STATEMENT OF BASIS

For the issuance of Draft Air Permit # 1085-AOP-R9. AFIN: 32-00036

- PERMITTING AUTHORITY Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317
- 2. APPLICANT:

FutureFuel Chemical Company 2800 Gap Road Batesville, Arkansas 72501

3. **PERMIT WRITER:**

Paula Parker

4. PROCESS DESCRIPTION AND NAICS CODE:

NAICS Description: Petrochemical Manufacturing NAICS Code: 325199

5. SUBMITTALS:

7/21/2008

- 6. **REVIEWER'S NOTES**:
 - Renew the Title V Air Permit

As part of the renewal permit, the Wood Pellet process has been removed from the facility. In addition, rubber is no longer used at the Coal Boilers and the relevant specific conditions have been removed.

Emergency engines and NESHAP ZZZZ - *National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines*- conditions have also been added to the permit. These five engines are existing sources. The natural gas fired boilers, 6M06-01 and 6M07-01 emissions were recalculated using current AP-42 factors for natural gas combustion. Emissions for the coal boilers, 6M01-01, were re-evaluated based upon the maximum coal firing rate on an hourly basis, and an average rate for the annual emissions. Inorganics from this source were revised in accordance with the most recent test event for EEE. The facility is increasing production in the Aldehyde processing section from 45 million to 58.5 million pounds per year of vinyl compound products.

• Add tanks T-271 (30,000 gallons), T-272 (30,000 gallons), and T-273 (40,000 gallons)

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 2 of 40

These tanks will be operated at a pressure below 29.7 psia, thus triggering NSPS Kb applicability. Each tank is vapor balanced with incoming railcars and tank trucks at the Aldehyde Processing Section.

• Produce a multi-use anode material within the Organic Sulfonation section

Emissions from this process are 2.3 tpy PM/PM₁₀, 1.4 tpy VOC, and 1.4 tpy Organic HAP. A dormant part of the Organic Sulfonation plant will be retrofitted to process anode material. Existing and new process equipment both will be used in the process. The Anode Material Process (CP2), which will be permitted as a separate section, CP-2, consists of solids handling equipment, continuous stirred tank reactors, and dryers. Pelletized and granular material will be fed through a metering system into vessels where the material is heated and mixed. The formulated material is then dried and repackaged. All of this equipment is located inside the 5M11 building. Dust from all of the solids handling equipment is vented to a continuous dust control system (CDCS), 5M11-08. The CDCS will consist of a baghouse for solid particle separation, a collection hopper, and an induced draft fan. A central vacuum cleaning system (CVC), 5M11-09 will be used to clean spills. All VOC vents will be routed to the RTOs, 5N09-01. A 17,500 gallon solvent tank (CP2-T-004) and a 36,000 gallon residue tank (CP2-T-003) will be added. Emissions from tanks and equipment containing VOC's will vent to existing thermal oxidizers SN-5N09-01. Currently, SN-5M11-08 and SN-5M11-09 are permitted as a scrubbers (SRE-VE-501 and SER-VE-502) in the OSP section. As a result of this change, the source will be permitted as a baghouse (CP2-C-501 and SER-C-503).

Neither CP2-T-003 or CP2-T-004 will be regulated by 40 CFR Subpart Kb (Standards of Performance for Volatile Organic Liquid Storage Vessels) per 40 CFR 60.11b(b). Both tanks contain liquids with vapor pressures less than 15.0 kPa. Both tanks will be vented to the RTOs, 5N09-01. As a miscellaneous organic chemical manufacturing process unit (MCPU), this section is subject to 40 CFR Part 63 Subpart FFFF, and will be required to comply with these provisions upon startup.

• Install a 2.5 MMBTU thermal oxidizer and caustic scrubber, SN-5N09-2, in the OCI section.

Thermal oxidizer exhaust gases will vent to a caustic scrubber suitable for halogen halide and chlorinated hydrocarbon control. The source is subject to 40 CFR 63, Subpart FFFF. Permitted emissions are increasing by 0.1 tpy particulates, 13.1 tpy SO₂, 12.7 tpy VOC, 2.2 tpy CO, 13.1 tpy NO_x, 4.4 tpy Inorganic HAP, and 12.7 tpy Organic HAP. A small increase of 0.3 tpy of fugitive VOC and Organic HAP emissions from the OCI section will also be added from the installation of the source.

• To change the scrubbing fluid on SPS-VE-02 (SN-5M04-01 of the Organic Sulfonation Section) from 2,2,4-trimethyl-1-3-pentanediol diisobutyrate (TXIB) to water.

There are no changes to emissions as a result of the scrubber liquid change.

• Add a new storage tank, PSA-TF-01 to the Organic Sulfonation Section

The new tank will be added to the 5MNOBS-TNK tank bubble. Emissions are estimated to be less than 40 lb/yr of VOC from this source. Neither tank is subject to NSPS Kb.

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 3 of 40

Total emission changes as a result of these changes to the permit are reductions in particulate by 165.0 tpy, sulfur dioxide by 191.2 tpy, VOC and Organic HAP by 192.9, CO by 738.6 tpy. NO_x is increasing by 26.1 tpy. Inorganics are increasing by 147.2 tpy.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The facility is currently under no enforcement actions.

- 8. **PSD APPLICABILITY**:
 - a. Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N
 - b. Is the facility categorized as a major source for PSD? Y Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list?

If yes, explain why this permit modification is not PSD? Renewal and all modifications minor. Any increases are below significance.

9. GHG MAJOR SOURCE (TITLE V):

Indicate one:

- Facility is classified as a major source for GHG and the permit includes this designation
- □ Facility does not have the physical potential to be a major GHG source
- □ Facility has restrictions on GHG or throughput rates that limit facility to a minor GHG source. Describe these restrictions: _____

10. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
5N09-01, OCI-FUG	VHAP	40 CFR Part 63 Subpart GGG - National Emission Standards Pharmaceuticals Production
5N09-01, OCI-FUG	VHAP	40 CFR Part 63 Subpart MMM - National Emission Standards for Hazardous Air Pollutants for Pesticide Active Ingredient Production
TF-13 (SN-5N03-43) WB-06 (SN-6M-03-08) WB-07 (SN-6M-03-09) WB-08 (SN-6M-03-10) WB-09 (SN-6M-03-11) Tanks under SN-5M04-01 Tanks under SN-5M04-02	VOC	40 CFR Part 60 Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced after July 23, 1984

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 4 of 40

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
Tanks under SN-5M04-06		
Tanks under SN-5M04-08		
Tanks under SN-5M14-06		
TFS-60		
PT-60		
PT-68		
PT69A		
PT69B		
PB-51		
PB-52		
PM-50A		
PM-50B		
TBA-100		
4P94-11		
SN-5N03-51		
SN-5N03-53		
T-280		
T-265		
T-251		
T-220		
T-211A		
T-211B		
T-241		
TF-13		
PA-50		
T-242		
T-243		
VC-PT-03		
VC-PT-01		
VC-PT-02		
Utilities Section (coal	PM	40 CFR Part 60 Subpart Y- Standards of
processing activities)		Performance for Coal Preparation Plants
Organic Sulfonation		40 CFR Part 60 Subpart VV - Standards of
DIPB Production	VOC	Performance for Equipment Leaks of VOC in the
	VUC	Synthetic Organic Chemicals Manufacturing
(Equipment Leaks)		Industry
		40 CFR Part 60 Subpart NNN - Standards of
		Performance for Volatile Organic Compound
5M01-02	VOC	(VOC) Emissions From Synthetic Organic
		Chemical Manufacturing Industry (SOCMI)
L		Distillation Operations

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 5 of 40

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
DIPB Production (equipment Leaks, benzene)	Benzene	40 CFR Part 61 Subpart J - National Emission Standards for Equipment Leaks (Fugitive Emission Sources) of Benzene
DIPB Production (equipment leaks, VHAP)	VHAP	40 CFR Part 61 Subpart V - National Emission Standards for Equipment Leaks (Fugitive Emission Sources)
Tank T-210 (benzene vessel)	Benzene	40 CFR Part 61 Subpart Y - National Emission Standards for Benzene Emissions from Benzene Storage Vessels
DIPB Production T9, D9 (benzene waste streams).	Benzene	40 CFR Part 61 Subpart FF - National Emission Standard for Benzene Waste Operations
Facility (waste management/recovery operations).	VHAP	40 CFR Part 63 Subpart DD - National Emission Standards for Hazardous Air Pollutants from Off-Site Waste and Recovery Operations
6M03-05 6M01-01	Dioxins Furans Mercury Lead Cadmium Arsenic Beryllium Chromium CO Hydrocarbons HCl Cl ₂ PM	40 CFR Part 63 Subpart EEE (Phase I and II) - National Emission Standard for Hazardous Air Pollutants from Hazardous Waste Combustors
Organic Chemical Intermediates Organic Sulfonation Process Solvent Recovery Isopropyl Benzene Production 5N07 Production Facility Aldehyde Processing Facility Storage Tanks and Misc. Sources Anode Production Section	VHAP	40 CFR Part 63 Subpart FFFF - National Emission Standard for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing
6M07-01	NOx	40 CFR Part 60 Subpart Db - Standards of Performance for Industrial-Commercial- Institutional Steam Generating Units

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 6 of 40

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
5N01-WA 7M04-HT-G01 7M04-HT-G04 6N02 8M01	VHAP	40 CFR Part 63 Subpart ZZZZ - National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

11. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

12. NAAQS EVALUATIONS AND NON-CRITERIA POLLUTANTS:

a) NAAQS:

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (µg/m ³)	Averaging Time	Highest Concentration (µg/m ³)	% of NAAQS
PM ₁₀	54.1	150	24-Hour	9.35	6
		80	Annual	11.75	14.7
SO ₂	1423.1	1300	3-Hour	265.43	20.4
		365	24-Hour	71.43	19.6
СО	268.8	10,000	8-Hour	41.04	<1
	200.0	40,000	1-Hour	128.71	<1
NO _x	189.0	100	Annual	8.09	8
Pb	0.9	0.15	Rolling 3-Month	0.02**	13.3

(i) Renewal with permitted changes to criteria pollutant emissions

*Emergency generators were not modeled **H1H Monthly, 5 years of data

b) Non-Criteria Pollutants:

The facility has historically used a site-specific PAER option developed by a modeling comparison of the offsite concentration from the wastewater treatment basin and the emission rate from that source. This option was developed in place of specific HAP limits due to the permit appeal resolution. Batesville met data, 2005-2010, high second high concentrations were used for this exercise.

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 7 of 40

The wastewater treatment facility has an emission rate of 28.6 lb/hr and an offsite impact of 133.3 ug/m^3 . Therefore, the site specific PAER would be = 28.6 lb/hr /13.3 mg/m³ = 2.14

13. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (Ib/ton, Ib/hr, etc.)	Control Equipment and Efficiency	Comments
		Particulate Emissions		
5N09-01	Table 13.5-1& Testing	274 micrograms per liter per million Btu. Particulate Emissions: $\frac{274\mu g}{LmmBtu} \times 20mmBtu = \frac{5480\mu g}{L}$ $\frac{5480\mu g}{L} \times \frac{0.0353L}{ft^3} \times \frac{2.2 \times 10^{-9}lb}{\mu g} \times \frac{5.4millionft^3}{hr} = 2.2\frac{lb}{hr}$ 20 occurrences over 35 hours per @6.4 lb/hr	N/A	The maximum flow rate through the RTO units is 5.4 million soft and the highest anticipated average Btu content of the vent stream is 20 million Btu/hr. The Aldehyde Processing unit also generates particulate when reactors are being cleaned. These emissions are calculated to be 6.4 lb/hr and 2.2 ton/yr; therefore the peak pound per hour PM from the RTO is expected to be: 2.2 lb/hr + 6.4 lb/hr = 8.6 lb/hr x 1.2 = 10.3 tpy
5N09-02	AP-42 1.4 NG combustion	7.6 lb/10^6 lb/scf @ 45 scfm	N/A	8760 hrs
6M01-01A	TED vent emissions handbook	$\frac{0.02 \text{ grains}}{scf} \times \frac{800 \text{ scf}}{\min} \times \frac{1 \text{ lb}}{7000 \text{ grains}} \times \frac{60 \min}{hy} = \frac{0.1371 \text{ lb}}{hr}$ $\frac{0.1371 \text{ lb}}{hr} \times \frac{24 \text{ hr}}{day} \times \frac{365 \text{ day}}{year} \times \frac{ton}{2000 \text{ lb}} = \frac{0.6 \text{ ton}}{year}$	Baghouse 0.02gr/scfm	8760 hrs
6M01-01	Table 1.1-9, Cumulative Particle Size and Size Specific Factors for Spreader Stokers Burning Bituminous Coal.	$PM_{10} \text{ per coal boiler} = \left(6,422 \frac{lb \ coal}{hr} + 1,500 \frac{lb \ sludge}{hr}\right) \times 0.44 \frac{lb \ PM_{10}}{lon \ coal} \times \frac{ton \ coal}{2,000 \ lb}$ $PM_{10} \text{ per coal boiler} = 1.74 \frac{lb \ PM_{10}}{hr}$ $PM_{10} \text{ per coal boiler} = \left(6,306.3 \frac{lb \ coal}{hr} + 1,500 \frac{lb \ sludge}{hr}\right) \times 0.44 \frac{lb \ PM_{10}}{ton \ coal} \times \frac{ton \ coal}{2,000 \ lb}$ $\times \frac{8760 \ hr}{yr} \times \frac{ton \ coal}{2000 \ lb} = 7.52 \frac{ton \ PM_{10}}{year}$ Pound per hour particulate emission rates are derived using the coal feed rate associated with		Although coal, liquid fuel, and sludge are burned in the coal boilers, the highest rate of particulate generation per Btu occurs when only coal is burned. Sludge is assumed to have the same particulate generation rate as coal. Particulate from liquid fuel is assumed to be negligible. The following equation is used to

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 9 of 40

		the lowest Btu value received in the past 3 years. The lowest Btu value was used to ensure the calculated emission rate is conservative. Ton per year particulate emission rates are derived using the coal feed rate associated with the average Btu value of coal received in the past 3 years. Peak loading is estimated to be 5 times the annual average, or 26.1 lb/hr (112.8 ton/year) for the three coal boilers combined.		calculate particulate generation in the coal fired boilers: Typical coal and sludge feed rates were plugged into the above equation to generate typical PM10 emissions.
6M06-01	AP-42	7.6 lb/10 ⁶ ft ³	N/A	78 MMBTU/hr and 8760 hrs
6M07-01	AP-42	7.6 lb/10 ⁶ ft ³	N/A	221 MMBTU/hr and 8760 hrs
6M01	AP-42, Table 13.2.4-1 Coal received, Coal fired PP	$E = k \times 0.0032 \times \frac{\left[\frac{U}{5}\right]^{1.3}}{\left[\frac{M}{2}\right]^{1.4}} (pound[lb]/ton)$ k = Aerodynamic particle size multiplier = 0.74 (dimensionless) U = Mean wind speed = 4.7 miles per hour M = Material moisture content = 4.5%		200 ton/day annual limt 100 ton/hr, short term limit
5M05-02	Manf. Specs.	Blower Rate: 502 dscfm Dust Collector Emission Rate (Vendor Supplied): 0.02 grains per ft ³ .		
5M11-08	Manf. Specs	0.016 gr/scf and 11,585 scf/min		8760 hrs
5M11-09	Manf. Specs	0.016 gr/scf and 1307 scf/min		8760 hrs
5M11-15	Manf. Specs	$\frac{1600acfm \times 2gr / ft^{3} \times 60\min}{7000gr / lb} = 27.4Lb / hr$ $27.4lb / hr \times .002 = .055lb / hr$	Filter 99.8% control	8760 hrs
5M16-01	Manf. Specs	$\frac{1000acfm \times 1gr / ft^{3} \times 60 \min}{7000gr / lb} = 8.57lb / hr$ 8.57lb / hr×.002 =.017lb / hr	Filter 99.8% control	8760 hrs
5M18-01	Manf. Specs		water venturi	maxmimum peak inlet rate of 291 lb/hr

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 10 of 40

		$16,980 acfm \times 1 gr / ft^3 \times 60 min$	scrubber 97%	average estimated lbs/hr of 145.5
		Avg. Estimated lbs/hr inlet = 145.5 = $7000 gr/lb$		
		Peak lbs/hr Inlet ¹ = 291 =		
		$16,980 \times 2gr / ft^3 \times 60$		
		7000gr / lb		
		0.306 Lbs. Vented /100 Lb Inlet		
		Estimated lbs/hr inlet = 1171.29 (Assumes 50 gr. loading x 2733 ft ³)		6 hours per day of
5M18-02	Manf. Specs	0.290 Lbs. Vented /100 Lb Inlet		operation
		$\frac{600acfm \times 10gr / ft^3 \times 60 \min}{7000gr / lb} = 51.43Lb / hr$		
5M18-03	Manf. Specs	$51.43Lb / hr \times .004 = 0.2057lb / hr$	Filter 99.6%	8760 hrs
		$\frac{0.2057lb/hr \times 24hrs \times 365days/yr}{2000lb/ton} = 0.901Tons/yr$	control	
5M01-TSP	Mass Balance	Filter Area: 792 Ft^3 90 bags, 6.2" x 6.0' $\frac{6.2}{12}\pi \times 6 \times 9 = 876 ft^3$ Volume: $876 \times \frac{1/32}{12} = 2.28 ft^3$		1/32" of particulate material on filter bags Wt. = 40 Lb/ Open time = 6 hours per event Frequency = 6 times per year 20% of particulate is loose and carried out.
		Weight: 2.28 $Ft^3 \times 40$ lb/ $Ft^3 = 91.3$ lb Rate: $\frac{91.3}{6} \times 20\% = 3.04 \ lb / hr$		

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 11 of 40

		Annual		
		Total: $\frac{3.04 \times 120 hr \times 1 ton}{2000 lb} = 0.18 tons / yr$		
6M03-05	Testing	A compliance performance test on the Destructor was conducted January 12, 2011. The particulate samples collected during that test ran 0.6 lb/hr. FutureFuel is requesting a limit of 1.5 lb/hr due to feed stream variability, sample variability, and to allow for growth. The ton per year rate is a direct scale-up.		
4P05-01	AP-42	$\frac{1.3lb}{1000 \ gal} \times \frac{368 \ lb \ B100}{hr} \times \frac{gal}{7.51lb} \times 2 = \frac{0.127 \ lb}{hr}$		
		SO ₂ Emissions		
5N09-01	Table 1.4-2 & Material Balance	Sulfur dioxide is generated in the RTOs as sulfur containing molecules are combusted. SO ₂ is also generated with natural gas combustion. The natural gas contribution is calculated using emission factors from AP-42 Table 1.4-2, <i>Emission Factors for Criteria Pollutants and</i> <i>Greenhouse Gasses from Natural Gas Combustion.</i> <i>N.Gas.</i> 450scfm× $\frac{0.6 lb}{1,000000scf}$ × $\frac{60min}{hr}$ = $0.02\frac{lb}{hr}$ $0.02\frac{lb}{hr}$ × $1.4 = 0.03\frac{lb}{hr}$	N/A	
		Chemical ombustion $3.35 \frac{lb}{hr} \times 2 = 6.7 \frac{lb}{hr}$ (frombalanc): Production of sulfur containing chemicals at FutureFuel Chemical Company is expected to increase, and all production may occur within a few months. The SO ₂ contribution from combustion of organic chemicals is multiplied by a 2x factor over projected 2013 production. This factor is inserted into the equation as a contingency for high volume production of sulfur containing compounds over a short window of time.		
5N09-02	AP-42, 1.4	0.6 lb/10^6 scf @ 45 scfm	N/A	8760

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 12 of 40

6M01-01	AP-42 Table 1.1-3, Emission Factors for SOx, NOx, and CO from Bituminous and Subituminous Coal Combustion	Each coal boiler is designed to produce 70 million Btu/hr. The heating value of bituminous coal is generally between 10,500 and 14,000 Btu/lb (AP-42, 1.1 Bituminous and Subbituminous Coal Combustion). Coal energy content is variable; therefore the lb/hr calculation uses FFCC's lowest Btu shipment from the last 3 years, 10,900 Btu/lb. The ton/yr calculation uses FFCC's average coal Btu value from the last 3 years, 11,100 Btu/lb. The following calculation is used to determine the approximate quantity of coal required to operate the coal fired boilers at design capacity: $Coal Feed Rate = \frac{70,000,000 Btu}{hr} \times \frac{lb coal}{Btu} \times 3Coal Fired Boilers = \frac{lb coal}{hr}$ Emission factors for SOx are found in AP-42 Table 1.1-3, Emission Factors for SOx, NOx, and CO from Bituminous and Subituminous Coal Combustion. Emissions are calculated by multiplying the weight percent sulfur in the coal by the Table value for spreader stoker boilers (38 lb/ton). The current permit limit for SO2 from the coal fired boilers is 1,418.7 lb/hr. $\frac{lb SOx}{hr} = 19,266 \frac{lb coal}{hr} \times \frac{38 lb SOx}{ton coal} \times 3.8 percent S \times \frac{ton coal}{2000 lb} = 1,391.1 \frac{lb SOx}{hr}$ $\frac{lb SOx}{hr} = 18,918.9 \frac{lb coal}{hr} \times \frac{38 lb SOx}{ton coal} \times 3.8 percent S \times \frac{ton coal}{2000 lb} = 1,365.94 \frac{lb SOx}{hr}$ $\frac{1,365.94 \frac{lb SOx}{hr} \times \frac{8,760 hr}{yr} \times \frac{ton}{2,000 lb} = 5982.9 lpy SOx}$	N/A	It is assumed that all Sulfur entering the boilers, either through waste chemicals, sludge or coal, will be emitted as SO ₂ . The sulfur content in coal is greater than the sulfur content in sludge and liquid fuel, therefore burning coal is considered "worst case."
6M06-01	AP-42	0.6 lb/10 ⁶ ft ³	N/A	78 MMBTU/hr and 8760 hrs
6M07-01	AP-42	0.6 lb/10 ⁶ ft ³	N/A	221 MMBTU/hr and 8760 hrs
5N03-54	AP-42 Chapter 13.5	0.0680 lb/mmBtu		Vent Stream Heating value of 6.15 lb/mmBtu SO_2 value set equal to NO_x value The worst case vent rate to the flare is 305 lb/hr.
5M04-10	ASPEN	Minute traces from sulfuric acid		
6M03-05	Testing and mass balance	The System Removal Efficiency (SRE) of the chemical waste destructor was demonstrated to be 98.3% in acid gas tests conducted in April and in August of 2004. Every tank of waste chemicals that is burned in the destructor is sampled. The hourly rolling average of sulfur in the waste stream is calculated per the following equation: $Sulfur in feed \times (1-SRE) \times \frac{Molec \ wt \ SO_2}{Molec \ wt. \ Sulfur}$		

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 13 of 40

		$\frac{300lbS}{hr}$ ×	run up to 300 l $(1-98.3\%) \times \frac{64}{32}$ ions are calculate	b/hr, yielding an SO ₂ $\frac{4.06}{2.06} = \frac{10.19 lb SO_2}{hr}$	$=\frac{44.6 \text{ ton So}}{\text{yr}}$	<u>D,</u>	
5N03-54	AP-42		0.068 lb SC	02/MMBTU and 6.15	MMBTU		SO ₂ was assumed to be equal to NOx
4P05-01	AP-42	respectively, were of Fuel Oil Combus 0.05 <i>Sinfuebil</i>	bitained from AP tion. Although S forms of SO $\times \frac{150bS0}{100@alfue}$	-42 Table 1.3-1, Crite O2 is dominant, the c 2 and SO3 are reporte $\frac{3676lbfuel}{hr}$	l oil and 2 lb/1000 gal f eria Pollutant Emission combined sulfur emission ed as SOX. $\frac{galfuel}{7.5 Vbfuel} \times 2 = 0.01$	Factors for ons in the $0.734 \frac{lbSC}{hr}$	Sulfur dioxide and sulfur trioxide are generated when sulfur containing fuels are burned in the process heater. Fuel oil contains more sulfur than natural gas, therefore fuel oil factors were used to estimate emissions. The estimated emissions were then doubled to allow for elevated sulfur content in the fuel and to ensure that emissions will be within specifications. The normal sulfur content of the fuel oil is less than 0.05 percent. 50% growth factor
			v	OC Emissions			
5N09-01		Area OCI Batch Production Buildings OCI Tank Farm Area Batch Still Area (5P05) and Misc. Equip OSR Equipment (5P02)	Growth Factor (%) 25 25 25 25 25 25	Projected Emission Rate (lb/hr) 15.71 6.0 0.14 2.64	Projecte a Emissio n. Rate (tpy) 68.8 26.3 0.6 11.6 11.6	RTOs VOC removal efficiency 98%	Calculations were completed using the chemical properties of acetone when actual data was not available.

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 14 of 40

		Biodiesel	0	3.3	14.5		I
		Production	U	5.5	14.5		
		Aldehyde	100	1.28	5.6		
		Processing					
		4P Solvent	10	13.9	60.9		
		Recovery					
		Total:		43.0	188		
5N09-02	Engr estimates	2.7 MMBTU	hr from n-hexane v	vith a heating value of	19391 BTU/lb emitted as VOC	98% control	8760
				alves = Number of anges = Number of			
		Fugitive Emissio	n Factors for Co <i>at Liquid</i> Service	omponents in			
		Component	Average Em	ission Factor			
	}			uponent)			1
		Pumps		0417			
		Valves		0154			
	4	Flanges	0.00				
		Relief Devices	0.00	0168			
		Capped Lines or	0.0	086			
		Sample Points					
							It is assumed that all
		Fugitive Emissi	on Calculations	for Components in	Light Liquid Service, Organ	nic	equipment is in light liquid
				emical Intermedia			service and VOC's are
		Component N	umber VO	C Emissions			travelling through the
		그 아이가 한 것이 하지?	(lb/hr)	(tpy)			components 1752 hours per
OCLEUC		Pumps	164 0.67	2.9			year ($\sim 20\%$ of the time)
OCI-FUG			3922 0.60	2.6		N/A	The leaf Graters are desired
			7743 0.44	1.9			The leak factors were derive
		Relief	125 0.02	0.09)	in 1991 and are considered
		Devices	44 0.20				conservative due to improve
				1 16			
		Sample Ports	44 0.38	1.6			construction techniques,
		Sample Ports 2.12 9.09	44 0.38	1.6			construction techniques, superior materials, and bette
		2.12 9.09		لا <u>ت من </u>	n Light Liquid Service Orga	nia	construction techniques, superior materials, and bette
		2.12 9.09	on Calculations	for Components i	n <i>Light Liquid</i> Service, Orga	nic	
		2.12 9.09 Fugitive Emiss	on Calculations ChemicalIn	for Components i termediates Tank	Farm Area	nic	construction techniques, superior materials, and bette
		2.12 9.09	on Calculations	for Components i termediates Tank VOC Emi	Farm Area ssions	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component	on Calculations ChemicalIn Number	for Components i termediates Tank VOC Emi (lb/hr)	Farm Area ssions (tpy)	nic	construction techniques, superior materials, and bette
		2.12 9.09 Fugitive Emiss	on Calculations ChemicalIn	for Components i termediates Tank VOC Emi	Farm Area ssions	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps Valves	on Calculations ChemicalIn Number 50	for Components i termediates Tank VOC Emi (Ib/hr) 0.20850	Farm Area sions (tpy) 0.91	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps	on Calculations ChemicalIn Number 50 1,200 2,700 50	for Components i termediates Tank VOC Emi (lb/hr) 0.20850 0.18480	Farm Area sions (tpy) 0.91 0.81	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps Valves Flanges	on Calculations ChemicalIn Number 50 1,200 2,700	for Components i termediates Tank (lb/hr) 0.20850 0.18480 0.15390	Farm Area sions (tpy) 0.91 0.81 0.67	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps Valves Flanges Relief Devices	on Calculations ChemicalIn Number 50 1,200 2,700 50	for Components i termediates Tank (lb/hr) 0.20850 0.18480 0.15390 0.00840	Farm Area ssions (tpy) 0.91 0.81 0.67 0.03	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps Valves Flanges Relief Devices Sample Ports	on Calculations ChemicalIn Number 50 1,200 2,700 50 75	for Components i termediates Tank (lb/hr) 0.20850 0.18480 0.15390 0.00840	Farm Area ssions (tpy) 0.91 0.81 0.67 0.03	nic	construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps Valves Flanges Relief Devices Sample Ports 1.20060	on Calculations ChemicalIn 50 1,200 2,700 50 75 5.24 Calculations for C	for Components i termediates Tank (b/hr) 0.20850 0.18480 0.15390 0.00840 0.64500 Components in Ligh	Farm Area sions (tpy) 0.91 0.81 0.67 0.03 2.82 t Liquid Service, Organic Che		construction techniques, superior materials, and bette
		2.12 9.09 -Fugitive Emiss Component Pumps Valves Flanges Relief Devices Sample Ports 1.20060	on Calculations ChemicalIn 50 1,200 2,700 50 75 5.24 Calculations for C	for Components i termediates Tank (b/hr) 0.20850 0.18480 0.15390 0.00840 0.64500 Components in Ligh	Farm Area sions (tpy) 0.91 0.81 0.67 0.03 2.82		construction techniques, superior materials, and bette

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 15 of 40

		(lb/hr) (tpy)			
[Pumps 9	0.03753 0.16			[
	Valves 125	0.01925 0.08		1	
	Flanges 210	0.01197 0.05			
	Relief 10	0.00168 0.007			
	Devices				
	Sample 14	0.12040 0.53			
	Ports				
	0.19083 0.827				
	Component	Number Lb/hr	VOC Tpy VO	C	
	Pumps	3 0.01			
	Valves	15 0.00	23 0.01		
	Flanges	30 0.00	17 0.007		
	Relief Devices	1 0.000	168 0.0007		
	Sample Ports	5 0.0	0.1883		
		0.05	97 0.2613		
	Fugitive Emission Sur	nmary for Components in	Organic Chemical		1
	Intermediates Faciliti	es.			
	Organic Ch	emical Intermediate	VOC Emissi	ons	
			(lb/hr) ((tpy)	
	OCI Batch F	Production Buildings		9.2	
	OCI T	ank Farm Area	1.2	5.2	
	Batch Still Area and	d Miscellaneous Equipment	0.2	0.9	
		on of New RTO		.2613	
		Total Fugitive Emissio		15.6	1
		OCI			

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 16 of 40

6M01-01	AP-42, Section 1.1, Table 1.1-19; Total Non- Methane Organic Carbon for Spreader Stoker Boilers.		$\left[\begin{cases} 1 - \left(\frac{20\%}{20\%} \right) \\ \frac{1}{20\%} \\$	$\frac{b \ coal}{hr} \times 0.05 \frac{lb \ VOC}{ton \ coal} \times \frac{to}{2,00}$ $\frac{b \ water \ in \ liq. \ fuel}{100\%} \Big) + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) \Big\} + \Big\{ 1 - \Big(\frac{b \ liquid}{100\%} \Big) + \Big(1 - \Big(\frac{b \ liquid}{100\%} \Big) + \Big(1 - \Big(1 - \frac{b \ liquid}{100\%} \Big) + \frac{b \ liquid}{100\%} \Big) + \frac{b \ liquid}{100\%} \Big\} + \Big(1 - \frac{b \ liquid}{100\%} \Big) + \frac{b \ liquid}{100\%} \Big) + \frac{b \ liquid}{100\%} \Big\} $	val)	VOC is produced from the burning of coal, liquid fuel and biological waste (sludge) from the on-site wastewater treatment facility. The percent water in the boiler feed stream is obtained by sampling the boiler feed tank. A System Removal Efficiency (SRE) of 0.999985 is used for VOC's. This value was established in the 1999 Trial Burn.		
		VOC for 3 coal	boilers = ($0.63 \frac{lb}{hr}$ or $2.73 \frac{ton}{year}$				
6M06-01	AP-42			5.5 lb/10 ⁶ ft	3		N/A	78 MMBTU/hr and 8760 hrs
6M07-01	AP-42			5.5 lb/10 ⁶ ft	3		N/A	221 MMBTU/hr and 8760 hrs
BLR-FUG		Component Component Pumps Valves Flanges Relief Devices Capped Lines or Sample Points Table 10.12.3 – J in	ts in Ligh Aver (1) Fugitive 1 Light Light (umber	Emission Factors for ht Liquid Service age Emission Factor (b/hr/component) 0.00417 0.000154 0.000057 0.000168 0.0086 Emission Calculations uid Service, Coal Boil Emission Factors (lb/hr/component)	ers V)C sions (tpy)		The following is a summary of the fugitive VOC emissions based on information derived in a bagging study. Leak rates were derived for components and multiplied by the facility component count. If detailed information was not available the following formulas were used to estimate the number of components: Number of Valves = Number of Pumps x 25 Number of Flanges = Number of Valves x 1.6 Assuming the equipment,
		Pumps Valves Flanges Relief Devices Sample Ports	11 320 1,555 19 14	0.00417 0.000154 0.000057 0.000168 0.0086	0.05 0.05 0.09 0.003 0.12	0.20 0.22 0.39 0.014 0.53		construction, maintenance, and operations are equivalent, the factors developed during the bagging study are applied to the entire facility. The leak factors were derived in 1991 and are considered

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 17 of 40

			btotals	0.313 1.35		conservative due to improved
		Anticipated	Increase (30%) nissions, Boiler Area	0.094 0.41 0.41 1.76		construction techniques, superior materials, and better
						emission monitoring practices
5M01-01						
5M01-02						
5M01-05			. <u></u>			
5M01-06		PES #	Calculated Emissions lb/hr	Calculated Emission ton/yr	S de la constante de la consta	
	=	5M01-01	0.007	0.0323		
5M01-07		5M01-02	0.018	0.0789		
5M01-08		5M01-05	Trace	Trace		
	~	5M01-06	0.006	0.0254		
5M01-09		5M01-07	Trace	Trace		
		5M01-08	Trace	Trace		
5M03-01		5M01-09	<0.001	0.0012		NOBS I scrubbers were simulated using ASPEN at
5M03-02		5M03-01	0.0012	0.0051		actual operating conditions.
	- ASPEN	5M03-02	Trace	Trace		An additional 50% was added to the VOC output from each
5M04-01		5M04-01	Trace	Trace		model to ensure emissions are
		5M04-02	0.018	0.0808		not underestimated at normal
5M04-02		5M04-10	Trace	Trace		operating conditions.
5M05-01	7	5M05-01	0.001	0.0051		
		5M11-01	0.007	0.0323		
5M11-01		5M11-04	Trace	Trace		
5M11-04		5M11-05	0.006	0.0254		
		5M11-06	Trace	Trace		
5M11-05		5M11-07	Trace	Тгасе		
5M11-06	- L	5M13-01	0.0012	0.0051		
	_					
5M11-07						
5M13-01						
5MNOBS-TNK	TANKS		EX-TF-0 EX-TF-0 EX-TF-0 EX-TF-0)2		

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 18 of 40

		Component Pumps Valves Flanges	Average Emission Factor (lb/hr/component) 0.00417 0.000154 0.000057	Number 100 800 1200	Leak rates were derived for components and multiplied by the facility component count. If detailed information was not available the following formulas were used to estimate the number of components:	
		Relief Devices Capped Lines or Sample Points	0.000168	<u>40</u> 40	Number of Valves = Number of Pumps x 25 Number of Flanges = Number of Valves x 1.6	
NOBS-FUG		Component (lb/h) Pumps 0.42 Valves 0.12 Flanges 0.07 Relief Devices 0.01 Sample Ports 0.34 Subtotals Anticipated Increase (25%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.21 1.05 5.26	Assuming the equipment, construction, maintenance, and operations are equivalent, the factors developed during the bagging study are applied to the entire facility. The leak factors were derived in 1991 and are considered conservative due to improved construction techniques, superior materials, and better emission monitoring practices.	
6M03-05	AP-42 and Testing		$0004 \frac{lb VOC}{lb fuel oil} + \left[natural gas feed \times 0.$ =4.0 tpy waste feed) × process waste $\frac{lb}{yr}$ ed × 0.00004 $\frac{lb VOC}{lb fuel oil}$ al gas feed × 0.0055 $\frac{lb VOC}{kscf natural gas}$ =0.31 tpy		Natural gas, fuel oil, and process waste are burned in the Chemical Waste Destructor at FutureFuel Chemical Company. Natural gas keeps the pilot light lit and fuel oil is used as an auxiliary fuel to maintain a minimum temperature in the combustion chamber. Process waste streams can come from different sources and can have varying water compositions and Btu content. The process waste is segregated and sampled before it is burned. The destruction removal efficiency (DRE) for VOC is 99.9997% per NOC 12-7-04.	
					A fuel oil factor of 0.00004 lb VOC per lb. fuel oil was	

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 19 of 40

				derived from AP-42 Section 1.3 Fuel Oil Combustion table 1.3-3 (<i>Emission factors for</i> <i>TOC</i> , <i>Methane and Non-</i> <i>Methane TOC from</i> <i>uncontrolled fuel oil</i> <i>combustion</i>), NMTOC emission factor for No.6 Fuel Oil fired industrial boilers. This value was chosen instead of NO.2 fuel oil to be conservative and to cover other potential auxiliary fuels. A natural gas factor of 0.0055 Ib VOC per kscf natural gas was derived from AP-42 Section 1.4 Natural Gas Combustion table 1.4-2 (<i>Emission factors for Criteria</i> <i>pollutants and Greenhouse</i> <i>Gases</i>). The average annual waste feed to the destructor is 520 million Ib/yr. The feed composition is approximately 60% water. The fuel oil usage is 8.5 million pounds per year and the natural gas usage is 1.4 million kscf per year.
DEST-FUG		Component Average Emission Factor (lb/hr/component) All – Pumps, Valves, Flanges, RD, Sample Ports 0.00051 Component Number VOC Emissions (lb/hr) All 1951 Total Fugitive Emissions, Destructor 1.0 3.00		It is assumed that all equipment is in light liquid service and VOC's are travelling through the components 6000 hours per year
4PSR-00	ASPEN	40million lbs/yr feed rate and 192 lb/hr uncontrolled emissions	RTO	Solvent recovery equipment was modeled with ASPEN [™] . Typical solvents (acetone, methanol, heptane, toluene, xylene, isopropanol, and

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 20 of 40

							hexane) were used in the models. Process emissions are controlled with Regenerative Thermal Oxidizers (RTOs), 5N09-01.
SR-FUG		Component All – Pumps, Valves, Flanges, RD, Sample Ports	Average Emi Factor (lb/hr/compor 0.0015	nent)			It is assumed that all equipment is in light liquid service and VOC's are travelling through the components 8760 hours per
		Component	Number	VOC Em			year
		All	3321	(lb/hr)	<u>(tpy)</u>		
			ve Emissions,	5.0	21.9		
7K01-01	Toxchem model	Component Acetic Acid Benzene Hexane Methanol Phenol Toluene Triethylamin Pelargonic Ac Glycerin Sodium Propion Total	e id	Lb/day 119.38 0.25 267.66 74.68 13.34 158.57 7.11 42.58 0.005497 3.85 687.42			
7M01-02	tanks 4.0			175 lb/yr			
5NDIPB-TNK		5N03-15 5N03-16 5N03-41 5N03-42 5N03-49 5N03-51 5Q94-01 5N03-52 5N03-57 5N03-53	T-240A T-240B T-250A T-250B T-250B T-280 T-280 T-241 T-251 T-260 T-265	VOC VOC VOC VOC VOC VOC VOC VOC Inorganics	0.0033 0.0033 0.0025 0.0025 0.0003 0.007 0.017 0.016 0.0012 0.009	0.015 0.015 0.011 0.011 0.0012 0.03 0.073 0.07 0.0005 0.04	
5N03-54	AP-42			Ib VOC/MMBTU 15 MMBTU			

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 21 of 40

DIPB-FUG				Leak rates were derived for components and multiplied b the facility component count It is assumed that all equipment is in light liquid service and VOC's are travelling through the components 8760 hours per year (100% of the time).
	All Total Fugitiv	932 e Emissions,	0.3 1.3	
	Biodiesel Area	VOC Emission (lb/hr)	s VOC Emission Rate (tpy)	
	Biodiesel Refining and Methanol Recovery	0.53	2.32	
	Material Storage	0.22	0.96	
	Glycerol Refining	0.29	1.26	
	Fugitive Emissions	1.78	7.82	
		tal: 2.82	12.36	
	E	Biodiesel Refining a	and Methanol Recovery	
5N07			ntrolled VOC issions (lb/hr)	
	SX-01		1	
		RTO	2.48E-02	
		RTO	2.48E-02	
	SX-02	RTO	2.60E-03	
	011.00	RTO	2.00E-05	
	TEG CO	RTO	5.72E-03	
	TFS-61	RTO	1.60E-03	
	TFS-62	RTO	5.90E-04	
		RTO	1.29E-03	
		RTO	7.05E-02	
		RTO	1.25E-03	
		RTO	1.33E-03	

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 22 of 40

TFS-54 RTO 1.22E-0 TFS-55 RTO 0.00E+0 TFS-60 RTO 1.76E-0 TFS-71 RTO 6.81E-0 TFS-73 RTO 1.75E-0 TFS-74 RTO 1.75E-0 TFS-75 RTO 1.14E-0 TFS-76 RTO 1.75E-0 PE-01 RTO 7.64E-0 PR-56A ATM 9.25E-0 PR-56B ATM 9.25E-0 PR-56B ATM 9.25E-0 SM-02 RTO 1.86E-0 SM-02 RTO 1.86E-0 SM-02 RTO 1.86E-0 SSM-03 RTO 3.40E-0 SX-03 RTO 3.40E-0 SX-04 RTO 3.40E-0 SW-02 RTO 1.86E-0 SW-03 RTO 3.40E-0 SW-03 RTO 3.40E-0 SB-01 RTO 0.00E+0 SB-03 RTO 7.64E-0		1-50A	RTO	1.12E-0	_	
TFS-55 RTO 0.00E+00 TFS-60 RTO 1.76E-02 TFS-71 RTO 6.81E-02 TFS-73 RTO 6.81E-02 TFS-73 RTO 1.75E-03 TFS-74 RTO 1.75E-03 TFS-75 RTO 1.14E-06 TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SB-01 RTO 1.86E-02 SS-04 RTO 3.40E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-03 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-77 RTO 1.75E-03 VOC (tb/hr): 5.30E-	TF	<u>S-53</u>	RTO	2.28E-08		4
TFS-60 RTO 1.76E-02 TFS-71 RTO 6.81E-02 TFS-73 RTO 6.81E-02 TFS-74 RTO 1.75E-03 TFS-75 RTO 1.14E-06 TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-03 RTO 7.64E-03 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 TFS-77 RTO 1.75E-03 TFS-77 RTO 1.75E-03 TFS-77 RTO 1.75E-03<	TF	S-54	RTO	1.22E-02		
TFS-71 RTO 6.81E-02 TFS-73 RTO 1.75E-03 TFS-74 RTO 1.75E-03 TFS-75 RTO 1.14E-06 TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (Ib/hr): 5.30E-01 VOC (Ib/hr): 5.30E-01 VOC (Ib/hr): 5.3	TH	<u>S-55</u>	RTO	0.00E+00		
TFS-73 RTO 6.81E-02 TFS-74 RTO 1.75E-03 TFS-75 RTO 1.14E-06 TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC VOC VOC Emissi Ib/hr 2.32E+00 1b/hr	TF	<u>S-60</u>	RTO	1.76E-02		
TFS-74 RTO 1.75E-03 TFS-75 RTO 1.14E-06 TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SB-27 RTO 0.00E+00 SH-51 RTO 0.00E+00 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (Ib/hr): 5.30E-01 VOC (Ib/hr): 2.32E+00	TF	S-71	RTO	6.81E-02		
TFS-75 RTO 1.14E-06 TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 0.00E+00 SM-02 RTO 1.86E-02 SH-01 RTO 1.86E-02 SSM-02 RTO 1.86E-02 SSM-02 RTO 1.86E-02 SS-03 RTO 3.40E-03 SX-03 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (lb/hr) 2.32E+00		S-73	RTO	6.81E-02		
TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-03 SS-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SB-27 RTO 0.00E+00 SB-26 RTO 0.00E+00 SB-27 RTO 1.75E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (to//yea 2.32E+00	TF	S-74	RTO	1.75E-03		
TFS-76 RTO 1.75E-03 PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 0.00E+00 PT-50 RTO 1.75E-03 VOC VOC (toh/nr): 5.30E-01 VOC VOC VOC VOC Emissions Uo/yea 1: 2.32E+00 10/hr	TF	S-75	RTO	1.14E-06		
PE-01 RTO 7.64E-02 PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-03 RTO 0.00E+00 SA-21 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC VOC VOC Emissions VOC VOC Emissions Ib/hr	TF	S-76	RTO	1.75E-03		
PR-56A ATM 9.25E-05 PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-03 SB-02 RTO 3.40E-03 SX-03 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (Ib/rr): 5.30E-01 VOC (Ib/rr) 2.32E+00					-	
PR-56B ATM 9.25E-05 TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (Ib/hr): 5.30E-01 VOC (Ion/yea 2.32E+00					-1	
TFS-69 ATM 0.00E+00 SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-77 RTO 1.75E-03 VOC (Ib/hr): 5.30E-01 VOC (Ib/hr): 5.30E-01 VOC (Ib/hr): 5.30E-01 VOC (Ib/hr): 5.30E-01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
SM-02 RTO 1.86E-02 SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (Ib/hr)1: 5.30E-01 VOC (Ib/hr)2 2.32E+00	, , , , , , , , , , , , , , , , , , , 				-1	
SI-01 RTO 1.86E-02 SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 0.00E+00 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00						
SB-02 RTO 1.86E-02 SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea 2.32E+00 Storage Equipment VOC Emissions lb/hr	\ \ F					
SX-03 RTO 3.40E-03 SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 0.00E+00 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00	· · · · · · · · · · · · · · · · · · ·				-1	
SX-04 RTO 3.46E-03 SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00	1 1					
SB-01 RTO 0.00E+00 SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea 2.32E+00 Storage Equipment VOC Emissions lb/hr						
SM-51 RTO 0.00E+00 SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00						
SB-03 RTO 7.64E-02 SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00 Storage Equipment VOC VOC Emissions						
SB-26 RTO 0.00E+00 SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): Storage Storage Equipment VOC VOC Emissions	· · · · · · · · · · · · · · · · · · ·				-1	
SA-21 RTO 0.00E+00 PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): Storage Storage Equipment VOC VOC Emissions						
PT-50 RTO 8.60E-03 TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00 Storage VOC Emissions Ib/hr					-1	
TFS-52 RTO 0.00E+00 TFS-77 RTO 1.75E-03 VOC 5.30E-01 VOC (lb/hr): VOC 5.30E-01 VOC (ton/yea r): 2.32E+00 Storage Equipment VOC VOC Emissions Ib/hr Ib/hr	· · · · · · · · · · · · · · · · · · ·					
TFS-77 RTO 1.75E-03 VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00 Storage Equipment VOC Emissions					~1	
VOC (lb/hr): 5.30E-01 VOC (ton/yea r): 2.32E+00 Storage Equipment VOC VOC Emissions Equipment VOC Emissions Ib/hr			1		~1	
VOC (ton/yea r): 2.32E+00 Storage Equipment VOC Emissions Ib/hr			VOC		7	
(ton/yea r): 2.32E+00 Storage Equipment VOC Emissions Ib/hr			(lb/hr):	<u>5.30E-01</u>	_	
r): 2.32E+00 Storage Equipment VOC VOC Emissions Emissions lb/hr						
Equipment VOC VOC Emissions Emissions lb/hr				2.32E+00		
Equipment VOC VOC Emission Emissions 1b/hr				Storage		
Emissions lb/hr		E	quipment	VOC V		ns
i l lb/woom l		ļ		Emissions lb/year	lb/hr	

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 23 of 40

	TFB-01		0.02	0.000002		
	TFB-01			0.000002	{	
	TFB-10		0.02	0.00002	1	(
	TFB-11		24.4	0.003	-1	
4	TFB-12		24.4	0.003		1
	TFB-20		41.8	0.005		
	TFB-20		41.8	0.003	-1	1
	TFB-30		222.2	0.003		1
	TFB-30		5.1	0.0006		
	TFB-40		339.7	0.000	-	
	TFB-41		339.7	0.03		
	T-242		770.6	0.03		
	T-242		67.1	0.008		
	BD-01		8.24	.00094		
	BD-01	╾╼╺┼╾				
			Total lb/year 1,909.5	Total lb/hr 0.22		}
}			Total ton/yr	0.22		
			0.96			
		Glyo	ol Refining			
			missions lb/hr	VOC Emissions	tpy	
	PROD-DC-301		0.09	0.39		
	PE-51		2.38	10.45		ļ
	PE-53		2.38	10.45		1
	GT-1		3.84	16.82		
	GT-2		2.38	10.45		
	DE-50		1.22	5.35		
	PM-50B		1.03	4.53		
	GT-3		1.03	4.53		
	TL-51		0.03	0.12		
	Pre-RTO	T	otal lb/hr 14.38	Total ton/yr 62.98		
		T	otal lb/hr	Total ton/yr		
	Post RTO		0.29	1.26		
		F	ugitives			
ļ	Component	Numbe		C Emissions	.	
			(lb/hr)			
	Pumps	168	0.7006			1
	Valves	3650			{	
	Flanges	5900				1
	Relief Devices	81	0.0136			
	Sample Ports	20	0.1720		-1	
	1.78 7.82	<u> </u>				
205-01	The Hot Oil System for the Al	dehyde Proc	essing plant is rat	ed to deliver 5 MMI	Btu/hr to th	he

		 process. It can combust natural gas or fuel oil. It also recovers energy from process vent streams which are also combusted in the unit. FFCC would like to increase the Aldehyde Processing rate by 30%, from 45 mppy to 58.5 mppy (Condition AP 3). FFCC can increase throughput and remain below current emission limits. VOC emissions from material balance data and AP-42 Section 1.3 Fuel Oil Combustion, Table 1.3-3. EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS result in a projected VOC emission of 1.55 lb/hr. Applying a 30% factor for peak loading and a 2X factor for start-up the resultant lb/hr emission rate is 4.0. The annual emission rate should not exceed the R8 limit of 6.8 tpy. 	
4PSR-FUG		Pumps 42 0.18 0.77 Valves 894 0.14 0.60 Flanges 2181 0.12 0.54 Relief Devices 57 0.01 0.04 Sample Ports 147 1.26 5.54 Subtotal 1.71 7.49 With 25% increase 2.14 9.37 Component Average Emission Factor (Ib/hr/component) Pumps 0.00417 Valves 0.000154 Flanges 0.000057 Relief Devices 0.000168 Capped Lines 0.0086	Leak rates were derived for components and multiplied by the facility component count. If detailed information was not available the following formulas were used to estimate the number of components: Number of Valves = Number of Pumps x 25 Number of Flanges = Number of Valves x 1.6 Assuming the equipment, construction, maintenance, and operations are equivalent, the factors developed during the bagging study are applied to the entire facility. The leak factors were derived in 1991 and are considered construction techniques, superior materials, and better emission monitoring practices.
6N01-2	TANKS	Gasoline storage, 1,288.50 lb/yr	
6N01-03	TANKS	Diesel Storage, 2.35 lb/yr	
5N03TK-01	TANKS	26 Tanks Lb/yr 5N01-44 TF-2 1,327.67 5N01-41 TF-7 0.6* 5N03-39 TF-10 0 5N03-45 TF-12 2289.75*	

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 25 of 40

F	1	5N01-27	TFV-4			
			TFV-5	785.26		
		5N01-23		422.94		
		5N01-26	TFV-6	19.14		
		5N01-34	TFS-5	15.22		
		5N01-37	TFS-10	45.29		
			TFS-79	2,454.08		
		5N01-48	WG-1	0.09		
		5N01-49	CG-1	0.07		
		4P94-12	PR-56A	0.24		
		4P94-13	PR-56B	0.24		
		5N01-22	TFV-1	175.61		
		5N01-36	TFS-7	101.33		
		5N01-38	TFS-9	82.05		
	}	5N03-18	PBV-50	107.26		
		5N01-42	TF-6	0.88		
		5N03-50	PA-50	0.52*		
		5N01-39	TF-3	97.26		
		5N03-40	TF-11	0		
		5N01-25	TFV-3	3,803.54		
		5N01-32	TFS-1	16.51		
		5N01-31	TFS-2	19.53		
			VOC/ОНАР	11,765.08		
			Inorganic	2290.87		
4Q01-10	TANKS	<u> </u>		524.07	b/vr	
4Q01-11	TANKS			20.621	b/yr	
4Q01-01	TANKS		0.02 lb/yr			
4Q01-02	TANKS			0.02 1	/yr	

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 26 of 40

4Q01-03	TANKS	0.45 lb/yr	
4Q01-04	TANKS	0.18 lb/yr	
4Q01-05	TANKS	0.57 lb/yr	
4Q01-06	TANKS	4.66 lb/yr	
4Q01-07	TANKS	4.66 lb/yr	
4Q01-08	TANKS	259.47 lb/yr	
4Q01-09	TANKS	444.22 lb/yr	
		NOx Emissions	
5N09-01	Table 1.4-1 & Mass Balance	300 scfm (natural gas flowrate) 50% growth factor	The NOx contribution from combustion of organic chemicals is generally considered to be negligible as long as nitrated compounds are not being produced. A 2x factor over actual 2007 natural gas usage is inserted into the equation above as a contingency for the production of nitrogen containing compounds. Natural gas usage in the RTO has increased 40% from 2007 due to changes necessary to obtain destruction removal efficiency requirements imposed by 40 CFR 63 Subpart FFFF. The NOx pound per hour rate is inflated by 40% for the additional natural gas usage. A 50% growth factor was also added.
5N09-02	Table 1.4-1	100 lb per 10^6 scf @ 45 scfm	8760

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 27 of 40

6M01-01	AP-42, Section 1, Table 1.1-3 Spreader- Stoker boiler burning bituminous coal.	$NOx \ per \ coal \ boiler, \ coal \ only = \frac{6,422 \ lb \ coal}{hr} \times \frac{11 \ lb \ NOx}{ton \ coal} \times \frac{ton \ coal}{2,000 \ lb}$ $NOx \ per \ boiler, \ coal \ only = \frac{35.3 \ lb \ NOx}{hr} \qquad \left(based \ on \ 10,900 \ \frac{Btu}{lb} \ coal \right)$ $Annual \ NOx \ per \ boiler = \frac{6,306.3 \ lb \ coal}{hr} \times \frac{11 \ lb \ NOx}{ton \ coal} \times \frac{ton \ coal}{2,000 \ lb} \times \frac{8760 \ hr}{yr} \times \frac{ton}{2000 \ lb}$ $NOx \ per \ boiler, \ coal \ only = \frac{6,306.3 \ lb \ coal}{hr} \times \frac{11 \ lb \ NOx}{ton \ coal} \times \frac{ton \ coal}{2,000 \ lb} \times \frac{8760 \ hr}{yr} \times \frac{ton}{2000 \ lb}$ $NOx \ per \ boiler, \ coal \ only = \frac{151.9 \ ton \ NOx}{yr} \qquad \left(based \ on \ 11,100 \ \frac{Btu}{lb} \ coal \right)$ $NOx \ for \ 3 \ boilers, \ coal \ only = \frac{106.0 \ lb \ NOx}{hr} or \frac{455.8 \ ton \ NOx}{yr}$		AP-42, Section 1, Table 1.1-3 lists a value of 11 lb of NOx for every ton of coal burned in a Spreader-Stoker boiler burning bituminous coal. This NOx factor is used when liquid fuel is not being burned in the coal fired boilers. When liquid fuel is burned in the boilers the Btu value of the waste stream is variable. Nitrogen may be present in our liquid fuel, therefore the NOx value can increase due to the combustion of "fuel NOx." It is assumed that any nitrogen in the fuel will exit the boiler stack as NOx.
6M06-01	BACT	13.3 lb/hr NOx as a PSD limit	N/A	78 MMBTU/hr and 8760 hrs
6M07-01	BACT	22 lb/hr NOx as a PSD limit (0.1 lb NOx/MMBTU)		221 MMBTU/hr and 8760 hrs
5N03-54	AP-42	0.068 lb SO2/MMBTU and 6.15 MMBTU		
6M03-05		19,800 lb/hr waste chemicals fed		The Fuel Oil NOx Emission Factor (0.002837 lb NOx/lb fuel oil) comes from AP-42 Section 1.3 fuel Oil Combustion, Table 1.3-1 Values for Distillate Oil Fired Boilers Operating at Less Than 100 Million BTU per hour. The Natural Gas NOx Emission Factor (0.1 lb NOx / kscfn natural gas) comes from AP-42 Section 1.4, Table 1.4-1 Factors for Uncontrolled NOx from Small Boiler.
	+	0.00568 lb NOx/lb fuel oil 368 lb fuel oil/hr		<u> </u>
4P05-01	Testing plus a safety factor	$368 \frac{lb \ fuel \ oil}{hr} \times \frac{0.00284lb \ NOx}{lb \ fuel \ oil} \times 2 = 2.1 \frac{lb \ NOx}{hr} = 9.15tpy$		
		CO Emissions		

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 28 of 40

5N09-01 Table 1.4-1 & Mass Balance	Carbon monoxide is generated as natural gas is burned in the RTOs and as organic chemical combustion takes place. The natural gas contribution is calculated using emission factors from AP-42 Table 1.4.1, <i>Emission Factors for Nitrogen Oxides (IVOx) and Carbon Monoxide (CO) from Natural Gas Combustion</i> . Natural gas usage in the RTO has increased 40% from 2007 due to changes necessary to obtain destruction removal efficiency requirements imposed by 40 CFR 63 Subpart FFFF. The CO pound per hour rate is inflated by 40% for the additional natural gas usage. Carbon Monoxide generated from incomplete chemical combustion comes from the material balance database. <i>Natural Gas</i> : 300 scfm × $\frac{84 lb}{1,000,000 scf}$ × $\frac{60 \text{min}}{hr} = 1.5 \frac{lb}{hr}$ $1.5 \frac{lb}{hr} \times 1.4 = 2.1 \frac{lb}{hr}$ <i>Chemical Combustion</i> : $1.0 \frac{lb}{hr}$ (from material balance database) <i>Aldehyde Bakeout</i> : $8.6 \frac{lb}{hr}$ (peak emission sampling) The Aldehyde Processing unit generates CO when reactors are being cleaned (baked out). These emissions are calculated to be 8.6 lb/hr and 8.9 ton/yr; therefore the peak pound per hour CO from the RTO is expected to be: Total lb/hr CO Emissions: 2.1 lb/hr + 1.0 lb/hr + 8.6 lb/hr = 11.7 lb/r. The ton per year emission rate is calculated to be: $3.1 \frac{lb}{hr} \times \frac{8760 hr}{yr} \times \frac{ton}{2000 lb} + \frac{8.9ton}{yr} = 22.5 \frac{ton}{yr}$	
5N09-02 Table 1.4-1	84 lb/10^6 scf @ 45 scfm	8760
6M01-01	 dscfm = acfm x (Pstack/Pstd) x (Tstd/Tstack) x Md Pstack is the maximum stack pressure (29.85 in. Hg) from 1999 trial burn. Pstd is standard pressure (29.92 in. Hg). Tstack is the stack temperature in deg. R. 	An average stack gas flow rate of 20,000 dscfm and a CO concentration of 100

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 29 of 40

		• Tstd is standard temperature (528 deg. R). • Md is the mole fraction of dry gas from the 1999 trial burn (0.8867). $CO\frac{lb}{hr} = \frac{CO\ ppmv}{1,000,000} \times dcfm \times \frac{28g}{g.mol} \times \frac{0.0415\ g.mol}{L} \times \frac{1,000L}{m^3}$ $\times \frac{m^3}{35.31\ ft^3} \times \frac{lb}{456.3g} \times \frac{60\ min}{hr}$ 0.0415g-mol/L is the volume occupied by an ideal gas at 70 deg F at 1 atm of pressure. • 28 g/g-mol is the molecular weight of CO. $CO\frac{lb}{hr} = \frac{2000\ ppmv}{1,000,000} \times \frac{22000\ dscfm \times 28 \times 0.0415 \times 1000 \times 60}{35.31 \times 456.3} = 190.4\ \frac{lb}{hr}$ Total CO lb/hr = 25.95 lb/hr + 190.4 lb/hr = 216.4 lb/hr Total CO tpy = 216.4 x 8760 hr/yr ÷ 2000 lb/ton = 947.8 tpy	ppmv are typical when the boiler is operating at steady- state. Inserting these values into the equation above yields 8.65 lb CO per hour per boiler, 25.95 for 3 boilers. When coal boilers are ignited incomplete combustion generates high concentrations of CO until the boilers reach optimal operating temperature. The following equation is used to estimate the CO emission rate from startup and shutdown activity.
6M06-01		84 lb CO/10^5 scf	78 MMBTU/hr and 8760 hrs
6M07-01		84 lb CO/10^5 scf	221 MMBTU/hr and 8760 hrs
5N03-54	AP-42	0.37 lb CO/MMBTU and 6.15 MMBTU	
6M03-05		6.03 x 1.85= 11.16 lb/hr Annual limit calculated from 6.03 x 4.38 = 26.4 tpy	
4P05-01	ASPEN	Carbon monoxide is generated as natural gas is burned in the process heater. A CO generation factor of 84 lb CO per million scf of natural gas burned, AP-42 Table 1.4-1 was used to estimate CO generation in the process heater. $84 \frac{lb CO}{1,000,000 scf} \times \frac{5,750 scf}{hr} \times 2 = 0.97 \frac{lb CO}{hr} = 4.23 tpy$	
		Inorganic Emissions	
5N09-01	Table 1.4-1 & Mass Balance	Non - VOC Hazardous Air Pollutants: $\frac{18.05 \text{ ton}}{\text{year}} \times \frac{\text{year}}{8760 \text{ hr}} \times \frac{2,000 \text{ lb}}{\text{ton}} = \frac{4.12 \text{ lb}}{\text{hr}}$ $\frac{4.12 \text{ lb}}{\text{hr}} \times 2 = 8.2 \frac{\text{lb}}{\text{hr}}$ (from material balance with 2x capacity factor)	FutureFuel Chemical Company makes several chlorinated chemicals. The pound per hour halogen atom emission rate is calculated as 2x the actual ton per year emission rate because

			FutureFuel has the capacity to produce many more halogenated products than were in actual production in 2007. The halogen atom emission rates are also based on anticipated production for the next 5 years. It is assumed that halogen atoms are not removed across the RTO. A 20% factor for growth has been added to the calculated rate for the permitted rate.
5N09-02	MON standard	No more than 1 lb/hr	
6M01-01	AP 42 Section 1, Table 1.1-18 Emission Factors for Trace Metals From Controlled Coal Combustion	Coal Combustion, Metals: $Arsenic \frac{lb}{hr} = \left(4.10 \times 10^{-4} \frac{lb \ Arsenic}{ton \ coal}\right) \times \left(19,266 \frac{lb}{hr}\right) \times \left(\frac{ton}{2000 \ lb}\right) = 0.0039 \frac{lb \ Arsenic}{hr}$ $Beryllium \frac{lb}{hr} = \left(2.10 \times 10^{-5} \frac{lb \ Beryllium}{ton \ coal}\right) \times \left(19,266 \frac{lb}{hr}\right) \times \left(\frac{ton}{2000 \ lb}\right) = 0.0002 \frac{lb \ Beryllium}{hr}$ $Chromium \frac{lb}{hr} = \left(2.60 \times 10^{-4} \frac{lb \ Chromium}{ton \ coal}\right) \times \left(19,266 \frac{lb}{hr}\right) \times \left(\frac{ton}{2000 \ lb}\right) = 0.0025 \frac{lb \ Chromium}{hr}$ $Cadmium \frac{lb}{hr} = \left(5.10 \times 10^{-5} \frac{lb \ Cadmium}{ton \ coal}\right) \times \left(19,266 \frac{lb}{hr}\right) \times \left(\frac{ton}{2000 \ lb}\right) = 0.0005 \frac{lb \ Cadmium}{hr}$ $Lead \frac{lb}{hr} = \left(4.20 \times 10^{-4} \frac{lb \ Lead}{ton \ coal}\right) \times \left(19,266 \frac{lb}{hr}\right) \times \left(\frac{ton}{2000 \ lb}\right) = 0.0005 \frac{lb \ Cadmium}{hr}$ $Mercury \frac{lb}{hr} = \left(5.10 \times 10^{-5} \frac{lb \ Mercury}{ton \ coal}\right) \times \left(19,266 \frac{lb}{hr}\right) \times \left(\frac{ton}{2000 \ lb}\right) = 0.0005 \frac{lb \ Mercury}{hr}$ $Total LVM, SVM, and HVM from coal combustion is 0.0117$ $lb/hr.$	"Inorganics" are considered to be chlorine, low volatile metals, semi-volatile metals, and highly volatile metals.

		Substituting a coal feed rate of 18,918 lb/hr (82,860 tpy) and calculating tons per year yields a metals emission rate of 0.05 tpy.	
		Liquid Combustion, Metals (Trial Burn Average Rates):	
		Arsenic: 0.26 lb/hr, 1.15 tpy Beryllium: 0.02 lb/hr, 0.07 tpy Chromium: 0.92 lb/hr, 4.02 tpy Cadmium: 0.00 lb/hr, 0.01 tpy	
		Lead: 0.75 lb/hr, 3.31 tpy Mercury: 0.00 lb/hr, 0.00 tpy	
		Total Metals Emission Rate: 2 lb/hr, 8.6 tpy Coal Combustion, Cl:	
		HCl Emission Rate from Coal = 9.633 $\frac{ton Coal}{hr} \times 1.2 \frac{lb HCl}{ton Coal} = 11.56 \frac{lb HCl}{hr}$	
	AP 42 Section 1, Table 1.1-18	HCl Emission Rate from Coal = $11.56 \frac{lb HCl}{hr} \times \left(\frac{35.43 lb - mol Cl}{36.461 lb - mol HCl}\right) = 11.23 \frac{lb Cl}{hr}$	"Inorganics" are considered to be chlorine, low volatile
6M01-01	Emission Factors for HCl and HF from Coal Combustion	Substituting a coal feed rate of 18,918 lb/hr (82,860 tpy) and calculating tons per year yields an HCl emission rate of 49.7 tpy and a Cl emission rate of 48.3 tpy.	metals, semi-volatile metals, and highly volatile metals.
		Liquid Combustion, Cl:	
		Liquid Cl feed rate (trial burn average) = 222.6 $\frac{lb Cl}{hr}$	

	Total CI Emission Rate: $11.23 \frac{lb Cl}{hr} + 222.6 \frac{lb Cl}{hr} = 233.8 \frac{lb Cl}{hr} + 10\% \text{ peak} = 257$ $\frac{lb Cl}{hr}$ $48.3 \frac{ton Cl}{yr} + 975.0 \frac{ton Cl}{yr} = 1023.3 \frac{ton Cl}{yr}$	
6M01-01	Total Inorganic Rate: Total Metals + Total Cl: 2 lb/hr Metals + 257 lb/hr Cl = 259 lb/hr Cl 8.6 tpy Metals + 1023 tpy Cl = 1031.6 tpy Cl	"Inorganics" are considered to be chlorine, low volatile metals, semi-volatile metals, and highly volatile metals.
6M03-05	CPT Test Results, Chemical Waste Destructor Inorganic Emissions Inorganic SRE % Normal Feed Rate (lb/hr) Emission (lb/hr) Emission (tpy) Chlorine 99.95 400 0.20 0.88 Low Volatile 99.82 0.03 5.4e ⁻⁵ 0.0002 Metals Arsenic 1.1 0.01 0.057 Beryllium Chromium Semi Volatile 99.81 1.1 0.01 0.057 Metals Cadmium Lead 1.1 0.001 0.0044 0.0044 Volatile 99.81 1.1 0.211 0.941 Assume peak feed rates are 5x normal: 1.06 4.7	For the purpose of the following calculations, "inorganics" are considered to be low volatile metals, semi- volatile metals, and highly volatile metals. The FFCC calculated rate based on the system removal efficiency (SRE) established during a compliance performance test conducted January 12, 2011 (Tables 8-15). FFCC expects to grow and to use more exotic materials; therefore an emission rate of 1.4 lb/hr and 6.1 tpy (direct scale-up) is requested.

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 33 of 40

		Anticipated 5yr Increase:	50%	50%]	
		Emission Total:	1.58	7.06]	}	
1		Current Permit Limit	6.04	17.5		}		
7M01-03	TANKS	0.1 Methanol u	tpy sed as a surro	ogate				
7M01-03-B	TANKS	Methanol use						
5N03-55	ASPEN	D-10, 5N03-48, is a water scrubber that is located on the vent discharge of an Aluminum Chloride baghouse. D-10 vents to the atmosphere. The emission rate from this scrubber is 0.09 lb/hr or 0.4 tons per year at maximum production rates.						
5N03-48	ASPEN	D-270, 5N03-55, is a water scrubber that Aluminum Chloride solution. The emission tons per year at maxi	rate from thi	s scrubber is 0.				

14. TESTING REQUIREMENTS:

The nermit	requires	testing of the	following sources.
The permit	requires	testing of the	following sources.

SN(s)	Pollutant	Test Method	Test Interval	Justification For Test Requirement
5N09-01	SO2 VOC CO NOx	6C 25A 10 7E	Every five years.	To ensure compliance with the lb/hr emission limits.
5N09-01	VOC	25A	Every five years.	To ensure compliance with the lb/hr emission limits.
6M01-01	NOx	7E	Every five years.	To ensure compliance with the lb/hr emission limits.
	VOC PM/PM ₁₀ NOx SO ₂	25A 5 7E 6C	Every five years.	To ensure compliance with the lb/hr emission limits.
6M03-05	For MACT: Dioxins Furans Mercury Lead Cadmium Arsenic Beryllium Chromium CO Hydrocarbons HCl Cl ₂ PM		Comprehensi ve Testing- every 61 months. Confirmatory Testing (only dioxins and furans)-31 months after each Comprehensi ve Test.	To demonstrate compliance with the MACT standards.

15. MONITORING OR CEMS

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 35 of 40

SN	Parameter or Pollutant to be Monitored	Method of Monitoring (CEM, Pressure Gauge, etc)	Frequency*	Report (Y/N)**
5N09-	temperature	not specified	continuous	no
01,02	Nur	nerous monitoring parameters specifi	ied by MACT.	••••••••••••••••••••••••••••••••••••••
	Steam production	Not specified	Continuously	no
	CO	CEMS	Continuously	no
	ESP power input	Gauge	daily	no
6M01-01	Coal, wood, biosludge, and liquid feed rates	Not specified	daily	no
	Sulfur content of coal	4.2%	Each shipment	no
	MACT	EEE requirements in addition to those	se specified above.	
6M06-01	Natural gas usage	Not specified		
6M06-01	Natural gas usage	Not specified	daily	
6M07-01	NO ₂	PEMS	Continuous	у
6M01-01A 5M16-01 5M18-03 5M11-15 5M05-02 5M18-01 5M18-02	pressure drop	Pressure gauge	daily	no
Scrubbers and filters in the OSP, SR, 5N07,AP, and DIPB Sections		Maintain and monitor according to		
	<u>Ma</u>	aintain and monitor scrubber accordin	ng to the FOP	<u> </u>
6M03-05	Numerous mo	OPLS from CWD 6 onitoring parameters specified by MA Conditions CWD 9 through		ecific
7K01-01	VOC emissions	Toxchem software	annual	No
/IROI OI	from wastewater			
5N03-54	Temp and flame presence	Not specified	Continuous	N

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 36 of 40

16. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Limit (as established in permit)	Frequency*	Report (Y/N)* *
5N09- 01,02 5M11- 08,09	opacity	20%	weekly	no
6M01-01	Power input to the ESP	FOP	Continuously	no
6M01-01	amount and type of coal, biosludge, liquids, and wood waste to boilers	FOP	daily	no
6M01- 01A	pressure drop across fabric filter	FOP	daily	no
5M16-01 5M18-03 5M11-15 5M05-02	pressure drop	FOP	daily	no
5M18-01	pressure drop	FOP	daily	no
5M18-02	pressure drop	FOP	daily	no
6M03-05	OPLs	NOC	Continuously	no
010103-03	opacity	20%	weekly	no
4PSR-00	Biodiesel production	250 million gal/yr	Monthly	yes
4FSR-00	solvent throughput	40 million lbs/yr	daily	no
4P94-02 PM-50A TFS-53 TFS-54 TFS-55 TFS-56 TFS-60 TFS-71 TFS-73 TFS-74 TFS-75 TFS-76 TFS-76 TFS-78 TFS-80 PE-01 PR-56A	Biodiesel production	250,000,000 gal/yr	monthly	No

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 37 of 40

SN	Recorded Item	Limit (as established in permit)	Frequency*	Report (Y/N)* *
PR-56B				
Aldehyde Section	vinyl compounds produced	58.5 million lbs/yr	Monthly	N
CP2 Section	Anode product	10.8 million pouds/yr	Monthly	N
5M11-08, 09	pressure drop	FOP	daily	No
5N01-WA 7M04-HT-	Hours of operation	100 hours non- emergency use		
G01 7M04-HT- G04 6N02 8M01	Opacity	20%	As needed	No

17. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
5N09-01,02	20%	Normal operation of the source	Method 9
6M01	5%	Normal operation of the source	Method 9
6M01-01	20%	Pre-1970s source	Method 9
6M01-01A	5%	Fabric filter, normal operation	Method 9
6M06-01	5%	Natural gas usage	Method 9
6M07-01	20%	NSPS limit	Method 9
5M05-02	5%	Normal operation	Method 22/Method 9
5M11-15	5%	Normal operation	Method 22/Method 9
5M16-01	5%	Normal operation	Method 22/Method 9
5M18-01	5%	Normal operation	Method 22/Method 9
5M18-02	5%	Normal operation	Method 22/Method 9
5M18-03	5%	Normal operation	Method 22/Method 9
5M11-08	5%	Normal operation	Method 22/Method 9

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 38 of 40

SN	Opacity	Justification for limit	Compliance Mechanism
5M11-09	5%	Normal operation	Method 22/Method 9
6M03-05	20%	Normal operation	Method 22/Method 9
5N03-54	0%	Normal operation	Method 22
4P05-01	5%	Normal operation	Method 22/Method 9
Emergency Generators	20%	Normal operation	Method 9

18. DELETED CONDITIONS:

 Former SC
 Justification for removal

 All WP conditions and emissions have been removed. Source is no longer operating.

19. GROUP A INSIGNIFICANT ACTIVITIES

		Group A Category	Emissions (tpy)								
Source Name			PM/PM ₁₀	SO ₂	voc	со	NO _x	HA Single	Ps Total		
Storage Tank (Storage Tank Process)	TF-7	A-13		<u> </u>	0			0	0		
		A-15	ļ		0			0	0		
Storage Tank (Storage Tank Process)	WH-03	A-13		i	0.0005			0	0		
Storage Tank (Storage Tank Process)	TF-6	A-13			0.0004			0.0004	0.0004		
Storage Tank (Storage Tank Process)	WH-06	A-13			0.005			0	0		
Quenching (Solvent Recovery Process)	4P02-02	A-13			0			0	0		
Storage Tank (Solvent Recovery Process)	4P94-04	A-13			0			0	0		
Extractor (Solvent Recovery Process)	5N01-58	A-13			0.073			0.073	0.073		
Vacuum System (Organic Sulfonation Process)	5M01-03	A-13) 	0			0	0		
Vacuum System (Organic Sulfonation Process)	5M03-06	A-13			0.0031			0	0		
Storage Tank (Organic Sulfonation Process)	5M04-03	A-13			0.000075			0	0		
Storage Tank (Organic Sulfonation Process)	5M04-09	A-13			0			0	0		
Vacuum System (Organic Sulfonation Process)	5M11-03	A-13			0			0	0		
Vents (Organic Sulfonation Process)	5M11-08	A-13			0			0	0		

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 39 of 40

		Group A	Emissions (tpy)								
Source Name		Category						HAPs			
			PM/PM ₁₀	SO ₂	VOC	СО	NOx	Single	Total		
Vents (Organic Sulfonation Process)	5M11-09	A-13			0			0	0		
Unloading Station (Isopropyl Benzene Process)	5N03-46	A-13			0.23		· · · · · · · · · · · · · · · · · · ·	0.23	0.23		
Unloading Station (Isopropyl Benzene Process)	5N03-47	A-13			0		i i	0	0		
Railcar Loading and Unloading Racks	4Q01-12	A-13			0.0112			0	0		
Sawdust pile and handling		A-13	2.0								
Biodiesel Tank	4Q01-10	A-13			0.005						
Biodiesel Tank	6Q01-02	A-13			0.003						
5P01-01	Storage Tank (Glycerin)	A-13			0.001						
5P01-02	Storage Tank (Glycerin)	A-13			0.001		·				
4Q01-12	Storage Tank (Glycerin)	A-13			0.001						
4Q01-13	Storage Tank (Glycerin)	A-13			0.001						
A-13 Totals			2.0		0.35			0.31	0.31		
Storage Tank (Organic Sulfonation Process)	5M04-04	A-4									
Storage Tank (Organic Sulfonation Process)	5M04-07	A-4									
Storage Tank (Solvent Recovery Process)	4P94-03	A-4									
Storage Tank (Storage Tank Process)	5N03-39	A-4									
Storage Tank (Storage Tank Process)	5N03-40	A-4									
Storage Tank (Chemical Destruction Process)	6M03-15	A-4									
Caustic Tank (CL-01R)	-	A-4									
		-				<u> </u>			ļ		
Storage Tank (Organic Chemical Intermediate Process)	5N01-63	A-3			0.001	ļ		0.001	0.001		
Storage Tank (Organic Chemical Intermediate Process)	5N01-64	A-3			0.001			0.001	0.001		
Storage Tank (Organic Chemical Intermediate Process)	5N03-63	A-3			0.001			0.001	0.001		
Storage Tank (Storage Tank Process)	6N01-01	A-3		}	0.001		1				

Permit #: 1085-AOP-R9 AFIN: 32-00036 Page 40 of 40

Course Norma		Group A			Emis	sions (tpy)			
Source Name		Category	PM/PM ₁₀	SO ₂	VOC	со	NO _x	HA Single	Ps Total
A-3 Totals					0.004			0.003	0.003

20. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #
1085-AOP-R8

21. CONCURRENCE BY:

The following supervisor concurs with the permitting decision.

Thomas Rheaume, P.E.

APPENDIX A – EMISSION CHANGES AND FEE CALCULATION

Fee Calculation for Major Source

 a consiste estructuration de l'unification de la construction de la const la construction de la construction de la	FutureFuel Chemical Company 32-00036 1085-AOP-R9		
		2011 (Bab	

\$/ton factor Permit Type	22.97 Modification		Annual Cha Permit Fe	sion (tpy)	<u>6535.1</u> 1000	
Minor Modification Fee \$ Minimum Modification Fee \$ Renewal with Minor Modification \$ If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$ Total Permit Fee Chargeable Emissions (tpy)	500 1000 500 0 -181.1	ŀ				
Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions		Emissions

Pollutant (tpy)	Emission	Permit	Permit	Emissions	Emissions	Emissions
РМ		342.1	177.1	-165		
PM ₁₀		342.1	177.1	-165		
SO ₂		6314.6	6,123.40	-191.2		
VOC		639.4	446.5	-192.9		
со	Г	1864.6	1,126.00	-738.6		
NO _X	T	794.7	820,8	26.1		an a
Inorganic HAP		940	1087,2	147.2		
Organic HAP		639.4	446.2	-193.2		
РЪ		0	3.5	3.5		