STATEMENT OF BASIS

For the issuance of Draft Air Permit # 1145-AR-9 AFIN: 60-00049

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

CT GS Building Products, Inc. 2701 East Roosevelt Road Little Rock, Arkansas 72206

3. PERMIT WRITER:

Christopher Riley

4. NAICS DESCRIPTION AND CODE:

NAICS Description:Asphalt Shingle and Coating Materials ManufacturingNAICS Code:324122

5. ALL SUBMITTALS:

Date of Application	Type of Application	Short Description of Any Changes
	(New, Renewal, Modification,	That Would Be Considered New or
	Deminimis/Minor Mod, or	Modified Emissions
	Administrative Amendment)	
1/13/2017	Deminimis	Replacing SN-908

6. **REVIEWER'S NOTES:**

GS Roofing Products Company (GS Roofing), currently owned by CertainTeed Corporation, operates an asphalt roofing manufacturing facility in Little Rock, Arkansas (Pulaski County). GS Roofing requested a de minimis change to Permit No. 1145-AR-8:

- Replacing the Modified Line Sand Silo #1 Baghouse
- Permitted emissions increases are +0.3 tpy of both PM and PM₁₀
- 7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues. The most recent inspection letter (dated August 11, 2016) revealed no violations

8. PSD APPLICABILITY:

a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N

Ν

- b) Is the facility categorized as a major source for PSD?
- Single pollutant \geq 100 tpy and on the list of 28 or single pollutant \geq 250 tpy and not on list

If yes, explain why this permit modification is not PSD.

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
Asphalt Storage Tanks (SN- 120, SN-144, SN-145, SN- 206, SN207 & SN-917), Mineral Handling & Storage Equipment (SN-148, SN-149, SN-151, SN-152, SN-153, SN-154, SN-165, SN-166, & SN-167), Pre-coaters & Coaters (SN-102, SN-103, SN-131, & SN-132)	PM/PM ₁₀	40 CFR Part 60 (NSPS) Subpart UU – Standards of Performance for Asphalt Processing and Asphalt Roofing Manufacture

10. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

11. AMBIENT AIR EVALUATIONS:

a) Reserved.

b) Non-Criteria Pollutants:

This permit contains a TLV table for non-criteria pollutants. Modeling was used to determine the permitted emission rates for ranges of non-criteria pollutants (grouped by TLV) that pass the PAER or PAIL. Therefore, modeling of specific non-criteria pollutants was not performed.

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m ³)	$\begin{array}{l} \text{PAER (lb/hr)} = \\ 0.11 \times \text{TLV} \end{array}$	Proposed lb/hr	Pass?
Formaldehyde	0.37	0.0407	1.75	No
Carbonyl Sulfide ¹	24.57	2.703	0.94	Yes
Glycol Ethers ²	95	10.45	0.5	Yes
Polycyclic Organic Matter (POM) ³	0.2	0.022	0.02	Yes
Toluene	188	20.68	0.31	Yes
Fluorene	1.55	0.17	0.01	Yes
Ammonia	17.4	1.92	0.4	Yes

1. The TLV for Carbonyl Sulfide was not reported in the ACGIH. Based on H_2S .

2. The TLV for Glycol Sulfide was not reported in the ACGIH. Used EPA website info.

3. The TLV for POM is based on the TLV for Phenanthrene.

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration $(\mu g/m^3)$	Pass?
Formaldehyde*	15	10.68	Yes

* Modeling results from Permit #1145-AR-7

c) H₂S Modeling:

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details.

Is the facility exempt from the H₂S Standards

Permit #: 1145-AR-9 AFIN: 60-00049 Page 4 of 15

If exempt, explain:

Pollutant	Threshold value	Modeled Concentration (ppb)	Pass?
	20 parts per million (5-minute average*)		
H ₂ S	80 parts per billion (8-hour average) residential area		
	100 parts per billion (8-hour average) nonresidential area		

*To determine the 5-minute average use the following equation

 $Cp = Cm \left(t_m/t_p\right)^{0.2}$ where

 $\begin{array}{l} Cp = 5 \text{-minute average concentration} \\ Cm = 1 \text{-hour average concentration} \\ t_m = \ 60 \ \text{minutes} \\ t_p = 5 \ \text{minutes} \end{array}$

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lbs/ton.)		Control Equipment	Control Equipment Efficiency	Comments
102,103,104, 105	Asphalt Roofing Manufacturer=s Association (ARMA)	VOC CO Formaldehyde Carbonyl Sulfide	$\begin{array}{c} 0.359 \\ 0.0754 \\ 0.00915 \\ 0.00808 \end{array}$			(Emission factor are based on pound of pollutant per ton of asphalt processed)*
102,103,131, 132	NSPS Subpart UU	РМ	0.08 lb/ton of roll roofing produced			
104	AP-42 §13.2.4	РМ	0.00032			Aggregate Handling & Storage
105,137	ARMA	PM 0.85				*
113,114,116, 116,117,118,120,131,133,	VOC emission factor based on	VOC	0.17			VOC emission factor based on

12.	CALCULATIONS:
-----	---------------

				<u> </u>	
Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lbs/ton.)		Control Equipment	Control Equipment Efficiency	Comments
stack test data					July 2007 stack test data as measured by EPA Test Method 25A
stack test data	VOC	0.13			July 2007 stack test data
ARMA	СО	0.0754			*
ARMA	СО	0.0202			*
ARMA	СО	0.019			*
ARMA	Formaldehyde Carbonyl Sulfide	0.0252 0.0046			*
ARMA	Formaldehyde Carbonyl Sulfide	0.00397 0.00025			*
ARMA	Formaldehyde Carbonyl Sulfide	0.00568 0.0049			*
ARMA	Formaldehyde Carbonyl Sulfide	0.0252 0.0046			*
ARMA	Formaldehyde Carbonyl Sulfide	0.00915 0.00808			*
	РМ				Emissions from 113 are routed to SN-903 (Baghouse)
ARMA	PM	0.5000			
ARMA	PM	0.105			
ARMA	PM				Emissions from 164 are routed to
	Factor Source (AP-42, testing, etc.) stack test data stack test data ARMA ARMA ARMA ARMA ARMA ARMA ARMA ARM	Factor Source (AP-42, testing, etc.)Emission (Use (Use stack test data)stack test dataVOCstack test dataVOCARMACOARMACOARMACOARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAFormaldehyde Carbonyl SulfideARMAPMARMAPM	Factor Source (AP-42, testing, etc.)Emissible Factor (Ibs/ton.)stack test dataImage: Stack test dataImage: Stack test datastack test dataVOC0.13ARMACO0.0754ARMACO0.0202ARMACO0.019ARMAFormaldehyde Carbonyl Sulfide0.00397 0.00252ARMAFormaldehyde Carbonyl Sulfide0.00397 0.00252ARMAFormaldehyde Carbonyl Sulfide0.00568 0.0046ARMAFormaldehyde Carbonyl Sulfide0.00568 0.0049ARMAFormaldehyde Carbonyl Sulfide0.0252 0.0046ARMAFormaldehyde Carbonyl Sulfide0.0252 0.0046ARMAFormaldehyde Carbonyl Sulfide0.00568 0.0049ARMAFormaldehyde Carbonyl Sulfide0.00515 0.00808ARMAPM0.105000ARMAPM0.105	Factor Source (AP-42, testing, etc.)Emissibility Factor (BuipmentControl Equipmentstack test dataImage: Stack dataImage: Stack dataImage: Stack dataImage: Stack datastack test dataImage: Stack dataImage: Stack dataImage: Stack dataImage: Stack dataARMAImage: Stack dataImage: Stack dataImage: Stack dataImage: Stac	Factor Source (AP-42, testing)Emissible Factor (Ibb/ton.)Control EquipmentControl EquipmentControl Equipmentstack test dataImage: Stack test dataVOC0.13Image: StackImage: Stackstack test dataVOC0.13Image: StackImage: StackImage: StackARMACO0.0754Image: StackImage: StackImage: StackARMACO0.019Image: StackImage: StackImage: StackARMACO0.019Image: StackImage: StackImage: StackARMACO0.019Image: StackImage: StackImage: StackARMAFormaldehyde Carbonyl Sulfide0.00252 0.0046Image: StackImage: StackARMAFormaldehyde Carbonyl Sulfide0.00252 0.0046Image: StackImage: StackARMAFormaldehyde Carbonyl Sulfide0.00252 0.0046Image: StackImage: StackARMAFormaldehyde Carbonyl Sulfide0.00252 0.0046Image: StackImage: StackARMAFormaldehyde Carbonyl Sulfide0.00252 0.0046Image: StackImage: StackARMAFormaldehyde Carbonyl SulfideImage: StackImage: StackImage: StackARMAFormaldehyde Carbonyl SulfideImage: StackImage: StackImage: StackARMAFormaldehyde Carbonyl SulfideImage: StackImage: StackImage: StackARMAFormaldehyde Carbonyl SulfideImage: Stack </td

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lbs/ton.)			Control Equipment	Control Equipment Efficiency	Comments
							SN-912
133,134,135,136	ARMA	РМ	0.00032				(Baghouse) Surfacing PM/PM10 -All PM/PM10 is composed of organic compounds. Therefore, the total VOC emissions are the sum of THC (as carbon) and the emitted PM/PM10.
129,183,122, 115,119,121, 143,158,157, 160,139,180	AP-42 §1.4(NG) and AP-42 1.5(Propane)		MMBtu/h				These Sources may use propane as a backup fuel
		CO NOx PM/PM10 SO2 VOC	<u>NG</u> 0.0824 0.098 0.0075 0.0006 0.0054	Propane 0.0210 0.155 0.0044 0.0166 0.0055			
SN-183	AP-42 Table 1.4-1 and 1.4-2 Natural gas combustion	CO NOx PM/PM10 SO2 VOC	See AP-42 (above row)				Capacity = 3.7MMBtu/hr With 10% safety factor, 3.7 x 1.1 = 4.1
SN-106, SN-140, SN-178	Mass Balance					Paint, part washer usage. Max VOC content lb/gal.	
131,132,102, 103	ARMA	PM/PM10 THC(as C)		850 359			Emission for SN 131 & 132 are

				-	•	-
SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lbs/ton.)		Control Equipment	Control Equipment Efficiency	Comments
		CO Toluene Formaldehyde Carbon Sulfide Phenol	7.54E-02 6.18E-03 9.15E-03 8.08E-03 2.52E-04 (lb/ton Asphalt)			routed to SN- 907; Emission from SN-102 routed to SN-912 and emission from SN-103 routed to SN-902
SN-175	Tank Program		-			
SN-902	ARMA	PM/PM10	NSPS Subpart UU			Must meet NSPS UU PM limit 0.08 lb/ton
SN-903	Publication from EPA's Clean Air Technology Center (CATC)	PM/PM _{10,} also captures VOC: the Emission rate is the sum of grain loading PM contribution plus 10% any THC	0.02 (gr/ft3)			Baghouse exit flow rate: 5400 cubic feet per minute (cfm). (Vents SN- 109,110,111,112, and 113)
SN-904		PM/PM ₁₀	0.02 gr/ft3			Baghouse exit flow rate: 1000 cfm
SN-905	CATC	PM/PM ₁₀	0.02 gr/ft3			Baghouse exit flow rate: 900 cfm
SN-906	CATC	PM/PM ₁₀ , also captures VOC: the Emission rate is the sum of grain loading PM contribution plus 10% any THC	0.02 (gr/ft3)			Baghouse exit flow rate: 12,800 cfm. Vents SN-125, 127, 128.
SN-907	NSPS Subpart	PM/PM ₁₀	0.02 (gr/ft3)			Must meet NSPS

					-	
SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lbs/ton.)		Control Equipment	Control Equipment Efficiency	Comments
	UU					UU PM limit 0.08 lb/ton
SN-908	CATC	PM/PM ₁₀	0.02 (gr/ft3)			Baghouse exit flow rate: 1000 cfm, passive.
SN-909	CATC	PM/PM ₁₀	0.02 (gr/ft3)			Baghouse exit flow rate: 900 cfm, passive
SN-910	CATC	PM/PM ₁₀	0.02 (gr/ft3)			Baghouse exit flow rate: 1800cfm
SN-911	CATC	PM/PM ₁₀	0.02 (gr/ft3)			Baghouse exit flow rate: 1000 cfm
SN-912	CATC	PM/PM ₁₀ , also captures VOC: the Emission rate is the sum of grain loading PM contribution plus 10% any THC	0.02 (gr/ft3)			Baghouse exit flow rate: 4500 cfm. Vents SN- 164
SN-913	CATC	PM/PM ₁₀	0.02 (gr/ft3)			Baghouse exit flow rate: 1050 cfm.
SN-914	CATC	PM/PM ₁₀	0.02 (gr/ft3)			Baghouse exit flow rate: 433 cfm passive
SN-915	CATC	PM/PM ₁₀ , also captures VOC: the Emission rate is the sum of grain loading PM contribution plus 10% any	0.02 (gr/ft3)			Baghouse exit flow rate: 433 cfm passive. Must meet NSPS UU PM limit 0.08 lb/ton

	Emission						
SN	Factor Source (AP-42, testing, etc.)	Emission Factor (lbs/ton.)		Control Equipment	Control Equipment Efficiency	Comments	
		THC					
SN-916		PM/PM ₁₀	0.02 (gr/ft3)				Baghouse exit flow rate: 1500 cfm
SN-182	Mass Balance						
SN-183	AP-42 Table 1.4-1 and 1.4-2 Natural gas combustion		See AP-42				Capacity = 3.7MMBtu/hr With 10% safety factor, 3.7 x 1.1 = 4.1
		VOC	0.	17			
	stack test data ARMA –	PM/PM ₁₀	0.1	105	Ceco Filter	90%	
SN-918	pound of	СО	0.0	754			Emissions from SN-917 are
511-710	pollutant per ton of asphalt	Formaldehyde Carbonyl	0.00)568			routed to SN-918
	processed	Sulfide	0.0	049			
		POM	0.000)0986			

13. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
SN-131 and SN- 132 (Outlet of SN-907)	PM/PM ₁₀	5A, 22, 9	per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits.
SN-145 (Outlet of SN- 907)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.

Permit #: 1145-AR-9 AFIN: 60-00049 Page 10 of 15

SN	Pollutants	Test Method	Test Interval	Justification
SN-120 (Outlet of SN- 902)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.
SN-148 (Outlet of SN- 908)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.
SN-149 (Outlet of SN- 909)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.
SN-151, SN-152, and SN-153 (Outlet of SN- 910)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.
SN-154 (Outlet of SN- 911)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.
SN-165, SN-166, SN-167 (Outlet of SN-	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted

SN	Pollutants	Test Method	Test Interval	Justification
913)				emission limits. Please see Specific Condition 26 for details.
SN-102 and SN- 103 (Outlet of SN-915 and 902)	PM/PM ₁₀	5A, 22, 9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits.
SN-917 (Outlet of SN- 918)	PM/PM ₁₀	9	Testing per 40 CFR §60.8	To demonstrate compliance with the permitted emission limits. Please see Specific Condition 26 for details.

14. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
907, 902, and 915	Inlet temperature reading	Thermocouple	Continuously	Ν
902 and 915	Pressure Drop Across Unit	Pressure Gauge	Weekly	Ν

15. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
Plantwide	de Asphalt usage 96,850 tpy		Monthly	Ν
Plantwide	Roofing Material Production	205,000 tpy	Monthly	Ν

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
Plantwide	VOC emissions	95.5 ton	Monthly	Ν
182	Coating VOC and ammonia limits	0.5 lb/gallon	Monthly	Ν
178	Part Washer Solvent VOC limit	8.0 lb/gallon	Monthly	Ν
106 and 140	HAPs usage	5.0 tons	Monthly	Ν
	VOC limit	See Specific Condition # 5		
106 and 140	Paint	2 lb/gallon	Monthly	Ν

16. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
SN-122	20	19.503	Testing per 40 CFR §60.8
104, 105, 106, 118, 126, 133, 134, 135, 136, 137, 140, 146, 147, 150, 156, 159, 178, 179, 182, 183, 903, 904, 905, 906, and 912.	5	18.501	Testing per 40 CFR §60.8
SN-902 when SN-103 is operating.	20	19.503	Testing per 40 CFR §60.8
SN-902 when SN-103 is not operating and SN-120 is operating	0	60.472(c)	Testing per 40 CFR §60.8
SN-915 when SN- 102, 207, and 206 are operating.	20	19.503	Testing per 40 CFR §60.8
SN-915 when 102 is not operating, and 207, 206 are operating.	0	60.472(c)	Testing per 40 CFR §60.8
SN-907 when SN-131 and SN-132 are operating.	20	60.472(a)(2)	Testing per 40 CFR §60.8
SN-907 when SN-131	0	60.472(c)	Testing per 40 CFR

Permit #: 1145-AR-9 AFIN: 60-00049 Page 13 of 15

SN	Opacity	Justification for limit	Compliance Mechanism
and SN-132 are not operating and SN-145 is operating.			§60.8
SN-144	0	40 CFR Part 60.472(c)	Testing per 40 CFR §60.8
SN-908, 909, 910, 911,913, and 916.	1	40 CFR Part 60.472(d)	Testing per 40 CFR §60.8
SN-918	0	40 CFR Part 60.472(c)	Testing per 40 CFR §60.8

17. DELETED CONDITIONS:

Former SC	Justification for removal			
	N/A			

18. GROUP A INSIGNIFICANT ACTIVITIES:

Source	Group A		Emissions (tpy)							
Name	Category	PM/PM ₁₀	SO_2	VOC	СО	NO _x	HA	Ps		
	0.	1 101/1 10110	30 ₂	VOC	0	NO _x	Single	Total		
Roofing Line Shrink Wrap	A-13									
Coating Asphalt Heater, 3.5 MM Btu/hr	A-1									
Roofing Line SBS Modified Asphalt Storage Tank Heater, 0.8 MM Btu/hr	A-1									
Roofing Line SBS	A-1									

Permit #: 1145-AR-9 AFIN: 60-00049 Page 14 of 15

C.						
Storage						
Tank and						
Heater,						
2.5 MM						
Btu/hr						
Modified	A-13					
Line	11 15					
Backing						
Film						
Applicator					 	
Modified	A-1					
Line						
Sheet						
Edge						
Flame						
Shrinking,						
0.03 MM						
Btu/hr						
Modified	A-13					
Line	11 15					
Shrink						
Wrap						
Modified	A-1					
Line Pre-						
Coater						
Storage						
Tank						
Heater,						
0.8 MM						
Btu/hr						
Modified	A-3					
Line APP	11.5					
Polymer						
Storage Tank						
Modified	A-13					
Line SBS						
Flux						
Storage						
Tank						
Electric						
Heater						
Modified	A-1					
Line Hot						
			1	1		1

Permit #: 1145-AR-9 AFIN: 60-00049 Page 15 of 15

Oil Heater, 6.0 MM Btu/hr					
Modified Line APP Flux Storage Tank Heater, 0.8 MM Btu/hr	A-1				
Modified Line Tectifier Resin Storage Tank	B-21				
1,500 gallon Diesel Tank	A-3				
Kerosene Storage Tank	A-3				
Modified Line Sheet Splicing, 0.06 MM Btu/hr	A-1				

19. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #	
1145-AR-8	

APPENDIX A – EMISSION CHANGES AND FEE CALCULATION

Fee Calculation for Minor Source

Facility Name: CT GS Roofing Products Permit Number: 1145-AR-9 AFIN: 60-00049

			Old Permit	New Permit
\$/ton factor	23.93	Permit Predominant Air Contaminant	95.5	95.5
Minimum Fee \$	400	Net Predominant Air Contaminant Increase	0	
Minimum Initial Fee \$	500			
		Permit Fee \$	400	
Check if Administrative Amendment		Annual Chargeable Emissions (tpy)	95.5	

Pollutant (tpy)	Old Permit	New Permit	Change
PM	84.6	84.9	0.3
PM_{10}	84.6	84.9	0.3
PM _{2.5}	0	0	0
SO ₂	1.3	1.3	0
VOC	95.5	95.5	0
СО	27	27	0
NO _X	11.4	11.4	0
Ammonia	1.4	1.4	0
Formaldehyde	3.48	3.48	0
Carbonyl Sulfide	1.84	1.84	0
POM	0.02	0.02	0
HAPs	3	3	0
Toluene	0.56	0.56	0
Fluorine	0.01	0.01	0

Revised 03-11-16