RESPONSE TO COMMENTS

Arkansas Children's Hospital Permit No.: 1923-AOP-R1 AFIN: 60-00689

On May 14, 2008, the Director of the Arkansas Department of Environmental Quality gave notice of a draft permitting decision for the above referenced facility. During the comment period, the facility submitted written comments, data, views, or arguments on the draft permitting decision. The Department's response to these issues is as follows:

Comment #1

Specific Condition #7(e) should reference General Provision #6 and not General Condition #5.

Response to Comment #1

Agree The draft document has been revised.

Comment #2

Specific Condition #20: ACH requests that the following be deleted:

The permittee shall demonstrate compliance with the maximum sulfur content in #2 distillate fuel oil as established in Specific Condition #18 by retaining the fuel certifications from the supplier each time a fuel shipment is received. In addition to the sulfur content, the fuel certifications shall state the fuel contains either a minimum centane index of 40 or a maximum aromatic content of 35% by volume. Records shall be kept onsite and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

The strikeout is apparently taken from the requirements of §80.510(b) as referenced by NSPS Subpart IIII. The condition, however, applies to SN-07, -08, -09, -10, -12, -15, and -17. Since, only SN-17 is an NSPS Subpart IIII subject source, the centane index or maximum aromatic content requirement should apply to it alone. This NSPS fuel requirement for SN-17 is addressed in Specific Condition #21(g).

Response to Comment #2

Agree. The permit has been changed as requested. The permittee will have to maintain separate fuel tanks for SN-17 if the facility receives fuel that does not meet the requirements of 40 CFR §80.510.

Comment #3

Specific Condition #25: The footnote for Table 19 of the draft permit should be removed.

Response to Comment #3

Agree. See the response to Comment #2.

July 17, 2008

Richard James Director of EH&S Arkansas Children's Hospital 800 Marshall Street Little Rock, AR 72202

Dear Mr. James:

The enclosed Permit No. 1923-AOP-R1 is issued pursuant to the Arkansas Operating Permit Program, Regulation # 26.

After considering the facts and requirements of A.C.A. §8-4-101 et seq., and implementing regulations, I have determined that Permit No. 1923-AOP-R1 for the construction, operation and maintenance of an air pollution control system for Arkansas Children's Hospital to be issued and effective on the date specified in the permit, unless a Commission review has been properly requested under §2.1.14 of Regulation No. 8, Arkansas Department of Pollution Control & Ecology Commission's Administrative Procedures, within thirty (30) days after service of this decision.

All persons submitting written comments during this thirty (30) day period, and all other persons entitled to do so, may request an adjudicatory hearing and Commission review on whether the decision of the Director should be reversed or modified. Such a request shall be in the form and manner required by §2.1.14 of Regulation No. 8.

Sincerely,

Mike Bates Chief, Air Division

•

ADEQ OPERATING AIR PERMIT

Pursuant to the Regulations of the Arkansas Operating Air Permit Program, Regulation No. 26:

Permit No.: 1923-AOP-R1

IS ISSUED TO:

Arkansas Children's Hospital

Little Rock, AR 72202

Pulaski County

AFIN: 60-00689

THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

November 30, 2005

AND

November 29, 2010

IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:

July 17, 2008

Mike Bates, Chief Air Division

Date

Table of Contents

SECTION I: FACILITY INFORMATION	5
SECTION II: INTRODUCTION	6
SUMMARY OF PERMIT ACTIVITY	6
PROCESS DESCRIPTION	6
REGULATIONS	7
Emission Summary	8
SECTION III: PERMIT HISTORY	11
SECTION IV: SPECIFIC CONDITIONS	12
STEAM BOILERS (#1 THROUGH #4 AND 750 BHP BOILER)	12
GAS TURBINE #1	16
Emergency Power Generators	19
OFFICE BUILDING GENERATOR	25
SECTION V: COMPLIANCE PLAN AND SCHEDULE	27
SECTION VI: PLANT WIDE CONDITIONS	28
TITLE VI PROVISIONS	29
Permit Shield	30
SECTION VII: INSIGNIFICANT ACTIVITIES	31
SECTION VIII: GENERAL PROVISIONS	32
APPENDIX A	37
40 CFR Part 60, Subpart Dc – Standards of Performance for Small-Commercial-Institutional Stea Generating Units	і <i>м</i> 37
APPENDIX B	
40 CFR Part 60, Subpart GG – Standards of Performance for Stationary Gas Turbines	38
APPENDIX C	39
40 CFR Part 60, Subpart IIII – Standards of Performance for Stationary Compression Ignition Inte. Combustion Engines	RNAL

Table of Tables

Table 1 - List of Acronyms 4
Table 2 – Regulations 7
Table 3 – Emission Summary 8
Table 4 – Maximum Criteria Emission Limits for Steam Boilers
Table 5 – Maximum Non-Criteria Emission Limits for Steam Boilers 13
Table 6 – Visible Emission Limits for Steam Boilers
Table 7 – Boiler Fuel Usage Limits and Allowable Sulfur Content 13
Table 8 – Maximum Criteria Emission Limits for Gas Turbine #1
Table 9 – Maximum Non-Criteria Emission Limits for Gas Turbine #1 16
Table 10 – Visible Emission Limits for Gas Turbine #1 17
Table 11 – Gas Turbine #1 Fuel Usage Limits and Allowable Sulfur Content
Table 12 – Maximum Criteria Emission Limits for Emergency Generators 19
Table 13 – Maximum Non-Criteria Emission Limits for Emergency Generators
Table 14 – Visible Emission Limits for Emergency Generators
Table 15 – Emergency Generators Fuel Usage Limits and Allowable Sulfur Content 22
Table 16 – Maximum Criteria Emission Limits for OIS Generator
Table 17 – Maximum Non-Criteria Emission Limits for OIS Generator 25
Table 18 – Visible Emission Limits for OIS Generator
Table 19 – OIS Generator Fuel Usage Limits and Allowable Sulfur Content
Table 20 - Applicable Regulations
Table 21 - Insignificant Activities

2

Table 1 - List of Acronyms

Λ

A.C.A.	Arkansas Code Annotated
AFIN	ADEQ Facility Identification Number
CFR	Code of Federal Regulations
СО	Carbon Monoxide
HAP	Hazardous Air Pollutant
lb/hr	Pound per hour
MVAC	Motor Vehicle Air Conditioner
No.	Number
NO _x	Nitrogen Oxide
PM	Particulate matter
PM ₁₀	Particulate matter smaller than ten microns
SNAP	Significant New Alternatives Program (SNAP)
SO ₂	Sulfur dioxide
SSM	Startup, Shutdown, and Malfunction Plan
Тру	Ton per year
UTM	Universal Transverse Mercator
VOC	Volatile Organic Compound

Section I: FACILITY INFORMATION

PERMITTEE:	Arkansas Children's Hospital
AFIN:	60-00689
PERMIT NUMBER:	1923-AOP-R1
FACILITY ADDRESS:	800 Marshall Street
	Little Rock, AR 72202
MAILING ADDRESS:	800 Marshall Street

Little Rock, AR 72202

COUNTY:

Pulaski County

CONTACT POSITION:	Richard James

CONTACT OFFICIAL TITLE: Director of EH&S

TELEPHONE NUMBER: 501-364-3801

REVIEWING ENGINEER: Charles Hurt

UTM Zone:	15
UTM North - South (Y):	3844770.86
UTM East - West (X):	564847.94

Section II: INTRODUCTION

Summary of Permit Activity

Arkansas Children's Hospital (ACH) is located at 800 Marshall Street in Little Rock. ACH requested permission to replace SN-06 with a 2,000 KW electric generator (SN-17) and a portable 1,825 KW electric generator (an insignificant activity) as a backup unit. Permitted emissions for SO₂, and NO_x decreased by 7.8 tpy and 1.2tpy, respectively. Permitted VOC and CO increased by 0.4 tpy and 0.3 tpy, respectively.

Process Description

Steam Boilers (SN-02, SN-03, and SN-04)

ACH operates 5 steam boilers for the purpose of atmospheric heat and humidity control. Steam boilers No. 1 and 3 are 500 BHP Kewanee Firetube Steam Boilers. Boiler No. 2 is a 250 BHP Kewanee Firetube Boiler. Boiler No. 4 is a 500 BHP Hurst Firetube Boiler. A 750 BHP Kewanee Firetube Steam Boiler is located at the Energy Building. Each boiler is permitted for operation with natural gas and No. 2 distillate oil. Boiler No. 4 discharges through vent stack SN-02. Boilers No. 1, 2, and 3 discharge through vent stack SN-03 and the energy building boiler discharges emissions through SN-04. No. 2 Distillate Oil is stored in a 10,152 gallon underground storage tank and any of various smaller day tanks.

Turbine Engine (SN-05)

ACH operates a Detroit Allison Model ASP 729 gas turbine engine used for emergency electrical power generation only. The engine uses No. 2 distillate oil and is capable of producing 2,500 and 3,100 KW-hr. Emissions from the operation of the turbine vent through stack SN-05. The turbine runs several times per year for equipment checks. Fuel is stored in three 8,000 gallon above ground storage tanks or various smaller tanks.

Emergency Generators (SN-07 through SN-15, and 17)

ACH operates eights emergency generators. Four of the generators are Caterpillar 375 horsepower diesel engine generators that produce 250 KW-hr of electricity each and exhaust emissions separately through stacks SN-07, SN-08, SN-09, and SN-10. One of the generators is a Cummins-Onan 88 horsepower diesel engine generator that produces 62.5 KW-hr of electricity and exhausts through stack SN-12. Two of the generators are Caterpillar 500 KW diesel engine generators that exhaust emissions separately through SN-14 and SN-15. The eighth generator is a Caterpillar 2,848 horsepower diesel that produces 2,000 KW-hr of electricity and exhausts emissions through stack SN-17. Fuel for all the generators is stored in three 8,000 gallon above ground storage tanks or various smaller day tanks.

Office Building Generator (SN-16)

The Office Building Generator is a 2,030 hp electric generator capable of producing 1,400 KWhr. The engine exhausts through its own stack. The generator is permitted for a maximum annual fuel usage of 60,000 gallons of #2 Distillate Fuel Oil. The fuel is stored in a 2,800 gallon tank.

Regulations

The following table contains the regulations applicable to this permit.

Source No.	Regulation Citations			
	Regulation No. 18, Arkansas Air Pollution Code			
Plantwide	Regulation No. 19, Regulations of the Arkansas Plan of Implementation for			
	Air Pollution Control			
02.04	40 CFR Part 60, Subpart Dc - Standards of Performance for Small Industrial-			
02, 04	Commercial-Institutional Steam Generating Units*			
05	40 CFR Part 60, Subpart GG – Standards of Performance for Stationary Gas			
03	Turbines			
17	40 CFR Part 60, Subpart IIII – Standards of Performance for Stationary			
17	Compression Ignition Internal Combustion Engines			
7, 8, 9, 10, 11,	10 CED Port 63 Subport 7777 National Emission Standards for Hazardous			
12, 14, 15, 16,	40 CFR Fail 05, Subpart ZEZE - National Emission Standards for Hazardous Air Pollutants for Stationary Pagiprogating Internal Combustion Engines**			
17	An Tonunum's for Stationary Reciprocating Internal Compusition Engines			

Table 2 – Regulations

* The boilers at SN-02 and SN-04 are not subject to the PM standards of Dc because they are all below 30 MMBTU/hr.

** These are affected sources under Subpart ZZZZ. However, the subpart does not specify any applicable requirements.

Emission Summary

The following table is a summary of emissions from the facility. The following table contains cross-references to the pages containing specific conditions and emissions for each source. This table, in itself, is not an enforceable condition of the permit.

EMISSION SUMMARY						
Source		D - 11 4 4	Emission Rates		Cross	
No.	Description	Pollutant	lb/hr	tpy	Reference Page	
		PM	11.5	7.4		
		PM ₁₀	11.5	7.4		
Tatal	Allowable Environme	SO ₂	97.7	18.7	NI/A	
Tota	I Allowable Emissions	VOC	15.4	7.4	\mathbf{N}/\mathbf{A}	
	-	СО	42.1	45.0		
	-	NO _x	257.7	111.7		
	Steam Boiler #4	PM/PM ₁₀	0.3			
	(21 MMBTU/hr	SO_2	10.5			
02	Primary Fuel: Natural Gas	VOC	0.2			
	Secondary Fuel:	CO	1.8			
	#2 Distillate Oil)	NO _X	3.0		12	
	Steam Boilers #1 (16.74 MMBTU/hr Primary Fuel: Natural Gas Secondary Fuel: #2 Distillate Oil)	PM/PM ₁₀	0.3			
		SO_2	8.4	2.3 4.5 1.6 23.5 28.8		
		VOC	0.1			
		CO	1.4			
		NO _X	2.4			
	Steam Boiler #2 (8.37 MMBTU/hr Primary Fuel: Natural Gas Secondary Fuel: #2 Distillate Oil)	PM/PM ₁₀	0.2			
		SO_2	4.2			
03		VOC	0.1			
		CO	0.7			
		NO _X	1.2			
	Steam Boiler #3	PM/PM ₁₀	0.3			
	(16.74 MMBTU/hr Primary Fuel: Natural Gas	SO_2	8.4			
		VOC	0.1			
Secondary Fuel: #2 Distillate Oil)	Secondary Fuel:	CO	1.4			
	#2 Distillate Oil)	NO _X	2.4			
	750 BHP Steam Boiler	PM/PM ₁₀	0.4	0.9		
	(25.1 MMBTU/hr Primary Fuel: Natural Gas Secondary Fuel: #2 Distillate Oil)	SO_2	12.1	2.2		
04		VOC	0.2	0.7	12	
		CO	2.2	9.4		
		NO _X	3.6	11.6		

EMISSION SUMMARY					
Source	Description	Pollutant	Emission Rates		Cross
No.	Description		lb/hr	tpy	Page
		PM/PM ₁₀	0.4	0.1	
	Gas Turbine #1	SO_2	42.7	8.0	
05	(57 MMBTU/hr #2 Distillate Oil Only)	VOC	0.2	0.1 1	16
		CO	0.2	0.1	
		NO _X	50.0	9.4]
		PM/PM ₁₀	0.8		
	250 KW Emergency	SO_2	0.8		
07	Power Generator #1	VOC	1.0		
	(2.55 MMBTU/nr #2 Distillate Oil Only)	CO	2.5		
		NO _X	11.3		
		PM/PM_{10}	0.8		
	250 K W Emergency	SO_2	0.8		
08	Power Generator #2	VOC	1.0	13	
	(2.55 MMBTU/hr #2 Distillate Oil Only)	СО	2.5	1.3	19
		NO _X	11.3	1.2	
	250 KW Emergency Power Generator #3 (2.55 MMBTU/hr #2 Distillate Oil Only)	PM/PM_{10}	0.8	3.8	
		SO_2	0.8		
09		VOC	1.0		
		CO	2.5		
		NO _X	11.3		
		PM/PM ₁₀	0.8		
	250 KW Emergency Power Generator #4 (2.55 MMBTU/hr #2 Distillate Oil Only)	SO_2	0.8		
10		VOC	1.0		
		CO	2.5		
		NO _X	11.3		
	62.5 KW Emergency	PM/PM ₁₀	0.2	0.2	
	62.5 KW Emergency Power Generator	SO_2	0.2	0.2	
12		VOC	0.2	0.2	19
	#2 Distillate Oil Only)	CO	0.6	0.4	
		NOX	2.5	1.6	
	500 KW Emergency	PM/PM ₁₀	0.6	1.1 1.1 1.3	
	Power Generator #1	SO_2	1.4		
14	(5.18 MMBTU/hr	VOC	1.7		
	#2 Distillate Oil Only)	CO	4.4		
			20.1		19
	500 KW Emergency	PM/PM_{10}	0.6	3.4	
	Power Generator #2	SO_2	1.4	15.7	
15	(5.18 MMBTU/hr	VOC	1.7		
	#2 Distillate Oil Only)	CO	4.4		
		NO_X	20.1	}	

	EMISSION SUMMARY					
Source	D		Emission Rates		Cross	
No.	Description	Pollutant	lb/hr	tpy	Page	
		PM/PM ₁₀	4.5	1.4		
16	OIS Power Generator #2 (14.42 MMBTU/hr #2 Distillate Oil Only)	SO ₂	4.2	1.3		
		VOC	5.2	1.6	25	
		CO	13.7	4.1		
		NO _X	63.6	18.8		
17	2,000 KW Emergency Power Generator (20 MMBTU/hr #2 Distillate Oil Only)	PM/PM ₁₀	0.5	0.1		
		SO_2	1.0	0.2		
		VOC	1.7	0.4	19	
		CO	1.3	0.3		
		NO _X	43.6	8.2		

Section III: PERMIT HISTORY

Permit #395-I, issued on July 16, 1985, allowed ACH to operate a medical incinerator.

Permit #395-IR-1, issued on June 1, 1995, permitted the equipment change to a new incinerator.

On September 10, 1998, a CAO was issued to ACH due to deficiencies in records and permit violations. The CAO required ACH to submit a new application that included provisions for monitoring, protocols for continuous emissions monitors, and details pertaining to other previously unpermitted emission sources.

Permit #1923-A was issued to ACH on September 12, 2000. The incinerator was permitted to only process pathological wastes with a 20% maximum plastic content. Due to the difficulties and hazards of monitoring the pathological waste stream, ACH has requested to discontinue surveys of each charge. The surveys have previously been required to show compliance with the 20% plastic limit. The request is granted by this permitting action on the basis that the pathological waste stream of a large hospital should remain consistent and the fact that this system has been specifically designed for this type of waste. Pollution control systems are adequately designed and calculations show that the requested plastic incineration will have insignificant contributions to dioxin and furan emissions. Only annual surveys will now be required to maintain compliance. Other issues addressed in this permitting action include a clarification in classes of wastes that will be allowed and an increase in permitted operating hours. Also, the permit addresses emissions resulting from boilers and emergency electrical generating equipment at ACH. The predominant pollutant at the facility is NO_X which is emitted at a rate of 90.3 tpy.

Permit #1923-AR-1 was issued on March 10, 2005. ACH requested to remove the medical waste incinerator (SN-01), a 150 KW electric generator (SN-11), and a 155 KW electric generator (SN-13). ACH requested the replacement of Steam Boiler #4 with a 21.0 MMBTU/hr boiler and to install two new 5.18 MMBTU/hr electric generators (SN-14 and SN-15). In order to address potential emergencies, the permitted annual #2 Distillate Fuel Oil limit was increased to 591,00 gallons. Permitted SO₂, VOC, and NO_X emissions increased by 21.0 tpy, 0.3 tpy, and 3.9 tpy respectively. Permitted PM/PM₁₀ and CO emissions decreased by 3.8 tpy and 1.4 tpy, respectively.

Permit # 1923-AOP-R0 was issued on November 30, 2005. ACH requested to install a 2,032 BHP Electric Generator (SN-16) firing #2 Distillate Fuel Oil. ACH also requested to increase the #2 Distillate Fuel Combustion Limit by 60,000 gallons. ACH became a Title V source with the installation of SN-16. Annual emissions for PM/PM_{10} , SO₂, VOC, CO, and NO_X, increased by 1.2 tpy, 1.0 tpy, 1.4 tpy, 3.9 tpy, and 18.6 tpy, respectively.

Section IV: SPECIFIC CONDITIONS

SN-02, SN-03, and SN-04

Steam Boilers (#1 through #4 and 750 BHP Boiler)

Description

ACH operates 5 steam boilers for the purpose of atmospheric heat and humidity control. Steam boilers No. 1 and 3 are 500 BHP Kewanee Firetube Steam Boilers. Boiler No. 2 is a 250 BHP Kewanee Firetube Boiler. Boiler No. 4 is a 500 BHP Hurst Firetube Boiler. A 750 BHP Kewanee Firetube Steam Boiler is located at the Energy Building. Each boiler is permitted for operation with natural gas and No. 2 distillate oil. Boiler No. 4 discharges through vent stack SN-02. Boilers No. 1, 2, and 3 discharge through vent stack SN-03 and the energy building boiler discharges emissions through SN-04. No. 2 Distillate Oil is stored in a 10,152 gallon underground storage tank and any of various smaller day tanks.

Specific Conditions

 The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #4 and #6. [Regulation No. 19 §19.501 *et seq.* effective October 15, 2007, and 40 CFR Part 52, Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM ₁₀	0.3	
	Steam Boiler #4	SO_2	10.5	
02	(21 MMBTU/hr	VOC	0.2	
	Secondary Fuel: #2 Distillate Oil)	CO	1.8	
		NO _X	3.0	
		PM ₁₀	0.3	
	Steam Boiler #1	SO_2	8.4	
	(16.74 MMBTU/hr Primary Fuel: Natural Gas Secondary Fuel: #2 Distillate Oil)	VOC	0.1	22
		CO	1.4	2.5 A 5
		NO_X	2.4	4.5
	Steam Boiler #2 (8.37 MMBTU/hr Primary Fuel: Natural Gas Secondary Fuel: #2 Distillate Oil)	PM ₁₀	0.2	1.0
		SO_2	4.2	23.3
03		VOC	0.1	20.0
		CO	0.7	
		NO _X	1.2	
		PM ₁₀	0.3	
	Steam Boiler #3	SO_2	8.4	
	(16.74 MMBTU/hr	VOC	0.1	
	Secondary Fuel: #2 Distillate Oil	СО	1.4	
	Secondary Fuel: #2 Distillate Oil)	NOx	2.4	

Table 4 – Maximum Criteria Emission Limits for Steam Boilers

SN	Description	Pollutant	lb/hr	tpy
	04 750 BHP Steam Boiler (25.1 MMBTU/hr Primary Fuel: Natural Gas Secondary Fuel: #2 Distillate Oil)	PM ₁₀	0.4	0.9
		SO_2	12.1	2.2
04		VOC	0.2	0.7
		CO	2.2	9.4
		NOX	3.6	11.6

 The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #4 and #6. [Regulation No. 18 §18.801, effective February 15, 1999, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Table 5 - Maximum Non-Criteria Emission Limits for Steam Boilers

SN	Description	Pollutant	lb/hr	tpy
02	Steam Boiler #4	PM	0.3	
	Steam Boiler #1	PM	0.3	23
03	Steam Boiler #2	PM	0.2	2.5
	Steam Boiler #3	PM	0.3	

3. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

 Table 6 – Visible Emission Limits for Steam Boilers

SN	Opacity Limit Natural Gas	Opacity Limit #2 Distillate Oil	Regulatory Citation Natural Gas	Regulatory Citation #2 Distillate Oil
02	5%	20%	§18.501	§19.503
03	5%	20%	§18.501	§19.503
04	5%	20%	§18.501	§19.503

4. The permittee shall not exceed the natural gas and fuel oil combustion limits and the fuel sulfur content set by the following table. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Table 7 – Boiler Fuel Usage Limits and Allowable Sulfur Content

SN	Consecutive 12 month Combustion Limit Natural Gas (MMscf)	Consecutive 12 month Combustion Limit #2 Distillate Oil (gallons)	Maximum Sulfur Content in #2 Distillate Fuel Oil (wt%)
02	548.0	120,000	0.5
04	219.9	60,000	0.5

- 5. The permittee shall maintain monthly records which demonstrate compliance with the fuel limits established in Specific Condition #4. The records shall be updated by the 15th of the month following the month to which the records pertain. The records shall be kept on site and made available to Department personnel upon request. Furthermore, a report shall be submitted in accordance with General Provision #7. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 6. The permittee shall demonstrate compliance with the maximum sulfur content in #2 distillate fuel oil as established in Specific Condition #4 by retaining the fuel certifications from the supplier each time a fuel shipment is received. Records shall be kept onsite and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

NSPS Requirements

- 7. The boilers at SN-02 and SN-04 are affected sources of 40 CFR Part 60, Subpart Dc Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units. The permittee shall comply with all applicable standards and monitoring, compliance, and recordkeeping requirements of 40 CFR Part 60, Subpart Dc including but not limited to the following: [Regulation No. 19 §19.304 and 40 CFR §60.40c (a)]
 - a. The permittee shall not cause to be discharged into the atmosphere any gas that contains SO₂ in excess of 0.50 lb/MMBTU heat input while combusting oil; or as an alternative, the permittee shall not combust oil that contains greater than 0.5 weight percent sulfur. The permittee does not qualify for the percent reduction requirements of Subpart Dc. [Regulation No. 19 §19.304 and 40 CFR §60.42c (d)]
 - b. The permittee may demonstrate compliance with the SO₂ emission limit or fuel oil sulfur limit based on certification from the fuel supplier, as described under §60.48c (f). Otherwise the permittee shall demonstrate compliance through the applicable requirements of §60.44c. [Regulation No. 19 §19.304 and 40 CFR §60.42c (h)(1)]
 - c. The fuel supplier certification shall include the name of the supplier and a statement from the supplier that the oil complies with the specifications under the definition of distillate oil in §60.41c. [Regulation No. 19 §19.304 and 40 CFR §60.48c (f)(1)]
 - d. The permittee is subject to the SO₂ and/or fuel oil sulfur limits at all times including periods of startup, shutdown, and malfunction. [Regulation No. 19 §19.304 and 40 CFR §60.42c (i)]
 - e. The permittee shall record and maintain records of the amounts of oil combusted during each day. These records shall be kept for a period of no less than two

years. These records shall be kept on site, updated daily, and made available to Department personnel upon request. This condition does not supersede General Provision #6. [Regulation No. 19 §19.304 and 40 CFR §60.48c (g) and (i)]

SN-05

Gas Turbine #1

Description

ACH operates a Detroit Allison Model ASP 729 gas turbine engine used for emergency electrical power generation only. The engine uses No. 2 distillate oil and is capable of producing 2,500 and 3,100 KW-hr. Emissions from the operation of the turbine vent through stack SN-05. The turbine runs several times per year for equipment checks. Fuel is stored in three 8,000 gallon above ground storage tanks or various smaller tanks.

Specific Conditions

 The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #11 and #13. [Regulation No. 19 §19.501 *et seq.* effective October 15, 2007, and 40 CFR Part 52, Subpart E]

SN	Description	Pollutant	lb/hr	tpy
	Gas Turbine #1	PM ₁₀	0.4	0.1
		SO ₂	42.7	8.0
05	(57 MMBTU/hr	VOC	0.2	0.1
	#2 Distillate Oil Only)	CO	0.2	0.1
		NO _X	50.0	9.4

Table 8 – Maximum Criteria Emission Limits for Gas Turbine #1

9. The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #11 and #13. [Regulation No. 18 §18.801, effective February 15, 1999, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Table 9 – Maximum	Non-Criteria Emiss	ion Limits for Gas	Furbine #1
-------------------	--------------------	--------------------	-------------------

SN	Description	Pollutant	lb/hr	tpy
05	Gas Turbine #1	PM	0.4	0.1

10. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

SN	Opacity Limit Natural Gas	Opacity Limit #2 Distillate Oil	Regulatory Citation Natural Gas	Regulatory Citation #2 Distillate Oil
05	Not Permitted	20%	N/A	§19.503

Table 10 – Visible Emission Limits for Gas Turbine #1

11. The permittee shall not exceed the natural gas and fuel oil combustion limits and the fuel sulfur content set by the following table. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Table 11 - Gas Turbine #1 Fuel Usage Limits and Allowable Sulfur Content

SN	Consecutive 12 month Combustion Limit Natural Gas (MMscf)	Consecutive 12 month Combustion Limit #2 Distillate Oil (gallons)	Maximum Sulfur Content in #2 Distillate Fuel Oil (wt%)
05	Not Permitted	150,000	0.8

- 12. The permittee shall maintain monthly records which demonstrate compliance with the fuel limits established in Specific Condition #11. The records shall be updated by the 15th of the month following the month to which the records pertain. The records shall be kept on site and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 13. The permittee shall demonstrate compliance with the maximum sulfur content in #2 distillate fuel oil as established in Specific Condition #11 by retaining the fuel certifications from the supplier each time a fuel shipment is received. Records shall be kept onsite and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

NSPS Requirements

- 14. The stationary gas turbine at SN-05 is an affected source under 40 CFR Part 60, Subpart GG *Standards of Performance for Stationary Gas Turbines*. The permittee shall comply with all applicable standards, monitoring, compliance, and recordkeeping requirements of 40 CFR Part 60, Subpart GG including but not limited to the following: [Regulation No. 19 §19.304 and 40 CFR §60.330 (a) and (b)]
 - a. The permittee shall not combust fuel oil in SN-05 that contains total sulfur in excess of 0.8 percent by weight. [Regulation No. 19 §19.304 and 40 CFR §60.333 (b)]
 - b. The permittee may demonstrate compliance with the SO₂ emission limit or fuel oil sulfur limit based on certification from the fuel supplier. [Regulation No. 19 §19.304 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

- c. The permittee shall not operate SN-05 for purposes other than emergencies (i.e. the local electric provider cannot supply the power demanded by ACH). The only exception to this condition will be for periodic testing of equipment. [Regulation No. 19 §19.304 and 40 CFR Part §60.332 (g)]
- d. The permittee shall maintain records of the amounts of oil combusted during each period of emergency. These records shall be kept on site, updated daily, and made available to Department personnel upon request. The permittee shall include in the report required for §60.7 (c) for each period, the type, reasons, and duration of the firing of the emergency fuel. [Regulation No. 19 §19.705, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR §60.334 (j)(4)]

SN-07, SN-08, SN-09, SN-10, SN-12, SN-14, SN-15, and SN-17

Emergency Power Generators

Description

ACH has four Caterpillar 375 horsepower diesel engine powered generators on site for emergency power supply. Each set can produce 250 KW-hr of power. Each engine is tested weekly for proper operation. Each engine exhausts separately from SN-07, SN-08, SN-09, and SN-10.

An 88 horsepower Cummins-Onan emergency generator is located at the energy building. This diesel engine and generator can produce 62.5 KW-hr. The engine is tested weekly and only runs in emergency situations. The engine exhausts through stack SN-12.

ACH installed two 500 kW emergency power generators (SN-14 and SN-15) in June of 2003. Both generators are Caterpillar Model No. 3412. Each engine exhausts through its own stack.

The eighth generator is a Caterpillar 2,848 horsepower diesel that produces 2,000 KW-hr of electricity and exhausts emissions through stack SN-17. This generator has a backup unit which is a portable 2,628 horsepower diesel that produces 1,825 KW-hr of electricity. The backup unit is temporary and an insignificant activity.

Generator engine fuel is stored in any of three above ground 8,000 gallon storage tanks or any of various smaller day tanks.

Specific Conditions

15. The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #18 and #20. [Regulation No. 19 §19.501 *et seq.* effective October 15, 2007, and 40 CFR Part 52, Subpart E]

Table 12 – Maximum (Criteria Emission	1 Limits for Emergen	cy Generators

. .

SN	Description	Pollutant	lb/hr	tpy
		PM_{10}	0.8	
	250 KW Emergency Power	SO_2	0.8	
07	Generator #1	VOC	1.0	
	(2.55 MMB1U/hr #2 Distillate Oil Only)	CO	2.5	
	#2 Distinate On Only)	NO _X	11.3	
		PM ₁₀	0.8	
	250 KW Emergency Power Generator #2 (2.55 MMBTU/hr #2 Distillate Oil Orth)	SO_2	0.8	
08		VOC	1.0	
		CO	2.5	
	#2 Distinate On Only)	NO _X	11.3	

SN	Description	Pollutant	lb/hr	tpy
		PM ₁₀	0.8	
	250 KW Emergency Power	SO_2	0.8	
09	Generator #3	VOC	1.0	
	(2.55 MMBTU/hr #2 Distillate Oil Only)	CO	2.5	
	#2 Distillate On Only)	NO _X	11.3	
		PM ₁₀	0.8	
	250 KW Emergency Power	SO_2	0.8	
10	(2.55 MMBTU/hr	VOC	1.0	
	(2.55 MMB1U/hr #2 Distillate Oil Only)	CO	2.5	
	#2 Distilate On Only)	NO _X	11.3	
	Total Annual Critaria	PM ₁₀		1.3
	Pollutent Emissions for	SO_2		1.2
		VOC		1.5
		CO		3.8
	519-10	NO _X		17.6
		PM ₁₀	0.2	0.2
	62.5 KW Emergency Power Generator (0.57 MMBTU/hr #2 Distillate Oil Only)	SO_2	0.2	0.2
12		VOC	0.2	0.2
		CO	0.6	0.4
		NO _X	2.5	1.6
		PM ₁₀	0.6	
	500 KW Emergency Power	SO_2	1.4	
14	Generator #1	VOC	1.7	
	(5.18 MMBTU/hr #2 Distillate Oil Onby)	CO	4.4	
		NO _X	20.1	
-		PM ₁₀	0.6	
	500 KW Emergency Power	SO_2	1.4	
15	Generator #2	VOC	1.7	
	#2 Distillate Oil Only)	CO	4.4	
		NO _X	20.1	
		PM_{10}		1.1
	Total Annual Criteria	SO_2		1.1
	Pollutant Emissions for	VOC		1.3
	SN-14 and SN-15	CO		3.4
ļ		NO _X		15.7
	2 000 KWE	PM ₁₀	0.5	0.1
	2,000 K w Emergency	SO_2	1.0	0.2
17	Power Generator	VOC	1.7	0.4
	#2 Distillate Oil Only)	CO	1.3	0.3
L		NO _X	43.6	8.2

16. The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #18 and #20. [Regulation No. 18 §18.801, effective February 15, 1999, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

SN	Description	Pollutant	lb/hr	tpy
07	250 KW Emergency Power Generator #1	РМ	0.8	
08	250 KW Emergency Power Generator #2	PM	0.8	1 2
09	250 KW Emergency Power Generator #3	РМ	0.8	1.5
10	250 KW Emergency Power Generator #4	РМ	0.8	
12	62.5 KW Emergency Power Generator	РМ	0.2	0.2
14	500 KW Emergency Power Generator #8	PM	0.6	1 1
15	500 KW Emergency Power Generator #9	PM	0.6	1.1
17	2,000 KW Emergency Power Generator	РМ	0.5	0.1

Table 13 – Maximum Non-Criteria Emission Limits for Emergency Generators

17. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

1 abic 14 = 1 Isible Isinission Limits for Isine gency Ocherators
--

SN	Opacity Limit Natural Gas	Opacity Limit #2 Distillate Oil	Regulatory Citation Natural Gas	Regulatory Citation #2 Distillate Oil
07	Not Permitted	20%	N/A	§19.503
08	Not Permitted	20%	N/A	§19.503
09	Not Permitted	20%	N/A	§19.503
10	Not Permitted	20%	N/A	§19.503
12	Not Permitted	20%	N/A	§19.503
14	Not Permitted	20%	N/A	§19.503
15	Not Permitted	20%	N/A	§19.503
17	Not Permitted	20%	N/A	§19.503

The permittee shall not exceed the natural gas and fuel oil combustion limits and the fuel sulfur content set by the following table. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

SN	Consecutive 12 month Combustion Limit Natural Gas (MMscf)	Consecutive 12 month Combustion Limit #2 Distillate Oil (gallons)	Maximum Sulfur Content in #2 Distillate Fuel Oil (wt%)	
07	Not Permitted			
08	Not Permitted	56.000	0.3	
09	Not Permitted	50,000		
10	Not Permitted			
12	Not Permitted	5,000	0.3	
14	Not Permitted	50.000	0.3	
15	Not Permitted	50,000	0.3	
17	Not Permitted	51,200**	0.05*	

Table 15 – Emergency Generators Fuel Usage Limits and Allowable Sulfur Content

* Beginning October 1, 2010 the maximum sulfur content shall not exceed 0.0015% by weight.

** Total Fuel Usage for SN-17 and its backup.

- 19. The permittee shall maintain monthly records which demonstrate compliance with the fuel limits established in Specific Condition #18. The records shall be updated by the 15th of the month following the month to which the records pertain. The records shall be kept on site and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 20. The permittee shall demonstrate compliance with the maximum sulfur content in #2 distillate fuel oil as established in Specific Condition #18 by retaining the fuel certifications from the supplier each time a fuel shipment is received. Records shall be kept onsite and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

NSPS Requirements

- 21. SN-17 is an affected source of 40 CFR Part 60, Subpart IIII Standards of Performance for Stationary Compression Ignition Internal Combustion Engines. Applicable provisions include but are not limited to the following: [Regulation No. 19 §19.304 and 40 CFR §60.4200]
 - a. There is no time limit on the use of emergency stationary ICE in emergency situations. Emergency stationary ICE may be operated for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State, or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. Anyone may petition the EPA for approval of additional hours to be used for

maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that Federal, State, or local standards require maintenance and testing of emergency ICE beyond 100 hours per year. For owners and operators of emergency engines meeting standards under §60.4205 but not §60.4204, any operation other than emergency operation, and maintenance and testing as permitted in §60.4211, is prohibited. [Regulation No. 19 §19.304 and 40 CFR §60.4211 (e)]

b. The permittee shall not discharge to the atmosphere any gases from SN-17 that contain the following pollutants in excess of the specified limits. Compliance with this condition shall be demonstrated through compliance with Specific Condition #21 (g). [Regulation No. 19 §19.304 and 40 CFR §60.4205 (a)]

Pollutant	Emission Limit g/KW-hr
VOC	1.3
NO _X	9.2
СО	11.4
PM	0.54

- c. The permittee, beginning October 1, 2007, shall only combust diesel fuel with a maximum sulfur content of 0.05% by weight and either a minimum centane index of 40 or a maximum aromatic content of 35% by volume. [Regulation No. 19 §19.304 and 40 CFR §60.4207 (a)]
- d. The permittee, beginning October 1, 2010, shall only combust diesel fuel with a maximum sulfur content of 0.0015% by weight and either a minimum centane index of 40 or a maximum aromatic content of 35% by volume. [Regulation No. 19 §19.304 and 40 CFR §60.4207 (b)]
- e. The permittee shall install a non-resettable hour meter prior to start up of any source subject to 40 CFR Part 60, Subpart IIII. [Regulation No. 19 §19.304 and 40 CFR §60.4209 (a)]
- f. The permittee shall operate and maintain the stationary IC internal combustion engine and control device according to the manufacturer's written instructions or procedures developed by the permittee that are approved by the engine manufacturer. In addition, permittee may only change those settings that are permitted by the manufacturer. [Regulation No. 19 §19.304 and 40 CFR §60.4211 (a)]
- g. The permittee shall demonstrate compliance with the emission standards listed in Specific Condition #21 (b) through one of the methods specified in paragraphs (b)(1) through (b)(5) of 40 CFR §60.4211 (b). [Regulation No. 19 §19.304 and 40 CFR §60.4211 (b)]

h. The permittee shall record the time of operation of SN-17 and the reason source was in operation during that time. [Regulation No. 19 §19.304 and 40 CFR §60.4214 (b)]

SN-16

Office Building Generator

Description

The Office Building Generator is a 2,030 hp electric generator capable of producing 1,400 KWhr. The engine exhausts through its own stack. The generator is permitted for a maximum annual fuel usage of 60,000 gallons of #2 Distillate Fuel Oil. The fuel is stored in a 2,800 gallon tank. There are no restrictions on the operation of this generator.

Specific Conditions

22. The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #25 and #27. [Regulation No. 19 §19.501 *et seq.* effective October 15, 2007, and 40 CFR Part 52, Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM ₁₀	4.5	1.4
	OIS Power Generator #2	SO ₂	4.2	1.3
16	(14.42 MMBTU/hr	VOC	5.2	1.6
	#2 Distillate Oil Only)	CO CO	13.7	4.1
		NO _X	63.6	18.8

 Table 16 – Maximum Criteria Emission Limits for OIS Generator

23. The permittee shall not exceed the emission rates set forth in the following table. Compliance with the hourly and annual limits is demonstrated based on maximum hourly fuel consumption and compliance with Specific Conditions #25 and #27. [Regulation No. 18 §18.801, effective February 15, 1999, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Table 17 - Maximum Non-Criteria Emission Limits for OIS Generator

SN	Description	Pollutant	lb/hr	tpy
16	OIS Power Generator #2	PM	4.5	1.4

24. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Table 18 – Visible Emission Limits for OIS Generator

SN	Opacity Limit Natural Gas	Opacity Limit #2 Distillate Oil	Regulatory Citation Natural Gas	Regulatory Citation #2 Distillate Oil
16	Not Permitted	20%	N/A	§19.503

25. The permittee shall not exceed the natural gas and fuel oil combustion limits and the fuel sulfur content set by the following table. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

SN	Consecutive 12 month Combustion Limit Natural Gas (MMscf)	Consecutive 12 month Combustion Limit #2 Distillate Oil (gallons)	Maximum Sulfur Content in #2 Distillate Fuel Oil (wt%)
16	Not Permitted	60,000	0.3

 Table 19 – OIS Generator Fuel Usage Limits and Allowable Sulfur Content

- 26. The permittee shall maintain monthly records which demonstrate compliance with the fuel limits established in Specific Condition #25. The records shall be updated by the 15th of the month following the month to which the records pertain. The records shall be kept on site and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 27. The permittee shall demonstrate compliance with the maximum sulfur content in #2 distillate fuel oil as established in Specific Condition #25 by retaining the fuel certifications from the supplier each time a fuel shipment is received. Records shall be kept onsite and made available to Department personnel upon request. [Regulation No. 19 §19.705 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Section V: COMPLIANCE PLAN AND SCHEDULE

Arkansas Children's Hospital will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future regulations that may apply and determine their applicability with any necessary action taken on a timely basis.

Section VI: PLANT WIDE CONDITIONS

- 1. The permittee will notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Regulation No. 19 §19.704, 40 CFR Part 52, Subpart E, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
- 2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Regulation No.19 §19.410(B) and 40 CFR Part 52, Subpart E]
- 3. The permittee must test any equipment scheduled for testing, unless stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) New Equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start-up of the permitted source or (2) operating equipment according to the time frames set forth by the Department or within 180 days of permit issuance if no date is specified. The permittee must notify the Department of the scheduled date of compliance testing at least fifteen (15) days in advance of such test. The permittee will submit the compliance test results to the Department within thirty (30) days after completing the testing. [Regulation No.19 §19.702 and/or Regulation No.18 §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 4. The permittee must provide: [Regulation No.19 §19.702 and/or Regulation No.18 §18.1002 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
 - a. Sampling ports adequate for applicable test methods;
 - b. Safe sampling platforms;
 - c. Safe access to sampling platforms; and
 - d. Utilities for sampling and testing equipment.
- 5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee will maintain the equipment in good condition at all times. [Regulation No.19 §19.303 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]
- 6. This permit subsumes and incorporates all previously issued air permits for this facility. [Regulation No. 26 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Title VI Provisions

- 7. The permittee must comply with the standards for labeling of products using ozonedepleting substances. [40 CFR Part 82, Subpart E]
 - a. All containers containing a class I or class II substance stored or transported, all products containing a class I substance, and all products directly manufactured with a class I substance must bear the required warning statement if it is being introduced to interstate commerce pursuant to §82.106.
 - b. The placement of the required warning statement must comply with the requirements pursuant to §82.108.
 - c. The form of the label bearing the required warning must comply with the requirements pursuant to §82.110.
 - d. No person may modify, remove, or interfere with the required warning statement except as described in §82.112.
- 8. The permittee must comply with the standards for recycling and emissions reduction, except as provided for MVACs in Subpart B. [40 CFR Part 82, Subpart F]
 - a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices pursuant to §82.156.
 - b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to §82.158.
 - c. Persons performing maintenance, service repair, or disposal of appliances must be certified by an approved technician certification program pursuant to §82.161.
 - d. Persons disposing of small appliances, MVACs, and MVAC-like appliances must comply with record keeping requirements pursuant to §82.166. ("MVAC-like appliance" as defined at §82.152.)
 - e. Persons owning commercial or industrial process refrigeration equipment must comply with leak repair requirements pursuant to §82.156.
 - f. Owners/operators of appliances normally containing 50 or more pounds of refrigerant must keep records of refrigerant purchased and added to such appliances pursuant to §82.166.
- 9. If the permittee manufactures, transforms, destroys, imports, or exports a class I or class II substance, the permittee is subject to all requirements as specified in 40 CFR Part 82, Subpart A, Production and Consumption Controls.

 If the permittee performs a service on motor (fleet) vehicles when this service involves ozone-depleting substance refrigerant (or regulated substitute substance) in the motor vehicle air conditioner (MVAC), the permittee is subject to all the applicable requirements as specified in 40 CFR part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners.

The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed. The term "MVAC" as used in Subpart B does not include the air-tight sealed refrigeration system used as refrigerated cargo, or the system used on passenger buses using HCFC-22 refrigerant.

11. The permittee can switch from any ozone-depleting substance to any alternative listed in the Significant New Alternatives Program (SNAP) promulgated pursuant to 40 CFR Part 82, Subpart G, "Significant New Alternatives Policy Program".

Permit Shield

- 12. Compliance with the conditions of this permit shall be deemed compliance with all applicable requirements, as of the date of permit issuance, included in and specifically identified in the following table of this condition.
 - a. The permit specifically identifies the following as applicable requirements based upon the information submitted by the permittee in an application dated February 12, 2008.

Source No.	Regulation	Description
Facility	Population No. 10	Regulations of the Arkansas Plan of
racinty	Regulation No. 19	Implementation for Air Pollution Control
		Standards of Performance for Small
02, 04	40 CFR Part 60, Subpart Dc	Industrial-Commercial-Institutional Steam
		Generating Units
05	40 CFR Part 60, Subpart GG	Standards of Performance for Gas Turbines
		Standards of Performance for Stationary
17	40 CFR Part 60, Subpart IIII	Compression Ignition Internal Combustion
		Engines
7, 8, 9, 10,	40 CEP Port 62 Submort	National Emission Standards for Hazardous
11, 12, 14,	40 CFK Fait 03, Subpart	Air Pollutants for Stationary Reciprocating
15, 16, 17	LLL	Internal Combustion Engines

Table 20 - Applicable Regulations

Section VII: INSIGNIFICANT ACTIVITIES

The following sources are insignificant activities. Any activity that has a state or federal applicable requirement is a significant activity even if this activity meets the criteria of §304 of Regulation 26 or listed in the table below. Insignificant activity determinations rely upon the information submitted by the permittee in an application dated **2/19/2008**.

Description	Category
Laboratory Hoods (56)	A-6
Diesel Fuel Tank 10,000 gallon	A-4
Jet Fuel Storage Tank 6,000 gallon	A-4
Diesel Fuel Tank 8,000 gallon	A-4
Diesel Fuel Tank 8,000 gallon	A-4
Diesel Fuel Tank 8,000 gallon	A-4
Diesel Fuel Tank 1,000 gallon	A-4
Diesel Fuel Tank 1,000 gallon	A-4
Diesel Fuel Tank 2,800 gallon	A-4
2,628 Horsepower Electric Generator (SN-17 Backup Unit)*	A-12

Table 21 - Insignificant Activities

* This portable generator is considered an insignificant activity if it remains at ACH for less than 12 consecutive months (*i.e.*, it meets the definition of non-road engine in 40 CFR §1068.30) and the permittee retains the necessary records for determining when the unit was brought onsite and when it was removed.

Pursuant to §26.304 of Regulation 26, the Department determined the emission units, operations, or activities contained in Regulation 19, Appendix A, Group B, to be insignificant activities. Activities included in this list are allowable under this permit and need not be specifically identified.

Section VIII: GENERAL PROVISIONS

- 1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation No. 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 *et seq.*) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 *et seq.*). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (A.C.A. §8-4-101 *et seq.*) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute.[40 CFR 70.6(b)(2)]
- 2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 CFR 70.6(a)(2) and §26.701(B) of the Regulations of the Arkansas Operating Air Permit Program (Regulation 26), effective September 26, 2002]
- 3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee's right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Department takes final action on the renewal application. The Department will not necessarily notify the permittee when the permit renewal application is due. [Regulation No. 26 §26.406]
- 4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, *et seq.* (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 CFR 70.6(a)(1)(ii) and Regulation No. 26 §26.701(A)(2)]
- 5. The permittee must maintain the following records of monitoring information as required by this permit. [40 CFR 70.6(a)(3)(ii)(A) and Regulation No. 26 §26.701(C)(2)]
 - a. The date, place as defined in this permit, and time of sampling or measurements;
 - b. The date(s) analyses performed;
 - c. The company or entity performing the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of such analyses; and
- f. The operating conditions existing at the time of sampling or measurement.
- 6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 CFR 70.6(a)(3)(ii)(B) and Regulation No. 26 §26.701(C)(2)(b)]
- 7. The permittee must submit reports of all required monitoring every six (6) months. If permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due within thirty (30) days of the end of the reporting period. Although the reports are due every six months, each report shall contain a full year of data. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Regulation No. 26 §26.2 must certify all required reports. The permittee will send the reports to the address below: [40 CFR 70.6(a)(3)(iii)(A) and §26.701(C)(3)(a) of Regulation #26]

Arkansas Department of Environmental Quality Air Division ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118

- 8. The permittee will report to the Department all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.
 - a. For all upset conditions (as defined in Regulation 19.601), the permittee will make an initial report to the Department by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:
 - i. The facility name and location,
 - ii. The process unit or emission source deviating from the permit limit,
 - iii. The permit limit, including the identification of pollutants, from which deviation occurs,
 - iv. The date and time the deviation started,
 - v. The duration of the deviation,
 - vi. The average emissions during the deviation,
 - vii. The probable cause of such deviations,

- viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future, and
 - ix. The name of the person submitting the report.

The permittee will make a full report in writing to the Department within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit's limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

- b. For all deviations, the permittee will report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a. above. The semi-annual report must include all the information as required in the initial and full report required in 8a. [40 CFR 70.6(a)(3)(iii)(B), Regulation No. 26 §26.701(C)(3)(b), Regulation No. 19 §19.601 and §19.602]
- 9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Regulation are declared to be separable and severable. [40 CFR 70.6(a)(5), §26.701(E) of Regulation No. 26, and A.C.A. §8-4-203, as referenced by §8-4-304 and §8-4-311]
- 10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Regulation No. 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. §7401, *et seq.* and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 CFR 70.6(a)(6)(i) and Regulation No. 26 §26.701(F)(1)]
- 11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 CFR 70.6(a)(6)(ii) and Regulation No. 26 §26.701(F)(2)]
- 12. The Department may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. [40 CFR 70.6(a)(6)(iii) and Regulation No. 26 §26.701(F)(3)]

- 13. This permit does not convey any property rights of any sort, or any exclusive privilege. [40 CFR 70.6(a)(6)(iv) and Regulation No. 26 §26.701(F)(4)]
- 14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Department may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 CFR 70.6(a)(6)(v) and Regulation No. 26 §26.701(F)(5)]
- 15. The permittee must pay all permit fees in accordance with the procedures established in Regulation No. 9. [40 CFR 70.6(a)(7) and Regulation No. 26 §26.701(G)]
- No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 CFR 70.6(a)(8) and Regulation No. 26 §26.701(H)]
- 17. If the permit allows different operating scenarios, the permittee will, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 CFR 70.6(a)(9)(i) and Regulation No. 26 §26.701(I)(1)]
- 18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source's potential to emit, unless the Department specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 CFR 70.6(b) and Regulation No. 26 §26.702(A) and (B)]
- Any document (including reports) required by this permit must contain a certification by a responsible official as defined in Regulation No. 26 §26.2. [40 CFR 70.6(c)(1) and Regulation No. 26 §26.703(A)]
- 20. The permittee must allow an authorized representative of the Department, upon presentation of credentials, to perform the following: [40 CFR 70.6(c)(2) and Regulation No. 26 §26.703(B)]
 - a. Enter upon the permittee's premises where the permitted source is located or emissions-related activity is conducted, or where records must be kept under the conditions of this permit;
 - b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;

- c. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and
- d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.
- 21. The permittee will submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually within 30 days following the last day of the anniversary month of the initial Title V permit. The permittee must also submit the compliance certification to the Administrator as well as to the Department. All compliance certifications required by this permit must include the following: [40 CFR 70.6(c)(5) and Regulation No. 26 §26.703(E)(3)]
 - a. The identification of each term or condition of the permit that is the basis of the certification;
 - b. The compliance status;
 - c. Whether compliance was continuous or intermittent;
 - d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
 - e. Such other facts as the Department may require elsewhere in this permit or by §114(a)(3) and §504(b) of the Act.
- 22. Nothing in this permit will alter or affect the following: [Regulation No. 26 §26.704(C)]
 - a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
 - b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
 - c. The applicable requirements of the acid rain program, consistent with §408(a) of the Act; or
 - d. The ability of EPA to obtain information from a source pursuant to §114 of the Act.
- 23. This permit authorizes only those pollutant-emitting activities addressed in this permit. [A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

APPENDIX A

40 CFR Part 60, Subpart Dc – Standards of Performance for Small-Commercial-Institutional Steam Generating Units

.

Home Page > Executive Branch > Code of Federal Regulations > Electronic Code of Federal Regulations

Electronic Code of Federal Regulations $\frac{\mathcal{C} - \mathcal{C} F \mathcal{R}}{\mathsf{TM}}$

e-CFR Data is current as of March 19, 2008

Title 40: Protection of Environment

PART 60-STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Browse Previous | Browse Next

Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Source: 72 FR 32759, June 13, 2007, unless otherwise noted.

§ 60.40c Applicability and delegation of authority.

(a) Except as provided in paragraph (d) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).

(b) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, §60.48c(a)(4) shall be retained by the Administrator and not transferred to a State.

(c) Steam generating units that meet the applicability requirements in paragraph (a) of this section are not subject to the sulfur dioxide (SO_2) or particulate matter (PM) emission limits, performance testing requirements, or monitoring requirements under this subpart (§§60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during periods of combustion research, as defined in §60.41c.

(d) Any temporary change to an existing steam generating unit for the purpose of conducting combustion research is not considered a modification under §60.14.

(e) Heat recovery steam generators that are associated with combined cycle gas turbines and meet the applicability requirements of subpart GG or KKKK of this part are not subject to this subpart. This subpart will continue to apply to all other heat recovery steam generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only emissions resulting from combustion of fuels in the steam generating unit are subject to this subpart. (The gas turbine emissions are subject to subpart GG or KKKK, as applicable, of this part).

(f) Any facility covered by subpart AAAA of this part is not covered by this subpart.

(g) Any facility covered by an EPA approved State or Federal section 111(d)/129 plan implementing subpart BBBB of this part is not covered by this subpart.

§ 60.41c Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act and in subpart A of this part.

Annual capacity factor means the ratio between the actual heat input to a steam generating unit from an individual fuel or combination of fuels during a period of 12 consecutive calendar months and the potential heat input to the steam generating unit from all fuels had the steam generating unit been operated for 8,760 hours during that 12-month period at the maximum design heat input capacity. In the case of steam generating units that are rented or leased, the actual heat input shall be determined based on the combined heat input from all operations of the affected facility during a period of 12 consecutive calendar months.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17), coal refuse, and petroleum coke. Coal-derived synthetic fuels derived from coal for the purposes of creating useful heat, including but not limited to solvent refined coal, gasified coal, coal-oil mixtures, and coal-water mixtures, are also included in this definition for the purposes of this subpart.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (kJ/kg) (6,000 Btu per pound (Btu/lb) on a dry basis.

Cogeneration steam generating unit means a steam generating unit that simultaneously produces both electrical (or mechanical) and thermal energy from the same primary energy source.

Combined cycle system means a system in which *a* separate source (such as a stationary gas turbine, internal combustion engine, or kiln) provides exhaust gas to a steam generating unit.

Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient combustion or more effective prevention or control of air pollutant emissions from combustion, provided that, during these periods of research and development, the heat generated is not used for any purpose other than preheating combustion air for use by that steam generating unit (*i.e.*, the heat generated is released to the atmosphere without being used for space heating, process heating, driving pumps, preheating combustion air for other units, generating electricity, or any other purpose).

Conventional technology means wet flue gas desulfurization technology, dry flue gas desulfurization technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology.

Distillate oil means fuel oil that complies with the specifications for fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17).

Dry flue gas desulfurization technology means a SO₂ control system that is located between the steam

generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution and forming a dry powder material. This definition includes devices where the dry powder material is subsequently converted to another form. Alkaline reagents used in dry flue gas desulfurization systems include, but are not limited to, lime and sodium compounds.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source (such as a stationary gas turbine, internal combustion engine, kiln, etc.) to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a steam generating unit.

Emerging technology means any SO_2 control system that is not defined as a conventional technology under this section, and for which the owner or operator of the affected facility has received approval from the Administrator to operate as an emerging technology under §60.48c(a)(4).

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Fluidized bed combustion technology means a device wherein fuel is distributed onto a bed (or series of beds) of limestone aggregate (or other sorbent materials) for combustion; and these materials are forced

upward in the device by the flow of combustion air and the gaseous products of combustion. Fluidized bed combustion technology includes, but is not limited to, bubbling bed units and circulating bed units.

Fuel pretreatment means a process that removes a portion of the sulfur in a fuel before combustion of the fuel in a steam generating unit.

Heat input means heat derived from combustion of fuel in a steam generating unit and does not include the heat derived from preheated combustion air, recirculated flue gases, or exhaust gases from other sources (such as stationary gas turbines, internal combustion engines, and kilns).

Heat transfer medium means any material that is used to transfer heat from one point to another point.

Maximum design heat input capacity means the ability of a steam generating unit to combust a stated maximum amount of fuel (or combination of fuels) on a steady state basis as determined by the physical design and characteristics of the steam generating unit.

Natural gas means: (1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or (2) liquefied petroleum (LP) gas, as defined by the American Society for Testing and Materials in ASTM D1835 (incorporated by reference, see §60.17).

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Oil means crude oil or petroleum, or a liquid fuel derived from crude oil or petroleum, including distillate oil and residual oil.

Potential sulfur dioxide emission rate means the theoretical SO₂emissions (nanograms per joule (ng/J) or lb/MMBtu heat input) that would result from combusting fuel in an uncleaned state and without using emission control systems.

Process heater means a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17).

Steam generating unit means a device that combusts any fuel and produces steam or heats water or any other heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart.

Steam generating unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam generating unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Wet flue gas desulfurization technology means an SO₂ control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition includes devices where the liquid material is subsequently converted to another form. Alkaline reagents used in wet flue gas desulfurization systems include, but are not limited to, lime, limestone, and sodium compounds.

Wet scrubber system means any emission control device that mixes an aqueous stream or slurry with the exhaust gases from a steam generating unit to control emissions of PM or SO₂.

Wood means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including but not limited to sawdust, sanderdust, wood chips, scraps, slabs, millings, shavings, and processed pellets made from wood or other forest residues.

§ 60.42c Standard for sulfur dioxide (SO $_2$).

(a) Except as provided in paragraphs (b), (c), and (e) of this section, on and after the date on which the performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator of an affected facility that combusts only coal shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO₂emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO₂ emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO₂ emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO₂ in excess of the emission limit is determined pursuant to paragraph (e)(2) of this section.

(b) Except as provided in paragraphs (c) and (e) of this section, on and after the date on which the performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator of an affected facility that:

(1) Combusts only coal refuse alone in a fluidized bed combustion steam generating unit shall neither:

(i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 20 percent (0.20) of the potential SO_2 emission rate (80 percent reduction); nor

(ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of SO_2 in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility subject to paragraph (a) of this section. If oil or any other fuel (except coal) is fired with coal refuse, the affected facility is subject to the 87 ng/J (0.20 lb/MMBtu) heat input SO_2 emissions limit or the 90 percent SO_2 reduction requirement specified in paragraph (a) of this section and the emission limit is determined pursuant to paragraph (e)(2) of this section.

(2) Combusts only coal and that uses an emerging technology for the control of SO₂emissions shall neither:

(i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 50 percent (0.50) of the potential SO_2 emission rate (50 percent reduction); nor

(ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of 260 ng/J (0.60 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50 percent SO_2 reduction requirement specified in this paragraph and the emission limit determined pursuant to paragraph (e)(2) of this section.

(c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, alone or in combination with any other fuel, and is listed in paragraphs (c)(1), (2), (3), or (4) of this section shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO_2 in excess of the emission limit determined pursuant to paragraph (e)(2) of this section. Percent reduction requirements are not applicable to affected facilities under paragraphs (c)(1), (2), (3), or (4).

(1) Affected facilities that have a heat input capacity of 22 MW (75 MMBtu/hr) or less.

(2) Affected facilities that have an annual capacity for coal of 55 percent (0.55) or less and are subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for coal of 55 percent (0.55) or less.

(3) Affected facilities located in a noncontinental area.

(4) Affected facilities that combust coal in a duct burner as part of a combined cycle system where 30 percent (0.30) or less of the heat entering the steam generating unit is from combustion of coal in the duct burner and 70 percent (0.70) or more of the heat entering the steam generating unit is from exhaust gases entering the duct burner.

(d) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts oil shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂in

excess of 215 ng/J (0.50 lb/MMBtu) heat input; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.

(e) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, oil, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of the following:

(1) The percent of potential SO_2 emission rate or numerical SO_2 emission rate required under paragraph (a) or (b)(2) of this section, as applicable, for any affected facility that

(i) Combusts coal in combination with any other fuel;

(ii) Has a heat input capacity greater than 22 MW (75 MMBtu/hr); and

(iii) Has an annual capacity factor for coal greater than 55 percent (0.55); and

(2) The emission limit determined according to the following formula for any affected facility that combusts coal, oil, or coal and oil with any other fuel:

$$E_{c} = \frac{\left(K_{a}H_{a} + K_{b}H_{b} + K_{c}H_{c}\right)}{\left(H_{a} + H_{b} + H_{c}\right)}$$

Where:

E_s= SO₂emission limit, expressed in ng/J or lb/MMBtu heat input;

K_a= 520 ng/J (1.2 lb/MMBtu);

K_b= 260 ng/J (0.60 lb/MMBtu);

 $K_c = 215 \text{ ng/J} (0.50 \text{ lb/MMBtu});$

 H_a = Heat input from the combustion of coal, except coal combusted in an affected facility subject to paragraph (b)(2) of this section, in Joules (J) [MMBtu];

 H_b = Heat input from the combustion of coal in an affected facility subject to paragraph (b)(2) of this section, in J (MMBtu); and

 $H_cK_aH_b$ = Heat input from the combustion of oil, in J (MMBtu).

(f) Reduction in the potential SO_2 emission rate through fuel pretreatment is not credited toward the percent reduction requirement under paragraph (b)(2) of this section unless:

(1) Fuel pretreatment results in a 50 percent (0.50) or greater reduction in the potential SO₂emission rate; and

(2) Emissions from the pretreated fuel (without either combustion or post-combustion SO_2 control) are equal to or less than the emission limits specified under paragraph (b)(2) of this section.

(g) Except as provided in paragraph (h) of this section, compliance with the percent reduction requirements, fuel oil sulfur limits, and emission limits of this section shall be determined on a 30-day rolling average basis.

(h) For affected facilities listed under paragraphs (h)(1), (2), or (3) of this section, compliance with the emission limits or fuel oil sulfur limits under this section may be determined based on a certification from the fuel supplier, as described under §60.48c(f), as applicable.

(1) Distillate oil-fired affected facilities with heat input capacities between 2.9 and 29 MW (10 and 100 MMBtu/hr).

(2) Residual oil-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).

(3) Coal-fired facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).

(i) The SO₂ emission limits, fuel oil sulfur limits, and percent reduction requirements under this section apply at all times, including periods of startup, shutdown, and malfunction.

(j) Only the heat input supplied to the affected facility from the combustion of coal and oil is counted under this section. No credit is provided for the heat input to the affected facility from wood or other fuels or for heat derived from exhaust gases from other sources, such as stationary gas turbines, internal combustion engines, and kilns.

§ 60.43c Standard for particulate matter (PM).

(a) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emission limits:

(1) 22 ng/J (0.051 lb/MMBtu) heat input if the affected facility combusts only coal, or combusts coal with other fuels and has an annual capacity factor for the other fuels of 10 percent (0.10) or less.

(2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal with other fuels, has an annual capacity factor for the other fuels greater than 10 percent (0.10), and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor greater than 10 percent (0.10) for fuels other than coal.

(b) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts wood or combusts mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emissions limits:

(1) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood greater than 30 percent (0.30); or

(2) 130 ng/J (0.30 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood of 30 percent (0.30) or less and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for wood of 30 percent (0.30) or less.

(c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, wood, or oil and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity.

(d) The PM and opacity standards under this section apply at all times, except during periods of startup, shutdown, or malfunction.

(e)(1) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 13 ng/J (0.030 lb/MMBtu) heat input, except as provided in paragraphs (e)(2), (e)(3), and (e)(4) of this section.

(2) As an alternative to meeting the requirements of paragraph (e)(1) of this section, the owner or operator of an affected facility for which modification commenced after February 28, 2005, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005 shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of both:

(i) 22 ng/J (0.051 lb/MMBtu) heat input derived from the combustion of coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels; and

(ii) 0.2 percent of the combustion concentration (99.8 percent reduction) when combusting coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels.

(3) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005, and that combusts over 30 percent wood (by heat input) on an annual basis and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 43 ng/J (0.10 lb/MMBtu) heat input.

(4) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, an owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only oil that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under §60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO₂emissions is not subject to the PM limit in this section.

§ 60.44c Compliance and performance test methods and procedures for sulfur dioxide.

(a) Except as provided in paragraphs (g) and (h) of this section and §60.8(b), performance tests required under §60.8 shall be conducted following the procedures specified in paragraphs (b), (c), (d), (e), and (f) of this section, as applicable. Section 60.8(f) does not apply to this section. The 30-day notice required in §60.8(d) applies only to the initial performance test unless otherwise specified by the Administrator.

(b) The initial performance test required under 60.8 shall be conducted over 30 consecutive operating days of the steam generating unit. Compliance with the percent reduction requirements and SO₂emission limits under 60.42c shall be determined using a 30-day average. The first operating day

included in the initial performance test shall be scheduled within 30 days after achieving the maximum production rate at which the affect facility will be operated, but not later than 180 days after the initial startup of the facility. The steam generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but must be representative of future operating conditions.

(c) After the initial performance test required under paragraph (b) of this section and §60.8, compliance with the percent reduction requirements and SO₂ emission limits under §60.42c is based on the average percent reduction and the average SO₂ emission rates for 30 consecutive steam generating unit operating days. A separate performance test is completed at the end of each steam generating unit operating day, and a new 30-day average percent reduction and SO₂ emission rate are calculated to show compliance with the standard.

(d) If only coal, only oil, or a mixture of coal and oil is combusted in an affected facility, the procedures in Method 19 of appendix A of this part are used to determine the hourly SO_2 emission rate (E_{ho}) and the 30-day average SO_2 emission rate (E_{ao}). The hourly averages used to compute the 30-day averages are obtained from the CEMS. Method 19 of appendix A of this part shall be used to calculate E_{ao} when using daily fuel sampling or Method 6B of appendix A of this part.

(e) If coal, oil, or coal and oil are combusted with other fuels.

(1) An adjusted $E_{ho}(E_{ho}o)$ is used in Equation 19–19 of Method 19 of appendix A of this part to compute the adjusted $E_{ao}(E_{ao}o)$. The $E_{ho}o$ is computed using the following formula:

$$E_{\mathbf{h}} \circ = \frac{E_{\mathbf{h}} - E_{\mathbf{w}} (1 - X_{\mathbf{h}})}{X_{\mathbf{h}}}$$

Where:

E_{ho}o = Adjusted E_{ho}, ng/J (lb/MMBtu);

E_{bo}= Hourly SO₂emission rate, ng/J (lb/MMBtu);

 $E_w = SO_2$ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 9 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume $E_w = 0$.

 X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

(2) The owner or operator of an affected facility that qualifies under the provisions of §60.42c(c) or (d) (where percent reduction is not required) does not have to measure the parameters E_w or X_k if the owner or operator of the affected facility elects to measure emission rates of the coal or oil using the fuel sampling and analysis procedures under Method 19 of appendix A of this part.

(f) Affected facilities subject to the percent reduction requirements under §60.42c(a) or (b) shall determine compliance with the SO₂emission limits under §60.42c pursuant to paragraphs (d) or (e) of this section, and shall determine compliance with the percent reduction requirements using the following procedures:

(1) If only coal is combusted, the percent of potential SO₂emission rate is computed using the following formula:

$$%P_{e} = 100 \left(1 - \frac{%R_{g}}{100} \right) \left(1 - \frac{%R_{f}}{100} \right)$$

Where:

%Ps= Potential SO2emission rate, in percent;

 $%R_g = SO_2$ removal efficiency of the control device as determined by Method 19 of appendix A of this part, in percent; and

 $%R_{f}$ = SO₂removal efficiency of fuel pretreatment as determined by Method 19 of appendix A of this part, in percent.

(2) If coal, oil, or coal and oil are combusted with other fuels, the same procedures required in paragraph (f)(1) of this section are used, except as provided for in the following:

(i) To compute the %P_s, an adjusted %R_g(%R_go) is computed from E_{ao}o from paragraph (e)(1) of this section and an adjusted average SO₂ inlet rate (E_{ai}o) using the following formula:

$$\% \mathbb{R}_{g0} = 100 \left(1 - \frac{\mathbb{E}_{\infty}^*}{\mathbb{E}_{\infty}^*} \right)$$

Where:

 $%R_{g}o = Adjusted %R_{g}$, in percent;

E_{ao}o = Adjusted E_{ao}, ng/J (lb/MMBtu); and

 $E_{ai}o = Adjusted average SO_2 inlet rate, ng/J (lb/MMBtu).$

(ii) To compute E_{ai} o, an adjusted hourly SO₂inlet rate (E_{hi} o) is used. The E_{hi} o is computed using the following formula:

$$E_{\underline{M}}o = \frac{E_{\underline{M}} - E_{\underline{w}}(1 - X_{\underline{y}})}{X_{\underline{y}}}$$

Where:

 $E_{hi}o = Adjusted E_{hi}, ng/J (lb/MMBtu);$

E_{hi}= Hourly SO₂inlet rate, ng/J (lb/MMBtu);

 $E_w = SO_2$ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 19 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume $E_w = 0$; and

 X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

(g) For oil-fired affected facilities where the owner or operator seeks to demonstrate compliance with the fuel oil sulfur limits under $\S60.42c$ based on shipment fuel sampling, the initial performance test shall consist of sampling and analyzing the oil in the initial tank of oil to be fired in the steam generating unit to demonstrate that the oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or operator of the affected facility shall sample the oil in the fuel tank after each new shipment of oil is received, as described under $\S60.46c(d)(2)$.

(h) For affected facilities subject to 60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO₂standards based on fuel supplier certification, the performance test shall consist of the certification, the certification from the fuel supplier, as described under 60.48c (f), as applicable.

(i) The owner or operator of an affected facility seeking to demonstrate compliance with the SO₂standards under §60.42c(c)(2) shall demonstrate the maximum design heat input capacity of the

steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(j) The owner or operator of an affected facility shall use all valid SO₂emissions data in calculating %

 P_s and E_{ho} under paragraphs (d), (e), or (f) of this section, as applicable, whether or not the minimum emissions data requirements under §60.46c(f) are achieved. All valid emissions data, including valid data collected during periods of startup, shutdown, and malfunction, shall be used in calculating %P_s or E_{ho} pursuant to paragraphs (d), (e), or (f) of this section, as applicable.

§ 60.45c Compliance and performance test methods and procedures for particulate matter.

(a) The owner or operator of an affected facility subject to the PM and/or opacity standards under §60.43c shall conduct an initial performance test as required under §60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of this section.

(1) Method 1 of appendix A of this part shall be used to select the sampling site and the number of traverse sampling points.

(2) Method 3 of appendix A of this part shall be used for gas analysis when applying Method 5, 5B, or 17 of appendix A of this part.

(3) Method 5, 5B, or 17 of appendix A of this part shall be used to measure the concentration of PM as follows:

(i) Method 5 of appendix A of this part may be used only at affected facilities without wet scrubber systems.

(ii) Method 17 of appendix A of this part may be used at affected facilities with or without wet scrubber systems provided the stack gas temperature does not exceed a temperature of 160 °C (320 °F). The procedures of Sections 8.1 and 11.1 of Method 5B of appendix A of this part may be used in Method 17 of appendix A of this part only if Method 17 of appendix A of this part is used in conjunction with a wet scrubber system. Method 17 of appendix A of this part shall not be used in conjunction with a wet scrubber system if the effluent is saturated or laden with water droplets.

(iii) Method 5B of appendix A of this part may be used in conjunction with a wet scrubber system.

Electronic Code of Federal Regulations:

(4) The sampling time for each run shall be at least 120 minutes and the minimum sampling volume shall be 1.7 dry standard cubic meters (dscm) [60 dry standard cubic feet (dscf)] except that smaller sampling times or volumes may be approved by the Administrator when necessitated by process variables or other factors.

(5) For Method 5 or 5B of appendix A of this part, the temperature of the sample gas in the probe and filter holder shall be monitored and maintained at 160 ±14 $^{\circ}$ C (320±25 $^{\circ}$ F).

(6) For determination of PM emissions, an oxygen (O_2) or carbon dioxide (CO_2) measurement shall be obtained simultaneously with each run of Method 5, 5B, or 17 of appendix A of this part by traversing the duct at the same sampling location.

(7) For each run using Method 5, 5B, or 17 of appendix A of this part, the emission rates expressed in ng/J (lb/MMBtu) heat input shall be determined using:

(i) The O₂or CO₂measurements and PM measurements obtained under this section, (ii) The dry basis F factor, and

(iii) The dry basis emission rate calculation procedure contained in Method 19 of appendix A of this part.

(8) Method 9 of appendix A of this part (6-minute average of 24 observations) shall be used for determining the opacity of stack emissions.

(b) The owner or operator of an affected facility seeking to demonstrate compliance with the PM standards under §60.43c(b)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(c) In place of PM testing with EPA Reference Method 5, 5B, or 17 of appendix A of this part, an owner or operator may elect to install, calibrate, maintain, and operate a CEMS for monitoring PM emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor PM emissions instead of conducting performance testing using EPA Method 5, 5B, or 17 of appendix A of this part shall install, calibrate, maintain, and operate a CEMS and shall comply with the requirements specified in paragraphs (c)(1) through (c)(13) of this section.

(1) Notify the Administrator 1 month before starting use of the system.

(2) Notify the Administrator 1 month before stopping use of the system.

(3) The monitor shall be installed, evaluated, and operated in accordance with §60.13 of subpart A of this part.

(4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under §60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of CEMS if the owner or operator was previously determining compliance by Method 5, 5B, or 17 of appendix A of this part performance tests, whichever is later.

(5) The owner or operator of an affected facility shall conduct an initial performance test for PM emissions as required under §60.8 of subpart A of this part. Compliance with the PM emission limit shall be determined by using the CEMS specified in paragraph (d) of this section to measure PM and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19 of appendix A of this part, section 4.1.

(6) Compliance with the PM emission limit shall be determined based on the 24-hour daily (block)

average of the hourly arithmetic average emission concentrations using CEMS outlet data.

(7) At a minimum, valid CEMS hourly averages shall be obtained as specified in paragraph (d)(7)(i) of this section for 75 percent of the total operating hours per 30-day rolling average.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) [Reserved]

(8) The 1-hour arithmetic averages required under paragraph (d)(7) of this section shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under §60.13(e)(2) of subpart A of this part.

(9) All valid CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (d)(7) of this section are not met.

(10) The CEMS shall be operated according to Performance Specification 11 in appendix B of this part.

(11) During the correlation testing runs of the CEMS required by Performance Specification 11 in appendix B of this part, PM and $O_2(\text{or CO}_2)$ data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and the test methods specified in paragraph (d)(7)(i) of this section.

(i) For PM, EPA Reference Method 5, 5B, or 17 of appendix A of this part shall be used.

(ii) For O₂(or CO₂), EPA reference Method 3, 3A, or 3B of appendix A of this part, as applicable shall be used

(12) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit's must be performed annually and Response Correlation Audits must be performed every 3 years.

(13) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, valid emissions data for a minimum of 75 percent of total operating hours on a 30-day rolling average.

(d) The owner or operator of an affected facility seeking to demonstrate compliance under §60.43c(e)(4) shall follow the applicable procedures under §60.48c(f). For residual oil-fired affected facilities, fuel supplier certifications are only allowed for facilities with heat input capacities between 2.9 and 8.7 MW (10 to 30 MMBtu/hr).

§ 60.46c Emission monitoring for sulfur dioxide.

(a) Except as provided in paragraphs (d) and (e) of this section, the owner or operator of an affected facility subject to the SO_2 emission limits under §60.42c shall install, calibrate, maintain, and operate a CEMS for measuring SO_2 concentrations and either O_2 or CO_2 concentrations at the outlet of the SO_2 control device (or the outlet of the steam generating unit if no SO_2 control device is used), and shall record the output of the system. The owner or operator of an affected facility subject to the percent reduction requirements under §60.42c shall measure SO_2 concentrations and either O_2 or CO_2 concentrations and either O_2 or CO_2 concentrations and either O_2 or CO_2 concentrations at both the inlet and outlet of the SO_2 control device.

(b) The 1-hour average SO₂emission rates measured by a CEMS shall be expressed in ng/J or Ib/MMBtu heat input and shall be used to calculate the average emission rates under §60.42c. Each 1-hour average SO₂emission rate must be based on at least 30 minutes of operation, and shall be

calculated using the data points required under §60.13(h)(2). Hourly SO₂emission rates are not calculated if the affected facility is operated less than 30 minutes in a 1-hour period and are not counted toward determination of a steam generating unit operating day.

(c) The procedures under §60.13 shall be followed for installation, evaluation, and operation of the CEMS.

(1) All CEMS shall be operated in accordance with the applicable procedures under Performance Specifications 1, 2, and 3 of appendix B of this part.

(2) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of appendix F of this part.

(3) For affected facilities subject to the percent reduction requirements under §60.42c, the span value of the SO_2CEMS at the inlet to the $SO_2control$ device shall be 125 percent of the maximum estimated hourly potential SO_2 emission rate of the fuel combusted, and the span value of the SO_2CEMS at the outlet from the $SO_2control$ device shall be 50 percent of the maximum estimated hourly potential SO_2 emission rate of the fuel combusted.

(4) For affected facilities that are not subject to the percent reduction requirements of §60.42c, the span value of the SO_2CEMS at the outlet from the SO_2 control device (or outlet of the steam generating unit if no SO_2 control device is used) shall be 125 percent of the maximum estimated hourly potential SO_2 emission rate of the fuel combusted.

(d) As an alternative to operating a CEMS at the inlet to the SO_2 control device (or outlet of the steam generating unit if no SO_2 control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO_2 emission rate by sampling the fuel prior to combustion. As an alternative to operating a CEMS at the outlet from the SO_2 control device (or outlet of the steam generating unit if no SO_2 control device is used) as required under paragraph (a) of this section, the steam generating unit if no SO_2 control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO_2 emission rate by using Method 6B of appendix A of this part. Fuel sampling shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this section. Method 6B of appendix A of this part shall be conducted pursuant to paragraph (d)(3) of this section.

(1) For affected facilities combusting coal or oil, coal or oil samples shall be collected daily in an as-fired condition at the inlet to the steam generating unit and analyzed for sulfur content and heat content according the Method 19 of appendix A of this part. Method 19 of appendix A of this part provides procedures for converting these measurements into the format to be used in calculating the average SO_2 input rate.

(2) As an alternative fuel sampling procedure for affected facilities combusting oil, oil samples may be collected from the fuel tank for each steam generating unit immediately after the fuel tank is filled and before any oil is combusted. The owner or operator of the affected facility shall analyze the oil sample to determine the sulfur content of the oil. If a partially empty fuel tank is refilled, a new sample and analysis of the fuel in the tank would be required upon filling. Results of the fuel analysis taken after each new shipment of oil is received shall be used as the daily value when calculating the 30-day rolling average until the next shipment is received. If the fuel analysis shows that the sulfur content in the fuel tank is greater than 0.5 weight percent sulfur, the owner or operator shall ensure that the sulfur content to be 0.5 weight percent sulfur or less.

(3) Method 6B of appendix A of this part may be used in lieu of CEMS to measure SO_2 at the inlet or outlet of the SO_2 control system. An initial stratification test is required to verify the adequacy of the Method 6B of appendix A of this part sampling location. The stratification test shall consist of three paired runs of a suitable SO_2 and CO_2 measurement train operated at the candidate location and a second similar train operated according to the procedures in §3.2 and the applicable procedures in section 7 of Performance Specification 2 of appendix B of this part. Method 6B of appendix A of this part,

Method 6A of appendix A of this part, or a combination of Methods 6 and 3 of appendix A of this part or Methods 6C and 3A of appendix A of this part are suitable measurement techniques. If Method 6B of appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of appendix A of this part 24-hour tests, the mean of the absolute difference between the three paired runs must be less than 10 percent (0.10).

(e) The monitoring requirements of paragraphs (a) and (d) of this section shall not apply to affected facilities subject to 60.42c(h) (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO₂standards based on fuel supplier certification, as described under 60.48c(f), as applicable.

(f) The owner or operator of an affected facility operating a CEMS pursuant to paragraph (a) of this section, or conducting as-fired fuel sampling pursuant to paragraph (d)(1) of this section, shall obtain emission data for at least 75 percent of the operating hours in at least 22 out of 30 successive steam generating unit operating days. If this minimum data requirement is not met with a single monitoring system, the owner or operator of the affected facility shall supplement the emission data with data collected with other monitoring systems as approved by the Administrator.

§ 60.47c Emission monitoring for particulate matter.

(a) Except as provided in paragraphs (c), (d), (e), and (f) of this section, the owner or operator of an affected facility combusting coal, oil, or wood that is subject to the opacity standards under §60.43c shall install, calibrate, maintain, and operate a COMS for measuring the opacity of the emissions discharged to the atmosphere and record the output of the system.

(b) All COMS for measuring opacity shall be operated in accordance with the applicable procedures under Performance Specification 1 of appendix B of this part. The span value of the opacity COMS shall be between 60 and 80 percent.

(c) Affected facilities that burn only distillate oil that contains no more than 0.5 weight percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.06 lb/MMBtu) heat input or less and that do not use a post-combustion technology to reduce SO₂ or PM emissions are

not required to operate a CEMS for measuring opacity if they follow the applicable procedures under §60.48c(f).

(d) Owners or operators complying with the PM emission limit by using a PM CEMS monitor instead of monitoring opacity must calibrate, maintain, and operate a CEMS, and record the output of the system, for PM emissions discharged to the atmosphere as specified in §60.45c(d). The CEMS specified in paragraph §60.45c(d) shall be operated and data recorded during all periods of operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments.

(e) An affected facility that does not use post-combustion technology (except a wet scrubber) for reducing PM, SO₂, or carbon monoxide (CO) emissions, burns only gaseous fuels or fuel oils that

contain less than or equal to 0.5 weight percent sulfur, and is operated such that emissions of CO to the atmosphere from the affected facility are maintained at levels less than or equal to 0.15 lb/MMBtu on a boiler operating day average basis is not required to operate a COMS for measuring opacity. Owners and operators of affected facilities electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (e)(1) through (4) of this section.

(1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (e)(1)(i) through (iv) of this section.

(i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(i)(3) of subpart Eb of this part.

(ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).

(iii) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. At least two data points per hour must be used to calculate each 1-hour average.

(iv) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.

(2) You must calculate the 1-hour average CO emissions levels for each steam generating unit operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat input to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each steam generating unit operating day.

(3) You must evaluate the preceding 24-hour average CO emission level each steam generating unit operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less.

(4) You must record the CO measurements and calculations performed according to paragraph (e) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the date, time, and description of the corrective action.

(f) An affected facility that burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur and operates according to a written site-specific monitoring plan approved by the appropriate delegated permitting authority is not required to operate a COMS for measuring opacity. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard.

§ 60.48c Reporting and recordkeeping requirements.

(a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by §60.7 of this part. This notification shall include:

(1) The design heat input capacity of the affected facility and identification of fuels to be combusted in the affected facility.

(2) If applicable, a copy of any federally enforceable requirement that limits the annual capacity factor for any fuel or mixture of fuels under §60.42c, or §60.43c.

(3) The annual capacity factor at which the owner or operator anticipates operating the affected facility based on all fuels fired and based on each individual fuel fired.

(4) Notification if an emerging technology will be used for controlling SO_2 emissions. The Administrator will examine the description of the control device and will determine whether the technology qualifies as an emerging technology. In making this determination, the Administrator may require the owner or operator of the affected facility to submit additional information concerning the control device. The affected facility is subject to the provisions of §60.42c(a) or (b)(1), unless and until this determination is made by the Administrator.

(b) The owner or operator of each affected facility subject to the SO₂emission limits of §60.42c, or the PM or opacity limits of §60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of this part.

(c) The owner or operator of each coal-fired, oil-fired, or wood-fired affected facility subject to the opacity limits under §60.43c(c) shall submit excess emission reports for any excess emissions from the affected

facility that occur during the reporting period.

(d) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall submit reports to the Administrator.

(e) The owner or operator of each affected facility subject to the SO₂emission limits, fuel oil sulfur limits, or percent reduction requirements under §60.42c shall keep records and submit reports as required under paragraph (d) of this section, including the following information, as applicable.

(1) Calendar dates covered in the reporting period.

(2) Each 30-day average SO₂emission rate (ng/J or lb/MMBtu), or 30-day average sulfur content (weight percent), calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of corrective actions taken.

(3) Each 30-day average percent of potential SO₂ emission rate calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of the corrective actions taken.

(4) Identification of any steam generating unit operating days for which SO_2 or diluent (O_2 or CO_2) data have not been obtained by an approved method for at least 75 percent of the operating hours; justification for not obtaining sufficient data; and a description of corrective actions taken.

(5) Identification of any times when emissions data have been excluded from the calculation of average emission rates; justification for excluding data; and a description of corrective actions taken if data have been excluded for periods other than those during which coal or oil were not combusted in the steam generating unit.

(6) Identification of the F factor used in calculations, method of determination, and type of fuel combusted.

(7) Identification of whether averages have been obtained based on CEMS rather than manual sampling methods.

(8) If a CEMS is used, identification of any times when the pollutant concentration exceeded the full span of the CEMS.

(9) If a CEMS is used, description of any modifications to the CEMS that could affect the ability of the CEMS to comply with Performance Specifications 2 or 3 of appendix B of this part.

(10) If a CEMS is used, results of daily CEMS drift tests and quarterly accuracy assessments as required under appendix F, Procedure 1 of this part.

(11) If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.

(f) Fuel supplier certification shall include the following information:

· /. /.

. . .

(1) For distillate oil:

(i) The name of the oil supplier;

(ii) A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in §60.41c; and

00050045107

(iii) The sulfur content of the oil.

(2) For residual oil:

(i) The name of the oil supplier;

(ii) The location of the oil when the sample was drawn for analysis to determine the sulfur content of the oil, specifically including whether the oil was sampled as delivered to the affected facility, or whether the sample was drawn from oil in storage at the oil supplier's or oil refiner's facility, or other location;

(iii) The sulfur content of the oil from which the shipment came (or of the shipment itself); and

(iv) The method used to determine the sulfur content of the oil.

(3) For coal:

(i) The name of the coal supplier;

(ii) The location of the coal when the sample was collected for analysis to determine the properties of the coal, specifically including whether the coal was sampled as delivered to the affected facility or whether the sample was collected from coal in storage at the mine, at a coal preparation plant, at a coal supplier's facility, or at another location. The certification shall include the name of the coal mine (and coal seam), coal storage facility, or coal preparation plant (where the sample was collected);

(iii) The results of the analysis of the coal from which the shipment came (or of the shipment itself) including the sulfur content, moisture content, ash content, and heat content; and

(iv) The methods used to determine the properties of the coal.

(4) For other fuels:

(i) The name of the supplier of the fuel;

(ii) The potential sulfur emissions rate of the fuel in ng/J heat input; and

(iii) The method used to determine the potential sulfur emissions rate of the fuel.

(g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.

(2) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility that combusts only natural gas, wood, fuels using fuel certification in §60.48c(f) to demonstrate compliance with the SO₂standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.

(3) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in §60.42C to use fuel certification to demonstrate compliance with the SO₂standard, and/or fuels,

excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.

(h) The owner or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under §60.42c or §60.43c shall calculate the

Electronic Code of Federal Regulations:

annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.

(i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.

(j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

Browse Previous | Browse Next

,

For questions or comments regarding e-CFR editorial content, features, or design, email ecfr@nara.gov.

For questions concerning e-CFR programming and delivery issues, email webteam@gpo.gov.

Section 508 / Accessibility

APPENDIX B

40 CFR Part 60, Subpart GG – Standards of Performance for Stationary Gas Turbines

.

Home Page > Executive Branch > Code of Federal Regulations > Electronic Code of Federal Regulations

Electronic Code of Federal Regulations $\frac{e - CFR}{TM}$

e-CFR Data is current as of April 7, 2008

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Browse Previous | Browse Next

Subpart GG—Standards of Performance for Stationary Gas Turbines

§ 60.330 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired.

(b) Any facility under paragraph (a) of this section which commences construction, modification, or reconstruction after October 3, 1977, is subject to the requirements of this part except as provided in paragraphs (e) and (j) of §60.332.

[44 FR 52798, Sept. 10, 1979, as amended at 52 FR 42434, Nov. 5, 1987; 65 FR 61759, Oct. 17, 2000]

§ 60.331 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

(a) *Stationary gas turbine* means any simple cycle gas turbine, regenerative cycle gas turbine or any gas turbine portion of a combined cycle steam/electric generating system that is not self propelled. It may, however, be mounted on a vehicle for portability.

(b) *Simple cycle gas turbine* means any stationary gas turbine which does not recover heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine, or which does not recover heat from the gas turbine exhaust gases to heat water or generate steam.

(c) *Regenerative cycle gas turbine* means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine.

(d) Combined cycle gas turbine means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to heat water or generate steam.

(e) *Emergency gas turbine* means any stationary gas turbine which operates as a mechanical or electrical power source only when the primary power source for a facility has been rendered inoperable by an emergency situation.

(f) Ice fog means an atmospheric suspension of highly reflective ice crystals.

(g) ISO standard day conditions means 288 degrees Kelvin, 60 percent relative humidity and 101.3 kilopascals pressure.

(h) Efficiency means the gas turbine manufacturer's rated heat rate at peak load in terms of heat input per unit of power output based on the lower heating value of the fuel.

(i) *Peak load* means 100 percent of the manufacturer's design capacity of the gas turbine at ISO standard day conditions.

(j) Base load means the load level at which a gas turbine is normally operated.

(k) *Fire-fighting turbine* means any stationary gas turbine that is used solely to pump water for extinguishing fires.

(I) *Turbines employed in oil/gas production or oil/gas transportation* means any stationary gas turbine used to provide power to extract crude oil/natural gas from the earth or to move crude oil/natural gas, or products refined from these substances through pipelines.

(m) A Metropolitan Statistical Area or MSA as defined by the Department of Commerce.

(n) Offshore platform gas turbines means any stationary gas turbine located on a platform in an ocean.

(o) Garrison facility means any permanent military installation.

(p) Gas turbine model means a group of gas turbines having the same nominal air flow, combuster inlet pressure, combuster inlet temperature, firing temperature, turbine inlet temperature and turbine inlet pressure.

(q) *Electric utility stationary gas turbine* means any stationary gas turbine constructed for the purpose of supplying more than one-third of its potential electric output capacity to any utility power distribution system for sale.

(r) *Emergency fuel* is a fuel fired by a gas turbine only during circumstances, such as natural gas supply curtailment or breakdown of delivery system, that make it impossible to fire natural gas in the gas turbine.

(s) *Unit operating hour* means a clock hour during which any fuel is combusted in the affected unit. If the unit combusts fuel for the entire clock hour, it is considered to be a full unit operating hour. If the unit combusts fuel for only part of the clock hour, it is considered to be a partial unit operating hour.

(t) Excess emissions means a specified averaging period over which either:

(1) The NO_xemissions are higher than the applicable emission limit in §60.332;

(2) The total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in §60.333; or

(3) The recorded value of a particular monitored parameter is outside the acceptable range specified in the parameter monitoring plan for the affected unit.

(u) *Natural gas* means a naturally occurring fluid mixture of hydrocarbons (*e.g.*, methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions. Natural gas contains 20.0 grains or less of total sulfur per 100 standard cubic feet. Equivalents of this in other units are as follows: 0.068 weight percent total sulfur, 680 parts per million by weight (ppmw) total sulfur, and 338 parts per million by volume (ppmv) at 20 degrees Celsius total sulfur. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1100 British thermal units (Btu) per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas,

producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

(v) *Duct burner* means a device that combusts fuel and that is placed in the exhaust duct from another source, such as a stationary gas turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.

(w) Lean premix stationary combustion turbine means any stationary combustion turbine where the air and fuel are thoroughly mixed to form a lean mixture for combustion in the combustor. Mixing may occur before or in the combustion chamber. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.

(x) *Diffusion flame stationary combustion turbine* means any stationary combustion turbine where fuel and air are injected at the combustor and are mixed only by diffusion prior to ignition. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.

(y) *Unit operating day* means a 24-hour period between 12:00 midnight and the following midnight during which any tuel is combusted at any time in the unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41359, July 8, 2004]

§ 60.332 Standard for nitrogen oxides.

(a) On and after the date on which the performance test required by §60.8 is completed, every owner or operator subject to the provisions of this subpart as specified in paragraphs (b), (c), and (d) of this section shall comply with one of the following, except as provided in paragraphs (e), (f), (g), (h), (i), (j), (k), and (l) of this section.

(1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

$$STD = 0.0075 \frac{(14.4)}{Y} + F$$

where:

STD = allowable ISO corrected (if required as given in (0.335)(b)(1)) NO_X emission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated load (kilojoules per watt hour) or, actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

 $F = NO_X$ emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(2) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

$$STD = 0.0150 \frac{(14.4)}{Y} + F$$

where:

STD = allowable ISO corrected (if required as given in (0.335(b))) NO_xemission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated peak load (kilojoules per watt hour), or actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

 $F = NO_X$ emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(3) The use of F in paragraphs (a)(1) and (2) of this section is optional. That is, the owner or operator may choose to apply a NO_X allowance for fuel-bound nitrogen and determine the appropriate F-value in accordance with paragraph (a)(4) of this section or may accept an F-value of zero.

(4) If the owner or operator elects to apply a NO_X emission allowance for fuel-bound nitrogen, F shall be defined according to the nitrogen content of the fuel during the most recent performance test required under §60.8 as follows:

Fuel-bound nitrogen (percent by weight)	F (NO _X percent by volume)
N ≤ 0.015	0
0.015 < N≤ 0.1	0.04(N)
0.1 < N ≤ 0.25	0.004+0.0067(N-0.1)
N > 0.25	0.005

Where:

N = the nitrogen content of the fuel (percent by weight).

or:

Manufacturers may develop and submit to EPA custom fuel-bound nitrogen allowances for each gas turbine model they manufacture. These fuel-bound nitrogen allowances shall be substantiated with data and must be approved for use by the Administrator before the initial performance test required by §60.8. Notices of approval of custom fuel-bound nitrogen allowances will be published in theFederal Register.

(b) Electric utility stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired shall comply with the provisions of paragraph (a)(1) of this section.

(c) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired, shall comply with the provisions of paragraph (a)(2) of this section.

(d) Stationary gas turbines with a manufacturer's rated base load at ISO conditions of 30 megawatts or less except as provided in §60.332(b) shall comply with paragraph (a)(2) of this section.

(e) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired and that have commenced construction prior to October 3, 1982 are exempt from paragraph (a) of this section.

(f) Stationary gas turbines using water or steam injection for control of NO_Xemissions are exempt from paragraph (a) when ice fog is deemed a traffic hazard by the owner or operator of the gas turbine.

(g) Emergency gas turbines, military gas turbines for use in other than a garrison facility, military gas turbines installed for use as military training facilities, and fire fighting gas turbines are exempt from paragraph (a) of this section.

(h) Stationary gas turbines engaged by manufacturers in research and development of equipment for both gas turbine emission control techniques and gas turbine efficiency improvements are exempt from paragraph (a) on a case-by-case basis as determined by the Administrator.

(i) Exemptions from the requirements of paragraph (a) of this section will be granted on a case-by-case basis as determined by the Administrator in specific geographical areas where mandatory water restrictions are required by governmental agencies because of drought conditions. These exemptions will be allowed only while the mandatory water restrictions are in effect.

(j) Stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour that commenced construction, modification, or reconstruction between the dates of October 3, 1977, and January 27, 1982, and were required in the September 10, 1979, Federal Register(44 FR 52792) to comply with paragraph (a)(1) of this section, except electric utility stationary gas turbines, are exempt from paragraph (a) of this section.

(k) Stationary gas turbines with a heat input greater than or equal to 10.7 gigajoules per hour (10 million Btu/hour) when fired with natural gas are exempt from paragraph (a)(2) of this section when being fired with an emergency fuel.

(I) Regenerative cycle gas turbines with a heat input less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) are exempt from paragraph (a) of this section.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41359, July 8, 2004]

§ 60.333 Standard for sulfur dioxide.

On and after the date on which the performance test required to be conducted by §60.8 is completed, every owner or operator subject to the provision of this subpart shall comply with one or the other of the following conditions:

(a) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15 percent oxygen and on a dry basis.

(b) No owner or operator subject to the provisions of this subpart shall burn in any stationary gas turbine any fuel which contains total sulfur in excess of 0.8 percent by weight (8000 ppmw).

[44 FR 52798, Sept. 10, 1979, as amended at 69 FR 41360, July 8, 2004]

§ 60.334 Monitoring of operations.

(a) Except as provided in paragraph (b) of this section, the owner or operator of any stationary gas turbine subject to the provisions of this subpart and using water or steam injection to control NO_Xemissions shall install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine.

(b) The owner or operator of any stationary gas turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which uses water or steam injection to control NO_Xemissions may, as an alternative to operating the continuous monitoring system described in paragraph (a) of this section, install, certify, maintain, operate, and quality-assure a continuous emission monitoring system (CEMS) consisting of NO_X and O₂monitors. As an alternative, a CO₂monitor may be used to adjust the measured NO_Xconcentrations to 15 percent O₂by either converting the CO₂hourly averages to equivalent O₂concentrations using Equation F–14a or F–14b in appendix F to part 75 of this chapter and making the adjustments to 15 percent O₂, or by using the CO₂readings directly to make the adjustments, as described in Method 20. If the option to use a CEMS is chosen, the CEMS shall be installed, certified, maintained and operated as follows:

(1) Each CEMS must be installed and certified according to PS 2 and 3 (for diluent) of 40 CFR part 60, appendix B, except the 7-day calibration drift is based on unit operating days, not calendar days. Appendix F, Procedure 1 is not required. The relative accuracy test audit (RATA) of the NO_X and diluent monitors may be performed individually or on a combined basis, *i.e.*, the relative accuracy tests of the CEMS may be performed either:

(i) On a ppm basis (for NO_X) and a percent O₂basis for oxygen; or

(ii) On a ppm at 15 percent O₂basis; or

(iii) On a ppm basis (for NO_X) and a percent CO_2 basis (for a CO_2 monitor that uses the procedures in Method 20 to correct the NO_X data to 15 percent O_2).

(2) As specified in §60.13(e)(2), during each full unit operating hour, each monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required to validate the hour.

(3) For purposes of identifying excess emissions, CEMS data must be reduced to hourly averages as specified in §60.13(h).

(i) For each unit operating hour in which a valid hourly average, as described in paragraph (b)(2) of this section, is obtained for both NO_X and diluent, the data acquisition and handling system must calculate and record the hourly NO_X emissions in the units of the applicable NO_X emission standard under §60.332 (a), *i.e.*, percent NO_X by volume, dry basis, corrected to 15 percent O₂ and International Organization for Standardization (ISO) standard conditions (if required as given in §60.335(b)(1)). For any hour in which the hourly average O₂ concentration exceeds 19.0 percent O₂, a diluent cap value of 19.0 percent O₂may be used in the emission calculations.

(ii) A worst case ISO correction factor may be calculated and applied using historical ambient data. For the purpose of this calculation, substitute the maximum humidity of ambient air (Ho), minimum ambient temperature (T_a), and minimum combustor inlet absolute pressure (P_o) into the ISO correction equation.

(iii) If the owner or operator has installed a NO_XCEMS to meet the requirements of part 75 of this

chapter, and is continuing to meet the ongoing requirements of part 75 of this chapter, the CEMS may be used to meet the requirements of this section, except that the missing data substitution methodology provided for at 40 CFR part 75, subpart D, is not required for purposes of identifying excess emissions. Instead, periods of missing CEMS data are to be reported as monitor downtime in the excess emissions and monitoring performance report required in §60.7(c).

(c) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which does not use steam or water injection to control NO_xemissions, the

owner or operator may, but is not required to, for purposes of determining excess emissions, use a CEMS that meets the requirements of paragraph (b) of this section. Also, if the owner or operator has

previously submitted and received EPA, State, or local permitting authority approval of a procedure for monitoring compliance with the applicable NO_X emission limit under §60.332, that approved procedure may continue to be used.

(d) The owner or operator of any new turbine constructed after July 8, 2004, and which uses water or steam injection to control NO_X emissions may elect to use either the requirements in paragraph (a) of this section for continuous water or steam to fuel ratio monitoring or may use a NO_X CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section.

(e) The owner or operator of any new turbine that commences construction after July 8, 2004, and which does not use water or steam injection to control NO_X emissions, may, but is not required to, elect to use a NO_X CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section. Other acceptable monitoring approaches include periodic testing approved by EPA or the State or local permitting authority or continuous parameter monitoring as described in paragraph (f) of this section.

(f) The owner or operator of a new turbine that commences construction after July 8, 2004, which does not use water or steam injection to control NO_X emissions may, but is not required to, perform continuous parameter monitoring as follows:

(1) For a diffusion flame turbine without add-on selective catalytic reduction controls (SCR), the owner or operator shall define at least four parameters indicative of the unit's NO_X formation characteristics and shall monitor these parameters continuously.

(2) For any lean premix stationary combustion turbine, the owner or operator shall continuously monitor the appropriate parameters to determine whether the unit is operating in low-NO_xmode.

(3) For any turbine that uses SCR to reduce NO_X emissions, the owner or operator shall continuously monitor appropriate parameters to verify the proper operation of the emission controls.

(4) For affected units that are also regulated under part 75 of this chapter, if the owner or operator elects to monitor NO_X emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19 of this chapter, the requirements of this paragraph (f) may be met by performing the parametric monitoring described in section 2.3 of appendix E or in §75.19(c)(1)(iv) (H) of this chapter.

(g) The steam or water to fuel ratio or other parameters that are continuously monitored as described in paragraphs (a), (d) or (f) of this section shall be monitored during the performance test required under §60.8, to establish acceptable values and ranges. The owner or operator may supplement the performance test data with engineering analyses, design specifications, manufacturer's recommendations and other relevant information to define the acceptable parametric ranges more precisely. The owner or operator shall develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NO_xemission controls. The plan shall

include the parameter(s) monitored and the acceptable range(s) of the parameter(s) as well as the basis for designating the parameter(s) and acceptable range(s). Any supplemental data such as engineering analyses, design specifications, manufacturer's recommendations and other relevant information shall be included in the monitoring plan. For affected units that are also subject to part 75 of this chapter and that use the low mass emissions methodology in §75.19 of this chapter or the NO_xemission

measurement methodology in appendix E to part 75, the owner or operator may meet the requirements of this paragraph by developing and keeping on-site (or at a central location for unmanned facilities) a quality-assurance plan, as described in §75.19 (e)(5) or in section 2.3 of appendix E and section 1.3.6 of appendix B to part 75 of this chapter.

(h) The owner or operator of any stationary gas turbine subject to the provisions of this subpart:

(1) Shall monitor the total sulfur content of the fuel being fired in the turbine, except as provided in paragraph (h)(3) of this section. The sulfur content of the fuel must be determined using total sulfur methods described in 60.335(b)(10). Alternatively, if the total sulfur content of the gaseous fuel during

the most recent performance test was less than 0.4 weight percent (4000 ppmw), ASTM D4084–82, 94, D5504–01, D6228–98, or Gas Processors Association Standard 2377–86 (all of which are incorporated by reference-see §60.17), which measure the major sulfur compounds may be used; and

(2) Shall monitor the nitrogen content of the fuel combusted in the turbine, if the owner or operator claims an allowance for fuel bound nitrogen (*i.e.*, if an F-value greater than zero is being or will be used by the owner or operator to calculate STD in §60.332). The nitrogen content of the fuel shall be determined using methods described in §60.335(b)(9) or an approved alternative.

(3) Notwithstanding the provisions of paragraph (h)(1) of this section, the owner or operator may elect not to monitor the total sulfur content of the gaseous fuel combusted in the turbine, if the gaseous fuel is demonstrated to meet the definition of natural gas in §60.331(u), regardless of whether an existing custom schedule approved by the administrator for subpart GG requires such monitoring. The owner or operator shall use one of the following sources of information to make the required demonstration:

(i) The gas quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, specifying that the maximum total sulfur content of the fuel is 20.0 grains/100 scf or less; or

(ii) Representative fuel sampling data which show that the sulfur content of the gaseous fuel does not exceed 20 grains/100 scf. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.

(4) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and for which a custom fuel monitoring schedule has previously been approved, the owner or operator may, without submitting a special petition to the Administrator, continue monitoring on this schedule.

(i) The frequency of determining the sulfur and nitrogen content of the fuel shall be as follows:

(1) *Fuel oil.* For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (*i.e.*, flow proportional sampling, daily sampling, sampling from the unit's storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank). If an emission allowance is being claimed for fuel-bound nitrogen, the nitrogen content of the oil shall be determined and recorded once per unit operating day.

(2) Gaseous fuel. Any applicable nitrogen content value of the gaseous fuel shall be determined and recorded once per unit operating day. For owners and operators that elect not to demonstrate sulfur content using options in paragraph (h)(3) of this section, and for which the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel shall be determined and recorded once per unit operating day.

(3) Custom schedules. Notwithstanding the requirements of paragraph (i)(2) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (i)(3)(i) and (i)(3)(ii) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in $\S60.333$.

(i) The two custom sulfur monitoring schedules set forth in paragraphs (i)(3)(i)(A) through (D) and in paragraph (i)(3)(ii) of this section are acceptable, without prior Administrative approval:

(A) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the required frequency for subsequent monitoring of the fuel's total sulfur content shall be as specified in paragraph (i)(3)(i)(B), (C), or (D) of this section, as applicable.

(B) If none of the 30 daily measurements of the fuel's total sulfur content exceeds 0.4 weight percent (4000 ppmw), subsequent sulfur content monitoring may be performed at 12 month intervals. If any of the samples taken at 12-month intervals has a total sulfur content between 0.4 and 0.8 weight percent

(4000 and 8000 ppmw), follow the procedures in paragraph (i)(3)(i)(C) of this section. If any measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section.

(C) If at least one of the 30 daily measurements of the fuel's total sulfur content is between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), but none exceeds 0.8 weight percent (8000 ppmw), then:

(1) Collect and analyze a sample every 30 days for three months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(2) of this section.

(2) Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(3) of this section.

(3) Begin monitoring at 12-month intervals. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, continue to monitor at this frequency.

(D) If a sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), immediately begin daily monitoring according to paragraph (i)(3)(i)(A) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than 0.8 weight percent (8000 ppmw), are obtained. At that point, the applicable procedures of paragraph (i)(3)(i)(B) or (C) of this section shall be followed.

(ii) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur sampling schedule, as follows:

(A) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf (*i.e.*, the maximum total sulfur content of natural gas as defined in §60.331(u)), no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.

(B) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf, but none of the sulfur content values (when converted to weight percent sulfur) exceeds 0.4 weight percent (4000 ppmw), then the minimum required sampling frequency shall be one sample at 12 month intervals.

(C) If any sample result exceeds 0.4 weight percent sulfur (4000 ppmw), but none exceeds 0.8 weight percent sulfur (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(C) of this section.

(D) If the sulfur content of any of the 720 hourly samples exceeds 0.8 weight percent (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(D) of this section.

(j) For each affected unit that elects to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content or fuel nitrogen content under this subpart, the owner or operator shall submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions shall be reported for all periods of unit operation, including startup, shutdown and malfunction. For the purpose of reports required under §60.7(c), periods of excess emissions and monitor downtime that shall be reported are defined as follows:

(1) Nitrogen oxides.

(i) For turbines using water or steam to fuel ratio monitoring:

(A) An excess emission shall be any unit operating hour for which the average steam or water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with §60.332, as established during the performance test required in §60.8. Any unit operating hour in which no water or steam is injected into the turbine shall also be considered an excess emission.

http://asfr.graggaggg.gov/asi/t/toxt/toxt.idv?a-asfr.grid=205as0dfd1h18060afh0h4a26f65f0 //0/2008

(B) A period of monitor downtime shall be any unit operating hour in which water or steam is injected into the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.

(C) Each report shall include the average steam or water to fuel ratio, average fuel consumption, ambient conditions (temperature, pressure, and humidity), gas turbine load, and (if applicable) the nitrogen content of the fuel during each excess emission. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).

(ii) If the owner or operator elects to take an emission allowance for fuel bound nitrogen, then excess emissions and periods of monitor downtime are as described in paragraphs (j)(1)(ii)(A) and (B) of this section.

(A) An excess emission shall be the period of time during which the fuel-bound nitrogen (N) is greater than the value measured during the performance test required in §60.8 and used to determine the allowance. The excess emission begins on the date and hour of the sample which shows that N is greater than the performance test value, and ends with the date and hour of a subsequent sample which shows a fuel nitrogen content less than or equal to the performance test value.

(B) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour that a required sample is taken, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

(iii) For turbines using NO_xand diluent CEMS:

(A) An hour of excess emissions shall be any unit operating hour in which the 4-hour rolling average NO_{χ} concentration exceeds the applicable emission limit in §60.332(a)(1) or (2). For the purposes of this subpart, a "4-hour rolling average NO_{χ} concentration" is the arithmetic average of the average NO_{χ} concentration measured by the CEMS for a given hour (corrected to 15 percent O_{2} and, if required under §60.335(b)(1), to ISO standard conditions) and the three unit operating hour average NO_{χ} concentrations immediately preceding that unit operating hour.

(B) A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for either NO_xconcentration or diluent (or both).

(C) Each report shall include the ambient conditions (temperature, pressure, and humidity) at the time of the excess emission period and (if the owner or operator has claimed an emission allowance for fuel bound nitrogen) the nitrogen content of the fuel during the period of excess emissions. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b) (1).

(iv) For owners or operators that elect, under paragraph (f) of this section, to monitor combustion parameters or parameters that document proper operation of the NO_x emission controls:

(A) An excess emission shall be a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.

(B) A period of monitor downtime shall be a unit operating hour in which any of the required parametric data are either not recorded or are invalid.

(2) Sulfur dioxide. If the owner or operator is required to monitor the sulfur content of the fuel under paragraph (h) of this section:

(i) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit's storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the
fuel being fired in the gas turbine exceeds 0.8 weight percent and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.

(ii) If the option to sample each delivery of fuel oil has been selected, the owner or operator shall immediately switch to one of the other oil sampling options (*i.e.*, daily sampling, flow proportional sampling, or sampling from the unit's storage tank) if the sulfur content of a delivery exceeds 0.8 weight percent. The owner or operator shall continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and shall evaluate excess emissions according to paragraph (j) (2)(i) of this section. When all of the fuel from the delivery has been burned, the owner or operator may resume using the as-delivered sampling option.

(iii) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime shall include only unit operating hours, and ends on the date and hour of the next valid sample.

(3) *Ice fog.* Each period during which an exemption provided in §60.332(f) is in effect shall be reported in writing to the Administrator quarterly. For each period the ambient conditions existing during the period, the date and time the air pollution control system was deactivated, and the date and time the air pollution control system was reactivated shall be reported. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter.

(4) *Emergency fuel.* Each period during which an exemption provided in §60.332(k) is in effect shall be included in the report required in §60.7(c). For each period, the type, reasons, and duration of the firing of the emergency fuel shall be reported.

(5) All reports required under §60.7(c) shall be postmarked by the 30th day following the end of each 6-month period.

[44 FR 52798, Sept. 10, 1979, as amended at 47 FR 3770, Jan. 27, 1982; 65 FR 61759, Oct. 17, 2000; 69 FR 41360, July 8, 2004; 71 FR 9457, Feb. 24, 2006]

§ 60.335 Test methods and procedures.

(a) The owner or operator shall conduct the performance tests required in §60.8, using either

(1) EPA Method 20,

(2) ASTM D6522-00 (incorporated by reference, see §60.17), or

(3) EPA Method 7E and either EPA Method 3 or 3A in appendix A to this part, to determine NO_X and diluent concentration.

(4) Sampling traverse points are to be selected following Method 20 or Method 1, (non-particulate procedures) and sampled for equal time intervals. The sampling shall be performed with a traversing single-hole probe or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.

(5) Notwithstanding paragraph (a)(4) of this section, the owner or operator may test at few points than are specified in Method 1 or Method 20 if the following conditions are met:

(i) You may perform a stratification test for NO_x and diluent pursuant to

(A) [Reserved]

(B) The procedures specified in section 6.5.6.1(a) through (e) appendix A to part 75 of this chapter.

(ii) Once the stratification sampling is completed, the owner or operator may use the following alternative

sample point selection criteria for the performance test:

(A) If each of the individual traverse point NO_X concentrations, normalized to 15 percent O₂, is within ±10 percent of the mean normalized concentration for all traverse points, then you may use 3 points (located either 16.7, 50.0, and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The 3 points shall be located along the measurement line that exhibited the highest average normalized NO_x concentration during the stratification test; or

(B) If each of the individual traverse point NO_X concentrations, normalized to 15 percent O_2 , is within ±5 percent of the mean normalized concentration for all traverse points, then you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid.

(6) Other acceptable alternative reference methods and procedures are given in paragraph (c) of this section.

(b) The owner or operator shall determine compliance with the applicable nitrogen oxides emission limitation in §60.332 and shall meet the performance test requirements of §60.8 as follows:

(1) For each run of the performance test, the mean nitrogen oxides emission concentration (NO_{Xo}) corrected to 15 percent O_2 shall be corrected to ISO standard conditions using the following equation. Notwithstanding this requirement, use of the ISO correction equation is optional for: Lean premix stationary combustion turbines; units used in association with heat recovery steam generators (HRSG) equipped with duct burners; and units equipped with add-on emission control devices:

 $NO_{\chi} = (NO_{\chi_0})(P_r/P_o)^{0.5} e^{19} (Ho - 0.00633)(288^{\circ}K/T_a)^{1.53}$

Where:

 NO_X = emission concentration of NO_X at 15 percent O_2 and ISO standard ambient conditions, ppm by volume, dry basis,

 NO_{χ_0} = mean observed NO_{χ} concentration, ppm by volume, dry basis, at 15 percent O_2 ,

 P_r = reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure, mm Hg,

P_o= observed combustor inlet absolute pressure at test, mm Hg,

 H_0 = observed humidity of ambient air, g H_2O/g air,

e = transcendental constant, 2.718, and

 T_a = ambient temperature, °K.

(2) The 3-run performance test required by §60.8 must be performed within ± 5 percent at 30, 50, 75, and 90-to-100 percent of peak load or at four evenly-spaced load points in the normal operating range of the gas turbine, including the minimum point in the operating range and 90-to-100 percent of peak load, or at the highest achievable load point if 90-to-100 percent of peak load cannot be physically achieved in practice. If the turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel. Notwithstanding these requirements, performance testing is not required for any emergency fuel (as defined in §60.331).

(3) For a combined cycle turbine system with supplemental heat (duct burner), the owner or operator

may elect to measure the turbine NO_X emissions after the duct burner rather than directly after the turbine. If the owner or operator elects to use this alternative sampling location, the applicable NO_X emission limit in §60.332 for the combustion turbine must still be met.

(4) If water or steam injection is used to control NO_X with no additional post-combustion NO_X control and the owner or operator chooses to monitor the steam or water to fuel ratio in accordance with §60.334(a), then that monitoring system must be operated concurrently with each EPA Method 20, ASTM D6522–00 (incorporated by reference, see §60.17), or EPA Method 7E run and shall be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable §60.332 NO_X emission limit.

(5) If the owner operator elects to claim an emission allowance for fuel bound nitrogen as described in §60.332, then concurrently with each reference method run, a representative sample of the fuel used shall be collected and analyzed, following the applicable procedures described in §60.335(b)(9). These data shall be used to determine the maximum fuel nitrogen content for which the established water (or steam) to fuel ratio will be valid.

(6) If the owner or operator elects to install a CEMS, the performance evaluation of the CEMS may either be conducted separately (as described in paragraph (b)(7) of this section) or as part of the initial performance test of the affected unit.

(7) If the owner or operator elects to install and certify a NO_XCEMS under §60.334(e), then the initial performance test required under §60.8 may be done in the following alternative manner:

(i) Perform a minimum of 9 reference method runs, with a minimum time per run of 21 minutes, at a single load level, between 90 and 100 percent of peak (or the highest physically achievable) load.

(ii) Use the test data both to demonstrate compliance with the applicable NO_X emission limit under §60.332 and to provide the required reference method data for the RATA of the CEMS described under §60.334(b).

(iii) The requirement to test at three additional load levels is waived.

(8) If the owner or operator elects under 60.334 (f) to monitor combustion parameters or parameters indicative of proper operation of NO_X emission controls, the appropriate parameters shall be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in 60.334(g).

(9) To determine the fuel bound nitrogen content of fuel being fired (if an emission allowance is claimed for fuel bound nitrogen), the owner or operator may use equipment and procedures meeting the requirements of:

(i) For liquid fuels, ASTM D2597–94 (Reapproved 1999), D6366–99, D4629–02, D5762–02 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, shall use analytical methods and procedures that are accurate to within 5 percent of the instrument range and are approved by the Administrator.

(10) If the owner or operator is required under §60.334(i)(1) or (3) to periodically determine the sulfur content of the fuel combusted in the turbine, a minimum of three fuel samples shall be collected during the performance test. Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129–00, D2622–98, D4294–02, D1266–98, D5453–00 or D1552–01 (all of which are incorporated by reference, *see* §60.17); or

(ii) For gaseous fuels, ASTM D1072–80, 90 (Reapproved 1994); D3246–81, 92, 96; D4468–85 (Reapproved 2000); or D6667–01 (all of which are incorporated by reference, see §60.17). The applicable ranges of some ASTM methods mentioned above are not adequate to measure the levels of

Electronic Code of Federal Regulations:

sulfur in some fuel gases. Dilution of samples before analysis (with verification of the dilution ratio) may be used, subject to the prior approval of the Administrator.

(11) The fuel analyses required under paragraphs (b)(9) and (b)(10) of this section may be performed by the owner or operator, a service contractor retained by the owner or operator, the fuel vendor, or any other qualified agency.

(c) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) Instead of using the equation in paragraph (b)(1) of this section, manufacturers may develop ambient condition correction factors to adjust the nitrogen oxides emission level measured by the performance test as provided in §60.8 to ISO standard day conditions.

[69 FR 41363, July 8, 2004, as amended at 71 FR 9458, Feb. 24, 2006]

Browse Previous | Browse Next

For questions or comments regarding e-CFR editorial content, features, or design, email ecfr@nara.gov.

For questions concerning e-CFR programming and delivery issues, email webteam@gpo.gov.

Section 508 / Accessibility

APPENDIX C

٠

40 CFR Part 60, Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

·

· · ·

Home Page > Executive Branch > Code of Federal Regulations > Electronic Code of Federal Regulations

Electronic Code of Federal Regulations e-CHR -

e-CFR Data is current as of April 7, 2008

Title 40: Protection of Environment

PART 60-STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Browse Previous | Browse Next

Subpart IIII—Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

Source: 71 FR 39172, July 11, 2006, unless otherwise noted.

What This Subpart Covers

§ 60.4200 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (3) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(1) Manufacturers of stationary CLICE with a displacement of less than 30 liters per cylinder where the model year is:

(i) 2007 or later, for engines that are not fire pump engines,

(ii) The model year listed in table 3 to this subpart or later model year, for fire pump engines.

(2) Owners and operators of stationary CLICE that commence construction after July 11, 2005 where the stationary CLICE are:

(i) Manufactured after April 1, 2006 and are not fire pump engines, or

(ii) Manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006.

(3) Owners and operators of stationary CI ICE that modify or reconstruct their stationary CI ICE after July 11, 2005.

(b) The provisions of this subpart are not applicable to stationary CI ICE being tested at a stationary CI ICE test cell/stand.

(c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the

http://acfr anoncoors any/aci/t/toxt/toxt idy?a-acfr & aid-205acAdfd1110060aftabble.acff 50 / 1/0/2000

provisions of this subpart applicable to area sources.

(d) Stationary CLICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C (or the exemptions described in 40 CFR part 89, subpart J and 40 CFR part 94, subpart J, for engines that would need to be certified to standards in those parts), except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.

Emission Standards for Manufacturers

§ 60.4201 What emission standards must I meet for non-emergency engines if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later non-emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 kilowatt (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 89.112, 40 CFR 89.113, 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same model year and maximum engine power.

(b) Stationary CI internal combustion engine manufacturers must certify their 2007 through 2010 model year non-emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.

(c) Stationary CI internal combustion engine manufacturers must certify their 2011 model year and later non-emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same maximum engine power.

(d) Stationary Cl internal combustion engine manufacturers must certify their 2007 model year and later non-emergency stationary Cl ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder to the certification emission standards for new marine Cl engines in 40 CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power.

§ 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 KW (3,000 HP) and a displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (a)(1) through (2) of this section.

(1) For engines with a maximum engine power less than 37 KW (50 HP):

(i) The certification emission standards for new nonroad CI engines for the same model year and maximum engine power in 40 CFR 89.112 and 40 CFR 89.113 for all pollutants for model year 2007 engines, and

(ii) The certification emission standards for new nonroad CI engines in 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, 40 CFR 1039.115, and table 2 to this subpart, for 2008 model year and later engines.

(2) For engines with a maximum engine power greater than or equal to 37 KW (50 HP), the certification emission standards for new nonroad CI engines for the same model year and maximum engine power in 40 CFR 89.112 and 40 CFR 89.113 for all pollutants beginning in model year 2007.

(b) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a maximum engine power greater than 2,237 KW (3,000 HP) and a

displacement of less than 10 liters per cylinder that are not fire pump engines to the emission standards specified in paragraphs (b)(1) through (2) of this section.

(1) For 2007 through 2010 model years, the emission standards in table 1 to this subpart, for all pollutants, for the same maximum engine power.

(2) For 2011 model year and later, the certification emission standards for new nonroad CI engines for engines of the same model year and maximum engine power in 40 CFR 89.112 and 40 CFR 89.113 for all pollutants.

(c) Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that are not fire pump engines to the certification emission standards for new marine CI engines in 40 CFR 94.8, as applicable, for all pollutants, for the same displacement and maximum engine power.

(d) Beginning with the model years in table 3 to this subpart, stationary CI internal combustion engine manufacturers must certify their fire pump stationary CI ICE to the emission standards in table 4 to this subpart, for all pollutants, for the same model year and NFPA nameplate power.

§ 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer?

Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§60.4201 and 60.4202 during the useful life of the engines.

Emission Standards for Owners and Operators

§ 60.4204 What emission standards must I meet for non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of less than 10 liters per cylinder must comply with the emission standards in table 1 to this subpart. Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder must comply with the emission standards in 40 CFR 94.8(a)(1).

(b) Owners and operators of 2007 model year and later non-emergency stationary CLICE with a displacement of less than 30 liters per cylinder must comply with the emission standards for new CL engines in §60.4201 for their 2007 model year and later stationary CLICE, as applicable.

(c) Owners and operators of non-emergency stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder must meet the requirements in paragraphs (c)(1) and (2) of this section.

(1) Reduce nitrogen oxides (NO_X) emissions by 90 percent or more, or limit the emissions of NO_X in the stationary CI internal combustion engine exhaust to 1.6 grams per KW-hour (g/KW-hr) (1.2 grams per HP-hour (g/HP-hr)).

(2) Reduce particulate matter (PM) emissions by 60 percent or more, or limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.15 g/KW-hr (0.11 g/HP-hr).

§ 60.4205 What emission standards must I meet for emergency engines if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of pre-2007 model year emergency stationary CI ICE with a displacement of less than 10 liters per cylinder that are not fire pump engines must comply with the emission standards in table 1 to this subpart. Owners and operators of pre-2007 model year non-emergency stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards in 40 CFR 94.8(a)(1).

(b) Owners and operators of 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards for new nonroad CI engines in §60.4202, for all pollutants, for the same model year and maximum engine power for their 2007 model year and later emergency stationary CI ICE.

(c) Owners and operators of fire pump engines with a displacement of less than 30 liters per cylinder must comply with the emission standards in table 4 to this subpart, for all pollutants.

(d) Owners and operators of emergency stationary CI ICE with a displacement of greater than or equal to 30 liters per cylinder must meet the requirements in paragraphs (d)(1) and (2) of this section.

(1) Reduce NO_Xemissions by 90 percent or more, or limit the emissions of NO_Xin the stationary CI internal combustion engine exhaust to 1.6 grams per KW-hour (1.2 grams per HP-hour).

(2) Reduce PM emissions by 60 percent or more, or limit the emissions of PM in the stationary CI internal combustion engine exhaust to 0.15 g/KW-hr (0.11 g/HP-hr).

§ 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine?

Owners and operators of stationary CLICE must operate and maintain stationary CLICE that achieve the emission standards as required in §§60.4204 and 60.4205 according to the manufacturer's written instructions or procedures developed by the owner or operator that are approved by the engine manufacturer, over the entire life of the engine.

Fuel Requirements for Owners and Operators

§ 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion engine subject to this subpart?

(a) Beginning October 1, 2007, owners and operators of stationary CI ICE subject to this subpart that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 80.510(a).

(b) Beginning October 1, 2010, owners and operators of stationary CI ICE subject to this subpart with a displacement of less than 30 liters per cylinder that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 80.510(b) for nonroad diesel fuel.

(c) Owners and operators of pre-2011 model year stationary CI ICE subject to this subpart may petition the Administrator for approval to use remaining non-compliant fuel that does not meet the fuel requirements of paragraphs (a) and (b) of this section beyond the dates required for the purpose of using up existing fuel inventories. If approved, the petition will be valid for a period of up to 6 months. If additional time is needed, the owner or operator is required to submit a new petition to the Administrator.

(d) Owners and operators of pre-2011 model year stationary CI ICE subject to this subpart that are located in areas of Alaska not accessible by the Federal Aid Highway System may petition the Administrator for approval to use any fuels mixed with used lubricating oil that do not meet the fuel requirements of paragraphs (a) and (b) of this section. Owners and operators must demonstrate in their petition to the Administrator that there is no other place to use the lubricating oil. If approved, the petition will be valid for a period of up to 6 months. If additional time is needed, the owner or operator is required to submit a new petition to the Administrator.

(e) Stationary CLICE that have a national security exemption under §60.4200(d) are also exempt from the fuel requirements in this section.

Other Requirements for Owners and Operators

§ 60.4208 What is the deadline for importing or installing stationary CI ICE produced in the previous model year?

(a) After December 31, 2008, owners and operators may not install stationary CLICE (excluding fire pump engines) that do not meet the applicable requirements for 2007 model year engines.

(b) After December 31, 2009, owners and operators may not install stationary CLICE with a maximum engine power of less than 19 KW (25 HP) (excluding fire pump engines) that do not meet the applicable requirements for 2008 model year engines.

(c) After December 31, 2014, owners and operators may not install non-emergency stationary CLICE with a maximum engine power of greater than or equal to 19 KW (25 HP) and less than 56 KW (75 HP) that do not meet the applicable requirements for 2013 model year non-emergency engines.

(d) After December 31, 2013, owners and operators may not install non-emergency stationary CLICE with a maximum engine power of greater than or equal to 56 KW (75 HP) and less than 130 KW (175 HP) that do not meet the applicable requirements for 2012 model year non-emergency engines.

(e) After December 31, 2012, owners and operators may not install non-emergency stationary CI ICE with a maximum engine power of greater than or equal to 130 KW (175 HP), including those above 560 KW (750 HP), that do not meet the applicable requirements for 2011 model year non-emergency engines.

(f) After December 31, 2016, owners and operators may not install non-emergency stationary CLICE with a maximum engine power of greater than or equal to 560 KW (750 HP) that do not meet the applicable requirements for 2015 model year non-emergency engines.

(g) In addition to the requirements specified in §§60.4201, 60.4202, 60.4204, and 60.4205, it is prohibited to import stationary CI ICE with a displacement of less than 30 liters per cylinder that do not meet the applicable requirements specified in paragraphs (a) through (f) of this section after the dates specified in paragraphs (a) through (f) of this section.

(h) The requirements of this section do not apply to owners or operators of stationary CI ICE that have been modified, reconstructed, and do not apply to engines that were removed from one existing location and reinstalled at a new location.

§ 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine?

If you are an owner or operator, you must meet the monitoring requirements of this section. In addition, you must also meet the monitoring requirements specified in §60.4211.

(a) If you are an owner or operator of an emergency stationary CI internal combustion engine, you must install a non-resettable hour meter prior to startup of the engine.

(b) If you are an owner or operator of a stationary CI internal combustion engine equipped with a diesel particulate filter to comply with the emission standards in §60.4204, the diesel particulate filter must be installed with a backpressure monitor that notifies the owner or operator when the high backpressure limit of the engine is approached.

Compliance Requirements

§ 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

(a) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of less than 10 liters per cylinder to the emission standards specified in §60.4201(a) through (c) and §60.4202(a), (b) and (d) using the certification procedures required in 40 CFR part 89, subpart B, or 40 CFR part 1039, subpart C, as applicable, and must test their engines as specified in those parts. For the purposes of this subpart, engines certified to the standards in table 1 to this subpart shall be subject to the same requirements as engines certified to the standards in 40 CFR part 89. For the purposes of this subpart, engines certified to the standards in table 4 to this subpart shall be subject to the same requirements as engines certified to the standards in table 4 to this subpart shall be subject to the same requirements as engines certified to the standards in table 4 to this subpart shall be subject to the same requirements as engines certified to the standards in 40 CFR part 89. For the purposes of this subpart, engines certified to the standards in table 4 to this subpart shall be subject to the same requirements as engines certified to the standards in 40 CFR part 89, except that engines

with NFPA nameplate power of less than 37 KW (50 HP) certified to model year 2011 or later standards shall be subject to the same requirements as engines certified to the standards in 40 CFR part 1039.

(b) Stationary CI internal combustion engine manufacturers must certify their stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder to the emission standards specified in §60.4201(d) and §60.4202(c) using the certification procedures required in 40 CFR part 94 subpart C, and must test their engines as specified in 40 CFR part 94.

(c) Stationary CI internal combustion engine manufacturers must meet the requirements of 40 CFR 1039.120, 40 CFR 1039.125, 40 CFR 1039.130, 40 CFR 1039.135, and 40 CFR part 1068 for engines that are certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine manufacturers must meet the corresponding provisions of 40 CFR part 89 or 40 CFR part 94 for engines that would be covered by that part if they were nonroad (including marine) engines. Labels on such engines must refer to stationary engines, rather than or in addition to nonroad or marine engines, as appropriate. Stationary CI internal combustion engine manufacturers must label their engines according to paragraphs (c)(1) through (3) of this section.

(1) Stationary CI internal combustion engines manufactured from January 1, 2006 to March 31, 2006 (January 1, 2006 to June 30, 2006 for fire pump engines), other than those that are part of certified engine families under the nonroad CI engine regulations, must be labeled according to 40 CFR 1039.20.

(2) Stationary Cl internal combustion engines manufactured from April 1, 2006 to December 31, 2006 (or, for fire pump engines, July 1, 2006 to December 31 of the year preceding the year listed in table 3 to this subpart) must be labeled according to paragraphs (c)(2)(i) through (iii) of this section:

(i) Stationary CI internal combustion engines that are part of certified engine families under the nonroad regulations must meet the labeling requirements for nonroad CI engines, but do not have to meet the labeling requirements in 40 CFR 1039.20.

(ii) Stationary CI internal combustion engines that meet Tier 1 requirements (or requirements for fire pumps) under this subpart, but do not meet the requirements applicable to nonroad CI engines must be labeled according to 40 CFR 1039.20. The engine manufacturer may add language to the label clarifying that the engine meets Tier 1 requirements (or requirements for fire pumps) of this subpart.

(iii) Stationary Cl internal combustion engines manufactured after April 1, 2006 that do not meet Tier 1 requirements of this subpart, or fire pumps engines manufactured after July 1, 2006 that do not meet the requirements for fire pumps under this subpart, may not be used in the U.S. If any such engines are manufactured in the U.S. after April 1, 2006 (July 1, 2006 for fire pump engines), they must be exported or must be brought into compliance with the appropriate standards prior to initial operation. The export provisions of 40 CFR 1068.230 would apply to engines for export and the manufacturers must label such engines according to 40 CFR 1068.230.

(3) Stationary Cl internal combustion engines manufactured after January 1, 2007 (for fire pump engines, after January 1 of the year listed in table 3 to this subpart, as applicable) must be labeled according to paragraphs (c)(3)(i) through (iii) of this section.

(i) Stationary Cl internal combustion engines that meet the requirements of this subpart and the corresponding requirements for nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in part 89, 94 or 1039, as appropriate.

(ii) Stationary CI internal combustion engines that meet the requirements of this subpart, but are not certified to the standards applicable to nonroad (including marine) engines of the same model year and HP must be labeled according to the provisions in part 89, 94 or 1039, as appropriate, but the words "stationary" must be included instead of "nonroad" or "marine" on the label. In addition, such engines must be labeled according to 40 CFR 1039.20.

(iii) Stationary Cl internal combustion engines that do not meet the requirements of this subpart must be labeled according to 40 CFR 1068.230 and must be exported under the provisions of 40 CFR 1068.230.

(d) An engine manufacturer certifying an engine family or families to standards under this subpart that are identical to standards applicable under parts 89, 94, or 1039 for that model year may certify any

such family that contains both nonroad (including marine) and stationary engines as a single engine family and/or may include any such family containing stationary engines in the averaging, banking and trading provisions applicable for such engines under those parts.

(e) Manufacturers of engine families discussed in paragraph (d) of this section may meet the labeling requirements referred to in paragraph (c) of this section for stationary CI ICE by either adding a separate label containing the information required in paragraph (c) of this section or by adding the words "and stationary" after the word "nonroad" or "marine," as appropriate, to the label.

(f) Starting with the model years shown in table 5 to this subpart, stationary CI internal combustion engine manufacturers must add a permanent label stating that the engine is for stationary emergency use only to each new emergency stationary CI internal combustion engine greater than or equal to 19 KW (25 HP) that meets all the emission standards for emergency engines in §60.4202 but does not meet all the emission standards for non-emergency engines in §60.4201. The label must be added according to the labeling requirements specified in 40 CFR 1039.135(b). Engine manufacturers must specify in the owner's manual that operation of emergency engines is limited to emergency operations and required maintenance and testing.

(g) Manufacturers of fire pump engines may use the test cycle in table 6 to this subpart for testing fire pump engines and may test at the NFPA certified nameplate HP, provided that the engine is labeled as "Fire Pump Applications Only".

(h) Engine manufacturers, including importers, may introduce into commerce uncertified engines or engines certified to earlier standards that were manufactured before the new or changed standards took effect until inventories are depleted, as long as such engines are part of normal inventory. For example, if the engine manufacturers' normal industry practice is to keep on hand a one-month supply of engines based on its projected sales, and a new tier of standards starts to apply for the 2009 model year, the engine manufacturer may manufacture engines based on the normal inventory requirements late in the 2008 model year, and sell those engines for installation. The engine manufacturer may not circumvent the provisions of §§60.4201 or 60.4202 by stockpiling engines that are built before new or changed standards take effect. Stockpiling of such engines beyond normal industry practice is a violation of this subpart.

(i) The replacement engine provisions of 40 CFR 89.1003(b)(7), 40 CFR 94.1103(b)(3), 40 CFR 94.1103 (b)(4) and 40 CFR 1068.240 are applicable to stationary CI engines replacing existing equipment that is less than 15 years old.

§ 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine?

(a) If you are an owner or operator and must comply with the emission standards specified in this subpart, you must operate and maintain the stationary CI internal combustion engine and control device according to the manufacturer's written instructions or procedures developed by the owner or operator that are approved by the engine manufacturer. In addition, owners and operators may only change those settings that are permitted by the manufacturer. You must also meet the requirements of 40 CFR parts 89, 94 and/or 1068, as they apply to you.

(b) If you are an owner or operator of a pre-2007 model year stationary CI internal combustion engine and must comply with the emission standards specified in §§60.4204(a) or 60.4205(a), or if you are an owner or operator of a CI fire pump engine that is manufactured prior to the model years in table 3 to this subpart and must comply with the emission standards specified in §60.4205(c), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) through (5) of this section.

(1) Purchasing an engine certified according to 40 CFR part 89 or 40 CFR part 94, as applicable, for the same model year and maximum engine power. The engine must be installed and configured according to the manufacturer's specifications.

(2) Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.

(3) Keeping records of engine manufacturer data indicating compliance with the standards.

(4) Keeping records of control device vendor data indicating compliance with the standards.

(5) Conducting an initial performance test to demonstrate compliance with the emission standards according to the requirements specified in §60.4212, as applicable.

(c) If you are an owner or operator of a 2007 model year and later stationary CI internal combustion engine and must comply with the emission standards specified in §60.4204(b) or §60.4205(b), or if you are an owner or operator of a CI fire pump engine that is manufactured during or after the model year that applies to your fire pump engine power rating in table 3 to this subpart and must comply with the emission standards specified in §60.4205(c), you must comply by purchasing an engine certified to the emission standards in §60.4204(b), or §60.4205(c) or (c), as applicable, for the same model year and maximum (or in the case of fire pumps, NFPA nameplate) engine power. The engine must be installed and configured according to the manufacturer's specifications.

(d) If you are an owner or operator and must comply with the emission standards specified in §60.4204 (c) or §60.4205(d), you must demonstrate compliance according to the requirements specified in paragraphs (d)(1) through (3) of this section.

(1) Conducting an initial performance test to demonstrate initial compliance with the emission standards as specified in §60.4213.

(2) Establishing operating parameters to be monitored continuously to ensure the stationary internal combustion engine continues to meet the emission standards. The owner or operator must petition the Administrator for approval of operating parameters to be monitored continuously. The petition must include the information described in paragraphs (d)(2)(i) through (v) of this section.

(i) Identification of the specific parameters you propose to monitor continuously;

(ii) A discussion of the relationship between these parameters and NO_X and PM emissions, identifying how the emissions of these pollutants change with changes in these parameters, and how limitations on these parameters will serve to limit NO_X and PM emissions;

(iii) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(iv) A discussion identifying the methods and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(v) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(3) For non-emergency engines with a displacement of greater than or equal to 30 liters per cylinder, conducting annual performance tests to demonstrate continuous compliance with the emission standards as specified in §60.4213.

(e) Emergency stationary ICE may be operated for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State, or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. There is no time limit on the use of emergency stationary ICE in emergency situations. Anyone may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that Federal, State, or local standards require maintenance and testing of emergency ICE beyond 100 hours per year. For owners and operators of emergency engines meeting standards under §60.4205 but not §60.4204, any operation other than emergency operation, and maintenance and testing as permitted in this section, is prohibited.

Testing Requirements for Owners and Operators

§ 60.4212 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of less than

30 liters per cylinder?

Owners and operators of stationary CI ICE with a displacement of less than 30 liters per cylinder who conduct performance tests pursuant to this subpart must do so according to paragraphs (a) through (d) of this section.

(a) The performance test must be conducted according to the in-use testing procedures in 40 CFR part 1039, subpart F.

(b) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR part 1039 must not exceed the not-to-exceed (NTE) standards for the same model year and maximum engine power as required in 40 CFR 1039.101(e) and 40 CFR 1039.102(g)(1), except as specified in 40 CFR 1039.104(d). This requirement starts when NTE requirements take effect for nonroad diesel engines under 40 CFR part 1039.

(c) Exhaust emissions from stationary CI ICE that are complying with the emission standards for new CI engines in 40 CFR 89.112 or 40 CFR 94.8, as applicable, must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard in 40 CFR 89.112 or 40 CFR 94.8, as applicable, determined from the following equation:

NTE requirement for each pollutant = $(1.25) \times (STD)$ (Eq. 1)

Where:

STD = The standard specified for that pollutant in 40 CFR 89.112 or 40 CFR 94.8, as applicable.

Alternatively, stationary CLICE that are complying with the emission standards for new CL engines in 40 CFR 89.112 or 40 CFR 94.8 may follow the testing procedures specified in §60.4213 of this subpart, as appropriate.

(d) Exhaust emissions from stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in §60.4204(a), §60.4205(a), or §60.4205(c) must not exceed the NTE numerical requirements, rounded to the same number of decimal places as the applicable standard in §60.4204(a), §60.4205(a), or §60.4205(c), determined from the equation in paragraph (c) of this section.

Where:

STD = The standard specified for that pollutant in §60.4204(a), §60.4205(a), or §60.4205(c).

Alternatively, stationary CI ICE that are complying with the emission standards for pre-2007 model year engines in §60.4204(a), §60.4205(a), or §60.4205(c) may follow the testing procedures specified in §60.4213, as appropriate.

§ 60.4213 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of greater than or equal to 30 liters per cylinder?

Owners and operators of stationary CLICE with a displacement of greater than or equal to 30 liters per cylinder must conduct performance tests according to paragraphs (a) through (d) of this section.

(a) Each performance test must be conducted according to the requirements in §60.8 and under the specific conditions that this subpart specifies in table 7. The test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load.

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c).

(c) You must conduct three separate test runs for each performance test required in this section, as

specified in §60.8(f). Each test run must last at least 1 hour.

(d) To determine compliance with the percent reduction requirement, you must follow the requirements as specified in paragraphs (d)(1) through (3) of this section.

(1) You must use Equation 2 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_o}{C_i} \times 100 = R \qquad (Eq. 2)$$

Where:

C_i= concentration of NO_xor PM at the control device inlet,

Co= concentration of NOx or PM at the control device outlet, and

R = percent reduction of NO_xor PM emissions.

(2) You must normalize the NO_X or PM concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen (O₂) using Equation 3 of this section, or an equivalent percent carbon dioxide (CO₂) using the procedures described in paragraph (d)(3) of this section.

$$C_{adj} = C_4 \frac{5.9}{20.9 - \% O_2}$$
 (Eq. 3)

Where:

C_{adi}= Calculated NO_xor PM concentration adjusted to 15 percent O₂.

C_d= Measured concentration of NO_xor PM, uncorrected.

5.9 = 20.9 percent O_2 -15 percent O_2 , the defined O_2 correction value, percent.

%O₂= Measured O₂ concentration, dry basis, percent.

(3) If pollutant concentrations are to be corrected to 15 percent O_2 and CO_2 concentration is measured in lieu of O_2 concentration measurement, a CO_2 correction factor is needed. Calculate the CO_2 correction factor as described in paragraphs (d)(3)(i) through (iii) of this section.

(i) Calculate the fuel-specific F_ovalue for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_{\bullet} = \frac{0.209_{H_{\bullet}}}{F_{\bullet}}$$
 (Eq. 4)

Where:

F_o= Fuel factor based on the ratio of O₂volume to the ultimate CO₂volume produced by the

fuel at zero percent excess air.

0.209 = Fraction of air that is O_2 , percent/100.

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³ /J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO₂produced to the gross calorific value of the fuel from Method 19, dsm³ /J (dscf/10⁶ Btu).

(ii) Calculate the CO2 correction factor for correcting measurement data to 15 percent O2, as follows:

$$X_{CO_{h}} = \frac{5.9}{F_{o}}$$
 (Eq. 5)

Where:

X_{CO2}= CO₂correction factor, percent.

5.9 = 20.9 percent O_2 -15 percent O_2 , the defined O_2 correction value, percent.

(iii) Calculate the NO_X and PM gas concentrations adjusted to 15 percent O₂ using CO₂ as follows:

$$C_{adj} = C_{4} \frac{X_{CO_{4}}}{\% CO_{2}} \qquad (Eq. 6)$$

Where:

C_{adi}= Calculated NO_Xor PM concentration adjusted to 15 percent O₂.

 C_{d} = Measured concentration of NO_Xor PM, uncorrected.

%CO₂= Measured CO₂concentration, dry basis, percent.

(e) To determine compliance with the NO_X mass per unit output emission limitation, convert the concentration of NO_X in the engine exhaust using Equation 7 of this section:

$$ER = \frac{C_a \times 1.912 \times 10^{-3} \times Q \times T}{KW-hour} \qquad (Eq. 7)$$

Where:

ER = Emission rate in grams per KW-hour.

 C_d = Measured NO_X concentration in ppm.

 1.912×10^{-3} = Conversion constant for ppm NO_Xto grams per standard cubic meter at 25 degrees Celsius.

http://ecfr gpoaccess gov/cgi/t/text/text-idx?c=ecfr&sid=205ae0dfd1b18060efb0b4a26f65f0 = 4/9/2008

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Brake work of the engine, in KW-hour.

(f) To determine compliance with the PM mass per unit output emission limitation, convert the concentration of PM in the engine exhaust using Equation 8 of this section:

$$ER = \frac{C_{abj} \times Q \times T}{KW-hour} \qquad (Eq. 8)$$

Where:

ER = Emission rate in grams per KW-hour.

C_{adi}= Calculated PM concentration in grams per standard cubic meter.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour.

T = Time of test run, in hours.

KW-hour = Energy output of the engine, in KW.

Notification, Reports, and Records for Owners and Operators

§ 60.4214 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion engine?

(a) Owners and operators of non-emergency stationary CI ICE that are greater than 2,237 KW (3,000 HP), or have a displacement of greater than or equal to 10 liters per cylinder, or are pre-2007 model year engines that are greater than 130 KW (175 HP) and not certified, must meet the requirements of paragraphs (a)(1) and (2) of this section.

(1) Submit an initial notification as required in 60.7(a)(1). The notification must include the information in paragraphs (a)(1)(i) through (v) of this section.

(i) Name and address of the owner or operator;

(ii) The address of the affected source;

(iii) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

(iv) Emission control equipment; and

(v) Fuel used.

(2) Keep records of the information in paragraphs (a)(2)(i) through (iv) of this section.

(i) All notifications submitted to comply with this subpart and all documentation supporting any notification.

(ii) Maintenance conducted on the engine.

(iii) If the stationary CI internal combustion is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards.

(iv) If the stationary CI internal combustion is not a certified engine, documentation that the engine meets the emission standards.

(b) If the stationary CI internal combustion engine is an emergency stationary internal combustion engine, the owner or operator is not required to submit an initial notification. Starting with the model years in table 5 to this subpart, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, the owner or operator must keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The owner must record the time of operation of the engine and the reason the engine was in operation during that time.

(c) If the stationary CI internal combustion engine is equipped with a diesel particulate filter, the owner or operator must keep records of any corrective action taken after the backpressure monitor has notified the owner or operator that the high backpressure limit of the engine is approached.

Special Requirements

§ 60.4215 What requirements must I meet for engines used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands?

(a) Stationary CLICE that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are required to meet the applicable emission standards in §60.4205. Non-emergency stationary CLICE with a displacement of greater than or equal to 30 liters per cylinder, must meet the applicable emission standards in §60.4204(c).

(b) Stationary CLICE that are used in Guam, American Samoa, or the Commonwealth of the Northern Mariana Islands are not required to meet the fuel requirements in §60.4207.

§ 60.4216 What requirements must I meet for engines used in Alaska?

(a) Prior to December 1, 2010, owners and operators of stationary CI engines located in areas of Alaska not accessible by the Federal Aid Highway System should refer to 40 CFR part 69 to determine the diesel fuel requirements applicable to such engines.

(b) The Governor of Alaska may submit for EPA approval, by no later than January 11, 2008, an alternative plan for implementing the requirements of 40 CFR part 60, subpart IIII, for public-sector electrical utilities located in rural areas of Alaska not accessible by the Federal Aid Highway System. This alternative plan must be based on the requirements of section 111 of the Clean Air Act including any increased risks to human health and the environment and must also be based on the unique circumstances related to remote power generation, climatic conditions, and serious economic impacts resulting from implementation of 40 CFR part 60, subpart IIII. If EPA approves by rulemaking process an alternative plan, the provisions as approved by EPA under that plan shall apply to the diesel engines used in new stationary internal combustion engines subject to this paragraph.

§ 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels?

(a) Owners and operators of stationary CI ICE that do not use diesel fuel, or who have been given authority by the Administrator under §60.4207(d) of this subpart to use fuels that do not meet the fuel requirements of paragraphs (a) and (b) of §60.4207, may petition the Administrator for approval of alternative emission standards, if they can demonstrate that they use a fuel that is not the fuel on which the manufacturer of the engine certified the engine and that the engine cannot meet the applicable standards required in §60.4202 or §60.4203 using such fuels.

(b) [Reserved]

General Provisions

§ 60.4218 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§60.1 through 60.19 apply to you.

Definitions

§ 60.4219 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and sub-components comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any combined cycle steam/electric generating system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Diesel particulate filter means an emission control technology that reduces PM emissions by trapping the particles in a flow filter substrate and periodically removes the collected particles by either physical action or by oxidizing (burning off) the particles in a process called regeneration.

Emergency stationary internal combustion engine means any stationary internal combustion engine whose operation is limited to emergency situations and required testing and maintenance. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc. Stationary CI ICE used to supply power to an electric grid or that supply power as part of a financial arrangement with another entity are not considered to be emergency engines.

Engine manufacturer means the manufacturer of the engine. See the definition of "manufacturer" in this section.

Fire pump engine means an emergency stationary internal combustion engine certified to NFPA requirements that is used to provide power to pump water for fire suppression or protection.

Manufacturer has the meaning given in section 216(1) of the Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for sale or resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1039.801.

Model year means either:

(1) The calendar year in which the engine was originally produced, or

(2) The annual new model production period of the engine manufacturer if it is different than the calendar year. This must include January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year. For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was originally produced.

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Reciprocating internal combustion engine means any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to a gasoline, natural gas, or liquefied petroleum gas fueled engine or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Subpart means 40 CFR part 60, subpart IIII.

Useful life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for useful life for stationary CI ICE with a displacement of less than 10 liters per cylinder are given in 40 CFR 1039.101(g). The values for useful life for stationary CI ICE with a displacement of greater than or equal to 10 liters per cylinder and less than 30 liters per cylinder are given in 40 CFR 94.9(a).

Table 1 to Subpart IIII of Part 60—Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of <10 Liters per Cylinder and 2007–2010 Model</td> Year Engines >2,237 KW (3,000 HP) and With a Displacement of <10 Liters per Cylinder</td>

[As stated in §§60.4201(b), 60.4202(b), 60.4204(a), and 60.4205(a), you must comply with the following emission standards]

Maximum	Emission standards for stationary pre-2007 model year engines with a displacement of <10 liters per cylinder and 2007–2010 model year engines >2,237 KW (3,000 HP) and with a displacement of <10 liters per cylinder in g/KW-hr (g/HP-hr)						
power	NMHC + NO _X	HC	NOX	со	РМ		
KW<8 (HP<11)	10.5 (7.8)			8.0 (6.0)	1.0 (0.75)		
8≪KW<19 (11≪HP<25)	9.5 (7.1)			6.6 (4.9)	0.80 (0.60)		
19≤KW<37 (25≤HP<50)	9.5 (7.1)			5.5 (4.1)	0.80 (0.60)		
37≤KW<56 (50≤HP<75)			9.2 (6.9)				

56≪KW<75 (75≪ HP<100)		9.2 (6.9)		
75≤KW<130 (100≤ HP<175)		9.2 (6.9)		
130≪ KW<225 (175≪ HP<300)	1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)
225≪ KW<450 (300≪ HP<600)	1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)
450≪KW≪ 560 (600≪ HP≪750)	1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)
KW>560 (HP>750)	1.3 (1.0)	9.2 (6.9)	11.4 (8.5)	0.54 (0.40)

Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE <37 KW (50 HP) With a Displacement of <10 Liters per Cylinder

[As stated in §60.4202(a)(1), you must comply with the following emission standards]

Engino	Emission standards for 2008 model year and late emergency stationary CI ICE <37 KW (50 HP) with displacement of <10 liters per cylinder in g/KW-hr (g/l							
рожег	Model year(s)	NO _X + NMHC	со	РМ				
KW<8 (HP<11)	2008+	7.5 (5.6)	8.0 (6.0)	0.40 (0.30)				
8≪KW<19 (11≪ HP<25)	2008+	7.5 (5.6)	6.6 (4.9)	0.40 (0.30)				
19≪KW<37 (25≪ HP<50)	2008+	7.5 (5.6)	5.5 (4.1)	0.30 (0.22)				

Table 3 to Subpart IIII of Part 60—Certification Requirements for Stationary Fire Pump Engines

[As stated in §60.4202(d), you must certify new stationary fire pump engines beginning with the following model years:]

Starting model year engine manufacturers must

Engine power	certify new stationary fire pump engines according to §60.4202(d)
KW<75 (HP<100)	2011
75≤KW<130 (100 ≤HP<175)	2010
130≤KW≤560 (175≤HP≤750)	2009
KW>560 (HP>750)	2008

Table 4 to Subpart IIII of Part 60—Emission Standards for Stationary Fire Pump Engines

[As stated in §§60.4202(d) and 60.4205(c), you must comply with the following emission standards for stationary fire pump engines]

		NMHC +		
Maximum engine power	Model year(s)	NOX	со	PM
KW<8 (HP<11)	2010 and	10.5 (7.8)	8.0	1.0 (0.75)
	earlier		(6.0)	
	2011+	7.5 (5.6)		0.40
				(0.30)
8≪KW<19 (11≪HP<25)	2010 and	9.5 (7.1)	6.6	0.80
	earlier		(4.9)	(0.60)
	2011+	7.5 (5.6)		0.40
				(0.30)
19≤KW<37 (25≤HP<50)	2010 and	9.5 (7.1)	5.5	0.80
	earlier		(4.1)	(0.60)
	2011+	7.5 (5.6)		0.30
				(0.22)
37≤KW<56 (50≤HP<75)	2010 and	10.5 (7.8)	5.0	0.80
	earlier		(3.7)	(0.60)
	2011+ ¹	4.7 (3.5)		0.40
				(0.30)
56≤KW<75 (75≤HP<100)	2010 and	10.5 (7.8)	5.0 (2.7)	08.0
			(3.7)	(0.00)
	2011+'	4.7 (3.5)		(0.40
75 - KINI-120 (100-		10 5 (7 9)		
75≪NV<130 (100≪ µD<175)	2009 and earlier	10.5 (7.6)	5.0	0.00
		4.0.(2.0)	(0.7)	(0.00)
	2010+2	4.0 (3.0)		(0.30
420~1/10/2025 /175~		40 5 (7 9)	2 5	(0.22)
13U≷KVV<223(1/3≷ µ₽<200)	2008 and	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
F F \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4.0.(0.0)	(2.0)	
	2009+ ³	4.0 (3.0)		0.20

				(0.15)
225≪KW<450 (300≪ HP<600)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009+ ³	4.0 (3.0)		0.20 (0.15)
450≪KW≪560 (600≪HP≪ 750)	2008 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2009+	4.0 (3.0)		0.20 (0.15)
KW>560 (HP>750)	2007 and earlier	10.5 (7.8)	3.5 (2.6)	0.54 (0.40)
	2008+	6.4 (4.8)		0.20 (0.15)

¹For model years 2011–2013, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 revolutions per minute (rpm) may comply with the emission limitations for 2010 model year engines.

 2 For model years 2010–2012, manufacturers, owners and operators of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2009 model year engines.

³In model years 2009–2011, manufacturers of fire pump stationary CI ICE in this engine power category with a rated speed of greater than 2,650 rpm may comply with the emission limitations for 2008 model year engines.

Table 5 to Subpart IIII of Part 60—Labeling and Recordkeeping Requirements for New Stationary Emergency Engines

[You must comply with the labeling requirements in §60.4210(f) and the recordkeeping requirements in §60.4214(b) for new emergency stationary CI ICE beginning in the following model years:]

Engine power	Starting model year
19≪KW<56 (25≪HP<75)	2013
56≤KW<130 (75≤HP<175)	2012
KW≥130 (HP≥175)	2011

Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

[As stated in §60.4210(g), manufacturers of fire pump engines may use the following test cycle for testing fire pump engines:]

	Mode No.	Engine speed ¹	Torque (percent) ²	Weighting factors
1		Rated	100	0.30
2		Rated	75	0.50
3		Rated	50	0.20

¹Engine speed: ±2 percent of point.

²Torque: NFPA certified nameplate HP for 100 percent point. All points should be ± 2 percent of engine percent load value.

Table 7 to Subpart IIII of Part 60—Requirements for Performance Tests for Stationary CI ICE With a Displacement of \geq 30 Liters per Cylinder

[As stated in §60.4213, you must comply with the following requirements for performance tests for stationary CI ICE with a displacement of ≥30 liters per cylinder:]

For each	Complying with the requirement to	You must	Usina	According to the following
1. Stationary CI internal combustion engine with a displacement of ≥30 liters per cylinder	a. Reduce NO _X emissions by 90 percent or more	i. Select the sampling port location and the number of traverse points;	(1) Method 1 or 1A of 40 CFR part 60, appendix A	(a) Sampling sites must be located at the inlet and outlet of the control device.
		ii. Measure O ₂ at the inlet and outlet of the control device;	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for NO _X concentration.
		iii. If necessary, measure moisture content at the inlet and outlet of the control device; and,	(3) Method 4 of 40 CFR part 60, appendix A, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348–03 (incorporated by reference, see §60.17)	(c) Measurements to determine moisture content must be made at the same time as the measurements for NO _X concentration.
		iv. Measure NO _X at the inlet and outlet of the control device	(4) Method 7E of 40 CFR part 60, appendix A, Method 320 of 40 CFR	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of

b. Limit the concentration of NO _X in the stationary CI internal combustion engine exhaust.	i. Select the sampling port location and the number of traverse points;	part 63, appendix A, or ASTM D 6348–03 (incorporated by reference, see §60.17) (1) Method 1 or 1A of 40 CFR part 60, Appendix A	this test consist of the average of the three 1-hour or longer runs. (a) If using a control device, the sampling site must be located at the outlet of the control device.
	ii. Determine the O ₂ concentration of the stationary internal combustion engine exhaust at the sampling port location; and,	(2) Method 3, 3A. or 3B of 40 CFR part 60, appendix A	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurement for NO _X concentration.
	iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and,	(3) Method 4 of 40 CFR part 60, appendix A, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348–03 (incorporated by reference, see §60.17)	(c) Measurements to determine moisture content must be made at the same time as the measurement for NO _X concentration.
	iv. Measure NO _X at the exhaust of the stationary internal combustion engine	(4) Method 7E of 40 CFR part 60, appendix A, Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348–03	(d) NO _X concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

c. Reduce PM emissions by 60 percent or more	i. Select the sampling port location and the number of traverse points;	(incorporated by reference, see §60.17) (1) Method 1 or 1A of 40 CFR part 60, appendix A	(a) Sampling sites must be located at the inlet and outlet of the control device.
	II. Measure O ₂ at the inlet and outlet of the control device;	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for PM concentration.
	iii. If necessary, measure moisture content at the inlet and outlet of the control device; and	(3) Method 4 of 40 CFR part 60, appendix A	(c) Measurements to determine and moisture content must be made at the same time as the measurements for PM concentration.
	iv. Measure PM at the inlet and outlet of the control device	(4) Method 5 of 40 CFR part 60, appendix A	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
d. Limit the concentration of PM in the stationary CI internal combustion engine exhaust	i. Select the sampling port location and the number of traverse points;	(1) Method 1 or 1A of 40 CFR part 60, Appendix A	(a) If using a control device, the sampling site must be located at the outlet of the control device.
	ii. Determine the O ₂ concentration of the stationary internal combustion	(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements

	engine exhaust at the sampling port location; and		for PM concentration.
	iii. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(3) Method 4 of 40 CFR part 60, appendix A	(c) Measurements to determine moisture content must be made at the same time as the measurements for PM concentration.
	iv. Measure PM at the exhaust of the stationary internal combustion engine	(4) Method 5 of 40 CFR part 60, appendix A	(d) PM concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

Table 8 to Subpart IIII of Part 60—Applicability of General Provisions to Subpart IIII

[As stated in §60.4218, you must comply with the following applicable General Provisions:]

General Provisions citation	Subject of citation	Applies to subpart	Fxplanation
§60.1	General applicability of the General Provisions	Yes	
§60.2	Definitions	Yes	Additional terms defined in §60.4219.
§60.3	Units and abbreviations	Yes	
§60.4	Address	Yes	
§60.5	Determination of construction or modification	Yes	
§60.6	Review of plans	Yes	
§60.7	Notification and Recordkeeping	Yes	Except that §60.7 only applies as specified in §60.4214(a).
§60.8	Performance tests	Yes	Except that §60.8 only applies

			to stationary CI ICE with a displacement of (≥30 liters per cylinder and engines that are not certified.
§60.9	Availability of information	Yes	
§60.10	State Authority	Yes	
§60.11	Compliance with standards and maintenance requirements	No	Requirements are specified in subpart IIII.
§60.12	Circumvention	Yes	
§60.13	Monitoring requirements	Yes	Except that §60.13 only applies to stationary CI ICE with a displacement of (≥30 liters per cylinder.
§60.14	Modification	Yes	
§60.15	Reconstruction	Yes	
§60.16	Priority list	Yes	
§60.17	Incorporations by reference	Yes	
§60.18	General control device requirements	No	
§60.19	General notification and reporting requirements	Yes	

Browse Previous | Browse Next

Second as a subsequence service on a subsequence service of the subsequence of the subsequence

For questions or comments regarding e-CFR editorial content, features, or design, email ecfr@nara.gov.

For questions concerning e-CFR programming and delivery issues, email webteam@gpo.gov.

Section 508 / Accessibility

CERTIFICATE OF SERVICE

I, Pam Owen, hereby certify that a copy of this permit has been mailed by first class mail to

Arkansas Children's Hospital, 800 Marshall Street, Little Rock, AR, 72202, on this 17^{+1} day

of <u>JUly</u>, 2008.

Pam Owen, AAII, Air Division