

July 23, 2009

Lacey Ivey, Environmental Specialist CenterPoint Energy Gas Transmission Co. - Round Mountain Compressor Station P.O. Box 21734 Shreveport, LA 71151

Dear Ms. Ivey:

The enclosed Permit No. 1725-AOP-R2 is issued pursuant to the Arkansas Operating Permit Program, Regulation # 26.

After considering the facts and requirements of A.C.A. §8-4-101 et seq., and implementing regulations, I have determined that Permit No. 1725-AOP-R2 for the construction, operation and maintenance of an air pollution control system for CenterPoint Energy Gas Transmission Co. - Round Mountain Compressor Station to be issued and effective on the date specified in the permit, unless a Commission review has been properly requested under Arkansas Department of Pollution Control & Ecology Commission's Administrative Procedures, Regulation 8.603, within thirty (30) days after service of this decision.

All persons submitting written comments during this thirty (30) day period, and all other persons entitled to do so, may request an adjudicatory hearing and Commission review on whether the decision of the Director should be reversed or modified. Such a request shall be in the form and manner required by Regulation 8.603.

Sincerely,

Mike Bates

Chief, Air Division

				1
				·
				İ
				1
				1
				1
				1
	•			
				ı

RESPONSE TO COMMENTS

CenterPoint Energy Gas Transmission Co. – Round Mountain Compressor Station DRAFT PERMIT # 1725-AOP-R2 AFIN: 15-00068

On June 3, 2009, the Director of the Arkansas Department of Environmental Quality gave notice of a draft permitting decision for the above referenced facility. During the comment period the facility and an ADEQ inspector submitted comments, data, views or arguments on the draft permitting decision. The Department's response to these issues follows.

Issue #1:

Under the process description, the emergency generator was incorrectly listed as 64 Hp when it should be a 237 Hp.

Response #1:

The permit has been updated accordingly.

Issue #2:

Are all of the applicable parts of Subpart GG included in this permit as Specific Conditions?

Response #2:

Specific Conditions 5 - 7 cover all applicable parts of Subpart GG. This condition has been updated to include language stating that the requirements of Subpart GG include, but are not limited to, Specific Conditions 5 - 7.

Issue #3:

Are all of the applicable parts of Subpart KKKK included in this permit as Specific Conditions?

Response #3:

Specific Conditions 9 - 16 cover all applicable parts of Subpart KKKK. This condition has been updated to include language stating that the requirements of Subpart KKKK include, but are not limited to, Specific Conditions 9 - 16.

Issue #4:

Specific Condition 12: Does this apply to both turbines? How is this condition different from the 5-year emissions testing required in Plantwide Condition 9?

Response #4:

No, this condition applies only to SN-07. Specific Condition 12 is a NSPS requirement, and only tests for NO_x, whereas Plantwide Condition 9 also requires the facility to test for CO.

Issue #5:

SN-06: Is this generator subject to NSPS Subpart JJJJ? If not, please include the justification/exemption in the source description, or in the Process Description on Page 5.

Response #5:

This emergency generator was last modified or installed in 2005, thus making it exempt from the provisions of 40 CFR Part 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines. This language has been added to the source description on page 13 of the permit.

Issue #6:

Plantwide Condition #9: Should the next due date for SN-01 be 2/13/13?

Response #6:

Yes, the permit has been updated accordingly.

Issue #7:

Is horsepower supposed to be abbreviated as Hp, and not HP?

Response #7:

Yes, the permit has been updated accordingly.

ADEQ OPERATING AIR PERMIT

Pursuant to the Regulations of the Arkansas Operating Air Permit Program, Regulation 26:

Permit No.: 1725-AOP-R2 Renewal # 1 IS ISSUED TO:

CenterPoint Energy Gas Transmission Co. - Round Mountain
Compressor Station
13 Miles NE of the town of Morrilton
Morrilton, AR 72110
Conway County
AFIN: 15-00068

THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

July 23, 2009

AND

July 22, 2014

THE PERMITTEE IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:

Mike Bates

Chief, Air Division

fuly 23, 2009

Date

Permit #: 1725-AOP-R2

AFIN: 15-00068

Table of Contents

SECTION I: FACILITY INFORMATION	4
SECTION II: INTRODUCTION	5
Summary of Permit Activity	5
Process Description	
Regulations	5
Emission Summary	
SECTION III: PERMIT HISTORY	
SECTION IV: SPECIFIC CONDITIONS	
SN-01 & SN-07	9
SN-06	
SECTION V: COMPLIANCE PLAN AND SCHEDULE	
SECTION VI: PLANTWIDE CONDITIONS	16
Title VI Provisions	
SECTION VII: INSIGNIFICANT ACTIVITIES	
SECTION VIII: GENERAL PROVISIONS	21
Appendix A - 40 CFR Part 60 Subpart GG	
Appendix B - 40 CFR Part 60 Subpart KKKK	

Permit #: 1725-AOP-R2

AFIN: 15-00068

List of Acronyms and Abbreviations

A.C.A. Arkansas Code Annotated

AFIN ADEQ Facility Identification Number

CFR Code of Federal Regulations

CO Carbon Monoxide

HAP Hazardous Air Pollutant

lb/hr Pound Per Hour

MVAC Motor Vehicle Air Conditioner

No. Number

NO_x Nitrogen Oxide

PM Particulate Matter

PM₁₀ Particulate Matter Smaller Than Ten Microns

SNAP Significant New Alternatives Program (SNAP)

SO₂ Sulfur Dioxide

SSM Startup, Shutdown, and Malfunction Plan

Tpy Tons Per Year

UTM Universal Transverse Mercator

VOC Volatile Organic Compound

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION I: FACILITY INFORMATION

PERMITTEE:

CenterPoint Energy Gas Transmission Co. - Round

Mountain Compressor Station

AFIN:

15-00068

PERMIT NUMBER:

1725-AOP-R2

FACILITY ADDRESS:

13 Miles NE of the town of Morrilton

Morrilton, AR 72110

MAILING ADDRESS:

P.O. Box 21734

Shreveport, LA 71151

COUNTY:

Conway County

CONTACT NAME:

Lacey Ivey

CONTACT POSITION:

Environmental Specialist

TELEPHONE NUMBER:

318-429-3297

REVIEWING ENGINEER: Joseph Hurt

UTM North South (Y):

Zone 15: 3910253.56 m

UTM East West (X):

Zone 15: 529646.67 m

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION II: INTRODUCTION

Summary of Permit Activity

CenterPoint Energy Gas Transmission Company (CEGT) operates the Round Mountain Compressor Station. It is located approximately thirteen (13) miles Northeast of Morrilton in Conway County. The function of this compressor station is to compress natural gas from a gas pipeline transmission system for delivery to natural gas customers. The application is for the facility's first Title V Renewal. With this application the facility included a modification in compliance with Consent Administrative Order 05-250 to incorporate the necessary requirements of 40 CFR Part 60, Subpart KKKK - Standards of Performance for Stationary Combustion Turbines. The total permitted increases include 2.5 tpy of PM/PM₁₀, 29.8 tpy of SO₂, and 0.1 tpy of NO_x.

Process Description

The Round Mountain Compressor Station (RMCS) utilizes one (1) 4700 Hp Solar Centaur T-4700 natural gas-fired turbine (SN-01), one (1) 4700 Hp Solar Centaur T-4702 natural gas-fired turbine (SN-07), and one (1) 237 Hp emergency generator (SN-06). Other emission points associated with the facility include the station blowdown vents (SN-04) and the compressor blowdown vents (SN-05). The facility also has one (1) 210-bbl (8820 gal) waste product storage tank (SN-02) which is used to collect entrained liquids from the natural gas pipeline. These blowdown vents and storage tank have been determined to be insignificant activities and are listed as such in Section VII of this permit.

The RMCS receives natural gas at a pressure of 700 psig from the main gas pipeline. This gas enters the facility's main suction piping and is sent through the filter/separators to the compressor unit's suction piping to remove moisture from the gas stream. The filtered gas is then compressed to 900 psig by the 4700 Hp turbine driven compressors (SN-01 and SN-07) before being routed back to the main pipeline for further transport.

Regulations

The following table contains the regulations applicable to this permit.

Regulations
Arkansas Air Pollution Control Code, Regulation 18, effective January 25, 2009
Regulations of the Arkansas Plan of Implementation for Air Pollution Control, Regulation 19, effective January 25, 2009
Regulations of the Arkansas Operating Air Permit Program, Regulation 26, effective January 25, 2009
40 CFR Part 60, Subpart GG – Standards of Performance for Stationary Gas Turbine

Permit #: 1725-AOP-R2

AFIN: 15-00068

Regulations

40 CFR Part 60, Subpart KKKK – Standards of Performance for Stationary Combustion Turbines

Emission Summary

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

	EMISSION SUMMARY					
Source	Description	Pollutant	Emissio	n Rates		
Number	Description	Pollutant	lb/hr	tpy		
		PM	0.7	2.5		
·		PM ₁₀	0.7	2.5		
Tata	l Allowable Emissions	SO ₂	7.0	29.8		
1 Ota	II Allowable Emissions	VOC	2.7	10.0		
		CO	71.1	181.8		
		$\overline{NO_X}$	55.2	227.9		
	IIAD-	Acetaldehyde*	0.30	1.34		
	HAPs	Formaldehyde*	0.30	1.30		
		PM	0.3	1.3		
		PM_{10}	0.3	1.3		
	4700 H., G1-, G.,	SO_2	3.8	16.4		
01	4700 Hp Solar Centaur Natural Gas Turbine Model T-4700	VOC	1.1	4.9		
01		СО	17.9	78.5		
		NO _x	22.4	98.1		
		Acetaldehyde	0.15	0.67		
		Formaldehyde	0.15	0.65		
	1	PM	0.1	0.1		
		PM_{10}	0.1	0.1		
06	237 Hp Emergency	SO_2	0.1	0.1		
	Generator	VOC	0.4	0.1		
		CO	31.4	7.9		
		NO _x	3.3	0.9		
		PM	0.3	1.1		
		PM_{10}	0.3	1.1		
	4700 Hp Solar Centaur	SO_2	3.1	13.3		
07	Natural Gas Turbine	VOC	1.2	5.0		
	Model T-4702	CO	21.8	95.4		
	-	NO _x	29.5	128.9		
		Acetaldehyde	0.15	0.67		
* 1140	1.1.1.4.1/00/4.1.01.11	Formaldehyde	0.15	0.65		

^{* -} HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated.

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION III: PERMIT HISTORY

Permit No. 1725-A was issued to NorAm Gas Transmission Company on December 10, 1996. This was the initial permit issued for this new facility. Permitted emission points included one (1) 4000 Hp compressor engine, two 210 bbl tanks, one emergency electrical generator, and facility and compressor blowdown vents. Total annual emissions were permitted at: 7.5 tpy VOC, 26.7 tpy CO, and 66.5 tpy NO_x.

Permit No. 1725-AR-1 was issued to NorAm Gas Transmission Company on November 6, 1998. This modification was issued in order to allow for the replacement of the existing 4000 Hp compressor engine with a new 4700 Hp turbine compressor engine. Additionally, the blowdown vent emission sources were moved to the permit's insignificant activities list at this time. No other changes occurred at the facility with this modification. Total annual emissions were permitted at: 4.5 tpy VOC, 83.0 tpy CO, and 98.0 tpy NO_x.

Permit No. 1725-AR-2 was issued to CenterPoint Energy Gas Transmission Services on September 11, 2003. This is the second modification to the Minor Source Air Permit for this facility. This modification was issued in order to allow for the facility to operate year-round and to update the emission calculations from the natural gas turbine to incorporate test results which indicate that emissions from the unit are lower than had been previously estimated. This results in a decrease in hourly emission limitations for CO and NO_x from this engine. CenterPoint requested that the annual emission limits for these two pollutants remain unchanged. VOC emissions have increased by 0.4 tpy due to updated calculations for year-round operation. Individual hazardous air pollutant emission limits are quantified for the first time with this modification at 0.67 tpy Acetaldehyde and 0.65 tpy Formaldehyde.

Permit No. 1725-AOP-R0 was the initial Title V permit issued for the Round Mountain Compressor Station owned and operated by CenterPoint Energy Gas Transmission Company (CEGT), on October 8, 2004. The permittee proposed to install an additional 4700 Hp Solar Centaur natural gas fired turbine (designated as SN-07) to drive a natural gas compressor. The installation of SN-07 brings the total potential facility-wide emissions above the major source threshold for NO_X and CO. The addition of SN-07 results in increased potential emissions at the facility as follows: NO_X @128.9 tpy, CO @ 95.4 tpy, and VOC @ 5.5 tpy. The Compressor Station became a major source of criteria pollutants and is subject to Title V requirements. This permit # 1725-AOP-R0 will become the initial Title V Operating Air Permit. The only fuel to be used by the combustion equipment will be pipeline quality natural gas. The 210 barrel entrained liquids storage tank (SN-02) was reclassified as an insignificant activity. According to the permittee, the 210 barrel pigging containment tank (SN-03) shown in the previous permit was never installed, and it was removed from the permit.

Permit No. 1725-AOP-R1 was on October 27, 2005. CEGT submitted a request for a Minor Mod Change on August 2, 2005 proposing to remove the existing 64 Hp Olympian emergency generator (SN-06) from service and replace it with a 237 Hp Generac SG 150 natural gas fueled generator engine (SN-06), which will be limited to an operating time of 500 hours per year. The electric generator will only be used during an emergency in case of electrical outage. The

Permit #: 1725-AOP-R2

AFIN: 15-00068

potential increase in emissions from this source was: 0.7 tpy for NOx and 3.3 tpy for CO. The potential increase in total HAPs emissions was less than 0.04 tpy.

On October 11, 2007 an Administrative Amendment was issued to update the definition of pipeline quality natural gas and add total sulfur testing requirements to demonstrate compliance with the SO₂ limits.

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION IV: SPECIFIC CONDITIONS

SN-01 & SN-07 Solar Centaur Turbine Engines

Source Description

The purpose of the compressor station is to compress natural gas. The gas is sent to the compressors to be compressed, and delivered to the discharge piping system for pipeline transmission. The compressors are driven by Solar Centaur turbine engines (SN-01 & SN-07), which run on natural gas as a fuel and produce exhaust gases. SN-01 is subject to 40 CFR Part 60, Subpart GG - Standards of Performance for Stationary Gas Turbines. SN-07 is subject to 40 CFR Part 60, Subpart KKKK - Standards of Performance for Stationary Combustion Turbines.

Specific Conditions

1. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Plantwide Condition # 7. [Regulation 19, §19.501 et seq., and 40 CFR Part 52, Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM_{10}	0.3	1.3
	4700 Hp Solar Centaur Natural Gas	SO ₂	3.8	16.4
01	Turbine/Compressor,	VOC	1.1	4.9
	Model T-4700. Serial No.: 0923C41	СО	17.9	78.5
		NO _x	22.4	98.1
	4700 Hp Solar Centaur Natural Gas Turbine/Compressor,	PM_{10}	0.3	1.1
		SO ₂	3.1	13.3
07		VOC	1.2	5.0
	Model T-4702.	СО	21.8	95.4
		NO _x	29.5	128.9

2. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Plantwide Condition # 7. [Regulation 18, §18.801, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

Permit #: 1725-AOP-R2

AFIN: 15-00068

SN	Description	Pollutant	lb/hr	tpy
	4700 Hp Solar Centaur Natural Gas	PM	0.3	1.3
01	Turbine/Compressor,	Acetaldehyde	0.15	0.67
	Model T-4700. Serial No.: 0923C41	Formaldehyde	0.15	0.65
	4700 Hp Solar Centaur Natural Gas	PM	0.3	1.1
07	07 Turbine/Compressor,	Acetaldehyde	0.15	0.67
	Model T-4702. Serial No.: 212C82	Formaldehyde	0.15	0.65

3. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this condition shall be demonstrated through compliance with Plantwide Condition # 7. [Regulation 18, §18.501 and 40 CFR Part 52, Subpart E]

SN	Limit	Regulatory Citation
01 & 07	5%	Regulation 18, §18.501

NSPS Conditions

- 4. The gas turbine (SN-01) is subject to and shall comply with the provisions of 40 CFR Part 60, Subpart GG Standards of Performance for Stationary Gas Turbine (See Appendix A). These requirements include, but are not limited to, Specific Conditions # 5 thru # 7.
- 5. Nitrogen oxide (NO_x) emissions from the gas turbine (SN-01) shall not exceed 230 parts per million (0.0230% by volume) on a dry basis at 15% oxygen. [Regulation 19, §19.304 and 40 CFR §60.332(a)(2)]
- 6. The permittee shall comply with the Sulfur Dioxide (SO₂) standards by either demonstrating the SO₂ emissions from the gas turbine (SN-01) do not exceed 0.015 percent by volume on a dry basis at 15% oxygen or that the fuel burned in the gas turbine (SN-01) contains sulfur in excess of 0.8 percent by weight. [Regulation 19, §19.304; 40 CFR §60.333(a); and 40 CFR §60.333(b)]
- 7. The permittee shall maintain documentation verifying the fuel used in SN-01 qualifies as natural gas: contains no more than 20 grains of total sulfur per 100 standard cubic feet, is composed of at least 70% methane by volume or the fuel has a gross heating value between 950 and 1100 Btu/scf. Such documentation may involve a current valid purchase contract, tariff sheet, or transporting contract for the gaseous fuel, specifying the maximum total sulfur content is 20 grains per 100 standard cubic feet. Such

Permit #: 1725-AOP-R2

AFIN: 15-00068

documentation shall be maintained on-site and shall be made available to Department personnel upon request. [Regulation 19, §19.304 and 40 CFR §60.334(h)(3)]

- 8. The gas turbine (SN-07) is subject to and shall comply with the provisions of 40 CFR Part 60, Subpart KKKK Standards of Performance for Stationary Combustion Turbines (See Appendix B). These requirements include, but are not limited to, Specific Conditions # 9 thru # 16.
- 9. The SN-07 NO_x emissions shall not exceed 150 ppm at 15% O₂. [Regulation 19, §19.304; 40 CFR §60.4320(a); and Table 1 of 40 CFR Part 60, Subpart KKKK]
- 10. The permittee shall not burn in SN-07 any fuel which contains total potential sulfur emissions in excess of 26 ng SO₂/J (0.060 lb SO₂/MMBtu) heat input. [Regulation 19, §19.304 and 40 CFR §60.4330]
- 11. The permittee shall operate and maintain the stationary combustion turbine, air pollution control equipment, and monitoring equipment in a manner consistent with good air pollution control practices for minimizing emissions at all times including during startup, shutdown, and malfunction. [Regulation 19, §19.304 and 40 CFR §60.4333(a)]
- 12. The permittee must perform annual performance tests in accordance with §60.4400 to demonstrate continuous compliance. If the NO_x emission result from the performance test is less than or equal to 75 percent of the NO_x emission limit for the turbine, the permittee may reduce the frequency of subsequent performance tests to once every 2 years (no more than 26 calendar months following the previous performance test). If the results of any subsequent performance test exceed 75 percent of the NO_x emission limit for the turbine, the permittee must resume annual performance tests. [Regulation 19, §19.304 and 40 CFR §60.4340(a)]
- 13. To demonstrate that the fuel does not exceed potential sulfur emissions of 26 ng SO₂/J(0.060 lb SO₂/MMBtu) heat input, the permittee must maintain the fuel quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the fuel, specifying that the maximum total sulfur content for natural gas is 20 grains of sulfur or less per 100 standard cubic feet. [Regulation 19, §19.304 and 40 CFR §60.4365(a)]
- 14. The permittee must submit a written report of the results of each performance test performed in accordance with §60.4340(a) before the close of business on the 60th day following the completion of the performance test. [Regulation 19, §19.304 and 40 CFR §60.4375(b)]
- 15. All reports required under §60.7(c) must be postmarked by the 30th day following the end of each 6-month period. [Regulation 19, §19.304 and 40 CFR §60.4395]

Permit #: 1725-AOP-R2

AFIN: 15-00068

16. The permittee must conduct an initial performance test, as required in §60.8. Subsequent NO_x performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test), except as otherwise exempted in Specific Condition # 12. The permittee shall conduct the initial and subsequent performance tests in accordance with §60.4400 and in accordance with General Provision # 7. [Regulation 19, §19.304 and 40 CFR §60.4400]

Permit #: 1725-AOP-R2

AFIN: 15-00068

SN-06 Emergency Generator

Source Description

The electric power emergency generator (Generac SG150) is driven by a 237 Hp natural gas fired engine. It will only be used during an emergency during an electrical outage. This emergency generator was last modified or installed in 2005, thus making it exempt from the provisions of 40 CFR Part 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines.

Specific Conditions

17. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition 0 and Plantwide Condition 7. [Regulation 19, §19.501 et seq. and 40 CFR Part 52, Subpart E]

SN	Description	Pollutant	lb/hr	tpy
	237 Hp Generac SG150 stand-by emergency electric generator engine	PM_{10}	0.1	0.1
		SO_2	0.1	0.1
06		VOC	0.4	0.1
		СО	31.4	7.9
		NO _x	3.3	0.9

18. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition 0 and Plantwide Condition 7. [Regulation 18, §18.801 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

SN	Description	Pollutant	lb/hr	tpy
06	237 Hp Generac SG150 stand-by emergency electric generator engine	PM	0.1	0.1

Permit #: 1725-AOP-R2

AFIN: 15-00068

19. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this condition shall be demonstrated through compliance with Plantwide Condition # 7. [Regulation 18, §18.501 and 40 CFR Part 52, Subpart E]

SN	Limit	Regulatory Citation
06	5%	Regulation 18, §18.501

- 20. The permittee shall not operate the emergency generator (SN-06) in excess of 500 hours during any consecutive twelve-month period. [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 21. The permittee shall maintain records of the hours of operation of the emergency generator (SN-06) which demonstrate compliance with Specific Condition # 0. These records shall indicate the date for each occurrence when the generator is used, as well as the duration of the usage for each date. Such documentation shall be maintained on-site and shall be made available to Department personnel upon request. [§19.705 of Regulation 19 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION V: COMPLIANCE PLAN AND SCHEDULE

CenterPoint Energy Gas Transmission Co. - Round Mountain Compressor Station will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future regulations that may apply and determine their applicability with any necessary action taken on a timely basis.

As further set out in the Executive Summary, in compliance with CAO 05-250 and in reliance upon the EPA AD, CEGT has agreed that SN-07, the Solar Centaur T-4702 turbine, will be considered a "modified or reconstructed turbine" under 40 CFR 60, Subpart KKKK. This permit will serve to incorporate the provisions of 40 CFR 60, Subpart KKKK as applicable to SN-07.

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION VI: PLANTWIDE CONDITIONS

- 1. The permittee shall notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Regulation 19, §19.704, 40 CFR Part 52, Subpart E, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Regulation 19, §19.410(B) and 40 CFR Part 52, Subpart E]
- 3. The permittee must test any equipment scheduled for testing, unless otherwise stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) new equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) operating equipment according to the time frames set forth by the Department or within 180 days of permit issuance if no date is specified. The permittee must notify the Department of the scheduled date of compliance testing at least fifteen (15) days in advance of such test. The permittee shall submit the compliance test results to the Department within thirty (30) days after completing the testing. [Regulation 19, §19.702 and/or Regulation 18 §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 4. The permittee must provide:
 - a. Sampling ports adequate for applicable test methods;
 - b. Safe sampling platforms;
 - c. Safe access to sampling platforms; and
 - d. Utilities for sampling and testing equipment.

[Regulation 19, §19.702 and/or Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

- 5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee shall maintain the equipment in good condition at all times. [Regulation 19, §19.303 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 6. This permit subsumes and incorporates all previously issued air permits for this facility. [Regulation 26 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 7. The permittee shall only use natural gas to fire the turbines and emergency generator located at this facility. Natural gas is defined as gas which contains less than 5 grains total sulfur per 100 standard cubic feet of natural gas. Additionally, natural gas must

Permit #: 1725-AOP-R2

AFIN: 15-00068

either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1100 Btu per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value. Compliance with this condition may be demonstrated by a valid gas tariff, purchase contract, fuel analysis or other appropriate documentation, or periodic testing. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311 and 40 CFR 70.6]

- 8. The permittee shall test the fuel combusted in the compressor engines and/or turbines for Total Sulfur every five years for compressor engines and/or turbines located at CenterPoint's compressor stations in the State of Arkansas to show compliance with SO₂ emission limits. The initial test was completed on April 4, 2008. The natural gas testing of the fuel on one pipeline may be representative for all compressor engines and/or turbines located along that pipeline. The natural gas must contain 5.0 grains of Total Sulfur per 100 standard cubic feet of natural gas or less. The permittee shall use test methods outlined in sections 2.3.5 or 2.3.3.1.2 of 40 CFR Part 75, Appendix D, or other test method upon the Department's approval, to test for Total Sulfur. The results of these tests shall be submitted to the Department at the address listed in General Provision # 7. [Regulation 19, §19.702, and 40 CFR Part 52, Subpart E]
- 9. The permittee shall conduct tests for NOx and CO on the stationary gas turbine (SN-01) exhaust stack every five years as shown in the table below. The permittee shall test for CO on the stationary gas turbine/compressor (SN-07) exhaust stack every five years as shown in the table below. EPA Reference Method 20 shall be used to determine NO_x and EPA Reference Method 10 shall be used to determine CO. Testing shall be performed with the stationary gas turbine/compressor operating at or above 90% of its design capacity. If the tested emission rate for any pollutant is in excess of the permitted emission rate, the engine shall be retested for that pollutant. [Regulation 19, §19.702 of Regulation 19 and 40 CFR Part 52, Subpart E]

Compressor Engines	Previous Test Dates	Remarks
SN-01 Solar Centaur natural gas fired turbine, Model T – 4700 Serial No. 0923C41	2/18/03 2/14/08	Test SN-01 within 5 years of last date tested. Next test shall be performed on or before 2/13/13 and every five years thereafter.
SN-07 Solar Centaur natural gas fired turbine, Model T – 4702 Serial No.: 212C82	10/27/06	Test SN-07 within 5 years of last date tested. Next test shall be performed on or before 10/26/11 and every five years thereafter.

Permit #: 1725-AOP-R2

AFIN: 15-00068

10. The permittee may replace any existing engines on a temporary or permanent basis with engines which have the same or lower emission rates on a pound per hour basis, and have the same or lower horsepower, and which result in the same or lower actual emissions from the facility on pound per hour basis and which do not exceed permitted emissions on a ton per year basis, and do not violate any regulations promulgated by the EPA. The permittee shall conduct NO_x and CO emission testing within 90 days of the date of replacement to verify the emissions from the newly installed engine. The testing shall be conducted in accordance with EPA Reference Method 7E for NO_x and Reference Method 10 for CO. The permittee shall notify ADEQ of the replacement within 30 days of startup. This does not apply to modifications which must go through a PSD review as defined in 40 CFR 52.21. Notwithstanding the above, as provided by Regulation 26, in the event an emergency occurs, the permittee shall have an affirmative defense of emergency to an action brought for non-compliance with technology-based emission limitations if the conditions of Regulation 26, Section 7(f) are met. [Regulation 19, §19.705 and A.C.A § 8-4-203 as referenced by A.C.A. §8-4-304 and A.C.A. §8-4-311]

Title VI Provisions

- 11. The permittee must comply with the standards for labeling of products using ozone-depleting substances. [40 CFR Part 82, Subpart E]
 - a. All containers containing a class I or class II substance stored or transported, all products containing a class I substance, and all products directly manufactured with a class I substance must bear the required warning statement if it is being introduced to interstate commerce pursuant to §82.106.
 - b. The placement of the required warning statement must comply with the requirements pursuant to §82.108.
 - c. The form of the label bearing the required warning must comply with the requirements pursuant to §82.110.
 - d. No person may modify, remove, or interfere with the required warning statement except as described in §82.112.
- 12. The permittee must comply with the standards for recycling and emissions reduction, except as provided for MVACs in Subpart B. [40 CFR Part 82, Subpart F]
 - a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices pursuant to §82.156.
 - b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to §82.158.
 - c. Persons performing maintenance, service repair, or disposal of appliances must be certified by an approved technician certification program pursuant to §82.161.
 - d. Persons disposing of small appliances, MVACs, and MVAC like appliances must comply with record keeping requirements pursuant to §82.166. ("MVAC like appliance" as defined at §82.152)

Permit #: 1725-AOP-R2

AFIN: 15-00068

e. Persons owning commercial or industrial process refrigeration equipment must comply with leak repair requirements pursuant to §82.156.

- f. Owners/operators of appliances normally containing 50 or more pounds of refrigerant must keep records of refrigerant purchased and added to such appliances pursuant to §82.166.
- 13. If the permittee manufactures, transforms, destroys, imports, or exports a class I or class II substance, the permittee is subject to all requirements as specified in 40 CFR Part 82, Subpart A, Production and Consumption Controls.
- 14. If the permittee performs a service on motor (fleet) vehicles when this service involves ozone depleting substance refrigerant (or regulated substitute substance) in the motor vehicle air conditioner (MVAC), the permittee is subject to all the applicable requirements as specified in 40 CFR part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners.
 - The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed. The term "MVAC" as used in Subpart B does not include the air tight sealed refrigeration system used as refrigerated cargo, or the system used on passenger buses using HCFC 22 refrigerant.
- 15. The permittee can switch from any ozone depleting substance to any alternative listed in the Significant New Alternatives Program (SNAP) promulgated pursuant to 40 CFR Part 82, Subpart G.

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION VII: INSIGNIFICANT ACTIVITIES

The following sources are insignificant activities. Any activity that has a state or federal applicable requirement shall be considered a significant activity even if this activity meets the criteria of §26.304 of Regulation 26 or listed in the table below. Insignificant activity determinations rely upon the information submitted by the permittee in an application dated February 25, 2009.

Description	Category
210 barrel entrained liquids, produced water, storage tank (formerly SN-02)	A-13
Facility blowdown vents (formerly SN-04)	A-13
Turbine blowdown vents (formerly SN-05)	A-13
Facility fugitives	A-13

Permit #: 1725-AOP-R2

AFIN: 15-00068

SECTION VIII: GENERAL PROVISIONS

- 1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 et seq.) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute. [40 CFR 70.6(b)(2)]
- 2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 CFR 70.6(a)(2) and §26.701(B) of the Regulations of the Arkansas Operating Air Permit Program (Regulation 26)]
- 3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee's right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Department takes final action on the renewal application. The Department will not necessarily notify the permittee when the permit renewal application is due. [Regulation 26, §26.406]
- 4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, et seq. (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 CFR 70.6(a)(1)(ii) and Regulation 26, §26.701(A)(2)]
- 5. The permittee must maintain the following records of monitoring information as required by this permit.
 - a. The date, place as defined in this permit, and time of sampling or measurements;
 - b. The date(s) analyses performed;
 - c. The company or entity performing the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of such analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

[40 CFR 70.6(a)(3)(ii)(A) and Regulation 26, §26.701(C)(2)]

Permit #: 1725-AOP-R2

AFIN: 15-00068

6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 CFR 70.6(a)(3)(ii)(B) and Regulation 26, §26.701(C)(2)(b)]

7. The permittee must submit reports of all required monitoring every six (6) months. If permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due within thirty (30) days of the end of the reporting period. Although the reports are due every six months, each report shall contain a full year of data. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Regulation No. 26, §26.2 must certify all required reports. The permittee will send the reports to the address below:

Arkansas Department of Environmental Quality Air Division ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118-5317

[40 C.F.R. 70.6(a)(3)(iii)(A) and Regulation 26, §26.701(C)(3)(a)]

- 8. The permittee shall report to the Department all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.
 - a. For all upset conditions (as defined in Regulation19, § 19.601), the permittee will make an initial report to the Department by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:
 - i. The facility name and location;
 - ii. The process unit or emission source deviating from the permit limit;
 - iii. The permit limit, including the identification of pollutants, from which deviation occurs:
 - iv. The date and time the deviation started;
 - v. The duration of the deviation;
 - vi. The average emissions during the deviation;
 - vii. The probable cause of such deviations;
 - viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future; and
 - ix. The name of the person submitting the report.

Permit #: 1725-AOP-R2

AFIN: 15-00068

The permittee shall make a full report in writing to the Department within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit's limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

b. For all deviations, the permittee shall report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a above. The semi-annual report must include all the information as required by the initial and full reports required in 8a.

[Regulation 19, §19.601 and §19.602, Regulation 26, §26.701(C)(3)(b), and 40 CFR 70.6(a)(3)(iii)(B)]

- 9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Regulation are declared to be separable and severable. [40 CFR 70.6(a)(5), Regulation 26, §26.701(E), and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Regulation 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. §7401, et seq. and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 CFR 70.6(a)(6)(i) and Regulation 26, §26.701(F)(1)]
- 11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 CFR 70.6(a)(6)(ii) and Regulation 26, §26.701(F)(2)]
- 12. The Department may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. [40 CFR 70.6(a)(6)(iii) and Regulation 26, §26.701(F)(3)]
- This permit does not convey any property rights of any sort, or any exclusive privilege. [40 CFR 70.6(a)(6)(iv) and Regulation 26, §26.701(F)(4)]

Permit #: 1725-AOP-R2

AFIN: 15-00068

14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Department may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 CFR 70.6(a)(6)(v) and Regulation 26, §26.701(F)(5)]

- 15. The permittee must pay all permit fees in accordance with the procedures established in Regulation 9. [40 CFR 70.6(a)(7) and Regulation 26, §26.701(G)]
- 16. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 CFR 70.6(a)(8) and Regulation 26, §26.701(H)]
- 17. If the permit allows different operating scenarios, the permittee shall, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 CFR 70.6(a)(9)(i) and Regulation 26, §26.701(I)(1)]
- 18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source's potential to emit, unless the Department specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 CFR 70.6(b) and Regulation 26, §26.702(A) and (B)]
- 19. Any document (including reports) required by this permit must contain a certification by a responsible official as defined in Regulation 26, §26.2. [40 CFR 70.6(c)(1) and Regulation 26, §26.703(A)]
- 20. The permittee must allow an authorized representative of the Department, upon presentation of credentials, to perform the following: [40 CFR 70.6(c)(2) and Regulation 26, §26.703(B)]
 - a. Enter upon the permittee's premises where the permitted source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
 - b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;
 - c. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and

Permit #: 1725-AOP-R2

AFIN: 15-00068

d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.

- The permittee shall submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually within 30 days following the last day of the anniversary month of the initial Title V permit. The permittee must also submit the compliance certification to the Administrator as well as to the Department. All compliance certifications required by this permit must include the following: [40 CFR 70.6(c)(5) and Regulation 26, §26.703(E)(3)]
 - a. The identification of each term or condition of the permit that is the basis of the certification;
 - b. The compliance status;
 - c. Whether compliance was continuous or intermittent;
 - d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
 - e. Such other facts as the Department may require elsewhere in this permit or by §114(a)(3) and §504(b) of the Act.
- 22. Nothing in this permit will alter or affect the following: [Regulation 26, §26.704(C)]
 - a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
 - b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
 - c. The applicable requirements of the acid rain program, consistent with §408(a) of the Act; or
 - d. The ability of EPA to obtain information from a source pursuant to §114 of the Act.
- 23. This permit authorizes only those pollutant emitting activities addressed in this permit. [A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 24. The permittee may request in writing and at least 15 days in advance of the deadline, an extension to any testing, compliance or other dates in this permit. No such extensions are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion in the following circumstances:
 - a. Such an extension does not violate a federal requirement;
 - b. The permittee demonstrates the need for the extension; and
 - c. The permittee documents that all reasonable measures have been taken to meet the current deadline and documents reasons it cannot be met.

Permit #: 1725-AOP-R2

AFIN: 15-00068

[Regulation 18, §18.314(A), Regulation 19, §19.416(A), Regulation 26, §26.1013(A), A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]

- 25. The permittee may request in writing and at least 30 days in advance, temporary emissions and/or testing that would otherwise exceed an emission rate, throughput requirement, or other limit in this permit. No such activities are authorized until the permittee receives written Department approval. Any such emissions shall be included in the facility's total emissions and reported as such. The Department may grant such a request, at its discretion under the following conditions:
 - a. Such a request does not violate a federal requirement;
 - b. Such a request is temporary in nature;
 - c. Such a request will not result in a condition of air pollution;
 - d. The request contains such information necessary for the Department to evaluate the request, including but not limited to, quantification of such emissions and the date/time such emission will occur;
 - e. Such a request will result in increased emissions less than five tons of any individual criteria pollutant, one ton of any single HAP and 2.5 tons of total HAPs; and
 - f. The permittee maintains records of the dates and results of such temporary emissions/testing.

[Regulation 18, §18.314(B), Regulation 19, §19.416(B), Regulation 26, §26.1013(B), A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]

- 26. The permittee may request in writing and at least 30 days in advance, an alternative to the specified monitoring in this permit. No such alternatives are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion under the following conditions:
 - a. The request does not violate a federal requirement;
 - b. The request provides an equivalent or greater degree of actual monitoring to the current requirements; and
 - c. Any such request, if approved, is incorporated in the next permit modification application by the permittee.

[Regulation 18, §18.314(C), Regulation 19, §19.416(C), Regulation 26, §26.1013(C), A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 52, Subpart E]

Appendix A

40 CFR Part 60 Subpart GG – Standards of Performance for Stationary Gas Turbine

§ 60.330

(c) For Method 25, the minimum sampling time for each of 3 runs is 60 minutes and the minimum sample volume is 0.003 dry standard cubic meters except that shorter sampling times or smaller volumes, when necessitated by process variables or other factors, may be approved by the Administrator.

(d) The Administrator will approve testing of representative stacks on a case-by-case basis if the owner or operator can demonstrate to the satisfaction of the Administrator that testing of representative stacks yields results comparable to those that would be obtained by testing all stacks.

Subpart FF [Reserved]

Subpart GG—Standards of Performance for Stationary Gas Turbines

§ 60.330 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired.

(b) Any facility under paragraph (a) of this section which commences construction, modification, or reconstruction after October 3, 1977, is subject to the requirements of this part except as provided in paragraphs (e) and (j) of §60.332.

[44 FR 52798, Sept. 10, 1979, as amended at 52 FR 42434, Nov. 5, 1987; 65 FR 61759, Oct. 17, 2000]

§ 60.331 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

(a) Stationary gas turbine means any simple cycle gas turbine, regenerative cycle gas turbine or any gas turbine portion of a combined cycle steam/electric generating system that is not self propelled. It may, however, be mounted on a vehicle for portability.

(b) Simple cycle gas turbine means any stationary gas turbine which does not recover heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine, or which does not recover heat from the gas turbine exhaust gases to heat water or generate steam.

(c) Regenerative cycle gas turbine means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine.

(d) Combined cycle gas turbine means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to heat water or generate steam.

(e) Emergency gas turbine means any stationary gas turbine which operates as a mechanical or electrical power source only when the primary power source for a facility has been rendered inoperable by an emergency situation.

(f) *Ice fog* means an atmospheric suspension of highly reflective ice crys-

tals.

(g) ISO standard day conditions means 288 degrees Kelvin, 60 percent relative humidity and 101.3 kilopascals pressure.

(h) Efficiency means the gas turbine manufacturer's rated heat rate at peak load in terms of heat input per unit of power output based on the lower heating value of the fuel.

(i) Peak load means 100 percent of the manufacturer's design capacity of the gas turbine at ISO standard day conditions.

- (j) Base load means the load level at which a gas turbine is normally operated.
- (k) Fire-fighting turbine means any stationary gas turbine that is used solely to pump water for extinguishing fires.
- (1) Turbines employed in oil/gas production or oil/gas transportation means any stationary gas turbine used to provide power to extract crude oil/natural gas from the earth or to move crude oil/natural gas, or products refined from these substances through pipelines.

(m) A *Metropolitan Statistical Area* or *MSA* as defined by the Department of Commerce.

- (n) Offshore platform gas turbines means any stationary gas turbine located on a platform in an ocean.
- (o) Garrison facility means any permanent military installation.

- (p) Gas turbine model means a group of gas turbines having the same nominal air flow, combuster inlet pressure, combuster inlet temperature, firing temperature, turbine inlet temperature and turbine inlet pressure.
- (q) Electric utility stationary gas turbine means any stationary gas turbine constructed for the purpose of supplying more than one-third of its potential electric output capacity to any utility power distribution system for sale.
- (r) Emergency fuel is a fuel fired by a gas turbine only during circumstances, such as natural gas supply curtailment or breakdown of delivery system, that make it impossible to fire natural gas in the gas turbine

in the gas turbine.

- (s) Unit operating hour means a clock hour during which any fuel is combusted in the affected unit. If the unit combusts fuel for the entire clock hour, it is considered to be a full unit operating hour. If the unit combusts fuel for only part of the clock hour, it is considered to be a partial unit operating hour.
- (t) Excess emissions means a specified averaging period over which either:
- (1) The NO_X emissions are higher than the applicable emission limit in $\S 60.332$;
- (2) The total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in §60.333; or
- (3) The recorded value of a particular monitored parameter is outside the acceptable range specified in the parameter monitoring plan for the affected unit.
- (u) Natural gas means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions. Natural gas contains 20.0 grains or less of total sulfur per 100 standard cubic feet. Equivalents of this in other units are as follows: 0.068 weight percent total sulfur, 680 parts per million by weight (ppmw) total sulfur, and 338 parts per million by volume (ppmv) at 20 degrees Celsius total sulfur. Additionally, natural gas must either be composed of at least 70 per-

cent methane by volume or have a gross calorific value between 950 and 1100 British thermal units (Btu) per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

- (v) Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source, such as a stationary gas turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.
- (w) Lean premix stationary combustion turbine means any stationary combustion turbine where the air and fuel are thoroughly mixed to form a lean mixture for combustion in the combustor. Mixing may occur before or in the combustion chamber. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.
- (x) Diffusion flame stationary combustion turbine means any stationary combustion turbine where fuel and air are injected at the combustor and are injected at the combustor and are mixed only by diffusion prior to ignition. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.
- (y) Unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41359, July 8, 2004]

§ 60.332

§ 60.332 Standard for nitrogen oxides.

(a) On and after the date on which the performance test required by §60.8 is completed, every owner or operator subject to the provisions of this subpart as specified in paragraphs (b), (c), and (d) of this section shall comply with one of the following, except as provided in paragraphs (e), (f), (g), (h), (i), (j), (k), and (l) of this section.

(1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

$$STD = 0.0075 \frac{(14.4)}{Y} + F$$

where:

STD = allowable ISO corrected (if required as given in \$60.335(b)(1)) NO_x emission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated load (kilojoules per watt hour) or, actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

F = NO_x emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(2) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

$$STD = 0.0150 \frac{(14.4)}{Y} + F$$

where:

STD = allowable ISO corrected (if required as given in $$60.335(b)(1)$) NO_X$ emission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated peak load (kilojoules per watt hour), or actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

 $F = NO_X$ emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(3) The use of F in paragraphs (a)(1) and (2) of this section is optional. That is, the owner or operator may choose to apply a NO_X allowance for fuel-bound nitrogen and determine the appropriate F-value in accordance with paragraph (a)(4) of this section or may accept an F-value of zero.

(4) If the owner or operator elects to apply a NO_X emission allowance for fuel-bound nitrogen, F shall be defined according to the nitrogen content of the fuel during the most recent performance test required under $\S60.8$ as follows:

Fuel-bound nitrogen (percent by weight)	F (NO _x percent by volume)	
N ≤ 0.015	0	
0.015 < N≤ 0.1.	0.04(N)	
0.1 < N ≤ 0.25,		
N > 0.25	0.005	

Where:

N = the nitrogen content of the fuel (percent by weight).

or:

Manufacturers may develop and submit to EPA custom fuel-bound nitrogen allowances for each gas turbine model they manufacture. These fuel-bound nitrogen allowances shall be substantiated with data and must be approved for use by the Administrator before the initial performance test required by §60.8. Notices of approval of custom fuel-bound nitrogen allowances will be published in the FEDERAL REGISTER.

(b) Electric utility stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired shall comply with the provisions of paragraph (a)(1) of this section.

(c) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired, shall comply with the provisions of paragraph (a) (2) of this section.

(d) Stationary gas turbines with a manufacturer's rated base load at ISO

conditions of 30 megawatts or less except as provided in $\S60.332(b)$ shall comply with paragraph (a)(2) of this section.

(e) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired and that have commenced construction prior to October 3, 1982 are exempt from paragraph (a) of this section.

(f) Stationary gas turbines using water or steam injection for control of NO_X emissions are exempt from paragraph (a) when ice fog is deemed a traffic hazard by the owner or operator of

the gas turbine.

- (g) Emergency gas turbines, military gas turbines for use in other than a garrison facility, military gas turbines installed for use as military training facilities, and fire fighting gas turbines are exempt from paragraph (a) of this section.
- (h) Stationary gas turbines engaged by manufacturers in research and development of equipment for both gas turbine emission control techniques and gas turbine efficiency improvements are exempt from paragraph (a) on a case-by-case basis as determined by the Administrator.
- (i) Exemptions from the requirements of paragraph (a) of this section will be granted on a case-by-case basis as determined by the Administrator in specific geographical areas where mandatory water restrictions are required by governmental agencies because of drought conditions. These exemptions will be allowed only while the mandatory water restrictions are in effect.
- (j) Stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour that commenced construction, modification, or reconstruction between the dates of October 3, 1977, and January 27, 1982, and were required in the September 10, 1979, FEDERAL REGISTER (44 FR 52792) to comply with paragraph (a)(1) of this section, except electric utility stationary gas turbines, are exempt from paragraph (a) of this section.

(k) Stationary gas turbines with a heat input greater than or equal to 10.7

gigajoules per hour (10 million Btu/hour) when fired with natural gas are exempt from paragraph (a)(2) of this section when being fired with an emergency fuel.

(l) Regenerative cycle gas turbines with a heat input less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) are exempt from paragraph (a) of this section.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41359, July 8, 2004]

§ 60.333 Standard for sulfur dioxide.

On and after the date on which the performance test required to be conducted by §60.8 is completed, every owner or operator subject to the provision of this subpart shall comply with one or the other of the following conditions:

- (a) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15 percent oxygen and on a dry basis.
- (b) No owner or operator subject to the provisions of this subpart shall burn in any stationary gas turbine any fuel which contains total sulfur in excess of 0.8 percent by weight (8000 ppmw).

[44 FR 52798, Sept. 10, 1979, as amended at 69 FR 41360, July 8, 2004]

§ 60.334 Monitoring of operations.

- (a) Except as provided in paragraph (b) of this section, the owner or operator of any stationary gas turbine subject to the provisions of this subpart and using water or steam injection to control NO_X emissions shall install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine.
- (b) The owner or operator of any stationary gas turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which uses water or steam injection to control NO_X

§ 60.334

emissions may, as an alternative to operating the continuous monitoring system described in paragraph (a) of this section, install, certify, maintain, operate, and quality-assure a continuous emission monitoring system (CEMS) consisting of NO_x and O₂ monitors. As an alternative, a CO2 monitor may be used to adjust the measured NOx concentrations to 15 percent O2 by either converting the CO₂ hourly averages to equivalent O2 concentrations using Equation F-14a or F-14b in appendix F to part 75 of this chapter and making the adjustments to 15 percent O2, or by using the CO2 readings directly to make the adjustments, as described in Method 20. If the option to use a CEMS is chosen, the CEMS shall be installed, certified, maintained and operated as follows:

- (1) Each CEMS must be installed and certified according to PS 2 and 3 (for diluent) of 40 CFR part 60, appendix B, except the 7-day calibration drift is based on unit operating days, not calendar days. Appendix F, Procedure 1 is not required. The relative accuracy test audit (RATA) of the NO_x and diluent monitors may be performed individually or on a combined basis, *i.e.*, the relative accuracy tests of the CEMS may be performed either:
- (i) On a ppm basis (for NO_X) and a percent O₂ basis for oxygen; or
- (ii) On a ppm at 15 percent O_2 basis; or
- (iii) On a ppm basis (for NO_X) and a percent CO_2 basis (for a CO_2 monitor that uses the procedures in Method 20 to correct the NO_X data to 15 percent O_2).
- (2) As specified in §60.13(e)(2), during each full unit operating hour, each monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required to validate the hour.

- (3) For purposes of identifying excess emissions, CEMS data must be reduced to hourly averages as specified in §60.13(h).
- (i) For each unit operating hour in which a valid hourly average, as described in paragraph (b)(2) of this section, is obtained for both NO_X and diluent, the data acquisition and handling system must calculate and record the hourly NO_X emissions in the units of the applicable NO_X emission standard under §60.332(a), i.e., percent NOx by volume, dry basis, corrected to 15 percent O2 and International Organization for Standardization (ISO) standard conditions (if required as given in §60.335(b)(1)). For any hour in which the hourly average O_2 concentration exceeds 19.0 percent O2, a diluent cap value of 19.0 percent O2 may be used in the emission calculations.
- (ii) A worst case ISO correction factor may be calculated and applied using historical ambient data. For the purpose of this calculation, substitute the maximum humidity of ambient air (Ho), minimum ambient temperature (T_a), and minimum combustor inlet absolute pressure (P_o) into the ISO correction equation.
- (iii) If the owner or operator has installed a NOx CEMS to meet the requirements of part 75 of this chapter, and is continuing to meet the ongoing requirements of part 75 of this chapter, the CEMS may be used to meet the requirements of this section, except that the missing data substitution methodology provided for at 40 CFR part 75, subpart D, is not required for purposes of identifying excess emissions. Instead, periods of missing CEMS data are to be reported as monitor downtime in the excess emissions and monitoring performance report required in §60.7(c)
- (c) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which does not use steam or water injection to control NO_X emissions, the owner or operator may, but is not required to, for purposes of determining excess emissions, use a CEMS that meets the requirements of paragraph (b) of this section. Also, if the owner or operator has previously submitted and received EPA,

State, or local permitting authority approval of a procedure for monitoring compliance with the applicable $NO_{\rm X}$ emission limit under $\S60.332$, that approved procedure may continue to be used.

- (d) The owner or operator of any new turbine constructed after July 8, 2004, and which uses water or steam injection to control NO_X emissions may elect to use either the requirements in paragraph (a) of this section for continuous water or steam to fuel ratio monitoring or may use a NO_X CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section.
- (e) The owner or operator of any new turbine that commences construction after July 8, 2004, and which does not use water or steam injection to control NO_X emissions, may, but is not required to, elect to use a NO_X CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section. Other acceptable monitoring approaches include periodic testing approved by EPA or the State or local permitting authority or continuous parameter monitoring as described in paragraph (f) of this section.

(f) The owner or operator of a new turbine that commences construction after July 8, 2004, which does not use water or steam injection to control NO_X emissions may, but is not required to, perform continuous parameter monitoring as follows:

- (1) For a diffusion flame turbine without add-on selective catalytic reduction controls (SCR), the owner or operator shall define at least four parameters indicative of the unit's NO_X formation characteristics and shall monitor these parameters continuously.
- (2) For any lean premix stationary combustion turbine, the owner or operator shall continuously monitor the appropriate parameters to determine whether the unit is operating in low-NO $_{\rm X}$ mode.
- (3) For any turbine that uses SCR to reduce NO_X emissions, the owner or operator shall continuously monitor appropriate parameters to verify the proper operation of the emission controls

- (4) For affected units that are also regulated under part 75 of this chapter, if the owner or operator elects to monitor NO_x emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19 of this chapter, the requirements of this paragraph (f) may be met by performing the parametric monitoring described in section 2.3 of appendix E or in §75.19(c)(1)(iv)(H) of this chapter.
- (g) The steam or water to fuel ratio or other parameters that are continuously monitored as described in paragraphs (a), (d) or (f) of this section shall be monitored during the performance test required under §60.8, to establish acceptable values and ranges. The owner or operator may supplement the performance test data with engineering analyses, design specifications, manufacturer's recommendations and other relevant information to define the acceptable parametric ranges more precisely. The owner or operator shall develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NO_X emission controls. The plan shall include the parameter(s) monitored and the acceptable range(s) of the parameter(s) as well as the basis for designating the parameter(s) and acceptable range(s). Any supplemental data such as engineering analyses, design specifications, manufacturer's recommendations and other relevant information shall be included in the monitoring plan. For affected units that are also subject to part 75 of this chapter and that use the low mass emissions methodology in §75.19 of this chapter or the NO_X emission measurement methodology in appendix E to part 75, the owner or operator may meet the requirements of this paragraph by developing and keeping on-site (or at a central location for unmanned facilities) a quality-assurance plan, as described in §75.19 (e)(5) or in section 2.3 of appendix E and section 1.3.6 of appendix B to part 75 of this
- (h) The owner or operator of any stationary gas turbine subject to the provisions of this subpart:
- (1) Shall monitor the total sulfur content of the fuel being fired in the

turbine, except as provided in paragraph (h)(3) of this section. The sulfur content of the fuel must be determined using total sulfur methods described in \$60.335(b)(10). Alternatively, if the total sulfur content of the gaseous fuel during the most recent performance test was less than 0.4 weight percent (4000 ppmw), ASTM D4084-82, 94, D5504-01, D6228-98, or Gas Processors Association Standard 2377-86 (all of which are incorporated by reference-see §60.17), which measure the major sulfur compounds may be used; and

- (2) Shall monitor the nitrogen content of the fuel combusted in the turbine, if the owner or operator claims an allowance for fuel bound nitrogen (*i.e.*, if an F-value greater than zero is being or will be used by the owner or operator to calculate STD in §60.332). The nitrogen content of the fuel shall be determined using methods described in §60.335(b)(9) or an approved alternative.
- (3) Notwithstanding the provisions of paragraph (h)(1) of this section, the owner or operator may elect not to monitor the total sulfur content of the gaseous fuel combusted in the turbine, if the gaseous fuel is demonstrated to meet the definition of natural gas in \$60.331(u), regardless of whether an existing custom schedule approved by the administrator for subpart GG requires such monitoring. The owner or operator shall use one of the following sources of information to make the required demonstration:
- (i) The gas quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, specifying that the maximum total sulfur content of the fuel is 20.0 grains/100 scf or less; or
- (ii) Representative fuel sampling data which show that the sulfur content of the gaseous fuel does not exceed 20 grains/100 scf. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.
- (4) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and for which a custom fuel monitoring schedule has previously been approved, the owner or operator may, without submitting a spe-

cial petition to the Administrator, continue monitoring on this schedule.

- (i) The frequency of determining the sulfur and nitrogen content of the fuel shall be as follows:
- (1) Fuel oil. For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (i.e., flow proportional sampling, daily sampling, sampling from the unit's storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank). If an emission allowance is being claimed for fuel-bound nitrogen, the nitrogen content of the oil shall be determined and recorded once per unit operating day.

(2) Gaseous fuel. Any applicable nitrogen content value of the gaseous fuel shall be determined and recorded once per unit operating day. For owners and operators that elect not to demonstrate sulfur content using options in paragraph (h)(3) of this section, and for which the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel shall be determined and recorded once per unit operating day.

(3) Custom schedules. Notwithstanding the requirements of paragraph (i)(2) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (i)(3)(i) and (i)(3)(ii) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in §60.333.

(i) The two custom sulfur monitoring schedules set forth in paragraphs (i)(3)(i)(A) through (D) and in paragraph (i)(3)(ii) of this section are acceptable, without prior Administrative approval:

(A) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the

Environmental Protection Agency

required frequency for subsequent monitoring of the fuel's total sulfur content shall be as specified in paragraph (i)(3)(i)(B), (C), or (D) of this section, as applicable.

- (B) If none of the 30 daily measurements of the fuel's total sulfur content exceeds 0.4 weight percent (4000 ppmw), subsequent sulfur content monitoring may be performed at 12 month intervals. If any of the samples taken at 12-month intervals has a total sulfur content between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), follow the procedures in paragraph (i)(3)(i)(C) of this section. If any measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section.
- (C) If at least one of the 30 daily measurements of the fuel's total sulfur content is between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), but none exceeds 0.8 weight percent (8000 ppmw), then:
- (1) Collect and analyze a sample every 30 days for three months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(2) of this section.
- (2) Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(3) of this section.
- (3) Begin monitoring at 12-month intervals. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, continue to monitor at this frequency.
- (D) If a sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), immediately begin daily monitoring according to paragraph (i)(3)(i)(A) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than 0.8 weight percent (8000 ppmw), are obtained. At that point, the applicable procedures of paragraph

- (i)(3)(i)(B) or (C) of this section shall be followed.
- (ii) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur sampling schedule, as follows:
- (A) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf (i.e., the maximum total sulfur content of natural gas as defined in §60.331(u)), no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.
- (B) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf, but none of the sulfur content values (when converted to weight percent sulfur) exceeds 0.4 weight percent (4000 ppmw), then the minimum required sampling frequency shall be one sample at 12 month intervals.
- (C) If any sample result exceeds 0.4 weight percent sulfur (4000 ppmw), but none exceeds 0.8 weight percent sulfur (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(C) of this section.
- (D) If the sulfur content of any of the 720 hourly samples exceeds 0.8 weight percent (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(D) of this section.
- (j) For each affected unit that elects to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content or fuel nitrogen content under this subpart, the owner or operator shall submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions shall be reported for all periods of unit operation, including startup, shutdown and malfunction. For the purpose of reports required under \$60.7(c), periods of excess emissions and monitor downtime that shall be reported are defined as follows:
 - (1) Nitrogen oxides.
- (i) For turbines using water or steam to fuel ratio monitoring:
- (A) An excess emission shall be any unit operating hour for which the average steam or water to fuel ratio, as

§ 60.334

measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with §60.332, as established during the performance test required in §60.8. Any unit operating hour in which no water or steam is injected into the turbine shall also be considered an excess emission

- (B) A period of monitor downtime shall be any unit operating hour in which water or steam is injected into the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.
- (C) Each report shall include the average steam or water to fuel ratio, average fuel consumption, ambient conditions (temperature, pressure, and humidity), gas turbine load, and (if applicable) the nitrogen content of the fuel during each excess emission. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).
- (ii) If the owner or operator elects to take an emission allowance for fuel bound nitrogen, then excess emissions and periods of monitor downtime are as described in paragraphs (j)(1)(ii)(A) and (B) of this section.
- (A) An excess emission shall be the period of time during which the fuel-bound nitrogen (N) is greater than the value measured during the performance test required in $\S 60.8$ and used to determine the allowance. The excess emission begins on the date and hour of the sample which shows that N is greater than the performance test value, and ends with the date and hour of a subsequent sample which shows a fuel nitrogen content less than or equal to the performance test value.
- (B) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour that a required sample is taken, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

- (iii) For turbines using $NO_{\boldsymbol{x}}$ and diluent CEMS:
- (A) An hour of excess emissions shall be any unit operating hour in which the 4-hour rolling average NO_X concentration exceeds the applicable emission limit in §60.332(a)(1) or (2). For the purposes of this subpart, a "4-hour rolling average NO_X concentration" is the arithmetic average of the average NO_X concentration measured by the CEMS for a given hour (corrected to 15 percent O_2 and, if required under §60.335(b)(1), to ISO standard conditions) and the three unit operating hour average NO_X concentrations immediately preceding that unit operating hour.
- (B) A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for either NO_X concentration or diluent (or both).
- (C) Each report shall include the ambient conditions (temperature, pressure, and humidity) at the time of the excess emission period and (if the owner or operator has claimed an emission allowance for fuel bound nitrogen) the nitrogen content of the fuel during the period of excess emissions. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).
- (iv) For owners or operators that elect, under paragraph (f) of this section, to monitor combustion parameters or parameters that document proper operation of the NO_X emission controls:
- (A) An excess emission shall be a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.
- (B) A period of monitor downtime shall be a unit operating hour in which any of the required parametric data are either not recorded or are invalid.
- (2) Sulfur dioxide. If the owner or operator is required to monitor the sulfur content of the fuel under paragraph (h) of this section:

Environmental Protection Agency

- (i) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit's storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the gas turbine exceeds 0.8 weight percent and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.
- (ii) If the option to sample each delivery of fuel oil has been selected, the owner or operator shall immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit's storage tank) if the sulfur content of a delivery exceeds 0.8 weight percent. The owner or operator shall continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and shall evaluate excess emissions according to paragraph (j)(2)(i) of this section. When all of the fuel from the delivery has been burned, the owner or operator may resume using the as-delivered sampling option.
- (iii) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime shall include only unit operating hours, and ends on the date and hour of the next valid sample.
- (3) Ice fog. Each period during which an exemption provided in §60.332(f) is in effect shall be reported in writing to the Administrator quarterly. For each period the ambient conditions existing during the period, the date and time the air pollution control system was deactivated, and the date and time the air pollution control system was reactivated shall be reported. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter.
- (4) Emergency fuel. Each period during which an exemption provided in §60.332(k) is in effect shall be included in the report required in §60.7(c). For each period, the type, reasons, and du-

ration of the firing of the emergency fuel shall be reported.

(5) All reports required under §60.7(c) shall be postmarked by the 30th day following the end of each 6-month period.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41360, July 8, 2004; 71 FR 9457, Feb. 24, 2006)

$\S 60.335$ Test methods and procedures.

- (a) The owner or operator shall conduct the performance tests required in §60.8, using either
 - (1) EPA Method 20,
- (2) ASTM D6522-00 (incorporated by reference, see §60.17), or
- (3) EPA Method 7E and either EPA Method 3 or 3A in appendix A to this part, to determine NO_X and diluent concentration.
- (4) Sampling traverse points are to be selected following Method 20 or Method 1, (non-particulate procedures) and sampled for equal time intervals. The sampling shall be performed with a traversing single-hole probe or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.
- (5) Notwithstanding paragraph (a)(4) of this section, the owner or operator may test at few points than are specified in Method 1 or Method 20 if the following conditions are met:
- (i) You may perform a stratification test for NO_X and diluent pursuant to
- (A) [Reserved]
- (B) The procedures specified in section 6.5.6.1(a) through (e) appendix A to part 75 of this chapter.
- (ii) Once the stratification sampling is completed, the owner or operator may use the following alternative sample point selection criteria for the performance test:
- (A) If each of the individual traverse point NO_X concentrations, normalized to 15 percent O_2 , is within ± 10 percent of the mean normalized concentration for all traverse points, then you may use 3 points (located either 16.7, 50.0, and 83.3 percent of the way across the stack or duct, or, for circular stacks or

§ 60.335

ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The 3 points shall be located along the measurement line that exhibited the highest average normalized $NO_{\rm X}$ concentration during the stratification test; or

(B) If each of the individual traverse point NO_X concentrations, normalized to 15 percent O_2 , is within ± 5 percent of the mean normalized concentration for all traverse points, then you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid.

(6) Other acceptable alternative reference methods and procedures are given in paragraph (c) of this section.

(b) The owner or operator shall determine compliance with the applicable nitrogen oxides emission limitation in §60.332 and shall meet the performance test requirements of §60.8 as follows:

(1) For each run of the performance test, the mean nitrogen oxides emission concentration (NO_{Xo}) corrected to 15 percent O_2 shall be corrected to ISO standard conditions using the following equation. Notwithstanding this requirement, use of the ISO correction equation is optional for: Lean premix stationary combustion turbines; units used in association with heat recovery steam generators (HRSG) equipped with duct burners; and units equipped with add-on emission control devices:

 $NO_X = (NO_{Xo}) (P_r/P_o)^{0.5}$ e^{19} $^{(Ho-0.00633)}$ $(288°K/T_s)^{1.53}$

Where:

 NO_X = emission concentration of NO_X at 15 percent O_2 and ISO standard ambient conditions, ppm by volume, dry basis,

 NO_{Xo} = mean observed NO_{X} concentration, ppm by volume, dry basis, at 15 percent O_{2} , P_{r} = reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure, mm Hg,

 P_o = observed combustor inlet absolute pressure at test, mm Hg, H_o = observed humidity of ambient air, g

 H_o = observed humidity of ambient air, μ_0 H_2 O/g air,

e = transcendental constant, 2.718, and T_a = ambient temperature, °K.

(2) The 3-run performance test required by $\S60.8$ must be performed within ± 5 percent at 30, 50, 75, and 90-to-100 percent of peak load or at four evenly-spaced load points in the normal operating range of the gas turbine,

including the minimum point in the operating range and 90-to-100 percent of peak load, or at the highest achievable load point if 90-to-100 percent of peak load cannot be physically achieved in practice. If the turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel. Notwithstanding these requirements, performance testing is not required for any emergency fuel (as defined in §60.331).

(3) For a combined cycle turbine system with supplemental heat (duct burner), the owner or operator may elect to measure the turbine NO_X emissions after the duct burner rather than directly after the turbine. If the owner or operator elects to use this alternative sampling location, the applicable NO_X emission limit in 60.332 for the combustion turbine must still be met.

(4) If water or steam injection is used to control NO_X with no additional post-combustion NO_X control and the owner or operator chooses to monitor the steam or water to fuel ratio in accordance with $\S 60.334(a)$, then that monitoring system must be operated concurrently with each EPA Method 20, ASTM D6522-00 (incorporated by reference, see $\S 60.17$), or EPA Method 7E run and shall be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable $\S 60.332\ NO_X$ emission limit.

(5) If the owner operator elects to claim an emission allowance for fuel bound nitrogen as described in §60.332, then concurrently with each reference method run, a representative sample of the fuel used shall be collected and analyzed, following the applicable procedures described in §60.335(b)(9). These data shall be used to determine the maximum fuel nitrogen content for which the established water (or steam) to fuel ratio will be valid.

(6) If the owner or operator elects to install a CEMS, the performance evaluation of the CEMS may either be conducted separately (as described in paragraph (b)(7) of this section) or as part of the initial performance test of the affected unit.

(7) If the owner or operator elects to install and certify a NO_X CEMS under

§60.334(e), then the initial performance test required under §60.8 may be done in the following alternative manner:

- (i) Perform a minimum of 9 reference method runs, with a minimum time per run of 21 minutes, at a single load level, between 90 and 100 percent of peak (or the highest physically achievable) load.
- (ii) Use the test data both to demonstrate compliance with the applicable NO_x emission limit under §60.332 and to provide the required reference method data for the RATA of the CEMS described under §60.334(b)
- (iii) The requirement to test at three additional load levels is waived.
- (8) If the owner or operator elects under §60.334(f) to monitor combustion parameters or parameters indicative of proper operation of NO_X emission controls, the appropriate parameters shall be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in §60.334(g).
- (9) To determine the fuel bound nitrogen content of fuel being fired (if an emission allowance is claimed for fuel bound nitrogen), the owner or operator may use equipment and procedures meeting the requirements of

(i) For liquid fuels, ASTM D2597-94 (Reapproved 1999), D6366-99, D4629-02, D5762-02 (all of which are incorporated by reference, see § 60.17); or

(ii) For gaseous fuels, shall use analytical methods and procedures that are accurate to within 5 percent of the instrument range and are approved by the Administrator.

(10) If the owner or operator is required under §60.334(i)(1) or (3) to periodically determine the sulfur content of the fuel combusted in the turbine, a minimum of three fuel samples shall be collected during the performance test. Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129-00, D2622-98, D4294-02, D1266-98, D5453-00 or D1552-01 (all of which are incorporated

by reference, see § 60.17); or

(ii) For gaseous fuels, ASTM D1072-80, 90 (Reapproved 1994); D3246-81, 92, 96; D4468-85 (Reapproved 2000); or D6667-01 (all of which are incorporated by reference, see §60.17). The applicable ranges of some ASTM methods mentioned above are not adequate to measure the levels of sulfur in some fuel gases. Dilution of samples before analysis (with verification of the dilution ratio) may be used, subject to the prior approval of the Administrator.

- (11) The fuel analyses required under paragraphs (b)(9) and (b)(10) of this section may be performed by the owner or operator, a service contractor retained by the owner or operator, the fuel vendor, or any other qualified agency.
- (c) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:
- (1) Instead of using the equation in paragraph (b)(1) of this section, manufacturers may develop ambient condition correction factors to adjust the nitrogen oxides emission level measured by the performance test as provided in §60.8 to ISO standard day conditions.

[69 FR 41363, July 8, 2004, as amended at 71 FR 9458, Feb. 24, 2006]

Subpart HH—Standards of Performance for Lime Manufacturing Plants

SOURCE: 49 FR 18080, Apr. 26, 1984, unless otherwise noted.

§60.340 Applicability and designation of affected facility.

- (a) The provisions of this subpart are applicable to each rotary lime kiln used in the manufacture of lime.
- (b) The provisions of this subpart are not applicable to facilities used in the manufacture of lime at kraft pulp mills.
- (c) Any facility under paragraph (a) of this section that commences construction or modification after May 3. 1977, is subject to the requirements of this subpart.

§ 60.341 Definitions.

As used in this subpart, all terms not defined herein shall have the same meaning given them in the Act and in the General Provisions.

(a) Lime manufacturing plant means any plant which uses a rotary lime kiln

Appendix B

40 CFR Part 60 Subpart KKKK – Standards of Performance for Stationary Combustion Turbines

§ 60.4300

Subpart JJJJ [Reserved]

Subpart KKKK—Standards of Performance for Stationary Combustion Turbines

SOURCE: 71 FR 38497, July 6, 2006, unless otherwise noted.

INTRODUCTION

§ 60.4300 What is the purpose of this subpart?

This subpart establishes emission standards and compliance schedules for the control of emissions from stationary combustion turbines that commenced construction, modification or reconstruction after February 18, 2005.

APPLICABILITY

§ 60.4305 Does this subpart apply to my stationary combustion turbine?

(a) If you are the owner or operator of a stationary combustion turbine with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour, based on the higher heating value of the fuel, which commenced construction, modification, or reconstruction after February 18, 2005, your turbine is subject to this subpart. Only heat input to the combustion turbine should be included when determining whether or not this subpart is applicable to your turbine. Any additional heat input to associated heat recovery steam generators (HRSG) or duct burners should not be included when determining your peak heat input. However, this subpart does apply to emissions from any associated HRSG and duct burners.

(b) Stationary combustion turbines regulated under this subpart are exempt from the requirements of subpart GG of this part. Heat recovery steam generators and duct burners regulated under this subpart are exempted from the requirements of subparts Da, Db, and Dc of this part.

§ 60.4310 What types of operations are exempt from these standards of performance?

(a) Emergency combustion turbines, as defined in §60.4420(i), are exempt from the nitrogen oxides (NOx) emission limits in $\S 60.4320$.

- (b) Stationary combustion turbines engaged by manufacturers in research and development of equipment for both combustion turbine emission control techniques and combustion turbine efficiency improvements are exempt from the NO_X emission limits in $\S60.4320$ on a case-by-case basis as determined by the Administrator.
- (c) Stationary combustion turbines at integrated gasification combined cycle electric utility steam generating units that are subject to subpart Da of this part are exempt from this subpart.
- (d) Combustion turbine test cells/ stands are exempt from this subpart.

EMISSION LIMITS

§ 60.4315 What pollutants are regulated by this subpart?

The pollutants regulated by this subpart are nitrogen oxide (NO_X) and sulfur dioxide (SO_2) .

$\S 60.4320$ What emission limits must I meet for nitrogen oxides (NO_X)?

- (a) You must meet the emission limits for NO_X specified in Table 1 to this subpart.
- (b) If you have two or more turbines that are connected to a single generator, each turbine must meet the emission limits for NO_X .

\S 60.4325 What emission limits must I meet for NO_X if my turbine burns both natural gas and distillate oil (or some other combination of fuels)?

You must meet the emission limits specified in Table 1 to this subpart. If your total heat input is greater than or equal to 50 percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you are burning that fuel. Similarly, when your total heat input is greater than 50 percent distillate oil and fuels other than natural gas, you must meet the corresponding limit for distillate oil and fuels other than natural gas for the duration of the time that you burn that particular fuel.

§60.4330 What emission limits must I meet for sulfur dioxide (SO₂)?

- (a) If your turbine is located in a continental area, you must comply with either paragraph (a)(1) or (a)(2) of this section. If your turbine is located in Alaska, you do not have to comply with the requirements in paragraph (a) of this section until January 1, 2008.
- (1) You must not cause to be discharged into the atmosphere from the subject stationary combustion turbine any gases which contain SO_2 in excess of 110 nanograms per Joule (ng/J) (0.90 pounds per megawatt-hour (lb/MWh)) gross output, or
- (2) You must not burn in the subject stationary combustion turbine any fuel which contains total potential sulfur emissions in excess of 26 ng SO₂/J (0.060 lb SO₂/MMBtu) heat input. If your turbine simultaneously fires multiple fuels, each fuel must meet this requirement.
- (b) If your turbine is located in a noncontinental area or a continental area that the Administrator determines does not have access to natural gas and that the removal of sulfur compounds would cause more environmental harm than benefit, you must comply with one or the other of the following conditions:
- (1) You must not cause to be discharged into the atmosphere from the subject stationary combustion turbine any gases which contain SO_2 in excess of 780 ng/J (6.2 lb/MWh) gross output, or
- (2) You must not burn in the subject stationary combustion turbine any fuel which contains total sulfur with potential sulfur emissions in excess of 180 ng SO_2/J (0.42 lb $SO_2/MMBtu$) heat input. If your turbine simultaneously fires multiple fuels, each fuel must meet this requirement.

GENERAL COMPLIANCE REQUIREMENTS

§ 60.4333 What are my general requirements for complying with this subpart?

(a) You must operate and maintain your stationary combustion turbine, air pollution control equipment, and monitoring equipment in a manner consistent with good air pollution control practices for minimizing emissions

at all times including during startup, shutdown, and malfunction.

- (b) When an affected unit with heat recovery utilizes a common steam header with one or more combustion turbines, the owner or operator shall either:
- (1) Determine compliance with the applicable NO_X emissions limits by measuring the emissions combined with the emissions from the other unit(s) utilizing the common heat recovery unit; or
- (2) Develop, demonstrate, and provide information satisfactory to the Administrator on methods for apportioning the combined gross energy output from the heat recovery unit for each of the affected combustion turbines. The Administrator may approve such demonstrated substitute methods for apportioning the combined gross energy output measured at the steam turbine whenever the demonstration ensures accurate estimation of emissions related under this part.

MONITORING

$\S\,60.4335\,$ How do I demonstrate compliance for NO_X if I use water or steam injection?

- (a) If you are using water or steam injection to control NO_X emissions, you must install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine when burning a fuel that requires water or steam injection for compliance.
- (b) Alternatively, you may use continuous emission monitoring, as follows:
- (1) Install, certify, maintain, and operate a continuous emission monitoring system (CEMS) consisting of a NO_X monitor and a diluent gas (oxygen (O₂) or carbon dioxide (CO₂)) monitor, to determine the hourly NO_X emission rate in parts per million (ppm) or pounds per million British thermal units (lb/MMBtu); and
- (2) For units complying with the output-based standard, install, calibrate, maintain, and operate a fuel flow meter (or flow meters) to continuously measure the heat input to the affected unit; and

- (3) For units complying with the output-based standard, install, calibrate, maintain, and operate a watt meter (or meters) to continuously measure the gross electrical output of the unit in megawatt-hours; and
- (4) For combined heat and power units complying with the output-based standard, install, calibrate, maintain, and operate meters for useful recovered energy flow rate, temperature, and pressure, to continuously measure the total thermal energy output in British thermal units per hour (Btu/h).

§60.4340 How do I demonstrate continuous compliance for NO_X if I do not use water or steam injection?

- (a) If you are not using water or steam injection to control NO_X emissions, you must perform annual performance tests in accordance with §60.4400 to demonstrate continuous compliance. If the NO_X emission result from the performance test is less than or equal to 75 percent of the NO_X emission limit for the turbine, you may reduce the frequency of subsequent performance tests to once every 2 years (no more than 26 calendar months following the previous performance test). If the results of any subsequent performance test exceed 75 percent of the NO_x emission limit for the turbine, you must resume annual performance tests.
- (b) As an alternative, you may install, calibrate, maintain and operate one of the following continuous monitoring systems:
- (1) Continuous emission monitoring as described in §§ 60.4335(b) and 60.4345, or
- (2) Continuous parameter monitoring as follows:
- (i) For a diffusion flame turbine without add-on selective catalytic reduction (SCR) controls, you must define parameters indicative of the unit's NO_X formation characteristics, and you must monitor these parameters continuously.
- (ii) For any lean premix stationary combustion turbine, you must continuously monitor the appropriate parameters to determine whether the unit is operating in low-NO_X mode.
- (iii) For any turbine that uses SCR to reduce NO_X emissions, you must continuously monitor appropriate param-

eters to verify the proper operation of the emission controls.

(iv) For affected units that are also regulated under part 75 of this chapter, with state approval you can monitor the NO_X emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19, the requirements of this paragraph (b) may be met by performing the parametric monitoring described in section 2.3 of part 75 appendix E or in §75.19(c)(1)(iv)(H).

§ 60.4345 What are the requirements for the continuous emission monitoring system equipment, if I choose to use this option?

If the option to use a NO_X CEMS is chosen:

- (a) Each NO_X diluent CEMS must be installed and certified according to Performance Specification 2 (PS 2) in appendix B to this part, except the 7-day calibration drift is based on unit operating days, not calendar days. With state approval, Procedure 1 in appendix F to this part is not required. Alternatively, a NO_X diluent CEMS that is installed and certified according to appendix A of part 75 of this chapter is acceptable for use under this subpart. The relative accuracy test audit (RATA) of the CEMS shall be performed on a lb/MMBtu basis.
- (b) As specified in §60.13(e)(2), during each full unit operating hour, both the NO_X monitor and the diluent monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained with each monitor for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required for each monitor to validate the NO_X emission rate for the hour.
- (c) Each fuel flowmeter shall be installed, calibrated, maintained, and operated according to the manufacturer's instructions. Alternatively, with state approval, fuel flowmeters that meet

the installation, certification, and quality assurance requirements of appendix D to part 75 of this chapter are acceptable for use under this subpart.

- (d) Each watt meter, steam flow meter, and each pressure or temperature measurement device shall be installed, calibrated, maintained, and operated according to manufacturer's instructions.
- (e) The owner or operator shall develop and keep on-site a quality assurance (QA) plan for all of the continuous monitoring equipment described in paragraphs (a), (c), and (d) of this section. For the CEMS and fuel flow meters, the owner or operator may, with state approval, satisfy the requirements of this paragraph by implementing the QA program and plan described in section 1 of appendix B to part 75 of this chapter.

§ 60.4350 How do I use data from the continuous emission monitoring equipment to identify excess emissions?

For purposes of identifying excess emissions:

- (a) All CEMS data must be reduced to hourly averages as specified in §60.13(h).
- (b) For each unit operating hour in which a valid hourly average, as described in §60.4345(b), is obtained for both NO_X and diluent monitors, the data acquisition and handling system must calculate and record the hourly NO_X emission rate in units of ppm or ID_X end of $ID_$
- (c) Correction of measured $NO_{\rm X}$ concentrations to 15 percent O_2 is not allowed.
- (d) If you have installed and certified a NO_X diluent CEMS to meet the requirements of part 75 of this chapter, states can approve that only quality assured data from the CEMS shall be used to identify excess emissions under this subpart. Periods where the missing

data substitution procedures in subpart D of part 75 are applied are to be reported as monitor downtime in the excess emissions and monitoring performance report required under $\S 60.7(c)$.

- (e) All required fuel flow rate, steam flow rate, temperature, pressure, and megawatt data must be reduced to hourly averages.
- (f) Calculate the hourly average NO_X emission rates, in units of the emission standards under §60.4320, using either ppm for units complying with the concentration limit or the following equation for units complying with the output based standard:
 - (1) For simple-cycle operation:

$$E = \frac{(NO_X)_h * (HI)_h}{P}$$
 (Eq. 1)

Where

$$\begin{split} E &= hourly\ NO_{x}\ emission\ rate,\ in\ lb/MWh,\\ (NO_{x})_{h} &= hourly\ NO_{x}\ emission\ rate,\ in\ lb/MBtu, \end{split}$$

- (HI)_h = hourly heat input rate to the unit, in MMBtwh, measured using the fuel flowmeter(s), e.g., calculated using Equation D-15a in appendix D to part 75 of this chapter, and
- P = gross energy output of the combustion turbine in MW.
- (2) For combined-cycle and combined heat and power complying with the output-based standard, use Equation 1 of this subpart, except that the gross energy output is calculated as the sum of the total electrical and mechanical energy generated by the combustion turbine, the additional electrical or mechanical energy (if any) generated by the steam turbine following the heat recovery steam generator, and 100 percent of the total useful thermal energy output that is not used to generate additional electricity or mechanical output, expressed in equivalent MW, as in the following equations:

$$P = (Pe)_{c} + (Pe)_{c} + Ps + Po$$
 (Eq. 2)

Where

P = gross energy output of the stationary combustion turbine system in MW.

(Pe)_t = electrical or mechanical energy output of the combustion turbine in MW,

(Pe)_c = electrical or mechanical energy output (if any) of the steam turbine in MW,

$$Ps = \frac{Q * H}{3.413 \times 10^6 \text{ Btu/MWh}}$$
 (Eq. 3)

Where:

Ps = useful thermal energy of the steam, measured relative to ISO conditions, not used to generate additional electric or mechanical output, in MW,

Q = measured steam flow rate in lb/h,

H = enthalpy of the steam at measured temperature and pressure relative to ISO conditions, in Btu/lb, and 3.413 x 10₆ = conversion from Btu/h to MW.

Po = other useful heat recovery, measured relative to ISO conditions, not used for steam generation or performance enhancement of the combustion turbine.

(3) For mechanical drive applications complying with the output-based standard, use the following equation:

$$E = \frac{(NO_x)_m}{BL * AL} \qquad (Eq. 4)$$

Where:

 $E = NO_X$ emission rate in lb/MWh, $(NO_X)_m = NO_X$ emission rate in lb/h,

BL = manufacturer's base load rating of turbine, in MW, and

AL = actual load as a percentage of the base load.

(g) For simple cycle units without heat recovery, use the calculated hourly average emission rates from paragraph (f) of this section to assess excess emissions on a 4-hour rolling average basis, as described in § 60.4380(b) (1).

(h) For combined cycle and combined heat and power units with heat recovery, use the calculated hourly average emission rates from paragraph (f) of this section to assess excess emissions on a 30 unit operating day rolling average basis, as described in §60.4380(b)(1).

§ 60.4355 How do I establish and document a proper parameter monitoring plan?

(a) The steam or water to fuel ratio or other parameters that are continuously monitored as described in §§ 60.4335 and 60.4340 must be monitored during the performance test required under § 60.8, to establish acceptable values and ranges. You may supplement the performance test data with engineering analyses, design specifications, manufacturer's recommendations and

other relevant information to define the acceptable parametric ranges more precisely. You must develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NO_X emission controls. The plan must:

(1) Include the indicators to be monitored and show there is a significant relationship to emissions and proper operation of the NO_X emission controls,

(2) Pick ranges (or designated conditions) of the indicators, or describe the process by which such range (or designated condition) will be established,

(3) Explain the process you will use to make certain that you obtain data that are representative of the emissions or parameters being monitored (such as detector location, installation specification if applicable),

(4) Describe quality assurance and control practices that are adequate to ensure the continuing validity of the data.

(5) Describe the frequency of monitoring and the data collection procedures which you will use (e.g., you are using a computerized data acquisition over a number of discrete data points with the average (or maximum value) being used for purposes of determining whether an exceedance has occurred),

(6) Submit justification for the proposed elements of the monitoring. If a proposed performance specification differs from manufacturer recommendation, you must explain the reasons for the differences. You must submit the data supporting the justification, but you may refer to generally available sources of information used to support the justification. You may rely on engineering assessments and other data, provided you demonstrate factors which assure compliance or explain why performance testing is unnecessary to establish indicator ranges. When establishing indicator ranges, you may choose to simplify the process by treating the parameters as if they were correlated. Using this assumption, testing can be divided into two cases

(i) All indicators are significant only on one end of range (e.g., for a thermal incinerator controlling volatile organic compounds (VOC) it is only important to insure a minimum temperature, not a maximum). In this case, you may conduct your study so that each parameter is at the significant limit of its range while you conduct your emissions testing. If the emissions tests show that the source is in compliance at the significant limit of each parameter, then as long as each parameter is within its limit, you are presumed to be in compliance.

(ii) Some or all indicators are significant on both ends of the range. In this case, you may conduct your study so that each parameter that is significant at both ends of its range assumes its extreme values in all possible combinations of the extreme values (either single or double) of all of the other parameters. For example, if there were only two parameters, A and B, and A had a range of values while B had only a minimum value, the combinations would be A high with B minimum and A low with B minimum. If both A and B had a range, the combinations would be A high and B high, A low and B low, A high and B low, A low and B high. For the case of four parameters all having a range, there are 16 possible combina-

(b) For affected units that are also subject to part 75 of this chapter and that have state approval to use the low mass emissions methodology in $\S75.19$ or the NO_X emission measurement methodology in appendix E to part 75, you may meet the requirements of this paragraph by developing and keeping on-site (or at a central location for unmanned facilities) a QA plan, as described in $\S75.19(e)(5)$ or in section 2.3 of appendix E to part 75 of this chapter and section 1.3.6 of appendix B to part 75 of this chapter.

§ 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel?

You must monitor the total sulfur content of the fuel being fired in the turbine, except as provided in §60.4365. The sulfur content of the fuel must be determined using total sulfur methods described in §60.4415. Alternatively, if the total sulfur content of the gaseous fuel during the most recent performance test was less than half the applicable limit, ASTM D4084, D4810, D5504,

or D6228, or Gas Processors Association Standard 2377 (all of which are incorporated by reference, see §60.17), which measure the major sulfur compounds, may be used.

§ 60.4365 How can I be exempted from monitoring the total sulfur content of the fuel?

You may elect not to monitor the total sulfur content of the fuel combusted in the turbine, if the fuel is demonstrated not to exceed potential sulfur emissions of 26 ng SO_2/\hat{J} (0.060 lb SO₂/MMBtu) heat input for units located in continental areas and 180 ng SO₂/J (0.42 lb SO₂/MMBtu) heat input for units located in noncontinental areas or a continental area that the Administrator determines does not have access to natural gas and that the removal of sulfur compounds would cause more environmental harm than benefit. You must use one of the following sources of information to make the required demonstration:

(a) The fuel quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the fuel, specifying that the maximum total sulfur content for oil use in continental areas is 0.05 weight percent (500 ppmw) or less and 0.4 weight percent (4,000 ppmw) or less for noncontinental areas, the total sulfur content for natural gas use in continental areas is 20 grains of sulfur or less per 100 standard cubic feet and 140 grains of sulfur or less per 100 standard cubic feet for noncontinental areas, has potential sulfur emissions of less than less than 26 ng SO₂/J (0.060 lb SO₂/MMBtu) heat input for continental areas and has potential sulfur emissions of less than less than 180 ng SO₂/J (0.42 lb SO₂/MMBtu) heat input for noncontinental areas; or

(b) Representative fuel sampling data which show that the sulfur content of the fuel does not exceed 26 ng SO_2/J (0.060 lb $SO_2/MMBtu$) heat input for continental areas or 180 ng SO_2/J (0.42 lb $SO_2/MMBtu$) heat input for noncontinental areas. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.

§ 60.4370 How often must I determine the sulfur content of the fuel?

The frequency of determining the sulfur content of the fuel must be as follows:

(a) Fuel oil. For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (i.e., flow proportional sampling, daily sampling, sampling from the unit's storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank).

(b) Gaseous fuel. If you elect not to demonstrate sulfur content using options in §60.4365, and the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel must be determined and recorded once per unit operating day.

(c) Custom schedules. Notwithstanding the requirements of paragraph (b) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (c)(1) and (c)(2) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in §60.4330.

(1) The two custom sulfur monitoring schedules set forth in paragraphs (c)(1)(i) through (iv) and in paragraph (c)(2) of this section are acceptable, without prior Administrative approval:

(i) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the required frequency for subsequent monitoring of the fuel's total sulfur content shall be as specified in paragraph (c)(1)(ii), (iii), or (iv) of this section, as applicable.

(ii) If none of the 30 daily measurements of the fuel's total sulfur content exceeds half the applicable standard, subsequent sulfur content monitoring may be performed at 12-month intervals. If any of the samples taken at 12-month intervals has a total sulfur content greater than half but less than the applicable limit, follow the procedures in paragraph (c)(1)(iii) of this section. If any measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section.

(iii) If at least one of the 30 daily measurements of the fuel's total sulfur content is greater than half but less than the applicable limit, but none exceeds the applicable limit, then:

(A) Collect and analyze a sample every 30 days for 3 months. If any sulfur content measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section. Otherwise, follow the procedures in paragraph (c)(1)(iii) (B) of this section.

(B) Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section. Otherwise, follow the procedures in paragraph (c)(1)(iii)(C) of this section.

(C) Begin monitoring at 12-month intervals. If any sulfur content measurement exceeds the applicable limit, follow the procedures in paragraph (c)(1)(iv) of this section. Otherwise, continue to monitor at this frequency.

- (iv) If a sulfur content measurement exceeds the applicable limit, immediately begin daily monitoring according to paragraph (c)(1)(i) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than the applicable limit, are obtained. At that point, the applicable procedures of paragraph (c)(1)(ii) or (iii) of this section shall be followed.
- (2) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur sampling schedule, as follows:
- (i) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf, no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.

- (ii) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf, but none of the sulfur content values (when converted to weight percent sulfur) exceeds half the applicable limit, then the minimum required sampling frequency shall be one sample at 12 month intervals.
- (iii) If any sample result exceeds half the applicable limit, but none exceeds the applicable limit, follow the provisions of paragraph (c)(1)(iii) of this section.
- (iv) If the sulfur content of any of the 720 hourly samples exceeds the applicable limit, follow the provisions of paragraph (c)(1)(iv) of this section.

REPORTING

§ 60.4375 What reports must I submit?

- (a) For each affected unit required to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content under this subpart, you must submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions must be reported for all periods of unit operation, including start-up, shutdown, and malfunction.
- (b) For each affected unit that performs annual performance tests in accordance with §60.4340(a), you must submit a written report of the results of each performance test before the close of business on the 60th day following the completion of the performance test.

§ 60.4380 How are excess emissions and monitor downtime defined for NO.2

For the purpose of reports required under §60.7(c), periods of excess emissions and monitor downtime that must be reported are defined as follows:

- (a) For turbines using water or steam to fuel ratio monitoring:
- (1) An excess emission is any unit operating hour for which the 4-hour rolling average steam or water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with §60.4320, as established during the performance test required in §60.8. Any

- unit operating hour in which no water or steam is injected into the turbine when a fuel is being burned that requires water or steam injection for NO_X control will also be considered an excess emission.
- (2) A period of monitor downtime is any unit operating hour in which water or steam is injected into the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.
- (3) Each report must include the average steam or water to fuel ratio, average fuel consumption, and the combustion turbine load during each excess emission.
- (b) For turbines using continuous emission monitoring, as described in §§ 60.4335(b) and 60.4345:
- (1) An excess emissions is any unit operating period in which the 4-hour or 30-day rolling average NO_X emission rate exceeds the applicable emission limit in §60.4320. For the purposes of this subpart, a "4-hour rolling average NO_X emission rate" is the arithmetic average of the average NO_X emission rate in ppm or ng/J (lb/MWh) measured by the continuous emission monitoring equipment for a given hour and the three unit operating hour average NO_X emission rates immediately preceding that unit operating hour. Calculate the rolling average if a valid $NO_{\mathbf{x}}$ emission rate is obtained for at least 3 of the 4 hours. For the purposes of this subpart, a "30-day rolling average NOx emission rate" is the arithmetic average of all hourly NOx emission data in ppm or ng/ J (lb/MWh) measured by the continuous emission monitoring equipment for a given day and the twenty-nine unit operating days immediately preceding that unit operating day. A new 30-day average is calculated each unit operating day as the average of all hourly NO_X emissions rates for the preceding 30 unit operating days if a valid NO_X emission rate is obtained for at least 75 percent of all operating hours.
- (2) A period of monitor downtime is any unit operating hour in which the data for any of the following parameters are either missing or invalid: NO_X concentration, CO_2 or O_2 concentration, fuel flow rate, steam flow rate, steam temperature, steam pressure, or megawatts. The steam flow rate, steam

temperature, and steam pressure are only required if you will use this information for compliance purposes.

- (3) For operating periods during which multiple emissions standards apply, the applicable standard is the average of the applicable standards during each hour. For hours with multiple emissions standards, the applicable limit for that hour is determined based on the condition that corresponded to the highest emissions standard
- (c) For turbines required to monitor combustion parameters or parameters that document proper operation of the NO_x emission controls:
- (1) An excess emission is a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.
- (2) A period of monitor downtime is a unit operating hour in which any of the required parametric data are either not recorded or are invalid.

$\S 60.4385$ How are excess emissions and monitoring downtime defined for SO_2 ?

If you choose the option to monitor the sulfur content of the fuel, excess emissions and monitoring downtime are defined as follows:

- (a) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit's storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the combustion turbine exceeds the applicable limit and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.
- (b) If the option to sample each delivery of fuel oil has been selected, you must immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit's storage tank) if the sulfur content of a delivery exceeds 0.05 weight percent. You must continue to use one of the other sam-

pling options until all of the oil from the delivery has been combusted, and you must evaluate excess emissions according to paragraph (a) of this section. When all of the fuel from the delivery has been burned, you may resume using the as-delivered sampling option.

(c) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

§60.4390 What are my reporting requirements if I operate an emergency combustion turbine or a research and development turbine?

(a) If you operate an emergency combustion turbine, you are exempt from the NO_x limit and must submit an initial report to the Administrator stat-

ing your case.

(b) Combustion turbines engaged by manufacturers in research and development of equipment for both combustion turbine emission control techniques and combustion turbine efficiency improvements may be exempted from the NOx limit on a case-by-case basis as determined by the Administrator. You must petition for the exemption.

§60.4395 When must I submit my re-

All reports required under §60.7(c) must be postmarked by the 30th day following the end of each 6-month period.

PERFORMANCE TESTS

§60.4400 How do I conduct the initial and subsequent performance tests, regarding NO_x?

- (a) You must conduct an initial performance test, as required in §60.8. Subsequent NO_X performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test).
- (1) There are two general methodologies that you may use to conduct the performance tests. For each test run:
- (i) Measure the NO_X concentration (in parts per million (ppm)), using EPA

Environmental Protection Agency

Method 7E or EPA Method 20 in appendix A of this part. For units complying with the output based standard, concurrently measure the stack gas flow rate, using EPA Methods 1 and 2 in ap-

pendix A of this part, and measure and record the electrical and thermal output from the unit. Then, use the following equation to calculate the NO_X emission rate:

$$E = \frac{1.194 \times 10^{-7} * (NO_x)_c * Q_{std}}{P}$$
 (Eq. 5)

Where:

 $E = NO_X$ emission rate, in lb/MWh

 1.194×10^{-7} = conversion constant, in lb/dscf-ppm

 $(NO_X)_c$ = average NO_X concentration for the run, in ppm

 Q_{std} = stack gas volumetric flow rate, in dscf/ hr

- P = gross electrical and mechanical energy output of the combustion turbine, in MW (for simple-cycle operation), for combined-cycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to \$60.4350(f)(2); or
- (ii) Measure the NO_X and diluent gas concentrations, using either EPA Methods 7E and 3A, or EPA Method 20 in appendix A of this part. Concurrently measure the heat input to the unit, using a fuel flowmeter (or flowmeters), and measure the electrical and thermal output of the unit. Use EPA Method 19 in appendix A of this part to calculate the NO_X emission rate in lb/MMBtu. Then, use Equations 1 and, if necessary, 2 and 3 in $\S 60.4350(f)$ to calculate the NO_X emission rate in lb/MWh.
- (2) Sampling traverse points for NO_X and (if applicable) diluent gas are to be selected following EPA Method 20 or EPA Method 1 (non-particulate procedures), and sampled for equal time intervals. The sampling must be performed with a traversing single-hole probe, or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from

each hole may be used to sample simultaneously at the required points.

- (3) Notwithstanding paragraph (a)(2) of this section, you may test at fewer points than are specified in EPA Method 1 or EPA Method 20 in appendix A of this part if the following conditions are met:
- (i) You may perform a stratification test for $NO_{\mbox{\scriptsize X}}$ and diluent pursuant to
 - (A) [Reserved], or
- (B) The procedures specified in section 6.5.6.1(a) through (e) of appendix A of part 75 of this chapter.
- (ii) Once the stratification sampling is completed, you may use the following alternative sample point selection criteria for the performance test:
- (A) If each of the individual traverse point NO_X concentrations is within ± 10 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ±5ppm or ±0.5 percent CO₂ (or O₂) from the mean for all traverse points, then you may use three points (located either 16.7, 50.0 and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The three points must be located along the measurement line that exhibited the highest average NOx concentration during the stratification test; or
- (B) For turbines with a NO $_{\rm X}$ standard greater than 15 ppm @ 15% O $_{\rm 2}$, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NO $_{\rm X}$ concentrations is within ±5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than

§ 60.4405

 ± 3 ppm or ± 0.3 percent CO_2 (or O_2) from the mean for all traverse points; or

- (C) For turbines with a NO_X standard less than or equal to 15 ppm @ 15% O_2 , you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NO_X concentrations is within ± 2.5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ± 1 ppm or ± 0.15 percent CO_2 (or O_2) from the mean for all traverse points.
- (b) The performance test must be done at any load condition within plus or minus 25 percent of 100 percent of peak load. You may perform testing at the highest achievable load point, if at least 75 percent of peak load cannot be achieved in practice. You must conduct three separate test runs for each performance test. The minimum time per run is 20 minutes.
- (1) If the stationary combustion turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel.
- (2) For a combined cycle and CHP turbine systems with supplemental heat (duct burner), you must measure the total NO_X emissions after the duct burner rather than directly after the turbine. The duct burner must be in operation during the performance test.
- (3) If water or steam injection is used to control NO_X with no additional post-combustion NO_X control and you choose to monitor the steam or water to fuel ratio in accordance with $\S60.4335$, then that monitoring system must be operated concurrently with each EPA Method 20 or EPA Method 7E run and must be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable $\S60.4320~NO_X$ emission limit.
- (4) Compliance with the applicable emission limit in $\S 60.4320$ must be demonstrated at each tested load level. Compliance is achieved if the three-run arithmetic average NO_X emission rate at each tested level meets the applicable emission limit in $\S 60.4320$.
- (5) If you elect to install a CEMS, the performance evaluation of the CEMS

may either be conducted separately or (as described in §60.4405) as part of the initial performance test of the affected unit.

(6) The ambient temperature must be greater than 0 °F during the performance test.

§60.4405 How do I perform the initial performance test if I have chosen to install a NO_X-diluent CEMS?

If you elect to install and certify a NO_X -diluent CEMS under $\S 60.4345$, then the initial performance test required under $\S 60.8$ may be performed in the following alternative manner:

- (a) Perform a minimum of nine RATA reference method runs, with a minimum time per run of 21 minutes, at a single load level, within plus or minus 25 percent of 100 percent of peak load. The ambient temperature must be greater than 0 °F during the RATA runs.
- (b) For each RATA run, concurrently measure the heat input to the unit using a fuel flow meter (or flow meters) and measure the electrical and thermal output from the unit.
- (c) Use the test data both to demonstrate compliance with the applicable NO_X emission limit under $\S 60.4320$ and to provide the required reference method data for the RATA of the CEMS described under $\S 60.4335$.
- (d) Compliance with the applicable emission limit in $\S60.4320$ is achieved if the arithmetic average of all of the NO_X emission rates for the RATA runs, expressed in units of ppm or lb/MWh, does not exceed the emission limit.

§60.4410 How do I establish a valid parameter range if I have chosen to continuously monitor parameters?

If you have chosen to monitor combustion parameters or parameters indicative of proper operation of NO_X emission controls in accordance with $\S 60.4340$, the appropriate parameters must be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in $\S 60.4355$.

Environmental Protection Agency

§60.4415 How do I conduct the initial and subsequent performance tests for sulfur?

(a) You must conduct an initial performance test, as required in §60.8. Subsequent SO_2 performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test). There are three methodologies that you may use to conduct the performance tests.

(1) If you choose to periodically determine the sulfur content of the fuel combusted in the turbine, a representative fuel sample would be collected following ASTM D5287 (incorporated by reference, see §60.17) for natural gas or ASTM D4177 (incorporated by reference, see §60.17) for oil. Alternatively, for oil, you may follow the procedures for manual pipeline sampling in section 14 of ASTM D4057 (incorporated by reference, see §60.17). The fuel analyses of this section may be performed either by you, a service contractor retained by you, the fuel vendor, or any other qualified agency. Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129, or alternatively D1266, D1552, D2622, D4294, or D5453 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, ASTM D1072, or alternatively D3246, D4084, D4468, D4810, D6228, D6667, or Gas Processors Association Standard 2377 (all of which are incorporated by reference, see § 60.17).

(2) Measure the SO₂ concentration (in parts per million (ppm)), using EPA Methods 6, 6C, 8, or 20 in appendix A of this part. In addition, the American Society of Mechanical Engineers (ASME) standard, ASME PTC 19-10-1981-Part 10, "Flue and Exhaust Gas Analyses," manual methods for sulfur dioxide (incorporated by reference, see §60.17) can be used instead of EPA Methods 6 or 20. For units complying with the output based standard, concurrently measure the stack gas flow rate, using EPA Methods 1 and 2 in appendix A of this part, and measure and record the electrical and thermal output from the unit. Then use the following equation to calculate the SO₂ emission rate:

$$E = \frac{1.664 \times 10^{-7} * (SO_2)_c * Q_{std}}{P}$$
 (Eq. 6)

Where:

E = SO₂ emission rate, in lb/MWh

 1.664×10^{-7} = conversion constant, in lb/dscf-

ppm $(SO_2)_c = average SO_2$ concentration for the run, in ppm

Q_{std} = stack gas volumetric flow rate, in dscf/

P = gross electrical and mechanical energy output of the combustion turbine, in MW (for simple-cycle operation), for combinedcycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to §60.4350(f)(2); or

(3) Measure the SO_2 and diluent gas concentrations, using either EPA

Methods 6, 6C, or 8 and 3A, or 20 in appendix A of this part. In addition, you may use the manual methods for sulfur dioxide ASME PTC 19-10-1981-Part 10 (incorporated by reference, see §60.17). Concurrently measure the heat input to the unit, using a fuel flowmeter (or flowmeters), and measure the electrical and thermal output of the unit. Use EPA Method 19 in appendix A of this part to calculate the SO₂ emission rate in lb/MMBtu. Then, use Equations 1 and, if necessary, 2 and 3 in §60.4350(f) to calculate the SO₂ emission rate in lb/MWh.

(b) [Reserved]

DEFINITIONS

§ 60.4420 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein will have the meaning given them in the Clean Air Act and in subpart A (General Provisions) of this part.

Combined cycle combustion turbine means any stationary combustion turbine which recovers heat from the combustion turbine exhaust gases to generate steam that is only used to create additional power output in a steam turbine.

Combined heat and power combustion turbine means any stationary combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam for useful purposes other than additional electric generation, or directly uses the heat in the exhaust gases for a useful purpose.

Combustion turbine model means a group of combustion turbines having the same nominal air flow, combustor inlet pressure, combustor inlet temperature, firing temperature, turbine inlet temperature and turbine inlet pressure.

Combustion turbine test cell/stand means any apparatus used for testing uninstalled stationary or uninstalled mobile (motive) combustion turbines.

Diffusion flame stationary combustion turbine means any stationary combustion turbine where fuel and air are injected at the combustor and are mixed only by diffusion prior to ignition.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source, such as a stationary combustion turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.

Efficiency means the combustion turbine manufacturer's rated heat rate at peak load in terms of heat input per unit of power output—based on the higher heating value of the fuel.

Emergency combustion turbine means any stationary combustion turbine which operates in an emergency situation. Examples include stationary com-

bustion turbines used to produce power for critical networks or equipment, including power supplied to portions of a facility, when electric power from the local utility is interrupted, or stationary combustion turbines used to pump water in the case of fire or flood. etc. Emergency stationary combustion turbines do not include stationary combustion turbines used as peaking units at electric utilities or stationary combustion turbines at industrial facilities that typically operate at low capacity factors. Emergency combustion turbines may be operated for the purpose of maintenance checks and readiness testing, provided that the tests are required by the manufacturer, the vendor, or the insurance company associated with the turbine. Required testing of such units should be minimized, but there is no time limit on the use of emergency combustion turbines.

Excess emissions means a specified averaging period over which either (1) the NO_X emissions are higher than the applicable emission limit in §60.4320; (2) the total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in §60.4330; or (3) the recorded value of a particular monitored parameter is outside the acceptable range specified in the parameter monitoring plan for the affected unit.

Gross useful output means the gross useful work performed by the stationary combustion turbine system. For units using the mechanical energy directly or generating only electricity, the gross useful work performed is the gross electrical or mechanical output from the turbine/generator set. For combined heat and power units, the gross useful work performed is the gross electrical or mechanical output plus the useful thermal output (i.e., thermal energy delivered to a process).

Heat recovery steam generating unit means a unit where the hot exhaust gases from the combustion turbine are routed in order to extract heat from the gases and generate steam, for use in a steam turbine or other device that utilizes steam. Heat recovery steam generating units can be used with or without duct burners.

Integrated gasification combined cycle electric utility steam generating unit

means a coal-fired electric utility steam generating unit that burns a synthetic gas derived from coal in a combined-cycle gas turbine. No solid coal is directly burned in the unit during operation.

ISO conditions means 288 Kelvin, 60 percent relative humidity and 101.3

kilopascals pressure.

Lean premix stationary combustion turbine means any stationary combustion turbine where the air and fuel are thoroughly mixed to form a lean mixture before delivery to the combustor. Mixing may occur before or in the combustion chamber. A lean premixed turbine may operate in diffusion flame mode during operating conditions such as startup and shutdown, extreme ambient temperature, or low or transient load.

Natural gas means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1,100 British thermal units (Btu) per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, the Northern Mariana Islands, or offshore platforms.

Peak load means 100 percent of the manufacturer's design capacity of the combustion turbine at ISO conditions.

Regenerative cycle combustion turbine means any stationary combustion turbine which recovers heat from the combustion turbine exhaust gases to preheat the inlet combustion air to the combustion turbine.

Simple cycle combustion turbine means any stationary combustion turbine

which does not recover heat from the combustion turbine exhaust gases to preheat the inlet combustion air to the combustion turbine, or which does not recover heat from the combustion turbine exhaust gases for purposes other than enhancing the performance of the combustion turbine itself.

Stationary combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), heat recovery system, and any ancillary components and subcomponents comprising any simple cycle stationary combustion turbine, any regenerative/recuperative cycle stationary combustion turbine, any combined cycle combustion turbine, and any combined heat and power combustion turbine based system. Stationary means that the combustion turbine is not self propelled or intended to be propelled while performing its function. It may, however, be mounted on a vehicle for portability.

Unit operating day means a 24-hour period between 12 midnight and the following midnight during which any fuel is combusted at any time in the unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Unit operating hour means a clock hour during which any fuel is combusted in the affected unit. If the unit combusts fuel for the entire clock hour, it is considered to be a full unit operating hour. If the unit combusts fuel for only part of the clock hour, it is considered to be a partial unit operating hour.

Useful thermal output means the thermal energy made available for use in any industrial or commercial process, or used in any heating or cooling application, i.e., total thermal energy made available for processes and applications other than electrical or mechanical generation. Thermal output for this subpart means the energy in recovered thermal output measured against the energy in the thermal output at 15 degrees Celsius and 101.325 kilopascals of pressure.

40 CFR Ch. I (7-1-07 Edition)

TABLE 1—TO SUBPART KKKK OF PART 60—NITROGEN OXIDE EMISSION LIMITS FOR NEW STATIONARY COMBUSTION TURBINES

Combustion turbine type	Combustion turbine heat input at peak load (HHV)	NO _x emission standard	
New turbine firing natural gas, electric generating.	≤ 50 MMBtu/h	42 ppm at 15 percent O ₂ or 290 ng/J of useful output (2.3 lb/MWh).	
New turbine firing natural gas, mechan- ical drive.	≤ 50 MMBtu/h	100 ppm at 15 percent O ₂ or 690 ng/J of useful output (5.5 lb/MWh).	
New turbine firing natural gas	> 50 MMBtu/h and ≤ 850 MMBtu/h	25 ppm at 15 percent O₂ or 150 ng/J of useful output (1.2 lb/MWh).	
New, modified, or reconstructed turbine firing natural gas.	> 850 MMBtu/h	15 ppm at 15 percent O ₂ or 54 ng/J of useful output (0.43 lb/MWh)	
New turbine firing fuels other than natural gas, electric generating.	≤ 50 MMBtu/h	96 ppm at 15 percent O ₂ or 700 ng/J of useful output (5.5 lb/MWh).	
New turbine firing fuels other than natural gas, mechanical drive.	≤ 50 MMBtu/h	150 ppm at 15 percent O ₂ or 1,100 ng/J of useful output (8.7 lb/MWh).	
New turbine firing fuels other than natural gas.	> 50 MMBtu/h and ≤ 850 MMBtu/h	74 ppm at 15 percent O ₂ or 460 ng/J of useful output (3.6 lb/MWh).	
New, modified, or reconstructed turbine firing fuels other than natural gas.	> 850 MMBtu/h	42 ppm at 15 percent O₂ or 160 ng/J of useful output (1.3 lb/MWh).	
Modified or reconstructed turbine	≤ 50 MMBtu/h	150 ppm at 15 percent O ₂ or 1,100 ng/J of useful output (8.7 lb/MWh).	
Modified or reconstructed turbine firing natural gas.	> 50 MMBtu/h and ≤ 850 MMBtu/h	42 ppm at 15 percent O ₂ or 250 ng/J of useful output (2.0 lb/MWh).	
Modified or reconstructed turbine firing fuels other than natural gas.	> 50 MMBtu/h and ≤ 850 MMBtu/h	96 ppm at 15 percent O ₂ or 590 ng/J of useful output (4.7 lb/MWh).	
Turbines located north of the Arctic Circle (latitude 66.5 degrees north), turbines operating at less than 75 percent of	≤ 30 MW output	150 ppm at 15 percent O ₂ or 1,100 ng/J of useful output (8.7 lb/MWh).	
peak load, modified and reconstructed offshore turbines, and turbine operating at temperatures less than 0 °F.			
Turbines located north of the Arctic Circle (latitude 66.5 degrees north), turbines operating at less than 75 percent of peak load, modified and reconstructed offshore turbines, and turbine operating	> 30 MW output	96 ppm at 15 percent O ₂ or 590 ng/J of useful output (4.7 lb/MWh).	
at temperatures less than 0 °F. Heat recovery units operating independent of the combustion turbine.	All sizes	54 ppm at 15 percent O ₂ or 110 ng/J of useful output (0.86 lb/MWh).	

	·		
			·

CERTIFICATE OF SERVICE

I, Cynthia Hook, hereby certify that a copy of this permit has been mailed by first class mail to CenterPoint Energy Gas Transmission Co. - Round Mountain Compressor Station, P.O. Box 21734, Shreveport, LA, 71151, on this Adday of July, 2009.

Cynthia Hook, AAII, Air Division

·		
		;
		;