STATEMENT OF BASIS

For the issuance of Air Permit # 1016-AOP-R17 AFIN: 10-00004

1. PERMITTING AUTHORITY:

Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Elemental Environmental Solutions LLC 500 East Reynolds Road Arkadelphia, Arkansas 71923

3. PERMIT WRITER:

Sterling Powers

4. NAICS DESCRIPTION AND CODE:

NAICS Description:Hazardous Waste Treatment and DisposalNAICS Code:562211

5. ALL SUBMITTALS:

The following is a list of ALL permit applications included in this permit revision.

Date of Application	Type of Application	Short Description of Any Changes	
	(New, Renewal, Modification,	That Would Be Considered New or	
	Deminimis/Minor Mod, or	Modified Emissions	
	Administrative Amendment)		
11/1/2022	Minor Mod	Add a Stabilization Pit (SN-48)	
07/21/23	Minor Mod	Add a 687 Horsepower Fire Pump	
		Engine	
10/05/2023	Minor Mod	• Add 4 new emergency	
		generators (SN-50,51,52, 53)	
		Change the steel bunker mixing diesel	
		motor to electric (SN-32)	
11/09/2023	Admin Amendment	Update IA List	

6. **REVIEWER'S NOTES:**

Elemental Environmental Solutions LLC (EES) operates a hazardous waste and spent potliner thermal treatment process at its facility located in Gum Springs, Arkansas. This

minor permit modification proposes to add a Fire Pump Engine (687 HP, certified 4 stroke Caterpillar C18H0 – UFAD68) as SN-49, a diesel storage tank (849 gallon) to the Insignificant Activities List, a Stabilization Pit (SN-48), and four new emergency generators (SN-50, 51, 52, and 53). The Steel Bunker Mixing (SN-32) diesel motor will also be replaced with an electric motor, and the emissions revised. Description of Source SN-35 was renamed, 'Waste Storage Tanks," and the number of these tanks was corrected. A Cooling Tower was added to the Insignificant Activities List, and pyrometers were included as optional monitoring for the kiln temperature. Permitted emissions will increase by 4 tpy PM₁₀, 0.7 tpy CO, 4.4 tpy PM, 0.98 tpy Total Organic HAPs; permitted emissions will decrease by 1 tpy SO_x, 0.1 tpy VOC, 22.3 tpy NO_x.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

Facility was last inspected on March 9, 2022. Inspection found possible violations involving throughput limits at SN-39, and opacity records being unavailable or not completed. Reference document Z0004JR97.xml for the inspection letter and document Z0004KPJM.xml for facility response.

8. PSD/GHG APPLICABILITY:

a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N

- b) Is the facility categorized as a major source for PSD? N
- Single pollutant \geq 100 tpy and on the list of 28 or single pollutant \geq 250 tpy and not on list

If yes for 8(b), explain why this permit modification is not PSD.

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)	
01, 05-16, 18, 20-27, 32, 45, 48	\mathbf{PM}_{10}	CAM	
Facility	All	NESHAP 40 C.F.R. § 63 Subpart EEE	
49	HAPs	NSPS 40 C.F.R. § 60 Subpart IIII	
33	HAPs	NESHAP 40 C.F.R. § 63 Subpart ZZZZ	
19	NO _x , CO & O ₂ , SO ₂	CEMs	
34	HAPs	NESHAP 40 C.F.R. § 63 Subpart DD	
37	Benzene	40 CFR 61 Subpart FF	
40	$CO, O_2, SO2 and NO_X$	CEMS	
40	Mercury	40 CFR Part 61 Subpart E	
40	Beryllium	40 CFR Part 61 Subpart C	

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
50, 51, 52, 53	HAPs	40 CFR Part 60 Subpart JJJJ

10. UNCONSTRUCTED SOURCES:

Unconstructed Source	Permit Approval Date	Extension Requested Date	Extension Approval Date	If Greater than 18 Months without Approval, List Reason for Continued Inclusion in Permit
N/A				

11. PERMIT SHIELD – TITLE V PERMITS ONLY:

Did the facility request a permit shield in this application? N (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Rule 18 requirement.)

If yes, are applicable requirements included and specifically identified in the permit? N/A If not, explain why.

For any requested inapplicable regulation in the permit shield, explain the reason why it is not applicable in the table below.

Source	Inapplicable Regulation	Reason
34	40 C.F.R. Part 60 Subpart VVa	Not a synthetic organic chemical manufacturing industry

12. COMPLIANCE ASSURANCE MONITORING (CAM) – TITLE V PERMITS ONLY:

List sources potentially subject to CAM because they use a control device to achieve compliance and have pre-control emissions of at least 100 percent of the major source level. List the pollutant of concern and a brief summary of the CAM plan (temperature monitoring, CEMs, opacity monitoring, etc.) and frequency requirements of § 64.

Source Pollutant Controlled		Cite Exemption or CAM Plan Monitoring and Frequency	
01, 05-16, 18, 20-27, 32, 45, 48	PM/PM ₁₀	5 opacity exceedances in any 6 month period	

Source	e Pollutant Controlled Cite Exemption or CAM Plan Monitoring a Frequency	
19	all	COM limit for more than two consecutive hours, operates outside the range of Continuous Pressure Differential Reading, or fails two consecutive stack tests

13. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

14. AMBIENT AIR EVALUATIONS:

The following are results for ambient air evaluations or modeling.

a) NAAQS

A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the DEQ Air Permit Screening Modeling Instructions.

b) Non-Criteria Pollutants:

The non-criteria pollutants listed below were evaluated. Based on Division of Environmental Quality procedures for review of non-criteria pollutants, emissions of all other non-criteria pollutants are below thresholds of concern.

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Division of Environmental Quality has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m ³)	$PAER (lb/hr) = 0.11 \times TLV$	Proposed lb/hr	Pass?
Ammonia	17.41	1.92	19.38	Ν
Arsenic Compounds	0.01	0.0011	0.0243	Ν
Beryllium Compounds	0.002	2.2E-04	0.0244	Ν

Permit #: 1016-AOP-R17 AFIN: 10-00004 Page 5 of 12

Pollutant	TLV (mg/m ³)	$\begin{array}{c} PAER (lb/hr) = \\ 0.11 \times TLV \end{array}$	Proposed lb/hr	Pass?
Cadmium Compounds	0.01	0.0011	0.0492x	Ν
Chlorine	1.45	0.1595	16.02x	Ν
Chromium Compounds	0.01	0.0011	0.026	Ν
Fluorides	2.5	0.275	3.73	Ν
Hydrochloric Acid (Hydrogen Chloride)	2.98	0.3278	16.48	N
Mercury	0.025	0.00275	0.028	Ν
Polycyclic Aromatic Hydrocarbons*	0.2	0.022	0.717	N
Lead	0.05	0.0055	0.061	Ν
Bromine	0.6536	0.0718	4.47	Ν
Selenium	0.2	0.022	0.463	Ν
Antimony	0.5	0.055	0.02415	Y
Cobalt	0.02	0.0022	0.024	Ν
Manganese Compounds	0.2	0.022	0.005	Y
Acetaldehyde*	45.0	4.95	0.000922	Y
Acrolein*	0.23	0.25	0.000111	Y
Benzene	32.0	3.52	0.00112	Y
1,3-Butadiene*	4424.7	486.7	0.000047	Y
Formaldehyde*	15.0	1.65	0.00143	Y
Toluene*	188.0	20.7	0.00492	Y
Xylene*	434.0	47.7	0.000343	Y

*Emergency generators have not been modeled.

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each

compound has been deemed by the Division of Environmental Quality to be one onehundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration $(\mu g/m^3)$	Pass?
Ammonia	200-Annual 3200-1 Hour	4.37=Annual 254.3=1 Hour	Y
Chromium Compounds	0.1	0.00405	Y
Lead	0.5	0.004	Y
Bromine	6.536	0.51373	Y
Cobalt	0.2	0.00168	Y

15. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
01, 05, 06, 26, 27, 30, 31	Grain Loading	0.002 gr/acf	Baghouse	99.9%	
07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25	Grain Loading	0.005 gr/acf	Baghouse	99.9%	
19 and 40	MACT EEE Limits, Stack Testing (SO ₂), and Waste Analysis for VOC	$SO_{2} Max \%: 4.0 Max Flow= 15 gal/min SO_{2}= (0.24 lb SO_{2}/lb S)(510 lb S supplied/hr)= 122.4 lb/hr SO_{2}= 241.1 tpy$	Afterburner Baghouse	99.9% 99.9%	Throughput higher than 20tph, $SO_2=0.18$ lb $SO_2/lb S$ Less than = 0.24

Permit #: 1016-AOP-R17 AFIN: 10-00004 Page 7 of 12

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
		NO _X testing showed max to be much lower (29.62 lb/hr & 129.7 tpy) than permitted, but leaving it the same as last permit.			
	AP-42 11.19.2 MSDS	Operation lb/ton Screen=0.072 Crusher=0.015 Loading/Unloading= 0.0004 Conveyor= 0.0077	Primary Screen= Baghouse	99.9%	Portable Baghouse is operated by electric motor
32	AP-42 3.3	2 nd Cut = 0.1% Sodium Beryllium Fluoride Based on Molecular Weight Ratio PM= 0.31 lb/MMBtu	Crusher= Building Loading/Unloading= Baghouse	80% 99.9%	8,760 hr/yr Max weight fraction Fluoride: 5.57E-01 g F / g material feed
		$PM_{10}= 0.31 \text{ lb/MMBtu} \\ SO_2= 0.29 \text{ lb/MMBtu} \\ VOC= 0.36 \text{ lb/MMBtu} \\ CO= 0.95 \text{ lb/MMBtu} \\ NO_X= 4.41 \text{ lb/MBtu} \\ NO_X=$	Conveyor (7 drop off pts)= building	80%	Beryllium: 6.87E-05 g Be / g material feed
33	AP-42 Chapter 3.3 for Combustion	$\frac{lb/MMBtu}{PM=0.31}$ $PM_{10}=0.31$ $SO_{2}=0.29$ $VOC=0.36$ $CO=0.95$ $NO_{X}=4.41$	None	N/A	Calculated at 1,000 hours of operation per year
34	Table 2-9, 2-11 of EPA "Protocol for Equipment Leak & Emission Estimates" Nov, 1995		None	N/A	<u>Max VOC</u> <u>Concentration</u> 500 ppmv Light Liquid Valves= 42 Light Liquid Pumps= 14 Connectors= 112
35	Tanks Program	Organic Fuel Max throughput=	Tank Vent	99%	(2)- 50,000 Gallon and (4)-

Permit #: 1016-AOP-R17 AFIN: 10-00004 Page 8 of 12

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
		10,512,000 gal/yr Worst Case= 30% throughput Methyl Alcohol			24,000 gallon Tanks
36	AP-42 Table 11.19.2	Max throughput = 200,000 ton/yr 0.0085 lb PM/ton 0.0035 lb PM ₁₀ /ton	None	N/A	Half of PM assumed to be PM ₁₀
38		PM/PM ₁₀ 0.01 grains/DSCF Dioxin/Furan 1.05E-10 wt%			
48	Vendor- supplied Grain loading factor	Grain loading factor = 0.0028 grain/Dry CSF	Baghouse	99.9%	Blow Capacity: 300,000 ft3/hr 8760 hours/yr 1/7000 lb/grains
49	AP-42, Tier 3 Emission Factor	PM:0.087 g/HP-hr PM10:0.22 g/HP-hr SOX:2.05E-03 lb/HP- hr VOC: 0.06 g/HP-hr CO: 0.92 g/HP-hr NOX: 2.7 g/HP-hr			687 HP BSFC = 7000 Btu/HP-hr 500 hr/yr
50, 51	AP-42, Manufacturer's Datasheet, Tier 2 Emission Limits	PM:0.04 g/HP-hr PM10:0.04 g/HP-hr SOX:5.88E-04 lb/HP- hr VOC: 0.45 g/HP-hr CO: 1.6 g/HP-hr NOX: 0.47 g/HP-hr	N/A	N/A	2820 HP 1020 btu/scf 18.12 MMBtu/hr 500 hours
52	AP-42, Manufacturer's Datasheet, Tier 2 Emission Limits	PM:7.71E-05 g/HP-hr PM10:7.71E-05 g/HP- hr SOX:5.88E-04 lb/HP- hr VOC: 0.85 g/HP-hr CO: 0.95 g/HP-hr NOX: 1.17 g/HP-hr	N/A	N/A	950 HP 1020 btu/scf 9.92 MMBtu/hr 500 hours
53	AP-42,	PM:7.71E-05 g/HP-hr	N/A	N/A	163 HP

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
	Manufacturer's	PM10:7.71E-05 g/HP-			1020 Btu/scf
	Datasheet, Tier	hr			1.01 MMBtu/hr
	2 Emission	SOX:5.88E-04 lb/HP-			
	Limits	hr			
		VOC: 0.85 g/HP-hr			
		CO: 0.95 g/HP-hr			
		NOX: 1.17 g/HP-hr			

16. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
19	EEE	EEE See Plantwide		
19	SO_2	6C		
19	Average VOHAP concentration for off-site material streams	Sampling, Method 305 in 40 CFR part 63, Method 25D in 40 CFR part 60, Method 624 in 40 CFR part 136, Method 625 in 40 CFR part 136, Method 1624 in 40 CFR part 136, Method 1625 in 40 CFR part 136, Method 8260 in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846, Third Edition, September 1986, as amended by Update I, November 15, 1992, or Method 8270 in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication No. SW-846, Third Edition, September 1986, as amended by Update I, November 15, 1992		

17. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

Permit #: 1016-AOP-R17 AFIN: 10-00004 Page 10 of 12

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
19	Various AFS systems	CEM	Continuous	N
19	CO Concentration	CEM	Continuous	N
19	PM Concentration	СОМ	Continuous	N
19	NO _X Concentration	CEM	Continuous	Ν
19	SO ₂ Concentration	CEM	Continuous	Ν
40	Various AFS systems	CEM	Continuous	Ν
40	CO Concentration	CEM	Continuous	Ν
40	PM Concentration	СОМ	Continuous	Ν
40	NO _X Concentration	CEM	Continuous	Ν
40	SO ₂ Concentration	CEM	Continuous	Ν
48	PM Concentration	СОМ	Continuous	Ν

18. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
33	Maintenance/Malfunction	N/A	Monthly	Ν
33	Hours of Operation	1,000 Hours per year	Monthly	Ν
49	Hours of Operation	500 Hours per year	Monthly	Ν

19. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
32, 38, 49, 50, 51, 52, 53	5%	§18.501	Inspector Observation
48	5%	CAM	Daily
01, 05, 06, 09, 10, 11, 18, 20, 21, 22, 26, 27	7%	CAM	Weekly
07, 08, 12, 13, 14, 15, 16, 23, 24, 25	10%	CAM	Weekly
19 and 40	20%	Guidance	Continuous
33	20%	Guidance	Inspector Observation

20. DELETED CONDITIONS:

Former SC	Justification for removal
N/A	

21. GROUP A INSIGNIFICANT ACTIVITIES:

The following is a list of Insignificant Activities including revisions by this permit.

	a i	Emissions (tpy)							
Source Name	Group A	PA				HAPs			
	Category	PM/PM ₁₀	SO_2	VOC	CO	NO _x	Single	Total	
Five Diesel Fuel Storage Tanks 4000, 200, 200, 2500, 2000, and 1000 gallon capacity.	3			0.002					
Diesel Fuel Storage Tank (849 gal)	3			2.24E-04					
Laboratory Dust Collector and Vent	5	0.0001		0.22			0.22	0.22	
Lime Handling Fugitives (SN-29)	13	0.003							
Cooling Tower (300 gpm)	13	PM=0.22 PM ₁₀ =0.03							
Cooling Tower (7500 gpm)	13	PM=0.23 PM ₁₀ =0.03							
Cooler Conveyor Dust Collector	13	0.0001							
Leachate Tanks	13			0.0001					
Loading Silos	13	PM= 0.19 PM ₁₀ =0.09							
Air Duct Systems	13	0.0001							
Initial Size Reduction System	13	0.0001							
Loadout Inline Dust Collector (SN-31)	13	0.08					2.97E-05	7.61E-05	
Hot Water Heater #1	13	0.01	0.01	0.01	0.1	0.12	2.09E-03	2.18E-03	
Hot Water Heater #2	13	0.01	0.01	0.01	0.1	0.12	2.09E-03	2.18E-03	
Drum Sampling	13			0.7			0.7	0.7	
Aluminum Oxide Tank w/BV	13	0.033							
Activated Carbon	13	0.003							

Permit #: 1016-AOP-R17 AFIN: 10-00004 Page 12 of 12

	Crown A		Emissions (tpy)						
Source Name	Group A Category	PM/PM ₁₀	SO ₂	VOC	СО	CO NO _x	HAPs		
			\mathbf{SO}_2				Single	Total	
Tank w/BV									
Reagent #1 Tank									
(32.5% Urea	13			0.15					
solution)									
Total		0.3594	0.02	1.0923	0.2	0.24	0.92421	0.9244	

22. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
1016-AOP-R16	

APPENDIX A – EMISSION CHANGES AND FEE CALCULATION

Fee Calculation for Major Source

Facility Name: Elemental Environmental Solutions, LLC Permit Number: 1016-AOP-R17 AFIN: 10-00004

Annual Chargeable Emissions \$/ton factor 28.14 734.562 (tpy) Minor Permit Type Permit Fee \$ 500 Mod Minor Modification Fee \$ 500 Minimum Modification Fee \$ 1000 **Renewal with Minor Modification \$** 500 Check if Facility Holds an Active Minor Source or Minor Source General Permit \Box 0 If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$ **Total Permit Fee Chargeable Emissions** -19 (tpy) Initial Title V Permit Fee Chargeable Emissions (tpy)

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

	Check if Chargea ble	Old	New	Chang e in Emissi	Permit Fee Charge able Emissi	Annual Chargeab le Emission
Pollutant (tpy)	Emission	Permit	Permit	ons	ons	S
РМ		68.5	72.9	4.4	4.4	72.9
PM_{10}		67.8	71.8	4		
PM _{2.5}		0	0	0		
SO ₂		243	242	-1	-1	242
VOC		36.1	36	-0.1	-0.1	36
СО		107.5	108.2	0.7		
NO _X		245.7	223.4	-22.3	-22.3	223.4
Lead	\checkmark	0.212	0.212	0	0	0.212
Arsenic Compounds		0.09	0.09	0		

Revised 03-11-16

Beryllium Compounds		0.09	0.09	0		
Cadmium Compounds		0.22	0.22	0		
Chlorine		41.15	41.15	0	0	41.15
Hydrochloric Acid		42.3	42.3	0	0	42.3
Chromium Compounds		0.09	0.09	0	0	72.5
Chromium Compounds		3.50E-	0.09	0		
Dioxin and Furans		07	3.50E-07	0		
Fluorides	\checkmark	6.49	6.49	0	0	6.49
Mercury		0.12	0.12	0		
РАН		2.99	2.99	0		
Bromine		11.61	11.61	0		
Selenium		0.21	0.21	0		
Ammonia	•	70.11	70.11	0	0	70.11
Single Organics		11.62	11.62	0		
Total Other Organics		61.77	62.75	0.98		
Benzene		0.26	0.26	0		
Antimony		0.09	0.09	0		
Cyanide		3.60E- 04	3.60E-04	0		