

DIVISION OF ENVIRONMENTAL QUALITY

DRAFT OPERATING AIR PERMIT

PERMIT NUMBER: 0693-AOP-R15

IS ISSUED TO:

Gerdau MacSteel Inc. 5225 Planters Road Fort Smith, AR 72916 Sebastian County

AFIN: 66-00274

PURSUANT TO THE RULES OF THE ARKANSAS OPERATING AIR PERMIT PROGRAM, RULE 26: THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

December 14, 2021 AND December 13, 2026

THE PERMITTEE IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:	
Demetria Kimbrough Associate Director, Office of Air Quality	Date

Division of Environmental Quality

AFIN: 66-00274

Table of Contents

SECTION I: FACILITY INFORMATION	4
SECTION II: INTRODUCTION	5
Summary of Permit Activity	5
Process Description	5
Rules and Regulations	6
Emission Summary	6
SECTION III: PERMIT HISTORY	11
SECTION IV: SPECIFIC CONDITIONS	16
SN-01 and SN-12	16
SN-02	29
SN-03	31
SN-04, SN-05, SN-11	33
SN-10	35
SN-13	37
SN-15, SN-25, and SN-27	39
SN-21	40
SN-22	41
SN-23	43
SN-24	44
SN-26	45
SN-14 and SN-29	46
SN-31	47
SN-33, 34, 35, and 36	49
SN-37	52
SN-39	53
SECTION V: COMPLIANCE PLAN AND SCHEDULE	58
SECTION VI: PLANTWIDE CONDITIONS	59
SECTION VII: INSIGNIFICANT ACTIVITIES	61
SECTION VIII: GENERAL PROVISIONS	63
Appendix A	
Appendix B	
Appendix C	
Appendix D	

AFIN: 66-00274

List of Acronyms and Abbreviations

Ark. Code Ann. Arkansas Code Annotated

AFIN Arkansas DEQ Facility Identification Number

C.F.R. Code of Federal Regulations

CO Carbon Monoxide

COMS Continuous Opacity Monitoring System

HAP Hazardous Air Pollutant

Hp Horsepower

lb/hr Pound Per Hour

NESHAP National Emission Standards (for) Hazardous Air Pollutants

MVAC Motor Vehicle Air Conditioner

No. Number

NO_x Nitrogen Oxide

NSPS New Source Performance Standards

PM Particulate Matter

PM₁₀ Particulate Matter Equal To Or Smaller Than Ten Microns

PM_{2.5} Particulate Matter Equal To Or Smaller Than 2.5 Microns

SNAP Significant New Alternatives Program (SNAP)

SO₂ Sulfur Dioxide

SSM Startup, Shutdown, and Malfunction Plan

Tpy Tons Per Year

UTM Universal Transverse Mercator

VOC Volatile Organic Compound

AFIN: 66-00274

SECTION I: FACILITY INFORMATION

PERMITTEE: Gerdau MacSteel Inc.

AFIN: 66-00274

PERMIT NUMBER: 0693-AOP-R15

FACILITY ADDRESS: 5225 Planters Road

Fort Smith, AR 72916

MAILING ADDRESS: P.O. Box 1592

Fort Smith, AR 72902

COUNTY: Sebastian County

CONTACT NAME: Dale Fentress

CONTACT POSITION: Environmental Manager

TELEPHONE NUMBER: (479) 649-4034

REVIEWING ENGINEER: Shawn Hutchings

UTM North South (Y): Zone 15: 3907864.86 m

UTM East West (X): Zone 15: 374946.61 m

AFIN: 66-00274

SECTION II: INTRODUCTION

Summary of Permit Activity

Gerdau MacSteel operates a scrap steel recycling mill near Fort Smith, in Sebastian County, Arkansas. MacSteel produces approximately 250 grades of steel including alloy, carbon, and resulfurized steels primarily from steel scrap using the electric arc furnace (EAF) process.

This permit is to replace the two existing EAFs with one new EAF which will exhaust through the same existing baghouses and remain SN-01 and 12. The new EAF will be subject to NSPS Subpart AAb. Also SN-30 and SN-38 were removed from the permit.

The facility also requested to bubble limits for natural gas sources. This change was not made because those sources have PSD limits and should remain separate.

There were no increases in permitted emissions. All pollutants emission rates were lower.

Process Description

In general, raw materials, including scrap, fluxes, iron carbide, direct reduced iron, hot briquetted iron, pig iron, and other materials, are brought to the facility by rail or truck. Scrap and flux are charged to EAFs and melted by application of electric current through the mixture. Molten metal is poured into a ladle and transferred by an overhead crane to a ladle refining station. Once the molten steel is transferred to the ladle refining station, additional alloys and reagents are added to adjust the chemistry.

From the ladle refining station, the steel is transferred to the stir station and vacuum tank degassers At the stir station, the steel is stirred by the introduction of argon gas into the bottom of the ladle. Additional alloys also may be added to adjust the chemistry. The steel is then transferred to the vacuum tank degassers. At the degassers, dissolved gases are removed by subjecting the steel to a vacuum. Heat also may be added to the steel with the use of electric arcs.

After leaving the degasser, the steel is transferred to a caster where it is drained from the ladle into a tundish and then into the molds. At the caster, the steel solidifies to a round bar. The bars are cut to length and transferred to either the "as cast" cooling bed or directly to the reheat furnace. Bars transferred to the "as cast" cooling bed are sold or stored for future processing.

In the reheat furnace, the steel bars are heated to the temperature required for rolling. The bars are then rolled to a smaller diameter. Bars exiting the rolling mill are cut to length and transferred to the "rolled product" cooling bed. The bars are then deburred and bundled for shipment, for further processing in the heat treat furnaces and/or bar turner.

All EAF and melt shop emissions are combined in a single duct and then split between two baghouses, SN-01 and SN-12.

AFIN: 66-00274

Rules and Regulations

The following table contains the rules and regulations applicable to this permit.

Rules and Regulations
Arkansas Air Pollution Control Code, Rule 18, effective March 14, 2016
Rules of the Arkansas Plan of Implementation for Air Pollution Control, Rule 19, effective May 6, 2022
Rules of the Arkansas Operating Air Permit Program, Rule 26, effective March 14, 2016
40 CFR 52.21, Prevention of Significant Deterioration
40 CFR Part 60, Subpart AAa - Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After August 7, 1983 but before May 16, 2022
40 CFR Part 60, Subpart AAb - Standards of Performance for Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After May 16, 2022
40 CFR Part 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines
40 CFR Part 63, Subpart YYYYY, National Emission Standards for Hazardous Air Pollutants for Area Sources: Electric Arc Furnace Steel Making Facilities
40 CFR Part 64, Compliance Assurance Monitoring (CAM)

Emission Summary

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

	EMISSION SUMMARY				
Source		D 11	Emission Rates		
Number	Description	Pollutant	lb/hr	tpy	
Tota	ıl Allowable Emissions	PM PM ₁₀ PM _{2.5} * SO ₂ VOC CO NO _X Lead	43.9 45.7 41.4 109.8 33.6 468.9 136.6 0.32	147.5 160.7 150.6 339.9 87.2 1681.2 311.7 1.02	

	EMIS	SION SUMMARY		
Source	D '.'	D-11-44	Emission Rates	
Number	Description	Pollutant	lb/hr	tpy
	HAPs	Total HAPs	8.35	9.9
		PM	27.4	109.2
		PM_{10}	31.4	123.9
		$PM_{2.5}$	31.4	123.9
01	(2 existing EAFs)	SO_2	90.3	331.6
12	Melt Shop Baghouse 1	VOC	12.7	44.7
12	Melt Shop Baghouse 2	CO	421.4	1547.4
		NO_x	43.9	161.1
		Lead	0.3	1.0
		HAPs	1.1	4.1
		PM	15.7	55.1
		PM_{10}	19.5	68.5
	(Single New EAE)	SO_2	39.2	137.6
01	(Single New EAF) Melt Shop Baghouse 1 Melt Shop Baghouse 2	VOC	12.8	44.8
12		CO	196.0	688.0
	Melt Shop Baghouse 2	NO_x	34.3	120.4
		Lead	0.29	1.03
		HAPs	0.79	2.63
		PM	0.7	2.7
		PM_{10}	0.7	2.7
		$PM_{2.5}$	0.7	2.7
02	Reheat Furnace	SO_2	0.1	0.2
02	Relieat Fulliace	VOC	0.2	0.6
		CO	1.6	6.9
		NO_x	6.3	27.6
		HAPs	0.1	0.4
		PM	0.7	2.7
		PM_{10}	0.7	2.7
		$PM_{2.5}$	0.7	2.7
03	Boiler	SO_2	0.1	0.2
03	Done	VOC	0.2	0.6
		CO	1.6	6.9
		NO_x	6.3	27.6
		HAPs	0.1	0.4
		PM	0.6	2.3
		PM_{10}	0.6	2.3
04	Heat Treat Furnace 1	$PM_{2.5}$	0.6	2.3
		SO_2	0.5	2.0
		VOC	0.5	2.0

	EMISSION SUMMARY			
Source	Description	Pollutant	Emissic	on Rates
Number	Description	Tonutant	lb/hr	tpy
		CO	1.3	5.7
		NO_x	5.2	22.4
		HAPs	0.1	0.3
		PM	0.6	2.3
		PM_{10}	0.6	2.3
		$PM_{2.5}$	0.6	2.3
05	Heat Treat Frames 2	SO_2	0.1	0.2
05	Heat Treat Furnace 2	VOC	0.2	0.5
		CO	1.4	5.9
		NO_x	5.4	23.6
		HAPs	0.1	0.4
		PM	0.2	0.8
10	Deburring Line	PM_{10}	0.2	0.8
		$PM_{2.5}$	0.2	0.8
		PM	0.9	3.9
		PM_{10}	0.9	3.9
	Heat Treat Furnace 3	$PM_{2.5}$	0.9	3.9
1.1		SO_2	0.1	0.2
11		VOC	0.2	0.8
		CO	6.0	26.2
		NO_x	5.0	21.7
		HAPs	0.2	0.6
		PM	0.6	2.1
		PM_{10}	0.6	2.1
1.2	V T1- D	$PM_{2.5}$	0.6	2.1
13	Vacuum Tank Degasser	SO_2	0.2	0.6
		CO	17.2	74.9
		NO_x	0.2	0.6
		PM	0.5	0.8
14	Caster Steam Exhaust 1	PM_{10}	0.3	0.8
		$PM_{2.5}$	0.3	0.8
15	Bar Turner Building	VOC	1.7	6.1
		PM	0.2	0.8
		PM_{10}	0.2	0.8
		$PM_{2.5}$	0.2	0.8
21	Scrap Bar Cutting	SO_2	0.1	0.1
		VOC	0.1	0.3
		CO	0.3	1.0
		NO_x	1.1	4.8

	EMISSION SUMMARY			
Source	Description	Pollutant	Emissio	n Rates
Number	Description	Tonutunt	lb/hr	tpy
		HAPs	0.02	0.09
		PM	2.4	0.3
22	Slag Processing	PM_{10}	1.0	0.2
22	Stag Trocessing	Lead	0.01	0.01
		HAPs	0.27	0.31
23	Hydraulic Fluid Usage	VOC	3.6	14.4
24	Painting/Labeling of Steel	VOC	7.5	3.8
24	Bars	HAPs	6.3	3.2
25	Bar Turner Building 2	VOC	1.7	6.1
		PM	0.1	0.2
		PM_{10}	0.1	0.2
		$PM_{2.5}$	0.1	0.2
26	Car Bottom Furnace	SO_2	0.1	0.1
20		VOC	0.1	0.2
		CO	0.5	1.9
		NO_x	1.5	6.6
		HAPs	0.01	0.05
27	Bar Turner Building 3	VOC	1.7	6.1
		PM	1.3	5.6
29	Caster Steam Exhaust 2	PM_{10}	1.3	5.6
		PM _{2.5}	1.3	5.6
		PM	0.1	0.2
31	Lime Storage Silo System	PM_{10}	0.1	0.2
		$PM_{2.5}$	0.1	0.2
		PM	0.7	0.2
		PM_{10}	0.7	0.2
		$PM_{2.5}$	0.7	0.2
33	Emergency Diesel Engine	SO_2	0.7	0.2
		VOC	0.7	0.2
		CO	2.0	0.5
		NO_{x}	9.3	2.4
		HAPs PM	0.01	0.01
		PM PM_{10}	0.7	0.2
34	Emergency Diesel Engine	PM_{10} $PM_{2.5}$	0.7	0.2
J 4	Emergency Dieser Engine	SO_2	0.7	0.2
		VOC	0.7	0.2

EMISSION SUMMARY				
Source	Description	Pollutant	Emission Rates	
Number	Description		lb/hr	tpy
		CO	2.0	0.5
		NO_x	9.3	2.4
		HAPs	0.01	0.01
		PM	0.7	0.2
		PM_{10}	0.7	0.2
		$PM_{2.5}$	0.7	0.2
35	Emanganay Diagal Engina	SO_2	0.7	0.2
33	Emergency Diesel Engine	VOC	0.7	0.2
		CO	2.0	0.5
		NO_x	9.3	2.4
		HAPs	0.01	0.01
		PM	1.0	0.3
		PM_{10}	1.0	0.3
		$PM_{2.5}$	1.0	0.3
26	E	SO_2	16.0	4.0
36	Emergency Diesel Engine	VOC	1.0	0.3
		CO	7.2	1.8
		NO_x	31.2	7.8
		HAPs	0.01	0.01
		PM	4.4	12.6
37	Roadway Emissions	PM_{10}	3.8	11.2
	, and the second	$PM_{2.5}$	0.5	1.3
		PM	0.1	0.1
		PM_{10}	0.1	0.1
		$PM_{2.5}$	0.1	0.1
	Administrative Building	SO_2	0.1	0.1
SN-39	Emergency Generator	VOC	0.1	0.1
	(162 hp)	CO	4.4	1.1
	•	NO_x	2.6	0.7
		Lead	0.01	0.01
		HAPs	0.01	0.01

^{*}PM_{2.5} limits are source specific, if required. Not all sources have PM_{2.5} limits.

^{**}HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated.

AFIN: 66-00274

SECTION III: PERMIT HISTORY

Minor Source **Permit 693-A** was issued on October 1, 1982, with emissions of each criteria pollutant permitted at less than 100 tons per year.

Permit 693-AR-1 was issued on January 3, 1990, allowing the installation of a new ladle furnace.

PSD **Permit 693-AR-2** was issued on October 28, 1993. This permit was a result of testing on the baghouse exhaust which showed emissions greater than 100 tons per year for NO_x, PM/PM₁₀, CO, and SO₂. The minor source baseline date was triggered by the submittal of that PSD application. The minor source baseline date is January 8, 1993 for Sebastian County.

On April 5, 1994, permit **693-AR-3** was issued so that automated steel bar deburring equipment could be installed. This permit was a minor modification. A collection system, consisting of both a cyclone and a fabric filter, was installed to control emissions from this source. This was an 8,500 cfm system. The manufacturer's estimated emission rate was 0.0025 gr/scfm or 0.18 lb/hr.

On January 27, 1995, **Permit 693-AR-4** was issued for the installation of a spark arrestor in the Ladle Metallurgical Furnace duct. An investigation in the cause of failing a recent particulate test of the baghouse revealed that an increased amount of spark carry over from the LMF was damaging the filter media in the baghouse. None of the emission rates were affected by that modification.

Permit 693-AOP-R0 was issued on February 18, 1998, and allowed the installation and operation of a second baghouse to control emissions from the melt shop, increasing steel production from 74 to 86 tons per hour, incorporating minor emission sources previously not permitted (heat treat #3 and bar turner #2), and revising emission factors based on continuous emission monitoring data and changes to AP-42 for natural gas combustion. This permit was the second PSD permit and the first Title V permit for this facility. A summary of the PSD review for permit 693-AOP-R0 is presented below.

Summary of PSD review for air permit 693-AOP-R0

The following describes the PSD review required for issuance of Permit 693-AOP-R0. These issues are presented here for information purposes only, and are not part of this modification.

MacSteel is considered a major stationary source under the PSD regulations. Permit 693-AOP-R0 included sulfur dioxide (SO₂), carbon monoxide (CO), nitrogen dioxide (NO₂), particulate matter (PM/PM₁₀), and lead (Pb) emission increases of 185.3 tpy, 308.7 tpy, 47.6 tpy, 75.7 tpy, 0.68 tpy, respectively. These increases exceeded the PSD significance levels and were subject to

AFIN: 66-00274

PSD review. Emission increases of 23.3 tpy volatile organic compounds (VOC) were below the significance level, therefore, VOC emissions were not subject to PSD review.

The PSD regulations mandate that a case-by-case Best Available Control Technology (BACT) analysis be performed on all sources which were directly associated with enhancing the mill's steel production and heat treat furnace #3. The BACT determination is summarized below.

Summary of BACT Determination			
Source	Description	Pollutant	Control Technology
			Fabric Filter
		SO_2	Use of high quality scrap
SN-01 SN-12	Electric Arc Furnaces (2 baghouses)	CO	Side draft hood system
51, 12	(2 oughouses)	NO _x	Oxyfuel natural gas burners
			Fabric Filter
SN-06	Caster	PM/PM ₁₀	Routed to baghouse
		PM/PM ₁₀	Combustion of natural gas
SN-11	Heat Treet Frances #2	SO_2	Combustion of natural gas
SN-11	Heat Treat Furnace #3	CO	Good combustion practices
		NO _x	Ultra low-NO _x burners
SN-22	Slag processing and storage piles	PM/PM ₁₀	Water spray on transfer points and slag dumping area
SN-07	Ladle Metallurgy Furnace (LMF)	PM/PM ₁₀	Routed to Fabric Filters (SN-01 and SN-12)

Permit 693-AOP-R1 was issued on December 11, 1998. It consisted of adding a car bottom furnace (heat input of 5 MMBtu/hr), changing the hydraulic fluid used from ethylene glycol to diethylene glycol, including an alternative status inspection procedure for the melt shop baghouses, and adding sources to the insignificant source list.

Permit 693-AOP-R2 was issued on December 4, 2000. It included removal of the hourly steel production limit of 86 tons per hour which was justified by the requirement to operate continuous emission monitors on the two EAF baghouses. The permit also included newly calculated emission limits for affected sources using an hourly production rate of 92 tph. The annual steel production limit remained unchanged. The increase of steel production to 92 tph resulted in a facility wide increase of 0.1 tpy of PM/PM₁₀, 0.3 tpy of SO₂, 0.3 tpy of NO_x, 4.6 tpy of CO, 4.5 tpy of VOC, and 0.3 tpy of HAPs.

Permit 693-AOP-R3 was issued on March 9, 2001. It included the addition of two new buildings to be located on the property immediately south of the existing facility. These

AFIN: 66-00274

buildings include one new source, Bar Turner Building #3, and one insignificant source, bar straighteners. The potential to emit for the new source was 5.6 tons per year of VOC.

Permit 693-AOP-R4 was issued on March 27, 2002. In this modification MacSteel was permitted to construct a second steam exhaust (SN-29) for the caster area to remove excess steam within the building. The current steam exhaust (SN-14), which is currently listed as an insignificant activity, must also be included in the permit as a source. The annual emission for SN-14 was 0.66 tpy, and the annual emission for SN-29 was 5 tpy. The permittee maintained all limits and recordkeeping requirements as stated in the past permit.

Permit 693-AOP-R5 was issued on August 7, 2003. In this permitting action MacSteel was issued its first renewal to the original Title V Operating Permit. A Compliance Assurance Monitoring (CAM) Plan was submitted, approved, and incorporated into the conditions of the permit. The CAM affected sources at this facility were the Melt Shop Baghouses (SN-01 and SN-12).

Other permit actions included were incorporation of two minor modifications approved on November 12, 2002, and January 31, 2003. The first of these minor modifications allowed the installation and operation of a 53 MM Btu/hr natural gas-fired boiler (SN-30). Limited operation of SN-30 was required as not to exceed Title V minor modification criteria. The second minor modification allowed the use of landfill gas at the Heat Treat Furnace (SN-04). Both of these permit changes caused increased emissions in the form of the typical products of combustion.

A modification was also included in this permit action. This modification allowed the unlimited use of the boiler allowed by the minor modification approved on November 12, 2002 (installation of SN-30 mentioned above). Unlimited operation of SN-30 did not trigger PSD review.

Permit 693-AOP-R6 was issued on August 24, 2004. This modification incorporated provisions approved in a minor modification acceptance letter dated February 14, 2004. It allowed the permittee to melt up to 15,000 lbs of turnings or machine shop borings per heat of steel at the Melt Shop (SN-01 and SN-12). Preliminary test runs, approved by the Air Division — Enforcement Branch, have shown that emissions are not affected by this change in operation. CEMS operated at the affected sources will continue to be operated to further demonstrate compliance with permitted limits.

Permit 693-AOP-R7 was issued on November 9, 2005. This permit modification allowed MacSteel to install twin vacuum tank degassers (VTD) to replace the existing vacuum arc degasser (VAD). Due to process and steam capability, only one VTD can be operated at a time, limiting emissions to the same level as the currently permitted VAD. The steam condenser tank and steam exhaust tank were relocated. MacSteel also installed a new lime silo which vents to the existing baghouse, SN-01. This permit also increased the 24-hour average steel production rate from 92 to 98 tons per hour (tph). This increase was possible due to a lower caster "saw level floor" and lower caster saws which increase the metallurgical height of the caster. This will increase the caster speed, which in turn can achieve higher steel production. The annual

AFIN: 66-00274

production limit of 631,584 tons per year was not changed. This change resulted in slight emissions increases at SN-13, SN-14, SN-15, SN-22, SN-23, SN-24, SN-25, SN-27 and SN-29. Quanex also requested the following: revise permit conditions 66 and 67 for miscellaneous process-related painting/labeling (SN-24); remove the designation of "Safety Kleen" from the parts washers in the Insignificant Activities list; add two roughing stands to the rolling mill operations listed in the Insignificant Activities list; add one hot saw for rolled product to the Insignificant Activities list; and increase slag production from 72,800 to 87,780 tons per year. These changes resulted in increases in permitted emission rates of 1.6 tpy PM/PM₁₀, 0.1 tpy SO₂, 2.8 tpy VOC, 4.6 tpy CO, and 0.1 tpy NO_x.

Permit 693-AOP-R8 was issued on February 16, 2007. This modification added one new 10.0 MMBtu/hr natural gas-fired ladle preheater (exhausts to SN-01 and SN-12); permitted an existing 7.0 MMBtu/hr ladle preheater (exhausts to SN-01 and SN-12); updated the capacity of the three existing permitted ladle preheaters to 7.0 MMBtu/hr (exhaust to SN-01 and SN-12); added a new lime silo with baghouse (SN-31); and added a baghouse for the lime transfer system (exhausts to SN-01 and SN-12). In addition, Specific Condition #73b was updated in accordance with changes to 40 CFR Part 60, Subpart Dc.

Permit 693-AOP-R9 was issued on May 27, 2011. This permit was the Title V renewal for the facility. Changes to this permit included: Adding existing Emergency Diesel Engines as sources due to MACT applicability, adding MACT Subpart YYYYY requirements, adding roadway emissions, and allowing SN-21 to cut scrap from offsite.

Permit 693-AOP-R10 was issued November 25, 2014. MacSteel added an A-7 Insignificant Activity to the insignificant activities list in this permitting action.

Permit 693-AOP-R11 was issued August 29, 2016. This permit was the Title V renewal for the facility. It also incorporated an increase in operation at the Melt Shop. PM_{2.5} was permitted for the first time at 153.1 tpy. All other pollutants decreased or did not change.

Permit 693-AOP-R12 was issued on June 16, 2021. This permit was a minor modification to change slag processers and replace, SN-22, slag processing and to add a powerscreen, SN-38. Permitted emissions increased 0.02 tpy of lead and 0.33 tpy of HAPs. All other pollutants stayed the same or were lowered.

Permit 693-AOP-R13 was issued on December 14, 2021. This permit was the Title V renewal for the facility. HAP emissions increased 3.08 tpy due to changes in emissions factors and standardized permit practices.

Permit 693-AOP-R14 was issued on July 28, 2022. This permit was add a 162 hp, rich burn, natural gas fired spark ignition emergency generator (SN-39), increase the material throughput at SN-22 and SN-38 from 93,568 to 158,240 tons of slag per year to account for the addition of mill scale and used refractory materials processed at these sources, and remove cyclone and baghouse

AFIN: 66-00274

control devices from the automated deburring line (SN-10) to resolve clogging issues with the control equipment.

Permitted emission rates are increasing/decreasing by 2.4 tpy PM, 2.2 tpy PM $_{10}$, 0.9 tpy PM $_{2.5}$, 0.1 tpy SO $_2$ /VOC, 1.1 tpy CO, 0.7 tpy NO $_x$, 0.01 tpy Lead and -0.24 tpy HAPs. HAPs are decreasing because the previous emission rate at SN-22 (0.31 tpy HAPs) was a typographical error and should have been 0.031 tpy.

AFIN: 66-00274

SECTION IV: SPECIFIC CONDITIONS

SN-01 and SN-12 Melt Shop Baghouse 1 and 2

Source Description

Gerdau has been permitted to replace existing EAFs with a single EAF. Both scenarios are listed below. Scrap iron and steel and scrap substitutes are received by rail and truck. After unloading, the scrap is either stored in stockpiles or loaded into furnace charging buckets. The scrap, lime, alloys, and coke/coal are charged into one of two electric arc furnaces (EAFs). Lime and carbon (fluxes) are handled and stored in bulk form. Charging and melting cycles are staggered between the furnaces. There are no limitations which would preclude tapping both furnaces at the same time or charging one furnace while tapping the other. The two exiting EAFs are subject to NSPS-AAa. The new EAF is subject to NSPS Subpart AAb. All EAF emissions are split between two baghouses, SN-01 and SN-12.

The two EAFs operate in a batch mode. During normal operation, cold scrap metal, scrap substitutes, coke/coal, and lime are charged into the brick-lined EAFs (15 feet in diameter) powered by transformers and auxiliary natural gas-fired oxy fuel burners. The charging and melting cycles are staggered between the furnaces. After charging the furnace(s), the lid or roof of the EAF(s) is swung into position and a large electrical potential is applied to the carbon electrodes. The combination of the heat from the arcing process, chemical energy from oxygen lances, and the heat from the auxiliary burners melt the scrap into molten steel. As the scrap begins to melt, the temperature of the exhaust gas from the EAF(s) increases appreciably. When the melting is complete and oxygen lancing is performed, the temperature of the molten steel can approach 3,000°F. This operational cycle is repeated approximately every 90 minutes.

The capture system for exhaust gases from the EAFs is comprised of furnace side draft hoods and an overhead roof exhaust system via a canopy hood. The side draft hood on each furnace encompasses the electrodes and other furnace roof penetrations. Side draft hoods were installed as original equipment in 1984 to allow the furnaces to operate under positive pressure which prevents reoxidation of the steel during the refining process. These hoods are the primary emission capture mechanism during furnace roof-on operations. During roof-off operations (charging and tapping) and cooling of the captured gases from the side-draft hoods, emission control is accomplished by regulating the gas flow rate through the roof canopies which enables the system to control the exit gas temperature to the baghouse inlets.

After the steel is melted, it is refined at the ladle refining station through the addition of alloys and reagents, along with heat. Emissions from the refining process are collected by a side-draft hood and ducted through a spark arrestor and into the melt shop baghouse (SN-01). Fugitive emissions from the refining process are collected by melt shop baghouses (SN-01 and SN-12). Refined steel is conveyed to a stir station where argon gas is added to the bottom of the ladle. At this stage, additional alloys can be added. The steel is then conveyed to one of two vacuum tank degassers (SN-13) where dissolved gases are removed through application of a vacuum.

AFIN: 66-00274

Emissions from the stir station and vacuum tank degassers (door open) are collected with hoods and ducted to the baghouses. Emissions from the vacuum tank degassers are collected by the steam injector when the door is closed.

After the temperature and composition of the molten steel is adjusted at the vacuum degassers, the molten steel is transferred to the continuous caster. The molten steel is poured from the ladle into a tundish, which funnels the molten steel into a mold. The steel solidifies as it passes through the water-cooled mold, providing immediate cooling of the outer skin. At this point, the center of the steel is still molten. The caster produces round bars. Emissions from the continuous caster are captured by the canopy hood and ducted to the melt shop baghouses (SN-01, SN-12). This hood is estimated to capture 100% of emissions generated at the caster. Exhausts from the caster cooling zones and caster hot saws are released to the atmosphere through vents SN-14 and SN-29.

Molten metal is tapped from the EAFs into a ladle and transported to the ladle metallurgy furnace (LMF). The LMF station is used primarily to adjust the composition and temperature of the steel. The processes conducted at the LMF station include the injection/addition of alloys, fluxes, and non-ferrous metals. Emissions from the LMF station can be either gaseous or in particulate form. Particulate emissions are generally attributed to dust associated with fluxes, slag, and various additives. Gaseous emissions are generally associated with the oxidation of metals. Emissions from the LMF are captured by the side-draft hood and ducted to the EAF baghouse (SN-01). Fugitive emissions from the LMF are collected by melt shop baghouses (SN-01 and SN-12).

MacSteel utilizes four natural gas-fired tundish preheaters, each with a maximum heat input capacity of 1.2 MMBtu/hr. These units are used to raise the temperature of the tundishes prior to transfer of molten steel to the ladles. Low-NOx burners are used in the preheaters to minimize emissions of nitrogen oxides. The tundish preheaters emit natural gas combustion by-products which are captured by the roof canopy system and ducted to the EAF baghouses (SN-01 and SN-12).

Ladle preheaters. MacSteel incorporates five natural gas-fired ladle preheaters, four with a maximum heat input of 7.0 MMBtu/hr and one with a maximum heat input capacity of 10.0 MMBtu/hr. These units are used to raise the temperature of the ladles prior to transfer of molten steel to the ladles. Low-NOx burners are used in the preheaters to minimize emissions of nitrogen oxides. Emissions from these preheaters are vented to the melt shop baghouses and are addressed in the section discussing emission points SN-01 and SN-12.

Ladle Dryout, Refractory Dryers. MacSteel utilizes numerous ladles and tundishes. Each ladle or tundish requires a certain amount of refractory brick. After time, the refractory lining in the ladles and tundishes needs to be replaced. The removal of the refractory lining is accomplished using jack hammers. This operation is associated with the emission of small amounts of particulate in the building. As such refractory removal is considered an insignificant activity. After removal of the old refractory lining, new refractory is applied and cured. The mill incorporates one (1) natural gas-fired ladle dryout with a maximum heat input capacity of 1.2

AFIN: 66-00274

MMBtu/hr and six (6) natural gas-fired refractory dryers each with maximum heat input capacity of 1.2 MMBtu/hr.

Emissions from the Caster, Ladle Metallurgy Furnace (LMF), Tundish Preheaters, Ladle Dryout, Refractory Dryers, and Ladle Preheaters, are vented to the EAF baghouses (SN-01 and SN-12).

The dust collection equipment for the two EAFs, LMF, caster, stir station, vacuum tank degassers, and other melt shop emission sources consists of two multi-compartment, positive pressure baghouses (SN-01 and SN-12). Each module contains multiple filter bags, with all necessary reverse-air bag cleaning mechanisms, flow control, and material transfer and removal equipment. The design of the baghouses allows for on-line maintenance and cleaning. The airmoving mechanism for the systems consists of multiple blowers. SN-01 has a single exhaust stack, while SN-12 has a roof monitor vent along the length of the roof.

Specific Conditions

1. The permittee shall not exceed the emission rates set forth in the following table. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM	27.4	109.2
SN-01		$PM_{10(filterable)}$	27.4	109.2
SN-12	Melt Shop	SO_2	90.3	331.6
(Existing	Baghouse 1 and 2	CO	421.4	1547.4
EAFs)		NO_x	43.9	161.1
		Lead	0.3	1.0

2. The permittee shall not exceed the emission rates set forth in the following table. The HAPs below exclude lead. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-01 SN-12 (Existing EAFs)	Melt Shop Baghouse 1 and 2	HAPs	1.1	4.1
SN-01 SN-12 (New EAF)	Melt Shop Baghouse 1 and 2	PM HAPs	15.7 0.79	55.1 2.63

3. The emissions from SN-01 and SN-12 shall not exceed the values in the following table. Compliance with this condition will be shown by compliance with Specific Conditions 4, 16, 17 and 31, and 16. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

AFIN: 66-00274

SN	Pollutant	lb/hr	tpy
SN-01 SN-12 (Existing EAFs)	PM _{10(total)} PM _{2.5} VOC	31.4 31.4 12.7	123.9 123.9 44.7
SN-01 SN-12 New EAF	PM ₁₀ SO ₂ VOC CO NO _x Lead	19.5 39.2 12.8 196.0 34.3 0.29	68.5 137.6 44.8 688.0 120.4 1.03

Specific Conditions 4 - 15 for the Existing two EAFs

4. The permittee shall measure the particulate emissions every twenty-four months from the melt shop baghouse SN-01 using Method 5, and the melt shop baghouse SN-12 using method 5D. The permittee shall also conduct test for condensable particulate emissions concurrently using EPA reference Method 202. The sampling time and sample volume for each run shall be at least 4 hours and 4.50 dscm (160 dscf). Each test shall consist of three runs. The test runs on both baghouses shall be conducted simultaneously, unless inclement weather interferes. The permittee shall report all emissions measured as PM₁₀ or may conduct separate PM₁₀ testing using EPA Reference Method 201 or 201A as found in 40 CFR Part 51, Appendix M. These tests shall be conducted in accordance with Plantwide Condition 3 and on the permittee's current testing schedule. To demonstrate compliance with the filterable particulate limit (0.0018 gr/dscf and 27.4 lb/hr), the concentration of particulate matter shall be determined using the following equation:

$$CST = \frac{\{C_1 * Q_1 + C_2 * Q_2\}}{\{Q_1 + Q_2\}}$$

where: CST= average concentration of filterable particulate matter

 $C_1 = concentration \ of \ PM \ from \ SN-01 \ (gr/dscf)$

 C_2 = concentration of PM from SN-12 (gr/dscf)

 $Q_1 = flow \ rate \ of \ stack \ gas \ from \ SN-01 \ (dscf/hr)$

 $Q_2 = flow rate of stack gas from SN-12 (dscf/hr)$

[Reg.19.304 and 40 C.F.R. § 60.275a(e), 40 CFR Part 64, and 40 CFR 60.275a(e)]

5. The average concentration of filterable particulate matter from SN-01 and SN-12 calculated using the equation in Specific Condition 0 (CST) shall not exceed 0.0018 gr/dscf. [Reg.19.501 *et seq.*, Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

- 6. The permittee shall not emit any gases from SN-01 or SN-12 with an average opacity of 3% or greater, as measured by EPA Reference Method 9. Visible emission observations shall be conducted on SN-12 at least once-per-day by a certified visible emission observer when at least one of the furnaces is operating in the melting and refining period, unless inclement weather prevents. It shall be noted on the observation form that the readings were taken during the melting and refining period. These observations shall be performed for at least three 6-minute periods. [Reg.19.304 and 40 C.F.R. § 60.272a(a)(2); Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E; and 40 C.F.R. § 64]
- 7. The permittee shall not emit any gases from the melt shop due solely to the operations of the EAFs with an opacity of 6% or greater, as measured by EPA Reference Method 9 during the particulate testing. The permittee shall be responsible for these observations and shall keep records showing compliance with this condition. These observations shall be performed for at least three 6-minute periods. [Reg.19.304 and 40 C.F.R. § 60.272a(a)(3); Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E; and 40 C.F.R. § 64]
- 8. The permittee shall not emit any gases from the dust handling systems servicing the EAF baghouses with an opacity of 10% or greater. The permittee shall conduct weekly observations of the opacity from the dust handling system, and keep a record of these observations. If visible emissions are detected, then the permittee shall conduct three 6-minute opacity readings on the equipment where visible emissions were observed in accordance with EPA Reference Method 9. The results of these observations shall be kept on site and made available for inspection upon request. For the purposes of this condition, the dust handling system consists of the baghouse dust hoppers, the dust-conveying equipment, any central dust storage equipment, the dust-treating equipment (e.g., pug mill, pelletizer), dust transfer equipment (from storage to truck), and any secondary control devices used with the dust transfer equipment. [Reg.19.304 and 40 C.F.R. § 60.272a(b) and 40 C.F.R. § 64]
- 9. The permittee shall install, calibrate, maintain, and operate a continuous monitoring system for the measurement of the opacity of emissions discharged into the atmosphere from SN-01. The opacity shall not exceed 3% based on a 6-minute average. This monitor shall be operated in accordance with the *Arkansas Continuous Emission Monitoring Systems Conditions* as found in appendices of this permit. [Reg.19.304 and 40 C.F.R. § 60.273a(a) and 40 C.F.R. § 64]
- 10. The permittee shall perform monthly operational status inspections of the equipment that is important to the total capture system. This inspection shall include observations of the physical appearance of the exterior of the capture system for the presence of holes or leaks, on a monthly basis. The permittee shall also continuously monitor the flow rates to the two EAF baghouses using existing flow monitors which were installed on the baghouses. The permittee shall use these flow rates to continuously determine if fan erosion, dust accumulation on the interior of the ducts, or damper positions is unacceptable. For the purposes of this condition, unacceptable operation shall be defined as flow rates less than the baseline flow rate determined during the semiannual particulate

AFIN: 66-00274

testing. Operation at flow rates during any period less than the most recently determined baseline flow rate may be considered unacceptable operation and maintenance of the capture system. Operation at such values shall be reported to the Department semiannually. [Reg.19.304 and 40 C.F.R. §§ 60.274a(d), 60.276a(c) and 64]

- 11. The permittee shall, during any emission testing on the baghouses, monitor and record the following information for all heats covered by the tests:
 - a. Charge weights and materials, and tap weights and materials.
 - b. Heat times, including start and stop times, and a log of process operation, including periods of no operation during testing.
 - c. Control device operation log.
 - d. Continuous monitor and Reference Method 9 data.

[Reg.19.304 and 40 C.F.R. §§ 60.274a(h) and 64]

- 12. The permittee shall install, calibrate, and maintain a monitoring device that continuously records the volumetric flow rate through both baghouses (SN-01 and SN-12). The flow monitors may be installed in any appropriate location such that reproducible flow rate monitoring will result. The flow rate monitoring devices shall have an accuracy of ±10% over its normal operating range and shall be calibrated according to the manufacturer's instructions. This monitor shall be operated in accordance with the *Arkansas Continuous Emission Monitoring Systems Conditions* as found in appendices of this permit. [Reg.19.304 and 40 C.F.R. § 60.274a(b)]
- 13. The permittee must monitor the baghouses, SN-01 and SN-12 according to the compliance assurance monitoring requirements outlined in Specific Conditions 6, 9, 10, 11, and 12. [Reg.19.304 and 40 C.F.R. § 64]
- 14. The permittee shall submit reports as required by § 64.9(a). These records shall include: Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken; summary information on the number, duration and cause (including unknown cause, if applicable) for monitor downtime incidents (other than downtime associated with zero and span or other daily calibration checks, if applicable); and a description of the actions taken to implement a QIP during the reporting period as specified in §64.8. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring. [Reg.19.304 and 40 C.F.R. § 64]
- 15. The permittee shall submit reports as required by § 64.9(b). The permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to §64.8 and any activities undertaken to implement a quality improvement plan, and other supporting information

AFIN: 66-00274

required to be maintained under this part (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions [Reg.19.304 and 40 C.F.R. § 64]

Specific Conditions 16 – 30 for both the new EAF and the two existing EAFs

- 16. The permittee shall measure the VOC emissions from the melt shop baghouse SN-01 using Method 25A, and the melt shop baghouse SN-12 using Method 25A every twenty-four months. The test runs on both baghouses shall be done simultaneously. These tests shall be conducted in accordance with Plantwide Condition 3 and on the permittee's current testing schedule. [Reg.19.702 and 40 C.F.R. § 52 Subpart E]
- 17. The permittee shall install, calibrate, and maintain a continuous emission monitoring system (CEMS) for each baghouse (SN-01 and SN-12). The CEMS shall measure and record the concentrations of CO, NO_x, and SO₂ leaving each baghouse, simultaneously. Both systems shall be operated in accordance with the *Arkansas Continuous Emission Monitoring Systems Conditions* as found in the appendices of this permit. [Reg.19.703, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 18. The combined CO, NO_x, and SO₂ emissions from SN-01 and SN-12 shall not exceed the values listed in Specific Condition 1. The averaging time for compliance purposes with hourly limits shall be 3-hour rolling averages, such that a new 3-hour average is computed every hour. Compliance with the tons/year emission rates shall be determined on a monthly basis based on a rolling 12-month total of the CEMS data. The permittee shall submit reports in accordance with General Provision 7. [Reg.19.501 *et seq.*, Reg.19.901 *et seq.*, and 40 C.F.R. § 52 Subpart E]
- 19. The permittee shall demonstrate compliance with the lead emission limits by either measuring the lead concentration in the baghouse dust then calculating lead emissions by multiplying the measured filterable particulate emissions by the lead concentration percentage in the baghouse dust or performing stack testing using Reference Method 12 simultaneously on both baghouses. These demonstrations shall be conducted every 24 months. Stack testing shall be conducted in accordance with Plantwide Condition 3. [Reg.19.702 and 40 C.F.R. § 52 Subpart E]
- 20. The permittee shall not exceed 20,000 pounds of turnings or machine shop borings per heat of steel. The turnings/ borings shall contain no free oils. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 21. The permittee shall maintain monthly records to demonstrate compliance with the turnings/ borings limit of Specific Condition 20. A monthly average shall be used by dividing the total pounds of turnings/ borings melted that month by the total number of heats performed during that month. Records shall be updated by the 15th day following

AFIN: 66-00274

the month to which they pertain. Records shall be kept onsite, made available to Department personnel upon request, and submitted in accordance with General Provision 7. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]

- 22. The permittee shall not exceed 688,000 tons per year of steel production based on a rolling 12-month total. Compliance with this condition shall be demonstrated on a monthly basis by totaling the steel production for the previous 12 months. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E and Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 23. The permittee shall maintain records on site of the tonnage of steel produced during each month to verify compliance with Specific Condition 22. The permittee shall submit reports in accordance with General Provision 7. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]
- 24. The permittee shall combust only pipeline quality natural gas in the tundish preheaters, ladle dryout, ladle preheaters, and refractory dryers. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E and Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 25. The permittee shall for metallic scrap utilized in the EAF prepare and implement a pollution prevention plan as required in §63.10685(a)(1) or the scrap restrictions of §63.10685(a)(2). [Reg.19.304 and 40 C.F.R. § 63 Subpart YYYYY]
- 26. The permittee shall for scrap containing motor vehicle scrap participate in and purchase motor vehicle scrap from providers who participate in a program for the removal of mercury switches as required in §63.10685(b)(2) that is approved by the Administrator of 40 CFR Part 63, Subpart YYYYYY or certify the scrap does not contain motor vehicle scrap. For scrap that does not contain motor vehicle scrap the permittee must maintain records of documentation that the scrap does not contain motor vehicle scrap. [Reg.19.304 and 40 C.F.R. § 63 Subpart YYYYYY]
- 27. The permittee shall maintain the records required in §63.10 and records which demonstrate compliance with the requirements of the pollution prevention plan and scrap restrictions of Specific Condition 25 and with the mercury requirements in Specific Condition 26. Additionally the permittee must maintain records identifying each scrap provider and documenting the scrap provider's participation in an approved mercury switch program. If the motor vehicle scrap is purchased from a broker, the permittee must maintain records identifying each broker and documentation that all scrap provided by the broker was provided by other scrap providers who participate in an approved mercury switch removal program. [Reg.19.304 and 40 C.F.R. § 63 Subpart YYYYY]
- 28. The permittee must submit semiannual compliance reports to the Administrator of 40 CFR Part 63, Subpart YYYYYY for the control of contaminates from scrap according to the requirements of §63.10(3). The report must clearly identify any deviation from the

AFIN: 66-00274

requirements of §63.10685(a) and (b) outlined in Specific Conditions 25 and 26. [Reg.19.304 and 40 C.F.R. § 63 Subpart YYYYY]

- 29. The permittee must install, operate, and maintain a capture system that collects the emissions from each EAF and conveys the collected emissions to a pollutant control device for the removal of particulate matter. [Reg.19.304 and 40 C.F.R. § 63 Subpart YYYYY]
- 30. The permittee must not discharge from SN-01 or SN-12 any gasses from an EAF which exhibit a 6% opacity or greater or contain in excess of 0.0052 gr/dscf. [Reg.19.304 and 40 C.F.R. § 63 Subpart YYYYY]

Specific Conditions 31 - 43 for the New EAF

- 31. The permittee shall perform stack testing of SN-01 and SN-12 baghouse for PM, PM₁₀, and to show compliance with the emissions limits in Specific Conditions #3 #32, and NSPS Subpart AAb. Testing shall be performed initially and every 24-months thereafter in accordance Plantwide Condition 3 and 4, 40 CFR 60.275b and EPA Reference Method 5D as found in 40 CFR, Part 60, Appendix A. The sampling time and sampling volume for each run shall be at least 4 hours and 4.50 dscm (160 dscf). The permittee shall report all emissions measured using Method 5D as filterable PM or PM₁₀₅ or may conduct separate filterable PM₁₀ testing using EPA Reference Method 201 or 201A. The permittee shall also conduct test for condensable particulate emissions concurrently using EPA reference Method 202 and include these results in PM₁₀ values for compliance with emission rates. The report shall include information specified in § 60.276b(f) of 40 CFR, Part 60, Subpart AAb. Testing shall be conducted when the EAF is operated at or near its capacity based on the specific type of steel to be produced. A targeted capacity would be 98 tons/hour of steel. If the production rate is less than 70 tons/hour, the tested emission rates shall be scaled up to 98 tons/hour and compared to the permitted emission rates. If the production rate is above 98 tons/hour, the tested rate would be compared directly to the permitted emission rate. [Rule 19.304 and 40 C.F.R. §§ 60.275b(e)(1) Subpart AAb and Rule 19.702 and 40 C.F.R. § 52 Subpart E]
- 32. The permittee shall not cause to be discharged into the atmosphere from an SN-01 or SN-12 any gases which contain particulate matter as a total for the facility in excess of 79 mg/kg steel produced (0.16 lb/ton steel produced) [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]
- 33. The owner or operator shall initiate procedures to determine the cause of all alarms within 1 hour of an alarm. The cause of the alarm must be alleviated within 24 hours of the time the alarm occurred by taking whatever response action(s) are necessary. Response actions may include, but are not limited to the requirements of § 60.273b(f) (1) through (7). [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]

AFIN: 66-00274

34. The permittee shall not discharge into the atmosphere any gases from the EAF Baghouses, SN-01 and 12, exhibiting 3 percent opacity or greater. [Rule 19.304 and 40 C.F.R. § 60.272b(a)(2)]

- 35. A bag leak detection system must be installed and operated on all single-stack fabric filters whenever the control device is being used to remove particulate matter from the EAF or AOD vessel if the owner or operator elects not to install and operate a continuous opacity monitoring system as provided for under § 60.273b(c). In addition, the owner or operator shall meet the visible emissions observation requirements in § 60.273b(c). The bag leak detection system must meet the specifications and requirements of § 60.273b(e) (1) through (8).
- 36. If a bag leak detection system is installed according to § 60.273b(e), the owner or operator shall initiate procedures to determine the cause of all alarms within 1 hour of an alarm. The cause of the alarm must be alleviated within 24 hours of the time the alarm occurred by taking whatever response action(s) are necessary. Response actions may include, but are not limited to the requirements of § 60.273b(f) (1) through (7). [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]
- 37. A furnace static pressure monitoring device is not required on any EAF equipped with a Direct-shell evacuation control system (DEC system) if observations of shop opacity are performed by a certified visible emission observer as outlined in 60.272b(d). [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]
- 38. When the owner or operator of an affected facility is required to demonstrate compliance with the standards under § 60.272b(a)(3) and at any other time that the Administrator may require (under section 114 of the CAA, as amended), the owner or operator shall, during all periods in which a hood is operated for the purpose of capturing emissions from the affected facility subject to paragraph (b) of this section, either:
 - (i) Install, calibrate, and maintain a monitoring device that continuously records the fan motor amperes at each damper position, and damper position consistent with paragraph (h)(5) of 60.274b;
 - (ii) Monitor and record as no greater than 15-minute integrated block average basis the volumetric flow rate through each separately ducted hood; or
 - (iii) Install, calibrate, and maintain a monitoring device that continuously records the volumetric flow rate at the control device inlet, and monitor and record the damper position consistent with paragraph (h)(5) of 60.274b.
 - (2) Parameters monitored pursuant to this condition, excluding damper position, shall be recorded as integrated block averages not to exceed 15 minutes.

AFIN: 66-00274

(3) The owner or operator may petition the Administrator or delegated authority for reestablishment of these parameters whenever the owner or operator can demonstrate to the Administrator's or delegated authority's satisfaction that the affected facility operating conditions upon which the parameters were previously established are no longer applicable. The values of the parameters as determined during the most recent demonstration of compliance shall be the appropriate operational range or control set point throughout each applicable period. Operation at values beyond the accepted operational range or control set point may be subject to the requirements of § 60.276b(c). [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]

- 39. Except as provided under paragraph (e) of 60.274b, the owner or operator shall perform monthly operational status inspections of the equipment that is important to the performance of the capture system (*i.e.*, pressure sensors, dampers, and damper switches). This inspection shall include observations of the physical appearance of the equipment (*e.g.*, presence of holes in ductwork or hoods, flow constrictions caused by dents or excess accumulations of dust in ductwork, and fan erosion) and building inspections to ensure that the building does not have any holes or other openings for particulate matter laden air to escape. Any deficiencies that are determined by the operator to materially impact the efficacy of the capture system shall be noted and proper maintenance performed. [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]
- 40. Except as provided under § 60.273b(d), if emissions during any phase of the heat cycle are controlled by the use of a DEC system, the owner or operator shall install, calibrate, and maintain a monitoring device that allows the pressure in the free space inside the EAF to be monitored. The pressure shall be recorded as no greater than 15-minute integrated block averages. The monitoring device may be installed in any appropriate location in the EAF or DEC duct prior to the introduction of ambient air such that reproducible results will be obtained. The pressure monitoring device shall have an accuracy of ±5 mm of water gauge over its normal operating range and shall be calibrated according to the manufacturer's instructions.
- 41. When the owner or operator of an EAF controlled by a DEC is required to demonstrate compliance with the standard under § 60.272b(a)(3), and at any other time the Administrator may require (under section 114 of the Clean Air Act, as amended), the pressure in the free space inside the furnace shall be determined during the melting and refining period(s) using the monitoring device required under paragraph (f) of 60.274b. The owner or operator may petition the Administrator or delegated authority for reestablishment of the pressure whenever the owner or operator can demonstrate to the Administrator's or delegated authority's satisfaction that the EAF operating conditions upon which the pressures were previously established are no longer applicable. The

AFIN: 66-00274

pressure range or control setting during the most recent demonstration of compliance shall be maintained at all times when the EAF is operating in a melting and refining period. Continuous operation at pressures higher than the operational range or control setting may be considered by the Administrator or delegated authority to be unacceptable operation and maintenance of the affected facility. [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]

- 42. During any performance test required under § 60.8 or § 60.272b(d), and for any report thereof required by § 60.276b(f) of this subpart, or to determine compliance with § 60.272b(a)(3) of NSPS Subpart AAb, the owner or operator shall monitor the following information for all heats covered by the test:
 - (1) Charge weights and materials, and tap weights and materials;
 - (2) Heat times, including start and stop times, and a log of process operation, including periods of no operation during testing and, if a furnace static pressure monitoring device is operated pursuant to paragraph (f) of this section, the pressure inside an EAF when DEC systems are used;
 - (3) Control device operation log;
 - (4) Continuous opacity monitor (COM) or EPA Method 9 data, or, as an alternative to EPA Method 9, according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271;
 - (5) All damper positions, no less frequently than performed in the latest melt shop opacity compliance test for a full heat, if selected as a method to demonstrate compliance under paragraph (b) of 60.274b;
 - (6) Fan motor amperes at each damper position, if selected as a method to demonstrate compliance under paragraph (b) of 60.274b;
 - (7) Volumetric air flow rate through each separately ducted hood, if selected as a method to demonstrate compliance under paragraph (b) of 60.274b; and
 - (8) Static pressure at each separately ducted hood, if selected as a method to demonstrate compliance under paragraph (b) of 60.274b.
 - (9) Parameters monitored pursuant to paragraphs (h)(6) through (8) of 60.274b shall be recorded as integrated block averages not to exceed 15 minutes. [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]
- 43. The permittee shall maintain records as required by 60.276b and submit reports as required. These records shall be maintained for at least 5 years from the date of measurement. Reports shall be submitted in accordance with General Provision 7, kept on site, and made available to Divisionpersonnel upon request. [Rule 19.304 and 40 C.F.R. Part 60 Subpart AAb]

AFIN: 66-00274

SN-02 Reheat Furnace

Source Description

The rolling process is initiated at the reheat furnace and proceeds into the rolling mill. The reheat furnace has a maximum heat input capacity of 45 MMBtu/hr which is supplied by natural gas combustion. Waste gas is pulled through a recuperator and exhausted to a stack. In the furnace, the steel bars are heated to a uniform rolling temperature. The furnace incorporates low-NO_x burners to minimize emissions of NO_x. Good combustion practices are utilized to minimize emissions of CO. The furnace has one exhaust stack, identified as SN-02. This source is not subject to NSPS-Dc because the reheat furnace does not fit the definition of a steam generating unit as defined in the subpart.

Specific Conditions

44. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 48. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM	0.7	2.7
		PM_{10}	0.7	2.7
SN-02	Reheat Furnace	SO_2	0.1	0.2
		CO	1.6	6.9
		NO_x	6.3	27.6

45. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 48. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-02	Reheat Furnace	PM _{2.5} VOC	0.7 0.2	2.7 0.6

46. The permittee shall not exceed the emission rates set forth in the following table. The HAPs below exclude lead. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-02	Reheat Furnace	HAPs	0.1	0.4

AFIN: 66-00274

47. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance shall be demonstrated through compliance with Specific Condition 48. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Limit	Regulatory Citation
02	5%	Reg.19.901 <i>et seq.</i> and 40 C.F.R. § 52 Subpart E

48. The permittee shall combust only pipeline quality natural gas at SN-02. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E and Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

AFIN: 66-00274

SN-03 Boiler

Source Description

MacSteel utilizes a boiler to provide process steam and heat to the mill. The boiler has a maximum heat input capacity of 45 MMBtu/hr that is supplied by natural gas combustion. This source is not subject to NSPS-Dc since it was constructed before June 9, 1989.

Specific Conditions

49. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 53. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM	0.7	2.7
		PM_{10}	0.7	2.7
SN-03	Boiler	SO_2	0.1	0.2
		CO	1.6	6.9
		NO_x	6.3	27.6

50. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition through compliance with Specific Condition 53. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-03	Boiler	PM _{2.5} VOC	0.7 0.2	2.7 0.6

51. The permittee shall not exceed the emission rates set forth in the following table. The HAPs below exclude lead. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-03	Boiler	HAPs	0.1	0.4

52. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance shall be demonstrated through compliance with Specific Condition 53. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 66-00274

SN	Limit	Regulatory Citation
03	5%	Reg.19.901 <i>et seq.</i> and 40 C.F.R. § 52 Subpart E

53. The permittee shall combust only pipeline quality natural gas at SN-03. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

AFIN: 66-00274

SN-04, SN-05, SN-11 Heat Treat Furnaces

Source Description

MacSteel incorporates three natural gas fired heat treat furnaces with maximum heat input capacities of 36.6, 38.4, and 65 MMBtu/hr, respectively, to relieve structural tension from the steel bars and for chemistry adjustments. Each heat treat furnace has an individual stack; identified as SN-04, SN-05, and SN-11. Heat treat furnaces 1-3 are not subject to NSPS-Dc because these furnaces do not meet the definition of a steam generating unit as defined in this subpart.

Specific Conditions

54. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition 58. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM	0.6	2.3
		PM_{10}	0.6	2.3
SN-04	Heat Treat Furnace	SO_2	0.5	2.0
		CO	1.3	5.7
		NO_x	5.2	22.4
		PM	0.6	2.3
		PM_{10}	0.6	2.3
SN-05	Heat Treat Furnace	SO_2	0.1	0.2
		CO	1.4	5.9
		NO_x	5.4	23.6
		PM	0.9	3.9
SN-11	Heat Treat Furnace	PM_{10}	0.9	3.9
		SO_2	0.1	0.2
		CO	6.0	26.2
		NO_x	5.0	21.7

55. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition through compliance with Specific Condition 58. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
04	Heat Treat Furnace	PM _{2.5} VOC	0.6 0.5	2.3 2.0

AFIN: 66-00274

SN	Description	Pollutant	lb/hr	tpy
05	Heat Treat Furnace	PM _{2.5} VOC	0.6 0.2	2.3 0.5
11	Heat Treat Furnace	PM _{2.5} VOC	0.9 0.2	3.9 0.8

56. The permittee shall not exceed the emission rates set forth in the following table. The HAPs below exclude lead. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
04	Heat Treat Furnace	HAPs	0.1	0.3
05	Heat Treat Furnace	HAPs	0.1	0.4
11	Heat Treat Furnace	HAPs	0.2	0.6

57. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance shall be demonstrated through compliance with Specific Condition 58. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Limit	Regulatory Citation
04	5%	Reg.19.901 <i>et seq.</i> and 40 C.F.R. § 52 Subpart E
05	5%	Reg.19.901 <i>et seq.</i> and 40 C.F.R. § 52 Subpart E
11	5%	Reg.19.901 <i>et seq.</i> and 40 C.F.R. § 52 Subpart E

58. The permittee shall combust only pipeline quality natural gas at SN-04, SN-05 and SN-11. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E and Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

AFIN: 66-00274

SN-10 Automated Deburring Line

Source Description

After the bars are cut, an automated deburring line is used to remove burrs from the end of bars and to blunt sharp edges. PM emissions associated with this operation are vented inside of the building.

Specific Conditions

59. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 22. [Rule 19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-10	Automated	PM_{10}	0.8	2.9
	Deburring Line	$PM_{2.5}$	0.4	1.6

60. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 22. [Rule 18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-10	Automated Deburring Line	PM	0.8	2.9

61. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance shall be demonstrated through compliance with Specific Condition 62. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Limit	Regulatory Citation
10	5%	Rule 18.501

62. The permittee shall conduct weekly observations of the opacity from this source. These observations shall be conducted by a person familiar with the facility's visible emissions. If the permittee detects visible emissions in excess of the limit set forth in the above Specific Condition, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements by

AFIN: 66-00274

performing a reading in accordance with EPA Method 9. The permittee shall maintain records of all observations, the cause of any visible emissions and the corrective action taken. The permittee must keep these records on site and make them available to Department personnel upon request. [Rule 18.1004 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

AFIN: 66-00274

SN-13 Vacuum Tank Degassers-Steam Injector Condenser

Source Description

After steel is refined in the LMF, it is transferred to a stir station and then to one of two vacuum tank degassers. At the degassers, dissolved gases are removed from the steel through the application of a vacuum. In the degassers, heat may also be added with electric arcs. Emissions from the degassers are collected by a hood and ducted to the EAF baghouses when the door is open (arcing mode). Exhaust from a steam injector condenser (SN-13) occurs when the door is closed (degassing and arcing under partial pressure modes). Emissions from the steam injector condenser were estimated using stack tests. The emission rates, based upon the tests, and adjusted for maximum operation, are presented in the table below.

Specific Conditions

63. The permittee shall not exceed the emission rates set forth in the following table. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM	0.6	2.1
	Vacuum Tank	PM_{10}	0.6	2.1
SN-13	Degassers-Steam	SO_2	0.2	0.6
	Injector Condenser	CO	17.2	74.9
		NO_x	0.2	0.6

64. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Plantwide Condition 5. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-13	Vacuum Tank Degassers-Steam Injector Condenser	PM _{2.5}	0.6	2.1

65. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance shall be demonstrated through compliance with Specific Condition 66.

SN	Limit	Regulatory Citation
13	20%	Reg.19.901 <i>et seq.</i> and 40 C.F.R. § 52 Subpart E

AFIN: 66-00274

66. The permittee shall conduct weekly observations of the opacity from this source. These observations shall be conducted by a person familiar with the facility's visible emissions. If the permittee detects visible emissions in excess of the limit set forth in the above Specific Condition, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements by performing a reading in accordance with EPA Method 9. The permittee shall maintain records of all observations, the cause of any visible emissions and the corrective action taken. The permittee must keep these records on site and make them available to Department personnel upon request. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

AFIN: 66-00274

SN-15, SN-25, and SN-27 Bar Turner Buildings

Source Description

Operations including bar turning, bar polishing, and bar buffing are conducted in the bar turning buildings. These operations require the use of soluble oils and mineral oils. VOC emissions associated with Bar Turning Buildings #1 and #2, SN-15 and SN-25, exhaust through a fan into the heat treat building and then through a roof exhaust fan which exhausts to the atmosphere. VOC from Building #3, SN-27, exhausts from the roof monitor.

Specific Conditions

67. The permittee shall not exceed the emission rates set forth in the following table. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
15	Bar Turner Building #1	VOC	1.7	6.1
25	Bar Turner Building #2	VOC	1.7	6.1
27	Bar Turner Building #3	VOC	1.7	6.1

AFIN: 66-00274

SN-21 Scrap Bar Cutting

Source Description

Scrap steel bars from the caster, rolling mill, finishing line, straighteners, bar turner, and from off site are torch-cut into smaller pieces (approximately 3 foot lengths) for recharging in the EAFs. The steel bars are transported to the cutting area via rail cars. The bars are loaded onto a roller table. The cutting is accomplished using two hand-held natural gas/oxygen torches.

Specific Conditions

68. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 71. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-21 Scrap Bar Cutting	PM ₁₀ PM _{2.5}	0.2 0.2	0.8 0.8	
	Course Don Cutting	SO_2	0.2	0.8
	Scrap bar Cutting	VOC	0.1	0.3
		CO	0.3	1.0
		NO_x	1.1	4.8

69. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 71. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-21	Scrap Bar Cutting	PM	0.2	0.8
		HAPs	0.02	0.09

- 70. The opacity from SN-21 shall not exceed 5%, as measured by EPA Reference Method 9. Compliance with this condition shall be demonstrated through compliance with Specific Condition 71. [Reg.18.501 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 71. The permittee shall not exceed a total heat input capacity of 10.8 MMBtu/hr at SN-21. The permittee shall fire only pipeline quality natural gas at SN-21. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

AFIN: 66-00274

SN-22 Slag Processing

Source Description

Slag generated during the melting and casting operations is poured on the ground in contained areas within the steelworks building under the dust collecting roof canopies. The hot slag is dug out of these areas and deposited in large dump trucks for transportation to the slag processing area. Emissions from the dump truck loading area are controlled by overhead water sprays. Approximately 75 percent of the slag is returned to the scrap storage area as reclaimed steel. The remaining 25 percent is crushed and passed by a magnet to remove steel fines. The remaining material is conveyed to a screening station and sorted by size. At the slag processing area, the slag is first dumped and allowed to cool. During this time, water is continuously sprayed on the slag. When sufficiently cooled, the wet slag is loaded out of the slag pit/cooling area and is placed into a feeder. Next, the slag is screened to remove various metallics and additionally screened for size separation. This screening process is associated with a number of belt-type conveyors. Water sprays are used to minimize PM emissions from all open-air slag processing operations. The sprays have an estimated efficiency of 95 percent. Dust generated during the "dig out" is contained and collected via building and roof canopies.

Specific Conditions

72. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions 75 and 76. [Rule 19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-22	Slag Processing	PM ₁₀ Lead	1.0 0.01	0.2 0.01

73. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions 75 and 76. [Rule 18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-22	Slag Processing	PM HAPs	2.4 0.27	0.5 0.06

- 74. The opacity from SN-22 shall not exceed 20%, as measured by EPA Reference Method 9. SN-22 source shall include slag dumping, wind erosion of slag pits and processed slag piles, slag loadout to feeder for subsequent processing, slag processing including various conveying and sizing operations, and vehicle/equipment traffic on unpaved roads. Compliance with this condition shall be demonstrated through compliance with Specific Condition 75. [Rule 19.503 and 40 C.F.R. § 52 Subpart E]
- 75. The permittee shall pre-wet the slag material (including mill scale and used refractory materials) prior to loading it into slag processing plants SN-22. [Rule 19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]
- 76. The permittee shall not process more than 158,240 tons of slag (including mill scale and used refractory materials) per year based on a rolling 12 month total. [Rule 19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 77. The permittee shall keep records of the amount of slag, mill scale and used refractory materials processed each month and each 12 month period. These records shall be kept on site and made available to Department personnel upon request. A copy of these records shall be submitted in accordance with General Provision 7. [Rule 19.705 and 40 C.F.R. § 52 Subpart E]

AFIN: 66-00274

SN-23 Hydraulic Fluid Usage

Source Description

The mill utilizes various hydraulic fluids. One such fluid contains diethylene glycol which is not an air toxic, is used in equipment in the melt shop. The diethylene glycol additive serves to minimize the risk of fires or explosions in this equipment.

Specific Conditions

78. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 79. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-23	Hydraulic Fluid Usage	VOC	3.6	14.4

79. The permittee shall maintain monthly records of the VOC used in SN-23. These records shall include the monthly total and consecutive 12-month rolling total. The amount not accounted for shall be considered emissions. These records shall be kept on site and made available to Department personnel upon request. A copy of the records shall be submitted in accordance with General Provision 7. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]

AFIN: 66-00274

SN-24 Miscellaneous Process-Related Painting/Labeling

Source Description

A color coding is painted on each steel bar using aerosol spray paint. The maximum annual paint use at the mill is estimated to be approximately 15,000 lbs. The volatile portion of the paints and carrier solvents can be released to the atmosphere during their application. To estimate these emissions, the VOC and HAP content of the paint and solvents was used in conjunction with the maximum annual throughput of paint and solvent.

Specific Conditions

80. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions 82. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-24	Miscellaneous Process-Related Painting/Labeling	VOC	7.5	3.8

81. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions 82. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-24	Miscellaneous Process-Related Painting/Labeling	HAPs	6.3	3.2

82. The permittee shall keep the MSDS sheet for the paints being used on site and available for inspection by Department personnel upon request. The permittee shall maintain monthly records to demonstrate compliance with the HAP and VOC emission rates of Specific Conditions 80 and 81. These records shall contain the total monthly usage of each paint and solvent, the VOC and HAP contents, and calculations of the total monthly amount of VOCs and HAPs used, and the consecutive 12 month rolling total of the VOC and HAPs used at this source. These records shall be updated by the 15th day of the month following the month to which the records pertain. A copy of these records shall be kept on site and made available to Department personnel upon request. Records shall be submitted in accordance with General Provision 7. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

AFIN: 66-00274

SN-26 Car Bottom Furnace

Source Description

MacSteel operates a car bottom furnace. The furnace is needed for specialized heat treating of steel bars. The furnace is fired with natural gas and has a maximum heat input rate of 5 MMBtu/hr. The car bottom furnace will emit natural gas combustion by-products to the air. To estimate emissions of sulfur dioxide, VOC, CO, and PM, the maximum hourly heat input capacity was multiplied by AP-42 factors (March, 1998). An estimate of nitrogen oxides was provided by the vendor. All emission rates are based on maximum capacity and continuous operation.

Specific Conditions

83. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by burning only natural gas as fuel at this source. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM_{10}	0.1	0.2
		$PM_{2.5}$	0.1	0.2
SN-26 Car Bottom Furnace	Car Bottom	SO_2	0.1	0.1
	VOC	0.1	0.2	
	CO	0.5	1.9	
		NO_x	1.5	6.6

84. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by burning only natural gas as fuel at this source. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-26	Car Bottom	PM	0.1	0.2
	Furnace	HAPs	0.01	0.05

85. Visible emissions from this source shall not exceed 5% opacity as measured by EPA Reference Method 9. Compliance shall be demonstrated by burning only natural gas as fuel at this source. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]

AFIN: 66-00274

SN-14 and SN-29 Caster Steam Exhaust Nos. 1 and 2

Source Description

After the temperature and composition of the molten steel is adjusted at the vacuum degassers, the molten steel is transferred to the continuous caster (SN-06). The molten steel is poured from the ladle into a tundish, which funnels the molten steel into a mold. The steel solidifies as it passes through the water-cooled mold, providing immediate cooling of the outer skin. At this point, the center of the steel is still molten. The continuous caster produces round bars. Emissions from the caster are captured by the canopy hood and ducted to the melt shop baghouses (SN-01, SN-12). Exhausts from the caster cooling zones and caster hot saws are released to the atmosphere through a vent (SN-14) and (SN-29).

Specific Conditions

86. The permittee shall not exceed the emission rates set forth in the following table. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
14	Caster Steam Exhaust No. 1	PM_{10} $PM_{2.5}$	0.3 0.3	0.8 0.8
29	Caster Steam Exhaust No. 2	PM ₁₀ PM _{2.5}	1.3 1.3	5.6 5.6

87. The permittee shall not exceed the emission rates set forth in the following table. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
14	Caster Steam Exhaust No. 1	PM	0.5	0.8
29	Caster Steam Exhaust No. 2	PM	1.3	5.6

88. Visible emissions from sources SN-14 and 29 shall not exceed 20% opacity as measured by EPA reference method 9. [Reg.19.503 and 40 C.F.R. § 52 Subpart E]

AFIN: 66-00274

SN-31 Lime Storage Silo System

Source Description

This source includes 3 lime storage silos controlled with bin vent filters.

Specific Conditions

89. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Conditions 22 and 92, and Plantwide Condition 5. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
CN 21	Lime Storage Silo	PM_{10}	0.1	0.2
SN-31	System	$PM_{2.5}$	0.1	0.2

90. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 92 and Plantwide Condition 5. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-31	Lime Storage Silo System	PM	0.1	0.2

91. The visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance shall be demonstrated through compliance with Specific Condition 92. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Limit	Regulatory Citation
31	5%	Reg.18.501

92. The permittee shall conduct weekly observations of the opacity from this source. These observations shall be conducted by a person familiar with the facility's visible emissions. If the permittee detects visible emissions in excess of the limit set forth in the above Specific Condition, the permittee must immediately take action to identify and correct the cause of the visible emissions. After implementing the corrective action, the permittee must document that the source complies with the visible emissions requirements by performing a reading in accordance with EPA Method 9. The permittee shall maintain

AFIN: 66-00274

records of all observations, the cause of any visible emissions and the corrective action taken. The permittee must keep these records on site and make them available to Department personnel upon request. [Reg.18.1004 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 66-00274

SN-33, 34, 35, and 36

Emergency Diesel Engines

Source Description

Sources SN-33, 34, and 35 are 300 hp diesel fired emergency engines. Source SN-36 is a 1,300 hp diesel fired emergency engine.

Specific Conditions

93. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition 96 through 104. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM_{10}	0.7	0.2
		$PM_{2.5}$	0.7	0.2
33	Emergency Diesel	SO_2	0.7	0.2
33	Engine	VOC	0.7	0.2
		CO	2.0	0.5
		NO_x	9.3	2.4
		PM_{10}	0.7	0.2
		$PM_{2.5}$	0.7	0.2
34	Emergency Diesel	SO_2	0.7	0.2
34	Engine	VOC	0.7	0.2
		CO	2.0	0.5
		NO_x	9.3	2.4
		PM_{10}	0.7	0.2
		$PM_{2.5}$	0.7	0.2
35	Emergency Diesel	SO_2	0.7	0.2
33	Engine	VOC	0.7	0.2
		CO	2.0	0.5
		NO_x	9.3	2.4
		PM_{10}	1.0	0.3
		$PM_{2.5}$	1.0	0.3
36	Emergency Diesel	SO_2	16.0	4.0
30	Engine	VOC	1.0	0.3
		CO	7.2	1.8
		NO_x	31.2	7.8

94. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific

AFIN: 66-00274

Condition 96 through 104. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
33	Emergency Diesel	PM	0.7	0.2
	Engine	HAPs	0.01	0.01
34	Emergency Diesel	PM	0.7	0.2
	Engine	HAPs	0.01	0.01
35	Emergency Diesel	PM	0.7	0.2
	Engine	HAPs	0.01	0.01
36	Emergency Diesel	PM	1.0	0.3
	Engine	HAPs	0.01	0.01

- 95. The opacity from the Emergency Diesel Engines, SN-33, SN-34, SN-35, and SN-36 shall not exceed 20%, as measured by EPA Reference Method 9. [Reg.19.503 and 40 C.F.R. § 52 Subpart E]
- 96. The permittee shall not operate any single Emergency Diesel Engine, SN-33, SN-34, SN-35, and SN-36 more than 500 hours in any consecutive 12-month period. The permittee shall maintain records of the hours of operation of each generator each month. These records shall be updated by the 15th day of the month following the month that the records represent, kept on site, made available to Department personnel upon request and submitted in accordance with General Provision 7. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 97. The permittee must meet the following maintenance requirements for the Emergency Diesel Engines, SN-33, SN-34, SN-35, and SN-36: Change the oil and filter every 500 hours of operation or annually, whichever comes first; inspect the air cleaner every 1,000 hours of operation or annually, whichever comes first; and inspect all hoses and belts every 500 hours of operation or annually, which ever comes first, and replace as necessary. [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]
- 98. The permittee must for the Emergency Diesel Engines, SN-33, SN-34, SN-35, and SN-36, minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes. [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]
- 99. The permittee is to comply with the operating limitations of 40 CFR Part 60, Subpart ZZZZ that apply at all times and maintain any affected source including any associated air pollution control equipment and monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions. [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]

- 100. The permittee must maintain the Emergency Diesel Engines, SN-33, SN-34, SN-35, and SN-36, according to the manufacturer's emission-related written instructions or develop their own maintenance plan according to 40 C.F.R. § 63.6625(e). [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]
- 101. The permittee must install on each of the Emergency Diesel Engines, SN-33, SN-34, SN-35, and SN-36, a non-resettable hour meter. [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]
- 102. The permittee may utilize an oil analysis program in order to extend the specified oil change requirements in Specific Condition 97. This analysis program shall be conducted as required in 40 C.F.R. § 63.6625(i). [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]
- 103. The permittee may operate the Emergency Diesel Engines, SN-33, SN-34, SN-35, and SN-36, 100 hours per year for maintenance and readiness checks. The permittee may operate the generators 50 hours per year in non-emergency situations as outlined in §63.6640(f)(4). Those 50 hours must be included in the 100 hours for maintenance and readiness checks. There is no limit on emergency operation due to Subpart ZZZZ. The operation limit in Specific Condition 96 still applies. [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]
- 104. The permittee shall submit reports as outlined in 40 C.F.R. § 63.6650. [Reg.19.304 and 40 C.F.R. § 63 Subpart ZZZZ]

AFIN: 66-00274

SN-37 Roadway Emissions

Source Description

This source represents paved and unpaved roadway emissions from the facility.

Specific Conditions

105. The permittee shall not exceed the emission rates set forth in the following table. Compliance with this condition will be shown by application of dust suppressant as necessary to control dust emissions. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-37	Roadway Emissions	$ ext{PM}_{10} ext{PM}_{2.5}$	3.8 0.5	11.2 1.3

106. The permittee shall not exceed the emission rates set forth in the following table. Compliance with this condition will be shown by application of dust suppressant as necessary to control dust emissions. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-37	Roadway Emissions	PM	4.4	12.6

107. Nothing in this permit shall be construed to authorize a violation of the Arkansas Water and Air Pollution Control Act or the federal National Pollutant Discharge Elimination System (NPDES). [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 66-00274

SN-39 Administrative Building Emergency Generator

Source Description

SN-39 is a 162 hp, rich burn, natural gas fired spark ignition emergency generator that provides backup emergency power for the Administration Building in the event of a power outage from the grid. The unit was purchased in May 2006 prior to the effective date of the requirements in 40 CFR Part 60, Subpart JJJJ for Stationary Spark Ignition Internal Combustion Engines. This unit is subject to the requirements applicable to area source RICE MACT Standards (40 CFR Part 63, Subpart ZZZZ).

Specific Conditions

108. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions 111 through 123. [Rule 19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
39	Administrative Building Emergency Generator (162 hp)	PM ₁₀ PM _{2.5} SO ₂ VOC CO NO _x Lead	0.1 0.1 0.1 0.1 4.4 2.6 0.01	0.1 0.1 0.1 0.1 1.1 0.7 0.01

109. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Conditions 111 through 123. [Rule 18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
39	Administrative Building Emergency Generator (162 hp)	PM HAPs	0.1 0.04	0.1 0.01

110. Visible emissions from this source shall not exceed 5% opacity as measured by EPA Reference Method 9. Compliance shall be demonstrated by burning only pipeline quality natural gas at this source. [Rule 18.501 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

- 111. The permittee shall not operate the emergency generator SN-39 in excess of 500 total hours (emergency and non-emergency) per calendar year in order to demonstrate compliance with the annual emission rate limits. Emergency operation in excess of these hours may be allowable but shall be reported and will be evaluated in accordance with Reg.19.602 and other applicable regulations. [Rule 19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 112. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #111. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The calendar year totals and each individual month's data shall be maintained on-site, made available to Division of Environmental Quality personnel upon request, and submitted in accordance with General Provision #7. [Rule 19.705 and 40 C.F.R. § 52 Subpart E]
- 113. The permittee must meet the following maintenance requirements for SN-39: Change oil and filter every 500 hours of operation or annually, whichever comes first; inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. [Rule 19.304 and 40 C.F.R. §63.6603(a) and Table 2d, Item 5]
- 114. The permittee shall be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times and maintain any affected source including any associated air pollution control equipment and monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions. [Rule 19.304 and 40 C.F.R. §63.6605(a&b)]
- 115. The permittee shall install a non-resettable hour meter if one is not already installed. [Rule 19.304 and 40 C.F.R. §63.6625(f)]
- 116. The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d to this subpart apply. [Rule 19.304 and 40 C.F.R. §63.6625(h)]
- 117. The permittee has the option of utilizing an oil analysis program at SN-39 in order to extend the specified oil change requirement in Specific Condition #113. The analysis program shall be conducted as required by 40 C.F.R. §63.6625(j). [Rule 19.304 and 40 C.F.R. §63.6625(j)]
- 118. The permittee must maintain SN-39 according to the manufacturer's emission-related written instructions or develop their own maintenance plan according to 40 C.F.R. 63.6625(e). [Rule 19.304 and 40 C.F.R. § 63.6640(a) and Table 6, Item 9]

- 119. The permittee shall report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. [Rule 19.304 and 40 C.F.R. § 63.6640(e)]
- 120. The permittee shall operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines. [Rule 19.304 and 40 C.F.R. § 63.6640(f)(1,2 & 4)]
 - a. There is no time limit on the use of emergency stationary RICE in emergency situations. [Rule 19.304 and 40 C.F.R. § 63.6640(f)(1)]
 - b. You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2). [Rule 19.304 and 40 C.F.R. § 63.6640(f)(2)]
 - i. Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year. [Rule 19.304 and 40 C.F.R. § 63.6640(f)(2)(i)]
 - Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see § 63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3. [Rule 19.304 and 40 C.F.R. § 63.6640(f)(2)(ii)]

- iii. Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency. [Rule 19.304 and 40 C.F.R. § 63.6640(f)(2)(iii)]
- c. Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity. [Rule 19.304 and 40 C.F.R. § 63.6640(f)(4)]
 - i. The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met: [Rule 19.304 and 40 C.F.R. § 63.6640(f)(4)(ii)(A-E)]
 - i. The engine is dispatched by the local balancing authority or local transmission and distribution system operator.
 - ii. The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
 - iii. The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
 - iv. The power is provided only to the facility itself or to support the local transmission and distribution system.
 - v. The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.
- 121. The permittee shall submit all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you. [Rule 19.304 and 40 C.F.R. § 63.6645(a)(2)]
- 122. Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along

AFIN: 66-00274

with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority. [Rule 19.304 and 40 C.F.R. § 63.6650(f)]

- 123. The permittee shall keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in § 63.6640(f)(2)(ii) or (iii) or § 63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes. [Rule 19.304 and 40 C.F.R. § 63.6655(f)]
- 124. All records must be in a form suitable and readily available for expeditious review according to 40 CFR §63.10(b)(1). The permittee must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record. The permittee must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to 40 CFR §63.10(b)(1). [Rule 19.304 and 40 C.F.R. § 63.6660]

AFIN: 66-00274

SECTION V: COMPLIANCE PLAN AND SCHEDULE

Gerdau MacSteel Inc. will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future rules and regulations that may apply and determine their applicability with any necessary action taken on a timely basis.

AFIN: 66-00274

SECTION VI: PLANTWIDE CONDITIONS

- 1. The permittee shall notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Rule 19.704, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Rule 19.410(B) and 40 C.F.R. § 52 Subpart E]
- 3. The permittee must test any equipment scheduled for testing, unless otherwise stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) new equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) operating equipment according to the time frames set forth by the Division of Environmental Quality or within 180 days of permit issuance if no date is specified. The permittee must notify the Division of Environmental Quality of the scheduled date of compliance testing at least fifteen (15) business days in advance of such test. The permittee shall submit the compliance test results to the Division of Environmental Quality within sixty (60) calendar days after completing the testing. [Rule 19.702 and/or Rule 18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 4. The permittee must provide:
 - a. Sampling ports adequate for applicable test methods;
 - b. Safe sampling platforms;
 - c. Safe access to sampling platforms; and
 - d. Utilities for sampling and testing equipment.

[Rule 19.702 and/or Rule 18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

- 5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee shall maintain the equipment in good condition at all times. [Rule 19.303 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 6. This permit subsumes and incorporates all previously issued air permits for this facility. [Rule 26 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 66-00274

- 7. Unless otherwise specified in the permit, approval to construct any new major stationary source or a major modification subject to 40 C.F.R. § 52.21 shall become invalid if construction is not commenced within 18 months after receipt of such approval, if construction is discontinued for a period of 18 months or more, or if construction is not completed within a reasonable time. The Division of Environmental Quality may extend the 18-month period upon a satisfactory showing that an extension is justified. [Rule 19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]
- 8. The permittee shall monitor the emissions of any regulated NSR pollutant that could increase as a result of the production limit increase as requested in the permit application for 0693-AOP-R15 and that is emitted by any emissions unit identified in 40 CFR Part 52.21(r)(6)(i)(b); and calculate and maintain a record of the annual emissions, in tons per year on a calendar year basis, for a period of 5 years following resumption of regular operations after the change, or for a period of 10 years following resumption of regular operations after the change if the project increases the design capacity or potential to emit that regulated NSR pollutant at such emissions unit. [Regulation 19, §19.705 and §19.901; 40 CFR Part 52.21(r)(6)(iii); A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311; and 40 CFR Part 70.6]
- 9. The permittee shall submit a report to the Administrator if the annual emissions, in tons per year, from the as a result of the production limit increase as requested in the permit application for 0693-AOP-R11, exceed the baseline actual emissions (as documented and maintained pursuant to 40 CFR Part 52.21(r)(6)(i)(c)), by a significant amount (as defined in paragraph 40 CFR Part 52.21(b)(23)) for that regulated NSR pollutant, and if such emissions differ from the preconstruction projection as documented and maintained pursuant to 40 CFR Part 52.21(r)(6)(i)(c). Such report shall be submitted to the Administrator within 60 days after the end of such year. The report shall contain the following:
 - a. The name, address and telephone number of the major stationary source;
 - b. The annual emissions as calculated pursuant to 40 CFR Part 52.21(r)(6)(iii); and
 - c. Any other information that the owner or operator wishes to include in the report (e.g., an explanation as to why the emissions differ from the preconstruction projection).

[Regulation 19, §19.705 and §19.901; 40 CFR Part 52.21(r)(6)(v); A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311; and 40 CFR Part 70.6]

AFIN: 66-00274

SECTION VII: INSIGNIFICANT ACTIVITIES

The Division of Environmental Quality deems the following types of activities or emissions as insignificant on the basis of size, emission rate, production rate, or activity in accordance with Group A of the Insignificant Activities list found in Rule 18 and Rule 19 Appendix A. Group B insignificant activities may be listed but are not required to be listed in permits. Insignificant activity emission determinations rely upon the information submitted by the permittee in an application dated February 1, 2021. [Rule 26.304 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

Description	Category
Kerosene Tank (500 gal)	A-3
Used (waste) Oil Tank (1,500 gal)	A-3
2 Used (waste) Oil Tanks (5,000 gal each)	A-3
Diesel Fuel Tank (10,000 gal)	A-3
Diesel Fuel Tank (2,000 gal)	A-3
Diesel Fuel Tank (500 gal)	A-3
2 Petroleum Resin Tanks (5,000 gal each)	A-3
Petroleum Resin Tank (1,500 gal)	A-3
Cationic Polymer Tank (2,200 gal)	A-3
Lab Etch Room	A-5
SPARCS Cutting Enclosure	A-7
Outdoor Slicing/Cutting	A-7
Scale Water Cooling Tower	A-13
Clean Water Cooling Tower #1	A-13
Clean Water Cooling Tower #2	A-13
Caster Water Cooling Tower	A-13
EMS Water Cooling Tower	A-13
Rolling Mill Operations	A-13
Hot Saw for Rolled Product	A-13
Ladle Refractory Reline	A-13
Tundish Refractory Reline	A-13

Description	Category
Scrap Handling	A-13
Raw Material Handling	A-13
Parts Washers	A-13
Scale Pits	A-13
Settling Ponds	A-13

AFIN: 66-00274

SECTION VIII: GENERAL PROVISIONS

- 1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Rule 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Rule 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Rule 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute. [40 C.F.R. § 70.6(b)(2)]
- 2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 C.F.R. § 70.6(a)(2) and Rule 26.701(B)]
- 3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee's right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Division of Environmental Quality takes final action on the renewal application. The Division of Environmental Quality will not necessarily notify the permittee when the permit renewal application is due. [Rule 26.406]
- 4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, *et seq.* (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 C.F.R. § 70.6(a)(1)(ii) and Rule 26.701(A)(2)]
- 5. The permittee must maintain the following records of monitoring information as required by this permit.
 - a. The date, place as defined in this permit, and time of sampling or measurements;
 - b. The date(s) analyses performed;
 - c. The company or entity performing the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of such analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

AFIN: 66-00274

[40 C.F.R. § 70.6(a)(3)(ii)(A) and Rule 26.701(C)(2)]

- 6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 C.F.R. § 70.6(a)(3)(ii)(B) and Rule 26.701(C)(2)(b)]
- 7. The permittee must submit reports of all required monitoring every six (6) months. If the permit establishes no other reporting period, the reporting period shall end on the last day of the month six months after the issuance of the initial Title V permit and every six months thereafter. The report is due on the first day of the second month after the end of the reporting period. The first report due after issuance of the initial Title V permit shall contain six months of data and each report thereafter shall contain 12 months of data. The report shall contain data for all monitoring requirements in effect during the reporting period. If a monitoring requirement is not in effect for the entire reporting period, only those months of data in which the monitoring requirement was in effect are required to be reported. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Rule 26.2 must certify all required reports. The permittee will send the reports electronically using https://eportal.adeq.state.ar.us or mail them to the address below:

Division of Environmental Quality Office of Air Quality ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118-5317

[40 C.F.R. § 70.6(a)(3)(iii)(A) and Rule 26.701(C)(3)(a)]

- 8. The permittee shall report to the Division of Environmental Quality all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.
 - a. For all upset conditions (as defined in Rule 19.601), the permittee will make an initial report to the Division of Environmental Quality by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:
 - i. The facility name and location;
 - ii. The process unit or emission source deviating from the permit limit;
 - iii. The permit limit, including the identification of pollutants, from which deviation occurs:
 - iv. The date and time the deviation started;

AFIN: 66-00274

- v. The duration of the deviation;
- vi. The emissions during the deviation;
- vii. The probable cause of such deviations;
- viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future; and
 - ix. The name of the person submitting the report.

The permittee shall make a full report in writing to the Division of Environmental Quality within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit's limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

b. For all deviations, the permittee shall report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a above. The semi-annual report must include all the information as required by the initial and full reports required in 8a.

[Rule 19.601, Rule 19.602, Rule 26.701(C)(3)(b), and 40 C.F.R. § 70.6(a)(3)(iii)(B)]

- 9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Rule are declared to be separable and severable. [40 C.F.R. § 70.6(a)(5), Rule 26.701(E), and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Rule 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. § 7401, *et seq.* and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 C.F.R. § 70.6(a)(6)(i) and Rule 26.701(F)(1)]
- 11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 C.F.R. § 70.6(a)(6)(ii) and Rule 26.701(F)(2)]
- 12. The Division of Environmental Quality may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of

AFIN: 66-00274

planned changes or anticipated noncompliance does not stay any permit condition. [40 C.F.R. § 70.6(a)(6)(iii) and Rule 26.701(F)(3)]

- 13. This permit does not convey any property rights of any sort, or any exclusive privilege. [40 C.F.R. § 70.6(a)(6)(iv) and Rule 26.701(F)(4)]
- 14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Division of Environmental Quality may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 C.F.R. § 70.6(a)(6)(v) and Rule 26.701(F)(5)]
- 15. The permittee must pay all permit fees in accordance with the procedures established in Rule 9. [40 C.F.R. § 70.6(a)(7) and Rule 26.701(G)]
- 16. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 C.F.R. § 70.6(a)(8) and Rule 26.701(H)]
- 17. If the permit allows different operating scenarios, the permittee shall, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 C.F.R. § 70.6(a)(9)(i) and Rule 26.701(I)(1)]
- 18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source's potential to emit, unless the Division of Environmental Quality specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 C.F.R. § 70.6(b) and Rule 26.702(A) and (B)]
- 19. Any document (including reports) required by this permit pursuant to 40 C.F.R. § 70 must contain a certification by a responsible official as defined in Rule 26.2. [40 C.F.R. § 70.6(c)(1) and Rule 26.703(A)]
- 20. The permittee must allow an authorized representative of the Division of Environmental Quality, upon presentation of credentials, to perform the following: [40 C.F.R. § 70.6(c)(2) and Rule 26.703(B)]
 - a. Enter upon the permittee's premises where the permitted source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

- b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;
- c. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and
- d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.
- 21. The permittee shall submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually. If the permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due on the first day of the second month after the end of the reporting period. The permittee must also submit the compliance certification to the Administrator as well as to the Division of Environmental Quality. All compliance certifications required by this permit must include the following: [40 C.F.R. § 70.6(c)(5) and Rule 26.703(E)(3)]
 - a. The identification of each term or condition of the permit that is the basis of the certification;
 - b. The compliance status;
 - c. Whether compliance was continuous or intermittent;
 - d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
 - e. Such other facts as the Division of Environmental Quality may require elsewhere in this permit or by § 114(a)(3) and § 504(b) of the Act.
- 22. Nothing in this permit will alter or affect the following: [Rule 26.704(C)]
 - a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
 - b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
 - c. The applicable requirements of the acid rain program, consistent with § 408(a) of the Act; or
 - d. The ability of EPA to obtain information from a source pursuant to § 114 of the Act.
- 23. This permit authorizes only those pollutant emitting activities addressed in this permit. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 24. The permittee may request in writing and at least 15 days in advance of the deadline, an extension to any testing, compliance or other dates in this permit. No such extensions are authorized until the permittee receives written Division of Environmental Quality

AFIN: 66-00274

approval. The Division of Environmental Quality may grant such a request, at its discretion in the following circumstances:

- a. Such an extension does not violate a federal requirement;
- b. The permittee demonstrates the need for the extension; and
- c. The permittee documents that all reasonable measures have been taken to meet the current deadline and documents reasons it cannot be met.

[Rule 18.314(A), Rule 19.416(A), Rule 26.1013(A), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

- 25. The permittee may request in writing and at least 30 days in advance, temporary emissions and/or testing that would otherwise exceed an emission rate, throughput requirement, or other limit in this permit. No such activities are authorized until the permittee receives written Division of Environmental Quality approval. Any such emissions shall be included in the facility's total emissions and reported as such. The Division of Environmental Quality may grant such a request, at its discretion under the following conditions:
 - a. Such a request does not violate a federal requirement;
 - b. Such a request is temporary in nature;
 - c. Such a request will not result in a condition of air pollution;
 - d. The request contains such information necessary for the Division of Environmental Quality to evaluate the request, including but not limited to, quantification of such emissions and the date/time such emission will occur;
 - e. Such a request will result in increased emissions less than five tons of any individual criteria pollutant, one ton of any single HAP and 2.5 tons of total HAPs; and
 - f. The permittee maintains records of the dates and results of such temporary emissions/testing.

[Rule 18.314(B), Rule 19.416(B), Rule 26.1013(B), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

- 26. The permittee may request in writing and at least 30 days in advance, an alternative to the specified monitoring in this permit. No such alternatives are authorized until the permittee receives written Division of Environmental Quality approval. The Division of Environmental Quality may grant such a request, at its discretion under the following conditions:
 - a. The request does not violate a federal requirement;
 - b. The request provides an equivalent or greater degree of actual monitoring to the current requirements; and
 - c. Any such request, if approved, is incorporated in the next permit modification application by the permittee.

AFIN: 66-00274

[Rule 18.314(C), Rule 19.416(C), Rule 26.1013(C), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

27. Any credible evidence based on sampling, monitoring, and reporting may be used to determine violations of applicable emission limitations. [Rule 18.1001, Rule 19.701, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

Subpart AAa—Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After August 17, 1983

Contents

§60.270a Applicability and designation of affected facility.

§60.271a Definitions.

§60.272a Standard for particulate matter.

§60.273a Emission monitoring.

§60.274a Monitoring of operations.

§60.275a Test methods and procedures.

§60.276a Recordkeeping and reporting requirements.

SOURCE: 49 FR 43845, Oct. 31, 1984, unless otherwise noted.

§60.270a Applicability and designation of affected facility.

- (a) The provisions of this subpart are applicable to the following affected facilities in steel plants that produce carbon, alloy, or specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems.
- (b) The provisions of this subpart apply to each affected facility identified in paragraph (a) of this section that commences construction, modification, or reconstruction after August 17, 1983.

§60.271a Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

Argon-oxygen decarburization vessel (AOD vessel) means any closed-bottom, refractory-lined converter vessel with submerged tuyeres through which gaseous mixtures containing argon and oxygen or nitrogen may be blown into molten steel for further refining.

Bag leak detection system means a system that is capable of continuously monitoring relative particulate matter (dust) loadings in the exhaust of a baghouse to detect bag leaks and other conditions that result in increases in particulate loadings. A bag leak detection system includes, but is not limited to, an instrument that operates on triboelectric, electrodynamic, light scattering, light transmittance, or other effect to continuously monitor relative particulate matter loadings.

Capture system means the equipment (including ducts, hoods, fans, dampers, etc.) used to capture or transport particulate matter generated by an electric arc furnace or AOD vessel to the air pollution control device.

Charge means the addition of iron and steel scrap or other materials into the top of an electric arc furnace or the addition of molten steel or other materials into the top of an AOD vessel.

Control device means the air pollution control equipment used to remove particulate matter from the effluent gas stream generated by an electric arc furnace or AOD vessel.

Direct-shell evacuation control system (DEC system) means a system that maintains a negative pressure within the electric arc furnace above the slag or metal and ducts emissions to the control device.

Dust-handling system means equipment used to handle particulate matter collected by the control device for an electric arc furnace or AOD vessel subject to this subpart. For the purposes of this subpart, the dust-handling system shall consist of the control device dust hoppers, the dust-conveying equipment, any central dust storage equipment, the dust-treating equipment (e.g., pug mill, pelletizer), dust transfer equipment (from storage to truck), and any secondary control devices used with the dust transfer equipment.

Electric arc furnace (EAF) means a furnace that produces molten steel and heats the charge materials with electric arcs from carbon electrodes. For the purposes of this subpart, an EAF shall consist of the furnace shell and roof and the transformer. Furnaces that continuously feed direct-reduced iron ore pellets as the primary source of iron are not affected facilities within the scope of this definition.

Heat cycle means the period beginning when scrap is charged to an empty EAF and ending when the EAF tap is completed or beginning when molten steel is charged to an empty AOD vessel and ending when the AOD vessel tap is completed.

Meltdown and refining period means the time period commencing at the termination of the initial charging period and ending at the initiation of the tapping period, excluding any intermediate charging periods and times when power to the EAF is off.

Melting means that phase of steel production cycle during which the iron and steel scrap is heated to the molten state.

Negative-pressure fabric filter means a fabric filter with the fans on the downstream side of the filter bags.

Positive-pressure fabric filter means a fabric filter with the fans on the upstream side of the filter bags.

Refining means that phase of the steel production cycle during which undesirable elements are removed from the molten steel and alloys are added to reach the final metal chemistry.

Shop means the building which houses one or more EAF's or AOD vessels.

Shop opacity means the arithmetic average of 24 observations of the opacity of emissions from the shop taken in accordance with Method 9 of appendix A of this part.

Tap means the pouring of molten steel from an EAF or AOD vessel.

Tapping period means the time period commencing at the moment an EAF begins to pour molten steel and ending either three minutes after steel ceases to flow from an EAF, or six minutes after steel begins to flow, whichever is longer.

[49 FR 43845, Oct. 31, 1984, as amended at 64 FR 10110, Mar. 2, 1999; 70 FR 8532, Feb. 22, 2005]

§60.272a Standard for particulate matter.

- (a) On and after the date of which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from an EAF or an AOD vessel any gases which:
- (1) Exit from a control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf);
- (2) Exit from a control device and exhibit 3 percent opacity or greater; and
- (3) Exit from a shop and, due solely to the operations of any affected EAF(s) or AOD vessel(s), exhibit 6 percent opacity or greater.
- (b) On and after the date on which the performance test required to be conducted by §60.8 is completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from the dust-handling system any gases that exhibit 10 percent opacity or greater.

§60.273a Emission monitoring.

- (a) Except as provided under paragraphs (b) and (c) of this section, a continuous monitoring system for the measurement of the opacity of emissions discharged into the atmosphere from the control device(s) shall be installed, calibrated, maintained, and operated by the owner or operator subject to the provisions of this subpart.
- (b) No continuous monitoring system shall be required on any control device serving the dust-handling system.
- (c) A continuous monitoring system for the measurement of the opacity of emissions discharged into the atmosphere from the control device(s) is not required on any modular, multi-stack, negative-pressure or positive-pressure fabric filter if observations of the opacity of the visible emissions from the control device are performed by a certified visible emission observer; or on

any single-stack fabric filter if visible emissions from the control device are performed by a certified visible emission observer and the owner installs and continuously operates a bag leak detection system according to paragraph (e) of this section. Visible emission observations shall be conducted at least once per day for at least three 6-minute periods when the furnace is operating in the melting and refining period. All visible emissions observations shall be conducted in accordance with Method 9. If visible emissions occur from more than one point, the opacity shall be recorded for any points where visible emissions are observed. Where it is possible to determine that a number of visible emission sites relate to only one incident of the visible emission, only one set of three 6-minute observations will be required. In that case, the Method 9 observations must be made for the site of highest opacity that directly relates to the cause (or location) of visible emissions observed during a single incident. Records shall be maintained of any 6-minute average that is in excess of the emission limit specified in §60.272a(a).

- (d) A furnace static pressure monitoring device is not required on any EAF equipped with a DEC system if observations of shop opacity are performed by a certified visible emission observer as follows: Shop opacity observations shall be conducted at least once per day when the furnace is operating in the meltdown and refining period. Shop opacity shall be determined as the arithmetic average of 24 consecutive 15-second opacity observations of emissions from the shop taken in accordance with Method 9. Shop opacity shall be recorded for any point(s) where visible emissions are observed. Where it is possible to determine that a number of visible emission sites relate to only one incident of visible emissions, only one observation of shop opacity will be required. In this case, the shop opacity observations must be made for the site of highest opacity that directly relates to the cause (or location) of visible emissions observed during a single incident.
- (e) A bag leak detection system must be installed and continuously operated on all single-stack fabric filters if the owner or operator elects not to install and operate a continuous opacity monitoring system as provided for under paragraph (c) of this section. In addition, the owner or operator shall meet the visible emissions observation requirements in paragraph (c) of this section. The bag leak detection system must meet the specifications and requirements of paragraphs (e)(1) through (8) of this section.
- (1) The bag leak detection system must be certified by the manufacturer to be capable of detecting particulate matter emissions at concentrations of 1 milligram per actual cubic meter (0.00044 grains per actual cubic foot) or less.
- (2) The bag leak detection system sensor must provide output of relative particulate matter loadings and the owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger.)
- (3) The bag leak detection system must be equipped with an alarm system that will sound when an increase in relative particulate loading is detected over the alarm set point established according to paragraph (e)(4) of this section, and the alarm must be located such that it can be heard by the appropriate plant personnel.

- (4) For each bag leak detection system required by paragraph (e) of this section, the owner or operator shall develop and submit to the Administrator or delegated authority, for approval, a site-specific monitoring plan that addresses the items identified in paragraphs (i) through (v) of this paragraph (e)(4). For each bag leak detection system that operates based on the triboelectric effect, the monitoring plan shall be consistent with the recommendations contained in the U.S. Environmental Protection Agency guidance document "Fabric Filter Bag Leak Detection Guidance" (EPA-454/R-98-015). The owner or operator shall operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. The plan shall describe the following:
- (i) Installation of the bag leak detection system;
- (ii) Initial and periodic adjustment of the bag leak detection system including how the alarm setpoint will be established;
- (iii) Operation of the bag leak detection system including quality assurance procedures;
- (iv) How the bag leak detection system will be maintained including a routine maintenance schedule and spare parts inventory list; and
- (v) How the bag leak detection system output shall be recorded and stored.
- (5) The initial adjustment of the system shall, at a minimum, consist of establishing the baseline output by adjusting the sensitivity (range) and the averaging period of the device, and establishing the alarm set points and the alarm delay time (if applicable).
- (6) Following initial adjustment, the owner or operator shall not adjust the averaging period, alarm set point, or alarm delay time without approval from the Administrator or delegated authority except as provided for in paragraphs (e)(6)(i) and (ii) of this section.
- (i) Once per quarter, the owner or operator may adjust the sensitivity of the bag leak detection system to account for seasonal effects including temperature and humidity according to the procedures identified in the site-specific monitoring plan required under paragraphs (e)(4) of this section.
- (ii) If opacities greater than zero percent are observed over four consecutive 15-second observations during the daily opacity observations required under paragraph (c) of this section and the alarm on the bag leak detection system does not sound, the owner or operator shall lower the alarm set point on the bag leak detection system to a point where the alarm would have sounded during the period when the opacity observations were made.
- (7) For negative pressure, induced air baghouses, and positive pressure baghouses that are discharged to the atmosphere through a stack, the bag leak detection sensor must be installed downstream of the baghouse and upstream of any wet scrubber.

- (8) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.
- (f) For each bag leak detection system installed according to paragraph (e) of this section, the owner or operator shall initiate procedures to determine the cause of all alarms within 1 hour of an alarm. Except as provided for under paragraph (g) of this section, the cause of the alarm must be alleviated within 3 hours of the time the alarm occurred by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to, the following:
- (1) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in particulate emissions;
- (2) Sealing off defective bags or filter media;
- (3) Replacing defective bags or filter media or otherwise repairing the control device;
- (4) Sealing off a defective baghouse compartment;
- (5) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system; and
- (6) Shutting down the process producing the particulate emissions.
- (g) In approving the site-specific monitoring plan required in paragraph (e)(4) of this section, the Administrator or delegated authority may allow owners or operators more than 3 hours to alleviate specific conditions that cause an alarm if the owner or operator identifies the condition that could lead to an alarm in the monitoring plan, adequately explains why it is not feasible to alleviate the condition within 3 hours of the time the alarm occurred, and demonstrates that the requested additional time will ensure alleviation of the condition as expeditiously as practicable.

[49 FR 43845, Oct. 31, 1984, as amended at 54 FR 6672, Feb. 14, 1989; 64 FR 10111, Mar. 2, 1999; 70 FR 8532, Feb. 22, 2005]

§60.274a Monitoring of operations.

- (a) The owner or operator subject to the provisions of this subpart shall maintain records of the following information:
- (1) All data obtained under paragraph (b) of this section; and
- (2) All monthly operational status inspections performed under paragraph (c) of this section.
- (b) Except as provided under paragraph (e) of this section, the owner or operator subject to the provisions of this subpart shall check and record on a once-per-shift basis the furnace static pressure (if DEC system is in use, and a furnace static pressure gauge is installed according to paragraph (f) of this section) and either: check and record the control system fan motor amperes

and damper position on a once-per-shift basis; install, calibrate, and maintain a monitoring device that continuously records the volumetric flow rate through each separately ducted hood; or install, calibrate, and maintain a monitoring device that continuously records the volumetric flow rate at the control device inlet and check and record damper positions on a once-per-shift basis. The monitoring device(s) may be installed in any appropriate location in the exhaust duct such that reproducible flow rate monitoring will result. The flow rate monitoring device(s) shall have an accuracy of ± 10 percent over its normal operating range and shall be calibrated according to the manufacturer's instructions. The Administrator may require the owner or operator to demonstrate the accuracy of the monitoring device(s) relative to Methods 1 and 2 of appendix A of this part.

- (c) When the owner or operator of an affected facility is required to demonstrate compliance with the standards under §60.272a(a)(3) and at any other time that the Administrator may require (under section 114 of the CAA, as amended) either: the control system fan motor amperes and all damper positions, the volumetric flow rate through each separately ducted hood, or the volumetric flow rate at the control device inlet and all damper positions shall be determined during all periods in which a hood is operated for the purpose of capturing emissions from the affected facility subject to paragraph (b) of this section. The owner or operator may petition the Administrator for reestablishment of these parameters whenever the owner or operator can demonstrate to the Administrator's satisfaction that the affected facility operating conditions upon which the parameters were previously established are no longer applicable. The values of these parameters as determined during the most recent demonstration of compliance shall be maintained at the appropriate level for each applicable period. Operation at other than baseline values may be subject to the requirements of §60.276a(c).
- (d) Except as provided under paragraph (e) of this section, the owner or operator shall perform monthly operational status inspections of the equipment that is important to the performance of the total capture system (*i.e.*, pressure sensors, dampers, and damper switches). This inspection shall include observations of the physical appearance of the equipment (e.g., presence of holes in ductwork or hoods, flow constrictions caused by dents or accumulated dust in ductwork, and fan erosion). Any deficiencies shall be noted and proper maintenance performed.
- (e) The owner or operator may petition the Administrator to approve any alternative to either the monitoring requirements specified in paragraph (b) of this section or the monthly operational status inspections specified in paragraph (d) of this section if the alternative will provide a continuous record of operation of each emission capture system.
- (f) Except as provided for under $\S60.273a(d)$, if emissions during any phase of the heat time are controlled by the use of a DEC system, the owner or operator shall install, calibrate, and maintain a monitoring device that allows the pressure in the free space inside the EAF to be monitored. The pressure shall be recorded as 15-minute integrated averages. The monitoring device may be installed in any appropriate location in the EAF or DEC duct prior to the introduction of ambient air such that reproducible results will be obtained. The pressure monitoring device shall have an accuracy of ± 5 mm of water gauge over its normal operating range and shall be calibrated according to the manufacturer's instructions.

- (g) Except as provided for under §60.273a(d), when the owner or operator of an EAF controlled by a DEC is required to demonstrate compliance with the standard under §60.272a(a)(3), and at any other time the Administrator may require (under section 114 of the Clean Air Act, as amended), the pressure in the free space inside the furnace shall be determined during the meltdown and refining period(s) using the monitoring device required under paragraph (f) of this section. The owner or operator may petition the Administrator for reestablishment of the pressure whenever the owner or operator can demonstrate to the Administrator's satisfaction that the EAF operating conditions upon which the pressures were previously established are no longer applicable. The pressure determined during the most recent demonstration of compliance shall be maintained at all times when the EAF is operating in a meltdown and refining period. Operation at higher pressures may be considered by the Administrator to be unacceptable operation and maintenance of the affected facility.
- (h) During any performance test required under §60.8, and for any report thereof required by §60.276a(f) of this subpart, or to determine compliance with §60.272a(a)(3) of this subpart, the owner or operator shall monitor the following information for all heats covered by the test:
- (1) Charge weights and materials, and tap weights and materials;
- (2) Heat times, including start and stop times, and a log of process operation, including periods of no operation during testing and the pressure inside an EAF when direct-shell evacuation control systems are used;
- (3) Control device operation log; and
- (4) Continuous opacity monitor or Method 9 data.

[49 FR 43845, Oct. 31, 1984, as amended at 64 FR 10111, Mar. 2, 1999; 65 FR 61758, Oct. 17, 2000; 70 FR 8533, Feb. 22, 2005]

§60.275a Test methods and procedures.

- (a) During performance tests required in §60.8, the owner or operator shall not add gaseous diluents to the effluent gas stream after the fabric in any pressurized fabric filter collector, unless the amount of dilution is separately determined and considered in the determination of emissions.
- (b) When emissions from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart but controlled by a common capture system and control device, the owner or operator shall use either or both of the following procedures during a performance test (see also §60.276a(e)):
- (1) Determine compliance using the combined emissions.
- (2) Use a method that is acceptable to the Administrator and that compensates for the emissions from the facilities not subject to the provisions of this subpart.

- (c) When emission from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart, the owner or operator shall demonstrate compliance with §60.272(a)(3) based on emissions from only the affected facility(ies).
- (d) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b).
- (e) The owner or operator shall determine compliance with the particulate matter standards in §60.272a as follows:
- (1) Method 5 shall be used for negative-pressure fabric filters and other types of control devices and Method 5D shall be used for positive-pressure fabric filters to determine the particulate matter concentration and volumetric flow rate of the effluent gas. The sampling time and sample volume for each run shall be at least 4 hours and 4.50 dscm (160 dscf) and, when a single EAF or AOD vessel is sampled, the sampling time shall include an integral number of heats.
- (2) When more than one control device serves the EAF(s) being tested, the concentration of particulate matter shall be determined using the following equation:

$$c_{st} = \left[\sum_{i=1}^{n} \left(c_{si} Q_{sati} \right) \right] \sum_{i=1}^{n} Q_{sati}$$

where:

 c_{st} = average concentration of particulate matter, mg/dscm (gr/dscf).

c_{si} = concentration of particulate matter from control device "i", mg/dscm (gr/dscf).

n=total number of control devices tested.

Q_{sdi} = volumetric flow rate of stack gas from control device "i", dscm/hr (dscf/hr).

- (3) Method 9 and the procedures of §60.11 shall be used to determine opacity.
- (4) To demonstrate compliance with §60.272a(a) (1), (2), and (3), the Method 9 test runs shall be conducted concurrently with the particulate matter test runs, unless inclement weather interferes.
- (f) To comply with §60.274a (c), (f), (g), and (h), the owner or operator shall obtain the information required in these paragraphs during the particulate matter runs.
- (g) Any control device subject to the provisions of the subpart shall be designed and constructed to allow measurement of emissions using applicable test methods and procedures.
- (h) Where emissions from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart but controlled by a common capture system

and control device, the owner or operator may use any of the following procedures during a performance test:

- (1) Base compliance on control of the combined emissions;
- (2) Utilize a method acceptable to the Administrator that compensates for the emissions from the facilities not subject to the provisions of this subpart, or;
- (3) Any combination of the criteria of paragraphs (h)(1) and (h)(2) of this section.
- (i) Where emissions from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart, determinations of compliance with §60.272a(a)(3) will only be based upon emissions originating from the affected facility(ies).
- (j) Unless the presence of inclement weather makes concurrent testing infeasible, the owner or operator shall conduct concurrently the performance tests required under §60.8 to demonstrate compliance with §60.272a(a) (1), (2), and (3) of this subpart.

[49 FR 43845, Oct. 31, 1984, as amended at 54 FR 6673, Feb. 14, 1989; 54 FR 21344, May 17, 1989; 65 FR 61758, Oct. 17, 2000]

§60.276a Recordkeeping and reporting requirements.

- (a) Records of the measurements required in §60.274a must be retained for at least 2 years following the date of the measurement.
- (b) Each owner or operator shall submit a written report of exceedances of the control device opacity to the Administrator semi-annually. For the purposes of these reports, exceedances are defined as all 6-minute periods during which the average opacity is 3 percent or greater.
- (c) Operation at a furnace static pressure that exceeds the value established under $\S60.274a(g)$ and either operation of control system fan motor amperes at values exceeding ± 15 percent of the value established under $\S60.274a(c)$ or operation at flow rates lower than those established under $\S60.274a(c)$ may be considered by the Administrator to be unacceptable operation and maintenance of the affected facility. Operation at such values shall be reported to the Administrator semiannually.
- (d) The requirements of this section remain in force until and unless EPA, in delegating enforcement authority to a State under section 111(c) of the Act, approves reporting requirements or an alternative means of compliance surveillance adopted by such State. In that event, affected sources within the State will be relieved of the obligation to comply with this section, provided that they comply with the requirements established by the State.
- (e) When the owner or operator of an EAF or AOD is required to demonstrate compliance with the standard under §60.275 (b)(2) or a combination of (b)(1) and (b)(2) the owner or operator shall obtain approval from the Administrator of the procedure(s) that will be used to determine

compliance. Notification of the procedure(s) to be used must be postmarked at least 30 days prior to the performance test.

- (f) For the purpose of this subpart, the owner or operator shall conduct the demonstration of compliance with §60.272a(a) of this subpart and furnish the Administrator a written report of the results of the test. This report shall include the following information:
- (1) Facility name and address;
- (2) Plant representative;
- (3) Make and model of process, control device, and continuous monitoring equipment;
- (4) Flow diagram of process and emission capture equipment including other equipment or process(es) ducted to the same control device;
- (5) Rated (design) capacity of process equipment;
- (6) Those data required under §60.274a(h) of this subpart;
- (i) List of charge and tap weights and materials;
- (ii) Heat times and process log;
- (iii) Control device operation log; and
- (iv) Continuous opacity monitor or Method 9 data.
- (7) Test dates and test times;
- (8) Test company;
- (9) Test company representative;
- (10) Test observers from outside agency;
- (11) Description of test methodology used, including any deviation from standard reference methods;
- (12) Schematic of sampling location;
- (13) Number of sampling points;
- (14) Description of sampling equipment;
- (15) Listing of sampling equipment calibrations and procedures;

- (16) Field and laboratory data sheets;
- (17) Description of sample recovery procedures;
- (18) Sampling equipment leak check results;
- (19) Description of quality assurance procedures;
- (20) Description of analytical procedures;
- (21) Notation of sample blank corrections; and
- (22) Sample emission calculations.
- (g) The owner or operator shall maintain records of all shop opacity observations made in accordance with §60.273a(d). All shop opacity observations in excess of the emission limit specified in §60.272a(a)(3) of this subpart shall indicate a period of excess emission, and shall be reported to the administrator semi-annually, according to §60.7(c).
- (h) The owner or operator shall maintain the following records for each bag leak detection system required under §60.273a(e):
- (1) Records of the bag leak detection system output;
- (2) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system settings; and
- (3) An identification of the date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, if procedures were initiated within 1 hour of the alarm, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and if the alarm was alleviated within 3 hours of the alarm.
- [49 FR 43845, Oct. 31, 1984, as amended at 54 FR 6673, Feb. 14, 1989; 64 FR 10111, Mar. 2, 1999; 65 FR 61758, Oct. 17, 2000; 70 FR 8533, Feb. 22, 2005]

This content is from the eCFR and is authoritative but unofficial.

Title 40 —Protection of Environment

Chapter I —Environmental Protection Agency

Subchapter C - Air Programs

Part 60 - Standards of Performance for New Stationary Sources

Authority: 42 U.S.C. 7401 et seq.

Source: 36 FR 24877, Dec. 23, 1971, unless otherwise noted.

Subpart AAb Standards of Performance for Steel Plants: Electric Arc Furnaces and

Argon-Oxygen Decarbonization Vessels Constructed After May 16, 2022

§ 60.270b Applicability and designation of affected facility.

§ 60.271b Definitions.

§ 60.272b Standard for particulate matter.

§ 60.273b Emission monitoring.

§ 60.274b Monitoring of operations.

§ 60.275b Test methods and procedures.

§ 60.276b Recordkeeping and reporting requirements.

Subpart AAb—Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarbonization Vessels Constructed After May 16, 2022

Source: 88 FR 58487, Aug. 25, 2023, unless otherwise noted.

§ 60.270b Applicability and designation of affected facility.

- (a) The provisions of this subpart are applicable to the following affected facilities in steel plants that produce carbon, alloy, or specialty steels: electric arc furnaces (EAF), argon-oxygen decarburization (AOD) vessels, and dust-handling systems.
- (b) The provisions of this subpart apply to each affected facility identified in paragraph (a) of this section that commences construction, modification, or reconstruction after May 16, 2022.

§ 60.271b Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

Argon-oxygen decarburization vessel (AOD vessel) means any closed-bottom, refractory-lined converter vessel with submerged tuyeres through which gaseous mixtures containing argon and oxygen or nitrogen may be blown into molten steel for further refining.

- Bag leak detection system means a system that is capable of continuously monitoring relative particulate matter (dust) loadings in the exhaust of a baghouse to detect bag leaks and other conditions that result in increases in particulate loadings. A bag leak detection system includes, but is not limited to, an instrument that operates on triboelectric, electrodynamic, light scattering, light transmittance, or other effect to continuously monitor relative particulate matter loadings.
- Capture system means the equipment (including ducts, hoods, fans, dampers, etc.) used to capture particulate matter generated by the operation of an electric arc furnace (EAF) or AOD vessel and transport captured particulate matter to the air pollution control device.
- Charge means the addition of iron and steel scrap or other materials into the shell of an EAF or the addition of molten steel or other materials into the top of an AOD vessel.
- Charging period means the time period when iron and steel scrap or other materials are added into the top of an EAF until the melting and refining period commences.
- Control device means the air pollution control equipment used to remove particulate matter from the effluent gas stream generated by an EAF or AOD vessel.
- Damper means any device used to open, close or throttle a DEC system or hood designed to capture emissions from an EAF or AOD vessel and route them to the associated control device(s). It does not include isolation dampers used to isolate a fan or baghouse compartment for repair or cleaning, or dampers controlling collection of emissions from equipment other than an EAF or AOD vessel.
- Direct-shell evacuation control system (DEC system) means a system that designed to create and maintain a negative pressure within the EAF shell during melting and refining, and transports emissions to the control device.
- Dust-handling system means equipment used to handle particulate matter collected by the control device for an EAF or AOD vessel subject to this subpart. For the purposes of this subpart, the dust-handling system shall consist of the control device dust hoppers, the dust-conveying equipment, any silo, dust storage equipment, the dust-treating equipment (e.g., pug mill, pelletizer), dust transfer equipment (including, but not limited to transfers from a silo to a truck or rail car), and any secondary control devices used with the dust transfer equipment.
- Electric arc furnace (EAF) means a furnace that produces molten steel and heats the charge materials with electricity using-carbon electrodes. For the purposes of this subpart, an EAF shall consist of the furnace shell and roof and the transformer. Furnaces that continuously feed direct-reduced iron ore pellets as the primary source of iron are not affected facilities within the scope of this definition.
- Electric arc furnace facility means the EAF(s) or AOD(s) subject to this rule and the air pollution control equipment used to remove particulate matter from the effluent gas stream generated by the EAF(s) or AOD(s).
- Furnace static pressure means the pressure exerted by the flow of air at the walls of the furnace, perpendicular to the flow, measured using a manometer or equivalent device to determine pressure inside an EAF when DEC systems are used or pressure in the free space inside the EAF.
- Heat cycle means the period beginning when scrap is charged to an EAF shell and ending when the EAF tap is completed or beginning when molten steel is charged to an AOD vessel and ending when the AOD vessel tap is completed.

- *Melting* means that phase of steel production cycle during which the iron and steel scrap is heated to the molten state.
- Melting and refining period means the time period commencing at the initial energizing of the electrode to begin the melting process and ending at the initiation of the tapping period, excluding any intermediate times when the electrodes are not energized as part of the melting process.
- Modified facility means any physical or operational change to an existing facility which results in an increase in the emission rate (in kilograms per hour) to the atmosphere of any pollutant to which a standard applies. Upon modification, an existing facility shall become an affected facility for each pollutant to which a standard applies and for which there is an increase in the emission rate to the atmosphere. See § 60.14.
- Negative-pressure fabric filter means a fabric filter with the fans on the downstream side of the filter bags.
- Positive-pressure fabric filter means a fabric filter with the fans on the upstream side of the filter bags.
- Reconstructed facility means an existing facility which upon reconstruction becomes an affected facility, irrespective of any change in emission rate, due to the replacement of components of an existing facility to such an extent that the fixed capital cost of the new components exceeds 50 percent of the fixed capital cost that would be required to construct a comparable entirely new facility, where "fixed capital cost" means the capital needed to provide all the depreciable components, and it is technologically and economically feasible to meet the applicable standards set forth in this subpart after reconstruction.
- Refining means that phase of the steel production cycle during which impurities are removed from the molten steel and alloys are added to reach the final metal chemistry.
- Shop means the building that houses one or more EAF's or AOD vessels and serves as the point from which compliance with § 60.272b(a)(3), "Standard for Particulate Matter," is measured.
- Shop opacity means the arithmetic average of 24 observations of the opacity of any EAF or AOD emissions emanating from, and not within, the shop, during melting and refining, and during tapping, taken in accordance with Method 9 of appendix A of this part; and during charging, according to the procedures in section 2.5 of Method 9 in appendix A to part 60 of this chapter, with the following modifications: begin reading opacity when charging is first initiated and continue reading until melting and refining begins, or for a minimum of 3 minutes total. From the readings collected, take the average of the highest 12 15-second opacity observations (total of 3 minutes) during this period to determine the 3-minute opacity average associated with charging. For the daily opacity observation during melting and refining, facilities may measure opacity by EPA Method 22 of appendix A of this part, modified to require the recording of the aggregate duration of visible emissions at 15-second intervals. Alternatively, ASTM D7520-16 (incorporated by reference, see § 60.17), may be used with the following five conditions:
 - (1) During the digital camera opacity technique (DCOT) certification procedure outlined in section 9.2 of ASTM D7520-16 (incorporated by reference, see § 60.17), the owner or operator or the DCOT vendor must present the plumes in front of various backgrounds of color and contrast representing conditions anticipated during field use such as blue sky, trees, and mixed backgrounds (clouds and/ or a sparse tree stand);
 - (2) The owner or operator must also have standard operating procedures in place including daily or other frequency quality checks to ensure the equipment is within manufacturing specifications as outlined in section 8.1 of ASTM D7520-16 (incorporated by reference, see § 60.17);

- (3) The owner or operator must follow the recordkeeping procedures outlined in § 60.7(f) for the DCOT certification, compliance report, data sheets, and all raw unaltered JPEGs used for opacity and certification determination;
- (4) The owner or operator or the DCOT vendor must have a minimum of four independent technology users apply the software to determine the visible opacity of the 300 certification plumes. For each set of 25 plumes, the user may not exceed 15 percent opacity of any one reading and the average error must not exceed 7.5 percent opacity;
- (5) Use of this approved alternative does not provide or imply a certification or validation of any vendor's hardware or software. The onus to maintain and verify the certification and/or training of the DCOT camera, software, and operator in accordance with ASTM D7520-16 (incorporated by reference, see § 60.17) and these requirements is on the facility, DCOT operator, and DCOT vendor.
- Static pressure means the pressure exerted by the flow of air at the furnace walls, perpendicular to the flow, measured using a manometer or equivalent device. This refers to either furnace static pressure, or static pressure in air ducts, or pressure in the EAF capture system, i.e., static pressure at each separately ducted hood]
- Tap means the pouring of molten steel from an EAF or AOD vessel.
- Tapping period means the time period commencing at the moment an EAF begins to pour molten steel and ending either three minutes after steel ceases to flow from an EAF, or six minutes after steel begins to flow, whichever is longer.

[88 FR 58487, Aug. 25, 2023, as amended at 89 FR 11206, Feb. 14, 2024]

§ 60.272b Standard for particulate matter.

- (a) On and after the date of which the performance tests required to be conducted by § 60.8 or § 60.272b(d) are completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from an EAF or an AOD vessel any gases which:
 - (1) Exit from control devices at the facility and contain particulate matter as a total for the facility in excess of 79 mg/kg steel produced (0.16 lb/ton steel produced) for the facility;
 - (2) Exit from a control device and exhibit 3 percent opacity or greater, as measured in accordance with EPA Method 9 of appendix A of this part, or, as an alternative, according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271; and
 - (3) Exit from a shop and, due solely to the operations of any affected EAF(s) or AOD vessel(s) during melting and refining exhibit greater than 0 percent opacity, and during tapping exhibit greater than 6 percent opacity, as measured in accordance with Method 9 of appendix A of this part; and during charging, exhibit greater than 6 percent opacity, as measured according to the procedures in section 2.5 of Method 9 in appendix A to part 60 of this chapter, with the modification of this section of Method 9, as follows: begin reading opacity when charging is first initiated and continue reading until melting and refining begins, or for a minimum of 3 minutes total. From the readings collected, take the average of the highest 12 15-second opacity observations (total of 3 minutes) during this period to determine the 3-minute opacity average associated with charging. For the daily opacity observation during melting and refining, facilities may measure opacity by EPA Method 22 of appendix A of this part, modified to require the recording of the aggregate duration of visible

emissions at 15-second intervals. As an alternative, facilities may measure opacity according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271 or, for the daily opacity observations during melting and refining, exhibit 0 seconds of visible emissions as measured by EPA Method 22 of appendix A of this part, modified to require the recording of the aggregate duration of visible emissions at 15-second intervals. Shop opacity shall be recorded for any point(s) during melting and refining, during charging, and during tapping where visible emissions are observed. Where it is possible to determine that a number of visible emission sites relate to only one incident of visible emissions during melting and refining, during charging, or during tapping, only one observation of shop opacity or visible emissions will be required during melting and refining, during charging, or during tapping. In this case, the shop opacity or visible emissions observations must be made for the point of highest emissions during melting and refining, during charging, or during tapping that directly relates to the cause (or location) of visible emissions observed during a single incident.

- (b) On and after the date on which the performance tests required to be conducted by § 60.8 or § 60.272b(d) are completed, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from the dust-handling system any gases that exhibit 10 percent opacity or greater, as measured in accordance with EPA Method 9 of appendix A of this part, or, as an alternative, according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271.
- (c) The standards in paragraphs (a) and (b) apply at all times. The exemptions to opacity standards under § 60.11(c) do not apply to this subpart. As provided in § 60.11(f), this provision supersedes the exemptions for periods of startup, shutdown and malfunction in the Part 60 general provisions in Subpart A.
- (d) Performance tests required to be conducted to show compliance with the standards in paragraph (a) of this section shall be repeated at least every 5 years after the performance tests required by § 60.8 are conducted.

[88 FR 58487, Aug. 25, 2023, as amended at 89 FR 11206, Feb. 14, 2024]

§ 60.273b Emission monitoring.

- (a) Except as provided under <u>paragraphs</u> (b) and (c) of this section, a continuous monitoring system for the measurement of the opacity of emissions discharged into the atmosphere from the control device(s) shall be installed, calibrated, maintained, and operated by the owner or operator subject to the provisions of this subpart.
- (b) No continuous monitoring system shall be required on any control device serving the dust-handling system.

(c)

- (1) A continuous monitoring system for the measurement of the opacity of emissions discharged into the atmosphere from the control device(s) is not required:
 - (i) On any modular, multistack, negative-pressure or positive-pressure fabric filter if observations of the opacity of the visible emission from the control device are performed by a certified visible emission observer; or

- (ii) On any single-stack fabric filter if observations of the opacity of the visible emissions from the control device are performed by a certified visible emission observer and the owner installs and operates a bag leak detection system according to paragraph (e) of this section whenever the control device is being used to remove particulate matter from the EAF or AOD.
- (2) Visible emission observations shall be conducted at least once per day of the control device for at least three 6-minute periods when the furnace is operating in the melting and refining period. All visible emissions observations shall be conducted in accordance with EPA Method 9 of appendix A to this part, or, as an alternative, according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271.
- (3) If visible emissions occur from more than one point, the opacity shall be recorded for any points where visible emissions are observed. Where it is possible to determine that a number of visible emission points relate to only one incident of the visible emission, only one set of three 6-minute observations will be required. In that case, EPA Method 9 observations must be made for the point of highest opacity that directly relates to the cause (or location) of visible emissions observed during a single incident. Records shall be maintained of any 6-minute average that is in excess of the emission limit specified in § 60.272b(a)(2).
- (d) A furnace static pressure monitoring device is not required on any EAF equipped with a DEC system if observations of shop opacity are performed by a certified visible emission observer as follows:
 - (1) At least once per day when the furnace is operating.
 - (2) No less than once per week, during the heat cycle as defined in § 60.271b, a melt shop with more than one EAF shall conduct these readings while all EAFs are in operation. All EAFs are not required to be on the same schedule for tapping.
 - (3) Shop opacity shall be determined as the arithmetic average of 24 consecutive 15-second opacity observations of emissions from the shop taken in accordance with Method 9 during melting and refining and during tapping; and during charging determined according to the procedures in section 2.5 of Method 9 in appendix A to part 60 of this chapter, with the modification as follows: begin reading opacity when charging is first initiated and continue reading until melting and refining begins, or for a minimum of 3 minutes total. From the readings collected, take the average of the highest 12 15-second opacity observations (total of 3 minutes) during this period to determine the 3-minute opacity average associated with charging. For the daily opacity observation during melting and refining, facilities may measure opacity by EPA Method 22 of appendix A of this part, modified to require the recording of the aggregate duration of visible emissions at 15-second intervals. As an alternative, facilities may measure the opacity according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under Shop opacity in § 60.271, or, during melting and refining, as the total duration of visible emissions measured according to EPA Method 22 over a 6-minute period, modified to require the recording of the aggregate duration of visible emissions at 15-second intervals. Shop opacity shall be recorded for any point(s) where visible emissions are observed. Where it is possible to determine that a number of visible emission points relate to only one incident of visible emissions, only one observation of shop opacity will be required. In this case, the shop opacity observations must be made for the point of highest opacity that directly relates to the cause (or location) of visible emissions observed during a single incident. Shop opacity shall be determined daily during melting and refining, during charging, and during tapping.

- (e) A bag leak detection system must be installed and operated on all single-stack fabric filters whenever the control device is being used to remove particulate matter from the EAF or AOD vessel if the owner or operator elects not to install and operate a continuous opacity monitoring system as provided for under paragraph (c) of this section. In addition, the owner or operator shall meet the visible emissions observation requirements in paragraph (c) of this section. The bag leak detection system must meet the specifications and requirements of paragraphs (e)(1) through (8) of this section.
 - (1) The bag leak detection system must be certified by the manufacturer to be capable of detecting particulate matter emissions at a concentrations of 1 milligram per actual cubic meter (0.00044 grains per actual cubic foot) or less.
 - (2) The bag leak detection system sensor must provide output of relative particulate matter loadings and the owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger.)
 - (3) The bag leak detection system must be equipped with an alarm system that will activate when an increase in relative particulate loading is detected over the alarm set point established according to paragraph (e)(4) of this section, and the alarm must be located such that it can be identified by the appropriate plant personnel.
 - (4) For each bag leak detection system required by paragraph (e) of this section, the owner or operator shall develop and submit to the Administrator or delegated authority, for approval, a site-specific monitoring plan that addresses the items identified in paragraphs (i) through (v) of this paragraph (e)(4). For each bag leak detection system that operates based on the triboelectric effect, the monitoring plan shall be consistent with the recommendations contained in EPA-454/R-98-015, "Fabric Filter Bag Leak Detection Guidance" (incorporated by reference, see § 60.17). The owner or operator shall operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. The plan shall describe the following:
 - (i) Installation of the bag leak detection system;
 - (ii) Initial and periodic adjustment of the bag leak detection system including how the alarm setpoint will be established;
 - (iii) Operation of the bag leak detection system including quality assurance procedures;
 - (iv) How the bag leak detection system will be maintained including a routine maintenance schedule and spare parts inventory list; and
 - (v) How the bag leak detection system output shall be recorded and stored.
 - (5) The initial adjustment of the system shall, at a minimum, consist of establishing the baseline output by adjusting the sensitivity (range) and the averaging period of the device, and establishing the alarm set points and the alarm delay time (if applicable).
 - (6) Following initial adjustment, the owner or operator shall not adjust the averaging period, alarm set point, or alarm delay time without approval from the Administrator or delegated authority except as provided for in paragraphs (e)(6)(i) and (ii) of this section.
 - (i) Once per quarter, the owner or operator may adjust the sensitivity of the bag leak detection system to account for seasonal effects including temperature and humidity according to the procedures identified in the site-specific monitoring plan required under paragraph (e)(4) of this section.

- (ii) If opacities greater than 0 percent are observed over four consecutive 15-second observations during the daily opacity observations required under paragraph (c) of this section and the alarm on the bag leak detection system alarm is not activated, the owner or operator shall lower the alarm set point on the bag leak detection system to a point where the alarm would have been activated during the period when the opacity observations were made.
- (7) For negative pressure, induced air baghouses, and positive pressure baghouses that are discharged to the atmosphere through a stack, the bag leak detection sensor must be installed downstream of the baghouse or upstream of any wet scrubber.
- (8) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.
- (f) For each bag leak detection system installed according to paragraph (e) of this section, the owner or operator shall initiate procedures to determine the cause of all alarms within 1 hour of an alarm. The cause of the alarm must be alleviated within 24 hours of the time the alarm occurred by taking whatever response action(s) are necessary. Response actions may include, but are not limited to, the following:
 - (1) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other condition that may have caused an increase in particulate emissions;
 - (2) Sealing off defective bags or filter media;
 - (3) Replacing defective bags or filter media or otherwise repairing the control device;
 - (4) Sealing off a defective baghouse compartment;
 - (5) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system;
 - (6) Establishing to the extent acceptable by the delegated authority that the alarm was a false alarm and not caused by a bag leak or other malfunction that could reasonably result in excess particulate emissions; and
 - (7) Shutting down the process producing the particulate emissions.
- (g) In approving the site-specific monitoring plan required in paragraph (e)(4) of this section, the Administrator or delegated authority may allow owners or operators more than 24 hours to alleviate specific conditions that cause an alarm if the owner or operator identifies the condition that could lead to an alarm in the monitoring plan, adequately explains why it is not feasible to alleviate the condition within 24 hours of the time the alarm occurred, and demonstrates that the requested additional time will ensure alleviation of the condition as expeditiously as practicable.

[88 FR 58487, Aug. 25, 2023, as amended at 89 FR 11207, Feb. 14, 2024]

§ 60.274b Monitoring of operations.

- (a) The owner or operator subject to the provisions of this subpart shall maintain records of the following information:
 - (1) All data obtained under paragraph (b) of this section; and
 - (2) All monthly operational status inspections performed under paragraph (c) of this section.

- (b) Except as provided under <u>paragraph</u> (e) of this section, the owner or operator subject to the provisions of this subpart shall conduct the following monitoring of the capture system to demonstrate continuous compliance:
 - (1) If a DEC system is in use, according to paragraph (f) of this section, monitor and record once per shift the block 15-minute average furnace static pressure and any one of (2) through (4) in this paragraph:
 - (2) Install, calibrate, and maintain a monitoring device that continuously records the fan motor amperes at each damper position, and damper position consistent with paragraph (h)(5) of this section; or
 - (3) Monitor and record as no greater than 15-minute integrated block average basis the volumetric air flow rate at each separately ducted hood; or
 - (4) Install, calibrate, and maintain a monitoring device that continuously records the volumetric flow rate at the control device inlet and monitor and record the damper position consistent with paragraph (h)(5) of this section.
 - (5) The furnace static pressure monitoring device(s) shall be installed in an EAF or DEC duct prior to combining with other ducts and prior to the introduction of ambient air, at a location that has no flow disturbance due to the junctions.
 - (6) The volumetric flow monitoring device(s) may be installed in any appropriate location in the capture system such that reproducible flow rate monitoring will result. The flow rate monitoring device(s) shall have an accuracy of ±10 percent over its normal operating range and shall be calibrated according to the manufacturer's instructions. The Administrator may require the owner or operator to demonstrate the accuracy of the monitoring device(s) relative to EPA Methods 1 and 2 of appendix A of this part.
 - (7) Parameters monitored pursuant to this paragraph, excluding damper position, shall be recorded as integrated block averages not to exceed 15 minutes.

(c)

- (1) When the owner or operator of an affected facility is required to demonstrate compliance with the standards under § 60.272b(a)(3) and at any other time that the Administrator may require (under section 114 of the CAA, as amended), the owner or operator shall, during all periods in which a hood is operated for the purpose of capturing emissions from the affected facility subject to paragraph (b) of this section, either:
 - (i) Install, calibrate, and maintain a monitoring device that continuously records the fan motor amperes at each damper position, and damper position consistent with paragraph (h)(5) of this section;
 - (ii) Monitor and record as no greater than 15-minute integrated block average basis the volumetric flow rate through each separately ducted hood; or
 - (iii) Install, calibrate, and maintain a monitoring device that continuously records the volumetric flow rate at the control device inlet, and monitor and record the damper position consistent with paragraph (h)(5) of this section.
- (2) Parameters monitored pursuant to this paragraph, excluding damper position, shall be recorded as integrated block averages not to exceed 15 minutes.

- (3) The owner or operator may petition the Administrator or delegated authority for reestablishment of these parameters whenever the owner or operator can demonstrate to the Administrator's or delegated authority's satisfaction that the affected facility operating conditions upon which the parameters were previously established are no longer applicable. The values of the parameters as determined during the most recent demonstration of compliance shall be the appropriate operational range or control set point throughout each applicable period. Operation at values beyond the accepted operational range or control set point may be subject to the requirements of § 60.276b(c).
- (d) Except as provided under paragraph (e) of this section, the owner or operator shall perform monthly operational status inspections of the equipment that is important to the performance of the capture system (i.e., pressure sensors, dampers, and damper switches). This inspection shall include observations of the physical appearance of the equipment (e.g., presence of holes in ductwork or hoods, flow constrictions caused by dents or excess accumulations of dust in ductwork, and fan erosion) and building inspections to ensure that the building does not have any holes or other openings for particulate matter laden air to escape. Any deficiencies that are determined by the operator to materially impact the efficacy of the capture system shall be noted and proper maintenance performed.
- (e) The owner or operator may petition the Administrator or delegated authority to approve any alternative to either the monitoring requirements specified in paragraph (b) of this section or the monthly operational status inspections specified in paragraph (d) of this section if the alternative will provide a continuous record of operation of each emission capture system.
- (f) Except as provided under § 60.273b(d), if emissions during any phase of the heat cycle are controlled by the use of a DEC system, the owner or operator shall install, calibrate, and maintain a monitoring device that allows the pressure in the free space inside the EAF to be monitored. The pressure shall be recorded as no greater than 15-minute integrated block averages. The monitoring device may be installed in any appropriate location in the EAF or DEC duct prior to the introduction of ambient air such that reproducible results will be obtained. The pressure monitoring device shall have an accuracy of ±5 mm of water gauge over its normal operating range and shall be calibrated according to the manufacturer's instructions.
- When the owner or operator of an EAF controlled by a DEC is required to demonstrate compliance with the standard under § 60.272b(a)(3), and at any other time the Administrator may require (under section 114 of the Clean Air Act, as amended), the pressure in the free space inside the furnace shall be determined during the melting and refining period(s) using the monitoring device required under paragraph (f) of this section. The owner or operator may petition the Administrator or delegated authority for reestablishment of the pressure whenever the owner or operator can demonstrate to the Administrator's or delegated authority's satisfaction that the EAF operating conditions upon which the pressures were previously established are no longer applicable. The pressure range or control setting during the most recent demonstration of compliance shall be maintained at all times when the EAF is operating in a melting and refining period. Continuous operation at pressures higher than the operational range or control setting may be considered by the Administrator or delegated authority to be unacceptable operation and maintenance of the affected facility.
- (h) During any performance test required under § 60.8 or § 60.272b(d), and for any report thereof required by § 60.276b(f) of this subpart, or to determine compliance with § 60.272b(a)(3) of this subpart, the owner or operator shall monitor the following information for all heats covered by the test:
 - (1) Charge weights and materials, and tap weights and materials;

- (2) Heat times, including start and stop times, and a log of process operation, including periods of no operation during testing and, if a furnace static pressure monitoring device is operated pursuant to paragraph (f) of this section, the pressure inside an EAF when DEC systems are used;
- (3) Control device operation log;
- (4) Continuous opacity monitor (COM) or EPA Method 9 data, or, as an alternative to EPA Method 9, according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271;
- (5) All damper positions, no less frequently than performed in the latest melt shop opacity compliance test for a full heat, if selected as a method to demonstrate compliance under paragraph (b) of this section;
- (6) Fan motor amperes at each damper position, if selected as a method to demonstrate compliance under paragraph (b) of this section;
- (7) Volumetric air flow rate through each separately ducted hood, if selected as a method to demonstrate compliance under paragraph (b) of this section; and
- (8) Static pressure at each separately ducted hood, if selected as a method to demonstrate compliance under paragraph (b) of this section.
- (9) Parameters monitored pursuant to paragraphs (h)(6) through (8) of this section shall be recorded as integrated block averages not to exceed 15 minutes.

[88 FR 58487, Aug. 25, 2023, as amended at 89 FR 11207, Feb. 14, 2024]

§ 60.275b Test methods and procedures.

- (a) During performance tests required in §§ 60.8 and 60.272b(d), the owner or operator shall not add gaseous diluents to the effluent gas stream after the fabric filter in any pressurized fabric filter collector, unless the amount of dilution is separately determined and considered in the determination of emissions.
- (b) When emissions from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart but controlled by a common capture system and control device, the owner or operator shall use any one of the following procedures during a performance test (see also § 60.276b(e)):
 - (1) Determine compliance using the combined emissions.
 - (2) Use a method that is acceptable to the Administrator or delegated authority and that compensates for the emissions from the facilities not subject to the provisions of this subpart.
 - (3) Any combination of the criteria of paragraphs (b)(1) and (2) of this section.
- (c) When emission from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart, compliance with § 60.272b(a)(3) will be based on emissions from only the affected facility(ies). The owner or operator may use operational knowledge to determine the facilities that are the sources, in whole or in part, of any emissions observed in demonstrations of compliance with § 60.272b(a)(3).

- (d) In conducting the performance tests required in §§ 60.8 and 60.272b(d), the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in § 60.8(b).
- (e) The owner or operator shall determine compliance with the particulate matter standards in § 60.272b as follows:
 - (1) EPA Method 5 (and referenced EPA Methods 1, 2, 3, 3A, 3B, and 4) shall be used for negative-pressure fabric filters and other types of control devices and EPA Method 5D (and referenced EPA Method 5) shall be used for positive-pressure fabric filters to determine the particulate matter concentration and volumetric flow rate of the effluent gas. The sampling time and sample volume for each run shall be at least 4 hours and 4.50 dry standard cubic meter (160 dry standard cubic feet) and, when a single EAF or AOD vessel is sampled, the sampling time shall include an integral number of heats. The manual portions only (not the instrumental portion) of the voluntary consensus standard ANSI/ASME PTC 19.10-1981 (incorporated by reference, see § 60.17) are acceptable alternatives to EPA Methods 3, 3A, and 3B.
 - (2) When more than one control device serves the EAF(s) being tested, the concentration of particulate matter shall be determined using the following equation:

$$E_{sf} = \sum_{i=1}^{n} \left(\frac{R_{si}}{P_i} \right)$$

where:

 E_{sf} = average emission rate of particulate matter, mg/kg (lb/ton).

R_{si} = emission rate of particulate matter from control device "i", mg/hr (lb/hr).

n = total number of control devices at the facility.

P_i = steel production rate during testing of control device "i", kg/hr (ton/hr).

- (3) EPA Method 9 or, as an alternative, ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271, and the procedures of § 60.11 shall be used to determine opacity.
- (4) To demonstrate compliance with § 60.272b(a) (1), (2), and (3), the EPA Method 9 test runs shall be conducted concurrently with the particulate matter test runs, unless inclement weather interferes.
- (f) To comply with § 60.274b(c), (f), (g), and (h), the owner or operator shall obtain the information required in these paragraphs during the particulate matter runs.
- (g) Any control device subject to the provisions of the subpart shall be designed and constructed to allow measurement of emissions using applicable test methods and procedures.
- (h) Where emissions from any EAF(s) or AOD vessel(s) are combined with emissions from facilities not subject to the provisions of this subpart, determinations of compliance with § 60.272b(a)(1), (2), and (3) will only be based upon emissions originating from the affected facility(ies), except if the combined

emissions are controlled by a common capture system and control device, in which case the owner or operator may use any of the following procedures during an opacity performance test and during shop opacity observations:

- (1) Base compliance on control of the combined emissions; or
- (2) Utilize a method acceptable to the Administrator that compensates for the emissions from the facilities not subject to the provisions of this subpart.
- (3) Any combination of the criteria of paragraphs (h)(1) and (2) of this section.
- (i) Unless the presence of inclement weather makes concurrent testing infeasible, the owner or operator shall conduct concurrently the performance tests required under § 60.8 or § 60.272b(d) to demonstrate compliance with § 60.272b(a)(1), (2), and (3) of this subpart.

§ 60.276b Recordkeeping and reporting requirements.

- (a) Records of the measurements required in § 60.274b must be retained for at least 5 years following the date of the measurement.
- (b) Each owner or operator shall submit a written report of exceedances of the control device opacity to the Administrator or delegated authority semi-annually. For the purposes of these reports, exceedances are defined as all 6-minute periods during which the average opacity of emissions from the control device is 3 percent or greater or, where the daily shop opacity visible emissions were measured according to EPA Method 22 and exceeded 0 seconds.
- (c) Operation at a furnace static pressure that exceeds the operational range or control setting under § 60.274b(g), for owners and operators that elect to install a furnace static pressure monitoring device under § 60.274b(f) and either operation of control system fan motor amperes at values exceeding ±15 percent of the value established under § 60.274b(c) or operation ranges or control settings outside of those established under § 60.274b(c) may be considered by the Administrator or delegated authority to be unacceptable operation and maintenance of the affected facility. Operation at such values shall be reported to the Administrator or delegated authority semiannually.
- (d) The requirements of this section remain in force until and unless EPA, in delegating enforcement authority to a State under section 111(c) of the Act, approves reporting requirements or an alternative means of compliance surveillance adopted by such State. In that event, affected sources within the State will be relieved of the obligation to comply with this section, provided that they comply with the requirements established by the State.
- (e) When the owner or operator of an EAF or AOD is required to demonstrate compliance with the standard under § 60.275b(b)(2) or a combination of (b)(1) and (b)(2) the owner or operator provide notice to the Administrator or delegated authority of the procedure(s) that will be used to determine compliance. Notification of the procedure(s) to be used must be postmarked at least 30 days prior to the performance test.
- (f) For the purpose of this subpart, the owner or operator shall conduct the demonstration of compliance with § 60.272b(a) of this subpart and furnish the Administrator or delegated authority with a report of the results of the test according to paragraph (i) of this section. This report shall include the following information:
 - (1) Facility name and address;
 - (2) Plant representative;

- (3) Make and model of the control device, and continuous opacity monitoring equipment, if applicable;
- (4) Flow diagram of process and emission capture system including other equipment or process(es) ducted to the same control device;
- (5) Rated (design) capacity of process equipment;
- (6) Those data required under § 60.274b(h) of this subpart;
 - (i) List of charge and tap weights and materials;
 - (ii) Heat times and process log;
 - (iii) Control device operation log; and
 - (iv) Continuous opacity monitor or EPA Method 9 data, or, as an alternative to EPA Method 9, according to ASTM D7520-16 (incorporated by reference, see § 60.17), with the caveats described under *Shop opacity* in § 60.271.
- (7) Test dates and test times;
- (8) Test company;
- (9) Test company representative;
- (10) Test observers from any outside agency;
- (11) Description of test methodology used, including any deviation from standard reference methods;
- (12) Schematic of sampling location;
- (13) Number of sampling points;
- (14) Description of sampling equipment;
- (15) Listing of sampling equipment calibrations and procedures;
- (16) Field and laboratory data sheets;
- (17) Description of sample recovery procedures;
- (18) Sampling equipment leak check results;
- (19) Description of quality assurance procedures;
- (20) Description of analytical procedures;
- (21) Notation of sample blank corrections; and
- (22) Sample emission calculations.
- (g) The owner or operator shall maintain records of all shop opacity observations made in accordance with § 60.273b(d). All shop opacity observations in excess of the emission limit specified in § 60.272b(a)(3) of this subpart shall indicate a period of excess emissions and shall be reported to the Administrator or delegated authority semi-annually, according to § 60.7(c) and submitted according to paragraph (j) of this section. In addition to the information required at § 60.7(c), the report shall include the following information:
 - (1) The company name and address of the affected facility.

- (2) An identification of each affected facility being included in the report.
- (3) Beginning and ending dates of the reporting period.
- (4) A certification by a certifying official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (h) The owner or operator shall maintain the following records for each bag leak detection system required under § 60.273b(e):
 - (1) Records of the bag leak detection system output;
 - (2) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system settings; and
 - (3) An identification of the date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, if procedures were initiated within 1 hour of the alarm, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and if the alarm was alleviated within 24 hours of the alarm.
- (i) Within 60 days after the date of completing each performance test or demonstration of compliance required by this subpart, you must submit the results of the performance test following the procedures specified in paragraphs (i)(1) through (3) of this section.
 - (1) Data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT website (https://www.epa.gov/electronic-reporting-air-emissions/electronic-reporting-tool-ert) at the time of the test. Submit the results of the performance test to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI), which can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/). The data must be submitted in a file format generated using the EPA's ERT. Alternatively, you may submit an electronic file consistent with the extensible markup language (XML) schema listed on the EPA's ERT website.
 - (2) Data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the test. The results of the performance test must be included as an attachment in the ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. Submit the ERT generated package or alternative file to the EPA via CEDRI.
 - (3) Confidential business information (CBI). Do not use CEDRI to submit information you claim as CBI. Anything submitted using CEDRI cannot later be claimed CBI. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim for some of the information submitted under paragraph (i)(1) or (2) of this section, you must submit a complete file, including information claimed to be CBI, to the EPA. The file must be generated using the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website. The preferred method to submit CBI is for it to be transmitted electronically using email attachments, File Transfer Protocol (FTP), or other online file sharing services (e.g., Dropbox, OneDrive, Google Drive). Electronic submissions must be transmitted directly to the OAQPS CBI Office at the email address oaqpscbi@epa.gov, and should include clear CBI markings and note the docket ID. If assistance is needed with submitting large electronic files that exceed the file size limit for email attachments, and if you do not have your own file sharing service, please email oaqpscbi@epa.gov to request a file transfer link. If sending CBI information through the postal service, submit the file on a compact disc, flash drive, or other commonly used electronic storage medium and clearly mark the medium as CBI. Mail the electronic

medium to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described in paragraphs (i)(1) and (2) of this section. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

- (j) You must submit a report of excess emissions and monitoring systems performance report according to § 60.7(c) to the Administrator semiannually. Submit all reports to the EPA via CEDRI, which can be accessed through the EPA's CDX (https://cdx.epa.gov/). The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as CBI. Anything submitted using CEDRI cannot later be claimed CBI. You must use the appropriate electronic report template on the CEDRI website (https://www.epa.gov/electronic-reporting-air-emissions/cedri) for this subpart. The date report templates become available will be listed on the CEDRI website. The report must be submitted by the deadline specified in this subpart, regardless of the method in which the report is submitted. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, follow paragraph (i)(3) of this section except send to the attention of the Electric Arc Furnace Sector Lead. The same file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described earlier in this paragraph (j). All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.
- (k) If you are required to electronically submit a report through CEDRI in the EPA's CDX, you may assert a claim of EPA system outage for failure to timely comply with that reporting requirement. To assert a claim of EPA system outage, you must meet the requirements outlined in paragraphs (k)(1) through (7) of this section.
 - (1) You must have been or will be precluded from accessing CEDRI and submitting a required report within the time prescribed due to an outage of either the EPA's CEDRI or CDX systems.
 - (2) The outage must have occurred within the period of time beginning five business days prior to the date that the submission is due.
 - (3) The outage may be planned or unplanned.
 - (4) You must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or has caused a delay in reporting.
 - (5) You must provide to the Administrator a written description identifying:
 - (i) The date(s) and time(s) when CDX or CEDRI was accessed and the system was unavailable;
 - (ii) A rationale for attributing the delay in reporting beyond the regulatory deadline to EPA system outage;
 - (iii) A description of measures taken or to be taken to minimize the delay in reporting; and
 - (iv) The date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported.

- (6) The decision to accept the claim of EPA system outage and allow an extension to the reporting deadline is solely within the discretion of the Administrator.
- (7) In any circumstance, the report must be submitted electronically as soon as possible after the outage is resolved.
- (I) If you are required to electronically submit a report through CEDRI in the EPA's CDX, you may assert a claim of force majeure for failure to timely comply with that reporting requirement. To assert a claim of force majeure, you must meet the requirements outlined in paragraphs (I)(1) through (5) of this section.
 - (1) You may submit a claim if a force majeure event is about to occur, occurs, or has occurred or there are lingering effects from such an event within the period of time beginning five business days prior to the date the submission is due. For the purposes of this section, a force majeure event is defined as an event that will be or has been caused by circumstances beyond the control of the affected facility, its contractors, or any entity controlled by the affected facility that prevents you from complying with the requirement to submit a report electronically within the time period prescribed. Examples of such events are acts of nature (e.g., hurricanes, earthquakes, or floods), acts of war or terrorism, or equipment failure or safety hazard beyond the control of the affected facility (e.g., large scale power outage).
 - (2) You must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or has caused a delay in reporting.
 - (3) You must provide to the Administrator:
 - (i) A written description of the force majeure event;
 - (ii) A rationale for attributing the delay in reporting beyond the regulatory deadline to the force majeure event;
 - (iii) A description of measures taken or to be taken to minimize the delay in reporting; and
 - (iv) The date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported.
 - (4) The decision to accept the claim of force majeure and allow an extension to the reporting deadline is solely within the discretion of the Administrator.
 - (5) In any circumstance, the reporting must occur as soon as possible after the force majeure event occurs.
- (m) Any records required to be maintained by this subpart that are submitted electronically via the EPA's CEDRI may be maintained in electronic format. This ability to maintain electronic copies does not affect the requirement for facilities to make records, data, and reports available upon request to a delegated air agency or the EPA as part of an on-site compliance evaluation.

[88 FR 58487, Aug. 25, 2023, as amended at 89 FR 11207, Feb. 14, 2024]

Pt. 63, Subpt. WWWWW, Table 1

40 CFR Ch. I (7-1-14 Edition)

Citation	Subject	Applies to subpart WWWWW	Explanation
§ 63.1(a)(5), (7)–(9) § 63.1(b)(2) § 63.1(c)(1)–(2)	[Reserved]. [Reserved]. Applicability of this part after a relevant standard has been set.	Yes	§ 63.10446 of this subpart ex- empts affected sources from the obligation to obtain title V operating permits for purposes of being subject to this sub- part.
§ 63.1(c)(3)–(4) § 63.1(c)(5)	[Reserved]. Subject to notification requirements.	No.	
\$63.1(d) \$63.1(e) \$63.2 \$63.3 \$63.4 \$63.5 \$63.6(a), (b)(1)-(5), (7)	[Reserved]. Emission limitation by permit Definitions Units and abbreviations Prohibited activities Construction/reconstruction Compliance with standards and maintenance requirements.	Yes. Yes. Yes. Yes. No. Yes.	
§ 63.6(b)(6) § 63.6(c)(1)	[Reserved]. Compliance dates for existing sources.	Yes	Subpart WWWWW requires compliance 1 year after the effective date.
§ 63.6(c)(2), (5)	Compliance dates for CAA section 112(f) standards and for area sources that become major.	No.	
§ 63.6(c)(3)–(4)	[Reserved].		
§ 63.6(d)	[Reserved]. Alternative nonopacity emission standard.	No.	
§ 63.6(i)–(j) § 63.7	Compliance extension Performance testing requirements.	Yes. No.	
§ 63.8 § 63.9(a)	Monitoring requirements	No. Yes.	
§ 63.9(b)	Initial notifications	No. Yes.	
§ 63.9(d)–(j) § 63.10(a)(1)–(2)	Other notifications	No. Yes.	
§ 63.10(a)(3)–(4) § 63.10(a)(5)–(7)	General information	Yes. No.	
§ 63.10(b)(1) § 63.10(b)(2)–(f)	Retention time	Yes. No.	
\$63.11 \$63.12 \$\$ 63.13–63.16	Control device requirements State authority and delegations Addresses, Incorporations by Reference, availability of infor- mation, performance track provisions.	No. Yes. Yes.	

Subpart XXXXX [Reserved]

Subpart YYYYY—National Emission Standards for Hazardous Air Pollutants for Area Sources: Electric Arc Furnace Steelmaking Facilities

Source: 72 FR 74111, Dec. 28, 2007, unless otherwise noted.

Environmental Protection Agency

APPLICABILITY AND COMPLIANCE DATES

§63.10680 Am I subject to this subpart?

- (a) You are subject to this subpart if you own or operate an electric arc furnace (EAF) steelmaking facility that is an area source of hazardous air pollutant (HAP) emissions.
- (b) This subpart applies to each new or existing affected source. The affected source is each EAF steelmaking facility.
- (1) An affected source is existing if you commenced construction or reconstruction of the affected source on or before September 20, 2007.
- (2) An affected source is new if you commenced construction or reconstruction of the affected source after September 20, 2007.
- (c) This subpart does not apply to research and development facilities, as defined in section 112(c)(7) of the Clean Air Act (CAA).
- (d) If you own or operate an area source subject to this subpart, you must have or obtain a permit under 40 CFR part 70 or 40 CFR part 71.

§ 63.10681 What are my compliance dates?

- (a) Except as provided in paragraph (b) of this section, if you own or operate an existing affected source, you must achieve compliance with the applicable provisions of this subpart by no later than June 30, 2008.
- (b) If you own or operate an existing affected source, you must achieve compliance with opacity limit in $\S 63.10686(b)(2)$ or (c)(2) by no later than December 28, 2010 if you demonstrate to the satisfaction of the permitting authority that additional time is needed to install or modify emission control equipment.
- (c) If you start up a new affected source on or before December 28, 2007, you must achieve compliance with the applicable provisions of this subpart by no later than December 28, 2007.
- (d) If you start up a new affected source after December 28, 2007, you must achieve compliance with the applicable provisions of this subpart upon startup of your affected source.

STANDARDS AND COMPLIANCE REQUIREMENTS

§ 63.10685 What are the requirements for the control of contaminants from scrap?

- (a) Chlorinated plastics, lead, and free organic liquids. For metallic scrap utilized in the EAF at your facility, you must comply with the requirements in either paragraph (a)(1) or (2) of this section. You may have certain scrap at your facility subject to paragraph (a)(1) of this section and other scrap subject to paragraph (a)(2) of this section provided the scrap remains segregated until charge make-up.
- (1) Pollution prevention plan. For the production of steel other than leaded steel, you must prepare and implement a pollution prevention plan for metallic scrap selection and inspection to minimize the amount of chlorinated plastics, lead, and free organic liquids that is charged to the furnace. For the production of leaded steel, you must prepare and implement a pollution prevention plan for scrap selection and inspection to minimize the amount of chlorinated plastics and free organic liquids in the scrap that is charged to the furnace. You must submit the scrap pollution prevention plan to the permitting authority for approval. You must operate according to the plan as submitted during the review and approval process, operate according to the approved plan at all times after approval, and address any deficiency identified by the permitting authority within 60 days following disapproval of a plan. You may request approval to revise the plan and may operate according to the revised plan unless and until the revision is disapproved by the permitting authority. You must keep a copy of the plan onsite, and you must provide training on the plan's requirements to all plant personnel with materials acquisition or inspection duties. Each plan must include the information in paragraphs (a)(1)(i) through (iii) of this section:
- (i) Specifications that scrap materials must be depleted (to the extent practicable) of undrained used oil filters, chlorinated plastics, and free organic liquids at the time of charging to the furnace.

§ 63.10685

- (ii) A requirement in your scrap specifications for removal (to the extent practicable) of lead-containing components (such as batteries, battery cables, and wheel weights) from the scrap, except for scrap used to produce leaded steel.
- (iii) Procedures for determining if the requirements and specifications in paragraph (a)(1) of this section are met (such as visual inspection or periodic audits of scrap providers) and procedures for taking corrective actions with vendors whose shipments are not within specifications.
- (iv) The requirements of paragraph (a)(1) of this section do not apply to the routine recycling of baghouse bags or other internal process or maintenance materials in the furnace. These exempted materials must be identified in the pollution prevention plan.
- (2) Restricted metallic scrap. For the production of steel other than leaded steel, you must not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or capacitors containing polychlorinated biphenyls, lead-containing components, chlorinated plastics, or free organic liquids. For the production of leaded steel, you must not charge to the furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or capacitors containing polychlorinated biphenyls, chlorinated plastics, or free organic liquids. This restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings that are processed or cleaned to the extent practicable such that the materials do not include lead components, chlorinated plastics, or free organic liquids. This restriction does not apply to motor vehicle scrap that is charged to recover the chromium or nickel content if you meet the requirements in paragraph (b)(3) of this
- (b) Mercury requirements. For scrap containing motor vehicle scrap, you must procure the scrap pursuant to one of the compliance options in paragraphs (b)(1), (2), or (3) of this section for each scrap provider, contract, or

- shipment. For scrap that does not contain motor vehicle scrap, you must procure the scrap pursuant to the requirements in paragraph (b)(4) of this section for each scrap provider, contract, or shipment. You may have one scrap provider, contract, or shipment subject to one compliance provision and others subject to another compliance provision.
- (1) Site-specific plan for mercury switches. You must comply with the requirements in paragraphs (b)(1)(i) through (v) of this section.
- (i) You must include a requirement in your scrap specifications for removal of mercury switches from vehicle bodies used to make the scrap.
- (ii) You must prepare and operate according to a plan demonstrating how your facility will implement the scrap specification in paragraph (b)(1)(i) of this section for removal of mercury switches. You must submit the plan to the permitting authority for approval. You must operate according to this plan as submitted during the review and approval process, operate according to the approved plan at all times after approval, and address any deficiency identified by the permitting authority within 60 days following disapproval of a plan. You may request approval to revise the plan and may operate according to the revised plan unless and until the revision is disapproved by the permitting authority. The permitting authority may change the approval status of the plan upon 90days written notice based upon the semiannual compliance report or other information. The plan must include:
- (A) A means of communicating to scrap purchasers and scrap providers the need to obtain or provide motor vehicle scrap from which mercury switches have been removed and the need to ensure the proper management of the mercury switches removed from that scrap as required under the rules implementing subtitle C of the Resource Conservation and Recovery (RCRA) (40 CFR parts 261 through 265 and 268). The plan must include documentation of direction to appropriate staff to communicate to suppliers throughout the scrap supply chain the need to promote the removal of mercury switches from end-of-life vehicles.

Environmental Protection Agency

Upon the request of the permitting authority, you must provide examples of materials that are used for outreach to suppliers, such as letters, contract language, policies for purchasing agents, and scrap inspection protocols;

- (B) Provisions for obtaining assurance from scrap providers that motor vehicle scrap provided to the facility meet the scrap specification;
- (C) Provisions for periodic inspections or other means of corroboration to ensure that scrap providers and dismantlers are implementing appropriate steps to minimize the presence of mercury switches in motor vehicle scrap and that the mercury switches removed are being properly managed, including the minimum frequency such means of corroboration will be implemented; and
- (D) Provisions for taking corrective actions (i.e., actions resulting in scrap providers removing a higher percentage of mercury switches or other mercury-containing components) if needed, based on the results of procedures implemented in paragraph (b)(1)(ii)(C) of this section).
- (iii) You must require each motor vehicle scrap provider to provide an estimate of the number of mercury switches removed from motor vehicle scrap sent to your facility during the previous year and the basis for the estimate. The permitting authority may request documentation or additional information at any time.
- (iv) You must establish a goal for each scrap provider to remove at least 80 percent of the mercury switches. Although a site-specific plan approved under paragraph (b)(1) of this section may require only the removal of convenience light switch mechanisms, the permitting authority will credit all documented and verifiable mercury-containing components removed from motor vehicle scrap (such as sensors in anti-locking brake systems, security systems, active ride control, and other applications) when evaluating progress towards the 80 percent goal.
- (v) For each scrap provider, you must submit semiannual progress reports to the permitting authority that provide the number of mercury switches removed or the weight of mercury recovered from the switches, the estimated

- number of vehicles processed, an estimate of the percent of mercury switches removed, and certification that the removed mercury switches were recycled at RCRA-permitted facilities or otherwise properly managed pursuant to RCRA subtitle C regulations referenced in paragraph (b)(1)(ii)(A) of this section. This information can be submitted in aggregated form and does not have to be submitted for each scrap provider, contract, or shipment. The permitting authority may change the approval status of a site-specific plan following 90-days notice based on the progress reports or other information.
- (2) Option for approved mercury programs. You must certify in your notification of compliance status that you participate in and purchase motor vehicle scrap only from scrap providers who participate in a program for removal of mercury switches that has been approved by the Administrator based on the criteria in paragraphs (b)(2)(i) through (iii) of this section. If you purchase motor vehicle scrap from a broker, you must certify that all scrap received from that broker was obtained from other scrap providers who participate in a program for the removal of mercury switches that has been approved by the Administrator based on the criteria in paragraphs (b)(2)(i) through (iii) of this section. The National Vehicle Mercury Switch Recovery Program and the Vehicle Switch Recovery Program mandated by Maine State law are EPA-approved programs under paragraph (b)(2) of this section unless and until the Administrator disapproves the program (in part or in whole) under paragraph (b)(2)(iii) of this section.
- (i) The program includes outreach that informs the dismantlers of the need for removal of mercury switches and provides training and guidance for removing mercury switches;
- (ii) The program has a goal to remove at least 80 percent of mercury switches from the motor vehicle scrap the scrap provider processes. Although a program approved under paragraph (b)(2) of this section may require only the removal of convenience light switch mechanisms, the Administrator will credit all documented and verifiable

§ 63.10685

mercury-containing components removed from motor vehicle scrap (such as sensors in anti-locking brake systems, security systems, active ride control, and other applications) when evaluating progress towards the 80 percent goal; and

- (iii) The program sponsor agrees to submit progress reports to the Administrator no less frequently than once every year that provide the number of mercury switches removed or the weight of mercury recovered from the switches, the estimated number of vehicles processed, an estimate of the percent of mercury switches recovered, and certification that the recovered mercury switches were recycled at facilities with permits as required under the rules implementing subtitle C of RCRA (40 CFR parts 261 through 265 and 268). The progress reports must be based on a database that includes data for each program participant; however, data may be aggregated at the State level for progress reports that will be publicly available. The Administrator may change the approval status of a program or portion of a program (e.g., at the State level) following 90-days notice based on the progress reports or on other information.
- (iv) You must develop and maintain onsite a plan demonstrating the manner through which your facility is participating in the EPA-approved program.
- (A) The plan must include facility-specific implementation elements, corporate-wide policies, and/or efforts coordinated by a trade association as appropriate for each facility.
- (B) You must provide in the plan documentation of direction to appropriate staff to communicate to suppliers throughout the scrap supply chain the need to promote the removal of mercury switches from end-of-life vehicles. Upon the request of the permitting authority, you must provide examples of materials that are used for outreach to suppliers, such as letters, contract language, policies for purchasing agents, and scrap inspection protocols.
- (C) You must conduct periodic inspections or provide other means of corroboration to ensure that scrap providers are aware of the need for and are implementing appropriate steps to

minimize the presence of mercury in scrap from end-of-life vehicles.

- (3) Option for specialty metal scrap. You must certify in your notification of compliance status that the only materials from motor vehicles in the scrap are materials recovered for their specialty alloy (including, but not limited to, chromium, nickel, molybdenum, or other alloys) content (such as certain exhaust systems) and, based on the nature of the scrap and purchase specifications, that the type of scrap is not reasonably expected to contain mercury switches.
- (4) Scrap that does not contain motor vehicle scrap. For scrap not subject to the requirements in paragraphs (b)(1) through (3) of this section, you must certify in your notification of compliance status and maintain records of documentation that this scrap does not contain motor vehicle scrap.
- (c) Recordkeeping and reporting requirements. In addition to the records required by §63.10, you must keep records to demonstrate compliance with the requirements for your pollution prevention plan in paragraph (a)(1) of this section and/or for the use of only restricted scrap in paragraph (a)(2) of this section and for mercury in paragraphs (b)(1) through (3) of this section as applicable. You must keep records documenting compliance with paragraph (b)(4) of this section for scrap that does not contain motor vehicle scrap.
- (1) If you are subject to the requirements for a site-specific plan for mercury under paragraph (b)(1) of this section, you must:
- (i) Maintain records of the number of mercury switches removed or the weight of mercury recovered from the switches and properly managed, the estimated number of vehicles processed, and an estimate of the percent of mercury switches recovered; and
- (ii) Submit semiannual reports of the number of mercury switches removed or the weight of mercury recovered from the switches and properly managed, the estimated number of vehicles processed, an estimate of the percent of mercury switches recovered, and a certification that the recovered mercury

Environmental Protection Agency

switches were recycled at RCRA-permitted facilities. The semiannual reports must include a certification that you have conducted inspections or taken other means of corroboration as required under paragraph (b)(1)(ii)(C) of this section. You may include this information in the semiannual compliance reports required under paragraph (c)(3) of this section.

- (2) If you are subject to the option for approved mercury programs under paragraph (b)(2) of this section, you must maintain records identifying each scrap provider and documenting the scrap provider's participation in an approved mercury switch removal program. If you purchase motor vehicle scrap from a broker, you must maintain records identifying each broker and documentation that all scrap provided by the broker was obtained from other scrap providers who participate in an approved mercury switch removal program.
- (3) You must submit semiannual compliance reports to the Administrator for the control of contaminants from scrap according to the requirements in §63.10(e). The report must clearly identify any deviation from the requirements in paragraphs (a) and (b) of this section and the corrective action taken. You must identify which compliance option in paragraph (b) of this section applies to each scrap provider, contract, or shipment.

§ 63.10686 What are the requirements for electric arc furnaces and argonoxygen decarburization vessels?

- (a) You must install, operate, and maintain a capture system that collects the emissions from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization (AOD) vessel and conveys the collected emissions to a control device for the removal of particulate matter (PM).
- (b) Except as provided in paragraph (c) of this section, you must not discharge or cause the discharge into the atmosphere from an EAF or AOD vessel any gases which:
- (1) Exit from a control device and contain in excess of $0.0052~\rm grains$ of PM per dry standard cubic foot (gr/dscf); and

- (2) Exit from a melt shop and, due solely to the operations of any affected EAF(s) or AOD vessel(s), exhibit 6 percent opacity or greater.
- (c) If you own or operate a new or existing affected source that has a production capacity of less than 150,000 tons per year (tpy) of stainless or specialty steel (as determined by the maximum production if specified in the source's operating permit or EAF capacity and maximum number of operating hours per year), you must not discharge or cause the discharge into the atmosphere from an EAF or AOD vessel any gases which:
- (1) Exit from a control device and contain particulate matter (PM) in excess of 0.8 pounds per ton (lb/ton) of steel. Alternatively, the owner or operator may elect to comply with a PM limit of 0.0052 grains per dry standard cubic foot (gr/dscf); and
- (2) Exit from a melt shop and, due solely to the operations of any affected EAF(s) or AOD vessel(s), exhibit 6 percent opacity or greater.
- (d) Except as provided in paragraph (d)(6) of this section, you must conduct performance tests to demonstrate initial compliance with the applicable emissions limit for each emissions source subject to an emissions limit in paragraph (b) or (c) of this section.
- (1) You must conduct each PM performance test for an EAF or AOD vessel according to the procedures in §63.7 and 40 CFR 60.275a using the following test methods in 40 CFR part 60, appendices A-1, A-2, A-3, and A-4:
- (i) Method 1 or 1A of appendix A-1 of 40 CFR part 60 to select sampling port locations and the number of traverse points in each stack or duct. Sampling sites must be located at the outlet of the control device (or at the outlet of the emissions source if no control device is present) prior to any releases to the atmosphere.
- (ii) Method 2, 2A, 2C, 2D, 2F, or 2G of appendix A-1 of 40 CFR part 60 to determine the volumetric flow rate of the stack gas.
- (iii) Method 3, 3A, or 3B of appendix A-3 of 40 CFR part 60 to determine the dry molecular weight of the stack gas. You may use ANSI/ASME PTC 19.10–1981, "Flue and Exhaust Gas Analyses"

§ 63.10690

(incorporated by reference—see §63.14) as an alternative to EPA Method 3B.

- (iv) Method 4 of appendix A-3 of 40 CFR part 60 to determine the moisture content of the stack gas.
- (v) Method 5 or 5D of appendix A-3 of 40 CFR part 60 to determine the PM concentration. Three valid test runs are needed to comprise a PM performance test. For EAF, sample only when metal is being melted and refined. For AOD vessels, sample only when the operation(s) are being conducted.
- (2) You must conduct each opacity test for a melt shop according to the procedures in §63.6(h) and Method 9 of appendix A-4 of 40 CFR part 60. When emissions from any EAF or AOD vessel are combined with emissions from emission sources not subject to this subpart, you must demonstrate compliance with the melt shop opacity limit based on emissions from only the emission sources subject to this subpart.
- (3) During any performance test, you must monitor and record the information specified in 40 CFR 60.274a(h) for all heats covered by the test.
- (4) You must notify and receive approval from the Administrator for procedures that will be used to determine compliance for an EAF or AOD vessel when emissions are combined with those from facilities not subject to this subpart.
- (5) To determine compliance with the PM emissions limit in paragraph (c) of this section for an EAF or AOD vessel in a lb/ton of steel format, compute the process-weighted mass emissions (E_p) for each test run using Equation 1 of this section:

$$E_{p} = \frac{C \times Q \times T}{P \times K} \qquad (Eq. 1)$$

Where:

- E_p = Process-weighted mass emissions of PM, lb/ton;
- C = Concentration of PM or total metal HAP, gr/dscf;
- Q = Volumetric flow rate of stack gas, dscf/hr:
- T = Total time during a test run that a sample is withdrawn from the stack during steel production cycle, hr;
- P = Total amount of metal produced during the test run, tons; and
- K = Conversion factor, 7,000 grains per pound.

(6) If you own or operate an existing affected source that is subject to the emissions limits in paragraph (b) or (c) of this section, you may certify initial compliance with the applicable emission limit for one or more emissions sources based on the results of a previous performance test for that emissions source in lieu of the requirement for an initial performance test provided that the test(s) were conducted within 5 years of the compliance date using the methods and procedures specified in paragraph (d)(1) or (2) of this section; the test(s) were for the affected facility; and the test(s) were representative of current or anticipated operating processes and conditions. Should the permitting authority deem the prior test data unacceptable to demonstrate compliance with an applicable emissions limit, the owner or operator must conduct an initial performance test within 180 days of the compliance date or within 90 days of receipt of the notification of disapproval of the prior test, whichever is later.

OTHER INFORMATION AND REQUIREMENTS

§63.10690 What parts of the General Provisions apply to this subpart?

- (a) You must comply with the requirements of the NESHAP General Provisions (40 CFR part 63, subpart A) as provided in Table 1 of this subpart.
- (b) The notification of compliance status required by §63.9(h) must include each applicable certification of compliance, signed by a responsible official, in paragraphs (b)(1) through (6) of this section.
- (1) For the pollution prevention plan requirements in §63.10685(a)(1): "This facility has submitted a pollution prevention plan for metallic scrap selection and inspection in accordance with §63.10685(a)(1)";
- (2) For the restrictions on metallic scrap in §63.10685(a)(2): "This facility complies with the requirements for restricted metallic scrap in accordance with §63.10685(a)(2)";
- (3) For the mercury requirements in §63.10685(b):
- (i) "This facility has prepared a sitespecific plan for mercury switches in accordance with §63.10685(b)(1)";

- (ii) "This facility participates in and purchases motor vehicle scrap only from scrap providers who participate in a program for removal of mercury switches that has been approved by the EPA Administrator in accordance with \$63.10685(b)(2)" and has prepared a plan demonstrating how the facility participates in the EPA-approved program in accordance with \$63.10685(b)(2)(iv);
- (iii) "The only materials from motor vehicles in the scrap charged to an electric arc furnace at this facility are materials recovered for their specialty alloy content in accordance with \$63.10685(b)(3) which are not reasonably expected to contain mercury switches"; or
- (iv) "This facility complies with the requirements for scrap that does not contain motor vehicle scrap in accordance with \$63.10685(b)(4)."
- (4) This certification of compliance for the capture system requirements in §63.10686(a), signed by a responsible official: "This facility operates a capture system for each electric arc furnace and argon-oxygen decarburization vessel that conveys the collected emissions to a PM control device in accordance with §63.10686(a)".
- (5) If applicable, this certification of compliance for the performance test requirements in §63.10686(d)(6): "This facility certifies initial compliance with the applicable emissions limit in §63.10686(a) or (b) based on the results of a previous performance test in accordance with §63.10686(d)(6)".
- (6) This certification of compliance for the monitoring requirements in §63.10686(e), signed by a responsible official: "This facility has developed and submitted proposed monitoring information in accordance with 40 CFR part 64".

§63.10691 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by the EPA or a delegated authority such as a State, local, or tribal agency. If the EPA Administrator has delegated authority to a State, local, or tribal agency, then that Agency has the authority to implement and enforce this subpart. You should contact your EPA Regional Office to find out if this subpart is dele-

- gated to your State, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator and are not transferred to the State, local, or tribal agency.
- (c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (6) of this section.
- (1) Approval of an alternative nonopacity emissions standard under 40 CFR 63.6(g).
- (2) Approval of an alternative opacity emissions standard under §63.6(h)(9).
- (3) Approval of a major change to test methods under §63.7(e)(2)(ii) and (f). A "major change to test method" is defined in 40 CFR 63.90.
- (4) Approval of major change to monitoring under 40 CFR 63.8(f). A "major change to monitoring" is defined in 40 CFR 63.90.
- (5) Approval of a major change to recordkeeping/reporting under 40 CFR 63.10(f). A "major change to recordkeeping/reporting" is defined in 40 CFR 63.90.
- (6) Approval of a program for the removal of mercury switches under §63.10685(b)(2).

§ 63.10692 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act, in §63.2, and in this section as follows:

Argon-oxygen decarburization (AOD) vessel means any closed-bottom, refractory-lined converter vessel with submerged tuyeres through which gaseous mixtures containing argon and oxygen or nitrogen may be blown into molten steel for further refining.

Capture system means the equipment (including ducts, hoods, fans, dampers, etc.) used to capture or transport emissions generated by an electric arc furnace or argon-oxygen decarburization vessel to the air pollution control device.

Chlorinated plastics means solid polymeric materials that contain chlorine in the polymer chain, such as polyvinyl chloride (PVC) and PVC copolymers.

Pt. 63, Subpt. YYYYY, Table 1

Control device means the air pollution control equipment used to remove particulate matter from the effluent gas stream generated by an electric arc furnace or argon-oxygen decarburization vessel.

Deviation means any instance where an affected source subject to this subpart, or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emissions limitation or work practice standard;
- (2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) Fails to meet any emissions limitation in this subpart during startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart.

Electric arc furnace (EAF) means a furnace that produces molten steel and heats the charge materials with electric arcs from carbon electrodes. An electric arc furnace consists of the furnace shell, roof, and the transformer.

Electric arc furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels using an EAF. This definition excludes EAF steelmaking facilities at steel foundries and EAF facilities used to produce nonferrous metals.

Free organic liquids means material that fails the paint filter test by EPA Method 9095B, (revision 2, dated November 1994) (incorporated by reference—see §63.14) after accounting for water using a moisture determination test by ASTM Method D2216-05 (incorporated by reference—see §63.14). If, after conducting a moisture determina-

tion test, if any portion of the material passes through and drops from the filter within the 5-minute test period, the material contains *free organic liquids*.

Leaded steel means steel that must meet a minimum specification for lead content (typically 0.25 percent or more) and for which lead is a necessary alloy for that grade of steel.

Mercury switch means each mercurycontaining capsule or switch assembly that is part of a convenience light switch mechanism installed in a vehicle.

Motor vehicle means an automotive vehicle not operated on rails and usually operated with rubber tires for use on highways.

Motor vehicle scrap means vehicle or automobile bodies, including automobile body hulks, that have been processed through a shredder. Motor vehicle scrap does not include automobile manufacturing bundles, or miscellaneous vehicle parts, such as wheels, bumpers or other components that do not contain mercury switches.

Nonferrous metals means any pure metal other than iron or any metal alloy for which an element other than iron is its major constituent by percent in weight.

Scrap provider means the person (including a broker) who contracts directly with a steel mill to provide scrap that contains motor vehicle scrap. Scrap processors such as shredder operators or vehicle dismantlers that do not sell scrap directly to a steel mill are not scrap providers.

Specialty steel means low carbon and high alloy steel other than stainless steel that is processed in an argon-oxygen decarburization vessel.

Stainless steel means low carbon steel that contains at least 10.5 percent chromium.

TABLE 1 TO SUBPART YYYYY OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART YYYYY

As required in §63.10691(a), you must comply with the requirements of the NESHAP General Provisions (40 CFR part 63, subpart A) shown in the following table.

Citation	Subject	Applies to subpart YYYYY?	Explanation
§ 63.1(a)(1), (a)(2), (a)(3), (a)(4), (a)(6), (a)(10)–(a)(12), (b)(1), (b)(3), (c)(1), (c)(2), (c)(5), (e).	Applicability	Yes.	
§ 63.1(a)(5), (a)(7)–(a)(9), (b)(2), (c)(3), (c)(4), (d).	Reserved	No.	
§ 63.2	Definitions Units and Abbreviations	Yes. Yes.	
§ 63.4	Prohibited Activities and Circumvention.	Yes.	
§ 63.5	Preconstruction Review and No- tification Requirements.	Yes.	
$ \begin{array}{lll} \$ 63.6(a), & (b)(1)-(b)(5), & (b)(7), \\ (c)(1), & (c)(2), & (c)(5), & (e)(1), \\ (e)(3)(i), & (e)(3)(iii)-(e)(3)(ix), & (f), \\ (g), & (h)(1), & (h)(2), & (h)(5)-(h)(9), \\ (i), & (j), & \\ \end{array} $	Compliance with Standards and Maintenance Requirements.	Yes.	
§ 63.6(b)(6), (c)(3), (c)(4), (d), (e)(2), (e)(3)(ii), (h)(3), (h)(5)(iv).	Reserved	No.	
§ 63.7	Applicability and Performance Test Dates.	Yes.	
§63.8(a)(1), (a)(2), (b), (c), (d), (e), (f)(1)-(5), (g).	Monitoring Requirements	Yes	Requirements apply if a COMS or CEMS is used.
§ 63.8(a)(4)	[Reserved]	No. No.	
§ 63.8(c)(4)	Continuous Monitoring System Requirements.	Yes	Requirements apply if a COMS or CEMS is used.
§ 63.8(f)(6)	RATA Alternative	Yes	Requirements apply if a CEMS is used.
§ 63.9(a), (b)(1), (b)(2), (b)(5), (c), (d), (f), (g), (h)(1)–(h)(3), (h)(5), (h)(6), (i), (j).	Notification Requirements	Yes.	
§ 63.9(b)(3), (h)(4) § 63.9(b)(4)	Reserved	No. No.	
\$63.10(a), (b)(1), (b)(2)(i)-(v), (b)(2)(xiv), (b)(3), (c)(1), (c)(5)-(c)(8), (c)(10)-(c)(15), (d), (e)(1)-(e)(4), (f).	Recordkeeping and Reporting Requirements.	Yes	Additional records for CMS in §63.10(c) (1)–(6), (9)–(15), and reports in §63.10(d)(1)–(2) apply if a COMS or CEMS is used.
§ 63.10(b)(2)(xiii)	CMS Records for RATA Alternative.	Yes	Requirements apply if a CEMS is used.
\$ 63.10(c)(2)–(c)(4), (c)(9) \$ 63.11 \$ 63.12 \$ \$ 63.13–63.16	native. Reserved	No. No. Yes. Yes.	is used.

Subpart ZZZZZ—National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources

SOURCE: 73 FR 252, Jan. 2, 2008, unless otherwise noted.

APPLICABILITY AND COMPLIANCE DATES

\$63.10880 Am I subject to this subpart?

(a) You are subject to this subpart if you own or operate an iron and steel

foundry that is an area source of hazardous air pollutant (HAP) emissions.

- (b) This subpart applies to each new or existing affected source. The affected source is each iron and steel foundry.
- (1) An affected source is existing if you commenced construction or reconstruction of the affected source before September 17, 2007.
- (2) An affected source is new if you commenced construction or reconstruction of the affected source on or after September 17, 2007. If an affected

63.8786 When do I have to comply with this subpart?

EMISSION LIMITATIONS

63.8790 What emission limitations must I meet?

GENERAL COMPLIANCE REQUIREMENTS

63.8794 What are my general requirements for complying with this subpart?

TESTING AND INITIAL COMPLIANCE REQUIREMENTS

- 63.8798 By what date must I conduct performance tests or other initial compliance demonstrations?
- 63.8800 What performance tests and other procedures must I use to demonstrate compliance with the emission limit for flame lamination?
- 63.8802 What methods must I use to demonstrate compliance with the emission limitation for loop slitter adhesive use?
- 63.8806 How do I demonstrate initial compliance with the emission limitations?

CONTINUOUS COMPLIANCE REQUIREMENTS

- 63.8810 How do I monitor and collect data to demonstrate continuous compliance?
- 63.8812 How do I demonstrate continuous compliance with the emission limitations?

NOTIFICATIONS, REPORTS, AND RECORDS

- 63.8816 What notifications must I submit and when?
- 63.8818 What reports must I submit and when?
- 63.8820 What records must I keep?
- 63.8822 In what form and how long must I keep my records?

OTHER REQUIREMENTS AND INFORMATION

- 63.8826 What parts of the General Provisions apply to me?
- 63.8828 Who implements and enforces this subpart?
- 63.8830 What definitions apply to this subpart?
- TABLE 1 TO SUBPART MMMMM OF PART 63— EMISSION LIMITS
- Table 2 to Subpart MMMMM of Part 63— Operating Limits for New or Reconstructed Flame Lamination Affected Sources
- TABLE 3 TO SUBPART MMMMM OF PART 63— PERFORMANCE TEST REQUIREMENTS FOR NEW OR RECONSTRUCTED FLAME LAMINA-TION AFFECTED SOURCES
- Table 4 to Subpart MMMMM of Part 63— INITIAL COMPLIANCE WITH EMISSION LIM-ITS
- TABLE 5 TO SUBPART MMMMM OF PART 63— CONTINUOUS COMPLIANCE WITH EMISSION LIMITS AND OPERATING LIMITS

TABLE 6 TO SUBPART MMMMM OF PART 63— REQUIREMENTS FOR REPORTS

Table 7 to Subpart MMMMM of Part 63— Applicability of General Provisions to Subpart MMMMM

AUTHORITY: 42 U.S.C. 7401 et seq.

Source: 57 FR 61992, Dec. 29, 1992, unless otherwise noted.

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

SOURCE: 69 FR 33506, June 15, 2004, unless otherwise noted.

WHAT THIS SUBPART COVERS

§63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

- (a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.
- (b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68

megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

- (c) An area source of HAP emissions is a source that is not a major source.
- (d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.
- (e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.
- (f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in §63.6675, which includes operating according to the provisions specified in §63.6640(f).
- (1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).
- (2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).
- (3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and

(iii) and that do not operate for the purpose specified in \\$63.6640(f)(4)(ii).

[69 FR 33506, June 15, 2004, as amended at 73 FR 3603, Jan. 18, 2008; 78 FR 6700, Jan. 30, 2013]

§ 63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

- (a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.
 - (1) Existing stationary RICE.
- (i) For stationary RICE with a site rating of more than 500 brake horse-power (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.
- (ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.
- (iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.
- (iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.
- (2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.
- (ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.
- (iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006

- (3) Reconstructed stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after December 19, 2002.
- (ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.
- (iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006
- (b) Stationary RICE subject to limited requirements. (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6645(f).
- (i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in \$63.6640(f)(2)(ii) and (iii).
- (ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
- (2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of \$63.6645(f) and the requirements of \$\$63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.
- (3) The following stationary RICE do not have to meet the requirements of

- this subpart and of subpart A of this part, including initial notification requirements:
- (i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
- (ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions:
- (iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).
- (iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
- (v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
- (c) Stationary RICE subject to Regulations under 40 CFR Part 60. An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.
- (1) A new or reconstructed stationary RICE located at an area source;
- (2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
- (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

- (5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis:
- (6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9674, Mar. 3, 2010; 75 FR 37733, June 30, 2010; 75 FR 51588, Aug. 20, 2010; 78 FR 6700, Jan. 30, 2013]

§ 63.6595 When do I have to comply with this subpart?

- (a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.
- (2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP lo-

- cated at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004
- (3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.
- (5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.
- (7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.
- (1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP

must be in compliance with this subpart upon startup of your affected source.

- (2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.
- (c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645 and in 40 CFR part 63, subpart A.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 78 FR 6701, Jan. 30, 2013

EMISSION AND OPERATING LIMITATIONS

§ 63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

- (a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.
- (b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating

limitations in Table 2b to this subpart which apply to you.

- (c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.
- (d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010]

§ 63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010]

§ 63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§ 63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

- (a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.
- (b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE

with a site rating of less than or equal to 300 HP in Table 2d of this subpart.

- (1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).
- (2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.
- (i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.
- (ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.
- (iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.
- (c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:
- (1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement.
- (2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.
- (3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.
- (4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.
- (d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is

certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in §63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for nonemergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in §63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

- (e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart IIII instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.
- (f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in §63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote sta-

tionary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in §63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in §63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

 $[75~{\rm FR}$ 9675, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6701, Jan. 30, 2013]

§ 63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

- (a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel.
- (b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in $\S63.6640(f)(2)(ii)$ and (iii) or that operates for the purpose specified in $\S63.6640(f)(4)(ii)$, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
- (c) Beginning January 1, 2015, if you own or operate a new emergency CI

stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year the purposes specified $\S63.6640(f)(2)(ii)$ and (iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either \$63.6603(b)(1), or \$63.6603(b)(2), or are on offshore vessels that meet \$63.6603(c) are exempt from the requirements of this section.

[78 FR 6702, Jan. 30, 2013]

GENERAL COMPLIANCE REQUIREMENTS

§ 63.6605 What are my general requirements for complying with this subpart?

- (a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.
- (b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

[75 FR 9675, Mar. 3, 2010, as amended at 78 FR 6702, Jan. 30, 2013]

TESTING AND INITIAL COMPLIANCE REQUIREMENTS

§ 63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

- (a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).
- (b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).
- (c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed dememission limitations when onstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to $\S63.7(a)(2)(ix)$.
- (d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

- (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
- (2) The test must not be older than 2 years.
- (3) The test must be reviewed and accepted by the Administrator.
- (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.
- (5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§ 63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or

an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

- (a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).
- (b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.
- (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
- (2) The test must not be older than 2 years.
- (3) The test must be reviewed and accepted by the Administrator.
- (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

[75 FR 9676, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§ 63.6620 What performance tests and other procedures must I use?

- (a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.
- (b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the

engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

- (1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

- (3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
 - (c) [Reserved]
- (d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.
- (e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_{i} - C_{O}}{C_{i}} \times 100 = R \quad (Eq. 1)$$

Where:

 C_i = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

 $C_{\rm o}$ = concentration of CO, THC, or formaldehyde at the control device outlet, and

R = percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide

 (CO_2) . If pollutant concentrations are to be corrected to 15 percent oxygen and CO_2 concentration is measured in lieu of oxygen concentration measurement, a CO_2 correction factor is needed. Calculate the CO_2 correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific $F_{\rm o}$ value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

$$F_O = \frac{0.209 \ F_d}{F_C} \ (Eq. 2)$$

Where:

 $F_{\rm o}$ = Fuel factor based on the ratio of oxygen volume to the ultimate CO_2 volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is oxygen, percent/100.

 $F_d = Ratio \ of the \ volume \ of \ dry \ effluent \ gas$ to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10^6 Btu).

 $F_c = Ratio \ of \ the \ volume \ of \ CO_2 \ produced \ to \\ the \ gross \ calorific \ value \ of \ the \ fuel \ from \\ Method \ 19, \ dsm^3/J \ (dscf/10^6 \ Btu)$

(ii) Calculate the CO_2 correction factor for correcting measurement data to 15 percent O_2 , as follows:

$$X_{CO2} = \frac{5.9}{F_O}$$
 (Eq. 3)

Where:

 $X_{\rm CO2}$ = CO₂ correction factor, percent. 5.9 = 20.9 percent O₂—15 percent O₂, the defined O₂ correction value, percent. (iii) Calculate the CO, THC, and formaldehyde gas concentrations adjusted to 15 percent O_2 using CO_2 as follows:

$$C_{adj} = C_d \frac{X_{CO2}}{{}^{8}_{CO2}} \quad (Eq. 4)$$

Where:

 C_{adj} = Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent O_2 .

 C_d = Measured concentration of CO, THC, or formaldehyde, uncorrected.

 $X_{CO2} = CO_2$ correction factor, percent.

%CO₂ = Measured CO₂ concentration measured, dry basis, percent.

- (f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.
- (g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.
- (1) Identification of the specific parameters you propose to use as operating limitations;
- (2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

- (3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations:
- (4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and
- (5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.
- (h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.
- (1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time:
- (2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions:
- (3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions:
- (4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower

values for the parameters which would establish limits on the parameters in operating limitations;

- (5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;
- (6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and
- (7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.
- (i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test. and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9676, Mar. 3, 2010; 78 FR 6702, Jan. 30, 2013]

§ 63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O_2 or CO_2 according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device.

If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

- (1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.
- (2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.
- (3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.
- (4) The CEMS data must be reduced as specified in \$63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO_2 concentration.
- (b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.
- (1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in §63.8(d). As specified in §63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.
- (i) The performance criteria and design specifications for the monitoring

system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

- (ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;
- (iii) Equipment performance evaluations, system accuracy audits, or other audit procedures:
- (iv) Ongoing operation and maintenance procedures in accordance with provisions in $\S63.8(c)(1)(ii)$ and (c)(3); and
- (v) Ongoing reporting and record-keeping procedures in accordance with provisions in 63.10(c), (e)(1), and (e)(2)(i).
- (2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.
- (3) The CPMS must collect data at least once every 15 minutes (see also \$63.6635).
- (4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.
- (5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.
- (6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.
- (c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.
- (d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour

meter prior to the startup of the engine.

- (e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:
- (1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;
- (2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;
- (3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;
- (4) An existing non-emergency, nonblack start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;
- (5) An existing non-emergency, nonblack start 2SLB stationary RICE located at an area source of HAP emissions:
- (6) An existing non-emergency, nonblack start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.
- (7) An existing non-emergency, nonblack start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;
- (8) An existing non-emergency, nonblack start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions:
- (9) An existing, non-emergency, nonblack start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and
- (10) An existing, non-emergency, non-black start 4SRB stationary RICE with

a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

- (f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.
- (g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either §63.6603(b)(1) 63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet §63.6603(c) do not have to meet the requirements of this paragraph (g).
- (1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or
- (2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.
- (h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.
- (i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.
- (i) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water

content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis: if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6703, Jan. 30, 2013]

§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

- (a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.
- (b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.
- (c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.
- (d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing

must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

- (e) The initial compliance demonstration required for existing nonemergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
- (1) The compliance demonstration must consist of at least three test runs.
- (2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.
- (3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.
- (4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.
- (5) You must measure O_2 using one of the O_2 measurement methods specified in Table 4 of this subpart. Measurements to determine O_2 concentration must be made at the same time as the measurements for CO or THC concentration.
- (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O_2 emissions simultaneously at the inlet and outlet of the control device.

[69 FR 33506, June 15, 2004, as amended at 78 FR 6704, Jan. 30, 2013]

CONTINUOUS COMPLIANCE REQUIREMENTS

§ 63.6635 How do I monitor and collect data to demonstrate continuous compliance?

- (a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.
- (b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.
- (c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

- (a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.
- (b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish

the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

- (c) The annual compliance demonstration required for existing nonemergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
- (1) The compliance demonstration must consist of at least one test run.
- (2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.
- (3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.
- (4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.
- (5) You must measure O_2 using one of the O_2 measurement methods specified in Table 4 of this subpart. Measurements to determine O_2 concentration must be made at the same time as the measurements for CO or THC concentration.
- (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O_2 emissions simultaneously at the inlet and outlet of the control device.
- (7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs,

catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.

- (d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).
- (e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed

stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

- (f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response. and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency en-
- (1) There is no time limit on the use of emergency stationary RICE in emergency situations.
- (2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).
- (i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and

testing of emergency RICE beyond 100 hours per calendar year.

- (ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP–002–3, Capacity and Energy Emergencies (incorporated by reference, see §63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP–002–3.
- (iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.
- (3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or nonemergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
- (4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for nonemergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
- (i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or nonemergency demand response to gen-

- erate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.
- (ii) The 50 hours per year for nonemergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:
- (A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.
- (B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
- (C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
- (D) The power is provided only to the facility itself or to support the local transmission and distribution system.
- (E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6704, Jan. 30, 2013]

NOTIFICATIONS, REPORTS, AND RECORDS

§ 63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following;

- (1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.
- (2) An existing stationary RICE located at an area source of HAP emissions.
- (3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
- (4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.
- (5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.
- (b) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.
- (c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.
- (d) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.
- (e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.
- (f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of

- this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).
- (g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1).
- (h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).
- (1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.
- (2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).
- (i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in §63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in §63.6603(d) and identifying the state or

local regulation that the engine is subject to.

[73 FR 3606, Jan. 18, 2008, as amended at 75 FR 9677, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6705, Jan. 30, 2013]

§63.6650 What reports must I submit and when?

- (a) You must submit each report in Table 7 of this subpart that applies to you.
- (b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.
- (1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.
- (2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.
- (3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
- (4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
- (5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual re-40 CFR ports pursuant to 70.6(a)(3)(iii)(A)or40 CFR71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports ac-

- cording to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.
- (6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31
- (7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.
- (8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.
- (9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.
- (c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.
 - (1) Company name and address.
- (2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.
- (3) Date of report and beginning and ending dates of the reporting period.
- (4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.
- (5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.
- (6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and

CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

- (d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.
- (1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.
- (2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
- (e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.
- (1) The date and time that each malfunction started and stopped.
- (2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.
- (3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).
- (4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.
- (5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.
- (6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
- (7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at

which the CMS downtime occurred during that reporting period.

- (8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.
- (9) A brief description of the stationary RICE.
 - (10) A brief description of the CMS.
- (11) The date of the latest CMS certification or audit.
- (12) A description of any changes in CMS, processes, or controls since the last reporting period.
- (f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit au-
- (g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section
- (1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat

input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.

- (2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.
- (3) Any problems or errors suspected with the meters.
- (h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in $\S63.6640(f)(2)(ii)$ and (iii) or that operates for the purpose specified in $\S63.6640(f)(4)(ii)$, you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.
- (1) The report must contain the following information:
- (i) Company name and address where the engine is located.
- (ii) Date of the report and beginning and ending dates of the reporting period.
- (iii) Engine site rating and model year.
- (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
- (v) Hours operated for the purposes specified in §63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(2)(ii) and (iii).
- (vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §63.6640(f)(2)(ii) and (iii).
- (vii) Hours spent for operation for the purpose specified in $\S63.6640(f)(4)(ii)$, including the date, start time, and end time for engine operation for the purposes specified in $\S63.6640(f)(4)(ii)$. The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
- (viii) If there were no deviations from the fuel requirements in §63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.

- (ix) If there were deviations from the fuel requirements in §63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.
- (2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
- (3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §63.13.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9677, Mar. 3, 2010; 78 FR 6705, Jan. 30, 2013]

§63.6655 What records must I keep?

- (a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.
- (1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).
- (2) Records of the occurrence and duration of each malfunction of operation (*i.e.*, process equipment) or the air pollution control and monitoring equipment.
- (3) Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii).
- (4) Records of all required maintenance performed on the air pollution control and monitoring equipment.
- (5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring

equipment to its normal or usual manner of operation.

- (b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.
- (1) Records described §63.10(b)(2)(vi) through (xi).
- (2) Previous (*i.e.*, superseded) versions of the performance evaluation plan as required in §63.8(d)(3).
- (3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in §63.8(f)(6)(i), if applicable.
- (c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.
- (d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.
- (e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;
- (1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.
- (2) An existing stationary emergency RICE.
- (3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.
- (f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used the specified purposes in §63.6640(f)(2)(ii) or(iii) or

§63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

- (1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.
- (2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 78 FR 6706, Jan. 30, 2013]

§63.6660 In what form and how long must I keep my records?

- (a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).
- (b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- (c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to \$63.10(b)(1).

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010]

OTHER REQUIREMENTS AND INFORMATION

§ 63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of

HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

- (c) The authorities that will not be delegated to State, local, or tribal agencies are:
- (1) Approval of alternatives to the non-opacity emission limitations and operating limitations in $\S63.6600$ under $\S63.6(g)$.

- (2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.
- (3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.
- (4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.
- (5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in §63.6610(b).

§ 63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(1)(5) (incorporated by reference, see § 63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 *et seq.*, as amended by Public Law 101–549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE

used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation:
- (2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.
- (4) Fails to satisfy the general duty to minimize emissions established by \$63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous byproduct of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO₂.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in §63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in §63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

- (1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.
- (2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §63.6640(f).
- (3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §63.6640(f)(2)(ii) or (iii) and §63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For

stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes "rich" glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The "lean" glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any twostroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in §63.2. except that:

- (1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;
- (2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated:
- (3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and
- (4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded.

Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NO_X) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NO_X , CO, and volatile organic compounds (VOC) into CO_2 , nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in §63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to §63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to §63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C_3H_8 .

Remote stationary RICE means stationary RICE meeting any of the following criteria:

(1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas

and beyond the line marking the seaward limit of inland waters.

- (2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.
- (i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
- (ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
- (iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.
- (3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any fourstroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NO_X (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine: or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a nonroad engine as defined at 40 CFR motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in

Pt. 63, Subpt. ZZZZ, Table 1a

40 CFR Ch. I (7-1-16 Edition)

subpart PPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3607, Jan. 18, 2008; 75 FR 9679, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 76 FR 12867, Mar. 9, 2011; 78 FR 6706, Jan. 30, 2013]

TABLE 1a TO SUBPART ZZZZ OF PART 63—EMISSION LIMITATIONS FOR EXISTING, NEW, AND RECONSTRUCTED SPARK IGNITION, 4SRB STATIONARY RICE >500 HP LOCATED AT A MAJOR SOURCE OF HAP EMISSIONS

As stated in $\S63.6600$ and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
1. 4SRB stationary RICE.	a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or. b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂ .	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

 $[75 \; \mathrm{FR} \; 9679, \; \mathrm{Mar.} \; 3, \; 2010, \; \mathrm{as} \; \mathrm{amended} \; \mathrm{at} \; 75 \; \mathrm{FR} \; 51592, \; \mathrm{Aug.} \; 20, \; 2010]$

Pt. 63, Subpt. ZZZZ, Table 2a

Environmental Protection Agency

TABLE 1b TO SUBPART ZZZZ OF PART 63—OPERATING LIMITATIONS FOR EXISTING, NEW, AND RECONSTRUCTED SI 4SRB STATIONARY RICE >500 HP LOCATED AT A MAJOR SOURCE OF HAP EMISSIONS

As stated in $\S63.6600$, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following operating limitation, except during periods of startup
 existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and using NSCR; existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and not using NSCR. 	drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.1 Comply with any operating limitations approved by the Administrator.

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in $\S 63.6600$ and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

For each	You must meet the following emission limitation, except during periods of start-up	During periods of startup you must
2. 4SLB stationary RICE 2. 4SLB stationary RICE	a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O ₂ . If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd or less at 15 percent O ₂ until June 15, 2007. a. Reduce CO emissions by 93 percent or more; or	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1
3. CI stationary RICE	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O ₂ . a. Reduce CO emissions by 70 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O ₂ .	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Pt. 63, Subpt. ZZZZ, Table 2b

40 CFR Ch. I (7-1-16 Edition)

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE $\geq\!\!250$ HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE \geq 250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP.

For each . . .

You must meet the following operating limitation, except during periods of startup . . .

- New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and
- New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an exidation catalyst.
- tionary RICE exhaust and using an oxidation catalyst.

 2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst.
- 3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and
- New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and
- existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst.

- a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure
- drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.1
- a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test: and
- b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.1
- Comply with any operating limitations approved by the Administrator.

 $[78 \; \mathrm{FR} \; 6707, \, \mathrm{Jan.} \; 30, \, 2013]$

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE \leq 500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE \leq 500 HP located at a major source of HAP emissions:

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
Emergency stationary CI RICE and black start stationary CI RICE ¹ .	a. Change oil and filter every 500 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ³
 Non-Emergency, non-black start sta- tionary CI RICE <100 HP. 	a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP.	Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O ₂ .	
4. Non-Emergency, non-black start CI stationary RICE 300 <hp≤500.< td=""><td> a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more. </td><td></td></hp≤500.<>	 a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more. 	
 Non-Emergency, non-black start sta- tionary CI RICE >500 HP. 	 a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more. 	
Emergency stationary SI RICE and black start stationary SI RICE.	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
 Non-Emergency, non-black start sta- tionary SI RICE <100 HP that are not 2SLB stationary RICE. 	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. ³	
Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP.	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first: b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary;	

Pt. 63, Subpt. ZZZZ, Table 2d

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary. ³	
9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500.	Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O ₂ .	
10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500.	Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O ₂ .	
11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500.	Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O ₂ .	
12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.	Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O ₂ .	

¹ If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

2 Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

3 Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]

TABLE 2d TO SUBPART ZZZZ OF PART 63—REQUIREMENTS FOR EXISTING STATIONARY RICE LOCATED AT AREA SOURCES OF HAP EMISSIONS

As stated in §§ 63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
Non-Emergency, non-black start CI stationary RICE ≤300 HP.	Change oil and filter every 1,000 hours of operation or annually, whichever comes first;¹ Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.
2. Non-Emergency, non-black start CI stationary RICE 300 <hp≤500.< td=""><td> a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more. </td><td></td></hp≤500.<>	 a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more. 	
3. Non-Emergency, non-black start CI stationary RICE >500 HP.	 a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more. 	
Emergency stationary CI RICE and black start stationary CI RICE. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	

Pt. 63, Subpt. ZZZZ, Table 2d

Environmental Protection Agency

		T
For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year.²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first, ; b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	
Non-emergency, non-black start 2SLB stationary RICE.	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.	
 Non-emergency, non-black start 4SLB stationary RICE ≤500 HP. 	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
Non-emergency, non-black start 4SLB remote stationary RICE >500 HP.	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
 Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that oper- ate more than 24 hours per calendar year. 	Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.	
year. 10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP.	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹ b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as	
 Non-emergency, non-black start 4SRB remote stationary RICE >500 HP. 	necessary. a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	

Pt. 63, Subpt. ZZZZ, Table 3

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year.	Install NSCR to reduce HAP emissions from the stationary RICE.	
 Non-emergency, non-black start sta- tionary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an an- nual basis. 	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	

[78 FR 6709, Jan. 30, 2013]

TABLE 3 TO SUBPART ZZZZ OF PART 63—SUBSEQUENT PERFORMANCE TESTS

As stated in §§ 63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

For each	Complying with the requirement to	You must
New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or recon- structed CI stationary RICE >500 HP located at major sources.	Reduce CO emissions and not using a CEMS.	Conduct subsequent performance tests semiannually. ¹
2. 4SRB stationary RICE ≥5,000 HP located at major sources.	Reduce formaldehyde emissions	Conduct subsequent performance tests semiannually.1
3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources.	Limit the concentration of formaldehyde in the stationary RICE exhaust.	Conduct subsequent performance tests semiannually.1
 Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE. 	Limit or reduce CO emissions and not using a CEMS.	Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.
 Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE. 	Limit or reduce CO emissions and not using a CEMS.	Conduct subsequent performance tests every 8,760 hours or 5 years, which- ever comes first.

¹After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semi-annual performance tests.

[78 FR 6711, Jan. 30, 2013]

¹ Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

² If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in $\S\S63.6610$, 63.6611, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

For each	Complying with the requirement to	You must	Using	According to the following requirements
1. 2SLB, 4SLB, and CI stationary RICE.	a. reduce CO emissions.	i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and		(a) For CO and O₂ measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Measure the O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522– 00 (Reapproved 2005) ^{ac} (heated probe not nec- essary).	(b) Measurements to determine O ₂ must be made at the same time as the measurements for CO concentration.
		iii. Measure the CO at the inlet and the outlet of the control device.	(1) ASTM D6522– 00 (Reapproved 2005) ^{a,b,c} (heated probe not nec- essary) or Meth- od 10 of 40 CFR part 60, appendix A–4.	(c) The CO concentration must be at 15 percent O ₂ , dry basis.
2. 4SRB stationary RICE.	a. reduce formalde- hyde emissions.	i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and		(a) For formaldehyde, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ("3-point long line"). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at "3-point long line"; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A.
		ii. Measure O ₂ at the inlet and out- let of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522– 00 (Reapproved 2005) a (heated probe not nec- essary).	(a) Measurements to determine O ₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.

For each	Complying with the requirement to	You must	Using	According to the following requirements
		iii. Measure moisture content at the inlet and outlet of the control device; and	(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348—	(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or THC concentration.
		iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formalde-hyde at the inlet and the outlet of the control device.	03 a. (1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03 a pro- vided in ASTM D6348-03 Annex A5 (Analyte Spik- ing Technique), the percent R must be greater than or equal to 70 and less than	(a) Formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
		v. If demonstrating compliance with the THC percent reduction require- ment, measure THC at the inlet and the outlet of the control de- vice.	or equal to 130. (1) Method 25A, reported as propane, of 40 CFR part 60, appendix A-7.	(a) THC concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
3. Stationary RICE	a. limit the concentra-tion of formalde-hyde or CO in the stationary RICE exhaust.	i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary RICE; and		(a) For formaldehyde, CO, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A. If using a control device, the sampling site must be located at the outlet of the control device.
		ii. Determine the O ₂ concentration of the stationary RICE exhaust at the sampling port location; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522– 00 (Reapproved 2005) a (heated probe not nec- essary).	(a) Measurements to determine O ₂ concentration must be made at the same time and location as the meas- urements for formaldehyde or CO concentration.
		iii. Measure moisture content of the station-ary RICE exhaust at the sampling port location; and	(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348– 03ª.	(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or CO concentration.

Pt. 63, Subpt. ZZZZ, Table 5

For each	Complying with the requirement to	You must	Using	According to the following requirements
		iv. Measure formalde-hyde at the exhaust of the station-ary RICE; or	(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03 a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130.	(a) Formaldehyde concentration mus be at 15 percent O ₂ , dry basis. Re sults of this test consist of the aver age of the three 1-hour or longe runs.
		v. measure CO at the exhaust of the station-ary RICE.	(1) Method 10 of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (2005) *°, Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03 *	(a) CO concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

^aYou may also use Methods 3A and 10 as options to ASTM-D6522-00 (2005). You may obtain a copy of ASTM-D6522-00 (2005) from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

^bYou may obtain a copy of ASTM-D6348-03 from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

[79 FR 11290, Feb. 27, 2014]

Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission LIMITATIONS, OPERATING LIMITATIONS, AND OTHER REQUIREMENTS

As stated in §§ 63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

For each	Complying with the requirement to	You have demonstrated initial compliance if
New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP.	a. Reduce CO emissions and using oxidation catalyst, and using a CPMS. a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS.	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test. i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
 New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP. Non-emergency stationary CI RICE 	Reduce CO emissions and not using oxidation catalyst. I imit the consentration of CO, and not.	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.
 Notifieringerity stationary of mice >500 HP located at a major source of HAP, and existing non-emergency sta- tionary CI RICE >500 HP located at an area source of HAP. 	a. Limit the concentration of CO, and not using oxidation catalyst.	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.
5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or re- constructed non-emergency 4SLB sta- tionary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP.	Reduce CO emissions, and using a CEMS.	i. You have installed a CEMS to continuously monitor CO and either O ₂ or CO ₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in § 63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average reduction of CO cal- culated using §63.6620 equals or ex- ceeds the required percent reduction. The initial test comprises the first 4- hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.
 Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency sta- tionary CI RICE >500 HP located at an area source of HAP. 	a. Limit the concentration of CO, and using a CEMS.	i. You have installed a CEMS to continuously monitor CO and either O ₂ or CO ₂ at the outlet of the oxidation catalyst according to the requirements in § 63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and iii. The average concentration of CO calculated using § 63.6620 is less than or
7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of	Reduce formaldehyde emissions and using NSCR.	equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period. i. The average reduction of emissions of formaldehyde determined from the ini-
наР.		tial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and

For each	Complying with the requirement to	You have demonstrated initial compliance if
8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP.	Reduce formaldehyde emissions and not using NSCR.	iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test. i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the
9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP.	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR.	initial performance test. i. The average formaldehyde concentration, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP.	Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR.	i. The average formaldehyde concentration, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the
11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<-HP≤500 located at an area source of HAP.	a. Reduce CO emissions	initial performance test. i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.
12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap.<="" located="" of="" source="" td=""><td>a. Limit the concentration of formalde- hyde or CO in the stationary RICE ex- haust.</td><td>i. The average formaldehyde or CO con- centration, as applicable, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limi- tation, as applicable.</td></hp≤500>	a. Limit the concentration of formalde- hyde or CO in the stationary RICE ex- haust.	i. The average formaldehyde or CO con- centration, as applicable, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limi- tation, as applicable.
13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year.	a. Install an oxidation catalyst	i. You have conducted an initial compliance demonstration as specified in § 63.6630(e) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O;; ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.

Pt. 63, Subpt. ZZZZ, Table 6

40 CFR Ch. I (7-1-16 Edition)

For each	Complying with the requirement to	You have demonstrated initial compliance if
14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year.	a. Install NSCR	i. You have conducted an initial compliance demonstration as specified in § 63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more; ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.

[78 FR 6712, Jan. 30, 2013]

Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in $\S63.6640$, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

For each	Complying with the requirement to	You must demonstrate continuous compliance by
 New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or re- constructed non-emergency 4SLB sta- tionary RICE ≥250 HP located at a major source of HAP, and new or re- constructed non-emergency CI sta- tionary RICE >500 HP located at a major source of HAP. 	Reduce CO emissions and using an oxidation catalyst, and using a CPMS.	i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved a; and ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
 New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or re- constructed non-emergency 4SLB sta- tionary RICE ≥250 HP located at a major source of HAP, and new or re- constructed non-emergency CI sta- tionary RICE >500 HP located at a major source of HAP. 	Reduce CO emissions and not using an oxidation catalyst, and using a CPMS.	i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved a; and ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP.	Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS.	Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP.	Reduce formaldehyde emissions and using NSCR.	iii. Conducting an annual RATA of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B, as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1. i. Collecting the catalyst inlet temperature data according to §63.6625(b); and ii. Reducing these data to 4-hour rolling averages; and iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and iv. Measuring the pressure drop across
5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP.	Reduce formaldehyde emissions and not using NSCR.	the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test. i. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and ii. Reducing these data to 4-hour rolling
		averages; and iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
 Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP. 	a. Reduce formaldehyde emissions	Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent. ^a
 New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or recon- structed non-emergency 4SLB sta- tionary RICE 250≤HP≤500 located at a major source of HAP. 	a. Limit the concentration of formalde- hyde in the stationary RICE exhaust and using oxidation catalyst or NSCR.	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit a; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and
8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP.	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR.	iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test. i. Conducting semiannual performance test for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limita; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

Pt. 63, Subpt. ZZZZ, Table 6

40 CFR Ch. I (7-1-16 Edition)

For each	Complying with the requirement to	You must demonstrate continuous compliance by
9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE <100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary CI RICE ≤300 HP located at an area source of HAP, existing non-emergency 2SLB stationary RICE located at an area source of HAP, existing non-emergency stationary SI RICE located at an area source of HAP, which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate 24 hours or less per calendar year, and existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are remote stationary RICE	a. Work or Management practices	Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.
Existing stationary CI RICE >500 HP that are not limited use stationary RICE.	Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst.	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst in the pressure drop across the catalyst is within the operating limitation established during the
11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE.	Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst.	performance test. i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
Existing limited use CI stationary RICE >500 HP. 13. Existing limited use CI stationary RICE >500 HP.	Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst. Reduce CO emissions or limit the concentration of CO in the stationary.	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test. i. Conducting performance tests every 8,760 hours or 5 years, whichever
THOE SOOTH .	RICE exhaust, and not using an oxidation catalyst.	comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters estab-
14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year.	a. Install an oxidation catalyst	lished during the performance test. i. Conducting annual compliance demonstrations as specified in § 63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O ₂ ; and either ii. Collecting the catalyst inlet temperature data according to § 63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year.	a. Install NSCR	i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more; and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.

a After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semi-annual performance tests.

[78 FR 6715, Jan. 30, 2013]

Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports As stated in $\S63.6650$, you must comply with the following requirements for reports:

For each	You must submit a	The report must contain	You must submit the report
I. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at a major source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP.	Compliance report	a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or	i. Semiannually according to the requirements in § 63.6650(b)(1)–(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in § 63.6650(b)(6)–(9) for engines that are limited use stationary RICE subject to numerical emission limitations.
		b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in § 63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in § 63.8(c)(7), the information in § 63.6650(e); or c. If you had a malfunction during the reporting period, the information in § 63.6650(e)(4).	i. Semiannually according to the requirements in § 63.6650(b). i. Semiannually according to the requirements in § 63.6650(b).

Pt. 63, Subpt. ZZZZ, Table 8

Environmental Protection Agency

For each	You must submit a	The report must contain	You must submit the report
New or reconstructed non- emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.	Report	a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and	i. Annually, according to the requirements in §63.6650.
		b. The operating limits pro- vided in your federally en- forceable permit, and any deviations from these limits; and c. Any problems or errors	i. See item 2.a.i.
3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24	Compliance report	Suspected with the meters. The results of the annual compliance demonstration, if conducted during the reporting period.	i. Semiannually according to the requirements in § 63.6650(b)(1)–(5).
hours per calendar year. 4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in §63.6640(f)(4)(iii).	Report	a. The information in § 63.6650(h)(1).	i. annually according to the requirements in § 63.6650(h)(2)–(3).

[78 FR 6719, Jan. 30, 2013]

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in $\S63.6665$, you must comply with the following applicable general provisions.

General provisions citation	Subject of citation	Applies to sub- part	Explanation
§63.1	General applicability of the General Provisions.	Yes.	
§ 63.2	Definitions	Yes	Additional terms defined in § 63.6675.
§ 63.3	Units and abbreviations	Yes.	
§ 63.4	Prohibited activities and circumvention.	Yes.	
§ 63.5	Construction and reconstruction	Yes.	
§ 63.6(a)	Applicability	Yes.	
§ 63.6(b)(1)–(4)	Compliance dates for new and reconstructed sources.	Yes.	
§ 63.6(b)(5)	Notification	Yes.	
§ 63.6(b)(6)	[Reserved]		
§ 63.6(b)(7)	Compliance dates for new and reconstructed area sources that become major sources.	Yes.	
§ 63.6(c)(1)–(2)	Compliance dates for existing sources.	Yes.	
§ 63.6(c)(3)-(4)	[Reserved]		
§ 63.6(c)(5)	Compliance dates for existing area sources that become major sources.	Yes.	
§ 63.6(d)	[Reserved]		
§ 63.6(e)	Operation and maintenance	No.	
§ 63.6(f)(1)	Applicability of standards	No.	
§ 63.6(f)(2)	Methods for determining compliance	Yes.	
§ 63.6(f)(3)	Finding of compliance	Yes.	
§ 63.6(g)(1)–(3)	Use of alternate standard	Yes.	

General provisions citation	Subject of citation	Applies to sub- part	Explanation
§ 63.6(h)	Opacity and visible emission standards.	No	Subpart ZZZZ does not contain opacity or visible emission standards.
§ 63.6(i)	Compliance extension procedures and criteria.	Yes.	ity of violate emission standards.
§ 63.6(j)	Presidential compliance exemption	Yes.	
§ 63.7(a)(1)–(2)	Performance test dates	Yes	Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.
§ 63.7(a)(3)	CAA section 114 authority	Yes.	
§ 63.7(b)(1)	Notification of performance test	Yes	Except that §63.7(b)(1) only applies as specified in §63.6645.
§ 63.7(b)(2)	Notification of rescheduling	Yes	Except that §63.7(b)(2) only applies as specified in §63.6645.
§ 63.7(c)	Quality assurance/test plan	Yes	Except that § 63.7(c) only applies as specified in § 63.6645.
§ 63.7(d)	Testing facilities	Yes. No	Culprout 7777 aposition conditions for
§ 63.7(e)(1)	Conditions for conducting performance tests.		Subpart ZZZZ specifies conditions for conducting performance tests at § 63.6620.
§ 63.7(e)(2)	Conduct of performance tests and reduction of data.	Yes	Subpart ZZZZ specifies test methods at §63.6620.
§ 63.7(e)(3)	Test run duration	Yes.	
§ 63.7(e)(4)	Administrator may require other test- ing under section 114 of the CAA.	Yes.	
§ 63.7(f)	Alternative test method provisions	Yes.	
§ 63.7(g) § 63.7(h)	Performance test data analysis, recordkeeping, and reporting. Waiver of tests	Yes.	
§ 63.8(a)(1)	Applicability of monitoring require-	Yes	Subpart ZZZZ contains specific re-
	ments.		quirements for monitoring at § 63.6625.
§ 63.8(a)(2)	Performance specifications	Yes.	
§ 63.8(a)(3)	[Reserved]	N-	
§ 63.8(a)(4)	Monitoring for control devices	No.	
§ 63.8(b)(1) § 63.8(b)(2)–(3)	Monitoring Multiple effluents and multiple monitoring systems.	Yes. Yes.	
§ 63.8(c)(1)	Monitoring system operation and maintenance.	Yes.	
§ 63.8(c)(1)(i)	Routine and predictable SSM	No.	
§ 63.8(c)(1)(ii)	SSM not in Startup Shutdown Mal- function Plan.	Yes.	
§ 63.8(c)(1)(iii)	Compliance with operation and maintenance requirements.	No.	
§ 63.8(c)(2)–(3)	Monitoring system installation	Yes.	
§ 63.8(c)(4)	Continuous monitoring system (CMS) requirements.	Yes	Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).
§ 63.8(c)(5)	COMS minimum procedures	No	Subpart ZZZZ does not require COMS.
§ 63.8(c)(6)–(8)	CMS requirements	Yes	Except that subpart ZZZZ does not require COMS.
§ 63.8(d)	CMS quality control	Yes.	
§ 63.8(e)	CMS performance evaluation	Yes	Except for §63.8(e)(5)(ii), which applies to COMS.
		§ 63.8(e) only applies as specified	
§ 63.8(f)(1)–(5)	Alternative monitoring method	in § 63.6645. Yes	Except that §63.8(f)(4) only applies
§ 63.8(f)(6)	Alternative to relative accuracy test	Yes	as specified in § 63.6645. Except that § 63.8(f)(6) only applies
§ 63.8(g)	Data reduction	Yes	as specified in § 63.6645. Except that provisions for COMS are
			not applicable. Averaging periods for demonstrating compliance are specified at §§ 63.6635 and 63.6640.
§ 63.9(a)	Applicability and State delegation of notification requirements.	Yes.	
§ 63.9(b)(1)–(5)	Initial notifications	Yes	Except that § 63.9(b)(3) is reserved.

Pt. 63, Subpt. ZZZZ, Table 8

General provisions citation	Subject of citation	Applies to sub- part	Explanation
		Except that	
		§ 63.9(b)	
		only applies	
		as specified	
§ 63.9(c)	Request for compliance extension	in § 63.6645. Yes	Except that § 63.9(c) only applies as
303.9(0)	request for compliance extension	165	specified in § 63.6645.
§63.9(d)	Notification of special compliance re-	Yes	Except that §63.9(d) only applies as
- , ,	quirements for new sources.		specified in § 63.6645.
§ 63.9(e)	Notification of performance test	Yes	Except that §63.9(e) only applies as
	l		specified in § 63.6645.
§ 63.9(f)	Notification of visible emission (VE)/	No	Subpart ZZZZ does not contain opac-
§ 63.9(g)(1)	opacity test. Notification of performance evaluation	Yes	ity or VE standards. Except that §63.9(g) only applies as
3 03.9(g)(1)	Notification of performance evaluation	165	specified in § 63.6645.
63.9(g)(2)	Notification of use of COMS data	No	Subpart ZZZZ does not contain opac
, (3)()			ity or VE standards.
§ 63.9(g)(3)	Notification that criterion for alter-	Yes	If alternative is in use.
	native to RATA is exceeded.		
		Except that	
		§ 63.9(g)	
		only applies as specified	
		in § 63.6645.	
63.9(h)(1)–(6)	Notification of compliance status	Yes	Except that notifications for sources
,(,(, (,			using a CEMS are due 30 days
			after completion of performance
			evaluations. §63.9(h)(4) is re
			served.
			Except that § 63.9(h) only applies as
63.9(i)	Adjustment of submittal deadlines	Yes.	specified in § 63.6645.
63.9(j)	Change in previous information	Yes.	
63.10(a)	Administrative provisions for record-	Yes.	
, (,	keeping/reporting.		
§ 63.10(b)(1)	Record retention	Yes	Except that the most recent 2 years
			of data do not have to be retained
S 00 40(h)(0)(h) (h)	Be sende veleted to 00M	NI-	on site.
§ 63.10(b)(2)(i)–(v) § 63.10(b)(2)(vi)–(xi)	Records related to SSM	No. Yes.	
63.10(b)(2)(xii)	Record when under waiver	Yes.	
§ 63.10(b)(2)(xiii)	Records when using alternative to	Yes	For CO standard if using RATA alter
3 00.10(0)(2)(x)	RATA.		native.
§ 63.10(b)(2)(xiv)	Records of supporting documentation	Yes.	
63.10(b)(3)	Records of applicability determination	Yes.	
§ 63.10(c)	Additional records for sources using	Yes	Except that § 63.10(c)(2)-(4) and (9)
CO 10(4)(1)	CEMS.	Vee	are reserved.
§ 63.10(d)(1) § 63.10(d)(2)	General reporting requirements	Yes. Yes.	
§ 63.10(d)(3)	Reporting opacity or VE observations	No	Subpart ZZZZ does not contain opac
300.10(0)(0)	Troporting opacity of VE observations	140	ity or VE standards.
63.10(d)(4)	Progress reports	Yes.	, ,
63.10(d)(5)	Startup, shutdown, and malfunction	No.	
	reports.		
63.10(e)(1) and (2)(i)	Additional CMS Reports	Yes.	L
63.10(e)(2)(ii)	COMS-related report	No	Subpart ZZZZ does not require
63 10(0)(3)	Excess emission and parameter	Voc	COMS.
63.10(e)(3)	Excess emission and parameter exceedances reports.	Yes	Except that §63.10(e)(3)(i) (C) is re served.
63.10(e)(4)	Reporting COMS data	No	Subpart ZZZZ does not require
	Troporting COMO data		COMS.
63.10(f)	Waiver for recordkeeping/reporting	Yes.	
63.11	Flares	No.	
63.12	State authority and delegations	Yes.	
	Addresses	Yes.	1
			l .
§ 63.13 § 63.14 § 63.15	Incorporation by reference	Yes. Yes.	

[75 FR 9688, Mar. 3, 2010, as amended at 78 FR 6720, Jan. 30, 2013]

Pt. 63, Subpt. ZZZZ, App. A

APPENDIX A TO SUBPART ZZZZ OF PART 63—PROTOCOL FOR USING AN ELECTROCHEMICAL ANALYZER TO DETERMINE OXYGEN AND CARBON MONOXIDE CONCENTRATIONS FROM CERTAIN ENGINES

1.0 SCOPE AND APPLICATION. WHAT IS THIS PROTOCOL?

This protocol is a procedure for using portable electrochemical (EC) cells for meas-

uring carbon monoxide (CO) and oxygen (O_2) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O_2) .

Analyte	CAS No.	Sensitivity
Carbon monoxide (CO)	630-08-0	Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.
Oxygen (O ₂)	7782–44–7	

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O₂, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 SUMMARY OF PROTOCOL

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and $\rm O_2$ gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor sup-

plied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 Definitions

- 3.1 Measurement System. The total equipment required for the measurement of CO and $\rm O_2$ concentrations. The measurement system consists of the following major subsystems:
- 3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.
- 3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.
- 3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.
- 3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.
- 3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.
- 3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several

nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.

3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.

3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.

3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.

3.6 Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.

3.7 Repeatability Check. A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.

3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.

3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O2 and moisture in the electrolyte reserve and provides a mechanism to de-gas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre- sampling calibrations; stack gas sampling; post-sampling calibration checks: and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.

3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.

3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day

to bracket measurement readings with controlled performance checks.

3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO $_2$ are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 Safety. [Reserved]

6.0 EQUIPMENT AND SUPPLIES.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

6.2.1 Sample Probe. A single extractionpoint probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.

6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.

6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.

6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used

Pt. 63, Subpt. ZZZZ, App. A

to adjust and maintain the sample flow rate through the analyzer as prescribed.

6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.10~EC~cell. A device containing one or more EC cells to determine the CO and O_2 concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.

 $6.2.11\ Data\ Recorder$. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O₂; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.

6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 REAGENTS AND STANDARDS. WHAT CALIBRATION GASES ARE NEEDED?

7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O_2 . Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ± 5 percent of the label value. Dry ambient air (20.9 percent O_2) is acceptable for calibration of the O_2 cell. If needed, any lower percentage O_2 calibration gas must be a mixture of O_2 in nitrogen.

7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O_2 Calibration Gas Concentration.

Select an O_2 gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O_2 . When the average exhaust gas O_2 readings are above 6 percent, you may use dry ambient air $(20.9 \text{ percent } O_2)$ for the upscale O_2 calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO_2).

8.0 SAMPLE COLLECTION AND ANALYSIS

8.1 Selection of Sampling Sites.

8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct that the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the "sample conditioning phase" once per minute until constant readings are obtained. Then begin the "measurement data phase" and record readings every 15 seconds for at least two minutes (or eight readings). or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the "measurement data phase" readings to calculate the average stack gas CO and O2 concentrations.

8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than ±10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that

Pt. 63, Subpt. ZZZZ, App. A

Environmental Protection Agency

does not affect the gas concentration readings by more than ± 3 percent, as instructed by the EC cell manufacturer.

9.0 QUALITY CONTROL (RESERVED)

10.0 CALIBRATION AND STANDARDIZATION

10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells: however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer's recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.

 $10.1.1\ Zero\ Calibration$. For both the O_2 and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.

10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to ± 3 percent of the up-scale gas value or ± 1 ppm, whichever is less restrictive, for the CO channel and less than or equal to ± 0.3 percent O_2 for the O_2 channel.

10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this "sample conditioning phase" once per minute until readings are constant for at least two minutes. Then begin the "measurement data phase" and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

10.1.4 Up-Scale Calibration Error. The mean of the difference of the "measurement data phase" readings from the reported standard gas value must be less than or equal to ±5 percent or ±1 ppm for CO or ±0.5 percent O₂, whichever is less restrictive, respectively.

The maximum allowable deviation from the mean measured value of any single "measurement data phase" reading must be less than or equal to ± 2 percent or ± 1 ppm for CO or ± 0.5 percent O_2 , whichever is less restrictive, respectively.

10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 CALCULATIONS AND DATA ANALYSIS

Determine the CO and O_2 concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the "measurement data phase".

13.0 PROTOCOL PERFORMANCE

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the "measurement data phase". The maximum allowable deviation from the mean for each of the individual readings is ±2 percent, or ±1 ppm, whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ± 2 percent or ± 1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed).

13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO_2 gas standards that are

Pt. 63, Subpt. ZZZZ, App. A

generally recognized as representative of diesel-fueled engine NO and NO₂ emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.

13.2.1 Interference Response. The combined NO and NO₂ interference response should be less than or equal to ±5 percent of the upscale CO calibration gas concentration.

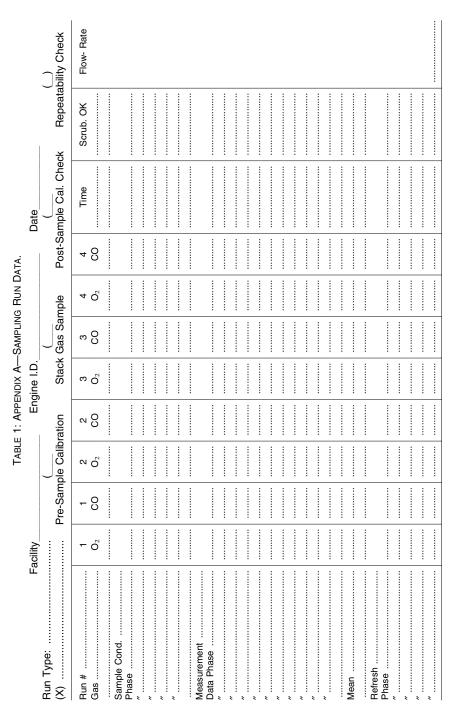
13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.

13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.

13.3.2 Repeatability Check Calculations. Determine the highest and lowest average "measurement data phase" CO concentra-

40 CFR Ch. I (7-1-16 Edition)

tions from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.


14.0 POLLUTION PREVENTION (RESERVED)

15.0 Waste Management (Reserved)

16.0 ALTERNATIVE PROCEDURES (RESERVED)

17.0 References

- (1) "Development of an Electrochemical Cell Emission Analyzer Test Protocol", Topical Report, Phil Juneau, Emission Monitoring, Inc., July 1997.
- (2) "Determination of Nitrogen Oxides, Carbon Monoxide, and Oxygen Emissions from Natural Gas-Fired Engines, Boilers, and Process Heaters Using Portable Analyzers", EMC Conditional Test Protocol 30 (CTM-30), Gas Research Institute Protocol GRI-96/0008, Revision 7, October 13, 1997.
- (3) "ICAC Test Protocol for Periodic Monitoring", EMC Conditional Test Protocol 34 (CTM-034), The Institute of Clean Air Companies, September 8, 1999.
- (4) "Code of Federal Regulations", Protection of Environment, 40 CFR, Part 60, Appendix A, Methods 1–4; 10.

§ 63.7080

[78 FR 6721, Jan. 30, 2013]

Subpart AAAAA—National Emission Standards for Hazardous Air Pollutants for Lime Manufacturing Plants

SOURCE: 69 FR 416, Jan. 5, 2004, unless otherwise noted.

WHAT THIS SUBPART COVERS

§63.7080 What is the purpose of this subpart?

This subpart establishes national emission standards for hazardous air pollutants (NESHAP) for lime manufacturing plants. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations.

§63.7081 Am I subject to this subpart?

- (a) You are subject to this subpart if you own or operate a lime manufacturing plant (LMP) that is a major source, or that is located at, or is part of, a major source of hazardous air pollutant (HAP) emissions, unless the LMP is located at a kraft pulp mill, soda pulp mill, sulfite pulp mill, beet sugar manufacturing plant, or only processes sludge containing calcium carbonate from water softening processes.
- (1) An LMP is an establishment engaged in the manufacture of lime product (calcium oxide, calcium oxide with magnesium oxide, or dead burned dolomite) by calcination of limestone, dolomite, shells or other calcareous substances.
- (2) A major source of HAP is a plant site that emits or has the potential to emit any single HAP at a rate of 9.07 megagrams (10 tons) or more per year or any combination of HAP at a rate of 22.68 megagrams (25 tons) or more per year from all emission sources at the plant site.
 - (b) [Reserved]

§ 63.7082 What parts of my plant does this subpart cover?

(a) This subpart applies to each existing or new lime kiln(s) and their associated cooler(s), and processed stone handling (PSH) operations system(s)

located at an LMP that is a major source.

- (b) A new lime kiln is a lime kiln, and (if applicable) its associated lime cooler, for which construction or reconstruction began after December 20, 2002, if you met the applicability criteria in §63.7081 at the time you began construction or reconstruction.
- (c) A new PSH operations system is the equipment in paragraph (g) of this section, for which construction or reconstruction began after December 20, 2002, if you met the applicability criteria in §63.7081 at the time you began construction or reconstruction.
- (d) A lime kiln or PSH operations system is reconstructed if it meets the criteria for reconstruction defined in §63.2.
- (e) An existing lime kiln is any lime kiln, and (if applicable) its associated lime cooler, that does not meet the definition of a new kiln of paragraph (b) of this section.
- (f) An existing PSH operations system is any PHS operations system that does not meet the definition of a new PSH operations system in paragraph (c) of this section.
- (g) A PSH operations system includes all equipment associated with PSH operations beginning at the processed stone storage bin(s) or open storage pile(s) and ending where the processed stone is fed into the kiln. It includes man-made processed stone storage bins (but not open processed stone storage piles), conveying system transfer points, bulk loading or unloading systems, screening operations, surge bins, bucket elevators, and belt conveyors. No other materials processing operations are subject to this subpart.
- (h) Nuisance dust collectors on lime coolers are part of the lime materials processing operations and are not covered by this subpart.
- (i) Lime hydrators are not subject to this subpart.
- (j) Open material storage piles are not subject to this subpart.

§63.7083 When do I have to comply with this subpart?

(a) If you have a new affected source, you must comply with this subpart according to paragraphs (a)(1) and (2) of this section.