comply with the hazardous waste chromium thermal concentration limit by determining the feedrate of chromium in all hazardous waste feedstreams (lb/hr) and the hazardous waste thermal feedrate (MMBtu/hr) at least once each minute as [hazardous waste chromium feedrate (lb/hr)/hazardous waste thermal feedrate (MMBtu/hr)].
- (2) Boilers that feed hazardous waste with a heating value less than 10,000 Btu/lb. You must establish a 12-hour rolling average limit for the total feedrate (lb/hr) of chromium in all feedstreams as the average of the test run averages.
- (vi) LVM limits for pumpable wastes. You must establish separate feedrate limits for low volatile metals in pumpable feedstreams using the procedures prescribed above for total low volatile metals. Dual feedrate limits for both pumpable and total feedstreams are not required, however, if you base the total feedrate limit solely on the feedrate of pumpable feedstreams.
- (vii) Extrapolation of feedrate levels. In lieu of establishing feedrate limits as specified in paragraphs (n)(2)(ii) through (vi) of this section, you may request as part of the performance test plan under §§63.7(b) and (c) and §§63.1207(e) and (f) to use the semivolatile metal and low volatile metal feedrates and associated emission rates during the comprehensive performance test to extrapolate to higher allowable feedrate limits and emission rates. The extrapolation methodology will be reviewed and approved, as warranted, by the Administrator. The review will consider in particular whether:
- (A) Performance test metal feedrates are appropriate ( *i.e.*, whether feedrates are at least at normal levels; depending on the heterogeneity of the waste, whether some level of spiking would be appropriate; and whether the physical form and species of spiked material is appropriate); and
- (B) Whether the extrapolated feedrates you request are warranted considering historical metal feedrate data.

- (3) Control device operating parameter limits (OPLs). You must establish operating parameter limits on the particulate matter control device as specified by paragraph (m)(1) of this section;
- (4) Maximum total chlorine and chloride feedrate. You must establish a 12-hour rolling average limit for the feedrate of total chlorine and chloride in all feedstreams as the average of the test run averages.
- (5) Maximum flue gas flowrate or production rate. (i) As an indicator of gas residence time in the control device, you must establish a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that you document in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run.
- (ii) You must comply with this limit on a hourly rolling average basis.
- (o) *Hydrogen chloride and chlorine gas*. You must comply with the hydrogen chloride and chlorine gas emission standard by establishing and complying with the following operating parameter limits. You must base the limits on operations during the comprehensive performance test, unless the limits are based on manufacturer specifications.
- (1) Feedrate of total chlorine and chloride. (i) Incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, and hydrochloric acid production furnaces. You must establish a 12-hour rolling average limit for the total feedrate of chlorine (organic and inorganic) in all feedstreams as the average of the test run averages.
- (ii) Liquid fuel boilers. (A) Boilers that feed hazardous waste with a heating value not less than 10,000 Btu/lb. (1) The feedrate limit is a hazardous waste thermal concentration limit expressed as pounds of chlorine (organic and inorganic) in all hazardous waste feedstreams per million Btu of hazardous waste fed to the boiler.
- (2) You must establish a 12-hour rolling average feedrate limit as the average of the test run averages.
- (3) You must comply with the feedrate limit by determining the mass feedrate of hazardous waste feedstreams (lb/hr) at least once a minute and by knowing the chlorine content (organic and inorganic, lb of chlorine/lb of hazardous waste) and heating value (Btu/lb) of hazardous waste feedstreams at all times to calculate a 1-minute average feedrate measurement as [hazardous waste chlorine content (lb of chlorine/lb of hazardous waste feed)/hazardous waste heating value (Btu/lb of hazardous waste)]. You must update the rolling average feedrate each hour with this 60-minute average feedrate measurement.
- (B) Boilers that feed hazardous waste with a heating value less than 10,000 Btu/lb. You must establish a 12-hour rolling average limit for the total feedrate of chlorine (organic and inorganic) in all feedstreams as the average of the test run averages. You must update the rolling average feedrate each hour with a 60-minute average feedrate measurement.

- (2) Maximum flue gas flowrate or production rate. (i) As an indicator of gas residence time in the control device, you must establish a limit on the maximum flue gas flowrate, the maximum production rate, or another parameter that you document in the site-specific test plan as an appropriate surrogate for gas residence time, as the average of the maximum hourly rolling averages for each run.
- (ii) You must comply with this limit on a hourly rolling average basis;
- (3) Wet scrubber. If your combustor is equipped with a wet scrubber:
- (i) If your source is equipped with a high energy wet scrubber such as a venturi, hydrosonic, collision, or free jet wet scrubber, you must establish a limit on minimum pressure drop across the wet scrubber on an hourly rolling average as the average of the test run averages;
- (ii) If your source is equipped with a low energy wet scrubber such as a spray tower, packed bed, or tray tower, you must establish a minimum pressure drop across the wet scrubber based on manufacturer's specifications. You must comply with the limit on an hourly rolling average;
- (iii) If your source is equipped with a low energy wet scrubber, you must establish a limit on minimum liquid feed pressure to the wet scrubber based on manufacturer's specifications. You must comply with the limit on an hourly rolling average;
- (iv) You must establish a limit on minimum pH on an hourly rolling average as the average of the test run averages;
- (v) You must establish limits on either the minimum liquid to gas ratio or the minimum scrubber water flowrate and maximum flue gas flowrate on an hourly rolling average as the average of the test run averages. If you establish limits on maximum flue gas flowrate under this paragraph, you need not establish a limit on maximum flue gas flowrate under paragraph (o)(2) of this section; and
- (4) *Dry scrubber*. If your combustor is equipped with a dry scrubber, you must establish the following operating parameter limits:
- (i) Minimum sorbent feedrate. You must establish a limit on minimum sorbent feedrate on an hourly rolling average as the average of the test run averages.
- (ii) Minimum carrier fluid flowrate or nozzle pressure drop. You must establish a limit on minimum carrier fluid (gas or liquid) flowrate or nozzle pressure drop based on manufacturer's specifications.
- (iii) Sorbent specifications. (A) You must specify and use the brand (*i.e.*, manufacturer) and type of sorbent used during the comprehensive performance test until a subsequent comprehensive performance test is conducted, unless you document in the site-specific performance test plan required under §§63.1207(e) and (f) key parameters that affect adsorption and establish limits on those parameters based on the sorbent used in the performance test.

- (B) You may substitute at any time a different brand or type of sorbent provided that the replacement has equivalent or improved properties compared to the sorbent used in the performance test and conforms to the key sorbent parameters you identify under paragraph (o)(4)(iii)(A) of this section. You must record in the operating record documentation that the substitute sorbent will provide the same level of control as the original sorbent.
- (p) Maximum combustion chamber pressure. If you comply with the requirements for combustion system leaks under §63.1206(c)(5) by maintaining the maximum combustion chamber zone pressure lower than ambient pressure to prevent combustion systems leaks from hazardous waste combustion, you must perform instantaneous monitoring of pressure and the automatic waste feed cutoff system must be engaged when negative pressure is not adequately maintained.
- (q) Operating under different modes of operation. If you operate under different modes of operation, you must establish operating parameter limits for each mode. You must document in the operating record when you change a mode of operation and begin complying with the operating limits for an alternative mode of operation.
- (1) Operating under otherwise applicable standards after the hazardous waste residence time has transpired. As provided by §63.1206(b)(1)(ii), you may operate under otherwise applicable requirements promulgated under sections 112 and 129 of the Clean Air Act in lieu of the substantive requirements of this subpart.
- (i) The otherwise applicable requirements promulgated under sections 112 and 129 of the Clean Air Act are applicable requirements under this subpart.
- (ii) You must specify (e.g., by reference) the otherwise applicable requirements as a mode of operation in your Documentation of Compliance under §63.1211(c), your Notification of Compliance under §63.1207(j), and your title V permit application. These requirements include the otherwise applicable requirements governing emission standards, monitoring and compliance, and notification, reporting, and recordkeeping.
- (2) Calculating rolling averages under different modes of operation. When you transition to a different mode of operation, you must calculate rolling averages as follows:
- (i) Retrieval approach. Calculate rolling averages anew using the continuous monitoring system values previously recorded for that mode of operation (i.e., you ignore continuous monitoring system values subsequently recorded under other modes of operation when you transition back to a mode of operation); or
- (ii) Start anew. Calculate rolling averages anew without considering previous recordings.
- (A) Rolling averages must be calculated as the average of the available one-minute values for the parameter until enough one-minute values are available to calculate hourly or 12-hour rolling averages, whichever is applicable to the parameter.

- (B) You may not transition to a new mode of operation using this approach if the most recent operation in that mode resulted in an exceedance of an applicable emission standard measured with a CEMS or operating parameter limit prior to the hazardous waste residence time expiring; or
- (iii) Seamless transition. Continue calculating rolling averages using data from the previous operating mode provided that both the operating limit and the averaging period for the parameter are the same for both modes of operation.
- (r) Averaging periods. The averaging periods specified in this section for operating parameters are not-to-exceed averaging periods. You may elect to use shorter averaging periods. For example, you may elect to use a 1-hour rolling average rather than the 12-hour rolling average specified in paragraph (l)(1)(i) of this section for mercury.

[64 FR 53038, Sept. 30, 1999, as amended at 65 FR 42300, July 10, 2000; 65 FR 67271, Nov. 9, 2000; 66 FR 24272, May 14, 2001; 66 FR 35106, July 3, 2001; 67 FR 6815, Feb. 13, 2002; 67 FR 6991, Feb. 14, 2002; 67 FR 77691, Dec. 19, 2002; 70 FR 59548, Oct. 12, 2005; 73 FR 18981, Apr. 8, 2008]

## Notification, Reporting and Recordkeeping

### § 63.1210 What are the notification requirements?

(a) Summary of requirements. (1) You must submit the following notifications to the Administrator:

| Reference                              | Notification                                                                                            |
|----------------------------------------|---------------------------------------------------------------------------------------------------------|
| 63.9(b)                                | Initial notifications that you are subject to Subpart EEE of this Part.                                 |
| 63.9(d)                                | Notification that you are subject to special compliance requirements.                                   |
| 63.9(j)                                | Notification and documentation of any change in information already provided under §63.9.               |
| 63.1206(b)(5)(i)                       | Notification of changes in design, operation, or maintenance.                                           |
| 63.1206(c)(8)(iv)                      | Notification of excessive bag leak detection system exceedances.                                        |
| 63.1206(c)(9)(v)                       | Notification of excessive particulate matter detection system exceedances.                              |
| 63.1207(e), 63.9(e) 63.9(g)(1) and (3) | Notification of performance test and continuous monitoring system evaluation, including the performance |

| Reference  | Notification                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------|
|            | test plan and CMS performance evaluation plan.1                                                                              |
| 63.1210(b) | Notification of intent to comply.                                                                                            |
|            | Notification of compliance, including results of performance tests and continuous monitoring system performance evaluations. |

<sup>&</sup>lt;sup>1</sup>You may also be required on a case-by-case basis to submit a feedstream analysis plan under §63.1209(c)(3).

(2) You must submit the following notifications to the Administrator if you request or elect to comply with alternative requirements:

| Reference                                   | Notification, request, petition, or application                                                                                                                                                                                                                                                     |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.9(i)                                     | You may request an adjustment to time periods or postmark deadlines for submittal and review of required information.                                                                                                                                                                               |
| 63.10(e)(3)(ii)                             | You may request to reduce the frequency of excess emissions and CMS performance reports.                                                                                                                                                                                                            |
| 63.10(f)                                    | You may request to waive recordkeeping or reporting requirements.                                                                                                                                                                                                                                   |
| 63.1204(d)(2)(iii),<br>63.1220(d)(2)(iii)   | Notification that you elect to comply with the emission averaging requirements for cement kilns with in-line raw mills.                                                                                                                                                                             |
| 63.1204(e)(2)(iii),<br>63.1220(e)(2)(iii)   | Notification that you elect to comply with the emission averaging requirements for preheater or preheater/precalciner kilns with dual stacks.                                                                                                                                                       |
| 63.1206(b)(4), 63.1213,<br>63.6(i), 63.9(c) | You may request an extension of the compliance date for up to one year.                                                                                                                                                                                                                             |
| 63.1206(b)(5)(i)(C)                         | You may request to burn hazardous waste for more than 720 hours and for purposes other than testing or pretesting after making a change in the design or operation that could affect compliance with emission standards and prior to submitting a revised Notification of Compliance.               |
| 63.1206(b)(8)(iii)(B)                       | If you elect to conduct particulate matter CEMS correlation testing and wish to have federal particulate matter and opacity standards and associated operating limits waived during the testing, you must notify the Administrator by submitting the correlation test plan for review and approval. |
| 63.1206(b)(8)(v)                            | You may request approval to have the particulate matter and opacity standards and associated operating limits and conditions waived for more than 96 hours for a correlation test.                                                                                                                  |

| Reference              | Notification, request, petition, or application                                                                                                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.1206(b)(9)          | Owners and operators of lightweight aggregate kilns may request approval of alternative emission standards for mercury, semivolatile metal, low volatile metal, and hydrogen chloride/chlorine gas under certain conditions.       |
| 63.1206(b)(10)         | Owners and operators of cement kilns may request approval of alternative emission standards for mercury, semivolatile metal, low volatile metal, and hydrogen chloride/chlorine gas under certain conditions.                      |
| 63.1206(b)(14)         | Owners and operators of incinerators may elect to comply with an alternative to the particulate matter standard.                                                                                                                   |
| 63.1206(b)(15)         | Owners and operators of cement and lightweight aggregate kilns may request to comply with the alternative to the interim standards for mercury.                                                                                    |
| 63.1206(c)(2)(ii)(C)   | You may request to make changes to the startup, shutdown, and malfunction plan.                                                                                                                                                    |
| 63.1206(c)(5)(i)(C)    | You may request an alternative means of control to provide control of combustion system leaks.                                                                                                                                     |
| 63.1206(c)(5)(i)(D)    | You may request other techniques to prevent fugitive emissions without use of instantaneous pressure limits.                                                                                                                       |
| 63.1207(c)(2)          | You may request to base initial compliance on data in lieu of a comprehensive performance test.                                                                                                                                    |
| 63.1207(d)(3)          | You may request more than 60 days to complete a performance test if additional time is needed for reasons beyond your control.                                                                                                     |
| 63.1207(e)(3), 63.7(h) | You may request a time extension if the Administrator fails to approve or deny your test plan.                                                                                                                                     |
| 63.1207(h)(2)          | You may request to waive current operating parameter limits during pretesting for more than 720 hours.                                                                                                                             |
| 63.1207(f)(1)(ii)(D)   | You may request a reduced hazardous waste feedstream analysis for organic hazardous air pollutants if the reduced analysis continues to be representative of organic hazardous air pollutants in your hazardous waste feedstreams. |
| 63.1207(g)(2)(v)       | You may request to operate under a wider operating range for a parameter during confirmatory performance testing.                                                                                                                  |
| 63.1207(i)             | You may request up to a one-year time extension for conducting a performance test (other than the initial comprehensive performance test) to consolidate testing with other state or federally-required testing.                   |
| 63.1207(j)(4)          | You may request more than 90 days to submit a Notification of                                                                                                                                                                      |

| Reference              | Notification, request, petition, or application                                                                                                                                                                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Compliance after completing a performance test if additional time is needed for reasons beyond your control.                                                                                                                                                                                                               |
| 63.1207(1)(3)          | After failure of a performance test, you may request to burn hazardous waste for more than 720 hours and for purposes other than testing or pretesting.                                                                                                                                                                    |
| 63.1209(a)(5), 63.8(f) | You may request: (1) Approval of alternative monitoring methods for compliance with standards that are monitored with a CEMS; and (2) approval to use a CEMS in lieu of operating parameter limits.                                                                                                                        |
| 63.1209(g)(1)          | You may request approval of: (1) Alternatives to operating parameter monitoring requirements, except for standards that you must monitor with a continuous emission monitoring system (CEMS) and except for requests to use a CEMS in lieu of operating parameter limits; or (2) a waiver of an operating parameter limit. |
| 63.1209(1)(1)          | You may request to extrapolate mercury feedrate limits.                                                                                                                                                                                                                                                                    |
| 63.1209(n)(2)          | You may request to extrapolate semivolatile and low volatile metal feedrate limits.                                                                                                                                                                                                                                        |
| 63.1211(d)             | You may request to use data compression techniques to record data on a less frequent basis than required by §63.1209.                                                                                                                                                                                                      |

- (b) Notification of intent to comply (NIC). These procedures apply to sources that have not previously complied with the requirements of paragraphs (b) and (c) of this section, and to sources that previously complied with the NIC requirements of §§63.1210 and 63.1212(a), which were in effect prior to October 11, 2000, that must make a technology change requiring a Class 1 permit modification to meet the standards of §§63.1219, 63.1220, and 63.1221.
- (1) You must prepare a Notification of Intent to Comply that includes all of the following information:
- (i) General information:
- (A) The name and address of the owner/operator and the source;
- (B) Whether the source is a major or an area source;
- (C) Waste minimization and emission control technique(s) being considered;
- (D) Emission monitoring technique(s) you are considering;
- (E) Waste minimization and emission control technique(s) effectiveness;

- (F) A description of the evaluation criteria used or to be used to select waste minimization and/or emission control technique(s); and
- (G) A general description of how you intend to comply with the emission standards of this subpart.
- (ii) As applicable to each source, information on key activities and estimated dates for these activities that will bring the source into compliance with emission control requirements of this subpart. You must include all of the following key activities and dates in your NIC:
- (A) The dates by which you anticipate you will develop engineering designs for emission control systems or process changes for emissions;
- (B) The date by which you anticipate you will commit internal or external resources for installing emission control systems or making process changes for emission control, or the date by which you will issue orders for the purchase of component parts to accomplish emission control or process changes.
- (C) The date by which you anticipate you will submit construction applications;
- (D) The date by which you anticipate you will initiate on-site construction, installation of emission control equipment, or process change;
- (E) The date by which you anticipate you will complete on-site construction, installation of emission control equipment, or process change; and
- (F) The date by which you anticipate you will achieve final compliance. The individual dates and milestones listed in paragraphs (b)(1)(ii)(A) through (F) of this section as part of the NIC are not requirements and therefore are not enforceable deadlines; the requirements of paragraphs (b)(1)(ii)(A) through (F) of this section must be included as part of the NIC only to inform the public of how you intend to comply with the emission standards of this subpart.
- (iii) A summary of the public meeting required under paragraph (c) of this section;
- (iv) If you intend to cease burning hazardous waste prior to or on the compliance date, the requirements of paragraphs (b)(1)(ii) and (b)(1)(iii) of this section do not apply. You must include in your NIC a schedule of key dates for the steps to be taken to stop hazardous waste activity at your combustion unit. Key dates include the date for submittal of RCRA closure documents required under subpart G, part 264 or subpart G, part 265 of this chapter.
- (2) You must make a draft of the NIC available for public review no later than 30 days prior to the public meeting required under paragraph (c)(1) of this section or no later than 9 months after the effective date of the rule if you intend to cease burning hazardous waste prior to or on the compliance date.
- (3) You must submit the final NIC to the Administrator:

- (i) Existing units. No later than one year following the effective date of the emission standards of this subpart; or
- (ii) New units. No later than 60 days following the informal public meeting.
- (c) NIC public meeting and notice. (1) Prior to the submission of the NIC to the permitting agency and:
- (i) Existing units. No later than 10 months after the effective date of the emission standards of this subpart, you must hold at least one informal meeting with the public to discuss the anticipated activities described in the draft NIC for achieving compliance with the emission standards of this subpart. You must post a sign-in sheet or otherwise provide a voluntary opportunity for attendees to provide their names and addresses.
- (ii) New units. No earlier than thirty (30) days following notice of the informal public meeting, you must hold at least one informal meeting with the public to discuss the anticipated activities described in the draft NIC for achieving compliance with the emission standards of this subpart. You must post a sign-in sheet or otherwise provide a voluntary opportunity for attendees to provide their names and addresses.
- (2) You must submit a summary of the meeting, along with the list of attendees and their addresses developed under paragraph (b)(1) of this section, and copies of any written comments or materials submitted at the meeting, to the Administrator as part of the final NIC, in accordance with paragraph (b)(1)(iii) of this section;
- (3) You must provide public notice of the NIC meeting at least 30 days prior to the meeting and you must maintain, and provide to the Administrator upon request, documentation of the notice. You must provide public notice in all of the following forms:
- (i) Newspaper advertisement. You must publish a notice in a newspaper of general circulation in the county or equivalent jurisdiction of your facility. In addition, you must publish the notice in newspapers of general circulation in adjacent counties or equivalent jurisdiction where such publication would be necessary to inform the affected public. You must publish the notice as a display advertisement.
- (ii) Visible and accessible sign. You must post a notice on a clearly marked sign at or near the source. If you place the sign on the site of the hazardous waste combustor, the sign must be large enough to be readable from the nearest spot where the public would pass by the site.
- (iii) Broadcast media announcement. You must broadcast a notice at least once on at least one local radio station or television station.
- (iv) Notice to the facility mailing list. You must provide a copy of the notice to the facility mailing list in accordance with §124.10(c)(1)(ix) of this chapter.

- (4) You must include all of the following in the notices required under paragraph (c)(3) of this section:
- (i) The date, time, and location of the meeting;
- (ii) A brief description of the purpose of the meeting;
- (iii) A brief description of the source and proposed operations, including the address or a map (e.g., a sketched or copied street map) of the source location;
- (iv) A statement encouraging people to contact the source at least 72 hours before the meeting if they need special access to participate in the meeting;
- (v) A statement describing how the draft NIC (and final NIC, if requested) can be obtained; and
- (vi) The name, address, and telephone number of a contact person for the NIC.
- (5) The requirements of this paragraph do not apply to sources that intend to cease burning hazardous waste prior to or on the compliance date.
- (d) *Notification of compliance*. (1) The Notification of Compliance status requirements of §63.9(h) apply, except that:
- (i) The notification is a Notification of Compliance, rather than compliance status;
- (ii) The notification is required for the initial comprehensive performance test and each subsequent comprehensive and confirmatory performance test; and
- (iii) You must postmark the notification before the close of business on the 90th day following completion of relevant compliance demonstration activity specified in this subpart rather than the 60th day as required by §63.9(h)(2)(ii).
- (2) Upon postmark of the Notification of Compliance, the operating parameter limits identified in the Notification of Compliance, as applicable, shall be complied with, the limits identified in the Documentation of Compliance or a previous Notification of Compliance are no longer applicable.
- (3) The Notification of Compliance requirements of §63.1207(j) also apply.
- [64 FR 53038, Sept. 30, 1999, as amended at 64 FR 63211, Nov. 19, 1999; 65 FR 42301, July 10, 2000; 66 FR 24272, May 14, 2001; 67 FR 6992, Feb. 14, 2002; 70 FR 59552, Oct. 12, 2005; 73 FR 18982, Apr. 8, 2008; 73 FR 64097, Oct. 28, 2008]

# § 63.1211 What are the recordkeeping and reporting requirements?

(a) Summary of reporting requirements. You must submit the following reports to the Administrator:

| Reference            | Report                                                                                                                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------|
| 63.10(d)(4)          | Compliance progress reports, if required as a condition of an extension of the compliance date granted under §63.6(i). |
| 63.10(d)(5)(i)       | Periodic startup, shutdown, and malfunction reports.                                                                   |
| 63.10(d)(5)(ii)      | Immediate startup, shutdown, and malfunction reports.                                                                  |
| 63.10(e)(3)          | Excessive emissions and continuous monitoring system performance report and summary report.                            |
| 63.1206(c)(2)(ii)(B) | Startup, shutdown, and malfunction plan.                                                                               |
| 63.1206(c)(3)(vi)    | Excessive exceedances reports.                                                                                         |
| 63.1206(c)(4)(iv)    | Emergency safety vent opening reports.                                                                                 |

(b) Summary of recordkeeping requirements. You must retain the following in the operating record:

| Reference                               | Document, Data, or Information                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.1200, 63.10(b) and (c)               | General. Information required to document and maintain compliance with the regulations of Subpart EEE, including data recorded by continuous monitoring systems (CMS), and copies of all notifications, reports, plans, and other documents submitted to the Administrator.                                                        |
| 63.1204(d)(1)(ii),<br>63.1220(d)(1)(ii) | Documentation of mode of operation changes for cement kilns with in-line raw mills.                                                                                                                                                                                                                                                |
| 63.1204(d)(2)(ii),<br>63.1220(d)(2)(ii) | Documentation of compliance with the emission averaging requirements for cement kilns with in-line raw mills.                                                                                                                                                                                                                      |
| 63.1204(e)(2)(ii),<br>63.1220(e)(2)(ii) | Documentation of compliance with the emission averaging requirements for preheater or preheater/precalciner kilns with dual stacks.                                                                                                                                                                                                |
| 63.1206(b)(1)(ii)                       | If you elect to comply with all applicable requirements and standards promulgated under authority of the Clean Air Act, including Sections 112 and 129, in lieu of the requirements of Subpart EEE when not burning hazardous waste, you must document in the operating record that you are in compliance with those requirements. |

| Reference                                                                             | Document, Data, or Information                                                                                                                                                        |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.1206(b)(5)(ii)                                                                     | Documentation that a change will not adversely affect compliance with the emission standards or operating requirements.                                                               |
| 63.1206(b)(11)                                                                        | Calculation of hazardous waste residence time.                                                                                                                                        |
| 63.1206(c)(2)                                                                         | Startup, shutdown, and malfunction plan.                                                                                                                                              |
| 63.1206(c)(2)(v)(A)                                                                   | Documentation of your investigation and evaluation of excessive exceedances during malfunctions.                                                                                      |
| 63.1206(c)(3)(v)                                                                      | Corrective measures for any automatic waste feed cutoff that results in an exceedance of an emission standard or operating parameter limit.                                           |
| 63.1206(c)(3)(vii)                                                                    | Documentation and results of the automatic waste feed cutoff operability testing.                                                                                                     |
| 63.1206(c)(4)(ii)                                                                     | Emergency safety vent operating plan.                                                                                                                                                 |
| 63.1206(c)(4)(iii)                                                                    | Corrective measures for any emergency safety vent opening.                                                                                                                            |
| 63.1206(c)(5)(ii)                                                                     | Method used for control of combustion system leaks.                                                                                                                                   |
| 63.1206(c)(6)                                                                         | Operator training and certification program.                                                                                                                                          |
| 63.1206(c)(7)(i)(D)                                                                   | Operation and maintenance plan.                                                                                                                                                       |
| 63.1209(c)(2)                                                                         | Feedstream analysis plan.                                                                                                                                                             |
| 63.1209(k)(6)(iii),<br>63.1209(k)(7)(ii),<br>63.1209(k)(9)(ii),<br>63.1209(o)(4)(iii) | Documentation that a substitute activated carbon, dioxin/furan formation reaction inhibitor, or dry scrubber sorbent will provide the same level of control as the original material. |
| 63.1209(k)(7)(i)(C)                                                                   | Results of carbon bed performance monitoring.                                                                                                                                         |
| 63.1209(q)                                                                            | Documentation of changes in modes of operation.                                                                                                                                       |
| 63.1211(c)                                                                            | Documentation of compliance.                                                                                                                                                          |

- (c) Documentation of compliance. (1) By the compliance date, you must develop and include in the operating record a Documentation of Compliance. You are not subject to this requirement, however, if you submit a Notification of Compliance under §63.1207(j) prior to the compliance date. Upon inclusion of the Documentation of Compliance in the operating record, hazardous waste burning incinerators, cement kilns, and lightweight aggregate kilns regulated under the interim standards of §§63.1203, 63.1204, and 63.1205 are no longer subject to compliance with the previously applicable Notification of Compliance.
- (2) The Documentation of Compliance must identify the applicable emission standards under this subpart and the limits on the operating parameters under §63.1209 that will ensure compliance with those emission standards.

- (3) You must include a signed and dated certification in the Documentation of Compliance that:
- (i) Required CEMs and CMS are installed, calibrated, and continuously operating in compliance with the requirements of this subpart; and
- (ii) Based on an engineering evaluation prepared under your direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information and supporting documentation, and considering at a minimum the design, operation, and maintenance characteristics of the combustor and emissions control equipment, the types, quantities, and characteristics of feedstreams, and available emissions data:
- (A) You are in compliance with the emission standards of this subpart; and
- (B) The limits on the operating parameters under §63.1209 ensure compliance with the emission standards of this subpart.
- (4) You must comply with the emission standards and operating parameter limits specified in the Documentation of Compliance.
- (d) *Data compression*. You may submit a written request to the Administrator for approval to use data compression techniques to record data from CMS, including CEMS, on a frequency less than that required by §63.1209. You must submit the request for review and approval as part of the comprehensive performance test plan.
- (1) You must record a data value at least once each ten minutes.
- (2) For each CEMS or operating parameter for which you request to use data compression techniques, you must recommend:
- (i) A fluctuation limit that defines the maximum permissible deviation of a new data value from a previously generated value without requiring you to revert to recording each one-minute value.
- (A) If you exceed a fluctuation limit, you must record each one-minute value for a period of time not less than ten minutes.
- (B) If neither the fluctuation limit nor the data compression limit are exceeded during that period of time, you may reinitiate recording data values on a frequency of at least once each ten minutes; and
- (ii) A data compression limit defined as the closest level to an operating parameter limit or emission standard at which reduced data recording is allowed.
- (A) Within this level and the operating parameter limit or emission standard, you must record each one-minute average.

(B) The data compression limit should reflect a level at which you are unlikely to exceed the specific operating parameter limit or emission standard, considering its averaging period, with the addition of a new one-minute average.

[64 FR 53038, Sept. 30, 1999, as amended at 64 FR 63212, Nov. 19, 1999; 65 FR 42301, July 10, 2000; 66 FR 24272, May 14, 2001; 66 FR 35106, July 3, 2001; 67 FR 6993, Feb. 14, 2002; 70 FR 59554, Oct. 12, 2005]

#### Other

# § 63.1212 What are the other requirements pertaining to the NIC?

- (a) Certification of intent to comply. The Notice of Intent to Comply (NIC) must contain the following certification signed and dated by a responsible official as defined under §63.2 of this chapter: I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
- (b) *New units*. Any source that files a RCRA permit application or permit modification request for construction of a hazardous waste combustion unit after October 12, 2005 must:
- (1) Prepare a draft NIC pursuant to §63.1210(b) and make it available to the public upon issuance of the notice of public meeting pursuant to §63.1210(c)(3);
- (2) Prepare a draft comprehensive performance test plan pursuant to the requirements of §63.1207 and make it available for public review upon issuance of the notice of NIC public meeting;
- (3) Provide notice to the public of a pre-application meeting pursuant to §124.31 of this chapter or notice to the public of a permit modification request pursuant to §270.42 of this chapter;
- (4) Hold an informal public meeting [pursuant to §63.1210(c)(1) and (c)(2)] no earlier than 30 days following notice of the NIC public meeting and notice of the pre-application meeting or notice of the permit modification request to discuss anticipated activities described in the draft NIC and pre-application or permit modification request for achieving compliance with the emission standards of this subpart; and
- (5) Submit a final NIC pursuant to §63.1210(b)(3).
- (c) Information Repository specific to new combustion units. (1) Any source that files a RCRA permit application or modification request for construction of a new hazardous waste combustion unit after October 12, 2005 may be required to establish an information repository if deemed appropriate.

- (2) The Administrator may assess the need, on a case-by-case basis for an information repository. When assessing the need for a repository, the Administrator shall consider the level of public interest, the presence of an existing repository, and any information available via the New Source Review and Title V permit processes. If the Administrator determines a need for a repository, then the Administrator shall notify the facility that it must establish and maintain an information repository.
- (3) The information repository shall contain all documents, reports, data, and information deemed necessary by the Administrator. The Administrator shall have the discretion to limit the contents of the repository.
- (4) The information repository shall be located and maintained at a site chosen by the source. If the Administrator finds the site unsuitable for the purposes and persons for which it was established, due to problems with location, hours of availability, access, or other relevant considerations, then the Administrator shall specify a more appropriate site.
- (5) The Administrator shall require the source to provide a written notice about the information repository to all individuals on the source mailing list.
- (6) The source shall be responsible for maintaining and updating the repository with appropriate information throughout a period specified by the Administrator. The Administrator may close the repository at his or her discretion based on the considerations in paragraph (c)(2) of this section.

[70 FR 59555, Oct. 12, 2005, as amended at 73 FR 18982, Apr. 8, 2008]

# § 63.1213 How can the compliance date be extended to install pollution prevention or waste minimization controls?

- (a) Applicability. You may request from the Administrator or State with an approved Title V program an extension of the compliance date of up to one year. An extension may be granted if you can reasonably document that the installation of pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of hazardous wastes entering the feedstream(s) of the hazardous waste combustor(s), and that you could not install the necessary control measures and comply with the emission standards and operating requirements of this subpart by the compliance date.
- (b) Requirements for requesting an extension. (1) You must make your requests for an (up to) one-year extension in writing in accordance with §63.6(i)(4)(B) and (C). The request must contain the following information:
- (i) A description of pollution prevention or waste minimization controls that, when installed, will significantly reduce the amount and/or toxicity of hazardous wastes entering the feedstream(s) of the hazardous waste combustor(s). Pollution prevention or waste minimization measures may include: equipment or technology modifications, reformulation or redesign of products, substitution of raw materials, improvements in work practices, maintenance, training, inventory control, or recycling practices conducted as defined in §261.1(c) of this chapter;

- (ii) A description of other pollution controls to be installed that are necessary to comply with the emission standards and operating requirements;
- (iii) A reduction goal or estimate of the annual reductions in quantity and/or toxicity of hazardous waste(s) entering combustion feedstream(s) that you will achieve by installing the proposed pollution prevention or waste minimization measures;
- (iv) A comparison of reductions in the amounts and/or toxicity of hazardous wastes combusted after installation of pollution prevention or waste minimization measures to the amounts and/or toxicity of hazardous wastes combusted prior to the installation of these measures. If the difference is less than a fifteen percent reduction, include a comparison to pollution prevention and waste minimization reductions recorded during the previous five years;
- (v) Reasonable documentation that installation of the pollution prevention or waste minimization changes will not result in a net increase (except for documented increases in production) of hazardous constituents released to the environment through other emissions, wastes or effluents;
- (vi) Reasonable documentation that the design and installation of waste minimization and other measures that are necessary for compliance with the emission standards and operating requirements of this subpart cannot otherwise be installed within the three year compliance period, and
- (vii) The information required in §63.6(i)(6)(i)(B) through (D).
- (2) You may enclose documentation prepared under an existing State-required pollution prevention program that contains the information prescribed in paragraph (b) of this section with a request for extension in lieu of complying with the time extension requirements of that paragraph.
- (c) Approval of request for extension of compliance date. Based on the information provided in any request made under paragraph (a) of this section, the Administrator or State with an approved title V program may grant an extension of the compliance date of this subpart. The extension will be in writing in accordance with §§63.6(i)(10)(i) through 63.6(i)(10)(v)(A).
- [57 FR 61992, Dec. 29, 1992, as amended at 67 FR 6994, Feb. 14, 2002; 67 FR 77691, Dec. 19, 2002]

### § 63.1214 Implementation and enforcement.

(a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as the applicable State, local, or Tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or Tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if this subpart is delegated to a State, local, or Tribal agency.

- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or Tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or Tribal agency.
- (c) The authorities that cannot be delegated to State, local, or Tribal agencies are as specified in paragraphs (c)(1) through (4) of this section.
- (1) Approval of alternatives to requirements in §§63.1200, 63.1203, 63.1204, 63.1205, 63.1206(a), 63.1215, 63.1216, 63.1217, 63.1218, 63.1219, 63.1220, and 63.1221.
- (2) Approval of major alternatives to test methods under §§63.7(e)(2)(ii) and (f), 63.1208(b), and 63.1209(a)(1), as defined under §63.90, and as required in this subpart.
- (3) Approval of major alternatives to monitoring under §§63.8(f) and 63.1209(a)(5), as defined under §63.90, and as required in this subpart.
- (4) Approval of major alternatives to recordkeeping and reporting under §§63.10(f) and 63.1211(a) through (c), as defined under §63.90, and as required in this subpart.
- [68 FR 37356, June 23, 2003, as amended at 70 FR 59555, Oct. 12, 2005]

# § 63.1215 What are the health-based compliance alternatives for total chlorine?

- (a) General—(1) Overview. You may establish and comply with health-based compliance alternatives for total chlorine under the procedures prescribed in this section for your hazardous waste combustors other than hydrochloric acid production furnaces. You may comply with these health-based compliance alternatives in lieu of the emission standards for total chlorine provided under §§63.1216, 63.1217, 63.1219, 63.1220, and 63.1221. To identify and comply with the limits, you must:
- (i) Identify a total chlorine emission concentration (ppmv) expressed as chloride (Cl(-)) equivalent for each on site hazardous waste combustor. You may select total chlorine emission concentrations as you choose to demonstrate eligibility for the risk-based limits under this section, except as provided by paragraph (b)(7) of this section;
- (ii) Apportion the total chlorine emission concentration between HCl and Cl<sub>2</sub>according to paragraph (b)(6)(i) of this section, and calculate HCl and Cl<sub>2</sub>emission rates (lb/hr) using the gas flowrate and other parameters from the most recent regulatory compliance test.
- (iii) Calculate the annual average HCl-equivalent emission rate as prescribed in paragraph (b)(2) of this section.
- (iv) Perform an eligibility demonstration to determine if your HCl-equivalent emission rate meets the national exposure standard and thus is below the annual average HCl-equivalent emission rate limit, as prescribed by paragraph (c) of this section;

- (v) Submit your eligibility demonstration for review and approval, as prescribed by paragraph (e) of this section, which must include information to ensure that the 1-hour average HCl-equivalent emission rate limit is not exceeded, as prescribed by paragraph (d) of this section;
- (vi) Demonstrate compliance with the annual average HCl-equivalent emission rate limit during the comprehensive performance test, as prescribed by the testing and monitoring requirements under paragraph (e) of this section;
- (vii) Comply with compliance monitoring requirements, including establishing feedrate limits on total chlorine and chloride, and operating parameter limits on emission control equipment, as prescribed by paragraph (f) of this section; and
- (viii) Comply with the requirements for changes, as prescribed by paragraph (h) of this section.
- (2) *Definitions*. In addition to the definitions under §63.1201, the following definitions apply to this section:
- 1—Hour Average HCl-Equivalent Emission Rate means the HCl-equivalent emission rate (lb/hr) determined by equating the toxicity of chlorine to HCl using aRELs as the health risk metric for acute exposure.

1—Hour Average HCl-Equivalent Emission Rate Limit means the HCl-equivalent emission rate (lb/hr) determined by equating the toxicity of chlorine to HCl using aRELs as the health risk metric for acute exposure and which ensures that maximum 1-hour average ambient concentrations of HCl-equivalents do not exceed a Hazard Index of 1.0, rounded to the nearest tenths decimal place (0.1), at an off-site receptor location.

Acute Reference Exposure Level (aREL) means health thresholds below which there would be no adverse health effects for greater than once in a lifetime exposures of one hour. ARELs are developed by the California Office of Health Hazard Assessment and are available at <a href="http://www.oehha.ca.gov/air/acute\_rels/acuterel.html">http://www.oehha.ca.gov/air/acute\_rels/acuterel.html</a>.

Annual Average HCl-Equivalent Emission Rate means the HCl-equivalent emission rate (lb/hr) determined by equating the toxicity of chlorine to HCl using RfCs as the health risk metric for long-term exposure.

Annual Average HCl-Equivalent Emission Rate Limit means the HCl-equivalent emission rate (lb/hr) determined by equating the toxicity of chlorine to HCl using RfCs as the health risk metric for long-term exposure and which ensures that maximum annual average ambient concentrations of HCl equivalents do not exceed a Hazard Index of 1.0, rounded to the nearest tenths decimal place (0.1), at an off-site receptor location.

Hazard Index (HI) means the sum of more than one Hazard Quotient for multiple substances and/or multiple exposure pathways. In this section, the Hazard Index is the sum of the Hazard Quotients for HCl and chlorine.

Hazard Quotient (HQ) means the ratio of the predicted media concentration of a pollutant to the media concentration at which no adverse effects are expected. For chronic inhalation exposures, the HQ is calculated under this section as the air concentration divided by the RfC. For acute inhalation exposures, the HQ is calculated under this section as the air concentration divided by the aREL.

Look-up table analysis means a risk screening analysis based on comparing the HCl-equivalent emission rate from the affected source to the appropriate HCl-equivalent emission rate limit specified in Tables 1 through 4 of this section.

Reference Concentration (RfC) means an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It can be derived from various types of human or animal data, with uncertainty factors generally applied to reflect limitations of the data used.

- (b) HCl-equivalent emission rates. (1) You must express total chlorine emission rates for each hazardous waste combustor as HCl-equivalent emission rates.
- (2) Annual average rates. You must calculate annual average toxicity-weighted HCl-equivalent emission rates for each combustor as follows:

$$ER_{LTtw} = ER_{HCl} + ER_{Cl}2 \times (RfC_{HCl}/RfC_{Cl}2)$$

Where:

ER<sub>LTtw</sub>is the annual average HCl toxicity-weighted emission rate (HCl-equivalent emission rate) considering long-term exposures, lb/hr

ER<sub>HCl</sub>is the emission rate of HCl in lbs/hr

ER<sub>Cl</sub>2is the emission rate of chlorine in lbs/hr

RfC<sub>HCl</sub>is the reference concentration of HCl

RfC<sub>Cl</sub>2is the reference concentration of chlorine

(3) 1-hour average rates. You must calculate 1-hour average toxicity-weighted HCl-equivalent emission rates for each combustor as follows:

$$ER_{STtw} = ER_{HCl} + ER_{Cl}2 \times (aREL_{HCl}/aREL_{Cl}2)$$

Where:

ER<sub>STtw</sub>is the 1-hour average HCl-toxicity-weighted emission rate (HCl-equivalent emission rate) considering 1-hour (short-term) exposures, lb/hr

ER<sub>HCl</sub>is the emission rate of HCl in lbs/hr

ER<sub>Cl</sub>2is the emission rate of chlorine in lbs/hr

aREL<sub>HCl</sub>is the aREL for HCl

aREL<sub>Cl</sub>2is the aREL for chlorine

- (4) You must use the RfC values for hydrogen chloride and chlorine found at http://epa.gov/ttn/atw/toxsource/ summary.html.
- (5) You must use the aREL values for hydrogen chloride and chlorine found at http://www.oehha.ca.gov/air/ acute rels/acuterel.html .
- (6) Cl<sub>2</sub> HCl ratios —(i) Ratio for calculating annual average HCl-equivalent emission rates. (A) To calculate the annual average HCl-equivalent emission rate (lb/hr) for each combustor, you must apportion the total chlorine emission concentration (ppmv chloride (Cl(-)) equivalent) between HCl and chlorine according to the historical average Cl<sub>2</sub>/HCl volumetric ratio for all regulatory compliance tests.
- (B) You must calculate HCl and Cl<sub>2</sub>emission rates (lb/hr) using the apportioned emission concentrations and the gas flowrate and other parameters from the most recent regulatory compliance test.
- (C) You must calculate the annual average HCl-equivalent emission rate using these HCl and Cl<sub>2</sub>emission rates and the equation in paragraph (b)(2) of this section.
- (ii) Ratio for calculating 1-hour average HCl-equivalent emission rates. (A) To calculate the 1-hour average HCl-equivalent emission rate for each combustor as a criterion for you to determine under paragraph (d) of this section if an hourly rolling average feedrate limit on total chlorine and chloride may be waived, you must apportion the total chlorine emission concentration (ppmv chloride (Cl(-)) equivalent) between HCl and chlorine according to the historical highest Cl<sub>2</sub>/HCl volumetric ratio for all regulatory compliance tests.
- (B) You must calculate HCl and Cl<sub>2</sub>emission rates (lb/hr) using the apportioned emission concentrations and the gas flowrate and other parameters from the most recent regulatory compliance test.
- (C) You must calculate the 1-hour average HCl-equivalent emission rate using these HCl and Cl<sub>2</sub>emission rates and the equation in paragraph (b)(3) of this section.
- (iii) Ratios for new sources. (A) You must use engineering information to estimate the Cl<sub>2</sub>/HCl volumetric ratio for a new source for the initial eligibility demonstration.

- (B) You must use the Cl<sub>2</sub>/HCl volumetric ratio demonstrated during the initial comprehensive performance test to demonstrate in the Notification of Compliance that your HCl-equivalent emission rate does not exceed your HCl-equivalent emission rate limit.
- (C) When approving the test plan for the initial comprehensive performance test, the permitting authority will establish a periodic testing requirement, such as every 3 months for 1 year, to establish a record of representative Cl<sub>2</sub>/HCl volumetric ratios.
- (1) You must revise your HCl-equivalent emission rates and HCl-equivalent emission rate limits after each such test using the procedures prescribed in paragraphs (b)(6)(i) and (ii) of this section.
- (2) If you no longer are eligible for the health-based compliance alternative, you must notify the permitting authority immediately and either:
- ( i ) Submit a revised eligibility demonstration requesting lower HCl-equivalent emission rate limits, establishing lower HCl-equivalent emission rates, and establishing by downward extrapolation lower feedrate limits for total chlorine and chloride; or
- ( ii ) Request a compliance schedule of up to three years to demonstrate compliance with the emission standards under §§63.1216, 63.1217, 63.1219, 63.1220, and 63.1221.
- (iv) Unrepresentative or inadequate historical Cl<sub>2</sub>/HCl volumetric ratios. (A) If you believe that the Cl<sub>2</sub>/HCl volumetric ratio for one or more historical regulatory compliance tests is not representative of the current ratio, you may request that the permitting authority allow you to screen those ratios from the analysis of historical ratios.
- (B) If the permitting authority believes that too few historical ratios are available to calculate a representative average ratio or establish a maximum ratio, the permitting authority may require you to conduct periodic testing to establish representative ratios.
- (v) Updating Cl  $_2$  /HCl ratios . You must include the Cl $_2$ /HCl volumetric ratio demonstrated during each performance test in your data base of historical Cl $_2$ /HCl ratios to update the ratios you establish under paragraphs (b)(6)(i) and (ii) of this section for subsequent calculations of the annual average and 1-hour average HCl-equivalent emission rates.
- (7) Emission rates are capped. The hydrogen chloride and chlorine emission rates you use to calculate the HCl-equivalent emission rate limit for incinerators, cement kilns, and lightweight aggregate kilns must not result in total chlorine emission concentrations exceeding:
- (i) For incinerators that were existing sources on April 19, 1996: 77 parts per million by volume, combined emissions, expressed as chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;

- (ii) For incinerators that are new or reconstructed sources after April 19, 1996: 21 parts per million by volume, combined emissions, expressed as chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;
- (iii) For cement kilns that were existing sources on April 19, 1996: 130 parts per million by volume, combined emissions, expressed as chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;
- (iv) For cement kilns that are new or reconstructed sources after April 19, 1996: 86 parts per million by volume, combined emissions, expressed as chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;
- (v) For lightweight aggregate kilns that were existing sources on April 19, 1996: 600 parts per million by volume, combined emissions, expressed as chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;
- (vi) For lightweight aggregate kilns that are new or reconstructed sources after April 19, 1996: 600 parts per million by volume, combined emissions, expressed as chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen.
- (c) Eligibility demonstration —(1) General. (i) You must perform an eligibility demonstration to determine whether the total chlorine emission rates you select for each on-site hazardous waste combustor meet the national exposure standards using either a look-up table analysis prescribed by paragraph (c)(3) of this section, or a site-specific compliance demonstration prescribed by paragraph (c)(4) of this section.
- (ii) You must also determine in your eligibility demonstration whether each combustor may exceed the 1-hour HCl-equivalent emission rate limit absent an hourly rolling average limit on the feedrate of total chlorine and chloride, as provided by paragraph (d) of this section.
- (2) Definition of eligibility. (i) Eligibility for the risk-based total chlorine standard is determined by comparing the annual average HCl-equivalent emission rate for the total chlorine emission rate you select for each combustor to the annual average HCl-equivalent emission rate limit.
- (ii) The annual average HCl-equivalent emission rate limit ensures that the Hazard Index for chronic exposure from HCl and chlorine emissions from all on-site hazardous waste combustors is less than or equal to 1.0, rounded to the nearest tenths decimal place (0.1), for the actual individual most exposed to the facility's emissions, considering off-site locations where people reside and where people congregate for work, school, or recreation.
- (iii) Your facility is eligible for the health-based compliance alternative for total chlorine if either:
- (A) The annual average HCl-equivalent emission rate for each on-site hazardous waste combustor is below the appropriate value in the look-up table determined under paragraph (c)(3) of this section; or

- (B) The annual average HCl-equivalent emission rate for each on-site hazardous waste combustor is below the annual average HCl-equivalent emission rate limit you calculate based on a site-specific compliance demonstration under paragraph (c)(4) of this section.
- (3) Look-up table analysis. Look-up tables for the eligibility demonstration are provided as Tables 1 and 2 to this section.
- (i) Table 1 presents annual average HCl-equivalent emission rate limits for sources located in flat terrain. For purposes of this analysis, flat terrain is terrain that rises to a level not exceeding one half the stack height within a distance of 50 stack heights.
- (ii) Table 2 presents annual average HCl-equivalent emission rate limits for sources located in simple elevated terrain. For purposes of this analysis, simple elevated terrain is terrain that rises to a level exceeding one half the stack height, but that does not exceed the stack height, within a distance of 50 stack heights.
- (iii) To determine the annual average HCl-equivalent emission rate limit for a source from the look-up table, you must use the stack height and stack diameter for your hazardous waste combustors and the distance between the stack and the property boundary.
- (iv) If any of these values for stack height, stack diameter, and distance to nearest property boundary do not match the exact values in the look-up table, you must use the next lowest table value.
- (v) Adjusted HCl-equivalent emission rate limit for multiple on-site combustors. (A) If you have more than one hazardous waste combustor on site, the sum across all hazardous waste combustors of the ratio of the adjusted HCl-equivalent emission rate limit to the HCl-equivalent emission rate limit provided by Tables 1 or 2 cannot exceed 1.0, according to the following equation:

```
\sum_{i=1}^{n} \frac{\text{HC1-Equivalent Emission Rate Limit Adjusted}_i}{\text{HCI-Equivalent Emission Rate Limit Table}_i} \le 1.0
```

#### Where:

i = number of on-site hazardous waste combustors;

HCl-Equivalent Emission Rate Limit Adjusted<sub>i</sub>means the apportioned, allowable HCl-equivalent emission rate limit for combustor i, and

HCl-Equivalent Emission Rate Limit Table; means the HCl-equivalent emission rate limit from Table 1 or 2 to §63.1215 for combustor *i*.

(B) The adjusted HCl-equivalent emission rate limit becomes the HCl-equivalent emission rate limit.

- (4) Site-specific compliance demonstration. (i) You may use any scientifically-accepted peer-reviewed risk assessment methodology for your site-specific compliance demonstration to calculate an annual average HCl-equivalent emission rate limit for each on-site hazardous waste combustor. An example of one approach for performing the demonstration for air toxics can be found in the EPA's "Air Toxics Risk Assessment Reference Library, Volume 2, Site-Specific Risk Assessment Technical Resource Document," which may be obtained through the EPA's Air Toxics Web site at <a href="http://www.epa.gov/ttn/fera/risk\_atra\_main.html">http://www.epa.gov/ttn/fera/risk\_atra\_main.html</a>.
- (ii) The annual average HCl-equivalent emission rate limit is the HCl-equivalent emission rate that ensures that the Hazard Index associated with maximum annual average exposures is not greater than 1.0 rounded to the nearest tenths decimal place (0.1).
- (iii) To determine the annual average HCl-equivalent emission rate limit, your site-specific compliance demonstration must, at a minimum:
- (A) Estimate long-term inhalation exposures through the estimation of annual or multi-year average ambient concentrations;
- (B) Estimate the inhalation exposure for the actual individual most exposed to the facility's emissions from hazardous waste combustors, considering off-site locations where people reside and where people congregate for work, school, or recreation;
- (C) Use site-specific, quality-assured data wherever possible;
- (D) Use health-protective default assumptions wherever site-specific data are not available, and:
- (E) Contain adequate documentation of the data and methods used for the assessment so that it is transparent and can be reproduced by an experienced risk assessor and emissions measurement expert.
- (iv) Your site-specific compliance demonstration need not:
- (A) Assume any attenuation of exposure concentrations due to the penetration of outdoor pollutants into indoor exposure areas;
- (B) Assume any reaction or deposition of the emitted pollutants during transport from the emission point to the point of exposure.
- (d) Assurance that the 1-hour HCl-equivalent emission rate limit will not be exceeded. To ensure that the 1-hour HCl-equivalent emission rate limit will not be exceeded when complying with the annual average HCl-equivalent emission rate limit, you must establish a 1-hour average HCl-equivalent emission rate limit for each combustor, establish a 1-hour average HCl-equivalent emission rate limit for each combustor, and consider site-specific factors including prescribed criteria to determine if the 1-hour average HCl-equivalent emission rate limit may be exceeded absent an hourly rolling average limit on the feedrate of total chlorine and chloride. If the 1-hour average

- HCl-equivalent emission rate limit may be exceeded, you must establish an hourly rolling average feedrate limit on total chlorine as provided by paragraph (f)(3) of this section.
- (1) 1-hour average HCl-equivalent emission rate. You must calculate the 1-hour average HCl-equivalent emission rate from the total chlorine emission concentration you select for each source as prescribed in paragraph (b)(6)(ii)(C) of this section.
- (2) 1-hour average HCl-equivalent emission rate limit. You must establish the 1-hour average HCl-equivalent emission rate limit for each affected source using either a look-up table analysis or site-specific analysis:
- (i) Look-up table analysis. Look-up tables are provided for 1-hour average HCl-equivalent emission rate limits as Table 3 and Table 4 to this section. Table 3 provides limits for facilities located in flat terrain. Table 4 provides limits for facilities located in simple elevated terrain. You must use the Tables to establish 1-hour average HCl-equivalent emission rate limits as prescribed in paragraphs (c)(3)(iii) through (c)(3)(v) of this section for annual average HCl-equivalent emission rate limits.
- (ii) Site-specific analysis. The 1-hour average HCl-equivalent emission rate limit is the HCl-equivalent emission rate that ensures that the Hazard Index associated with maximum 1-hour average exposures is not greater than 1.0 rounded to the nearest tenths decimal place (0.1). You must follow the risk assessment procedures under paragraph (c)(4) of this section to estimate short-term inhalation exposures through the estimation of maximum 1-hour average ambient concentrations.
- (3) Criteria for determining whether the 1-hour HCl-equivalent emission rate may be exceeded absent an hourly rolling average limit on the feedrate of total chlorine and chloride. An hourly rolling average feedrate limit on total chlorine and chloride is waived if you determine considering the criteria listed below that the long-term feedrate limit (and averaging period) established under paragraph (c)(4)(i) of this section will also ensure that the 1-hour average HCl-equivalent emission rate will not exceed the 1-hour average HCl-equivalent emission rate limit you calculate for each combustor.
- (i) The ratio of the 1-hour average HCl-equivalent emission rate based on the total chlorine emission rate you select for each hazardous waste combustor to the 1-hour average HCl-equivalent emission rate limit for the combustor; and
- (ii) The potential for the source to vary total chlorine and chloride feedrates substantially over the averaging period for the feedrate limit established under paragraph (c)(4)(i) of this section.
- (e) Review and approval of eligibility demonstrations—(1) Content of the eligibility demonstration—(i) General. The eligibility demonstration must include the following information, at a minimum:
- (A) Identification of each hazardous waste combustor combustion gas emission point (e.g., generally, the flue gas stack);

- (B) The maximum and average capacity at which each combustor will operate, and the maximum rated capacity for each combustor, using the metric of stack gas volume (under both actual and standard conditions) emitted per unit of time, as well as any other metric that is appropriate for the combustor (e.g., million Btu/hr heat input for boilers; tons of dry raw material feed/hour for cement kilns);
- (C) Stack parameters for each combustor, including, but not limited to stack height, stack diameter, stack gas temperature, and stack gas exit velocity;
- (D) Plot plan showing all stack emission points, nearby residences and property boundary line;
- (E) Identification of any stack gas control devices used to reduce emissions from each combustor;
- (F) Identification of the RfC values used to calculate annual average HCl-equivalent emission rates and the aREL values used to calculate 1-hour average HCl-equivalent emission rates;
- (G) Calculations used to determine the annual average and 1-hour average HCl-equivalent emission rates and rate limits, including calculation of the Cl<sub>2</sub>/HCl ratios as prescribed by paragraph (b)(6) of this section;
- (ii) Additional content to implement the annual average HCl-equivalent emission rate limit. You must include the following in your eligibility demonstration to implement the annual average HCl-equivalent emission rate limit:
- (A) For incinerators, cement kilns, and lightweight aggregate kilns, calculations to confirm that the annual average HCl-equivalent emission rate that you calculate from the total chlorine emission rate you select for each combustor does not exceed the limits provided by paragraph (b)(7) of this section;
- (B) Comparison of the annual average HCl-equivalent emission rate limit for each combustor to the annual average HCl-equivalent emission rate for the total chlorine emission rate you select for each combustor;
- (C) The annual average HCl-equivalent emission rate limit for each hazardous waste combustor, and the limits on operating parameters required under paragraph (g)(1) of this section;
- (D) Determination of the long-term chlorine feedrate limit, including the total chlorine system removal efficiency for sources that establish an (up to) annual rolling average feedrate limit under paragraph (g)(2)(ii) of this section;
- (iii) Additional content to implement the 1-hour average HCl-equivalent emission rate limit. You must include the following in your eligibility demonstration to implement the 1-hour average HCl-equivalent emission rate limit:

- (A) Determination of whether the combustor may exceed the 1-hour HCl-equivalent emission rate limit absent an hourly rolling average chlorine feedrate limit, including:
- (1) Determination of the 1-hour average HCl-equivalent emission rate from the total chlorine emission rate you select for the combustor;
- (2) Determination of the 1-hour average HCl-equivalent emission rate limit using either look-up Tables 3 and 4 to this section or site-specific risk analysis;
- (3) Determination of the ratio of the 1-hour average HCl-equivalent emission rate to the 1-hour average HCl-equivalent emission rate limit for the combustor; and
- (4) The potential for the source to vary total chlorine and chloride feedrates substantially over the averaging period for the long-term feedrate limit established under paragraphs (g)(2)(i) and (g)(2)(ii) of this section; and
- (B) Determination of the hourly rolling average chlorine feedrate limit, including the total chlorine system removal efficiency.
- (iv) Additional content of a look-up table demonstration. If you use the look-up table analysis to establish HCl-equivalent emission rate limits, your eligibility demonstration must also contain, at a minimum, the following:
- (A) Documentation that the facility is located in either flat or simple elevated terrain; and
- (B) For facilities with more than one on-site hazardous waste combustor, documentation that the sum of the ratios for all such combustors of the HCl-equivalent emission rate to the HCl-equivalent emission rate limit does not exceed 1.0.
- (v) Additional content of a site-specific compliance demonstration. If you use a site-specific compliance demonstration, your eligibility demonstration must also contain, at a minimum, the following information to support your determination of the annual average HCl-equivalent emission rate limit for each combustor:
- (A) Identification of the risk assessment methodology used;
- (B) Documentation of the fate and transport model used;
- (C) Documentation of the fate and transport model inputs, including the stack parameters listed in paragraph (d)(1)(i)(C) of this section converted to the dimensions required for the model;
- (D) As applicable:
- (1) Meteorological data;
- (2) Building, land use, and terrain data;

- (3) Receptor locations and population data, including areas where people congregate for work, school, or recreation; and
- (4) Other facility-specific parameters input into the model;
- (E) Documentation of the fate and transport model outputs; and
- (F) Documentation of any exposure assessment and risk characterization calculations.
- (2) Review and approval —(i) Existing sources. (A) If you operate an existing source, you must submit the eligibility demonstration to your permitting authority for review and approval not later than 12 months prior to the compliance date. You must also submit a separate copy of the eligibility demonstration to: U.S. EPA, Risk and Exposure Assessment Group, Emission Standards Division (C404–01), Attn: Group Leader, Research Triangle Park, North Carolina 27711, electronic mail address REAG@epa.gov.
- (B) Your permitting authority should notify you of approval or intent to disapprove your eligibility demonstration within 6 months after receipt of the original demonstration, and within 3 months after receipt of any supplemental information that you submit. A notice of intent to disapprove your eligibility demonstration, whether before or after the compliance date, will identify incomplete or inaccurate information or noncompliance with prescribed procedures and specify how much time you will have to submit additional information or to achieve the MACT standards for total chlorine under §§63.1216, 63.1217, 63.1219, 63.1220, and 63.1221. If your eligibility demonstration is disapproved, the permitting authority may extend the compliance date of the total chlorine standards up to one year to allow you to make changes to the design or operation of the combustor or related systems as quickly as practicable to enable you to achieve compliance with the MACT total chlorine standards.
- (C) If your permitting authority has not approved your eligibility demonstration by the compliance date, and has not issued a notice of intent to disapprove your demonstration, you may begin complying, on the compliance date, with the HCl-equivalent emission rate limits you present in your eligibility demonstration provided that you have made a good faith effort to provide complete and accurate information and to respond to any requests for additional information in a timely manner. If the permitting authority believes that you have not made a good faith effort to provide complete and accurate information or to respond to any requests for additional information, however, the authority may notify you in writing by the compliance date that you have not met the conditions for complying with the health-based compliance alternative without prior approval. Such notice will explain the basis for concluding that you have not made a good faith effort to comply with the health-based compliance alternative by the compliance date.
- (D) If your permitting authority issues a notice of intent to disapprove your eligibility demonstration after the compliance date, the authority will identify the basis for that notice and specify how much time you will have to submit additional information or to comply with the MACT standards for total chlorine under §§63.1216, 63.1217, 63.1219, 63.1220, and 63.1221. The permitting authority may extend the compliance date of the total chlorine standards up to

one-year to allow you to make changes to the design or operation of the combustor or related systems as quickly as practicable to enable you to achieve compliance with the MACT standards for total chlorine.

- (ii) New or reconstructed sources —(A) General. The procedures for review and approval of eligibility demonstrations applicable to existing sources under paragraph (e)(2)(i) of this section also apply to new or reconstructed sources, except that the date you must submit the eligibility demonstration is as prescribed in this paragraph (e)(2)(ii).
- (B) If you operate a new or reconstructed source that starts up before April 12, 2007, or a solid fuel boiler or liquid fuel boiler that is an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP before April 12, 2007, you must either:
- (1) Comply with the final total chlorine emission standards under §§63.1216, 63.1217, 63.1219, 63.1220, and 63.1221, by October 12, 2005, or upon startup, whichever is later, except for a standard that is more stringent than the standard proposed on April 20, 2004 for your source. If a final standard is more stringent than the proposed standard, you may comply with the proposed standard until October 14, 2008, after which you must comply with the final standard; or
- (2) Submit an eligibility demonstration for review and approval under this section by April 12, 2006, and comply with the HCl-equivalent emission rate limits and operating requirements you establish in the eligibility demonstration.
- (C) If you operate a new or reconstructed source that starts up on or after April 12, 2007, or a solid fuel boiler or liquid fuel boiler that is an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP on or after April 12, 2007, you must either:
- (1) Comply with the final total chlorine emission standards under §§63.1216, 63.1217, 63.1219, 63.1220, and 63.1221 upon startup. If the final standard is more stringent than the standard proposed for your source on April 20, 2004, however, and if you start operations before October 14, 2008, you may comply with the proposed standard until October 14, 2008, after which you must comply with the final standard; or
- (2) Submit an eligibility demonstration for review and approval under this section 12 months prior to startup.
- (3) The operating requirements in the eligibility demonstration are applicable requirements for purposes of parts 70 and 71 of this chapter and will be incorporated in the title V permit.
- (f) Testing requirements—(1) General. You must comply with the requirements for comprehensive performance testing under §63.1207.
- (2) System removal efficiency. (i) You must calculate the total chlorine removal efficiency of the combustor during each run of the comprehensive performance test.

- (ii) You must calculate the average system removal efficiency as the average of the test run averages.
- (iii) If your source does not control emissions of total chlorine, you must assume zero system removal efficiency.
- (3) Annual average HCl-equivalent emission rate limit. If emissions during the comprehensive performance test exceed the annual average HCl-equivalent emission rate limit, eligibility for emission limits under this section is not affected. This emission rate limit is an annual average limit even though compliance is based on a 12-hour or (up to) an annual rolling average feedrate limit on total chlorine and chloride because the feedrate limit is also used for compliance assurance for the semivolatile metal emission standard
- (4) 1-hour average HCl-equivalent emission rate limit. Total chlorine emissions during each run of the comprehensive performance test cannot exceed the 1-hour average HCl-equivalent emission rate limit.
- (5) *Test methods*. (i) If you operate a cement kiln or a combustor equipped with a dry acid gas scrubber, you must use EPA Method 320/321 or ASTM D 6735–01, or an equivalent method, to measure hydrogen chloride, and the back-half (caustic impingers) of Method 26/26A, or an equivalent method, to measure chlorine gas.
- (ii) Bromine and sulfur considerations. If you operate an incinerator, boiler, or lightweight aggregate kiln and your feedstreams contain bromine or sulfur during the comprehensive performance test at levels specified under paragraph (e)(2)(ii)(B) of this section, you must use EPA Method 320/321 or ASTM D 6735–01, or an equivalent method, to measure hydrogen chloride, and Method 26/26A, or an equivalent method, to measure chlorine and hydrogen chloride, and determine your chlorine emissions as follows:
- (A) You must determine your chlorine emissions to be the higher of the value measured by Method 26/26A as provided in appendix A–8, part 60 of this chapter, or an equivalent method, or the value calculated by the difference between the combined hydrogen chloride and chlorine levels measured by Method 26/26A as provided in appendix A–8, part 60 of this chapter, or an equivalent method, and the hydrogen chloride measurement from EPA Method 320/321 as provided in appendix A, part 63 of this chapter, or ASTM D 6735–01 as described under §63.1208(b)(5)(i)(C), or an equivalent method.
- (B) The procedures under paragraph (f)(2)(ii) of this section for determining hydrogen chloride and chlorine emissions apply if you feed bromine or sulfur during the performance test at the levels specified in this paragraph (f)(5)(ii)(B):
- (1) If the bromine/chlorine ratio in feedstreams is greater than 5 percent by mass; or
- (2) If the sulfur/chlorine ratio in feedstreams is greater than 50 percent by mass.

- (g) Monitoring requirements—(1) General. You must establish and comply with limits on the same operating parameters that apply to sources complying with the MACT standard for total chlorine under §63.1209(o), except that feedrate limits on total chlorine and chloride must be established according to paragraphs (g)(2) and (g)(3) of this section:
- (2) Feedrate limit to ensure compliance with the annual average HCl-equivalent emission rate limit. (i) For sources subject to the feedrate limit for total chlorine and chloride under §63.1209(n)(4) to ensure compliance with the semivolatile metals standard:
- (A) The feedrate limit (and averaging period) for total chlorine and chloride to ensure compliance with the annual average HCl-equivalent emission rate limit is the same as required by §63.1209(n)(4), except as provided by paragraph (g)(2)(i)(B) of this section.
- (B) The numerical value of the total chlorine and chloride feedrate limit ( i.e., not considering the averaging period) you establish under  $\S63.1209(n)(4)$  must not exceed the value you calculate as the annual average HCl-equivalent emission rate limit (lb/hr) divided by [1 system removal efficiency], where the system removal efficiency is calculated as prescribed by paragraph (f)(2) of this section.
- (ii) For sources exempt from the feedrate limit for total chlorine and chloride under §63.1209(n)(4) because they comply with §63.1207(m)(2), the feedrate limit for total chlorine and chloride to ensure compliance with the annual average HCl-equivalent emission rate must be established as follows:
- (A) You must establish an average period for the feedrate limit that does not exceed an annual rolling average;
- (B) The numerical value of the total chlorine and chloride feedrate limit (*i.e.*, not considering the averaging period) must not exceed the value you calculate as the annual average HCl-equivalent emission rate limit (lb/hr) divided by [1 system removal efficiency], where the system removal efficiency is calculated as prescribed by paragraph (f)(2) of this section.
- (C) You must calculate the initial rolling average as though you had selected a 12-hour rolling average, as provided by paragraph (b)(5)(i) of this section. You must calculate rolling averages thereafter as the average of the available one-minute values until enough one-minute values are available to calculate the rolling average period you select. At that time and thereafter, you update the rolling average feedrate each hour with a 60-minute average feedrate.
- (3) Feedrate limit to ensure compliance with the 1-hour average HCl-equivalent emission rate limit. (i) You must establish an hourly rolling average feedrate limit on total chlorine and chloride to ensure compliance with the 1-hour average HCl-equivalent emission rate limit unless you determine that the hourly rolling average feedrate limit is waived under paragraph (d) of this section.
- (ii) You must calculate the hourly rolling average feedrate limit for total chlorine and chloride as the 1-hour average HCl-equivalent emission rate limit (lb/hr) divided by [1 system removal

efficiency], where the system removal efficiency is calculated as prescribed by paragraph (f)(2)(ii) of this section.

- (h) Changes —(1) Changes over which you have control —(i) Changes that would affect the HCl-equivalent emission rate limit. (A) If you plan to change the design, operation, or maintenance of the facility in a manner than would decrease the annual average or 1-hour average HCl-equivalent emission rate limit, you must submit to the permitting authority prior to the change a revised eligibility demonstration documenting the lower emission rate limits and calculations of reduced total chlorine and chloride feedrate limits.
- (B) If you plan to change the design, operation, or maintenance of the facility in a manner than would increase the annual average or 1-hour average HCl-equivalent emission rate limit, and you elect to increase your total chlorine and chloride feedrate limits. You must also submit to the permitting authority prior to the change a revised eligibility demonstration documenting the increased emission rate limits and calculations of the increased feedrate limits prior to the change.
- (ii) Changes that could affect system removal efficiency. (A) If you plan to change the design, operation, or maintenance of the combustor in a manner than could decrease the system removal efficiency, you are subject to the requirements of §63.1206(b)(5) for conducting a performance test to reestablish the combustor's system removal efficiency and you must submit a revised eligibility demonstration documenting the lower system removal efficiency and the reduced feedrate limits on total chlorine and chloride.
- (B) If you plan to change the design, operation, or maintenance of the combustor in a manner than could increase the system removal efficiency, and you elect to document the increased system removal efficiency to establish higher feedrate limits on total chlorine and chloride, you are subject to the requirements of §63.1206(b)(5) for conducting a performance test to reestablish the combustor's system removal efficiency. You must also submit to the permitting authority a revised eligibility demonstration documenting the higher system removal efficiency and the increased feedrate limits on total chlorine and chloride.
- (2) Changes over which you do not have control that may decrease the HCl-equivalent emission rate limits. These requirements apply if you use a site-specific risk assessment under paragraph (c)(4) of this section to demonstrate eligibility for the health-based limits.
- (i) *Proactive review*. You must submit for review and approval with each comprehensive performance test plan either a certification that the information used in your eligibility demonstration has not changed in a manner that would decrease the annual average or 1-hour average HCl-equivalent emission rate limit, or a revised eligibility demonstration.
- (ii) Reactive review. If in the interim between your comprehensive performance tests you have reason to know of changes that would decrease the annual average or 1-hour average HCl-equivalent emission rate limit, you must submit a revised eligibility demonstration as soon as practicable but not more frequently than annually.

(iii) Compliance schedule. If you determine that you cannot demonstrate compliance with a lower annual average HCl-equivalent emission rate limit during the comprehensive performance test because you need additional time to complete changes to the design or operation of the source, you may request that the permitting authority grant you additional time to make those changes as quickly as practicable.

| 1                        | ble 1 of    | Table 1 of §63.1215:                   |          | Average      | Annual Average HCI-Equivalent Emesion Rate Umits (IDIn) - Flat Terrain | fvalent E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | meston                              | Cate Cim                 | ts (Bolhr)                                 | 計画中                    | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-------------|----------------------------------------|----------|--------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|--------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ****                     |             |                                        |          |              | Ofstanc                                                                | Distance to property boundary (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nty bound:                          | My (m)                   |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stack Olemeter # 0.3 m   | 0.33        |                                        |          |              |                                                                        | STATE OF STA |                                     |                          | -                                          | A-1                    | A STATE OF THE PARTY OF THE PAR | Table of the state |
| Stack Height (m)         | *           | *                                      | 2        | ş            | ŝ                                                                      | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ş                                   | 2                        | 8                                          | 0007                   | 80 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| اع                       | F. F.       | ¥                                      | 7.XE     | 216-01       | \$ 45 ±00                                                              | 3,35,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                   | \$ 7E+00                 | 0.1E+00                                    | - GE-64                | Đ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9€+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                        | 80-30       | 8                                      | 1.16*00  | 1,004.00     | 2.15+00                                                                | 2.7E+C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH.#43                              | 5.76+dd                  | 8.56+00                                    | - 1649                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.25-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a                        | \$ M        | 236-00                                 | 2.35+50  | 2.3E+00      | 2,75,400                                                               | 3.7E+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ DE+C0                            | 7.45+00                  | ₽ <del>-30.</del> +                        | 1.88+01                | 2.98-101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R                        | A 400       | 4.16+00                                | * 15+00  | 4.2E+00      | 4.7E+06                                                                | <b>\$ 0€+00</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5E+CO                             | 136+01                   | P-31                                       | - PER - P              | 4.00-cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * SE-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                        | 1.28491     | <b>A</b>                               | . 2€±Ω   | 125+01       | 1.<br>K-01                                                             | 15±01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0E+O1                             | 2.4E+O:                  | 3.86+04                                    | 7.56+01                | 1,0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stack Otemeter * 0.5 m   | 0.5 m       |                                        |          |              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACTOR OF THE PERSON NAMED IN |                          |                                            | Company of the Company | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stack Halper (m)         | 3           | 2                                      | t.       | 241          | £                                                                      | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                 | 200                      | #C#                                        | 報                      | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 509d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| •                        | 4.5E-01     | D.56-01                                | 1,42+00  | 1,46,400     | 200+00                                                                 | 4.4E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.25+00                             | 9.2E+00                  | 1,35-101                                   | 1.5E+01                | 2,0E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | と素を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                        | 146400      | 1.4E+00                                | \$.8E+00 | 2-15-00      | 3.08+00                                                                | 8.46+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.36+00                             | 1,00-401                 | 1.36-01                                    | 1.75+01                | 2.8E+O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 86-491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| R                        | 3.78+00     | 3.7E+00                                | 3.7E+00  | 3,95,400     | 00+367                                                                 | 0.55+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$36*00                             | 1,000.0                  | 13,50                                      | 2.22                   | 3.25.4GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>八</b>                 | 6.6E+00     | 6.5E+00                                | 8.5E+00  | \$-2E+C0     | 3,56,400                                                               | 6.7E+00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05-01                             | 1.4E+01                  | 1.8E+O1                                    | 3.AE+01                | <b>★BE+01</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B.TE+OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| В                        | 148-01      | 1,45401                                | 1,45401  | 1,45.40!     | 1.45+01                                                                | 1.5E+D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,15+01                             | 2.1€+01                  | * PE + C                                   | 7.25.401               | 20+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 BE+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Strok Diamoter = 1.0 m   | 1.0.m       |                                        |          |              |                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                          |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Stack Height (m.)        | Ą           | 緣                                      | £        | 2            | 708                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                   | 9                        | 88                                         | 2042                   | ż                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                        | 3.75-400    | 3/85*00                                | 4.06+00  | 5.AE+C0      | 8.6E+05                                                                | 1,35+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,86.401                            | 2.36.40                  | 2.8E+01                                    | ¥.₩±4                  | 5.2E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.5E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                        | 8           | S.#E+00                                | 6.9E+00  | & TEACO      | 805-80                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>Α.                              | P4-08-4                  | 256-01                                     | £.55.45                | 236.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5C+D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R                        | (A-10)      | -04-00                                 | Q#30.    | ₹ <b>9</b> 5 | 126+01                                                                 | 1, Met-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 田本                                | 2 3E+Of                  | 2.BE+D1                                    | を開き                    | B. TENDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P.3E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 38                       | 1,46,001    | 1,8E=0;                                | 1.BE+9   | - BE-5       | 1.4E-40:                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ž.                                  | 5017                     | 6.25.0                                     | 7.76+491               | 1.1E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-32 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                        | 7.EEG       | 7.4E+01                                | 1.45+01  | 746401       | 7.4E-01                                                                | 7.4E401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F.08                                | 1.0E+02                  | 1.4E+02                                    | 2.1E+02                | 2.7E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.05+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stack Diameter = 1.5 or  | 1.30        |                                        |          |              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | The second second second |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E HOLE PARTY IN          | *           | 3                                      | 2        | 3            | â                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                   | ĝ                        | 9084                                       | 800                    | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$                       | 4.16.48     | 90+X                                   | DO+20/9  | Beet         | 1,76-01                                                                | 2.15+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7E-101                            | 3,86431                  | P-36.4                                     | 2#<br>2#               | 9.1E#01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 15+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *                        | 7.00        | 7,66-400                               | 7.86+30  | \$ %.        | 2                                                                      | ¥ 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 275-4                               | 3.0E-FO                  | 至                                          | 7.8E+01                | 9.1E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2E+22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8                        | 1,15re)     | Ž<br>Ž                                 | 1,26-61  | 1.35+01      | 1,000-01                                                               | 2 IE+OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7E+01                             | 3.85                     | 4.05-101                                   | 1.0E+01                | 1 IE+OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                        | 2.3E+01     | 2.3E+Ct                                | 135+31   | 2.3E+04      | 2.8401                                                                 | 2,26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 276-01                              | 3.60                     | D+38*                                      | 1.6E+01                | 1.20-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | 1.0E+42     | 201-301                                | 20+30'L  | 1,06+02      | 1.CE+02                                                                | 1.05+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1E+02                             | 1,46+00                  | 20+38's                                    | 3,0E=02                | 4.05*422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.8E+CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| State Discretise =       | Apr = 2.0 m |                                        |          |              | ·                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                          |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stack Height (m)         | 2           | 5                                      | 2        | 3            | 8                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                   | 2                        | 1960                                       | 2                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                       | \$.DE+00    | 0.3E+00                                | 7.7E+00  | 9.8E+00      | Φ.F.                                                                   | 2 #EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,38,494                            | 1.4E+01                  | A. W.                                      | 1,00-402               | 1.45.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,62+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R                        | 0.35+00     | 0.35.400                               | 20+B+8   | 1,0E+0H      | 15 P.                                                                  | 2,85+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STEPPE                              | 104347                   | 104369                                     | 1.05=102               | 1.45+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.85+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R                        | 1.86+01     | 104391                                 | 1.8E+D1  | - Ce-30      | Ş                                                                      | 2.XE-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.76+01                             | 4.48+01                  | £.9€+01                                    | 1.05+02                | 20+3F 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,8540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                        | 2. ME-01    | 104367                                 | 296+04   | 286          | 2.00-01                                                                | 2.95+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,35=01                             | 100 Ser. 19              | 5496                                       | 3.05102                | 1.4E+C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 305+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| g                        | 1.4E+02     | 1.4E+02                                | 1,4540   | S. S.        | 3                                                                      | 1450年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20-31                               | 1,86-402                 | 2.3E+02                                    | 3,46,62                | 711-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$                       | 200         | ************************************** | 3,68,40  | 305-40       | 208.40                                                                 | 20.<br>20.<br>20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.06.4g                             | \$ 50°                   | 3,56+62                                    | 5.7K+G                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.7E-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stack Districtor = 3.0 m | E 0.5       |                                        |          |              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                                            |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A CONTRACTOR OF THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NAC TACK (III            | я           | 4                                      | R        | 3            | ā                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                   | 2                        | 200                                        | 200                    | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #                        | \$ 5E+00    | 6.76.*O                                | 8        | S. B. +CC    | 2.2E+01                                                                | Ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4E-40                             | 7.46.49                  | E-12                                       | ##<br>#                | - AE+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *                        | - F         | F.                                     | 75.0     | 2087Z        | 2.5[[+04                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * FE-19                             | 7.46-01                  | P-0                                        | 1.0E+50                | 2,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 306402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *                        | 2,0E+01     | Z(E+0)                                 | 205-69   | 20E+0        | 2.5E-01                                                                | * 76.45<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ B \$                             | 7.46.0                   | Ş.                                         | 72+03                  | 27.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *                        | 1.25.00     | 4.25.40T                               | 4 2年40日  | 4.2E+01      | 4.45+01                                                                | 6.1E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 BE-401                            | 7.4E+Dt                  | S.8E+01                                    | 14.45<br>14.55         | 177.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                        | 2.36*402    | 2 X +02                                | 236+00   | 77.5         | 23.4C                                                                  | 1.25-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4E+02                             | 2.9E+02                  | 25-18-18-18-18-18-18-18-18-18-18-18-18-18- | 4.1E402                | S. DE-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$                       | 登出が         | 3.3E+CE                                | 3.0E+02  | 35E-02       | 3.55.402                                                               | 3.5E-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5E+02                             | 3,54402                  | 1.<br>1.<br>1.                             | 2.<br>*****            | ¥.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.78.4X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Stack Changer # 4.0 m    | E 0.7       |                                        |          |              | ACMORPH CO.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                          |                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SHOP THE PARTY (TILL)    | 2           | 3                                      | ٤        | ş            | Ę                                                                      | <b>0</b> 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                   | ž                        | 300                                        | 2000                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Я                        | 258.45      | 25E+01                                 | 2.55-01  | 2,44.0       | 745                                                                    | 5.8E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1E+01                             | 1.15-02                  | - AE+02                                    | 2.75-02                | 2.56+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.36+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8                        | 5.16.40     | 2.00                                   | 9.48+94  | 4 18 4 CH    | \$ # \$                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                 | #.15.4B                  | 4E-CD                                      | 24.6                   | 3.16.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.4E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                        | B. 20       | 2.8E+UZ                                | 2.65-10  | 2.65         | 2.7E.45                                                                | 2,16,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                   | # DE +05                 | 4.8E+02                                    | * CE +62               | B 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.76-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9                        | 5.7E+02     | 5.7E+03                                | \$78-CD  | 8.72.cg      | \$ 78+CG                                                               | 8.7E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.7E+02                             | 8.7E+02                  | 5.8E+02                                    | # BE-42                | 0.35+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.TE+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 18E-10   12E-10   1                                                                                                                                                                                                                                     |                                | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                          | THE       | CAMPAN IN TRACE |                          |                              |                                 |          |           |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|-----------|-----------------|--------------------------|------------------------------|---------------------------------|----------|-----------|----------------|
| 15-50   14-50   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2-15-0   2                                                                                                                                                                                                                                       | Disck Diamenter - #. 5 m       | -          | This is the same of the same o |           | The second second second |           |                 | The second second second |                              |                                 |          |           |                |
| Liego   Lieg                                                                                                                                                                                                                                     | Stark beight (m)               | 8          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 342                      | 200       | 2               | ē                        | Ž                            | 0001                            | 2006     | 3606      | 2905           |
| 18E-01   1.1E-00   1.1E-00   1.7E-00   1.7E-00   2.1E-00   2.1E                                                                                                                                                                                                                                      | 3                              | 1.35-01    | 1.86-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5E.01   | 3.7B-01                  | 10-EF-01  | 135-01          | 1.4E+60                  | 2.051180                     | 3.12+00                         | 7.75+30  | 1,38+01   | 2.6B+01        |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                              | 3.65-01    | 3.8E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.4B-0!   | 6.15-01                  | 10-30-9   | 8.98-01         | 1.4E*CO                  | 2.06+00                      | 3.18+00                         | 7.7E+00  | 1.38+01   | 2.6E+01        |
| 17년 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                              | 1.1E+06.   | 1.12+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1E+00   | 1.28+00                  | 1.28+00   | 3.58+00         | 2,3,6+00                 | 3,48+90                      | 00+AZ'S                         | 1.28+01  | 2.016+01  | 3.98+01        |
| (1) 日本の (                                                                                                                                                                                                                                        | *                              | 2.48+00    | 246400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 348+8     | 2.48+00                  | 2,7E+8    | 3.50+00         | 4.2E+00                  | \$28+00                      | 7.06+00                         | 200      | 2.6(2+0)  | 4.9B+01        |
| 18년01   186201   186201   18620   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   186400   1                                                                                                                                                                                                                                       | \$                             |            | 7.78+90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.75+00   | 7.75+00                  | 7.78+OD   | 3.6E+00         | \$.6E+00                 | \$.6B+40                     | 8.6E+00                         | 2,08+61  | 3.46+0;   | 6.52401        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dack Diemster - 6.5 m          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ,                        | -         |                 |                          |                              |                                 |          |           |                |
| 1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,250   1,25                                                                                                                                                                                                                                     | Stock Leight (m)               | 2          | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2         | 3                        | 300       | *               | \$00                     | 502                          | 200                             | 2000     | 3000      | ş.             |
| 5.28-01         5.28-01         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00         5.28-00 <t< td=""><td>¥n</td><td>1.8201</td><td>1.65-01</td><td>3.58.01</td><td>\$.6E-01</td><td>1.45+00</td><td>1.4E+00</td><td>2.3E+60</td><td>3.42+40</td><td>3.25+00</td><td>9.6E+00</td><td>1.58+01</td><td>2.88401</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¥n                             | 1.8201     | 1.65-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.58.01   | \$.6E-01                 | 1.45+00   | 1.4E+00         | 2.3E+60                  | 3.42+40                      | 3.25+00                         | 9.6E+00  | 1.58+01   | 2.88401        |
| 1.5E+00   1.2E+00   1.2E+00   1.2E+00   1.2E+00   3.5E+00   3.5E                                                                                                                                                                                                                                     | 3                              | 5.3E-01    | 3.38-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.18.01   | 8.5E-01                  | 1.4E+00   | 00+499°         | 23E400                   | 3.481+40                     | 5.2B+00                         | 9.AE+60  | - SEA     | 1.8E+0         |
| 1,000-40         2,000-40         2,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40         3,000-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                              | 1.58+00    | 1.512+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.58400   | 1.56+00                  | 1,58+00   | 3.4B+00         | 23E+00                   | 3,48,+60                     | 5.2E+00                         | 1.25.40  | 2.06.401  | 3.96+03        |
| 3.90         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00 <th< td=""><td>*</td><td>3,98+00</td><td>2.967.00</td><td>238190</td><td>2.98+00</td><td>2.9E+00</td><td>3.58+00</td><td>4.2E+60</td><td>STEFED</td><td>8.15+00</td><td>1.71.to</td><td>2.8B+0 </td><td>Saerol</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                              | 3,98+00    | 2.967.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 238190    | 2.98+00                  | 2.9E+00   | 3.58+00         | 4.2E+60                  | STEFED                       | 8.15+00                         | 1.71.to  | 2.8B+0    | Saerol         |
| 3.9         3.9         3.0         19.0         3.0         5.0         7.0         19.0         3.0         5.0         7.0         19.0         3.0         5.0         7.0         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-00         1.25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                             | L          | \$-00-30°8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 100 HOD | 8.0E+00                  | 8.0B-00   | L               | 1.25+01                  | 1.2E+d!                      | 1.28+01                         | 3.3B+01  | 3.75+01   | 10+36·9        |
| 19.78-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1.18-0  1                                                                                                                                                                                                                                       | Stack Diemeter - 1.0 a         | ١.         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | -                        |           | 1               |                          | And the second second second | Ar telescola Capación (Allanos) |          |           |                |
| 3.12년 0         9.7년 0         2.7년 0         2.7년 0         2.7년 0         2.7년 0         7.5년 0         7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State beight (E)               | L          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8         | *                        | 300       | 9X              | 2005                     | 200                          | 0857                            | 2000     | 3006      | 2005           |
| 2.75+99 2.75+90 2.75+90 1.26+90 1.75+90 2.75+90 1.75+90 1.75+90 2.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25+90 4.25                                                                                                                                                                                                                                     | 9                              | 9.75-01    | 9.7E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . IBron   | 1,76+00                  | 3.76+00   | 1.78+00         | 4.28+00                  | S.5E+60                      | 7.58+00                         | 1.5E+0.  | 133401    | 4.18401        |
| 35年60         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         4.3½+00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                              | 2.7B100    | 275+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7E+00   | 3.08+00                  | 3.78+00   | 3.7E+00         | 4.2Ee03                  | 5.58040                      | 7.58+00                         | 1.524-01 | 23840     | 4.318-10       |
| 9.5E+00         9.5E+00         9.5E+00         9.5E+00         9.5E+00         9.5E+00         1.5E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                              | 4.35+00    | 4.38+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # 3E+00   | 4.3E+00                  | 4.3B+00   | 4.36+00         | 435+60                   | S.58760                      | 00+BT#                          | 1.70-01  | 2,830+01  | 57840          |
| 4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,0½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         4,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61         1,1½+61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                              | 9.52+40    | 9.51-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5E+00   | 9.5€+00                  | 8,5E+00   | \$.5E+00        | 1.28+01                  | 10437                        | 1.68+0                          | 3.1E-01  | 4.811+01  | \$ 3840L       |
| 2.0E+90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                              | 4,08+61    | 4.06+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.08+0;   | 4.08+03                  | 4.000-101 | 4.08+01         | 4.015401                 | 4.15+41                      | £1640                           | 4.1E+01  | × 1840!   | 19.38.6        |
| 30         30         30         30         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shick Dismeter # 1.5 &         | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                          |           |                 |                          |                              |                                 |          |           |                |
| 2.0日を90         2.0日を90         2.0日を90         2.2日を90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shock beliefs (m)              | L          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | -                        | 202       | 3               | 906                      | 200                          | 1910                            | 2000     | 3000      | 5000           |
| 3.5E+00 3.5E+00 3.5E+00 3.5E+00 6.0E+00 6.0E+00 6.0E+00 6.0E+00 9.3E+00 1.5E+01 1.1E+01 1.1                                                                                                                                                                                                                                      | 3                              | 2.05488    | 2,08+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.365+00  | 3.4E+00                  | 5,18+00   | 00+3K79         | 6.05+03                  | 09-39'9                      | \$3E+00                         | 1.98-01  | 3.0E+01   | SAEHOL         |
| 6.0B+00 6.0B+00 6.0B+00 6.0B+00 6.0B+00 6.0B+00 6.0B+00 9.2B+00 1.9E+01 1.1B+01 1.1B+                                                                                                                                                                                                                                    | 2                              | 3.56+00    | 3,58,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.58+00   | 3.981-00                 | \$.1E+00  | COR+00          | 6.02+00                  | 00+199                       | S211-8                          | 1,95€    | 3,68401   | 10+B+01        |
| 11   12   12   13   14   14   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                              | 6.08+00    | 6.0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$-80°    | 6.06400                  | 6.0E+00   | 00-H03          | 6.0B#Os                  | 6.6E+00                      | 9.38+00                         | 1.95+01  | 3,050     | 5.58+0         |
| \$1Ewoll         \$1Ewoll <t< td=""><td>95</td><td>1,18401</td><td>1.16+01</td><td>1.18401</td><td>1.18+01</td><td>1.15+01</td><td>1.18+01</td><td>1.28+01</td><td>1.484-01</td><td>1.04/92</td><td>3.1E+0</td><td>4.8E+0!</td><td>\$.38+0.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95                             | 1,18401    | 1.16+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.18401   | 1.18+01                  | 1.15+01   | 1.18+01         | 1.28+01                  | 1.484-01                     | 1.04/92                         | 3.1E+0   | 4.8E+0!   | \$.38+0.       |
| 16B-00         56B-10         70         180         350         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         360         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                              |            | 5.1B+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$.18+0(  | 5,1 B+0)                 | \$.1E+01  | 10+g13          | 5.16+01                  | 5.1E+61                      | \$.1B+01                        | 6.28.401 | 7.8E+0:   | 12840          |
| 390   390   700   1800   200   390   390   390   700   148401   2.55401   4.55400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400   4.25400                                                                                                                                                                                                                                        | Shack Dissemptor - 2.4 n       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                          |           |                 |                          |                              |                                 |          |           |                |
| 1,68+00         2,68+00         4,28+00         6,38+00         9,28+00         1,68+01         1,48+01         1,48+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01         1,58+01 <t< td=""><td>Stock hedget (m)</td><td>30</td><td>3</td><td>2</td><td>241</td><td>367</td><td>ķ</td><td>205</td><td>700</td><td><b>3</b>01</td><td>3040</td><td>3000</td><td>5006</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stock hedget (m)               | 30         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 241                      | 367       | ķ               | 205                      | 700                          | <b>3</b> 01                     | 3040     | 3000      | 5006           |
| 4.2E+00         4.2E+00         4.2E+00         9.2E+00         1.6E+01         1.4E+01         2.5E+01         1.6E+01         1.4E+01         2.5E+01         1.5E+01         1.7E+01         1.7E+01 <t< td=""><td>2.</td><td>2.68+00</td><td>2.68+00</td><td>3.0E+00</td><td>4.2E+00</td><td>6.3E+00</td><td>\$-2B+00</td><td>9.28+60</td><td>1,019+01</td><td>1.48+01</td><td>2.5E+01</td><td>1.TE+01</td><td>638401</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.                             | 2.68+00    | 2.68+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0E+00   | 4.2E+00                  | 6.3E+00   | \$-2B+00        | 9.28+60                  | 1,019+01                     | 1.48+01                         | 2.5E+01  | 1.TE+01   | 638401         |
| 8.48+90         8.48+90         8.48+90         9.28+90         9.28+90         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91         1.48+91 <t< td=""><td>2</td><td>4.28+00</td><td>4.2B+00</td><td>4.25+60</td><td>4,78+00</td><td>6.315+00</td><td>9.2E+00</td><td>9.2E+00</td><td>1.0E+01</td><td>1.48+01</td><td>2.5E+61</td><td>3.78+01</td><td>535.5</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                              | 4.28+00    | 4.2B+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.25+60   | 4,78+00                  | 6.315+00  | 9.2E+00         | 9.2E+00                  | 1.0E+01                      | 1.48+01                         | 2.5E+61  | 3.78+01   | 535.5          |
| ABPHO1   A                                                                                                                                                                                                                                     | 2                              | # 4E+00    | \$.4B+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.4E+co   | 3.48+00                  | 0,2E+00   | 9.2E+00         | 9.2E+00                  | 1,668*01                     | 14840                           | 2.58+01  | 3.7E+01   | e ale to       |
| \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01         \$28-01<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$                             | D+QV)      | - <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>  | 1.48+01                  | -XE+0     | 1.48+0[         | 1.48401                  | 1.515+01                     | - <b>(4.6.4</b>                 | 3.18+63  | 4.KE-0:   |                |
| \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$28+01   \$ | 2                              | 5.9E+01    | 10+46°\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10+365    | 5.9840                   | 5.9E+01   | \$.98+01        | 5.9E+0)                  | 5.9E+01                      | \$38.40.                        | 7,0B+03  | 1.0E+02   | 1.38+62        |
| \$6         \$6         \$70         \$60         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90         \$90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                              | _1         | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.28vē    | 3.22+01                  | 8,2B+01   | 1,28401         | 8.2E+01                  | 8.3E+01                      | \$28+0                          | 8.7E+01  | 1.18-402  | 1.72462        |
| 3.96         3.0         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Special Distriction 3.4 g      |            | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                          |           |                 |                          | distribution of the second   |                                 |          |           |                |
| 4.2B+00         4.3B+00         5.2B+00         1.1B+01         1.7B+01         1.7B+01 <t< td=""><td>Stack bedaht (m)</td><td>3</td><td>Z</td><td>2</td><td>8</td><td>900</td><td><b>3</b></td><td>3</td><td>ž</td><td>30.</td><td>0000</td><td>3000</td><td>205</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stack bedaht (m)               | 3          | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 8                        | 900       | <b>3</b>        | 3                        | ž                            | 30.                             | 0000     | 3000      | 205            |
| 6.58H-00         6.58H-00         6.58H-00         1.18H-01         1.78H-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                              | 3.181-60   | 348+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.98400   | S.587-00                 | 1.1842    | 1.72401         | 1,78.403                 | 1,7840                       | 1.78+01                         | 3.18401  | \$.0E+03  | 10.            |
| Librol   L                                                                                                                                                                                                                                     | 2                              | \$38+00    | \$2.45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,55      | 1,620+00                 | 1.1643    | 1.78401         | 1.78-103                 | 1.78+01                      | 1.78+01                         | 3.36+0]  | S.05-101  | 8.65.40        |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00                                                                                                                                                                                                                                     | 88                             | 1 E        | 1.1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.13+01   | - C#2                    | 1,28401   | 1,744.          | 1.7840                   | 94 <u>1</u>                  | 178+01                          | 3,36+01  | 3.08+01   | 8.6E+D         |
| \$138401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401         \$408401 <t< td=""><td>3</td><td>1.76+01</td><td>1,78+0</td><td>1,7836</td><td>1,78+01</td><td>-74F.</td><td>1.78401</td><td>- 784G</td><td>1.75403</td><td>7840</td><td>3.3B+01</td><td>3.0E+01</td><td>1.6E±0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                              | 1.76+01    | 1,78+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,7836    | 1,78+01                  | -74F.     | 1.78401         | - 784G                   | 1.75403                      | 7840                            | 3.3B+01  | 3.0E+01   | 1.6E±0         |
| 138-402   138-402   138-402   138-402   138-402   138-402   138-402   138-402   138-402   138-402   138-402   138-402   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-401   138-                                                                                                                                                                                                                                     | F                              | 101        | 104-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-E0/8   | 108+01                   | 8.06+0)   | LOEBOOL         | 8.00H01                  | 8.0E+01                      | 8.0E+O!                         | 8.59+01  | 1.28+03   | 28.E           |
| 39         56         70         104         300         500         70         70         300         500         500         70         70         500         500         70         500         500         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 260                            |            | 136+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138+00    | 138+02                   | 1,36+02   | 138400          | 1.38402                  | 1.3B+02                      | 138400                          | 1.30+02  | 1.98402   | 2.46+02        |
| 1.3E-01   1.3E                                                                                                                                                                                                                                     | AND THE PROPERTY OF A P. P. P. |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                          | -         | 17.7            |                          |                              |                                 |          | 4.57      | 1111           |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00                                                                                                                                                                                                                                        | State of the last              | R          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 2                        |           | 3               | 300                      | 10.00                        | ana t                           | 200      |           | 200            |
| 1.19-02 1.19-02 1.19-02 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-03 1.19-0                                                                                                                                                                                                                                   | 5 5                            | 1000       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-Servi   | 1                        | 1.00      | 1,450VI         | 71000                    | 10101                        | 1000                            | 1,040401 | A report  | V 100 0        |
| THE PARTY OF THE P                                                                                                                                                                                                                                   | F                              | E (Blanck) | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wind.     | CO-MILE                  | 10101     | William I       | A LEGICAL                | 4                            | 1 1 1 4400                      | 10.00    | 1 58-00   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.                            | 1000       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Liderva   | 70.0                     | . db.nt   | Tough.          | 1000                     | 11.15                        | 10000                           | 10.00    | CONTRACT. | - The state of |

| 125-07   1.26-07   2.26-07   2.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26-07   3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>╇┩╃┩┡╋┿┺┾╋┿┩╠╂┾┞╬╃╇┩╏┩╇┿╬</del> ╫┤                            | 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-0                                                                                                                                                                                                                                                               | 1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-92<br>1.25-9                                                                                                                | 200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>20 | 295-00<br>295-00<br>295-00<br>295-00<br>295-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>10 | 1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-00<br>1.00-0                                                                                                                                                                                                 | 1900<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>129600<br>1296000<br>1296000<br>1296000<br>1296000<br>1296000<br>1296000<br>129600<br>12                                                                                                                                                                                                                                                                   | 5000<br>6,68-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2년~12 1년~12 1년                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>╃╃┩┡┋╇┺┢╋┿┩╏╋┢╇╬╃╇┩╬┩╏╃╇╋╬</del> ╫                            | を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8原元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元公<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8e元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec元<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8ec<br>1.8                                                                                                 | 128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>12 | 200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>20 | 2.8540<br>2.8540<br>2.8540<br>2.8540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1. | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-0                                                                                                                                                                                                                                                                                                                           | 5000<br>5,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1,61-90<br>1                                                                                                                                                                                                                                                                |
| 1 12년에 2년에 12년에 12년에 12년에 13년에 13년에 13년에 13년에 13년에 12년에 12년에 12년에 12년에 12년에 12년에 13년에 13년에 13년에 13년에 13년에 13년에 13년에 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>╶╃</del> ┩┡ <del>┋</del> ┾┺┾╉┿┦ <del>╏╇┾╃╅┦╬┩╏┩╇╋╬╬</del> ┦   | 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-102<br>1.125-                                                                                                                                                                                                                                                                         | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-60<br>2.56-6                                                                                                                | 100 17 17 17 17 17 17 17 17 17 17 17 17 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1990<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1984-00<br>1 | 2000<br>1,284-00<br>1,284-00<br>1,284-00<br>1,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-00<br>0,284-0                                                                                        | 5000<br>6.60-60<br>6.60-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60<br>1.86-60                                                                                                                                                                                                                                                                     |
| 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ╼╡ <del>┡┋╃╍╏╏</del> ╫╫┼┩ <del>╏╂┼</del> ╀┼┼╃┼┩╏ <del>┩┩</del> ╬╫┤ | 世<br>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.原元位<br>1.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.25-102<br>1.2                                                                                                                                                                                                    | 200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>20 | 2 15 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 200 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1900<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                           | 2000<br>7.28-02<br>7.28-02<br>7.28-02<br>7.28-02<br>7.28-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-02<br>8.78-0                                                                                                                                                                                                                                                                                                                           | 5000<br>5,0000<br>5,0000<br>5,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000<br>1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>┡┋╇┺┋╬╃</del> ┼┩ <del>┇╋┾┩╬╇</del> ┩╏ <del>╃╇</del> ╬╣        | を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40<br>1.18.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>128-00<br>12 | 200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>20 | 2.8540<br>2.8540<br>2.8540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1.0540<br>1. | 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1900<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5000<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1.46-00<br>1                                                                                                                                                                                                                                                                |
| 12년~이 12년~이 12년~이 12년~이 22년~이 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ┍╉┾╌╂┼╌╉┾╌┦╏╂┼┼┼┼┼┼┼┤╏┼┼┼┼┼┼                                       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-0                                                                                                                                                                                                                                                               | 1.25-92<br>1.25-92<br>1.25-92<br>2.25-92<br>2.17-17-17<br>1.17-17<br>1.17-17<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.16-93<br>2.1                                                                                                                | 200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>20 | 2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>1.05-00<br>1.16-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-00<br>2.95-0                                                                                                                | No 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>100-38-40<br>1                                                                                                                                                                                                                                                                                                                                                                                                             | 2000<br>1728-00<br>1728-00<br>1728-00<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5000<br>6.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1.66-60<br>1                                                                                                                                                                                                                                                                |
| 12년~이 12년~이 12년~이 22년~이 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>╒╃╍╏╒┋┋╒</del> ╃┼┩ <del>╏╏╏┍</del> ╇┼┼┼┼┼┩╏┼┼┼┼┼┼┼            | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.05-00<br>7.05-00<br>7.05-00<br>7.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-                                                                                                                                                                                                                                                                | 1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+02<br>1.25+0                                                                                                                | 206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>20 | 295-00<br>295-00<br>295-00<br>295-00<br>295-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>10 | 2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.00<br>2.65.0                                                                                                                                                                                                 | 1900<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1081-00<br>1 | 2000<br>7,28402<br>7,28402<br>7,28402<br>7,28402<br>7,28402<br>7,28402<br>7,28402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,78402<br>8,7840                                                                                                                                                                                                                                                                                                                           | 5000<br>6,68-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1,86-60<br>1                                                                                                                                                                                                                                                                |
| 12년(1) 12년(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ╼╂╁╌╉┼╾┦╏╌╂╌┾╌╀╌╂╌┦╏╌╃╌╃╌╂╌┦                                       | 12E-02<br>12E-02<br>12E-02<br>12E-02<br>12E-02<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12E-03<br>12 | 1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40<br>1.05-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>148-40<br>14 | 200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>200-00<br>20 | 2.85-00<br>2.85-00<br>2.85-00<br>2.85-00<br>1.05-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-00<br>1.25-0                                                                                                                | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-00<br>00-36-                                                                                                                                                                                                                                                                                                                                                                         | 2000<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-00<br>7.26-0                                                                                                                                                                                                                                                                                                                           | 5,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000     |
| 12년~이 12년~이 14년~이 14년~이 12년~이 10년~이 12년~이 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>▗</del> ▃╉┼┤╏╂┼┼┼┼┤╏┼ <del>┦</del> ┼┼┼                        | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.05-00<br>1.05-00<br>1.05-00<br>2.25-00<br>9.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>128-40<br>12 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.85400<br>2.85400<br>2.85400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.054000<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.05400<br>1.054                                                                                                                | 1.00mm 17.00mm 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20-370<br>20-370<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>6001<br>60                                                                                         | 2000<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1738-00<br>1 | 1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10,00<br>1,4,10                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 (그룹에서 1) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┝╉┾┦╠╂┼╃╃╃╣╏╃╃┼╬╣                                                  | 72 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.05-00<br>7.05-00<br>1.05-00<br>1.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-00<br>9.05-0                                                                                                                                                                                                                                                               | 125-02<br>125-02<br>125-02<br>225-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>205-02<br>20 | 206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>20 | 2.98-00<br>2.98-00<br>2.98-00<br>2.98-00<br>2.98-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-00<br>1.08-0                                                                                                                | 1.00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20-386<br>20-386<br>20-386<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387<br>20-387                                                                                                                                                                                                                                                                   | 2000<br>1,284-02<br>1,284-02<br>1,284-02<br>1,284-02<br>1,284-02<br>1,284-02<br>1,284-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-02<br>1,484-0                                                                                        | 5000<br>5,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-00<br>1,62-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┠┼┦╏╂┼┼┼┼┦╏╀╀┼┼┤                                                   | 13.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-00<br>10.5-0                                                                                                                | 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12E+02<br>12 | 206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02<br>206-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255-00<br>255-00<br>255-00<br>255-00<br>255-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>105-00<br>10 | 1.00 00 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20-36.4<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                         | 2000<br>128-00<br>128-00<br>128-00<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9000<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1,85-93<br>1                                                                                                                                                                                                                                                                |
| 이 2.52는이 1.52년이 2.52년이 2.52년이 2.52년이 1.52년이 2.52년이 2.52년이 1.52년이 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ┝┦╏╂┾┼╀┼╀┩╏╃╃┼┼┼                                                   | 70<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07<br>126-07 | 1,05-00<br>7,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00<br>1,05-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 235-02<br>1,25-02<br>1,25-02<br>1,25-02<br>2,25-02<br>2,25-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02<br>1,76-02                                                                                                                | 20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20E-03<br>20 | 2.85-02<br>2.85-02<br>2.85-02<br>2.85-02<br>1.05-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-0                                                                                                                | 345-45<br>345-45<br>345-45<br>345-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>136-45<br>13                                                                                  | 1900<br>1904<br>1904<br>1904<br>1904<br>1904<br>1904<br>1904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000<br>128-402<br>128-402<br>128-402<br>128-402<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8000<br>8.000<br>8.000<br>8.000<br>8.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1 |
| 1 12년~10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ▎ <del>╏╏</del> ┼┼┼┼┼┤                                             | 12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07<br>12E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.05-00<br>7.05-00<br>1.05-00<br>9.05-00<br>9.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-00<br>1.05-0                                                                                                                                                                                                                                                               | 125-02<br>125-02<br>125-02<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>125-03<br>12 | 208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02<br>208-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245-00<br>245-00<br>245-00<br>255-00<br>1-05-00<br>1-25-00<br>1-25-00<br>1-25-00<br>1-25-00<br>1-25-00<br>1-25-00<br>1-25-00<br>1-25-00<br>1-25-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181<br>00-181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201-102<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-103<br>201-10    | 1 2000<br>1                                                                                                                                                     |
| 이 2.52는이 2.52년이 2.52년이 2.52년이 3.52년이 1.52년이 1.52년이 1.52년이 1.52년이 2.52년이 2.52년이 2.52년이 2.52년이 2.52년이 2.52년이 3.52년이 1.52년이 3.52년이 3.52년에 3.52년에 3.52년에 3.52년에 3.52년에 3.52년에 3.52년에 3.52년에 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>╏┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋</del>                   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,000<br>7,000<br>7,000<br>7,000<br>7,000<br>7,000<br>7,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000<br>9,000 | 125-60<br>125-60<br>125-60<br>125-60<br>125-60<br>125-60<br>125-60<br>125-60<br>125-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20E+02<br>20 | 25E-02<br>25E-02<br>25E-02<br>25E-02<br>25E-02<br>10E-03<br>33E-02<br>33E-02<br>14E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1900<br>4.0E+02<br>4.0E+02<br>4.0E+02<br>1.7E+03<br>1.7E+03<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02<br>5.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000<br>128-02<br>128-02<br>128-02<br>128-03<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5000<br>1.186-02<br>1.186-02<br>1.186-02<br>1.186-02<br>1.186-02<br>1.186-02<br>1.186-02<br>1.186-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 이 2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         1.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)         2.52(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>┠┋┋┋</del>                                                    | 78 - 78 - 78 - 78 - 78 - 78 - 78 - 78 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000 | 125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02<br>125-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成<br>2.0年·成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25F-00<br>25F-00<br>25F-00<br>25F-00<br>25F-00<br>32F-00<br>32F-00<br>14F-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A SECTION OF THE PARTY OF THE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1900<br>4.0E-02<br>4.0E-02<br>4.0E-02<br>1.7E-03<br>1.7E-03<br>1.7E-03<br>1.7E-03<br>1.7E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000<br>7.26-02<br>7.26-02<br>7.26-02<br>7.26-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2 | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 이 2.전투에 기타에 기타에 기타에 기타에 기타에 기타에 기타에 기타에 기타에 기타                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>▎</del> <del>▍</del> ╃╃╃┩╏╃╇╋┩                                | 70-32<br>116-01<br>126-02<br>126-02<br>136-02<br>136-02<br>136-02<br>136-02<br>136-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0E-01<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-0                                                                                                                                                                                                                                                               | 200<br>125-02<br>125-02<br>125-02<br>125-02<br>225-02<br>225-02<br>175-02<br>176-02<br>176-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20年紀<br>20年紀<br>20年紀<br>20年紀<br>20年紀<br>20年紀<br>20年紀<br>20年紀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 255-00<br>255-00<br>255-00<br>255-00<br>255-00<br>325-00<br>325-00<br>325-00<br>325-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000<br>7.26-02<br>7.26-02<br>7.26-02<br>7.26-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02<br>2.06-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 이 그룹에서 기타에                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>╒┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋</del>                   | 78 - 02 - 03 - 03 - 03 - 03 - 03 - 03 - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0E-01<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02<br>7.0E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200<br>1.2E+02<br>1.2E+02<br>1.2E+02<br>1.2E+02<br>1.2E+02<br>1.7E+02<br>1.7E+02<br>1.7E+02<br>1.7E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0E+02<br>2.0E+02<br>2.0E+02<br>2.0E+02<br>2.0E+02<br>2.0E+02<br>3.0G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 255-00<br>255-00<br>255-00<br>255-00<br>1:05-00<br>1:05-00<br>1:05-00<br>1:05-00<br>1:05-00<br>1:05-00<br>1:05-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000<br>7.26-02<br>7.26-02<br>7.26-02<br>7.26-02<br>2.06-03<br>2.06-03<br>2.06-03<br>2.06-03<br>2.06-03<br>2.06-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 1 1 2000<br>1 1 1 2000<br>1 1 1 2000<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 12년~12 12년~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>╒┩┋</del> ┩ <del>╏┋┩┪</del> ╋╋                                | 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 78 07 07 07 07 07 07 07 07 07 07 07 07 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100<br>7.原-01<br>7.原-01<br>1.第-02<br>2.26-02<br>9.原-02<br>9.原-02<br>9.8-01<br>9.8-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.25-02<br>1.76-02<br>1.76-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02<br>20E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28F-02<br>28F-02<br>28F-02<br>28F-02<br>1:0F-02<br>1:0F-02<br>1:0F-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20-301<br>1001<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301<br>100-301                                                                                                                                                                                                                                                                                                                           | 2000<br>7.26-02<br>7.26-02<br>7.26-02<br>7.26-02<br>7.26-02<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-50<br>1.85-5                                                                                                                                                                                                                                                                   |
| 이 2.00년에 기능한에 기능한에 2.00년에 2.00년에 1.00년에 기능한에 1.00년에 1.00년에 1.00년에 2.00년에 2.00년에 2.00년에 2.00년에 2.00년에 1.00년에 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>┞╏┩┋┪┩</del>                                                  | 255-07<br>255-07<br>255-07<br>255-07<br>255-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100<br>7.用-01<br>7.用-01<br>7.用-01<br>1.第-02<br>2.20-02<br>9.用-02<br>9.用-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200<br>12E-02<br>12E-02<br>12E-02<br>12E-02<br>22E-02<br>24E-02<br>17E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25E-00<br>25E-00<br>25E-00<br>25E-00<br>1:0E-00<br>33E-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20-38:5<br>10001<br>10001<br>10001<br>10001<br>10001<br>10001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.75-02<br>7.75-02<br>7.75-02<br>7.75-02<br>7.75-02<br>7.76-02<br>7.76-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.16-400<br>1.16-400<br>1.16-400<br>1.16-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 에 Alterniu (11年/01 1 Alterniu 2 Alterniu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>╒</del> ┩ <del>┋</del>                                        | 78 OZ 225-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100<br>7.5E-01<br>7.5E-01<br>1.2E-02<br>2.2E-02<br>9.6E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2E+02<br>1.2E+02<br>1.4E+02<br>2.2E+02<br>9.4E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0E+02<br>2.0E+02<br>2.0E+02<br>2.0E+02<br>2.0E+02<br>2.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25E+02<br>25E+02<br>25E+02<br>25E+02<br>10E+02<br>504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1001<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-403<br>1.78-40                                                                                        | 2000<br>128-02<br>128-02<br>128-02<br>208-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000 CO-300 CO-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60         12년~01         12년~01         22년~01         22년~01         22년~01         22년~01         12년~02         12년~02 </td <td>1-1-1-1-1</td> <td>72E-07</td> <td>1,755-01<br/>7,755-01<br/>1,755-01<br/>1,755-02<br/>1,755-02<br/>9,855-02</td> <td>1.25-02<br/>1.25-02<br/>1.25-02<br/>1.25-02</td> <td>2.0E-02<br/>2.0E-02<br/>2.0E-02<br/>2.0E-02<br/>2.0E-02</td> <td>25E-02<br/>25E-02<br/>25E-02<br/>25E-02<br/>10E-02</td> <td>3.45-62<br/>3.45-62<br/>3.46-62<br/>3.46-62<br/>3.46-62<br/>3.46-62</td> <td>1.7E+02<br/>1.7E+02<br/>1.0E+02<br/>1.0E+02</td> <td>2000<br/>7.38-02<br/>7.36-02<br/>7.36-02<br/>2.96-03</td> <td>1. H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0H-100<br/>0.0</td> | 1-1-1-1-1                                                          | 72E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,755-01<br>7,755-01<br>1,755-01<br>1,755-02<br>1,755-02<br>9,855-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.25-02<br>1.25-02<br>1.25-02<br>1.25-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0E-02<br>2.0E-02<br>2.0E-02<br>2.0E-02<br>2.0E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25E-02<br>25E-02<br>25E-02<br>25E-02<br>10E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.45-62<br>3.45-62<br>3.46-62<br>3.46-62<br>3.46-62<br>3.46-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7E+02<br>1.7E+02<br>1.0E+02<br>1.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000<br>7.38-02<br>7.36-02<br>7.36-02<br>2.96-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0H-100<br>0.0                                                                                                                                                                                                                                                                                                                                                       |
| 1 12년~17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>                                     </del>                   | 72E-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100<br>7.05-01<br>7.05-01<br>1.25-02<br>1.26-02<br>9.05-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2E+02<br>1.2E+02<br>1.4E+02<br>2.2E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 206-02<br>206-02<br>206-02<br>206-02<br>206-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 284-00<br>284-00<br>284-00<br>284-00<br>1:08-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.45<br>3.47.4                                                                                                                                                                                                 | 1000<br>4.04-02<br>4.6E-02<br>4.6E-02<br>1.7E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000<br>7.26-02<br>7.26-02<br>7.26-02<br>2.96-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.00<br>1.85.0                                                                                                                                                                                                                                                                   |
| OFFICE OF TREAD         TABLESON TREAD         TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                                                               | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3E-01<br>1.3E-01<br>1.3E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.25-62<br>1.25-62<br>2.25-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 206-02<br>206-02<br>216-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25E-02<br>25E-02<br>25E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.45<br>2.44.4                                                                                                                                                                                                 | 19642<br>19642<br>19642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000<br>7.36-02<br>7.36-02<br>7.36-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>-   -   -  </del>                                             | 8 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.88.+01<br>7.88.+01<br>7.88.+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127-62<br>28-62<br>28-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 206-62<br>206-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25E-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-14-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24-15<br>24- | 1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.3E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5000<br>5000<br>5000<br>5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 12년~17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +++                                                                | 8 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ## # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300<br>2.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.47-45<br>53-74-53<br>53-74-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77 20 25 EEE EEE EEE EEE EEE EEE EEE EEE EEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OFFICE OF TREAD         Table of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20E402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.4F-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60         1,125/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/11         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1,254/12         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ğ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ğ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OFFICE OF STREAM         CASE-OFFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | 7 magn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A COLUMN TO A COLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2500.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PARTON         1,15/11         1,45/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         1,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40         2,55/40 <th< td=""><td>ŧ</td><td>100</td><td></td><td>- Constitution of the Cons</td><td></td><td></td><td>A STATE OF THE PERSON NAMED IN</td><td></td><td>Non to</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ŧ                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Constitution of the Cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A STATE OF THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 91         70         100         200         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - OF-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 SE+OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P. 188.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.<br>8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OF SECTION         LEGICAL STREAM         LEGICAL STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                  | 76-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i.i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.76-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22F+62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 406-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.38.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.06+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 전투에 1 15는데 1 15년데 1 15년대 1 15년                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                  | 100 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 元                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 27 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S. William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.EE+52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 60         3,65-01         1,15-02         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         1,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,25-03         2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                  | Se 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.25-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.25-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 275-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *3E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$.02.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 67         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         1,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,25-07         2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                                  | 10-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S. SEFERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.06-401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.75-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S. E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 276-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 3E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PARTICULAR         TARGET         TAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ğ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60         3.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OF         SECTION         LEGIST         AUGEORY         ZUECHY         ZUECHY <td>Н</td> <td>3E+02</td> <td>- H</td> <td>136-62</td> <td>1.4E-02</td> <td>20543</td> <td>2</td> <td>378-42</td> <td>8.E.</td> <td>8.7E-02</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                                                                  | 3E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 378-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OF         SECTION         LEGGY         LAGGOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 HG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$.<br>₩.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3E-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 325+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   125-07   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2E=01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LANE AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60         Age-400         15E-601         15E-601         15E-601         15E-601         15E-602         15E-603         15E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 71 1.25-01 1.25-01 1.25-01 2.25-01 2.25-01 2.25-01 2.25-01 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.25-02 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\dashv$                                                           | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * H-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OF         April         Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                  | à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ğ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ĕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MACHON   11547   14540   2.0540   2.0540   7.0540   0.2540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1540   1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                                                  | 798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAL PARTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.46.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Provide:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WALLS OF THE PARTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9W-3W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 125-01 155-01 155-01 155-01 155-01 155-01 155-01 155-01 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 155-02 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,30,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOWN P. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| #ACCOUNT   ACCOUNT   ACCOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10-30E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W.56.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAPE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.06-901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 36.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.2E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.15-02 / 95-00 9.05-00 1.65-01 2.45-01 4.36-01 5.36-01 6.26-01 1.16-02 1.76-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t                                                                  | P. 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S05-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.45+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *38+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F. 36 + 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.2E+0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.72.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80 70 100 200 300 100 1000 3000 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ╁                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 쳟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Introduction Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The section of the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | THE REPORT OF THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dord on an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Puros Asi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177 (IM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | 1719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90 1741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A Charles & A services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | departed have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | 9 9 1.2E-00 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 22 22 22 22 22 22 22 22 22 22 22 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.1215: 1+Hour Avera<br>83.1215: 1+Hour Avera<br>83.1215: 1+Hour Avera<br>83.1215: 1+Hour Avera<br>86-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63,1215; 1-Hour Average HCl-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S3,1215; 1-Hour Average HCI-Equivalent Emission   S3,1215; 1-Hour Average HCI-Equivalent Emission   S4,1215; 1-Hour Average HCI-Equivalent Emission   S4,125; 1-S6,125; 1-S6,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.1215: 1-Hour Average HCI-Equivalent Emission Rates  Distance to property boundary (m)  10 160 290 300 600 70  10 160 390 300 600 70  10 160 100 290 300 600 70  10 160 100 100 100 600 70  10 100 100 100 100 600 70  10 100 100 100 100 100 100 100  10 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.1215; 1-Hour Average HCI Equivalent Emission Rates (lb/hr)-F  Distance to property soundary (m)  100 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thour Average HCI-Equivalent Emission Rates (Ibhr)-Fi   Distance to property boundary (in)   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Stack Character . 0.1 or | at m           |                |           | The state of the s |            |                               |           |               | Mingaportifica - Lindinka | TO A COUNTY OF THE PERSON OF T |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|--------------------------|----------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|-----------|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Stack Meight (m)         | 3              | 3              | P         | 904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300        | 906                           | 500       | 2             | 4003                      | 2080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000      |
| *                        | 1.4E+00        | \$ 35          | 2.85°00   | 3,06+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4E+c0    | 9.4E+DD                       | 158.45    | 2 15.01       | 336+01                    | 6.1E.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPEICZ    |
| 10                       | 4.0E+00        | <b>\$</b> 4.0€ | 00+39*    | 6.6E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8E+CC    | D-4E+00                       | 15E-6     | い一面を          | \$3E-01                   | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.76+62   |
| *                        | 1.15+01        | 1,15101        | - Peror   | 1.18401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.26.491   | 1.5E+01                       | 246.40    | 355401        | 546-01                    | 1,00+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,000     |
| 2                        | 235+01         | 2.35401        | 2,36+01   | 2.3E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.66+01    | 3.35-01                       | 4,46.00   | 5.5E-491      | 7.36*0                    | 1.04-402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 275-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 525+22    |
| 8                        | 7.35           | 7.3E+01        | 7.36.01   | 7.35401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00.40    | 835*01                        | 10+400    | 9,000+01      | 9.0E+01                   | 2.15+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 356-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.8E-KO   |
| Stack Diameter = 0.5 m   | . Q.5 All      |                |           | one of the latest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                               |           |               |                           | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A Company of the Control of the Cont |           |
| Stack, Height [m]        | 8              | 3              | *         | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | â          | *                             | 2         | 2             | 5087                      | 8002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3060      |
| •                        | 90416          | 275400         | 3.78+00   | 5.00+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.45-00    | 1.7E+OH                       | 246+04    | 10×40×6       | 5.45.01                   | 1.06+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20+29-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.06+02   |
| 10                       | F 45-40        | 4.00 mg        | A.E.C.    | 00-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 45-01    | 76.40                         | 204820    | 100           | 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.05-477  |
|                          |                | 1              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100        | 2011                          | 10.00     |               | 100                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| -                        |                | 1.05           | 1,00      | E PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 045        | 5                             | 3.45-0    | 2             | 0.4E*01                   | 30-405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 215-472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         |
| 3                        | 2,75+61        | 276+0          | 2.76401   | 27E+0H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7Er01    | δ¥X                           | 4600      | 5 E to 1      | Ş<br>Ş                    | - BE+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.06+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8E+102  |
| 8                        | 7.66-101       | 7.05.00        | 7,000     | 7.68+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.5E+01    | B.36+01                       | - 30-05.  | 27.36.1       | 136402                    | 2.46+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.4E-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,2640    |
| Stack Chimeder = 1.0 no  | 1.0.00         |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                               |           |               | *                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Stack Height Day         | *              | 8              | 2         | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82         | 2                             | 8         | SE.           | 100                       | 9002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000      |
| \$                       | 1484           | 1.06+01        | 1,2E+D1   | 78.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.55+01    | 3.88+01                       | - CK-04   | S.BE+101      | 290                       | 1.85=02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 245,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A A EPOLE |
| 8                        | 2.06-+61       | 2.8E+01        | 2.66.401  | 2.05.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104901     | 10+38 ft                      | £\$€+01   | S.8E+01       | 7.95+01                   | 1.85+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 245+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5E+02   |
| 8                        | 10+40          | 4.2E+0r        | A 201     | £25.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10m27      | 4.28+0                        | 10-35     | \$.0E+01      | 558.<br>50.               | 1.5€+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 BE-472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$.5E+02  |
| 3                        | 8.98+01        | - PC+O4 0      | #.BE+01   | B.SE+O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.9E+01    | \$ DE+01                      | 1.16+02   | 1.4.6+0.2     | 1.72402                   | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.DE+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £.7E+0.2  |
| 2                        | S. HE+02       | 3.6547         | 3.85-472  | 3.88E+C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.85.03    | 3 BE+CO                       | 3.665+002 | 4 05+12       | A-11-4                    | 4.35+90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.16+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.01463   |
| Stack Diameter = 1.5 m   | 1.5m           |                |           | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                               |           |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Stack Melofel feet       | 2              | 3              | 2         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OP.        | 200                           | 98        | 2             | 200                       | 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 900       |
| 2                        | 76.50          | 2.16+01        | 2.65-471  | 16840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f differen | 6.3F+01                       | 10,10     | 8.9Ee01       | 0.86+05                   | 2.06+60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.75400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 75403   |
| S                        | 3              | 200            | * 46401   | 1. THE ACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E AELON    | A SEAD                        | 10 mg     | A Contractive | DAFFLOI                   | 2.08.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 35-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S. Band   |
| ä                        | A NE-DI        |                | A 15.01   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3          | 30.0                          |           | A 05-0        | 9.88-01                   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.86.00   |
| 5                        | 1              | 100.00         | 1 0 5-03  | - Chillips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200000     | 1 1 1 1 1 1                   | 35.40     | 11500         | 1 7Feeft?                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.05-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.7E+00   |
| E                        | £ RE-m3        | - SC+CO        | 4 BEACO   | 4 36-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carrie     | C1771.7                       | 07-38 7   | SEAR A        | ١.,                       | C. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 2E+C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.15+03   |
| Strek Dismester a        |                |                | 200       | 4/08146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100        | 1                             |           |               | .1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| and Malabat ton          | ;              |                | -         | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3          |                               | 101       | 1             | SALVA .                   | Supple .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DAM'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SMS.      |
| Special resident (mile   | 3              | 3              |           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2          | 200                           | 3         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 2                        | 2              | E.7E+01        | 325-01    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Const      | 200                           | 2 / 2 / 2 | 37.1          | T. DE TOK                 | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 8                        |                | 1000           | 4.00-01   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | LO SECTION                    | 2/4       | 7             | 100-00                    | 205.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7         |
| 2                        | 7              | 5              |           | , Merci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #.1E.M.    | N. ( E-401                    | D4-18-16  | 7             | 20-40                     | Z.0E+UZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.We+CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0       |
| 8                        | 35-05          | 1.35+02        | 20+05     | 7.36-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - X-       | 20                            | 7.**(C    | 7.45          | 71.                       | 3.38*02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0       |
| R                        | 200            | 204            | 20-22-0   | 20+110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.005-00   | 20-36-02                      | 6,08,402  | 5.0C+4X       | 200                       | S. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|                          | 8.65-02        | 8.8E.4G.       | B.A.E.+02 | # 6E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6E+C2    | B.86E+02                      | 8.85-02   | A,48,43       | 8 65-02                   | 8 88 + 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28+C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 78403   |
| STICK CHIMBEST II        | K O'A          |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | AND CONTRACTOR AND CONTRACTOR | į         |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Beck Helphi (m)          | 8              | \$             | ደ         | 충                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 206        | 200                           | 409       | 92            | 1000                      | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000      |
| 9                        | 3.45.+01       | 3.55-01        | 4.16+01   | 5.8E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2E+02    | 1.05-102                      | 1.BE+02   | 1,85+00       | * 86400                   | \$ 5 E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0E+02   |
| R                        | 0.25+01        | 6.25-01        | 6.25.+61  | 7.25tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.26+02    | 1.6E+02                       | 1.85+02   | 1,86+02       | 1,05-402                  | 3.55+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.2E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.0E+02   |
| S                        | 1,05+92        | 1.0E+02        | 1.05+02   | 1.06+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2E+02    | 1,05-402                      | 1.BE+02   | 1,55+02       | \$29-38°                  | 3.55-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 522103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0.00 P  |
| 26                       | 1,004.00       | 1.8E+02        | 1.85-42   | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.85+02.   | 1.8E+02                       | 1.85+02   | 1.BE+02       | 1.86.402                  | 3.56-402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$26402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0E+02   |
| 2                        | 100 mg/m²      | 7.5E-02        | 7.55.402  | 1 SE-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.36+02    | 7,08102                       | 7.5E-02   | 7,5€-02       | 7.58-402                  | B.9E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.35+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.05.403  |
| 404                      | 14540          | 1.42-00        | 1.4E+03   | 1.4Ex00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.48+03    | 1.48403                       | 1.45+03   | 1.46+03       | # #E+03                   | 1.4E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8E+03   |
| Stack Divarents          | where = 4,0 mm |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                               |           |               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| State Harper (m)         | 8              | 2              | 2         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200        | 900                           | 2         | 202           | 4005                      | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8         |
| Я                        | 135+00         | 1.75-106       | 1 ZE+02   | 8<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,48+02    | 2.0E+02                       | 23E-4X    | 2.2E+02       | 32.40                     | 4.W.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00      |
| 3                        | 2.28+02        | 2.20E-400      | 2.2E+02   | 225-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23/6/02    | 228-02                        | 2.25402   | 225+02        | 2.2E+02                   | 4.75.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | €3E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.05-403  |
| 2                        | 1.06+03        | 1.05.403       | 1.06+00   | 105-401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 05.466   | 1.054.04                      | 4 45.00   | ****          | 1                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                          |                |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3          | 3                             | 3         | 3             | 1,46.4                    | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7         |

[70 FR 59565, Oct. 12, 2005, as amended at 73 FR 18982, Apr. 8, 2008; 73 FR 64097, Oct. 28, 2008]

Emissions Standards and Operating Limits for Solid Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces

### § 63.1216 What are the standards for solid fuel boilers that burn hazardous waste?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans, either carbon monoxide or hydrocarbon emissions in excess of the limits provided by paragraph (a)(5) of this section;
- (2) Mercury in excess of 11 µgm/dscm corrected to 7 percent oxygen;

- (3) For cadmium and lead combined, except for an area source as defined under §63.2, emissions in excess of 180 µgm/dscm, corrected to 7 percent oxygen;
- (4) For arsenic, beryllium, and chromium combined, except for an area source as defined under §63.2, emissions in excess of 380 μgm/dscm, corrected to 7 percent oxygen;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) For hydrogen chloride and chlorine combined, except for an area source as defined under §63.2, emissions in excess of 440 parts per million by volume, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) For particulate matter, except for an area source as defined under §63.2 or as provided by paragraph (e) of this section, emissions in excess of 68 mg/dscm corrected to 7 percent oxygen.
- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans, either carbon monoxide or hydrocarbon emissions in excess of the limits provided by paragraph (b)(5) of this section;
- (2) Mercury in excess of 11 µgm/dscm corrected to 7 percent oxygen;
- (3) For cadmium and lead combined, except for an area source as defined under §63.2, emissions in excess of 180 μgm/dscm, corrected to 7 percent oxygen;
- (4) For arsenic, beryllium, and chromium combined, except for an area source as defined under §63.2, emissions in excess of 190 μgm/dscm, corrected to 7 percent oxygen;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and

corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or

- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) For hydrogen chloride and chlorine combined, except for an area source as defined under §63.2, emissions in excess of 73 parts per million by volume, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) For particulate matter, except for an area source as defined under §63.2 or as provided by paragraph (e) of this section, emissions in excess of 34 mg/dscm corrected to 7 percent oxygen.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a DRE of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

DRE = 
$$[1 - (W_{out} \div W_{in})] \times 100\%$$

Where:

W<sub>in</sub>= mass feedrate of one POHC in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a DRE of 99.9999% for each POHC that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo- p -dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituents (POHCs). (i) You must treat the POHCs in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the

degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.

- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.
- (e) Alternative to the particulate matter standard—(1) General. In lieu of complying with the particulate matter standards of this section, you may elect to comply with the following alternative metal emission control requirement:
- (2) Alternative metal emission control requirements for existing solid fuel boilers. (i) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of 180 µgm/dscm, combined emissions, corrected to 7 percent oxygen; and,
- (ii) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 380 µgm/dscm, combined emissions, corrected to 7 percent oxygen.
- (3) Alternative metal emission control requirements for new solid fuel boilers. (i) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of 180 μgm/dscm, combined emissions, corrected to 7 percent oxygen; and,
- (ii) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 190 µgm/dscm, combined emissions, corrected to 7 percent oxygen.
- (4) Operating limits. Semivolatile and low volatile metal operating parameter limits must be established to ensure compliance with the alternative emission limitations described in paragraphs (e)(2) and (e)(3) of this section pursuant to §63.1209(n), except that semivolatile metal feedrate limits apply to lead, cadmium, and selenium, combined, and low volatile metal feedrate limits apply to arsenic, beryllium, chromium, antimony, cobalt, manganese, and nickel, combined.
- (f) Elective standards for area sources. Area sources as defined under §63.2 are subject to the standards for cadmium and lead, the standards for arsenic, beryllium, and chromium, the standards for hydrogen chloride and chlorine, and the standards for particulate matter under this section if they elect under §266.100(b)(3) of this chapter to comply with those standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants.

[70 FR 59565, Oct. 12, 2005]

### § 63.1217 What are the standards for liquid fuel boilers that burn hazardous waste?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1)(i) Dioxins and furans in excess of 0.40 ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution control system; or
- (ii) Either carbon monoxide or hydrocarbon emissions in excess of the limits provided by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system;
- (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control system is not considered to be a dry air pollution control system, and a source equipped with a dry air pollution control system followed by a wet air pollution control system is considered to be a dry air pollution control system for purposes of this emission limit;
- (2) For mercury, except as provided for in paragraph (a)(2)(iii) of this section:
- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 19 μgm/dscm, corrected to 7 percent oxygen, on an (not-to-exceed) annual averaging period;
- (ii) When you burn hazardous waste with an as-fired heating value 10,000 Btu/lb or greater, emissions in excess of  $4.2 \times 10^{-5}$ lbs mercury attributable to the hazardous waste per million Btu heat input from the hazardous waste on an (not-to-exceed) annual averaging period;
- (iii) The boiler operated by Diversified Scientific Services, Inc. with EPA identification number TND982109142, and which burns radioactive waste mixed with hazardous waste, must comply with the mercury emission standard under §63.1219(a)(2);
- (3) For cadmium and lead combined, except for an area source as defined under §63.2,
- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 150  $\mu$ gm/dscm, corrected to 7 percent oxygen, on an (not-to-exceed) annual averaging period;
- (ii) When you burn hazardous waste with an as-fired heating value of 10,000 Btu/lb or greater, emissions in excess of  $8.2 \times 10^{-5}$ lbs combined cadmium and lead emissions attributable to the hazardous waste per million Btu heat input from the hazardous waste on an (not-to-exceed) annual averaging period;
- (4) For chromium, except for an area source as defined under §63.2:
- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 370 μgm/dscm, corrected to 7 percent oxygen;

- (ii) When you burn hazardous waste with an as-fired heating value of 10,000 Btu/lb or greater, emissions in excess of  $1.3 \times 10^{-4}$ lbs chromium emissions attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) For hydrogen chloride and chlorine, except for an area source as defined under §63.2:
- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 31 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;
- (ii) When you burn hazardous waste with an as-fired heating value of 10,000 Btu/lb or greater, emissions in excess of  $5.1 \times 10^{-2}$ lbs combined emissions of hydrogen chloride and chlorine gas attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (7) For particulate matter, except for an area source as defined under §63.2 or as provided by paragraph (e) of this section, emissions in excess of 80 mg/dscm corrected to 7 percent oxygen.
- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1)(i) Dioxins and furans in excess of 0.40 ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution control system; or
- (ii) Either carbon monoxide or hydrocarbon emissions in excess of the limits provided by paragraph (b)(5) of this section for sources not equipped with a dry air pollution control system;
- (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control system is not considered to be a dry air pollution control system, and a source equipped with a dry air pollution control system followed by a wet air pollution control system is considered to be a dry air pollution control system for purposes of this emission limit;

#### (2) For mercury:

- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 6.8 µgm/dscm, corrected to 7 percent oxygen, on an (not-to-exceed) annual averaging period;
- (ii) When you burn hazardous waste with an as-fired heating value of 10,000 Btu/lb or greater, emissions in excess of  $1.2 \times 10^{-6}$ lbs mercury emissions attributable to the hazardous waste per million Btu heat input from the hazardous waste on an (not-to-exceed) annual averaging period;
- (3) For cadmium and lead combined, except for an area source as defined under §63.2:
- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 78 μgm/dscm, corrected to 7 percent oxygen, on an (not-to-exceed) annual averaging period;
- (ii) When you burn hazardous waste with an as-fired heating value greater than or equal to 10,000 Btu/lb, emissions in excess of  $6.2 \times 10^{-6}$ lbs combined cadmium and lead emissions attributable to the hazardous waste per million Btu heat input from the hazardous waste on an (not-to-exceed) annual averaging period;
- (4) For chromium, except for an area source as defined under §63.2:
- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 12 μgm/dscm, corrected to 7 percent oxygen;
- (ii) When you burn hazardous waste with an as-fired heating value of 10,000 Btu/lb or greater, emissions in excess of  $1.4 \times 10^{-5}$ lbs chromium emissions attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) For hydrogen chloride and chlorine, except for an area source as defined under §63.2:

- (i) When you burn hazardous waste with an as-fired heating value less than 10,000 Btu/lb, emissions in excess of 31 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen;
- (ii) When you burn hazardous waste with an as-fired heating value of 10,000 Btu/lb or greater, emissions in excess of  $5.1 \times^{-2}$ lbs combined emissions of hydrogen chloride and chlorine gas attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (7) For particulate matter, except for an area source as defined under §63.2 or as provided by paragraph (e) of this section, emissions in excess of 20 mg/dscm corrected to 7 percent oxygen.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a DRE of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

DRE = 
$$[1 - (W_{out} + W_{in})] \times 100\%$$

W<sub>in</sub>= mass feedrate of one POHC in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a DRE of 99.9999% for each POHC that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo- p -dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituents (POHCs). (i) You must treat the POHCs in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations

using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.

- (e) Alternative to the particulate matter standard —(1) General. In lieu of complying with the particulate matter standards of this section, you may elect to comply with the following alternative metal emission control requirement:
- (2) Alternative metal emission control requirements for existing liquid fuel boilers. (i) When you burn hazardous waste with a heating value less than 10,000 Btu/lb:
- (A) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium, combined, in excess of 150 μgm/dscm, corrected to 7 percent oxygen; and
- (B) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel, combined, in excess of 370 μgm/dscm, corrected to 7 percent oxygen;
- (ii) When you burn hazardous waste with a heating value of 10,000 Btu/lb or greater:
- (A) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain in excess of  $8.2 \times 10^{-5}$ lbs combined emissions of cadmium, lead, and selenium attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (B) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain either in excess of  $1.3 \times 10^{-4}$ lbs combined emissions of antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (3) Alternative metal emission control requirements for new liquid fuel boilers. (i) When you burn hazardous waste with a heating value less than 10,000 Btu/lb:
- (A) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium, combined, in excess of 78 μgm/dscm, corrected to 7 percent oxygen; and
- (B) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel, combined, in excess of 12 μgm/dscm, corrected to 7 percent oxygen;
- (ii) When you burn hazardous waste with a heating value greater than or equal to 10,000 Btu/lb:
- (A) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain in excess of  $6.2 \times 10^{-6}$ lbs combined emissions of cadmium, lead, and selenium attributable to the hazardous waste per million Btu heat input from the hazardous waste; and

- (B) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain either in excess of  $1.4 \times 10^{-5}$ lbs combined emissions of antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (4) Operating limits. Semivolatile and low volatile metal operating parameter limits must be established to ensure compliance with the alternative emission limitations described in paragraphs (e)(2) and (e)(3) of this section pursuant to §63.1209(n), except that semivolatile metal feedrate limits apply to lead, cadmium, and selenium, combined, and low volatile metal feedrate limits apply to arsenic, beryllium, chromium, antimony, cobalt, manganese, and nickel, combined.
- (f) Elective standards for area sources. Area sources as defined under §63.2 are subject to the standards for cadmium and lead, the standards for chromium, the standards for hydrogen chloride and chlorine, and the standards for particulate matter under this section if they elect under §266.100(b)(3) of this chapter to comply with those standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants.

[70 FR 59567, Oct. 12, 2005, as amended at 73 FR 18983, Apr. 8, 2008]

## § 63.1218 What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans, either carbon monoxide or hydrocarbon emissions in excess of the limits provided by paragraph (a)(5) of this section;
- (2) For mercury, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (a)(6) of this section;
- (3) For lead and cadmium, except for an area source as defined under §63.2, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (a)(6) of this section;
- (4) For arsenic, beryllium, and chromium, except for an area source as defined under §63.2, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (a)(6) of this section;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as

provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or

- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) For hydrogen chloride and chlorine gas, either:
- (i) Emission in excess of 150 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)equivalent, dry basis and corrected to 7 percent oxygen; or
- (ii) Emissions greater than the levels that would be emitted if the source is achieving a system removal efficiency (SRE) of less than 99.923 percent for total chlorine and chloride fed to the combustor. You must calculate SRE from the following equation:

$$SRE = [1 - (Cl_{out}/Cl_{in})] \times 100\%$$

Where:

Cl in = mass feedrate of total chlorine or chloride in all feedstreams, reported as chloride; and

Cl out = mass emission rate of hydrogen chloride and chlorine gas, reported as chloride, in exhaust emissions prior to release to the atmosphere.

- (7) For particulate matter, except for an area source as defined under §63.2, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (a)(6) of this section.
- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans, either carbon monoxide or hydrocarbon emissions in excess of the limits provided by paragraph (b)(5) of this section;
- (2) For mercury, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (b)(6) of this section;
- (3) For lead and cadmium, except for an area source as defined under §63.2, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (b)(6) of this section;
- (4) For arsenic, beryllium, and chromium, except for an area source as defined under §63.2, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (b)(6) of this section;
- (5) For carbon monoxide and hydrocarbons, either:

- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) For hydrogen chloride and chlorine gas, either:
- (i) Emission in excess of 25 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)equivalent, dry basis and corrected to 7 percent oxygen; or
- (ii) Emissions greater than the levels that would be emitted if the source is achieving a system removal efficiency (SRE) of less than 99.987 percent for total chlorine and chloride fed to the combustor. You must calculate SRE from the following equation:

$$SRE = [1 - (Cl_{out}/Cl_{in})] \times 100\%$$

Cl in = mass feedrate of total chlorine or chloride in all feedstreams, reported as chloride; and

Cl out = mass emission rate of hydrogen chloride and chlorine gas, reported as chloride, in exhaust emissions prior to release to the atmosphere.

- (7) For particulate matter, except for an area source as defined under §63.2, hydrogen chloride and chlorine gas emissions in excess of the levels provided by paragraph (b)(6) of this section.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a DRE of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

$$DRE = [1 - (W_{out}/W_{in})] \times 100\%$$

Where:

Win = mass feedrate of one POHC in a waste feedstream; and

Wout = mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a DRE of 99.9999% for each POHC that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo- p -dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituents (POHCs). (i) You must treat the POHCs in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.
- (e) Elective standards for area sources. Area sources as defined under §63.2 are subject to the standards for cadmium and lead, the standards for arsenic, beryllium, and chromium, the standards for hydrogen chloride and chlorine, and the standards for particulate matter under this section if they elect under §266.100(b)(3) of this chapter to comply with those standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants.

[70 FR 59569, Oct. 12, 2005]

Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and Lightweight Aggregate Kilns

### § 63.1219 What are the replacement standards for hazardous waste incinerators?

- (a) *Emission limits for existing sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1) For dioxins and furans:
- (i) For incinerators equipped with either a waste heat boiler or dry air pollution control system, either:

- (A) Emissions in excess of 0.20 ng TEQ/dscm, corrected to 7 percent oxygen; or
- (B) Emissions in excess of 0.40 ng TEQ/dscm, corrected to 7 percent oxygen, provided that the combustion gas temperature at the inlet to the initial particulate matter control device is 400 °F or lower based on the average of the test run average temperatures. (For purposes of compliance, operation of a wet particulate matter control device is presumed to meet the 400 °F or lower requirement);
- (ii) Emissions in excess of 0.40 ng TEQ/dscm, corrected to 7 percent oxygen, for incinerators not equipped with either a waste heat boiler or dry air pollution control system;
- (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control system is not considered to be a dry air pollution control system, and a source equipped with a dry air pollution control system followed by a wet air pollution control system is considered to be a dry air pollution control system for purposes of this standard;
- (2) Mercury in excess of 130 μgm/dscm, corrected to 7 percent oxygen;
- (3) Cadmium and lead in excess of 230 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 92 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrogen chloride and chlorine gas (total chlorine) in excess of 32 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) Except as provided by paragraph (e) of this section, particulate matter in excess of 0.013 gr/dscf corrected to 7 percent oxygen.

- (b) *Emission limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere that contain:
- (1)(i) Dioxins and furans in excess of 0.11 ng TEQ/dscm corrected to 7 percent oxygen for incinerators equipped with either a waste heat boiler or dry air pollution control system; or
- (ii) Dioxins and furans in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen for sources not equipped with either a waste heat boiler or dry air pollution control system;
- (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control system is not considered to be a dry air pollution control system, and a source equipped with a dry air pollution control system followed by a wet air pollution control system is considered to be a dry air pollution control system for purposes of this standard;
- (2) Mercury in excess of 8.1 µgm/dscm, corrected to 7 percent oxygen;
- (3) Cadmium and lead in excess of 10 µgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) Arsenic, beryllium, and chromium in excess of 23 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) For carbon monoxide and hydrocarbons, either:
- (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrogen chloride and chlorine gas in excess of 21 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) Except as provided by paragraph (e) of this section, particulate matter emissions in excess of 0.0016 gr/dscf corrected to 7 percent oxygen.
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a destruction and removal efficiency (DRE)

of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

$$DRE = [1 - (W_{out}/W_{in})] \times 100\%$$

Where:

W<sub>in</sub>= mass feedrate of one POHC in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a DRE of 99.9999% for each POHC that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo- p -dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.
- (3) Principal organic hazardous constituent (POHC). (i) You must treat each POHC in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.
- (e) Alternative to the particulate matter standard. —(1) General. In lieu of complying with the particulate matter standards of this section, you may elect to comply with the following alternative metal emission control requirement:
- (2) Alternative metal emission control requirements for existing incinerators . (i) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of 230  $\mu$ gm/dscm, combined emissions, corrected to 7 percent oxygen; and,

- (ii) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 92 µgm/dscm, combined emissions, corrected to 7 percent oxygen.
- (3) Alternative metal emission control requirements for new incinerators . (i) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain cadmium, lead, and selenium in excess of  $10~\mu gm/dscm$ , combined emissions, corrected to 7 percent oxygen; and,
- (ii) You must not discharge or cause combustion gases to be emitted into the atmosphere that contain antimony, arsenic, beryllium, chromium, cobalt, manganese, and nickel in excess of 23 μgm/dscm, combined emissions, corrected to 7 percent oxygen.
- (4) Operating limits. Semivolatile and low volatile metal operating parameter limits must be established to ensure compliance with the alternative emission limitations described in paragraphs (e)(2) and (e)(3) of this section pursuant to §63.1209(n), except that semivolatile metal feedrate limits apply to lead, cadmium, and selenium, combined, and low volatile metal feedrate limits apply to arsenic, beryllium, chromium, antimony, cobalt, manganese, and nickel, combined.

[70 FR 59570, Oct. 12, 2005, as amended at 73 FR 64097, Oct. 28, 2008]

### § 63.1220 What are the replacement standards for hazardous waste burning cement kilns?

- (a) Emission and hazardous waste feed limits for existing sources. You must not discharge or cause combustion gases to be emitted into the atmosphere or feed hazardous waste that contain:
- (1) For dioxins and furans, either:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Emissions in excess of 0.40 ng TEQ/dscm corrected to 7 percent oxygen provided that the combustion gas temperature at the inlet to the initial dry particulate matter control device is 400 °F or lower based on the average of the test run average temperatures;
- (2) For mercury, both:
- (i) An average as-fired concentration of mercury in all hazardous waste feedstreams in excess of 3.0 parts per million by weight; and
- (ii) Either:
- (A) Emissions in excess of 120 µg/dscm, corrected to 7 percent oxygen, or

- (B) A hazardous waste feed maximum theoretical emission concentration (MTEC) in excess of 120 μg/dscm;
- (3) For cadmium and lead, both:
- (i) Emissions in excess of  $7.6 \times 10^{-4}$ lbs combined emissions of cadmium and lead attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (ii) Emissions in excess of 330 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) For arsenic, beryllium, and chromium, both:
- (i) Emissions in excess of  $2.1 \times 10^{-5}$ lbs combined emissions of arsenic, beryllium, and chromium attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (ii) Emissions in excess of 56 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) For kilns equipped with a by-pass duct or midkiln gas sampling system, either:
- (A) Carbon monoxide in the by-pass duct or mid-kiln gas sampling system in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(i)(B) of this section, you must also document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons in the by-pass duct or mid-kiln gas sampling system do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (B) Hydrocarbons in the by-pass duct or midkiln gas sampling system in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane;
- (ii) For kilns not equipped with a by-pass duct or midkiln gas sampling system, either:
- (A) Hydrocarbons in the main stack in excess of 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (B) Carbon monoxide in the main stack in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii)(A) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their

equivalent as provided by §63.1206(b)(7), hydrocarbons in the main stack do not exceed 20 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.

- (6) Hydrogen chloride and chlorine gas in excess of 120 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis, corrected to 7 percent oxygen; and
- (7) For particulate matter, both:
- (i) Emissions in excess of 0.028 gr/dscf corrected to 7 percent oxygen; and
- (ii) Opacity greater than 20 percent, unless your source is equipped with a bag leak detection system under §63.1206(c)(8) or a particulate matter detection system under §63.1206(c)(9).
- (b) *Emission and hazardous waste feed limits for new sources*. You must not discharge or cause combustion gases to be emitted into the atmosphere or feed hazardous waste that contain:
- (1) For dioxins and furans, either:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Emissions in excess of 0.40 ng TEQ/dscm corrected to 7 percent oxygen provided that the combustion gas temperature at the inlet to the initial dry particulate matter control device is 400 °F or lower based on the average of the test run average temperatures;
- (2) For mercury, both:
- (i) An average as-fired concentration of mercury in all hazardous waste feedstreams in excess of 1.9 parts per million by weight; and
- (ii) Either:
- (A) Emissions in excess of 120 µg/dscm, corrected to 7 percent oxygen, or
- (B) A hazardous waste feed maximum theoretical emission concentration (MTEC) in excess of 120 μg/dscm;
- (3) For cadmium and lead, both:
- (i) Emissions in excess of  $6.2 \times 10^{-5}$ lbs combined emissions of cadmium and lead attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (ii) Emissions in excess of 180 µgm/dscm, combined emissions, corrected to 7 percent oxygen;

- (4) For arsenic, beryllium, and chromium, both:
- (i) Emissions in excess of  $1.5 \times 10^{-5}$ lbs combined emissions of arsenic, beryllium, and chromium attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (ii) Emissions in excess of 54 µgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) For kilns equipped with a by-pass duct or midkiln gas sampling system, carbon monoxide and hydrocarbons emissions are limited in both the bypass duct or midkiln gas sampling system and the main stack as follows:
- (A) Emissions in the by-pass or midkiln gas sampling system are limited to either:
- (1) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(i)(A)(2) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 10 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (2) Hydrocarbons in the by-pass duct or midkiln gas sampling system in excess of 10 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; and
- (B) Hydrocarbons in the main stack are limited, if construction of the kiln commenced after April 19, 1996 at a plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over a 30-day block average (monitored continuously with a continuous monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.
- (ii) For kilns not equipped with a by-pass duct or midkiln gas sampling system, hydrocarbons and carbon monoxide are limited in the main stack to either:
- (A) Hydrocarbons not exceeding 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (B)(1) Carbon monoxide not exceeding 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen; and

- (2) Hydrocarbons not exceeding 20 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane at any time during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7); and
- (3) If construction of the kiln commenced after April 19, 1996 at a plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, hydrocarbons are limited to 50 parts per million by volume, over a 30-day block average (monitored continuously with a continuous monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane.
- (6) Hydrogen chloride and chlorine gas in excess of 86 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) For particulate matter, both:
- (i) Emissions in excess of 0.0069 gr/dscf corrected to 7 percent oxygen; and
- (ii) Opacity greater than 20 percent, unless your source is equipped with a bag leak detection system under §63.1206(c)(8) or a particulate matter detection system under §63.1206(c)(9).
- (c) Destruction and removal efficiency (DRE) standard—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a destruction and removal efficiency (DRE) of 99.99% for each principle organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

DRE = 
$$[1 - (W_{out}/W_{in})] \times 100\%$$

W<sub>in</sub>= mass feedrate of one POHC in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

(2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a DRE of 99.9999% for each POHC that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo- p -dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to incinerate hazardous wastes F020, F021, F022, F023, F026, or F027.

- (3) Principal organic hazardous constituent (POHC). (i) You must treat each POHC in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Cement kilns with in-line kiln raw mills —(1) General. (i) You must conduct performance testing when the raw mill is on-line and when the mill is off-line to demonstrate compliance with the emission standards, and you must establish separate operating parameter limits under §63.1209 for each mode of operation, except as provided by paragraphs (d)(1)(iv) and (d)(1)(v) of this section.
- (ii) You must document in the operating record each time you change from one mode of operation to the alternate mode and begin complying with the operating parameter limits for that alternate mode of operation.
- (iii) You must calculate rolling averages for operating parameter limits as provided by §63.1209(q)(2).
- (iv) If your in-line kiln raw mill has dual stacks, you may assume that the dioxin/furan emission levels in the by-pass stack and the operating parameter limits determined during performance testing of the by-pass stack when the raw mill is off-line are the same as when the mill is on-line.
- (v) In lieu of conducting a performance test to demonstrate compliance with the dioxin/furan emission standards for the mode of operation when the raw mill is on-line, you may specify in the performance test workplan and Notification of Compliance the same operating parameter limits required under §63.1209(k) for the mode of operation when the raw mill is on-line as you establish during performance testing for the mode of operation when the raw mill is off-line.
- (2) *Emissions averaging*. You may comply with the mercury, semivolatile metal, low volatile metal, and hydrogen chloride/chlorine gas emission standards on a time-weighted average basis under the following procedures:
- (i) Averaging methodology. You must calculate the time-weighted average emission concentration with the following equation:

| $C_{total} = \{Cmill-off \times (Tmill-off/(Tmill-off + Tmill-on))\} + \{Cmill-on \times (Tmill-on)/(Tmill-off + Tmill-on)\}$ | Tmill-off+ |
|-------------------------------------------------------------------------------------------------------------------------------|------------|
| Tmill-on))}                                                                                                                   |            |

C<sub>total</sub>= time-weighted average concentration of a regulated constituent considering both raw mill on time and off time;

Cmill-off= average performance test concentration of regulated constituent with the raw mill off-line:

Cmill-on= average performance test concentration of regulated constituent with the raw mill online:

Tmill-off= time when kiln gases are not routed through the raw mill; and

Tmill-on= time when kiln gases are routed through the raw mill.

- (ii) Compliance. (A) If you use this emission averaging provision, you must document in the operating record compliance with the emission standards on an annual basis by using the equation provided by paragraph (d)(2) of this section.
- (B) Compliance is based on one-year block averages beginning on the day you submit the initial notification of compliance.
- (iii) *Notification*. (A) If you elect to document compliance with one or more emission standards using this emission averaging provision, you must notify the Administrator in the initial comprehensive performance test plan submitted under §63.1207(e).
- (B) You must include historical raw mill operation data in the performance test plan to estimate future raw mill down-time and document in the performance test plan that estimated emissions and estimated raw mill down-time will not result in an exceedance of an emission standard on an annual basis.
- (C) You must document in the notification of compliance submitted under §63.1207(j) that an emission standard will not be exceeded based on the documented emissions from the performance test and predicted raw mill down-time.
- (e) Preheater or preheater/precalciner kilns with dual stacks—(1) General. You must conduct performance testing on each stack to demonstrate compliance with the emission standards, and you must establish operating parameter limits under §63.1209 for each stack, except as provided by paragraph (d)(1)(iv) of this section for dioxin/furan emissions testing and operating parameter limits for the by-pass stack of in-line raw mills.
- (2) *Emissions averaging*. You may comply with the mercury, semivolatile metal, low volatile metal, and hydrogen chloride/chlorine gas emission standards specified in this section on a gas flowrate-weighted average basis under the following procedures:
- (i) Averaging methodology. You must calculate the gas flowrate-weighted average emission concentration using the following equation:

$$C_{tot} = \{C_{main} \times (Q_{main} + Q_{bypass}))\} + \{C_{bypass} \times (Q_{bypass} / (Q_{main} + Q_{bypass}))\}$$

C<sub>tot</sub>= gas flowrate-weighted average concentration of the regulated constituent;

C<sub>main</sub>= average performance test concentration demonstrated in the main stack;

C<sub>bypass</sub>= average performance test concentration demonstrated in the bypass stack;

Q<sub>main</sub>= volumetric flowrate of main stack effluent gas; and

Q<sub>bypass</sub>= volumetric flowrate of bypass effluent gas.

- (ii) Compliance. (A) You must demonstrate compliance with the emission standard(s) using the emission concentrations determined from the performance tests and the equation provided by paragraph (e)(1) of this section; and
- (B) You must develop operating parameter limits for bypass stack and main stack flowrates that ensure the emission concentrations calculated with the equation in paragraph (e)(1) of this section do not exceed the emission standards on a 12-hour rolling average basis. You must include these flowrate limits in the Notification of Compliance.
- (iii) Notification . If you elect to document compliance under this emissions averaging provision, you must:
- (A) Notify the Administrator in the initial comprehensive performance test plan submitted under §63.1207(e). The performance test plan must include, at a minimum, information describing the flowrate limits established under paragraph (e)(2)(ii)(B) of this section; and
- (B) Document in the Notification of Compliance submitted under §63.1207(j) the demonstrated gas flowrate-weighted average emissions that you calculate with the equation provided by paragraph (e)(2) of this section.
- (f) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.
- (g) [Reserved]

(h) When you comply with the particulate matter requirements of paragraphs (a)(7) or (b)(7) of this section, you are exempt from the New Source Performance Standard for particulate matter and opacity under §60.60 of this chapter.

[70 FR 59571, Oct. 12, 2005, as amended at 71 FR 62394, Oct. 25, 2006; 73 FR 18983, Apr. 8, 2008; 73 FR 64097, Oct. 28, 2008]

# § 63.1221 What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

- (a) Emission and hazardous waste feed limits for existing sources. You must not discharge or cause combustion gases to be emitted into the atmosphere or feed hazardous waste that contain:
- (1) For dioxins and furans, either:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Rapid quench of the combustion gas temperature at the exit of the (last) combustion chamber (or exit of any waste heat recovery system that immediately follows the last combustion chamber) to 400 °F or lower based on the average of the test run average temperatures. You must also notify in writing the RCRA authority that you are complying with this option;
- (2) For mercury, either:
- (i) Emissions in excess of 120 μgm/dscm, corrected to 7 percent oxygen; or
- (ii) A hazardous waste feedrate corresponding to a maximum theoretical emission concentration (MTEC) in excess of 120 μgm/dscm;
- (3) For cadmium and lead, both:
- (i) Emissions in excess of  $3.0 \times 10^{-4}$ lbs combined emissions of cadmium and lead attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (ii) Emissions in excess of 250 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) For arsenic, beryllium, and chromium, both:
- (i) In excess of  $9.5 \times 10^{-5}$ lbs combined emissions of arsenic, beryllium, and chromium attributable to the hazardous waste per million Btu heat input from the hazardous waste;
- (ii) Emissions in excess of 110 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this

carbon monoxide standard rather than the hydrocarbon standard under paragraph (a)(5)(ii) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 20 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or

- (ii) Hydrocarbons in excess of 20 parts per million by volume, over an hourly rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrogen chloride and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter emissions in excess of 0.025 gr/dscf, corrected to 7 percent oxygen.
- (b) *Emission and hazardous waste feed limits for new sources* . You must not discharge or cause combustion gases to be emitted into the atmosphere or feed hazardous waste that contain:
- (1) For dioxins and furans, either:
- (i) Emissions in excess of 0.20 ng TEQ/dscm corrected to 7 percent oxygen; or
- (ii) Rapid quench of the combustion gas temperature at the exit of the (last) combustion chamber (or exit of any waste heat recovery system that immediately follows the last combustion chamber) to 400 °F or lower based on the average of the test run average temperatures. You must also notify in writing the RCRA authority that you are complying with this option;
- (2) For mercury, either:
- (i) Emissions in excess of 120 μgm/dscm, corrected to 7 percent oxygen; or
- (ii) A hazardous waste feedrate corresponding to a maximum theoretical emission concentration (MTEC) in excess of 120 μgm/dscm;
- (3) For cadmium and lead, both:
- (i) Emissions in excess of  $3.7 \times 10^{-5}$ lbs combined emissions of cadmium and lead attributable to the hazardous waste per million Btu heat input from the hazardous waste; and
- (ii) Emissions in excess of 43 µgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (4) For arsenic, beryllium, and chromium, both:
- (i) In excess of  $3.3 \times 10^{-5}$  lbs combined emissions of arsenic, beryllium, and chromium attributable to the hazardous waste per million Btu heat input from the hazardous waste;

- (ii) Emissions in excess of 110 μgm/dscm, combined emissions, corrected to 7 percent oxygen;
- (5) Carbon monoxide and hydrocarbons. (i) Carbon monoxide in excess of 100 parts per million by volume, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis and corrected to 7 percent oxygen. If you elect to comply with this carbon monoxide standard rather than the hydrocarbon standard under paragraph (b)(5)(ii) of this section, you also must document that, during the destruction and removal efficiency (DRE) test runs or their equivalent as provided by §63.1206(b)(7), hydrocarbons do not exceed 20 parts per million by volume during those runs, over an hourly rolling average (monitored continuously with a continuous emissions monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; or
- (ii) Hydrocarbons in excess of 20 parts per million by volume, over an hourly rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane;
- (6) Hydrogen chloride and chlorine gas in excess of 600 parts per million by volume, combined emissions, expressed as a chloride (Cl(-)) equivalent, dry basis and corrected to 7 percent oxygen; and
- (7) Particulate matter emissions in excess of 0.0098 gr/dscf corrected to 7 percent oxygen.
- (c) Destruction and removal efficiency (DRE) standard.—(1) 99.99% DRE. Except as provided in paragraph (c)(2) of this section, you must achieve a destruction and removal efficiency (DRE) of 99.99% for each principal organic hazardous constituent (POHC) designated under paragraph (c)(3) of this section. You must calculate DRE for each POHC from the following equation:

$$DRE = [1 - (W_{out}/Win)] \times 100\%$$

W<sub>in</sub>= mass feedrate of one POHC in a waste feedstream; and

W<sub>out</sub>= mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

(2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see §261.31 of this chapter), you must achieve a destruction and removal efficiency (DRE) of 99.9999% for each POHC that you designate under paragraph (c)(3) of this section. You must demonstrate this DRE performance on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo-dioxins and dibenzofurans. You must use the equation in paragraph (c)(1) of this section to calculate DRE for each POHC. In addition, you must notify the Administrator of your intent to burn hazardous wastes F020, F021, F022, F023, F026, or F027.

- (3) Principal organic hazardous constituents (POHCs). (i) You must treat each POHC in the waste feed that you specify under paragraph (c)(3)(ii) of this section to the extent required by paragraphs (c)(1) and (c)(2) of this section.
- (ii) You must specify one or more POHCs that are representative of the most difficult to destroy organic compounds in your hazardous waste feedstream. You must base this specification on the degree of difficulty of incineration of the organic constituents in the hazardous waste and on their concentration or mass in the hazardous waste feed, considering the results of hazardous waste analyses or other data and information.
- (d) Significant figures. The emission limits provided by paragraphs (a) and (b) of this section are presented with two significant figures. Although you must perform intermediate calculations using at least three significant figures, you may round the resultant emission levels to two significant figures to document compliance.

[70 FR 59574, Oct. 12, 2005]

Table 1 to Subpart EEE of Part 63—General Provisions Applicable to Subpart EEE

| Reference                             | Applies to subpart EEE | Explanation                                                                                                                                                                                                                                    |
|---------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.1                                  | Yes.                   |                                                                                                                                                                                                                                                |
| 63.2                                  | Yes.                   |                                                                                                                                                                                                                                                |
| 63.3                                  | Yes.                   |                                                                                                                                                                                                                                                |
| 63.4                                  | Yes.                   |                                                                                                                                                                                                                                                |
| 63.5                                  | Yes.                   |                                                                                                                                                                                                                                                |
| 63.6(a), (b),<br>(c), (d), and<br>(e) | Yes.                   |                                                                                                                                                                                                                                                |
| 63.6(f)                               | Yes                    | Except that the performance test requirements of Sec. 63.1207 apply instead of §63.6(f)(2)(iii)(B).                                                                                                                                            |
| 63.6(g) and (h)                       | Yes.                   |                                                                                                                                                                                                                                                |
| 63.6(i)                               | Yes                    | Section 63.1213 specifies that the compliance date may also be extended for inability to install necessary emission control equipment by the compliance date because of implementation of pollution prevention or waste minimization controls. |
| 63.6(j)                               | Yes.                   |                                                                                                                                                                                                                                                |

| Reference       | Applies to subpart EEE | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63.7(a)         | Yes                    | Except §63.1207(e)(3) allows you to petition the Administrator under §63.7(h) to provide an extension of time to conduct a performance test.                                                                                                                                                                                                                                                                                        |
| 63.7(b)         | Yes                    | Except §63.1207(e) requires you to submit the site-specific test plan for approval at least one year before the comprehensive performance test is scheduled to begin.                                                                                                                                                                                                                                                               |
| 63.7(c)         | Yes                    | Except §63.1207(e) requires you to submit the site-specific test plan (including the quality assurance provisions under §63.7(c)) for approval at least one year before the comprehensive performance test is scheduled to begin.                                                                                                                                                                                                   |
| 63.7(d)         | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63.7(e)         | Yes                    | Except §63.1207 prescribes operations during performance testing and §63.1209 specifies operating limits that will be established during performance testing (such that testing is likely to be representative of the extreme range of normal performance).                                                                                                                                                                         |
| 63.7(f)         | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63.7(g)         | Yes                    | Except §63.1207(j) requiring that you submit the results of the performance test (and the notification of compliance) within 90 days of completing the test, unless the Administrator grants a time extension, applies instead of §63.7(g)(1).                                                                                                                                                                                      |
| 63.7(h)         | Yes                    | Except §63.1207(c)(2) allows data in lieu of the initial comprehensive performance test, and §63.1207(m) provides a waiver of certain performance tests. You must submit requests for these waivers with the site-specific test plan.                                                                                                                                                                                               |
| 63.8(a) and (b) | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63.8(c)         | Yes                    | Except: (1) §63.1211(c) that requires you to install, calibrate, and operate CMS by the compliance date applies instead of §63.8(c)(3); and (2) the performance specifications for CO, HC, and O2 CEMS in subpart B, of this chapter requiring that the detectors measure the sample concentration at least once every 15 seconds for calculating an average emission level once every 60 seconds apply instead of §63.8(c)(4)(ii). |
| 63.8(d)         | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63.8(e)         | Yes                    | Except §63.1207(e) requiring you to submit the site-specific comprehensive performance test plan and the CMS performance                                                                                                                                                                                                                                                                                                            |

| Reference          | Applies to subpart EEE | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                        | evaluation test plan for approval at least one year prior to the planned test date applies instead of §§63.8(e)(2) and (3)(iii).                                                                                                                                                                                                                                                                                                                                                                                                   |
| 63.8(f) and (g)    | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63.9(a)            | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63.9(b)            | Yes                    | Note: Section 63.9(b)(1)(ii) pertains to notification requirements for area sources that become a major source, and §63.9(b)(2)(v) requires a major source determination. Although area sources are subject to all provisions of this subpart (Subpart EEE), these sections nonetheless apply because the major source determination may affect the applicability of part 63 standards or title V permit requirements to other sources (i.e., other than a hazardous waste combustor) of hazardous air pollutants at the facility. |
| 63.9(c) and (d)    | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63.9(e)            | Yes                    | Except §63.1207(e) which requires you to submit the comprehensive performance test plan for approval one year prior to the planned performance test date applies instead of §63.9(e).                                                                                                                                                                                                                                                                                                                                              |
| 63.9(f)            | Yes                    | Section 63.9(f) applies if you are allowed under §63.1209(a)(1)(v) to use visible determination of opacity for compliance in lieu of a COMS.                                                                                                                                                                                                                                                                                                                                                                                       |
| 63.9(g)            | Yes                    | Except §63.9(g)(2) pertaining to COMS does not apply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 63.9(h)            | Yes                    | Except §63.1207(j) requiring you to submit the notification of compliance within 90 days of completing a performance test unless the Administrator grants a time extension applies instead of §63.9(h)(2)(iii). Note: Even though area sources are subject to this subpart, the major source determination required by §63.9(h)(2)(i)(E) is applicable to hazardous waste combustors for the reasons discussed above.                                                                                                              |
| 63.9(i) and<br>(j) | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63.10              | Yes                    | Except reports of performance test results required under §63.10(d)(2) may be submitted up to 90 days after completion of the test.                                                                                                                                                                                                                                                                                                                                                                                                |
| 63.11              | No.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63.12–63.15        | Yes.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Appendix to Subpart EEE of Part 63—Quality Assurance Procedures for Continuous Emissions Monitors Used for Hazardous Waste Combustors

### 1. Applicability and Principle

- 1.1 Applicability. These quality assurance requirements are used to evaluate the effectiveness of quality control (QC) and quality assurance (QA) procedures and the quality of data produced by continuous emission monitoring systems (CEMS) that are used for determining compliance with the emission standards on a continuous basis as specified in the applicable regulation. The QA procedures specified by these requirements represent the minimum requirements necessary for the control and assessment of the quality of CEMS data used to demonstrate compliance with the emission standards provided under this subpart EEE of part 63. Owners and operators must meet these minimum requirements and are encouraged to develop and implement a more extensive QA program. These requirements supersede those found in part 60, Appendix F, of this chapter. Appendix F does not apply to hazardous waste-burning devices.
- 1.2 Principle. The QA procedures consist of two distinct and equally important functions. One function is the assessment of the quality of the CEMS data by estimating accuracy. The other function is the control and improvement of the quality of the CEMS data by implementing QC policies and corrective actions. These two functions form a control loop. When the assessment function indicates that the data quality is inadequate, the source must immediately stop burning hazardous waste. The CEM data control effort must be increased until the data quality is acceptable before hazardous waste burning can resume.
- a. In order to provide uniformity in the assessment and reporting of data quality, this procedure explicitly specifies the assessment methods for response drift and accuracy. The methods are based on procedures included in the applicable performance specifications provided in appendix B to part 60 of this chapter. These procedures also require the analysis of the EPA audit samples concurrent with certain reference method (RM) analyses as specified in the applicable RM's.
- b. Because the control and corrective action function encompasses a variety of policies, specifications, standards, and corrective measures, this procedure treats QC requirements in general terms to allow each source owner or operator to develop a QC system that is most effective and efficient for the circumstances.

#### 2. Definitions

- 2.1 Continuous Emission Monitoring System (CEMS). The total equipment required for the determination of a pollutant concentration. The system consists of the following major subsystems:
- 2.1.1 Sample Interface. That portion of the CEMS used for one or more of the following: sample acquisition, sample transport, and sample conditioning, or protection of the monitor from the effects of the stack effluent.

- 2.1.2 *Pollutant Analyzer*. That portion of the CEMS that senses the pollutant concentration and generates a proportional output.
- 2.1.3 *Diluent Analyzer*. That portion of the CEMS that senses the diluent gas (O2) and generates an output proportional to the gas concentration.
- 2.1.4 Data Recorder. That portion of the CEMS that provides a permanent record of the analyzer output. The data recorder may provide automatic data reduction and CEMS control capabilities.
- 2.2 Relative Accuracy (RA). The absolute mean difference between the pollutant concentration determined by the CEMS and the value determined by the reference method (RM) plus the 2.5 percent error confidence coefficient of a series of test divided by the mean of the RM tests or the applicable emission limit.
- 2.3 Calibration Drift (CD). The difference in the CEMS output readings from the established reference value after a stated period of operation during which no unscheduled maintenance, repair, or adjustment took place.
- 2.4 Zero Drift (ZD). The difference in CEMS output readings at the zero pollutant level after a stated period of operation during which no unscheduled maintenance, repair, or adjustment took place.
- 2.5 Calibration Standard. Calibration standards produce a known and unchanging response when presented to the pollutant analyzer portion of the CEMS, and are used to calibrate the drift or response of the analyzer.
- 2.6 Relative Accuracy Test Audit (RATA). Comparison of CEMS measurements to reference method measurements in order to evaluate relative accuracy following procedures and specification given in the appropriate performance specification.
- 2.7 Absolute Calibration Audit (ACA). Equivalent to calibration error (CE) test defined in the appropriate performance specification using NIST traceable calibration standards to challenge the CEMS and assess accuracy.
- 2.8 Rolling Average. The average emissions, based on some (specified) time period, calculated every minute from a one-minute average of four measurements taken at 15-second intervals.
- 3. QA/QC Requirements
- 3.1 QC Requirements. a. Each owner or operator must develop and implement a QC program. At a minimum, each QC program must include written procedures describing in detail complete, step-by-step procedures and operations for the following activities.
- 1. Checks for component failures, leaks, and other abnormal conditions.

- 2. Calibration of CEMS.
- 3. CD determination and adjustment of CEMS.
- 4. Integration of CEMS with the automatic waste feed cutoff (AWFCO) system.
- 5. Preventive Maintenance of CEMS (including spare parts inventory).
- 6. Data recording, calculations, and reporting.
- 7. Checks of record keeping.
- 8. Accuracy audit procedures, including sampling and analysis methods.
- 9. Program of corrective action for malfunctioning CEMS.
- 10. Operator training and certification.
- 11. Maintaining and ensuring current certification or naming of cylinder gasses, metal solutions, and particulate samples used for audit and accuracy tests, daily checks, and calibrations.
- b. Whenever excessive inaccuracies occur for two consecutive quarters, the current written procedures must be revised or the CEMS modified or replaced to correct the deficiency causing the excessive inaccuracies. These written procedures must be kept on record and available for inspection by the enforcement agency.
- 3.2 QA Requirements. Each source owner or operator must develop and implement a QA plan that includes, at a minimum, the following.
- 1. QA responsibilities (including maintaining records, preparing reports, reviewing reports).
- 2. Schedules for the daily checks, periodic audits, and preventive maintenance.
- 3. Check lists and data sheets.
- 4. Preventive maintenance procedures.
- 5. Description of the media, format, and location of all records and reports.
- 6. Provisions for a review of the CEMS data at least once a year. Based on the results of the review, the owner or operator must revise or update the QA plan, if necessary.
- 4. CD and ZD Assessment and Daily System Audit
- 4.1 *CD and ZD Requirement*. Owners and operators must check, record, and quantify the ZD and the CD at least once daily (approximately 24 hours) in accordance with the method

prescribed by the manufacturer. The CEMS calibration must, at a minimum, be adjusted whenever the daily ZD or CD exceeds the limits in the Performance Specifications. If, on any given ZD and/or CD check the ZD and/or CD exceed(s) two times the limits in the Performance Specifications, or if the cumulative adjustment to the ZD and/or CD (see Section 4.2) exceed(s) three times the limits in the Performance Specifications, hazardous waste burning must immediately cease and the CEMS must be serviced and recalibrated. Hazardous waste burning cannot resume until the owner or operator documents that the CEMS is in compliance with the Performance Specifications by carrying out an ACA.

- 4.2 Recording Requirements for Automatic ZD and CD Adjusting Monitors. Monitors that automatically adjust the data to the corrected calibration values must record the unadjusted concentration measurement prior to resetting the calibration, if performed, or record the amount of the adjustment.
- 4.3 Daily System Audit. The audit must include a review of the calibration check data, an inspection of the recording system, an inspection of the control panel warning lights, and an inspection of the sample transport and interface system (e.g., flowmeters, filters, etc.) as appropriate.
- 4.4 Data Recording and Reporting. All measurements from the CEMS must be retained in the operating record for at least 5 years.
- 5. Performance Evaluation for CO, O2, and HC CEMS

Carbon Monoxide (CO), Oxygen (O<sub>2</sub>), and Hydrocarbon (HC) CEMS. An Absolute Calibration Audit (ACA) must be conducted quarterly, and a Relative Accuracy Test Audit (RATA) (if applicable, see sections 5.1 and 5.2) must be conducted yearly. An Interference Response Tests must be performed whenever an ACA or a RATA is conducted. When a performance test is also required under §63.1207 to document compliance with emission standards, the RATA must coincide with the performance test. The audits must be conducted as follows.

- 5.1 Relative Accuracy Test Audit (RATA). This requirement applies to O<sub>2</sub>and CO CEMS. The RATA must be conducted at least yearly. Conduct the RATA as described in the RA test procedure (or alternate procedures section) described in the applicable Performance Specifications. In addition, analyze the appropriate performance audit samples received from the EPA as described in the applicable sampling methods.
- 5.2 Absolute Calibration Audit (ACA). The ACA must be conducted at least quarterly except in a quarter when a RATA (if applicable, see section 5.1) is conducted instead. Conduct an ACA as described in the calibration error (CE) test procedure described in the applicable Performance Specifications.
- 5.3 Interference Response Test. The interference response test must be conducted whenever an ACA or RATA is conducted. Conduct an interference response test as described in the applicable Performance Specifications.

5.4 Excessive Audit Inaccuracy. If the RA from the RATA or the CE from the ACA exceeds the criteria in the applicable Performance Specifications, hazardous waste burning must cease immediately. Hazardous waste burning cannot resume until the owner or operator takes corrective measures and audit the CEMS with a RATA to document that the CEMS is operating within the specifications.

### 6. Other Requirements

6.1 *Performance Specifications*. CEMS used by owners and operators of HWCs must comply with the following performance specifications in appendix B to part 60 of this chapter:

**Table I: Performance Specifications for CEMS** 

| CEMS               | Performance specification |
|--------------------|---------------------------|
| Carbon monoxide    | 4B                        |
| Oxygen             | 4B                        |
| Total hydrocarbons | 8A                        |

6.2 Downtime due to Calibration. Facilities may continue to burn hazardous waste for a maximum of 20 minutes while calibrating the CEMS. If all CEMS are calibrated at once, the facility must have twenty minutes to calibrate all the CEMS. If CEMS are calibrated individually, the facility must have twenty minutes to calibrate each CEMS. If the CEMS are calibrated individually, other CEMS must be operational while the individual CEMS is being calibrated.

### 6.3 Span of the CEMS.

- 6.3.1 CO CEMS. The CO CEM must have two ranges, a low range with a span of 200 ppmv and a high range with a span of 3000 ppmv at an oxygen correction factor of 1. A one-range CEM may be used, but it must meet the performance specifications for the low range in the specified span of the low range.
- 6.3.2  $O_{2 \text{ CEMS}}$ . The O<sub>2</sub>CEM must have a span of 25 percent. The span may be higher than 25 percent if the O<sub>2</sub>concentration at the sampling point is greater than 25 percent.
- 6.3.3 HC CEMS. The HC CEM must have a span of 100 ppmv, expressed as propane, at an oxygen correction factor of 1.
- 6.3.4 CEMS Span Values. When the Oxygen Correction Factor is Greater than 2. When an owner or operator installs a CEMS at a location of high ambient air dilution, *i.e.*, where the maximum oxygen correction factor as determined by the permitting agency is greater than 2, the owner or operator must install a CEM with a lower span(s), proportionate to the larger oxygen correction factor, than those specified above.

- 6.3.5 Use of Alternative Spans. Owner or operators may request approval to use alternative spans and ranges to those specified. Alternate spans must be approved in writing in advance by the Administrator. In considering approval of alternative spans and ranges, the Administrator will consider that measurements beyond the span will be recorded as values at the maximum span for purposes of calculating rolling averages.
- 6.3.6 *Documentation of Span Values*. The span value must be documented by the CEMS manufacturer with laboratory data.
- 6.4.1 *Moisture Correction*. Method 4 of appendix A, part 60 of this chapter, must be used to determine moisture content of the stack gasses.
- 6.4.2 Oxygen Correction Factor. Measured pollutant levels must be corrected for the amount of oxygen in the stack according to the following formula:

$$P_c = P_{co} \times 14 \ell (E - Y)$$

Where:

P<sub>c</sub>= concentration of the pollutant or standard corrected to 7 percent oxygen, dry basis;

P<sub>m</sub>= measured concentration of the pollutant, dry basis;

E = volume fraction of oxygen in the combustion air fed into the device, on a dry basis (normally 21 percent or 0.21 if only air is fed);

Y = measured fraction of oxygen on a dry basis at the sampling point.

The oxygen correction factor is:

$$OCF = 14/(E - Y)$$

- 6.4.3 *Temperature Correction*. Correction values for temperature are obtainable from standard reference materials.
- 6.5 Rolling Average. A rolling average is the arithmetic average of all one-minute averages over the averaging period.
- 6.5.1 One-Minute Average for CO and HHC CEMS. One-minute averages are the arithmetic average of the four most recent 15-second observations and must be calculated using the following equation:

$$\overline{c} = \sum_{i=1}^{4} \frac{c_i}{4}$$

Where:

c= the one minute average

c<sub>i</sub>= a fifteen-second observation from the CEM

Fifteen second observations must not be rounded or smoothed. Fifteen-second observations may be disregarded only as a result of a failure in the CEMS and allowed in the source's quality assurance plan at the time of the CEMS failure. One-minute averages must not be rounded, smoothed, or disregarded.

6.5.2 Ten Minute Rolling Average Equation. The ten minute rolling average must be calculated using the following equation:

$$C_{RA} = \sum_{i=1}^{10} \frac{\overline{c_i}}{10}$$

Where:

 $C_{\rm RA}$ = The concentration of the standard, expressed as a rolling average

 $c_i$ = a one minute average

6.5.3 Hourly Rolling Average Equation for CO and THC CEMS and Operating Parameter Limits. The rolling average, based on a specific number integer of hours, must be calculated using the following equation:

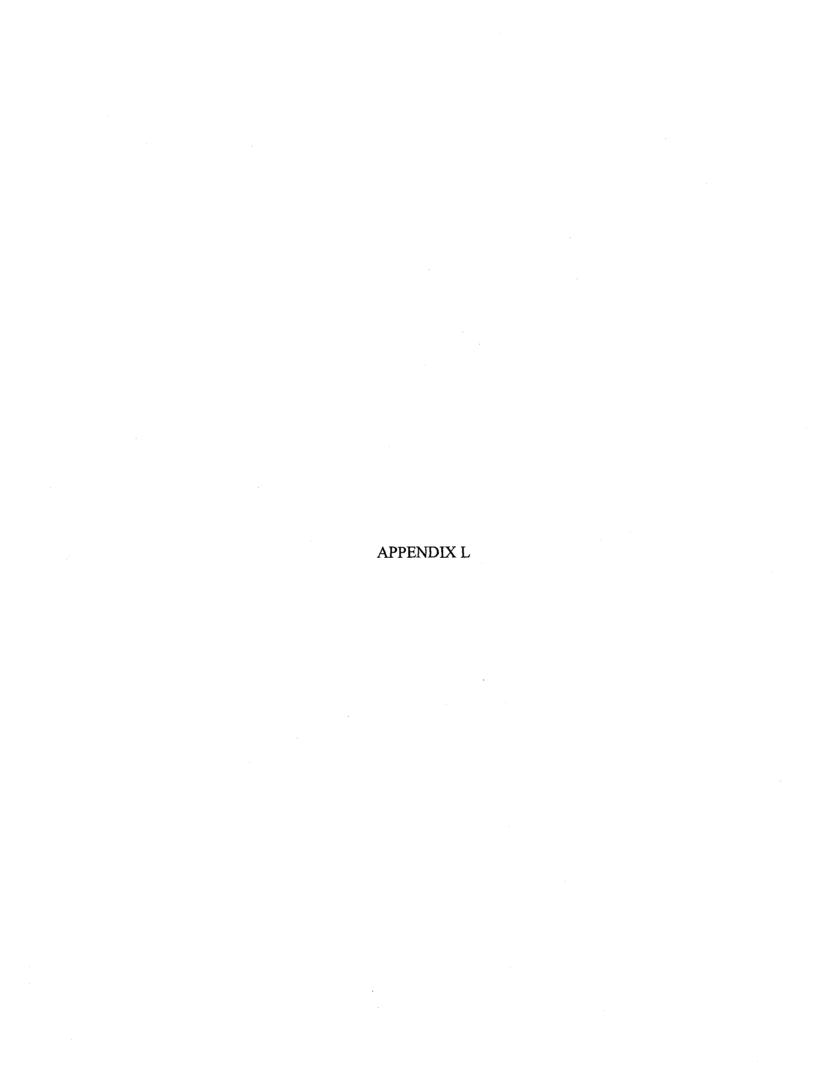
$$C_{RA} = \sum_{i=1}^{40} \frac{\bar{c}_i}{60}$$

Where:

 $c_{\rm RA}$ = The concentration of the standard, expressed as a rolling average

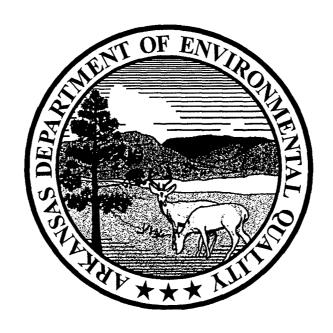
 $c_i$ = a one minute average

- 6.5.4 Averaging Periods for CEMS other than CO and THC. The averaging period for CEMS other than CO and THC CEMS must be calculated as a rolling average of all one-hour values over the averaging period. An hourly average is comprised of 4 measurements taken at equally spaced time intervals, or at most every 15 minutes. Fewer than 4 measurements might be available within an hour for reasons such as facility downtime or CEMS calibration. If at least two measurements (30 minutes of data) are available, an hourly average must be calculated. The n-hour rolling average is calculated by averaging the n most recent hourly averages.
- 6.6 Units of the Standards for the Purposes of Recording and Reporting Emissions. Emissions must be recorded and reported expressed after correcting for oxygen, temperature, and moisture.


Emissions must be reported in metric, but may also be reported in the English system of units, at 7 percent oxygen, 20 °C, and on a dry basis.

6.7 Rounding and Significant Figures. Emissions must be rounded to two significant figures using ASTM procedure E–29–90 or its successor. Rounding must be avoided prior to rounding for the reported value.

#### 7. Bibliography


1. 40 CFR part 60, appendix F, "Quality Assurance Procedures: Procedure 1. Quality Assurance Requirements for Gas continuous Emission Monitoring Systems Used For Compliance Determination".

[64 FR 53038, Sept. 30, 1999, as amended at 65 FR 42301, July 10, 2000]



|  |   | ÷ |  |  |   |
|--|---|---|--|--|---|
|  |   |   |  |  | 1 |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  |   |   |  |  | 1 |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  | • |   |  |  |   |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  |   |   |  |  |   |
|  | , |   |  |  |   |

# **Arkansas Department of Environmental Quality**



# CONTINUOUS EMISSION MONITORING SYSTEMS CONDITIONS

#### **PREAMBLE**

These conditions are intended to outline the requirements for facilities required to operate Continuous Emission Monitoring Systems/Continuous Opacity Monitoring Systems (CEMS/COMS). Generally there are three types of sources required to operate CEMS/COMS:

- 1. CEMS/COMS required by 40 CFR Part 60 or 63,
- 2. CEMS required by 40 CFR Part 75,
- 3. CEMS/COMS required by ADEQ permit for reasons other that Part 60, 63 or 75.

These CEMS/COMS conditions are not intended to supercede Part 60, 63 or 75 requirements.

- Only CEMS/COMS in the third category (those required by ADEQ permit for reasons other than Part 60, 63, or 75) shall comply with SECTION II, <u>MONITORING REQUIREMENTS</u> and SECTION IV, <u>QUALITY ASSURANCE/QUALITY CONTROL</u>.
- All CEMS/COMS shall comply with Section III, <u>NOTIFICATION AND RECORDKEEPING.</u>

#### SECTION I

#### **DEFINITIONS**

Continuous Emission Monitoring System (CEMS) - The total equipment required for the determination of a gas concentration and/or emission rate so as to include sampling, analysis and recording of emission data.

Continuous Opacity Monitoring System (COMS) - The total equipment required for the determination of opacity as to include sampling, analysis and recording of emission data.

Calibration Drift (CD) - The difference in the CEMS output reading from the established reference value after a stated period of operation during which no unscheduled maintenance, repair, or adjustments took place.

**Back-up CEMS** (Secondary CEMS) - A CEMS with the ability to sample, analyze and record stack pollutant to determine gas concentration and/or emission rate. This CEMS is to serve as a back-up to the primary CEMS to minimize monitor downtime.

Excess Emissions - Any period in which the emissions exceed the permit limits.

Monitor Downtime - Any period during which the CEMS/COMS is unable to sample, analyze and record a minimum of four evenly spaced data points over an hour, except during one daily zero-span check during which two data points per hour are sufficient.

Out-of-Control Period - Begins with the time corresponding to the completion of the fifth, consecutive, daily CD check with a CD in excess of two times the allowable limit, or the time corresponding to the completion of the daily CD check preceding the daily CD check that results in a CD in excess of four times the allowable limit and the time corresponding to the completion of the sampling for the RATA, RAA, or CGA which exceeds the limits outlined in Section IV. Out-of-Control Period ends with the time corresponding to the completion of the CD check following corrective action with the results being within the allowable CD limit or the completion of the sampling of the subsequent successful RATA, RAA, or CGA.

**Primary CEMS** - The main reporting CEMS with the ability to sample, analyze, and record stack pollutant to determine gas concentration and/or emission rate.

Relative Accuracy (RA) - The absolute mean difference between the gas concentration or emission rate determined by the CEMS and the value determined by the reference method plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the reference method tests of the applicable emission limit.

**Span Value** – The upper limit of a gas concentration measurement range.

#### **SECTION II**

#### **MONITORING REQUIREMENTS**

- A. For new sources, the installation date for the CEMS/COMS shall be no later than thirty (30) days from the date of start-up of the source.
- B. For existing sources, the installation date for the CEMS/COMS shall be no later than sixty (60) days from the issuance of the permit unless the permit requires a specific date.
- C. Within sixty (60) days of installation of a CEMS/COMS, a performance specification test (PST) must be completed. PST's are defined in 40 CFR, Part 60, Appendix B, PS 1-9. The Department may accept alternate PST's for pollutants not covered by Appendix B on a case-by-case basis. Alternate PST's shall be approved, in writing, by the ADEQ CEM Coordinator prior to testing.
- D. Each CEMS/COMS shall have, as a minimum, a daily zero-span check. The zero-span shall be adjusted whenever the 24-hour zero or 24-hour span drift exceeds two times the limits in the applicable performance specification in 40 CFR, Part 60, Appendix B. Before any adjustments are made to either the zero or span drifts measured at the 24-hour interval the excess zero and span drifts measured must be quantified and recorded.
- E. All CEMS/COMS shall be in continuous operation and shall meet minimum frequency of operation requirements of 95% up-time for each quarter for each pollutant measured. Percent of monitor down-time is calculated by dividing the total minutes the monitor is not in operation by the total time in the calendar quarter and multiplying by one hundred. Failure to maintain operation time shall constitute a violation of the CEMS conditions.
- F. Percent of excess emissions are calculated by dividing the total minutes of excess emissions by the total time the source operated and multiplying by one hundred. Failure to maintain compliance may constitute a violation of the CEMS conditions.
- G. All CEMS measuring emissions shall complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive fifteen minute period unless more cycles are required by the permit. For each CEMS, one-hour averages shall be computed from four or more data points equally spaced over each one hour period unless more data points are required by the permit.
- H. All COMS shall complete a minimum of one cycle of sampling and analyzing for each successive 10-second period and one cycle of data recording for each successive 6-minute period.
- I. When the pollutant from a single affected facility is released through more than one point, a CEMS/COMS shall be installed on each point unless installation of fewer systems is approved, in writing, by the ADEQ CEM Coordinator. When more than one CEM/COM is used to monitor emissions from one affected facility the owner or operator shall report the results as required from each CEMS/COMS.

#### **SECTION III**

#### **NOTIFICATION AND RECORD KEEPING**

- A. When requested to do so by an owner or operator, the ADEQ CEM Coordinator will review plans for installation or modification for the purpose of providing technical advice to the owner or operator.
- B. Each facility which operates a CEMS/COMS shall notify the ADEQ CEM Coordinator of the date for which the demonstration of the CEMS/COMS performance will commence (i.e. PST, RATA, RAA, CGA). Notification shall be received in writing no less than 15 days prior to testing. Performance test results shall be submitted to the Department within thirty days after completion of testing.
- C. Each facility which operates a CEMS/COMS shall maintain records of the occurrence and duration of start up/shut down, cleaning/soot blowing, process problems, fuel problems, or other malfunction in the operation of the affected facility which causes excess emissions. This includes any malfunction of the air pollution control equipment or any period during which a continuous monitoring device/system is inoperative.
- D. Except for Part 75 CEMs, each facility required to install a CEMS/COMS shall submit an excess emission and monitoring system performance report to the Department (Attention: Air Division, CEM Coordinator) at least quarterly, unless more frequent submittals are warranted to assess the compliance status of the facility. Quarterly reports shall be postmarked no later than the 30th day of the month following the end of each calendar quarter. Part 75 CEMs shall submit this information semi-annually and as part of Title V six (6) month reporting requirement if the facility is a Title V facility.
- E. All excess emissions shall be reported in terms of the applicable standard. Each report shall be submitted on ADEQ Quarterly Excess Emission Report Forms. Alternate forms may be used with prior written approval from the Department.
- F. Each facility which operates a CEMS/COMS must maintain on site a file of CEMS/COMS data including all raw data, corrected and adjusted, repair logs, calibration checks, adjustments, and test audits. This file must be retained for a period of at least five years, and is required to be maintained in such a condition that it can easily be audited by an inspector.
- G. Except for Part 75 CEMs, quarterly reports shall be used by the Department to determine compliance with the permit. For Part 75 CEMs, the semi-annual report shall be used.

#### **SECTION IV**

#### QUALITY ASSURANCE/QUALITY CONTROL

- A. For each CEMS/COMS a Quality Assurance/Quality Control (QA/QC) plan shall be submitted to the Department (Attn.: Air Division, CEM Coordinator). CEMS quality assurance procedures are defined in 40 CFR, Part 60, Appendix F. This plan shall be submitted within 180 days of the CEMS/COMS installation. A QA/QC plan shall consist of procedure and practices which assures acceptable level of monitor data accuracy, precision, representativeness, and availability.
- B. The submitted QA/QC plan for each CEMS/COMS shall not be considered as accepted until the facility receives a written notification of acceptance from the Department.
- C. Facilities responsible for one, or more, CEMS/COMS used for compliance monitoring shall meet these minimum requirements and are encouraged to develop and implement a more extensive QA/QC program, or to continue such programs where they already exist. Each QA/QC program must include written procedures which should describe in detail, complete, step-by-step procedures and operations for each of the following activities:
  - 1. Calibration of CEMS/COMS
    - a. Daily calibrations (including the approximate time(s) that the daily zero and span drifts will be checked and the time required to perform these checks and return to stable operation)
  - 2. Calibration drift determination and adjustment of CEMS/COMS
    - a. Out-of-control period determination
    - b. Steps of corrective action
  - 3. Preventive maintenance of CEMS/COMS
    - a. CEMS/COMS information
      - 1) Manufacture
      - 2) Model number
      - 3) Serial number
    - b. Scheduled activities (check list)
    - c. Spare part inventory
  - 4. Data recording, calculations, and reporting
  - 5. Accuracy audit procedures including sampling and analysis methods
  - 6. Program of corrective action for malfunctioning CEMS/COMS
- D. A Relative Accuracy Test Audit (RATA), shall be conducted at least once every four calendar quarters. A Relative Accuracy Audit (RAA), or a Cylinder Gas Audit (CGA), may be conducted in the other three quarters but in no more than three quarters in succession. The RATA should be conducted in accordance with the applicable test procedure in 40 CFR Part 60 Appendix A and calculated in accordance with the applicable performance specification in 40 CFR Part 60 Appendix B. CGA's and RAA's should be conducted and the data calculated in accordance with the procedures outlined on 40 CFR Part 60 Appendix F.

If alternative testing procedures or methods of calculation are to be used in the RATA, RAA or CGA audits prior authorization must be obtained from the ADEQ CEM Coordinator.

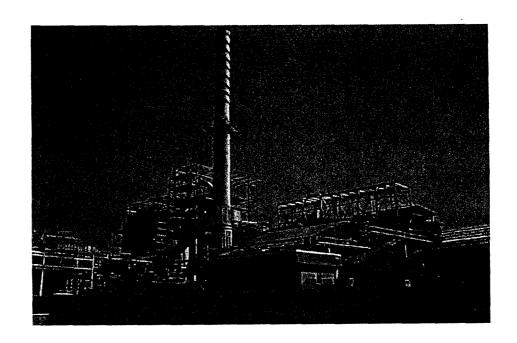
# E. Criteria for excessive audit inaccuracy.

#### **RATA**

| All Pollutants<br>except Carbon<br>Monoxide | > 20% Relative Accuracy          |
|---------------------------------------------|----------------------------------|
| Carbon Monoxide                             | > 10% Relative Accuracy          |
| All Pollutants<br>except Carbon<br>Monoxide | > 10% of the Applicable Standard |
| Carbon Monoxide                             | > 5% of the Applicable Standard  |
| Diluent (O <sub>2</sub> & CO <sub>2</sub> ) | > 1.0 % O2 or CO2                |
| Flow                                        | > 20% Relative Accuracy          |

#### **CGA**

| Pollutant                                   | > 15% of average audit value or 5 ppm difference |
|---------------------------------------------|--------------------------------------------------|
| Diluent (O <sub>2</sub> & CO <sub>2</sub> ) | > 15% of average audit value or 5 ppm difference |


#### **RAA**

| Pollutant                                   | > 15% of the three run<br>average or > 7.5 % of the<br>applicable standard |
|---------------------------------------------|----------------------------------------------------------------------------|
| Diluent (O <sub>2</sub> & CO <sub>2</sub> ) | > 15% of the three run<br>average or > 7.5 % of the<br>applicable standard |

- F. If either the zero or span drift results exceed two times the applicable drift specification in 40 CFR, Part 60, Appendix B for five consecutive, daily periods, the CEMS is out-of-control. If either the zero or span drift results exceed four times the applicable drift specification in Appendix B during a calibration drift check, the CEMS is out-of-control. If the CEMS exceeds the audit inaccuracies listed above, the CEMS is out-of-control. If a CEMS is out-of-control, the data from that out-of-control period is not counted towards meeting the minimum data availability as required and described in the applicable subpart. The end of the out-of-control period is the time corresponding to the completion of the successful daily zero or span drift or completion of the successful CGA, RAA or RATA.
- G. A back-up monitor may be placed on an emission source to minimize monitor downtime. This back-up CEMS is subject to the same QA/QC procedure and practices as the primary CEMS. The back-up CEMS shall be certified by a PST. Daily zero-span checks must be performed and recorded in accordance with standard practices. When the primary CEMS goes down, the back-up CEMS may then be engaged to sample, analyze and record the emission source pollutant until repairs are made and the primary unit is placed back in service. Records must be maintained on site when the back-up CEMS is placed in service, these records shall include at a minimum the reason the primary CEMS is out of service, the date and time the primary CEMS was placed back in service.

APPENDIX M





WFB Recovered Energy Calculation Plan
El Dorado Facility
El Dorado, AR

| TITLE: WFB Recovered Energy Calculation Plan | SOP No.:<br>69EL-2009- | Page 2 of 4 |
|----------------------------------------------|------------------------|-------------|
| 1                                            |                        | Į į         |

| Facility:               | Prepared by:                      | SOP Number:       | Page 2 of 4 |
|-------------------------|-----------------------------------|-------------------|-------------|
| Clean Harbors El Dorado | S. Shoemaker                      | 69EL-2009-        |             |
| Reviewed By:            | Title:                            |                   |             |
| Scot Shoemaker          | Maintenance Manager               |                   |             |
| Reviewed By:            | Title:                            | Issue Date:       |             |
| Russell Hargiss         | Health and Safety Manager 3/11/09 |                   |             |
| Approved By:            | Title:                            | Next Review Date: |             |
| Ron Hines               | General Manager                   | 3/11/10           |             |

#### 1.0 Objective

Clean Harbors El Dorado operates a waste fired boiler (WFB) that does not qualify as a MACT boiler according to regulation 63.1217. Clean Harbors El Dorado does not utilize more than 74% of the recovered energy from the WFB as calculated on an annual basis and documented monthly. The facility is required to document these calculations as part of its Air Permit #1009-AOP-R5. This procedure describes the method utilized to demonstrate compliance with this requirement.

#### 2.0 Site Specific Terms

WFB - Waste Fired Boiler

### 3.0 Responsibilities

The General Manager will ensure that all employees are trained and knowledgeable regarding the proper operating procedures.

The Maintenance Manager and Supervisors are responsible for monitoring, and enforcing this procedure with the employees.

Employees are responsible for following and adhering to safe work practices and all provisions found in this procedure.

#### 4.0 Prerequisites

1) Plant instrument and PLC training and knowledge.

#### 5.0 Procedure

Clean Harbors El Dorado's renewed Title V air permit has the following two (2) specific conditions regarding the operation of the WFB:

SC # 13 The permittee shall not utilize more than 74% of the recovered energy, calculated on an annual basis, from the liquid waste fired boiler at SN-01. The permit shall maintain monthly records to demonstrate compliance with this specific condition. These records shall be updated the 15<sup>th</sup> day of the month following the month to which the records pertain, shall be kept on site and shall be

| TITLE: WFB Recovered Energy Calculation Plan | SOP No.:<br>69EL-2009- | Page 3 of 4 |
|----------------------------------------------|------------------------|-------------|
|                                              |                        | <u> </u>    |

provided to the ADEQ personnel upon request. A 12-month rolling average and each individual month's data shall be submitted in accordance with GP #7.

SC #14

A plan for calculating the energy utilization rate of the liquid fired boiler at SN-01 shall be submitted to the ADEQ for approval within 60 days of the date of issuance of Permit #1009-AOP-R5.

This SOP represents the plan for complying with specific condition (SC #14) above. Compliance with SC #13 is described below.

The definition of recovered energy for the purpose of this plan will be the total steam output of the WFB outlet header measured in pounds per hour (#/hr). To determine the utilization of the total steam output of the WFB the steam flow in pounds per hour (#/hr) will be tracked to the processes that are recovering the energy. Clean Harbors El Dorado currently has only two (2) processes that utilize the recovered energy and they are:

## **Brine Recovery Process**

#### Solvent Recovery Process

The steam utilized by these processes will be tracked and these flows will be considered the utilized recovered energy. Therefore, to determine compliance with SC #13 the following calculation will be used.

WFB Recovered Energy % (Er) = [ { Brine Recovery Utilized Energy (#/hr steam flow) + Solvent Recovery Utilized Energy (#/hr steam flow) } / {WFB Total Energy Output (#/hr steam flow) } ] x 100

Any future site processes that utilize recovered energy from the WFB will be added to the calculation to determine compliance.

The WFB recovered energy calculation will be programmed into the PLC for tracking and for compliance demonstration. The monthly average will be documented on the 15<sup>th</sup> of every month per SC #13. These monthly averages will be used to calculate a 12-month rolling average to comply with reporting requirements under general provision (GP) #7.

To ensure the accuracy of the calculation the instruments used to measure the steam flow will be calibrated on a set schedule. All steam flow measurements will be determine by taking a differential pressure across an orifice plate and the signal will be converted into an analog measurement of flow in pounds per hour. To maintain the accuracy of these measurement devises the following calibrations will be preformed and documented.

| TITLE: WFB Recovered Energy Calculation Plan | SOP No.:<br>69EL-2009- | Page 4 of 4 |
|----------------------------------------------|------------------------|-------------|
|                                              |                        | ]           |

#### Quarterly

The following differential pressure flow transmitters will be calibrated using a calibrated Fluke 725 meter with a Fluke 700 series pressure module or equivalent. All taps and connections will be cleared and checked to be leak free.

126FT426 Waste Fired Boiler Steam Flow 108FITXXXX Brine Recovery Unit Steam Flow 600FT118 Solvent Recovery Steam Flow

#### **Annually**

Orifice plates associated with the following differential pressure flow transmitters will be removed and measured to ensure the orifice diameter is not worn greater than 0.5% of the design diameter. If the orifice plate is worn >0.5% of the design diameter the orifice plate will be replaced.

126FT426 Waste Fired Boiler Steam Flow 108FITXXXX Brine Recovery Unit Steam Flow 600FT118 Solvent Recovery Steam Flow

#### 6.0 Consequences of Deviations

- Calculation Error(s)
- Non-compliance with Title V Air Permit

#### 7.0 Appendices

| Approvais                    |                      |
|------------------------------|----------------------|
| General Manger               | Incineration Manager |
| Facility Engineering Manager | Compliance Manager   |

# **CERTIFICATE OF SERVICE**

| I, Pam Owen,  | nereby certify that a copy | of this permit has been mailed by first class mail to         |
|---------------|----------------------------|---------------------------------------------------------------|
| Clean Harbors | s El Dorado, LLC, 309 An   | merican Circle, El Dorado, AR, 71730, on this 16 <sup>+</sup> |
| day of        | July                       | , 2010.                                                       |
|               | •                          |                                                               |
|               |                            | Pom Owen                                                      |
|               |                            | Pam Owen A All Air Division                                   |