AFIN #: 3200036 Page 1 of 20

STATEMENT OF BASIS

for the issuance of Air Permit # 1085-AOP-R8.

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality Air Division 5301 Northshore Drive North Little Rock, AR 72118-5317

2. APPLICANT:

FutureFuel Chemical Company 2800 Gap Road Batesville, Arkansas 72503

3. PERMIT WRITER

Paula Parker

4. PROCESS DESCRIPTION AND SIC CODE:

SIC Description: Chemical Processing Plant

SIC Code: 2869 NAICS Code: 325110

5. SUBMITTALS: 11/13/07; 1/9/08; 1/16/08; 2/1/08; 2/5/08; 3/21/08

6. REVIEWER'S NOTES:

FutureFuel Chemical Company (AFIN # 32-00036) has submitted two modifications in order to make the following changes to their Title V Air Permit:

• Add NESHAP FFFF requirements for several sources at the facility

All or part of the following are subject to the MON standards: Organic Chemical Intermediates, Organic Sulfonation Process, Solvent Recovery, Isopropyl Benzene Production, 5N07 Production Facility, Aldehyde Processing Facility, and the Storage Tanks and Miscellaneous Sources. These MON conditions have been included in a separate section. These sources are existing source because most of the equipment qualifies as existing sources. Also, the "potential to emit" for Aldehyde Processing is less than 10 TPY of a single HAP or 25 TPY of combined HAPS.

• Route the process equipment going to the scrubbers 4P02-01 and 4P94-02, directly to the RTOs;

Several sources will now be routed to the RTO: From SV-01, SA-01, SC-01, SC-02, SI-01, SM-01, TFS-59, and TFS-92; and from SV-03, BC-03, BW-02, TFS-61, TFS-62, TFS-63, TFS-64, TFS-65, TFS-66. Permitted emissions at the Solvent Recovery Emission Bubble will decrease from 27.8 lb/hr and 79 tpy to 3.9 lb/hr and 17.0 tpy VOC and Organic HAP.

Route storage tank TF-2, PES # 5N01-44 to the RTOs;

This is an 18,000 gallon storage tank which currently vents to the atmosphere. The facility would like to control the tank through the RTO to allow for more flexibility of use. Emissions are currently part of the Tank Bubble 5N03-TK-01 but will be removed when routed to the RTO.

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 2 of 20

The 5N03-TK-01 Bubbled emissions are decreasing, from 7.8 lb/hr and 34.0 tpy to 7.5 lb/hr and 33.0 tpy, VOC and Organic HAP.

• Install three new storage tanks;

Three new tanks, T-271 (30,000 gallons), T-272 (30,000 gallons), and T-273 (40,000 gallons) will be installed for HAP storage. Each tank is vapor balanced with incoming railcars and tank trucks at the Aldehyde Processing Section. These tanks will not emit and are not subject to NSPS Subpart Kb applicability because they will be operated at a pressure in excess of 29.7 psia.

• Use an existing storage tank, PT-50, for storage of off-site waste;

Tank PT-50 is an existing 10,000 gallon storage tank that will be used to receive waste from off-site and therefore, is subject to NESHAP DD – Off-Site Waste and Recovery Operations. The tank will be vented to the RTO and will not emit directly to the atmosphere.

• Rename T-212A to VC-PT-03;

There will be no physical changes at the source. It is located in the Aldehyde Processing Section.

• Remove TFB-30 from NSPS Subpart Kb applicability

The tank is greater than 151 m³ and stores a liquid with a maximum true vapor pressure less than 3.5 kPa.

• Redirect the reactor vents from the SB-01 (Source # 4P05-02), located in the Aldehyde Section, to SV-03 (Source # 4P94-02), a water scrubber located in Solvent Recovery.

The SB-01 scrubber is only used to control emissions from reactor cleaning processes, performed 35 times a year at each of the two reactors. The bakeout emissions would instead, be exhausted from SV-03, and then to the Regenerative Thermal Oxidizer (Source # 5N09-01). Emissions at the RTO would increase slightly, by 2.2 tpy PM/PM₁₀ and 2.0 tpy CO, but due to the elimination of exhaust at the scrubber itself, plantwide emissions would be decreasing by 0.2 tpy VOC and 8.0 tpy CO.

Plantwide VOC and Organic HAP emissions are decreasing by 63.2 tpy and 8.0 tpy CO.

7. COMPLIANCE STATUS:

The following summarizes the current compliance status of the facility including active/pending enforcement actions and recent compliance activities and issues

The facility is currently under no enforcement actions.

8. APPLICABLE REGULATIONS:

A. PSD Applicability

Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, et cetera?

Has this facility undergone PSD review in the past?

Y Permit# 1085-AR-1

Is this facility categorized as a major source for PSD?

AFIN #: 3200036

Page 3 of 20

 \geq 100 tpy and on the list of 28 (100 tpy)?

Y

 \geq 250 tpy all other

Y

B. PSD Netting

Was netting performed to avoid PSD review in this permit?

N

If so, indicate increases and decreases used in netting for PSD purposes only.

C. Source and Pollutant Specific Regulatory Applicability

Source	Pollutant	Regulation
Organic Chemical Intermediates	VHAP	NESHAP 63 MMM
Section	VIIAI	NESHAP 63 GGG
6M07-01	NOx	NSPS Db
5M01-02	VOC	NSPS NNN
Organic Sulfonation Section DIPB Production. (Equipment Leaks)	VOC	NSPS VV

Page 4 of 20

9		
Source	Pollutant	Regulation
TF-13 (SN-5N03-43) WB-06 (SN-6M-03-08) WB-07 (SN-6M-03-09) WB-08 (SN-6M-03-10) WB-09 (SN-6M-03-11) Tanks under SN-5M04-01 Tanks under SN-5M04-02 Tanks under SN-5M04-06 Tanks under SN-5M04-08 Tanks under SN-5M14-06 TFS-60 PT-60 PT-68 PT-69 PT-68 PT-98 PB-51 PB-52 PM-50A PM-50B TBA-100 4P94-11 SN-5N03-51 SN-5N03-53 T-280 T-265 T-251 T-220 T-211A T-211B T-241 TF-13 PA-50 T-242 T-243 VC-PT-03 VC-PT-01 VC-PT-02	VOC	NSPS Kb
Utilities Section (coal processing activities).	PM	NSPS Y
DIPB Production (equipment Leaks, benzene)	Benzene	NESHAP 61 J
DIPB Production (equipment leaks, VHAP)	VHAP	NESHAP 61 V

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 5 of 20

Source	Pollutant	Regulation
Tank T-210 (benzene vessel)	Benzene	NESHAP 61 Y
DIPB Production T9, D9 (benzene waste streams).	Benzene	NESHAP 61 FF
Facility (waste management/recovery operations).	VHAP	NESHAP 63 DD
6M03-05	Dioxins Furans Mercury Lead Cadmium Arsenic Beryllium Chromium CO Hydrocarbons HCl Cl ₂ PM	NESHAP 63 EEE
Organic Chemical Intermediates Organic Sulfonation Process Solvent Recovery Isopropyl Benzene Production 5N07 Production Facility Aldehyde Processing Facility Storage Tanks and Misc. Sources	VHAP	NESHAP FFFF

9. EMISSION CHANGES:

The following table summarizes plant wide emission changes associated with this permitting action.

Plantwide Permitted Emissions (ton/yr)			
Pollutant	Air Permit 1085-AOP-R7	Air Permit 1085-AOP-R8	Change
PM/PM ₁₀	342.1	342.1	0
SO ₂	6314.6	6314.6	0
VOC	702.6	639.4	-63.2

AFIN #: 3200036 Page 6 of 20

Plantwide Permitted Emissions (ton/yr)				
Pollutant	Air Permit 1085-AOP-R7	Air Permit 1085-AOP-R8	Change	
СО	1872.6	1864.6	-8.0	
NO _X	794.7	794.7	0	
Inorganics (non-VOC HAPs)	940.0	940.0	0	
Organic HAPs	702.6	639.4	-63.2	

NOTE: The Permit Appeal Resolution prompted a new system of classifying the HAPs at this facility (i.e., either "Inorganics" or "Organic HAPs").

10. MODELING:

AERMOD was used in this scenario, with only one year of meteorological data, Little Rock 2004.

Criteria Pollutants

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (µg/m³)	Averaging Time	Highest Concentration (µg/m³)	Background	% of NAAQS
PM ₁₀	90.8	50	Annual	2.24	24	26.24%
1 10110	70 .0	150	24-hour	20.49	39	39.67%
		80	Annual	8.06114	7.9	19.95%
SO ₂	1441	1,300	3-hour	188.28230	23.6	16.29%
		365	24-hour	71.26530	15.7	23.88%
NO_X	182	100	Annual	2.31167	21.6	23.91%
VOC	187.2	0.12	1-hour (ppm)	I N/A		J/A
СО	452.0	10,000	8-hour	141.89662c	2748.4	28.90%
	453.9	40,000	1-hour	495.24622	3435.6	9.82%

Non-Criteria Pollutants

A site-specific presumptively acceptable emission rate (PAER) was developed for this facility to provide a simple means of establishing whether non-criteria emissions from this facility meet the ADEQ's Non-Criteria Pollutant Control Strategy. Specifically, the site specific PAER will allow FutureFuel to make

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 7 of 20

a relatively quick demonstration that emissions of pollutants generate off-site concentrations less than 1/100th of the TLV for the pollutant in question.

Please see Plantwide Conditions 8, 10, and 11 for details on the site-specific PAER screening system and non-criteria emission tracking.

11. CALCULATIONS

This permit includes a Plantwide Applicable Limit (PAL) for all criteria pollutants. The following table outlines the emission factors to be used to calculate the emissions of each criteria pollutant on a 12-month rolling basis to demonstrate compliance with the ton per year limit specified in the permit for each pollutant.

Process Area	Source	Emission Factor	
Plantwide Applicable Limit Emission Estimation for VOC			
Organic Chemical	5N09-1	Material Balance	
Intermediates	OCI-FUG	Fixed Factor	
		0.33 lb/ton coal	
	6M01-01	0.33 lb/ton sludge	
Utilities		3.1 lb/ton liquids	
Ounties	6M06-01	5.8 lb/million cubic feet of nat.	
	6M07-01	13.12 lb/million cubic feet of nat. gas	
	5M01-02	0.053 lb/hour of operation	
	5M01-06	0.41 lb/hour of operation	
	5M03-02	0.18 lb/hour of operation	
Organic Sulfonation	5M04-01	0.52 lb/hour of operation	
	5M04-02	0.17 lb/hour of operation	
	5MNOBS-TNK	4 lb/thousand gallons VOL	
	NOBS-FUG	Fixed Factor	
Chemical Destruction	6M03-05	0.096 lb/ton waste chemicals fed	
	DEST-FUG	Fixed factor	

AFIN #: 3200036

Page	8	of	20
I ago	U	$O_{\mathbf{I}}$	20

Process Area	Source	Emission Factor
Solvent Recovery	4PSR-00	2.38 tons/million lb solvents
Bolvent Recovery	SR-FUG	Fixed Factor
	7K01-01	340 lb/million gallons wastewater
Wastewater Treatment	7M01-02	28.75 lb/thousand gallons wastewater
	7M01-04	2.6 lb/thousand gallons wastewater
	5NDIPB-TNK	8.32 lb/thousand gallons VOL
	5N03-52	1.24 lb/thousand gallons VOL
Isopropyl Benzene Process	5N03-54	14.72 lb/thousand gallons VOL through 5NDIPB-TNK
	5Q94-01	1.24 lb/thousand gallons VOL
	DIPB-FUG	Fixed Factor
	5N03TK-01	1.0 ton/million pounds VOL
Storage Tanks	6N01-02	15.2 lb/thousand gallons diesel
	6N01-03	307.7 lb/thousand gallons gasoline
	4P05-01	68.01 lb/hr, uncontrolled, 90% DE
	4004.00 (1)	1.11 lb/hr * 2 safety factor
Aldehyde Processing	to RTO)	10 bakeouts per reactor/yr
		35 hrs per bakeo
	4PSR-FUG	Pumps, valves, agitators, sample points
Plantwide Applicab	le Limit Emission E	stimation for PM/PM ₁₀
Process Area	Source	Emission Factor
Organic Chemical Intermediates	5N09-1	3.5 lb/hour of operation

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 9 of 20

Process Area	Source	Emission Factor
		1.45 lb/ton coal
	6M01-01	1.45 lb/ton sludge
		0 lb/ton liquids
Utilities	6M01-01A	0.05 lb/ton coal fed to 6M01- 01
	6M06-01	14 lb/million cubic feet of nat. gas
	6M07-01	5 lb/million cubic feet of nat. gas
	5M05-02	0.09 lb/hour of operation
	5M11-15	0.055 lb/hour of operation
	5M16-01	0.017 lb/hour of operation
Organic Sulfonation	5M18-01	0.89 lb/hour of operation
	5M18-02	3.4 lb/hour of operation
	5M18-03	0.21 lb/hour of operation
	5M01-TSP	3.04 lb/hours of filter changes
Chemical Destruction	6M03-05	0.36 lb/ton waste chemicals fed
Isopropyl Benzene Process	5N03-54	1.51 lb/thousand gallons throughput through 5NDIPB- TNK
Cement Plant	7N02-01	0.21 lb/hour of operation
Wood Pellet Production	6Q01	18,030 scfm @ 0.02 gr/scfm
	4P05-01	1.3 lb/1000 gal x 2 safety factor
Aldehyde Processing	4P94-02 (directly to RTO)	3.18 lb/hr x 2 safety factor 10 bakeouts per reactor/yr 35 hrs per bakeout

Page 10 of 20

Process Area	Source	Emission Factor	
Plantwide Applicable Limit Emission Estimation for SO ₂			
Process Area	Source	Emission Factor	
Organic Chemical Intermediates	5N09-1	8.4 lb/hour of operation	
		456 lb/ton coal	
	6M01-01	171 lb/ton sludge	
Utilities		114 lb/ton liquids	
Ountes	6M06-01	15.38 lb/million cubic feet of nat. gas	
	6M07-01	0.6 lb/million cubic feet of nat.	
Chemical Destruction	6M03-05	2.24 lb/ton waste chemicals fed	
Isopropyl Benzene Process	5N03-54	1.51 lb/thousand gallons throughput through 5NDIPB- TNK	
Aldehyde Processing	4P05-01	Fuel oil, 500 ppm sulfur x 2 safety factor 367.6 lb oil/hr	
Plantwide Applic	able Limit Emissi	on Estimation for CO	
Process Area	Source	Emission Factor	
Organic Chemical Intermediates	5N09-1	5.3 lb/hour of operation	
Utilities		15 lb/ton coal	
	6M01-01	15 lb/ton sludge	
		15 lb/ton liquids	
	6M06-01	35.9 lb/million cubic feet of nat. gas	

Page 11 of 20

Process Area	Source	Emission Factor
	6M07-01	81.45 lb/million cubic feet of nat. gas
Chemical Destruction	6M03-05	0.67 lb/ton waste chemicals fed
Isopropyl Benzene Process	5N03-54	6.81 lb/thousand gallons throughput through 5NDIPB-TNK
Aldehyde Processing	4P05-01	84 lb CO/mmscf x 2 safety factor
Aldehyde Processing	SV-03	14.26 lb/hr x 2 safety factor 10 bakeouts per reactor/yr 35 hrs per bakeout
Plantwide Applic	able Limit Emission	n Estimation for NO _x
Process Area	Source	Emission Factor
Organic Chemical Intermediates	5N09-1	8.7 lb/hour of operation
Oxidized Cellulose Production	4P03-09	25.4 lb/batch
		41.1 lb/ton coal
	6M01-01	41.1 lb/ton sludge
T 74*1*4*		41.1 lb/ton liquids
Utilities	6M06-01	170.51 lb/million cubic feet nat. gas
	6M07-01	99.55 lb/million cubic feet nat.
Chemical Destruction	6M03-05	2.8 lb/ton of waste chemicals fed
Isopropyl Benzene Process	5N03-54	23.07 lb/thousand gallons throughput through 5NDIPB- TNK

Page 12 of 20

Process Area	Source	Emission Factor
Aldehyde Processing	4P05-01	0.00284 lb NOx/lb fuel 85% efficiency 367.6 lb fuel/hr x 1.66 safety factor
Plantwide Applic	able Limit Emission	n Estimation for HCl
Organic Chemical Intermediates	5N09-1	5 lb/hour of operation
		30.84 lb/ton coal
Utilities	6M01-01	61.68 lb/ton sludge
		20.97 lb/ton liquids
Chemical Destruction	6M03-05	0.671 lb/ton waste chemicals fed
Isopropul Ponzono Process	5N03-48	44.44 lb/million gallons scrubber liquor
Isopropyl Benzene Process	5N03-55	0.17 lb/million gallons scrubber liquor

12. TESTING REQUIREMENTS:

This permit requires stack testing of the following sources.

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
5N09-01	SO2 VOC CO NOx	6C 25A 10 7E	Every five years.	To ensure compliance with the lb/hr emission limits.
6M01-01	NO _x	7E	One time.	To ensure compliance with the lb/hr emission limits.
6M03-05	VOC PM/PM ₁₀ NOx SO ₂	25A 5 7E 6C	Annually.	To ensure compliance with the lb/hr emission limits.

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 13 of 20

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
	For MACT: Dioxins Furans Mercury Lead Cadmium Arsenic Beryllium Chromium CO Hydrocarbons HCl Cl ₂ PM		Comprehensi ve Testing- every 61 months. Confirmatory Testing (only dioxins and furans)-31 months after each Comprehensi ve Test.	To demonstrate compliance with the MACT standards.

13. MONITORING OR CEMS

The permittee must monitor the following parameters with CEMs or other monitoring equipment (temperature, pressure differential, etc), frequency of recording and the need for records included in any annual, semiannual or other reports.

SN	Parameter or Pollutant to be Monitored Method of Monitoring (CEM, Pressure Gauge, etc)		Frequency*	Report (Y/N)**	
	temperature	not specified	continuous	no	
5N09-01	Numerous mo	onitoring parameters specified by MACT. Please see Specific Conditions 8 through 17.			
4P03-09	% sodium hydroxide in scrubbing liquor	hydroxide in not specified		no	
	Steam production	Not specified	Continuously	no	
	СО	CEMS	Continuously	no	
6M01-01	Ash production	Not specified	Continuously	no	
	ESP power input	Gauge	daily	no	
	Coal, wood, biosludge, and liquid feed rates	Not specified	daily	no	

Page 14 of 20

ige 14 01 20				
SN	Parameter or Pollutant to be Monitored Method of Monitoring (CEM, Pressure Gauge, etc)		Frequency*	Report (Y/N)**
6M01-01A	pressure drop across fabric filter	Pressure gauge	daily	no
5M05-02 5M11-15 5M16-01 5M18-03 5M18-01	pressure drop	Pressure gauge	daily	no
5M11-05 5M13-01	scrubber liquid temperature and specific gravity	Monitoring device having accuracy of ±1 percent, and specific gravity monitoring device having accuracy of±0.02 specific gravity units, each equipped with a continuous recorder	Every 15 minutes	Yes
The permitt	· · · · · · · · · · · · · · · · · · ·	S Subpart VV, which requires numerous there. Reference to this Subpart is list	· .	uirements
	Water content, content of inorganics	Not specified	Continuously while burning waste	
	pressure drop across scrubber, scrubber flow rate, pH	Flow meter, gauge, pH meter	daily	no
6M03-05	СО	CEMS	continuous	no
	waste chemical feed rate, natural gas feed rate, and fuel oil feed rate	not specified	hourly	No
	Numerous mo	onitoring parameters specified by MA Conditions 90a through 90kkl		ecific
4PSR-00	solvent not specified		daily	no
4P02-01 4P94-01	scrubbing liquor flow rate	0.4 gpm minimum	30-minute	no

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 15 of 20

SN	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc)	Frequency*	Report (Y/N)**
4P94-02				
7K01-01	VOC emissions from wastewater	Toxchem software	daily	no
5N07-04	pressure drop across scrubber	gauge	daily	no
5N03-05	general inspection of scrubber	not specified	weekly	no
5N03-48	scrubber liquor flow present?	Alarm on pump recirculation discharge to indicate low flow.	Continuous	no
5N03-54	flame presence	Alarm on flare to indicate presence of flame or low temperature	Continuous	No
6Q01	pressure drop across fabric filter	Pressure gauge	daily	no
SV-03	Scrubber flow rate	Flow meter	Daily	N

The permittee is subject to NESHAP Subpart J, which requires numerous monitoring requirements too long to list here for all applicable sources in the DIPB process. These monitoring requirements are outlined in the permit starting on page 83.

The permittee is subject to NESHAP Subpart VV, which requires numerous monitoring requirements too long to list here for all applicable sources in the DIPB process. These monitoring requirements are outlined in the permit starting on page 83.

The permittee is subject to NSPS Subpart Kb, which requires numerous monitoring requirements too long to list here for all applicable tanks. These monitoring requirements are outlined in the permit starting on page 95.

14. RECORD KEEPING REQUIREMENTS

The following are items (such as throughput, fuel usage, VOC content of coating, etc) that must be tracked and recorded, frequency of recording and whether records are needed to be included in any annual, semiannual or other reports.

^{*} Indicate frequency of recording required for the parameter (Continuously, hourly, daily, etc.)

^{**} Indicates whether the parameter needs to be included in reports.

AFIN #: 3200036 Page 16 of 20

SN	Recorded Item	Limit (as established in permit)	Frequency*	Report (Y/N)*
5N09-01	opacity	20%	daily	no
4P03-09	concentration of sodium hydroxide in scrubbing liquor	4% minimum	daily	no
6M01-01	Power input to the ESP	Not specified	Continuously	no
6M01-01	amount and type of coal, biosludge, liquids, and wood waste to boilers	See Specific Condition 26	daily	no
6M01- 01A	pressure drop across fabric filter	0.1 - 0.4 inches water	daily	no
5M16-01 5M18-03 5M11-15 5M05-02	pressure drop	2 - 6 inches water	daily	no
5M18-01	pressure drop	15 inches max.	daily	no
5M18-02	pressure drop	40 inches max.	daily	no
5M11-05 5M13-01	exit specific gravity and average exit temperature of the adsorbing liquid	More than 11 degrees Celsius above average temperature measured during last performance test, and all 3-hour periods of operation during which the average absorbing liquid specific gravity was more than 0.1 unit above or more than 0.1 unit below, the average absorbing liquid specific gravity during the most recent performance test.	15 min	no
5M04-06 5M04-08 5M14-06	capacity of storage vessels	less than 75 cubic meters	one time	no

Page 17 of 20

SN	Recorded Item Limit (as established in permit)		Frequency*	Report (Y/N)*
6M03-05	opacity observations	20%	daily	no
6M03-05	Pressure drop across the scrubber, fluid flows, pH	71" W.C., 475 gpm, 300 gpm, 4.0 pH	Continuously	no
6M03-05	waste chemical feed rate	19,800 lb/hr	hourly	no
6M03-05	Numerous record keeping rec Cond	uirements specified by Malitions 90a through 90kkkk		Specific
ADCD 00	Biodiesel production	250 MMgal/yr	Monthly	yes
4PSR-00	solvent throughput	5880 lb/hr	daily	no
4P02-01 4P94-01 4P94-02	scrubber liquor flow rate	at least 0.4 gal/min	30-minute	no
TFS-60 PT-60 PT-68 PT-69A PT-69B	capacity of storage vessels	75 cubic meters max to be exempt from NSPS Kb	one time	no
7K01-01	VOC emission rate using Toxchem software	45.7 lb/hr	daily	no
5N07	scrubber pressure drop	1 to 6 inches water	daily	no
RNS-100 PB-51 PB-52 PM-50A PM-50B	capacity of storage vessels	if less than 75 cubic meters, not subject to NSPS Kb	one time	no
5N03-55	scrubber inspection	not established	weekly	no
7N02-01	opacity observations	5%	weekly	no
TF-13 PA-50	capacity of storage vessels	if less than 75 cubic meters not subject to NSPS Kb	one time	No
4P94-02 PM-50A TFS-53	Biodiesel production	31,000,000 gal/yr	monthly	No

Page 18 of 20

SN	Recorded Item	Limit (as established in permit)	Frequency*	Report (Y/N)* *
TFS-54				Ì
TFS-55				
TFS-56				
TFS-60				
TFS-71				
TFS-73				
TFS-74				
TFS-75				
TFS-76				
TFS-78				
TFS-80				
PE-01				
PR-56A				
PR-56B				
6Q01	pressure drop across fabric filter	FOP	daily	No
4P94-02	Scrubber flow rate	FOP	Daily	N
Aldehyde Section	vinyl compounds produced	45 million lbs/yr	Monthly	N
Aldehyde Section	Organic HAP	1.95/4.75	Monthly	Y

^{*} Indicate frequency of recording required for the item (Continuously, hourly, daily, etc. ** Indicates whether the item needs to be included in reports

OPACITY 15.

SN	Opacity %	Justification (NSPS limit, Dept. Guidance, etc)	Compliance Mechanism (daily observation, weekly, control equipment operation, etc)
5N09-01	20%	Pre-existing opacity limit reassigned	daily observation
6M01-01	20%	Installed after 1972. Required by 19.503(B)(1) of Regulation 19.	Control equipment operation
6M01-01A	5%	Review of inspection reports (by the Department) on fabric filters revealed that these sources have never exceeded this opacity limit.	Pressure drop across fabric filter

Permit#: 1085-AOP-R8 AFIN #: 3200036 Page 19 of 20

SN	Opacity %	Justification (NSPS limit, Dept. Guidance, etc)	Compliance Mechanism (daily observation, weekly, control equipment operation, etc)
6M06-01 6M07-01	5%	Review of inspection reports (by the Department) on natural gas fired boilers revealed that these sources have never exceeded this opacity limit.	Combust only natural gas.
5M05-02 5M11-15 5M16-01 5M18-01 5M18-02 5M18-03	5%	Particulate emission rates do not justify an opacity limit any greater than 5%.	Pressure drop across scrubbers
6M03-05	20%	Installed after 1972. Required by 19.503(B)(1) of Regulation 19.	Daily observations
7N02-01	5%	Review of inspection reports (by the Department) on fabric filters revealed that these sources have never exceeded this opacity limit.	Daily observations
6Q01	5%	Particulate emission rates do not justify an opacity limit any greater than 5%.	Weekly Method 22 Monthly Method 9
4P05-01	5%/20%	Typical of fuel types used	Weekly Method 22 Monthly Method 9 Weekly Method 9 for fuel oil

16. **DELETED CONDITIONS:**

The previous permit contained the following deleted Specific Conditions.

Former SC	Justification for removal
AP 12	MON conditions are included in a separate section because of applicability to several other sources
SR 5, SR 6	Scrubbers removed and routing equipment to RTOs for control
AP 5	No scrubbers in this section directly vent to the atmosphere but to the RTO

Page 20 of 20

17. VOIDED, SUPERSEDED OR SUBSUMED PERMITS

List all active permits voided/superseded/subsumed by issuance of this permit for this facility.

Permit #	
1085-AOP-R7	

18. CONCURRENCE BY:

The following supervisor concurs with the permitting decision:

Phil Murphy, P.E.

Fee Calculation for Major Source

\$/ton factor Permit Type	20.96 Modification	Annual Chargeable Emission (tpy) Permit Fee \$	6716.2 1000
Minor Modification Fee \$ Minimum Modification Fee \$	500 1000		
Renewal with Minor Modification \$	500		
If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$	9 0		
Total Permit Fee Chargeable Emissions (tpy)			

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
PM		342,1	342.1	0		
PM_{10}	T B	342,1	342.1	0	i kating talah di sa Bili	
SO ₂	.	6314.6	6314.6	0		
VOC		702.6	639.4	-63.2		
O	.	1872.6	1864.6	-8		
NO_X	, D	794.7	794.7	0	file of the	
Inorganic HAP		940	. ∮940	0		
Organic HAP		702.6	639.4	-63.2	tu.	
	i i	. 0	THE TANKY AND THE STORY STREET, TO SECURE	1	5	
		0	i i i o	0		
		, 0	0	0		
		0	, Ō	0		
	i je je i	0	7 0	o		
	The state of the s	, 0	0	0	:	
		.0		0		
		i o	- 0	0		
		. 0		0	1.1 2.1 1.1	
			1 ::0	0		
		0	+10	0	# 	
	i c	. 0	0	0		
		0	0	0		
		, o	1 0	0		
	FA	0	0	0		
		0	, 0	0		
		0	0	0		1 2421

·			
	-		