STATEMENT OF BASIS

For the issuance of Draft Air Permit # 0573-AOP-R20 AFIN: 70-00040

1. PERMITTING AUTHORITY:

Arkansas Department of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT:

El Dorado Chemical Company 4500 North West Avenue El Dorado, Arkansas 71730

3. PERMIT WRITER:

Shawn Hutchings

4. NAICS DESCRIPTION AND CODE:

NAICS Description: Nitrogenous Fertilizer Manufacturing

NAICS Code: 325311

5. ALL SUBMITTALS:

The following is a list of ALL permit applications included in this permit revision.

Date of Application	Type of Application	Short Description of Any Changes
	(New, Renewal, Modification,	That Would Be Considered New or
	Deminimis/Minor Mod, or	Modified Emissions
	Administrative Amendment)	
5/5/2017	Modification	PSD only due to reevaluation of
		previous PSD limits.
8/18/2017	Minor Modification	New Emergency Engine

6. REVIEWER'S NOTES:

El Dorado Chemical Company (EDCC) owns and operates a chemical manufacturing facility located at 4500 North West Avenue in El Dorado, Arkansas. The modification was a PSD modification to adjust the final BACT limits for SN-59 after the end of the demonstration period. During the review it was determined based on changes to control methods more information may be necessary to determine the correct NO_x limit for the source. The demonstration period was extended for 12-months from the date of this

AFIN: 70-00040 Page 2 of 16

permit. The ammonia BACT limit was removed as ammonia is not a PSD pollutant. Ammonia emission rates were raised to allow proper control of NO_x from the source, with the ammonia rates also to be evaluated during the NO_x demonstration period. This permit also incorporates a minor modification to add an emergency generator, SN-68.

7. COMPLIANCE STATUS:

The following summarizes the current compliance of the facility including active/pending enforcement actions and recent compliance activities and issues.

The facility currently has one active CAO due to the N_2O abaitor malfunction, and one pending for due to excess emission from SN-09.

The facility's last inspection also listed the following concerns: According to the facility's 2016 ACC report, which covers the facility's operations from 11/2015 through 10/2016, the facility denotes several conditions in which there were multiple deviations. The facility states there were 14 deviations involving NOx exceedances during SSM events (SC-18); 34 deviations involving NOx exceedances during SSM events (SC-32); 1 deviation in which RATA results were submitted late (SC-70); 67 deviations involving SO2 exceedances during SSM events (SC-91g); 876 deviations in which the 3-hour operating limit was exceeded (SC-199); 1 deviation in which the Subpart Db notification was submitted without fully complying with the requirements (SC-255); 26 deviations in which the NH3 24-hr. average was exceeded (Interim Condition 1-SN-41 (SC-105)); 1 deviation in which no NOC was submitted as required (PC-16); 1 deviation in which no tune up or energy assessment was completed during the time frame required (PC-24); 1 deviation in which the Subpart DDDDD was submitted without fully complying with the requirements (PC-32); 1159 deviations in which SN-53 exceeded the 3-hr. avg. limit (SC-204); 1 deviation in which the PM-10 limit was exceeded (SC-118); 1 deviation in which no letter was submitted on SN-16A/B reporting cease of use (SC-436); 487 deviations in which SN-53 exceeded the 3-hr. operating limit (SC-204); 63 deviations in which SO2 was exceeded during SSM events (SC-93g); 6 deviations in which SN-41 exceeded NH3 rate (SC-107); 12 deviations in which flare monthly visual logs were not maintained (SC-209); 4 deviations in which natural gas usage was exceeded (SC-216); and, 1 deviation in which Subpart Db was submitted without full compliance (SC-237).

8. PSD/GHG APPLICABILITY:

- a) Did the facility undergo PSD review in this permit (i.e., BACT, Modeling, etc.)? Y If yes, were GHG emission increases significant? N
- b) Is the facility categorized as a major source for PSD? Y
- Single pollutant ≥ 100 tpy and on the list of 28 or single pollutant ≥ 250 tpy and not on list

If yes for 8(b), explain why this permit modification is not PSD.

AFIN: 70-00040 Page 3 of 16

9. SOURCE AND POLLUTANT SPECIFIC REGULATORY APPLICABILITY:

Source	Pollutant	Regulation (NSPS, NESHAP or PSD)	
SN-41	PM_{10}	PSD	
	SO_2 VOC		
SN-49, SN-53, SN-54, SN-56, SN-57, & SN-61	CO NO _x	PSD	
	GHG Opacity		
SN-50	VOC CO GHG	PSD	
SN-51	VOC CO GHG	PSD	
SN-59	NO _x GHG Opacity	PSD	
SN-61	NO _x	40 CFR Part 60, Subpart Db	
SN-13	NO_x	40 CFR Part 60, Subpart G	
SN-59	NO_x	40 CFR Part 60, Subpart Ga	
SN-07	SO ₂ and sulfuric acid mist	40 CFR Part 60, Subpart H	
SN-65 and 66	There are no specific emission limits or pollutants identified, but the rules generally regulate HAPs	40 CFR Part 63, Subpart ZZZZ	
SN-48, SN49, SN-54, & SN-		40 CFR Part 63, Subpart	
61		DDDDD	
SN-25		40 CFR Part 63, Subpart CCCCCC	
SN-65	CO, PM, NMHC + NOx	40 CFR Part 60, Subpart IIII	
SN-66	CO, VOC, NOx	40 CFR Part 60, Subpart JJJJ	

10. PERMIT SHIELD – TITLE V PERMITS ONLY:

Did the facility request a permit shield in this application? N (Note - permit shields are not allowed to be added, but existing ones can remain, for minor modification applications or any Regulation 18 requirement.)

If yes, are applicable requirements included and specifically identified in the permit? N If not, explain why.

AFIN: 70-00040 Page 4 of 16

For any requested inapplicable regulation in the permit shield, explain the reason why it is not applicable in the table below.

Source	Inapplicable Regulation	Reason		
None requested.				

11. EMISSION CHANGES AND FEE CALCULATION:

See emission change and fee calculation spreadsheet in Appendix A.

12. AMBIENT AIR EVALUATIONS:

Include the results for any ambient air evaluations or modeling. Include NSR/PSD permits and permits that require an evaluation in accordance with revisions to the Arkansas State Implementation Plan, National Ambient Air Quality Standards, Infrastructure SIPs and NAAQS SIP per Ark Code Ann. § 8-4-318, dated March 2017 and the ADEQ Air Permit Screening Modeling Instructions.

a) Reserved.

b) Non-Criteria Pollutants:

The non-criteria pollutants listed below were evaluated. Based on Department procedures for review of non-criteria pollutants, emissions of all other non-criteria pollutants are below thresholds of concern.

1st Tier Screening (PAER)

Estimated hourly emissions from the following sources were compared to the Presumptively Acceptable Emission Rate (PAER) for each compound. The Department has deemed the PAER to be the product, in lb/hr, of 0.11 and the Threshold Limit Value (mg/m³), as listed by the American Conference of Governmental Industrial Hygienists (ACGIH).

Pollutant	TLV (mg/m ³)	$PAER (lb/hr) = 0.11 \times TLV$	Proposed lb/hr	Pass?
Ammonia	17	3.5	1,840.4	No

2nd Tier Screening (PAIL)

AERMOD air dispersion modeling was performed on the estimated hourly emissions from the following sources, in order to predict ambient concentrations beyond the property boundary. The Presumptively Acceptable Impact Level (PAIL) for each

AFIN: 70-00040 Page 5 of 16

compound has been deemed by the Department to be one one-hundredth of the Threshold Limit Value as listed by the ACGIH.

Pollutant	PAIL $(\mu g/m^3) = 1/100$ of Threshold Limit Value	Modeled Concentration (μg/m³)	Pass?
Ammonia	173	129	Y

13. CALCULATIONS:

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
05A and B	Vendor Specification	$\begin{array}{c} PM_{10}-0.085\\ mg/acf \end{array}$	Brinks Scrubber	-	-
	Engineering Estimate	0.8 lb/hr NH ₃	Brinks Scrubber	99.5%	-
07	NSPS limit	SO ₂ – 92.0 lb/hr	Brinks Mist Eliminator	-	Remain the previous permitted limit
	Testing	H ₂ SO ₄ – 0.123 lb/ton	Brinks Mist Eliminator	-	-
08	Testing	NO _X - 52.2 lb/hr Ammonia – 40.0 lb/hr	Refrigeration SCR	-98.5%	
09	Testing	NO _X - 52.2 lb/hr Ammonia – 40.0 lb/hr	Refrigeration SCR	-98.5%	-
10	AP-42	NO _X - 10.0 lb/ton	best operation	-	-
	Highest lb/hr from Stack Test results of 2001- 2004	HNO ₃ – 0.389 x 1.25 x 40/8.5 = 2.3 lb/hr +1.1 lb/hr from car barn NO _X - 3.3 x 1.25 x 40/8.5 = 19.5 lb/hr	-	-	Maximum nitric acid production rate is 8.5 tons/hr, and maximum nitric acid blend production is 40 tons/hr. Stack test + 25%

AFIN: 70-00040 Page 6 of 16

Emission Factor Source (AP-42, testing, etc.)			Б			
SN (AP-42, testing, etc.) (Ib/ton, Ib/hr, etc.) Equipment Equipment				Control	Control	
Safety factor. Safety factor. Safety factor.	SN					Comments
Safety factor. Safety factor.		_	, , , , , , , , , , , , , , , , , , , ,	Equipment	Efficiency	
13		(ic.)	Cic.)			safety factor
Second	12	NCDC	2 0 1h/4 am of	nofui constad		safety factor.
18	13	NSPS			-	-
Nowledge	10	Droggg				
19	10			Dagnouse	-	-
Scfm x 011677 Ib/mmft³ x 60 min/hr x 1.2 NH₃ - 50,556 Scfm x 25 ppm x 17.1 Ib/lb-mol x Ib-mol/385.2 ft³ 60min/hr x 1.2 25	10		10/1011	_	_	
Ib/mmft³ x 60 min/hr x 1.2		*	_	_	_	
min/hr x 1.2						
NH ₃ - 50,556 scfm x 25 ppm x 17.1 lb/lb-mol x lb-mol/385.2 ft ³ 60min/hr x 1.2						
Scfm x 25 ppm x 17.1 lb/lb-mol x lb-mol/385.2 ft ³ 60min/hr x 1.2		11111/111 A 1.2				
Scfm x 25 ppm x 17.1 lb/lb-mol x lb-mol/385.2 ft ³ 60min/hr x 1.2		NH ₃ - 50.556				
17.1 lb/lb-mol x lb-mol/385.2 ft³ 60min/hr x 1.2 25 TANKS 4.0.9 VOC none - - -						
Comminstraction Comminstra						
25		lb-mol/385.2 ft ³				
26 TANKS 4.0.9 NH ₃ none - - 27 Testing PM 4.8E-7 lb/ton none - - 28 Testing PM 4.8E-7 lb/ton none - - 30 AP-42 Section 5.2 H ₂ SO ₄ - 0.0034 lb/1000 lb/1000 gallons none - - 31 SOCMI NH ₃ - 0.5 lb/hr none - - 32 SOCMI NH ₃ - 1.6 lb/hr none - - 33 Process Knowledge NO _X - 0.1 lb/hr none - - 4 Process Knowledge HNO ₃ - 0.1 lb/hr none - - 34 Process Knowledge PM ₁₀ - 0.7 lb/ton x 1.46 ton/hr none - -		60min/hr x 1.2				
26 TANKS 4.0.9 NH ₃ none - - 27 Testing PM 4.8E-7 lb/ton none - - 28 Testing PM 4.8E-7 lb/ton none - - 30 AP-42 Section 5.2 H ₂ SO ₄ - 0.0034 lb/1000 lb/1000 gallons none - - 31 SOCMI NH ₃ - 0.5 lb/hr none - - 32 SOCMI NH ₃ - 1.6 lb/hr none - - 33 Process Knowledge NO _X - 0.1 lb/hr none - - 4 Process Knowledge HNO ₃ - 0.1 lb/hr none - - 34 Process Knowledge PM ₁₀ - 0.7 lb/ton x 1.46 ton/hr none - -						
Testing	25	TANKS 4.0.9	VOC	none	-	-
Bb/ton PM 4.8E-7 none - -	26	TANKS 4.0.9	NH ₃	none	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	Testing	PM 4.8E-7	none	-	-
1b/ton			lb/ton			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	Testing	PM 4.8E-7	none	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	lb/ton			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	AP-42 Section	H_2SO_4 –	none	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.2	0.0034			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			lb/1000			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			gallons			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	SOCMI	$NH_3 - 0.5$	none	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	SOCMI	$NH_3 - 1.6$	none	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	Process	$NO_{X} - 0.1$	none	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			I	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				none	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	110113		
Knowledge lb/ton x 1.46 ton/hr	34			none	_	_
ton/hr						
		2 2 6				
	35A	Testing	$PM_{10} - 0.1$	baghouse	99%	-

AFIN: 70-00040 Page 7 of 16

		T	Т	1	
	Emission Factor	Emission		Control	
SN	Source	Factor	Control		Comments
311	(AP-42, testing,	(lb/ton, lb/hr,	Equipment	Equipment	Comments
	etc.)	etc.)	1 1	Efficiency	
	//	lb/hr			
35B	AP-42	PM 19.7 lb/hr	none		
38	$EF_{PM} = Total$	1 W1 17.7 10/111	Hone		
30				_	
	liquid drift				
	(lb/1000 gal) x				
	TDS Fraction				
	(ppm)				
	= 0.0834 lb/1000				
	gal x 1,560 ppm				
	$PM10 = EF_{PM} x$				
	flowrate				
	= 9,000 gpm x				
	EFPM				
40	TANKS Program	NH ₃ –			-
	C	0.22lb/hr			
41	Stack testing	$NH_3 - 10.0$	Chemical	-	24-hr BACT
	8	lb/hr	steam		limit is 13.8 lb/hr
		PM/PM10 - 4	scrubber		30-day rolling
		lb/hr	Scruosci		BACT limit is
		10/111			3.4 lb/hr
44	Mass Balance for	Scrubber	_	_	3. 4 10/111
44	sulfur oxides and	Scrubber	_	_	
	sulfuric acid.				
	surruric aciu.				
	Stack test from				
	similar plant plus				
	a safety factor of				
1.0	25%.			0.0010/ : 1 :	
46	0.00013 lb/1000	-	-	0.001% is design	
	gal			drift loss percent	
				provided by	
			2	manufacturer.	
13	NSPS	NO ₂ (3-hr):	SCR	95%	After installation
		3.0 lb/ton			of SCR and Tail
					gas preheater
	EPA/DOJ	NO ₂ (3-hr):			
		1.0 lb/ton			
		(excluding			
		SSM)			
		NO ₂ (rolling			
		365-days):			
L		J~/-	l	1	İ

AFIN: 70-00040 Page 8 of 16

SN	Emission Factor Source (AP-42, testing, etc.)	Emission Factor (lb/ton, lb/hr, etc.)	Control Equipment	Control Equipment Efficiency	Comments
		0.6 lb/ton			
	Vendor Info	NH ₃ : 20 ppm			
65	AP-42 or NSPS	varied	none		
and					
66,					
68					
67	AP-42	0.02 lb/ton	None		
14	Vendor	0.085 mg/acf	Scrubber	99.5 for	
and	Specification	PM		ammonia	
21					

14. TESTING REQUIREMENTS:

The permit requires testing of the following sources.

SN	Pollutants	Test Method	Test Interval	Justification
10	NOx	7E	Every five years	Necessary for efficiency check on Venturi & Packed Tower Scrubber
10	HNO ₃	Approved method	Every five years	Necessary for efficiency check on Venturi & Packed Tower Scrubber
07	SO_2	6C	Initial performance test	NSPS Requirement
05A and B	PM_{10}	Approved method	Initial and alternating annually.	Necessary to prove that PSD has not been triggered.
14, & 21	PM, PM ₁₀ , PM _{2.5}	Method 5 or 201A, and 202	Annually until 2 consecutive passes, then once every 5 years	Necessary to prove that PSD has not been triggered.
21	NH ₃	Approved	Annually until 3 consecutive	Necessary to prove adherence

AFIN: 70-00040 Page 9 of 16

SN	Pollutants	Test Method	Test Interval	Justification
		method	passes, then once every 3 years	to the non- criteria pollutant strategy.
44	SO ₃ NO _x H ₂ SO ₄ HNO ₃	Approved method	Every five years	Necessary to prove adherence to the non-criteria pollutant strategy.
08 & 09	NH ₃	CTM-027 or equivalent	Every five years	Verify emissions
59	NH ₃	CTM-027 or equivalent	Annually until 2 consecutive passes, then once every 5 years	Necessary to prove adherence to the non-criteria pollutant strategy.
49	PM PM ₁₀ PM _{2.5} SO ₂ VOC CH ₄ CO CO ₂ N ₂ O	Method 5 & 202 Method 201A & Method 202 Method 6C Method 25A Method 18 Method 10 Method 3A Method 320, ASTM D6348- 03 or other approved method	Annually until 2 consecutive passes, then once every 5 years	Verify emissions
50	VOC CO ₂	25A 3A	One Time Test	Verify emissions
50	Methanol	18 or 25A	Annually until 2 consecutive passes, then once every 5 years	Verify emissions
51	VOC Pre and Post Control CO NH ₃	25A 10 320	One Time Test	Verify emissions

AFIN: 70-00040 Page 10 of 16

SN	Pollutants	Test Method	Test Interval	Justification
51	Methanol CO ₂	18 or 25A 3A	Annually until 2 consecutive passes, then once every 5 years	Verify emissions
61	$\begin{array}{c} PM \\ PM_{10} \\ PM_{2.5} \\ SO_2 \\ VOC \\ CO \\ NO_x \end{array}$	Method 5 & 202 Method 201A & Method 202 6C 25A 10 7E	Annually until 2 consecutive passes, then once every 5 years	Verify emissions
13	NH ₃	CTM-027 or equivalent	Annually until 2 consecutive passes, then once every 5 years	Necessary to prove adherence to the non-criteria pollutant strategy.

15. MONITORING OR CEMS:

The permittee must monitor the following parameters with CEMS or other monitoring equipment (temperature, pressure differential, etc.)

SN	Parameter or Pollutant to be Monitored	Method (CEM, Pressure Gauge, etc.)	Frequency	Report (Y/N)
13	NO_x	CEM	Continuously	Y
07	SO ₂ emission rate	CEM	Continuously	Y
08 & 09	NO_x	CEM	Continuously	Y
41 and 63	Ammonia and particulate emission rates	Daily sampling consisting of two 12-hour composite sample	Continuously	Y
59	NO _x and N ₂ O	CEM	Continuously	Y
49	NO_x	CEM	Continuously	Y

16. RECORDKEEPING REQUIREMENTS:

The following are items (such as throughput, fuel usage, VOC content, etc.) that must be tracked and recorded.

			ì	
SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)

AFIN: 70-00040 Page 11 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
08 & 09	weak nitric acid 304,775		· ·	Y
08 & 09	production	months	Monthly	I
13	weak nitric acid	140,000 tons/12	Monthly	Y
	production	months	1.10111111	•
38, 46, 52, 60	Total Dissolve solid	1,560 ppm	Weekly	N
59	weak nitric acid production	461,725 tons/12 months	Monthly	Y
47	strong nitric acid production	5.2 tons per hour	Hourly	Y
47	strong nitric acid production	45,625 tons/12 months	Monthly	Y
10	Scrubber parameter	hydrogen peroxide concentration	Daily	N
07	Sulfuric acid production	200,750 ton/12 months	Monthly	Y
	Sulfuric acid production	550 tons of 100% sulfuric acid per day	Daily	Y
	Sulfuric acid emission limit	4.0 lb of SO ₂ per ton of acid production, expressed as 100% H ₂ SO ₄ , and based on a 3- hr average.	Continuously and averaged every 3-hours	N
	Annual SO ₂ Emissions (tpy on a calendar basis)	N/A	Annually	N
30	Sulfuric acid shipped	200,750 tons/12 months	Monthly	Y
All E2 Plant	Production	525,600 tons/12 months	Monthly	Y
05A and B	Scrubber liquid flow rate for each scrubber Gas pressure drop across unit Scrubber liquid pH	225 gal/min (minimum) 2.5 in. H ₂ O (minimum)	Daily	N

AFIN: 70-00040 Page 12 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		0.5 - 6.0	•	
41	BACT Limit PM	24-hour Average 0.223 lb/ton	Daily	Y
		30-day Average 0.054 lb/ton	Monthly	Y
All KT plant	Production	394,200 tons/12 months	Monthly	Y
	Scrubber liquid flow rate	225 gal/min (minimum)		
14	Gas Pressure Drop Across Unit	2.5 in H ₂ O (minimum)	Daily	N
	pH Exhaust Flow Rate	0.5 – 6.0 131,452 acfm (maximum)		
18	Baghouse Pressure Drop	$0.5 - 8.0 \text{ in H}_2\text{O}$	Daily	N
	Scrubber liquid flow rate	225 gal/min (minimum)	=	
21	Gas Pressure Drop Across Unit	2.5 in H ₂ O (minimum)	Daily	N
	pH Exhaust Flow Rate	0.5 – 6.0 131,452 acfm (maximum)		
63	PM emissions	24-hour Average 0.223 lb/ton	Daily	Y
		30-day Average 0.054 lb/ton	Monthly	Y
	AN Production	547,500 tons/12 months	Monthly	Y
49	NH ₃ production	565,750 tons/12 months	Monthly	Y
	Natural gas usage	7,076.7 MMscf per 12 months	Monthly	Y
53	Natural gas usage	9.0 MMscf per 12 months	Monthly	Y
	Hours of operation	No more than 3 hours during any	Daily	Y

AFIN: 70-00040 Page 13 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		24-hour period		
		unless HRU		
		outage		
51	Scrubber	30 gpm	Daily	N
	parameters	2 in H ₂ O	Daily	11
56	Natural gas	8.2 MMscf per	Monthly	Y
50	usage	12 months	wionany	•
57	Natural gas	1.5 MMscf per	Monthly	Y
57	usage	12 months	- Tylondiny	1
54	Natural gas	18.63 MMscf per	Monthly	Y
31	usage	12 months	wionany	1
54, 56, 57	Flare	No limit	As required	Y
	maintenance	1,0 111111	- Is required	*
	Amount of			
	Oleum offload			
	into the storage	394,000 tons		
	tank	.,000 00115		
44	Percent strength	30%	Monthly	N
	of the Oleum	219,000 tons		
	Amount of	215,000 tons		
	mixed acid			
	produced.			
	Scrubber liquid	5.0 gal/min		
	flow rate for each	(minimum)		
	scrubber	10 051 77 0	Daily	N
44	Gas pressure	10 - 35 in. H ₂ O		
	drop across unit			
	Scrubber liquid	0.5.7.5		
	pН	0.5 – 7.5		
25	C 11	40,000	3.6 .11	***
25	usage of gasoline	gallons/12	Monthly	Y
	NT:4: - A · 1	months		
29	Nitric Acid	250,000 tons/12	Monthly	Y
	Shipped	months	<u>, </u>	
40	AN Loading	65,000,000	Monthly	Y
	tonnage	tons/12 months	<u>, </u>	
58	Ammonia	226,300 tons/12	Monthly	Y
	Loading	months	<u>, </u>	
65 and 66	Hours of	100 hours per	Monthly	Y
	operation	calendar year	,	
	г .	Change oil and		
65 and 66	Engine	filter every 500	As needed	N
	maintenance	hours of		
		operation, or		

AFIN: 70-00040 Page 14 of 16

SN	Recorded Item	Permit Limit	Frequency	Report (Y/N)
		annually,		
		whichever comes		
		first;		
		Inspect air		
		cleaner every		
		1,000 hours of		
		operation or		
		annually,		
		whichever comes		
		first; and		
		Inspect all hoses		
		and belts every		
		500 hours of		
		operation or		
		annually,		
		whichever comes		
		first, and replace		
		as necessary.		
67	Prills Unloaded	36,500 tons per	Monthly	Y
07	Fillis Ullioaded	12 months	Monuny	1

17. OPACITY:

SN	Opacity	Justification for limit	Compliance Mechanism
08 & 09	10%	Compliance assurance for SCR operation	Daily Observation
07 & 13	10%	NSPS limit	Daily Observation
54, 61	5%	Department Guidance	Natural Gas Combustion
49, 59	0%	BACT limit	Daily Observation
53, 56, 57	0%	BACT limit	Natural Gas Combustion
05A and B, 18, 35A, 47, 63	5%	Department Guidance	Weekly Observation
52, 60	5%	Department Guidance	Weekly TDS
21, 27, 28	10%	Department Guidance	Daily Observation
14, 19	15%	Department Guidance	Daily Observation
34, 44	20%	Previous permit	Daily Observation
10, 38, 46	20%	Department Guidance	Weekly TDS
35B & 67	20%	Department Guidance	-
65	20%	Department Guidance	Annual Observation
66	5%	Department Guidance	Annual Observation

AFIN: 70-00040 Page 15 of 16

18. DELETED CONDITIONS:

Former SC	Justification for removal							
	No conditions were removed.							
	The conditions were removed.							

19. GROUP A INSIGNIFICANT ACTIVITIES:

The following is a list of Insignificant Activities including revisions by this permit.

20.

20.	Group A				Emis	sions	(tpy)			
Source Name	Category	PM/PM ₁₀ SO ₂	SO_2	VOC	ССО	NO _x	NO _x H ₂ S	S NH ₃		APs
	Jan 3	FIVI/FIVI ₁₀	SO_2	VOC	CO	NO _x	П ₂ S	МП3	Single	Total
Molten Sulfur Storage Tank (formerly SN-23)	B-21								0.001	0.001
Diesel Storage Tank (500 Gallon) (formerly SN-24)	A-3			0.001					0.002	0.002
Diesel Storage Tank (2,000 Gallon) (formerly SN-45)	A-3			0.002					0.003	0.003
Total	A-3			0.003						
Partwashers	A-13			2.11						
2 x Ammonia Flares	A-13	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Sulfur Unloading/Storag e	A-13						0.13			
Ammonia Offloading	A-13							0.44		
Tier 2 Warehouse	A-13	0.02								
Natural Gas Pipeline Knockout Pot	A-13			0.14						
Portable Cooling Tower	A-13	0.043								
E2 Prill Warehouse	A-13	1.03								

AFIN: 70-00040 Page 16 of 16

Total	A-13	5.49	0.01	2.26	0.01	0.01	0.13	0.54	0.01	0.01
Sulfuric Acid Solution Storage Tanks	B-21									

21. VOIDED, SUPERSEDED, OR SUBSUMED PERMITS:

The following is a list of all active permits voided/superseded/subsumed by the issuance of this permit.

	Permit #
Ī	0573-AOP-R19

El Dorado Chemical Company Permit #: 0573-AOP-R20

AFIN: 70-00040

\$/ton factor23.93Annual Chargeable Emissions (tpy)2160.44Permit TypeModificationPermit Fee \$5625.943

Minor Modification Fee \$ 500
Minimum Modification Fee \$ 1000
Renewal with Minor Modification \$ 500
Check if Facility Holds an Active Minor Source or Minor
Source General Permit
If Hold Active Permit, Amt of Last Annual Air Permit Invoice \$ 0
Total Permit Fee Chargeable Emissions (tpy) 235.1
Initial Title V Permit Fee Chargeable Emissions (tpy)

HAPs not included in VOC or PM:

Chlorine, Hydrazine, HCl, HF, Methyl Chloroform, Methylene Chloride, Phosphine, Tetrachloroethylene, Titanium Tetrachloride

Air Contaminants:

All air contaminants are chargeable unless they are included in other totals (e.g., H2SO4 in condensible PM, H2S in TRS, etc.)

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
PM		122.1	122.2	0.1	0.1	122.2
PM_{10}		101.7	101.8	0.1		
PM _{2.5}		95.7	95.7	0		
SO_2		403.4	403.5	0.1	0.1	403.5
VOC		40.3	40.4	0.1	0.1	40.4
СО		157.3	157.7	0.4		
NO_X		721.3	783	61.7	61.7	783
CO2e		1293490	1293490	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
Lead		0.06	0.06	0		
Arsenic*		0.06	0.06	0		
Cadmium*		0.06	0.06	0		
Formaldehyde*		0.39	0.39	0		
Hexane*		8.32	8.32	0		
Mercury	✓	0.06	0.06	0	0	0.06
Methanol*		28.21	28.21	0		
NH3**	✓	613.6	786.7	173.1	173.1	786.7
H2SO4**	✓	12.63	12.63	0	0	12.63
HNO3**	✓	11.95	11.95	0	0	11.95
HAPs		0	0.01	0.01		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	_	0		
1		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0		0		
		0		0		
		0	0	0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	_	0		
		0	_	0		
1		0	0	0	l	

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0		0		
		0		0		
		0		0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
1		0	0	0		

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0		0		
		0		0		
		0	0	0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	_	0		
1		0	0	0	l	

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0		0		
		0		0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0	0	0		
		0	0	0		
		0		0		
		0				
		0				
		0		0		
1		0	0	0	l	

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Chargeable Emissions	Annual Chargeable Emissions
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0	0	0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0		0		
		0	0	0		
		0	_	0		
		0		0		
		0				
		0				
		0		0		
I		0	0	0	I	l

Pollutant (tpy)	Check if Chargeable Emission	Old Permit	New Permit	Change in Emissions	Permit Fee Annual Chargeable Chargeable Emissions Emissions
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	