STATEMENT OF BASIS

For the issuance of Draft Air Permit # 1440-AOP-R3 AFIN: 16-00061

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Arkansas Glass Container Corporation 516 West Johnson Jonesboro, Arkansas 72403

3. PERMIT WRITER:

Jennifer Boyette

4. PROCESS DESCRIPTION AND NAICS CODE:

NAICS Description: Glass Container Manufacturing

NAICS Code: 327213

5. SUBMITTALS:

2/28/2008

6. REVIEWER'S NOTES:

Arkansas Glass Container Corporation owns and operates a glass container manufacturing facility in Jonesboro, Arkansas (Craighead County). This permit is being issued as a renewal for a Title V operating permit # 1440-AOP-R2. No new construction or major modification is being proposed. The permitted tpy of CO increased 26.9 tpy after the emission rate was adjusted for SN-01 from 0.2 lb/ ton glass to 0.5 lb/ton glass. The estimated efficiency of the passive fabric filters was adjusted from 90% to a more reasonable 99% for sources SN-04A, 04B, and 04C. The permitted NOx emission rates for SN-01 and SN-03 were excessively high when compared to actual stack data and adjusted accordingly. The total permitted emissions for NOx decreased from 655.5 tpy to 387.9 tpy and the permitted emissions for PM/PM10 decreased from 35.4 to 30.6 tpy.

On July 3, 2008, Arkansas Glass Container Corp. submitted a letter to the Department requesting and extension to the stack testing requirement in Specific Condition 8 of permit 1140-AOP-R2 which required stack testing of the glass furnaces once per 5-year

AFIN: 16-00061 Page 2 of 6

permit term. Furnace "A" was tested. However, Furnace "C" has been out of operation since August 2007 undergoing repairs. Specific Condition 8 has been modified to include a testing requirement within 60 days of operation for Furnace "C" in addition to the once every five year testing requirement.

7. COMPLIANCE STATUS:

There are no known active/pending enforcement actions or compliance activities related to this facility.

8. PSD APPLICABILITY:

- a. Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)?
- b. Is the facility categorized as a major source for PSD? Y Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list?

If yes, explain why this permit modification not PSD? This is a permit renewal with no changes in the method of operation.

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
Combined Sources	NOx	PSD (major source status, not subject to PSD review for this renewal)

10. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

11. MODELING:

Criteria Pollutants

Pollutant	Emission Rate (lb/hr)	NAAQS Standard (µg/m³)	Averaging Time	Highest Concentration (µg/m³) (model + background)	% of NAAQS
PM_{10}	30.6	50	Annual	9.6 + 12.3 = 21.9	43.8
F 1V110	30.0	150	24-Hour	39.8 + 33 = 72.8	48.5
NO _x	104.9	100	Annual	38.2 + 7.2 = 45.4	45.4

AFIN: 16-00061 Page 3 of 6

Non-Criteria Pollutants:

N/A: No non-criteria pollutants are expected to be emitted from this facility in significant quantities.

12. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
	PM-Glass Mfg Handbook	2.5 lb PM/ton glass			
	NOx-Stack Test Data	8.57 lb NOx/ton glass			Uncontrolled
01&	CO, AP-42 Table 11.15-2	0.5 lb CO/ton glass			Factors
	VOC- Stack Test Data	11b VOC/ton glass			1
	SO2-Stack Test Data	1.48 lb/ton glass			
O4A	Surrogate AP-42, 11.12-2	0.0072 lb PM/ton	Fabric Sock	90%	Uncontrolled Factors
O4B	Surrogate AP-42, 11.12-2	0.0072 lb PM/ton	Fabric Sock	90%	Uncontrolled Factors
O4C	Surrogate AP-42, 11.12-2	0.0072 lb PM/ton	Fabric Sock	90%	Uncontrolled Factors
04D	Surrogate AP-42, 11.12-2	0.0036 lb PM/ton	Baghouse	99.5%	Uncontrolled Factors
04E	Surrogate AP-42, 11.12-2	0.0036 lb PM/ton	Baghouse	99.5%	Uncontrolled Factors
04F	Surrogate AP-42, 11.6-4	0.0031 lb PM/ton	Baghouse	Not used	Controlled
05	PM/PM ₁₀ AP-42 Table 1.4-2, filterable + condensable	7.6 lb/MMscf nat gas			Uncontrolled Factors
	NOx AP-42 Table 1.4-1 small industrial boiler	100 lb/MMscf nat gas			
	CO AP-42 Table 1.4-1, small industrial boiler	84 lb/MMscf nat gas			
1 1	VOC AP-42 Table 1.4-2	5.5 lb/MMscf nat gas			}
	SO_2	AP-42 Table 1.4-2			;
08	Surrogate AP-42, 11.6-4	0.00016 lb PM/ton	Baghouse	99.5%	Uncontrolled Factors
09	Conservative Estimate	100% Evaporation of volatiles			

AFIN: 16-00061 Page 4 of 6

13. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
	PM/PM ₁₀	5		
	SO ₂	6C	Five (5) year intervals	To help ensure
01 & 03	VOC	25A	(Each furnace shall be tested every five (5)	ongoing compliance with criteria emission
	со	10	years).	limits
	NOx	7E		

Note: Emissions testing was performed on Furnace A (SN-01) on February 12 and 13, 2002, and on Furnace "C" (SN-03) on March 18, and 19, 2003. Test emission rates for PM, PM10, CO and NOx were well below (within 45%) the permitted hourly emission rates. Emission rates for SO2 and VOC also passed.

14. MONITORING OR CEMS

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
04A,04B04C, 04D, O4E, 04F, 08	Manufacturer's recommended specifications for fabric filters.	Procedure and Inspection	Routine inspection once per month.	N
04A,04B04C, 04D, O4E, 04F, 08	Visible Emissions	Visual observation and Method 9 as needed.	At each loading event	N
08	Visible Emissions	Visual observation and Method 9 as needed.	Weekly	N

15. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

AFIN: 16-00061 Page 5 of 6

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
01, 03	Combined Raw Materials	280 ton/day 85,500 ton/yr	Daily	Y
	Feldspar/Nephelene	5,400 tons/yr		
04A, 04B, 04C, 04F	Soda Ash	24,400 tons/yr	Monthly	Y
	Cullet	46,400 tons/yr		
04D	Sand Storage	7,000 tons/yr	Monthly	Y
04E	Limestone Storage	16,000 tons/yr	Monthly	Y
04A, 04B, 04C, 04D, 04E, 04F	Control Equipment Quality Inspections	Manufacturer's Specifications	As Performed (no less than once per month)	N
09	Forming Machine Lubricant	100,000 lb/yr	Daily	Y
01, 03, 04A, 04B, 04C, 04D, 04E, 04F	VE Observation Results	Opacity Limit As Assigned	See PW Condition 8	N

16. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
01, 03	20	Previous Limit	Daily VE observations
04A, 04B, 04C	10	Previous Limit	VE observations-each loading event
04D, 04E	5	Department Guidance	VE observations-each loading event
04F	5	Department Guidance	Weekly VE observations
05	5	Department Guidance	Inspector's observation
08	5	Department Guidance	Weekly obsrvation

17. DELETED CONDITIONS:

AFIN: 16-00061 Page 6 of 6

Former SC	Justification for removal
	N/A

18. GROUP A INSIGNIFICANT ACTIVITIES

Group A		Emissions (tpy)						
Source Name	Category	PM/	SO ₂	VOC	СО	NO _x	HA	
		PM_{10}					Single	Total
320 gal Diesel Storage Tank	3	0	0	0.002	0	0	0	0
Cooling Towers	13	3.550	0	0	0	0	0	0
Cuttlet Jaw Crusherq	13	0.001	0	0	0	0	0	0
Bottle Breaker	0.035	0	0	0	0	0	0	0

19. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #
1440-AOP-R2

20. CONCURRENCE BY:

The following supervisor concurs with the permitting decision.

Thomas Rheaume, P.E.

APPENDIX A – EMISSION CHANGES AND FEE CALCULATION

	·		

Fee Calculation for Major Source

Facility Name:	
Permit Number:	
AFIN:	

\$/ton factor Permit Type	20.96 Renewal No Changes	Annual Chargeable Emission (tpy) Permit Fee \$
Minor Modification Fee \$ Minimum Modification Fee \$ Renewal with Minor Modification \$ If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$ Total Permit Fee Chargeable Emissions (tpy)	500 1000 500 0	

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
PM	Z S	112	109.6	-2.4		
PM ₁₀	The Control of the Co	112	109.6	-2.4	- p - 1 - 1 - 1	
SO_2	▽	63.3	63.3	. 0		
voc		94	94	0		
I_{CO}	Figure	12.6	39.5	26.9		
· 4O _X		655.5	387.9	-267.6	: .	
		0	0	0		
	, in the second	0	0	0	e.	
		0	0	0		
		0	0	0		
		0	0	0	i. La companya	

			•
			,