STATEMENT OF BASIS

For the issuance of Draft Air Permit # 1903-AOP-R8 AFIN: 47-00448

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Associated Electric Cooperative, Inc. (Dell Power Plant) 301 E. Hwy 18 Dell, Arkansas 72426

3. PERMIT WRITER:

Charles Hurt, P.E.

4. NAICS DESCRIPTION AND CODE:

NAICS Description: Electric Bulk Power Transmission and Control

NAICS Code: 221121

5. SUBMITTALS:

4/26/2013

=:_; ,

6. REVIEWER'S NOTES:

Associated Electric Cooperative, Inc. – Dell Power Plant (AFIN: 47-00448) owns and operates a power plant located at 301 Highway 18 East in Dell, Arkansas 72426. AECI submitted an application to incorporate the requirements of 40 CFR Part 63, Subpart ZZZZ (RICE MACT) for the emergency generator (SN-34) and the fire pump (SN-37), previously on the Insignificant Activities List. Overall, permitted emissions increased by 0.1 tpy PM and decreased by 0.1 tpy VOC, 0.1 tpy CO, and 0.7 tpy NO_x.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The facility was last inspected on July 7, 2012. The inspection report did not note any compliance issues.

AFIN: 47-00448 Page 2 of 8

8. PSD APPLICABILITY:

- a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N
- b) Is the facility categorized as a major source for PSD?

Y

- Single pollutant \geq 100 tpy and on the list of 28 or single pollutant \geq 250 tpy and not on list, or
- $CO_{2}e$ potential to emit $\geq 100,000$ tpy and ≥ 100 tpy/ ≥ 250 tpy of combined GHGs?

If yes, explain why this permit modification is not PSD.

GHG source. Describe these restrictions:

This permitting action only involved permitting emergency engines. The potential to emit from those sources individually and combine is well below the PSD threshold for any pollutant.

9. GHG MAJOR SOURCE (TITLE V):

Ind	icate one:
\boxtimes	Facility is classified as a major source for GHG and the permit includes this
	designation
	Facility does not have the physical potential to be a major GHG source
	Facility has restrictions on GHG or throughput rates that limit facility to a minor

10. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
03, 32, 33	-	NSPS Dc
01 and 02	SO_2	NSPS KKKK
including duct burners	NO_X	NSI S KKKK
01 and 02	HAPS	NESHAP YYYY
	PM/PM_{10}	
All Sources	VOC	PSD
except SN-35 and SN-36	СО	FSD
	NO_X	
34 and 37	HAPS	NESHAP ZZZZ

11. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

AFIN: 47-00448 Page 3 of 8

12. NAAQS EVALUATIONS AND NON-CRITERIA POLLUTANTS:

a) NAAQS:

(i) List the reason for a NAAQS evaluation (i.e. what changes are being permitted that would require the evaluation) and pollutants affected. If a NAAQS evaluation is not required, indicate why not.

The facility claimed that a NAAQS evaluation was not required because the permitting action only involved emergency engines and incorporating the applicable requirements of NESHAP ZZZZ.

b) Non-Criteria Pollutants:

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m³)	PAER (lb/hr) = 0.11 × TLV	Proposed lb/hr	Pass?
1,3-Butadiene	4.43	0.487	0.068	No
Acetaldehyde	45.040	4.95	0.155	No
Acrolein	0.230	0.025	0.0247	No
Ammonia	17.4	1.92	51.5	Yes
Arsenic	0.010	0.001	0.047	Yes
Barium	0.5	0.055	0.0004	No
Benzene	1.597	0.176	0.238	Yes
Beryllium	0.00005	5.5E-06	0.0013	Yes
Cadmium	0.002	0.0002	0.021	Yes
Chromium	0.500	0.055	0.047	No
Cobalt	0.020	0.002	0.00006	No .
Copper	0.2	0.022	0.00007	No
Dichlorobenzene	60.127	6.614	0.001	No
Ethylbenzene	434.19	47.761	0.122	No
Formaldehyde	0.370	0.041	2.754	Yes
Hexane	176.37	19.401	1.290	No
Manganese	0.200	0.022	3.337	Yes
Mercury	0.010	0.001	0.0053	Yes
Molybdenum	0.5	0.055	0.00009	No
Naphthalene	52.43	5.767	0.149	No
Nickel	0.100	0.011	0.021	Yes

AFIN: 47-00448 Page 4 of 8

Pollutant	TLV (mg/m³)	PAER (lb/hr) = 0.11 × TLV	Proposed lb/hr	Pass?
PAH	0.2	0.022	0.170	Yes
Propylene Oxide	4.75	0.523	0.110	No
Selenium	0.200	0.022	0.106	Yes
Toluene	75.36	8.290	0.498	No
Xylenes	434.19	47.761	0.244	No

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
Ammonia	174	5.72	Yes
Arsenic	0.1	0.005	Yes
Benzene	15.97	0.029	Yes
Beryllium	0.0005	0.0002	Yes
Cadmium	0.02	0.002	Yes
Formaldehyde	15	0.311	Yes
Manganese	2.0	0.368	Yes
Mercury	0.1	0.001	Yes
Nickel	1.0	0.002	Yes
PAH	2.0	0.019	Yes
Selenium	2.0	0.012	Yes

Other Modeling:

Odor:

Examination of the source type, location, plot plan, land use, emission parameters, and other available information indicate that modeling is not warranted at this time for hydrogen sulfide or styrene.

AFIN: 47-00448 Page 5 of 8

13. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
01 and 02	AP-42 and General Electric Equipment Specs	For HAPs: AP-42 Tables 3.1-2a and 3.1-3	Dry Low NO _x , Water Injection, and Selective Catalytic Reduction	Approx 85%	Controlled emission factors provided for the GE Turbines. Factors assume that SCR is included.
03	AP-42	Table 1.4-1, 1.4-2, 1.4-3, and 1.4-4	Low NO _x Burner	N/A	Uncontrolled emission factors
04- 15	AP-42 and AWMA Abstract No. 216, Session No. AM- 1b, Orlando, 2001	0.0005% Drift Rate and 8000ppm Total Dissolved Solids	N/A	N/A	Uncontrolled emission factors
16- 22 and 24- 27	AP-42 and AWMA Abstract No. 216, Session No. AM- 1b, Orlando, 2001	0.0005% Drift Rate and 1500ppm Total Dissolved Solids	N/A	N/A	Uncontrolled emission factors
34	AP-42	Table 3.3-1 and 3.3-2	N/A	N/A	Uncontrolled emission factors
32 33	Manufacturer's Specs for CO, NO _X AP-42 all others	1.35 lb NO _X /hr 0.46 lb CO/hr AP-42 1.4	N/A	N/A	Uncontrolled emission factors
35, 36	AP-42 Section 7.1.3.1	40.9 lb VOC/hr	N/A	N/A	Uncontrolled emission factors
37	AP-42	Table 3.3-1 and 3.3-2	N/A	N/A	Uncontrolled emission factors

14. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
	PM	5 and 202	Initial and then	In order to
01 and 02	PM ₁₀	201A and 202 or 5 and	every 5 years	confirm BACT
		202	for each fuel	and lb/MMBtu

AFIN: 47-00448 Page 6 of 8

SN	Pollutants	Test Method	Test Interval	Justification
	VOC	25A	type	limits
	CO	10		
	NOx	7E		
	Lead	12		To confirm lb/hr
	Leau	12		and tpy limits
				To confirm lb/hr
	HAPs and Ammonia	18		and tpy limits for
				HAPs and
				ammonia and to
				verify that no
				additional HAPs
				will be emitted
				In order to
03	NOx	7 E	Initial	confirm BACT
				and lb/MMBtu

15. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
	Fuel Sulfur Content	ASTM D1072-80, D3031-81, or D3246-81	Daily	
01 and	Fuel Nitrogen Content	Fuel Monitoring Protocol for Stationary Gas Turbines subject to 40 CFR 60, Subpart KKKK	Daily	If exceeded
02	Fuel Flow Rate	In-line Fuel Flow Meter (CEM)	Continuous	
	CO	CEM	Continuous	
į	NOx	CEM	Continuous	
	SO_2	CEM	Continuous	
04-15	TDS	Not to exceed 8,000 ppm	Monthly	Y
16-22				
and 24-27	TDS	Not to exceed 1,500 ppm	Weekly	Y

16. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

AFIN: 47-00448 Page 7 of 8

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
	Fuel Fired	Natural Gas	N/A	Y
01 1 00	Natural Gas Usage	39,500 million SCF	Annual	Y
01 and 02	Fuel Nitrogen and Sulfur Contents	N/A	Daily	Y
	No 2. Fuel Oil Usage	1,850 hours per year	Daily	Y
03	Fuel Fired	Natural Gas	N/A	Y
04-15	Total Dissolved Solids	8,000 ppm	Monthly	Y
16-22 and 24-27	Total Dissolved Solids	1,500 ppm	Weekly	Y
34	Fuel Sulfur Content	0.5%	Monthly	Y
34	Hours per year of operation	250 hours/yr	Monthly	Y
28-31	Total Suspended Particulate	75,000 ppm	Weekly	Y
32 and 33	Fuel burned	N/A	Monthly	Y
35 and 36	No. 2 Fuel Oil Throughput	257,380,000 gal/yr	Monthly	Y
37	Hours per year of operation	100 hours/yr	Monthly	Y

17. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
01 and 02	5%	Dept. Limit	Initial reading, then natural gas usage
(natural gas)	370	Dept. Limit	only
01 and 02	10%	BACT Limit	Daily Method 9 Observations during
(fuel oil)	1070	DACI LIIII	fuel oil combustion
03	5%	Dept. Limit	Natural gas usage only
04-22 and 24-27	20%	Dept. Limit	Total Dissolved Solids Limit (SC#42
04-22 and 24-27	2076	Dept. Lillit	and 43)
23	20%	Dept. Limit	Readings taken if operated more than
23	2070	Dept. Limit	3 consecutive hours
28-31	20%	Dept. Limit	TSP Limit (SC#55)
32 and 33	5%	Dept. Limit	Natural gas as fuel
			Daily Method 9 Observations when
34 and 37	20%	Dept. Limit	operating more than 3 consecutive
			hours

18. DELETED CONDITIONS:

No condition was deleted with this permit revision.

AFIN: 47-00448 Page 8 of 8

19. GROUP A INSIGNIFICANT ACTIVITIES:

Source Name	Crown A			Emiss	ions (tpy)		
	Group A Category	PM/PM ₁₀	SO ₂	SO ₂ VOC	СО	NO,	HA	Ps
						NO _x	Single	Total
Diesel Tank 500 gal	A-3			0.0001				
Diesel Tank 400 gal	A-3			0.0001				

20. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

List all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #
1903-AOP-R7

21. CONCURRENCE BY:

The following supervisor concurs with the permitting decision.

Engineering Supervisor, Air Division

Fee Calculation for Major Source

Revised 08-20-12

Facility Name: Associated Electric Cooperative, Inc.

(Dell Power Plant)

Permit Number: 1903-AOP-R8

AFIN: 47-00448

\$/ton factor Permit Type	22.97 Minor Mod	Annual Chargeable Emissions (tpy) Permit Fee \$	1123.6 500
Minor Modification Fee \$ Minimum Modification Fee \$	500		
Renewal with Minor Modification \$	1000 500		
Check if Facility Holds an Active Minor Source or Minor Source General Permit			
If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$	0		
Total Permit Fee Chargeable Emissions (tpy) Initial Title V Permit Fee Chargeable Emissions (tpy)	-0.7		

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
РМ	V	392.4	392.5	0.1	0.1	392.5
PM_{10}	Г	298.5	298.5	0		
SO_2	V	42.1	42.1	0	0	42.1
voc	V	82.3	82.2	-0.1	-0.1	82.2
co	Γ	623.6	623.5	-0.1		
NO _X	V	392.1	391.4	-0.7	-0.7	391.4
Lead	Γ	0.51	0.51	0		
1,3-Butadiene	******	0.11	0.10002	-0.00998		
Acetaldehyde	r	0.81	0.80032	-0.00968		
Acrolein		0.13	0.12003	-0.00997		
Ammonia	V	215.4	215.4	0	0	215.4
Arsenic		0.09	0.09	0		
Benzene		0.44	0.43038	-0.00962		
Beryllium	Γ.	0.05	0.05	0	ł	
Cadmium	厂	0.05	0.05	0	1	
Chromium	Γ	0.09	0.09	0	ł	
Cobalt		0.05	0.05	0	1	1
Dichlorobenzene		0.05	0.05) о		}

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
Ethylbenzene	r	0.6	0.6	0		
Formaldehyde	Г	13.38	13.37049	-0.00951		
Hexane	r	6.96	6.96	0		
Manganese		3.11	3.11	0		
Mercury	******	0.05	0.05	0		
Naphthalene	general control of the control of th	0.2	0.19003	-0.00997		
Nickel		0.04	0.05	0.01		
РАН	<u></u>	0.21	0.20007	-0.00993		
Phenanthrene		0.01	0.01	0		
РОМ		0.01	0.01	0		
Propylene Oxide		0.5	0.5	0		1
Selenium	Γ	0.13	0.13	0		
Toluene	Γ	2.24	2.23017	-0.00983		
Xylene		1.21	1.20011	-0.00989		