STATEMENT OF BASIS

For the issuance of Air Permit # 2348-AOP-R3 AFIN: 70-00032

1. PERMITTING AUTHORITY:

Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

Resolute El Dorado Inc. 5482 Junction City Highway El Dorado, Arkansas 71730

3. PERMIT WRITER:

Sterling Powers

4. NAICS DESCRIPTION AND CODE:

NAICS Description: Sawmills NAICS Code: 321113

5. ALL SUBMITTALS:

The following is a list of ALL permit applications included in this permit revision.

Date of Application	Type of Application	Short Description of Any Changes
	(New, Renewal, Modification,	That Would Be Considered New or
	Deminimis/Minor Mod, or	Modified Emissions
	Administrative Amendment)	
8/15/2022	Minor Mod	Remove Emergency Fire Pump (SN-10R)
		Add new Emergency Fire Pump (SN-17)

6. REVIEWER'S NOTES:

This permit modification will replace the existing fire pump engine (SN-010R) with a new diesel fire pump engine (SN-017), to provide adequate water flow for the fire protection system during emergency situations. Permitted Emissions increased by $0.1~SO_2$ tpy, 0.2~VOC tpy, and $0.1~NO_X$ tpy.

AFIN: 70-00032 Page 2 of 14

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The Division issued a proposed Consent Administrative Order (CAO) on February 22, 2022. A meeting with the Division compliance and enforcement was held on March 8, 2022, to discuss the proposed CAO and the efforts Resolute is undertaking to prove compliance with the hourly emission limit in SC-11. At this time, the Division agreed to hold the proposed CAO until such a time as SN-06 can be retested with three 6-hour tests and those results can be shared with the Division for evaluation of compliance.

The required retest was completed on the dates of March 22-24, 2022, which resulted in a formal withdrawal of enforcement action on June 2, 2022, from Mr. Brant Wright of the Division. With SN-06 having been shown to be in compliance with current permit terms and conditions, a final progress report for this matter will be provided within the next semi-annual monitoring report. Additionally, compliance certifications will continue to be submitted annually in accordance with General Provision No. 21.

8. PSD/GHG APPLICABILITY:

- a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? N If yes, were GHG emission increases significant? N
- b) Is the facility categorized as a major source for PSD? Y
- Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list

If yes for 8(b), explain why this permit modification is not PSD.

A PSD analysis demonstrates that the emergency fire pump engine emissions do not exceed the PSD significant emission rate (SER) for any NSR regulated pollutants.

Actual-to-Projected- Actual (ATPAT)	PM	PM10	PM2.5	SO2	voc	СО	NOX
Total BAE	0	0	0	0	0	0	0
Total PAE	0.02	0.02	0.02	0.1	0.33	0.29	0.33
SER Threshold	25	15	10	40	40	100	40
Pass? Y/N	Y	Y	Y	Y	Y	Y	Y

AFIN: 70-00032 Page 3 of 14

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)
01, 02	Initial Notification is the only requirement.	NESHAP Subpart DDDD
17	HAPs	NESHAP Subpart ZZZZ

10. UNCONSTRUCTED SOURCES:

Unconstructed	Permit	Extension	Extension	If Greater than 18 Months without		
	Approval	Requested	Approval	Approval, List Reason for Continued		
Source	Date	Date	Date	Inclusion in Permit		
N/A						

11. PERMIT SHIELD – TITLE V PERMITS ONLY:

Did the facility request a permit shield in this application? N (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Rule 18 requirement.)

If yes, are applicable requirements included and specifically identified in the permit? N/A If not, explain why.

For any requested inapplicable regulation in the permit shield, explain the reason why it is not applicable in the table below.

12. COMPLIANCE ASSURANCE MONITORING (CAM) – TITLE V PERMITS ONLY:

List sources potentially subject to CAM because they use a control device to achieve compliance and have pre-control emissions of at least 100 percent of the major source level. List the pollutant of concern and a brief summary of the CAM plan (temperature monitoring, CEMs, opacity monitoring, etc.) and frequency requirements of § 64.

Source	Pollutant Controlled	Cite Exemption or CAM Plan Monitoring and Frequency			
N/A					

13. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

14. AMBIENT AIR EVALUATIONS:

The following are results for ambient air evaluations or modeling.

AFIN: 70-00032 Page 4 of 14

a) NAAQS

A NAAQS evaluation is not required under the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark. Code Ann. § 8-4-318, dated March 2017 and the DEQ Air Permit Screening Modeling Instructions.

b) Non-Criteria Pollutants: 1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m ³)	$PAER (lb/hr) = 0.11 \times TLV$	Proposed lb/hr	Pass?
Acrolein ²	0.2292	0.0252	0.29	Fail
Formaldehyde	1.5	0.165	0.71	Fail
Methanol ¹	262.08	28.829	7.38	Pass
POM ²	0.200	0.022	1.41E-04	Pass
Selenium ²	0.200	0.022	3.18E-06	Pass

¹ Annual emission greater than 10 tpy

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
Acrolein	2.292	2.28975	Yes
Formaldehyde	15.00	5.64144	Yes

² Under 1 mg/m³ TLV

AFIN: 70-00032 Page 5 of 14

c) H₂S Modeling:

A.C.A. §8-3-103 requires hydrogen sulfide emissions to meet specific ambient standards. Many sources are exempt from this regulation, refer to the Arkansas Code for details.

Is the facility exempt from the H ₂ S Standards	N/A
If exempt, explain:	

15. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equip.	Control Equip. Eff.	Comments
01, 02	ADEQ Memo: VOC emissions from Lumber Drying Kilns from T Rheaume dated 10/31/2014 AP-42 Tables 1.4- 1, -2, -3 Natural Gas	BACT Limit: 3.8 lb VOC/MBF ¹ <u>EF lb/10⁶ scf</u> BACT PM: 7.6 SO ₂ : 0.6 CO: 84 NO _X : 50 Formaldehyde: 7.50E-02 Selenium: 2.40E-05 POM: 8.82E-05	None	N/A	3 kilns limited by throughput: 315 MMBF/yr Each Kiln 18.5 MBF/hr x 3.8 lb VOC/MBF = lb VOC/hr 45 MMBtu/hr Low NO _X Burners To convert from lb/10 ⁶ scf to lb/MMBtu divide by 1020. ¹ Includes natural gas VOC
01, 02,	Assume $PM_{10} = PM$ $NCDENR$ $Wood Kiln$ $Emission$ $Calculation$ $Factor Sheet$ $for Softwood$	Lb/MBF BACT Limit: PM/ PM ₁₀ : 0.022 Acrolein: 0.0075 Methanol: 0.199 Formaldehyde: 0.0183	None	N/A	Lumber Drying Kilns Max Annual Thruput = 315 MMBF/yr Max Hourly Thruput = 18.5 MBF/hr @ SN-01, 02, and 03
04	ADEQ Memo from CHurt to TRheaume dated	$\frac{\text{lb/ton log Thruput}}{\text{BACT Limit PM: 0.02}}$ $PM_{10} : 0.0004$ $(PM_{10} = 2\% \text{ PM})$	95% ¹	Enclosed Hood	1,417,500 tpy 405 tph max Log Thruput @ 4.5 tons/MBF

AFIN: 70-00032 Page 6 of 14

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SN
SN
CAP-42, testing, etc.) Equip. Eff.
1,455,300 tpy 378 tph max log Thruput 2020 Renewal Baghouse Model H120 H20 H
08/22/2003 and NC-DENR TCEQ Wood Ind. EF, App A3 BACT Limit PM: 0.35 PM ₁₀ : 0.007 (PM ₁₀ = 2% PM) Sawmill located in Building @4.2 tons/MBF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NC-DENR TCEQ Wood Ind. EF, App A3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
EF, App A3 Cyclone Air flow rates and outlet grain loading based on January 2020 EF based on air Renewal FM10 = 270 FM) tons/MBF Cyclone + Baghouse Model #120
Cyclone Air flow rates and outlet grain loading based on January Planer Mill - Baghouse 2020 EF based on air Renewal flow = 71,430 dscfm H Cyclone + Baghouse Model #120
Air flow rates and outlet grain loading based on January Planer Mill - Baghouse 2020 EF based on air Renewal flow = 71,430 dscfm #120
outlet grain loading based on January Planer Mill - Baghouse 2020 EF based on air Renewal flow = 71,430 dscfm Cyclone + Baghouse Model #120
loading Cyclone +
loading Cyclone +
based on January Planer Mill - Baghouse And And And And And Andrew Andre
January 2020 EF based on air Renewal Renewal Planer Mill - EF based on air flow = 71,430 dscfm Baghouse Model #120
2020 EF based on air Model Renewal flow = 71,430 dscfm #120
Renewal flow = $71,430 \text{ dscfm}$ #120
110 W 71, 130 disein
permit outlet = 0.00004 gr/scf MCF
06 perint outlet = 0.00004 gr/scr MC1 99.99% application. $PM_{10} = PM$ 1120-
BACT PM: 0.004 gr/dscf = 750with
Retesting is 0.02 lb/hr, 0.06 tpy DYNA-
being PM ₁₀ : 0.02 lb/hr, 0.06 tpy MAC
required Felt bags
because of only
age of test
and
equipment
- cyarpinom

AFIN: 70-00032 Page 7 of 14

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equip.	Control Equip. Eff.	Comments
08	Cyclone Air flow rates and outlet grain loading based on January 2020 Renewal permit application. Retesting is being required because of age of test and equipment (20 years).	Truck Bin - EF based on air flow = 7,500 dscfm outlet = 0.002 gr/scf PM: 0.02 lb/hr, 0.06 tpy PM ₁₀ : 0.02 lb/hr, 0.06 tpy	Cyclone	N/A	
09	AP-42 13.2.2.2. Eq. 1a ¹ (11/06) and AP-42 13.2.2.1 Eq. 1 ² (1/11)	'Haul Roads' Unpaved ¹ s: 8.4 W: varies k: 4.9 (PM) k: 1.5 (PM ₁₀) k: 0.15 (PM _{2.5}) a: 0.70 (PM) a: 0.90 (PM _{10 & 2.5}) b: 0.45and Paved Roads ² k: 0.011 (PM) k: 0.0022 (PM ₁₀) k: 0.00054 (PM _{2.5}) sL: 8.2 W: varies	Road Watering Plan	90%	E = k (s/12) ^a x (W/3) ^b Eq 1a UNPAVED where E = size- specific EF (lb/VMT) s = surface material silt content (%) W = mean vehicle wt. (tons) M = surface mat 'l moisture content (%) S = mean vehicle speed (mph) C = EF for 1980's vehicle fleet exhaust, brake and tire wear. E = k (sL)0.91 x (W)1.02 Equation (1)PAVED where: E = PM emission factor (lb/VMT), k = particle size multiplier sL = road surface silt loading (g/m²), and W = ave wt. (tons) of vehicles traveling road.

AFIN: 70-00032 Page 8 of 14

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equip.	Control Equip. Eff.	Comments
17	AP-42, Table 3.3-1	BACT PM: 0.2 g/kw-hr PM ₁₀ : 0.2 g/kw-hr lb/hp-hr SO ₂ : 0.00205 BACT VOC: 4.0 CO: 3.5 g/kw-hr NO _X : 4.0 g/kw-hr Acrolein: 9.25E-05 Formaldehyde: 1.18E-03	None	N/A	'Emergency Fire Pump' – CI RICE 200 bhp (from engine plate) VOC = TOC 500 hrs/yr 7,000 Btu/hp-hr 1.40 MMBTU/hr 0.0015% sulfur Diesel Fuel
11	AP-42 10.3-1	Lb/ton BACT PM: 0.02 PM ₁₀ : 0.00044 (incl 10% safety factor)	None	N/A	'Material Processing' Fugitive emissions from Debarking and Chipping
12	Pile handling – AP-42 13.2.4 Wind erosion - AP-42 13.2.5	Bark Pile PM (lb/hr) Handling: 0.00015 Sawdust Pile (lb/hr) Handling: 0.00012 Wind Erosion: 1.89 Sawdust Total: 1.90 Chip Pile PM (lb/hr) Handling: 0.0015 Wind Erosion: 2.43	None	N/A	'Storage Piles' By-product sold as dry material
13	ADEQ Emission Factors outlined in 8/22/2003 memo from CHurt to TRheaume	Dried Shavings Lb/ton Storage BACT PM: 0.0011 PM ₁₀ : 0.00009 Loadout BACT PM: 0.0022 PM ₁₀ : 0.00018	None	N/A	'Storage Bin' Based on permitted annual throughput Conservative estimate 75,000 tpy woodwaste generated
14	TANKS 4.0.9d	Oil	None	None	11 light color Tanks

AFIN: 70-00032 Page 9 of 14

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equip.	Control Equip. Eff.	Comments
15	TANKS 4.0.9d	Diesel fuel	None	None	2 light color Tanks
16	TANKS 4.0.9d HAP speciation factors from EPA document "Gasoline Distribution Industry"	Gasoline <u>HAPs to VOC ratio by wt</u> . Total HAPs: 23%	None	None	1 light color Tank

16. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
06, 08	PM	Method 5	One time	§19.702

17. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant	Method	Eroguanav	Donort (V/N)	
	to be Monitored	(CEM, Pressure Gauge, etc.)		Report (Y/N)	

18. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
Facility	Annual Lumber Throughput	Maximum 315 MMBF / rolling 12 months	Monthly	Yes

AFIN: 70-00032 Page 10 of 14

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)	
		Maintain valid	•		
		gas tariff,			
		purchase			
	Combust only	contract, fuel			
01, 02	pipeline quality	analysis or other	On-going	No	
01, 02	natural gas in	appropriate		110	
	burners	documentation,			
		or perform			
		periodic testing			
		Record			
	D 1	1. Facility name and			
	Develop,	location.			
	maintain, and	2. Record the			
	follow a routine	activity SN or			
	and repair	description.			
	maintenance	3. Date and time of maintenance or			
01, 02	and	observation.	As performed	No	
	housekeeping	4. Maintenance			
	Plan	activity performed,			
	BACT: Proper	including			
	Maintenance	replacement parts.			
	and Operation	5. Name of person			
	1	conducting the maintenance.			
		Initial			
01, 02	NESHAP	Notification	One-time	Yes	
01, 02	Subpart DDDD	§63.9(b)		103	
	Annual Log	Maximum			
	Throughput	1,417,500 tons /			
04	BACT: Hood	rolling 12	Monthly	Yes	
	Enclosure	months			
	Annual Log	Maximum			
	Throughput	1,455,300 tons /			
05	BACT:	rolling 12	Monthly	Yes	
	Building	months			
	Performance	PM: 0.016 lb/hr			
06	Test with	or	One-time	Yes	
00	Baghouse	0.004 gr/dscf	One-time	105	
	Performance	PM: 0.073 lb/hr			
08	Test with		One-time	Yes	
Uo		or 0.002 gr/dsef	One-unite	1 68	
	Cyclone Manufacturers'	0.002 gr/dscf Must be			
			Keep Manual		
06.00	Operating	operated and	for Life of	N T _	
06, 08	Manuals and	maintained in	Unit(s) On-	No	
	Maintenance	accordance with	going		
	Logs	manufacturers'	5 6		

AFIN: 70-00032 Page 11 of 14

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
	BACT: Proper	specs and good	•	, ,
	Maintenance	air pollution		
	and Operation	control and op		
	•	practices for		
		minimizing		
		emissions. Must		
		up-date		
		maintenance		
		logs on an as		
		performed basis.		
		Must operate at		
		all times		
		contiguous		
		equipment is in		
		operation.		
	Road Watering	Maintain Road		
09	Plan	Watering Plan	On-going	No
	1 1011	Records		
		Keep dust from		
09	Road Dust	extending	On-going	No
	(PM/PM_{10})	beyond property	88	- , ,
	70.5	boundary		
	If Dust	Shall contain no		
00	Suppression	VOC, no HAP,	Current, legible	NT.
09	Agent used,	no air	MSDS	No
	Maintain	contaminants		
	MSDS Total Operating			
	Total Operating Hours			
17	(emergency and	500 Total Hours	Monthly	No
1 /	non-emergency	per calendar year	ivioniniy	110
	combined)			
	During Extended			
17	Emergency Use	No limit during	TC	37
17	in excess of 500	Emergency	If occurs	Yes
	hours			
	NESHAP	Must be in		
17	Subpart ZZZZ	compliance upon	Monthly	No
	Suopart LLLL	startup		
		Only ULSD fuel		
		with the sulfur	Keep legible	
17	Diesel Fuel	content no	MSDS	No
		greater than	1110100	
		0.0015% sulfur		

AFIN: 70-00032 Page 12 of 14

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		by weight.	1 ,	1 \ /
17	Good Combustion Practices	Follow OEM manual	As occurs	No
Facility	Permit Renewal Submit at least 6 months before expiration	Permit is valid for 5 years, beginning on date permit issued and ends five (5) years later, GP #3, unless renewal submitted 6 months prior to expiration date	Every 5 years	Yes
11	BACT: Wind barrier	Keep barrier to prevent wind erosion	On going	No
12	Storage Piles	Keep dust down by wet suppression	Daily, as needed	No
13	Storage Bin	Enclosed Bin for Transport	On going	No
14	Oil Tanks	Nte 14,788 gallons in 24- hours and nte 175,056 gallons of oil per rolling 12 months	On going	No
15	Diesel Tanks	Nte 1,000 gallons in 24- hours and nte 52,000 gallons of diesel per rolling 12 months	On going	No
16	Diesel Tank	Nte 9,000 gallons in 24-hours and nte 468,000 gallons of gasoline per rolling 12 months	On going	No

AFIN: 70-00032 Page 13 of 14

19. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
01, 02	5%	\$18.501 and A.C.A. \$8-4-203 as referenced by \$8-4- 304 and \$8-4-311	Use natural gas fuel only
04, 05, 06, 08, 11, 12, 13	5%	\$18.501 and A.C.A. \$8-4-203 as referenced by \$8-4- 304 and \$8-4-311	Weekly Observation
09 offsite	0%	\$18.501 and A.C.A. \$8-4-203 as referenced by \$8-4- 304 and \$8-4-311	Annual ADEQ Observation
17	20%	§19.503 and A.C.A. §8-4-203 as referenced by §8-4- 304 and §8-4-311	Observation <i>if</i> fire pump runs 3 consecutive hours, otherwise none required

20. GROUP A INSIGNIFICANT ACTIVITIES:

The following is a list of Insignificant Activities including revisions by this permit.

	Group			Emission	ns (tp	y)		
Source Name	$\begin{bmatrix} A \\ PM/PM_{10} \end{bmatrix}$	SO_2	VOC	CO	NO	HAPs		
	Cat.	PIVI/PIVI ₁₀	SO_2	VOC	СО	NO_x	Single	Total
500 Gallon Gasoline Tank	A-13			0.13				
Fire Pump Engine Diesel	A-3			0.000135				
Tank – 260 Gallon	A-3			0.000133				
Hydraulic Oil – 350 Gallon	A-3			0.000135				
Hydraulic Oil – 275 Gallon	A-3			0.000135				
Hydraulic Oil – 340 Gallon	A-3			0.000135				
Hydraulic Oil – 370 Gallon	A-3			0.000135				
Compressor Oil – 130 Gallon	A-3			0.000135				
Hydraulic Oil – 60 Gallon	A-3			0.000135				
Hydraulic Oil – 100 Gallon	A-3			0.000135				
Hydraulic Oil – 160 Gallon	A-3			0.000135				
Hydraulic Oil – 130 Gallon	A-3			0.000135				
Lubricating Oil – 300 Gallon	A-3			0.000135				
Hydraulic Oil – 50 Gallon	A-3			0.00001				

AFIN: 70-00032 Page 14 of 14

21. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit.

Permit #
2348-AOP-R2

Fee Calculation for Major Source

Revised 03-11-

Facility Name: Resolute El Dorado Inc.

Permit Number: 2348-AOP-R3

AFIN: 70-00032

\$/ton factor	27.27	Annual Chargeable Emissions (tpy)	685.8
	Minor		
Permit Type	Mod	Permit Fee \$	500
Minor Modification Fee \$	500		
Minimum Modification Fee \$	1000		
Renewal with Minor Modification \$	500		
Check if Facility Holds an Active Minor			
Source or Minor Source General Permit			
If Hold Active Permit, Amt of Last Annual Air Permit Invoi	ce \$	0	
Total Permit Fee Chargeable Emissions (tpy)	0.4		
Initial Title V Permit Fee Chargeable			
Emissions (tpy)			

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium

Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Pollutant (tpy)	Check if Chargeab le Emission	Old Perm it	New Perm it	Change in Emissio ns	Permit Fee Chargeab le Emission	Annual Chargeabl e Emissions
PM		56.6	56.6	0	0	56.6
PM_{10}		12.8	12.8	0		
PM _{2.5}		0	0	0		
SO ₂		0.5	0.6	0.1	0.1	0.6
VOC		599	599.2	0.2	0.2	599.2
СО		48.9	48.9	0		
NO _X		29.3	29.4	0.1	0.1	29.4
Acrolein		1.2	1.2	0		
Formaldehyde		2.94	2.94	0		
Methanol		31.35	31.35	0		

POM	0.01	0.01	0		Ì
Selenium	0.01	0.01	0		ì
Total HAPs	46.31	46.31	0		ı