#### STATEMENT OF BASIS

For the issuance of Draft Air Permit # 1165-AOP-R12 AFIN: 24-00012

## 1. PERMITTING AUTHORITY:

Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

## 2. APPLICANT:

Arkansas Electric Cooperative Corporation - Thomas B. Fitzhugh Generating Station 6006 Lock and Dam Road Ozark, Arkansas 72949

## 3. PERMIT WRITER:

Jesse Smith

## 4. NAICS DESCRIPTION AND CODE:

NAICS Description: Fossil Fuel Electric Power Generation

NAICS Code: 221112

## 5. ALL SUBMITTALS:

The following is a list of ALL permit applications included in this permit revision.

| Date of Application | Type of Application          | Short Description of Any Changes |
|---------------------|------------------------------|----------------------------------|
|                     | (New, Renewal, Modification, | That Would Be Considered New or  |
|                     | Deminimis/Minor Mod, or      | Modified Emissions               |
|                     | Administrative Amendment)    |                                  |
| 4/3/2024            | Minor Mod                    | Two combustion turbines          |
|                     |                              | Two boilers                      |
|                     |                              | Stand-by diesel generator        |
|                     |                              | Two cooling towers               |

## 6. REVIEWER'S NOTES:

Arkansas Electric Cooperative Corporation (AECC) operates a Westinghouse 501D5A combustion turbine at the existing Thomas B. Fitzhugh Generating Station located at 6006 Lock and Dam Road in Ozark, Arkansas 72949. The facility has submitted a modification to add two simple cycle combustion turbines with SCR and oxidation catalysts, two boilers, a stand-by diesel generator, two cooling towers, and additional storage tanks to the insignificant activity list. Permitted emissions increased as follows:

AFIN: 24-00012 Page 2 of 9

11.5 tpy PM, 11.3 tpy PM<sub>10</sub>, 1.4 tpy SO<sub>2</sub>, 22.4 tpy VOC, 74.5 tpy CO, 39.8 tpy NO<sub>X</sub>, 0.42 tpy Single HAP, 1.39 tpy Total HAPs, and 18.6 tpy Ammonia.

# 7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The facility was last inspected on April 5, 2023. There were no areas of concern noted at this time and no significant violations noted on EPA's ECHO database.

# 8. PSD/GHG APPLICABILITY:

- a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N
- b) Is the facility categorized as a major source for PSD? Y
- Single pollutant  $\geq 100$  tpy and on the list of 28 or single pollutant  $\geq 250$  tpy and not on list

If yes for 8(b), explain why this permit modification is not PSD. Emission increases for this project are below significance levels.

# 9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

| Source | Pollutant                                           | Regulation<br>(NSPS, NESHAP or PSD)       |
|--------|-----------------------------------------------------|-------------------------------------------|
| SN-06  | PM/PM <sub>10</sub><br>SO <sub>2</sub><br>CO<br>NOx | PSD<br>NSPS Subpart Db<br>NSPS Subpart GG |
| SN-08  | NOx, CO, HAPs                                       | NSPS Subpart IIII<br>NESHAP Subpart ZZZZ  |
| SN-10  | HAPs                                                | NESHAP CCCCCC                             |
| SN-11  | NOx, CO, HAPs                                       | NSPS Subpart IIII<br>NESHAP Subpart ZZZZ  |
| SN-12  | NOx                                                 | NSPS Subpart GG                           |
| SN-13  | NOx                                                 | NSPS Subpart GG                           |
| SN-16  | NOx, CO, HAPs                                       | NSPS Subpart IIII<br>NESHAP Subpart ZZZZ  |

## 10. UNCONSTRUCTED SOURCES:

AFIN: 24-00012 Page 3 of 9

| Unconstructed | Permit   | Extension | Extension | If Greater than 18 Months without   |
|---------------|----------|-----------|-----------|-------------------------------------|
|               | Approval | Requested | Approval  | Approval, List Reason for Continued |
| Source        | Date     | Date      | Date      | Inclusion in Permit                 |
|               |          |           | N/A       |                                     |

#### 11. PERMIT SHIELD – TITLE V PERMITS ONLY:

Did the facility request a permit shield in this application? N (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Rule 18 requirement.)

# 12. COMPLIANCE ASSURANCE MONITORING (CAM) – TITLE V PERMITS ONLY:

List sources potentially subject to CAM because they use a control device to achieve compliance and have pre-control emissions of at least 100 percent of the major source level. List the pollutant of concern and a brief summary of the CAM plan (temperature monitoring, CEMs, opacity monitoring, etc.) and frequency requirements of § 64.

| Source | Pollutant Controlled | Cite Exemption or CAM Plan Monitoring and Frequency                                                   |
|--------|----------------------|-------------------------------------------------------------------------------------------------------|
| 06     | NOx                  | Acid Rain Program requirement that applies to this source and pollutant – 40 C.F.R. § 64.2(b)(1)(iii) |

## 13. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

## 14. AMBIENT AIR EVALUATIONS:

The following are results for ambient air evaluations or modeling.

## a) NAAQS

A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the DEQ Air Permit Screening Modeling Instructions.

## b) Non-Criteria Pollutants:

The non-criteria pollutants listed below were evaluated. Based on Division of Environmental Quality procedures for review of non-criteria pollutants, emissions of all other non-criteria pollutants are below thresholds of concern.

AFIN: 24-00012 Page 4 of 9

# 1<sup>st</sup> Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Division of Environmental Quality has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

| Pollutant | TLV (mg/m³) | PAER (lb/hr) = 0.11 × TLV | Proposed lb/hr | Pass? |
|-----------|-------------|---------------------------|----------------|-------|
| Acrolein  | 0.2         | 0.022                     | 0.01591        | Yes   |
| РАН       | 0.2         | 0.022                     | 0.06297        | No    |

<sup>2&</sup>lt;sup>nd</sup> Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Division of Environmental Quality to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

| Pollutant                               | PAIL $(\mu g/m^3) = 1/100$ of<br>Threshold Limit Value | Modeled Concentration (μg/m³) | Pass? |
|-----------------------------------------|--------------------------------------------------------|-------------------------------|-------|
| Sum of all PAH Pollutants (0.591 lb/hr) | 2.0                                                    | 0.06583                       | Yes   |

# c) H<sub>2</sub>S Modeling:

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details.

| Is the facility exempt from the H <sub>2</sub> S Standards | Y |  |
|------------------------------------------------------------|---|--|
| If exempt, explain: No H <sub>2</sub> S emissions          |   |  |

## 15. CALCULATIONS:

| SN            | Emission Factor Source (AP-42, testing, etc.) | Emission Factor (lb/ton, lb/hr, etc.) | Control<br>Equipm<br>ent | Control<br>Equipment<br>Efficiency | Comments |
|---------------|-----------------------------------------------|---------------------------------------|--------------------------|------------------------------------|----------|
| 04<br>&<br>05 | TANKS 4.0.9d                                  | 727.46 lb VOC/yr<br>782.0 lb VOC/yr   |                          |                                    |          |

AFIN: 24-00012 Page 5 of 9

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1       | 1          |                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|------------|--------------------------|
|      | Emission Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emission Factor                          | Control | Control    |                          |
| SN   | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | Equipm  | Equipment  | Comments                 |
|      | (AP-42, testing, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (lb/ton, lb/hr, etc.)                    | ent     | Efficiency |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lb/hr                                    |         |            |                          |
|      | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $PM/PM_{10}$ : 54.4                      |         |            |                          |
|      | Manufacturer's data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VOC:11.20                                |         |            |                          |
| 06   | (criteria) & AP-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO: 305.8                                |         |            |                          |
|      | (HAPs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOx: 273.60                              |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SO <sub>2</sub> : 514.00                 |         |            |                          |
| 07,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |         |            | $PM_{10} = Capacity x$   |
| 17,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,070,100 gal/hr                         |         |            | Total Dissolved          |
| & ** | Mass balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,000 ppm                                |         |            | Solids x Drift Loss      |
| 18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005% drift                             |         |            | x Density of Water       |
| 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g/kW-hr                                  |         |            | A Delisity of Water      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM/PM <sub>10</sub> : 0.055              |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOC: 0.15                                |         |            |                          |
|      | Manufacturer's data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO: 0.67                                 |         |            | $SO_2 = Fuel Oil$        |
|      | (PM/PM <sub>10</sub> , VOC, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOx: 5.43                                |         |            | (FO) flow x FO           |
| 08   | and NOx) and mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lb/hr                                    |         |            | density x FO             |
|      | balance (SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO <sub>2</sub> : 0.0046                 |         |            | sulfur% x ( 2 lb         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.6 gal/hr                              |         |            | SO <sub>2</sub> /1 lb S) |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.08 lb/gal                              |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 ppm                                   |         |            |                          |
| 10   | TANKS 4.0.9d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202.86 lb VOC/yr                         |         |            |                          |
| 10   | 1711(115) 1.0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/hp-hr                                  |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $PM/PM_{10}$ : 0.12                      |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOC: 0.10                                |         |            |                          |
|      | Manufacturer's data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO: 0.80                                 |         |            | $SO_2 = Fuel Oil$        |
|      | (PM/PM <sub>10</sub> , VOC, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOx: 2.75                                |         |            | (FO) flow x FO           |
| 11   | and NOx) and mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>lb/hr</u>                             |         |            | density x FO             |
|      | balance (SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO <sub>2</sub> : 0.002                  |         |            | sulfur% x ( 2 lb         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.3 gal/hr                               |         |            | SO <sub>2</sub> /1 lb S) |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.08 lb/gal                              |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 ppm                                   |         |            |                          |
|      | Natural Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lb/MMBtu                                 |         |            |                          |
|      | 40 CFR 75 Appendix D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SO <sub>2</sub> : 0.0006                 |         |            |                          |
|      | The state of the s | H <sub>2</sub> SO <sub>4</sub> : 0.00006 |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1122 34. 0.0000                          |         |            |                          |
| 12   | Manufacturer's data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO <sub>X</sub> : 0.0158                 |         |            | 90                       |
| &    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO: 0.04                                 |         |            | Startup/shutdown         |
| 13   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOC: 0.0137                              |         |            | events a year.           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ammonia: 0.0136                          |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |         |            |                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM: 0.0066                               |         |            |                          |
|      | AP-42 Table 3.1-2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM <sub>10</sub> : 0.0066                |         |            |                          |

AFIN: 24-00012 Page 6 of 9

| SN | Emission Factor Source (AP-42, testing, etc.) | Emission Factor (lb/ton, lb/hr, etc.)                                                            | Control<br>Equipm<br>ent | Control<br>Equipment<br>Efficiency | Comments         |
|----|-----------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|------------------|
|    | (======================================       | PM <sub>2.5</sub> : 0.0066                                                                       |                          |                                    |                  |
|    | <u>Fuel Oil</u><br>AP-42 Table 3.1-2a         | Lb/MMBtu<br>SO <sub>2</sub> : 0.00152<br>H <sub>2</sub> SO <sub>4</sub> : 0.000152<br>PM: 0.0115 |                          |                                    |                  |
|    |                                               | $PM_{10}$ : 0.0115                                                                               |                          |                                    | 10               |
|    |                                               | PM <sub>2.5</sub> : 0.0115                                                                       |                          |                                    | Startup/shutdown |
|    | Manus for days 2 a lada                       | NO <sub>X</sub> : 0.0323<br>CO: 0.0302                                                           |                          |                                    | events a year.   |
|    | Manufacturer's data                           | VOC: 0.0208                                                                                      |                          |                                    |                  |
|    |                                               | Ammonia: 0.0143                                                                                  |                          |                                    |                  |
|    |                                               | <u>Lb/MMscf</u>                                                                                  |                          |                                    |                  |
|    |                                               | SO <sub>2</sub> : 0.6                                                                            |                          |                                    |                  |
|    | Natural Gas                                   | $NO_X$ : 100.0                                                                                   |                          |                                    |                  |
|    | AP-42 Table 1.4-1 and Table 1.4-2             | CO: 84.0                                                                                         |                          |                                    |                  |
|    |                                               | PM: 7.6                                                                                          |                          |                                    |                  |
|    |                                               | PM <sub>10</sub> : 7.6                                                                           |                          |                                    |                  |
| 14 |                                               | PM <sub>2.5</sub> : 7.6<br>VOC: 5.5                                                              |                          |                                    |                  |
| &  |                                               | Lb/1,000 gal                                                                                     |                          |                                    |                  |
| 15 |                                               | SO <sub>2</sub> : 7.1                                                                            |                          |                                    |                  |
|    | Fuel Oil                                      | NO <sub>X</sub> : 20.0                                                                           |                          |                                    |                  |
|    | AP-42 Tables 1.3-1,                           | CO: 5.0                                                                                          |                          |                                    |                  |
|    | 1.3-2, 1.3-3, 1.3-6, 1.3-                     | PM: 3.3                                                                                          |                          |                                    |                  |
|    | 8, and 1.3-12                                 | PM <sub>10</sub> : 3.3                                                                           |                          |                                    |                  |
|    |                                               | PM <sub>2.5</sub> : 3.3                                                                          |                          |                                    |                  |
|    |                                               | VOC: 0.2                                                                                         |                          |                                    |                  |
|    |                                               | <u>g/kW-hr</u>                                                                                   |                          |                                    |                  |
|    |                                               | PM: 0.2                                                                                          |                          |                                    |                  |
|    |                                               | PM <sub>10</sub> : 0.2                                                                           |                          |                                    |                  |
|    | NSPS Subpart IIII Tier                        | PM <sub>2.5</sub> : 0.2                                                                          |                          |                                    |                  |
| 16 | 2 standards and AP-42                         | VOC: 1.37                                                                                        |                          |                                    |                  |
|    | Table 3.4-1                                   | CO: 3.5<br>NOx: 6.4                                                                              |                          |                                    |                  |
|    |                                               | NOX. 0.4                                                                                         |                          |                                    |                  |
|    |                                               | <u>Lb/hp-hr</u>                                                                                  |                          |                                    |                  |
|    |                                               | SO <sub>2</sub> : 4.04E-04                                                                       |                          |                                    |                  |

AFIN: 24-00012 Page 7 of 9

# 16. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

| SN | Pollutants      | Test Method                       | Test Interval              | Justification                           |
|----|-----------------|-----------------------------------|----------------------------|-----------------------------------------|
|    | NOx             | Method 20                         | Initial                    | 40 C.F.R.<br>§60.46b(f)                 |
| 06 | NOx             | Method 20                         | Initial                    | 40 C.F.R.<br>§60.335<br>40 C.F.R. §60.8 |
| 06 | $\mathrm{SO}_2$ | ASTM D 1072-<br>80,<br>D 3031-81, | 180 days after<br>start-up | 40 C.F.R.<br>§60.335<br>40 C.F.R. §60.8 |
|    |                 | D 4084-82, or<br>D 3246-81        | Every 5 years              | Department<br>Guidance                  |

# 17. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

| SN         | Parameter or Pollutant to be Monitored | Method (CEM, Pressure Gauge, etc.) | Frequency  | Report (Y/N) |
|------------|----------------------------------------|------------------------------------|------------|--------------|
| 06, 12, 13 | CO, NO <sub>x</sub> , SO <sub>2</sub>  | CEM/fuel content                   | Continuous | Y            |
| 08         | High Pressure Limit                    | Backpressure Monitor               | Continuous | N            |

# 18. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

| SN      | Recorded Item                                        | Permit Limit                                                                                          | Frequency | Report (Y/N) |
|---------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|--------------|
| 04 & 05 | Fuel oil                                             | Fuel oil 35.1 Million gal per year                                                                    |           | Y            |
| 06      | fuel oil and<br>natural gas<br>burned                | 9.626 billion<br>cubic feet of<br>natural gas and<br>35.14 million<br>gallons of fuel<br>oil per year | Monthly   | Y            |
| 06      | duration and CO<br>emissions for<br>startup/shutdown | Startup<br>4 hr; 6,000 lb CO<br>Shutdown                                                              | Monthly   | Y            |

AFIN: 24-00012 Page 8 of 9

| SN      | Recorded Item                         | Permit Limit                                                                                           | Frequency | Report (Y/N) |
|---------|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|--------------|
|         | events                                | 1 hr; 305.8 lb CO                                                                                      |           |              |
| 07      | TDS                                   | 1,000 ppm                                                                                              | Monthly   | Y            |
| 17, 18  | TDS                                   | 1,200 ppm                                                                                              | Monthly   | Y            |
| 08      | Hours of operation                    | 2,500 hours/year                                                                                       | Monthly   | Y            |
| 16      | Hours of operation                    | 1,000 hours/year                                                                                       | Monthly   | Y            |
| 10      | Gasoline<br>Throughput                | 10,000 gal/month                                                                                       | Monthly   | Y            |
| 11      | Hours of operation                    | 500 hours/year<br>(emergency and<br>non-emergency)                                                     | Monthly   | Y            |
| 12 & 13 | fuel oil and<br>natural gas<br>burned | 2.5517 billion<br>cubic feet of<br>natural gas and<br>2.761 million<br>gallons of fuel<br>oil per year | Monthly   | Y            |
| 14 & 15 | Hour of operation                     | 2,000 hours/year<br>each                                                                               | Monthly   | Y            |

# 19. OPACITY:

| SN                 | Opacity                   | Justification for limit                    | Compliance<br>Mechanism |
|--------------------|---------------------------|--------------------------------------------|-------------------------|
| 06, 12, 13, 14, 15 | 20% when burning fuel oil | Dept. Guidance                             | Daily Observation       |
| 08, 16             | 20%                       | Reg.19.503 and 40<br>C.F.R. § 52 Subpart E | Annual                  |
| 11                 | 20%                       | Reg.19.503 and 40<br>C.F.R. § 52 Subpart E | Annual                  |

# 20. DELETED CONDITIONS:

| Former SC | Justification for removal |
|-----------|---------------------------|
|           | N/A                       |

# 21. GROUP A INSIGNIFICANT ACTIVITIES:

The following is a list of Insignificant Activities including revisions by this permit.

|             | Ī       |                 |
|-------------|---------|-----------------|
| Source Name | Group A | Emissions (tpy) |

AFIN: 24-00012 Page 9 of 9

|                                                                         | Category | PM/PM <sub>10</sub> | SO <sub>2</sub> | VOC    | СО     | NOx    |        | APs    |
|-------------------------------------------------------------------------|----------|---------------------|-----------------|--------|--------|--------|--------|--------|
|                                                                         |          | PIVI/PIVI10         | 302             | VOC    | CO     | NOx    | Single | Total  |
| Main Building Heater (5.25 MMBtu/hr, NG)                                | A-1      | 0.21                | 0.01            | 0.11   | 0.17   | 2.64   | 0.11   | 0.11   |
| Shop Heater                                                             | A-1      | 0.0006              | 0.000           | 0.0008 | 0.0030 | 0.0071 | 0.0008 | 0.0008 |
| Warehouse Heater #1                                                     | A-1      | 0.0003              | 0.000           | 0.0004 | 0.0016 | 0.0038 | 0.0004 | 0.0004 |
| Warehouse Heater #2                                                     | A-1      | 0.0003              | 0.000           | 0.0004 | 0.0015 | 0.0035 | 0.0004 | 0.0004 |
| Intake Heater                                                           | A-1      | 0.0006              | 0.000           | 0.0008 | 0.0030 | 0.0071 | 0.0008 | 0.0008 |
| Firehouse Heater                                                        | A-1      | 0.0003              | 0.000           | 0.0004 | 0.0016 | 0.0038 | 0.0004 | 0.0004 |
| Totals for A-1 Gr                                                       | оир      | 0.2121              | 0.01            | 0.1128 | 0.1807 | 2.6653 | 0.1128 | 0.1128 |
| Diesel fuel tank for<br>EDG (250 gallon) –<br>Back up tank              | A-3      |                     |                 | 0.0002 |        |        | 0.0002 | 0.0002 |
| Diesel fuel tank for EFPE (300 gallon)                                  | A-3      |                     |                 | 0.0002 |        |        | 0.0002 | 0.0002 |
| Diesel fuel tank for EDG (525 gallon)                                   | A-3      |                     |                 | 0.0008 |        |        | 0.0008 | 0.0008 |
| Diesel fuel tank<br>(2,000 gallon) – Back<br>up tank                    | A-3      |                     |                 | 0.0002 |        |        | 0.0002 | 0.0002 |
| Diesel fuel tank for<br>standby gen (1,000<br>gallon) – Back up<br>tank | A-3      |                     |                 | 0.0005 |        |        | 0.0005 | 0.0005 |
| Totals for A-3 Gr                                                       | оир      |                     |                 | 0.0019 |        |        | 0.0019 | 0.0019 |
| Diesel Tank for<br>LM60000 No. 1<br>(1,270,000 gal)                     | A-13     |                     |                 | 0.078  |        |        | 0.078  | 0.078  |
| Diesel Tank for<br>LM60000 No. 2<br>(1,270,000 gal)                     | A-13     |                     |                 | 0.078  |        |        | 0.078  | 0.078  |
| Totals for A-13 G                                                       | roup     |                     |                 | 0.155  |        |        | 0.155  | 0.155  |

# 22. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit.

| Permit #     |
|--------------|
| 1165-AOP-R11 |



Arkansas Electric Cooperative Corporation - Thomas B.

Fitzhugh Generating Station Permit #: 1165-AOP-R12

AFIN: 24-00012

| \$/ton factor                                                   | 28.14     | Annual Chargeable Emissions (tpy) | 1504.9 |
|-----------------------------------------------------------------|-----------|-----------------------------------|--------|
| Permit Type                                                     | Minor Mod | Permit Fee \$                     | 500    |
|                                                                 |           |                                   |        |
|                                                                 |           |                                   |        |
| Minor Modification Fee \$                                       | 500       |                                   |        |
| Minimum Modification Fee \$                                     | 1000      |                                   |        |
| Renewal with Minor Modification \$                              | 500       |                                   |        |
| Check if Facility Holds an Active Minor Source or Mino          | r         |                                   |        |
| Source General Permit                                           |           |                                   |        |
| If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$ | 0         |                                   |        |
| Total Permit Fee Chargeable Emissions (tpy)                     | 93.7      |                                   |        |
| Initial Title V Permit Fee Chargeable Emissions (tpy)           |           |                                   |        |

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

| Pollutant (tpy)   | Check if<br>Chargeable<br>Emission | Old Permit | New Permit |      | Permit Fee<br>Chargeable<br>Emissions | Annual<br>Chargeable<br>Emissions |
|-------------------|------------------------------------|------------|------------|------|---------------------------------------|-----------------------------------|
| PM                |                                    | 91.1       | 102.6      | 11.5 | 11.5                                  | 102.6                             |
| $PM_{10}$         |                                    | 91.1       | 102.4      | 11.3 |                                       |                                   |
| PM <sub>2.5</sub> |                                    | 0          | 0          | 0    |                                       |                                   |
| $SO_2$            |                                    | 840        | 841.4      | 1.4  | 1.4                                   | 841.4                             |
| VOC               |                                    | 27.6       | 50         | 22.4 | 22.4                                  | 50                                |
| СО                |                                    | 500.4      | 574.9      | 74.5 |                                       |                                   |
| $NO_X$            |                                    | 452.5      | 492.3      | 39.8 | 39.8                                  | 492.3                             |

| Pollutant (tpy) | Check if<br>Chargeable<br>Emission | Old Permit | New Permit | Change in Emissions | Permit Fee<br>Chargeable<br>Emissions | Annual<br>Chargeable<br>Emissions |
|-----------------|------------------------------------|------------|------------|---------------------|---------------------------------------|-----------------------------------|
| Single HAP      |                                    | 3.43       | 3.85       | 0.42                |                                       |                                   |
| Total HAPs      |                                    | 5.47       | 6.86       | 1.39                |                                       |                                   |
| Ammonia         | ~                                  | 0          | 18.6       | 18.6                | 18.6                                  | 18.6                              |