

DIVISION OF ENVIRONMENTAL QUALITY

DRAFT OPERATING AIR PERMIT

PERMIT NUMBER: 1185-AOP-R13

IS ISSUED TO:

Black Hills Energy Arkansas, Inc.—Drake Compressor Station 2204 Westview Road Ozark, AR 72949 Franklin County AFIN: 24-00071

PURSUANT TO THE REGULATIONS OF THE ARKANSAS OPERATING AIR PERMIT PROGRAM, REGULATION 26: THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

June 21, 2019 AND June 20, 2024

THE PERMITTEE IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:	
William K. Montgomery	Date
Associate Director, Office of Air Quality	

Division of Environmental Quality

AFIN: 24-00071

Table of Contents

SECTION I: FACILITY INFORMATION	4
SECTION II: INTRODUCTION	5
Summary of Permit Activity	5
Process Description	5
Regulations	6
Emission Summary	7
SECTION III: PERMIT HISTORY	
SECTION IV: SPECIFIC CONDITIONS	19
SN-15, SN-19, SN-87, SN-88, SN-89, SN-90, SN-93, SN-94, SN-95, SN-96, S	SN-97, and SN-
98	19
SN-18	26
SN-91 and SN-92	32
SN-99	34
SECTION V: COMPLIANCE PLAN AND SCHEDULE	35
SECTION VI: PLANTWIDE CONDITIONS	36
40 C.F.R. Part 63, Subpart ZZZZ Conditions	38
40 C.F.R. Part 60, Subpart OOOOa Conditions	45
Permit Shield	61
SECTION VII: INSIGNIFICANT ACTIVITIES	63
SECTION VIII: GENERAL PROVISIONS	64
Appendix A: 40 C.F.R. Part 60, Subpart JJJJ	
Appendix B: 40 C.F.R. Part 63, Subpart ZZZZ	
Appendix C: 40 C.F.R. Part 60, Subpart OOOOa	

Permit #: 1185-AOP-R13

AFIN: 24-00071

List of Acronyms and Abbreviations

Ark. Code Ann. Arkansas Code Annotated

AFIN Arkansas DEQ Facility Identification Number

C.F.R. Code of Federal Regulations

CO Carbon Monoxide

COMS Continuous Opacity Monitoring System

HAP Hazardous Air Pollutant

Hp Horsepower

lb/hr Pound Per Hour

NESHAP National Emission Standards (for) Hazardous Air Pollutants

MVAC Motor Vehicle Air Conditioner

No. Number

NO_x Nitrogen Oxide

NSPS New Source Performance Standards

PM Particulate Matter

PM₁₀ Particulate Matter Equal To Or Smaller Than Ten Microns

PM_{2.5} Particulate Matter Equal To Or Smaller Than 2.5 Microns

SNAP Significant New Alternatives Program (SNAP)

SO₂ Sulfur Dioxide

SSM Startup, Shutdown, and Malfunction Plan

Tpy Tons Per Year

UTM Universal Transverse Mercator

VOC Volatile Organic Compound

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION I: FACILITY INFORMATION

PERMITTEE: Black Hills Energy Arkansas, Inc.—Drake Compressor

Station

AFIN: 24-00071

PERMIT NUMBER: 1185-AOP-R13

FACILITY ADDRESS: 2204 Westview Road

Ozark, AR 72949

MAILING ADDRESS: 655 East Millsap Road, Suite 104

Fayetteville, AR 72703-1002

COUNTY: Franklin County

CONTACT NAME: Amanda Swope

CONTACT POSITION: Senior Environmental Professional

TELEPHONE NUMBER: (479) 601-8390

REVIEWING ENGINEER: Alexander Sudibjo

UTM North South (Y): Zone 15: 3939453.8 m

UTM East West (X): Zone 15: 425122.16 m

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION II: INTRODUCTION

Summary of Permit Activity

Black Hills Energy Arkansas, Inc.—Drake Compressor Station owns and operates a natural gas compressor station located near Ozark, Arkansas. This minor modification removes two existing Solar Turbines (SN-11 and SN-12) and replaces them with two 1500 HP spark ignition (SI) reciprocating engines (SN-97 and SN-98). The removal is planned for March 31, 2022 and the facility is planning to operate the Solar Turbines until that date. The facility is also replacing a Sivals Glycol Dehydrator (SN-92) with a Bird Glycol Dehydrator. The replacement has a reboiler with the same capacity (0.5 MMBtu/hr). This also includes a minor modification to incorporate applicable requirements for NSPS OOOOa into the permit and add fugitive emissions that were formerly insignificant activities as a permitted source (SN-99). Lastly, this modification includes corrections to SN-95 and SN-96 CO and NOx emissions and adds total HAPs emissions for all sources. The facility's permitted annual emissions are increasing by 1.2 tpy PM/PM₁₀, 1.3 tpy VOC, 0.24 tpy acetaldehyde, 0.21 tpy acrolein, 0.04 tpy 1,3-butadiene, 0.08 tpy formaldehyde, and 16.49 tpy total HAPs. The facility's permitted annual emissions are decreasing by 0.2 tpy CO.

Process Description

Natural gas pipelines operate at varying pressures which can result from pipe friction, changes in upstream operations, and changes in downstream natural gas demand. To maintain flow, gas must be removed from the pipeline, re-pressurized (compressed), and returned to the pipe. The function of the Drake Compressor Station is to compress sweet dry natural gas for delivery to customers in Northwest Arkansas. The station receives natural gas from local transmission pipelines and from area producers, and dehydrates the gas to meet distribution pipeline specifications. The applicable NAICS code is 486210, which covers industry sites primarily engaged in the pipeline transportation of natural gas.

Drake Compressor Station currently operates twelve (12) reciprocating compressors and associated natural gas-fired engines (SN-15, SN-19, SN-87, SN-88, SN-89, SN-90, SN-93, SN-94, SN-95 SN-96, SN-97, and SN-98).

Two (2) triethylene glycol (TEG) dehydrators (SN-91 and SN-92) serve to remove water vapor from the gas entering the station. Drake is not a major source of HAPs as individual HAPS emissions are below 10 tons per year and cumulative HAPS emissions are below 25 tons per year. As an area source of HAPs, the TEG dehydrators are not subject to requirements under NESHAP 40 CFR Part 63 Subpart HHH.

A natural gas fired electric generator (SN-18) provides backup power for the entire facility. The electric generator is utilized during periods of power outages.

Periodically, the natural gas contained in piping must be vented during routine maintenance or emergency shutdowns. Releasing the natural gas to the atmosphere to empty the pipe is called a

Permit #: 1185-AOP-R13

AFIN: 24-00071

blowdown. The emissions due to compressor station blowdowns are considered insignificant activities since the emissions are below the listed levels.

Fugitive emissions also occur due to leaks at valves, connectors, seals, and flanges. Fugitive equipment leaks release natural gas into the atmosphere.

Regulations

The following table contains the regulations applicable to this permit.

D	•
Regni	latione
NUEU	lations
- 6	

Arkansas Air Pollution Control Code, Regulation 18, effective March 14, 2016

Rules of the Arkansas Plan of Implementation for Air Pollution Control, Rule 19, effective August 6, 2020

Regulations of the Arkansas Operating Air Permit Program, Regulation 26, effective March 14, 2016

40 C.F.R. Part 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

40 C.F.R. Part 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

40 C.F.R. Part 60, Subpart OOOOa—Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

Permit #: 1185-AOP-R13

AFIN: 24-00071

Emission Summary

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

	EMI	SSION SUMMARY		
Source	Description	Dollytont	Emission	n Rates
Number	Description	Pollutant	lb/hr	tpy
		PM	2.5	8.1
		PM_{10}	2.5	8.1
		$PM_{2.5}$	See Note*	
Total A	Allowable Emissions ***	SO_2	1.5	1.7
		VOC	31.7	131.1
		СО	105.9	325.3
		NO_X	49.7	203.6
		Acetaldehyde**	0.63	2.32
		Acrolein**	0.45	1.70
	HAPs	1,3-Butadiene**	0.11	0.20
	пагѕ	Formaldehyde**	2.37	9.63
		POM	0.015	0.11
		Total HAPs	3.99	16.49
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.2
		VOC	3.0	12.8
Solar Saturn Turbine (1203 HP) ***	СО	6.0	26.0	
	· · · · · · · · · · · · · · · · · · ·	NO _x	4.0	17.4
		Acetaldehyde	0.01	0.01
		Acrolein	0.01	0.01
		1,3-Butadiene	0.01	0.01

	EMI	SSION SUMMARY		
Source	Description	D-11-44	Emissio	n Rates
Number	Description	Pollutant	lb/hr	tpy
·		Formaldehyde	0.15	0.68
		POM	0.001	0.01
		Total HAPs	0.16	0.72
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.2
		VOC	3.0	12.8
		СО	6.0	26.0
12	Solar Saturn Turbine	NO _x	4.0	17.4
12	12 (1203 HP) ***	Acetaldehyde	0.01	0.01
		Acrolein	0.01	0.01
		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.15	0.68
		POM	0.001	0.01
		Total HAPs	0.16	0.72
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.1
		VOC	3.3	12.3
15	Waukesha Model L7042	СО	8.2	30.6
15	GL Engine (1478 HP 4SLB)	NO_x	6.6	24.5
		Acetaldehyde	0.1	0.35
		Acrolein	0.06	0.22
		1,3-Butadiene	0.01	0.02
<u>_</u> _		Formaldehyde	0.33	1.2

	EMI	SSION SUMMARY		
Source	Description	D-11-44	Emissio	n Rates
Number	Description	Pollutant	lb/hr	tpy
		POM	0.002	0.01
		Total HAPs	0.53	1.97
		PM	0.1	0.1
		PM_{10}	0.1	0.1
		SO_2	0.1	0.1
		VOC	0.4	0.1
		СО	29.1	1.5
18	Generac SG035	NO_x	0.8	0.1
18	Emergency Generator (82HP 4SRB)	Acetaldehyde	0.01	0.01
		Acrolein	0.01	0.01
		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.02	0.01
		POM	0.001	0.01
		Total HAPs	0.02	0.01
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.1
		VOC	3.3	14.1
	Waukesha Model L5108	СО	8.7	38
19	GL Engine	NOx	4.9	21.2
	(1122 HP 4SLB)	Acetaldehyde	0.08	0.31
		Acrolein	0.05	0.2
		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.25	1.1
		POM	0.002	0.01

	EMIS	SSION SUMMARY		
Source	Description	Dollytont	Emission Rates	
Number	Description	Pollutant	lb/hr	tpy
		Total HAPs	0.40	1.75
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.1
		VOC	3.3	12.3
		CO	8.2	30.6
87	Waukesha Model L7042	NOx	6.6	24.5
87	GL Engine (1478 HP 4SLB)	Acetaldehyde	0.1	0.35
		Acrolein	0.06	0.22
		1,3-Butadiene	0.01	0.02
		Formaldehyde	0.33	1.2
		POM	0.002	0.01
		Total HAPs	0.53	1.97
		PM	0.1	0.3
		PM_{10}	0.1	0.3
		SO_2	0.1	0.1
		VOC	2	8.6
		CO	5.2	22.7
00	Waukesha 3521 GL	NOx	3	12.9
88	Engine (738 HP 4SLB)	Acetaldehyde	0.05	0.21
		Acrolein	0.03	0.13
		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.17	0.7
		POM	0.001	0.01
		Total HAPs	0.27	1.15

	EMI	SSION SUMMARY		
Source	Description	Pollutant	Emissio	n Rates
Number	Description	Tonutant	lb/hr	tpy
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.1
		VOC	3.3	14.1
		CO	8.7	38
89	Waukesha Model L5108	NOx	4.9	21.2
89	GL Engine (1122 HP 4SLB)	Acetaldehyde	0.08	0.31
		Acrolein	0.05	0.2
		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.25	1.1
		POM	0.002	0.01
		Total HAPs	0.40	1.75
		PM	0.1	0.1
		PM_{10}	0.1	0.1
		SO_2	0.1	0.1
		VOC	0.4	1.8
		CO	7.1	31.1
90	Rock Creek Waukesha	NOx	1.8	7.6
90	VRG330 Engine (65 HP 4SRB)	Acetaldehyde	0.01	0.01
		Acrolein	0.01	0.01
		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.02	0.05
		POM	0.001	0.01
		Total HAPs	0.02	0.07
91	Sivals TEG Dehydrator	PM	0.1	0.1

	EMIS	SION SUMMARY		
Source	Description	D-11-44	Emissio	n Rates
Number	Description	Pollutant	lb/hr	tpy
	(0.75 MMBtu/hr Lone	PM_{10}	0.1	0.1
	Elm Reboiler)	SO_2	0.1	0.1
		VOC	0.1	0.2
		CO	0.1	0.3
		NOx	0.1	0.4
		Formaldehyde	0.01	0.01
		POM	0.001	0.01
		Total HAPs	0.01	0.01
		PM	0.1	0.1
		PM_{10}	0.1	0.1
		SO_2	0.1	0.1
	Bird TEG Dehydrator	VOC	0.2	0.7
92	(0.5 MMBtu/hr Batson	CO	0.1	0.2
	Reboiler)	NOx	0.1	0.3
		Formaldehyde	0.01	0.01
		POM	0.001	0.01
		Total HAPs	0.01	0.01
		PM	0.1	0.4
		PM_{10}	0.1	0.4
		SO_2	0.1	0.1
93	Waukesha Model F3521G	VOC	0.8	3.5
93	Engine (515 HP 4SRB)	СО	1.2	5
		NOx	1.2	5
		Acetaldehyde	0.02	0.05
		Acrolein	0.01	0.04

	EM	ISSION SUMMARY		
Source	Description	De Heste ut	Emissio	n Rates
Number	Description	Pollutant	lb/hr	tpy
í		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.06	0.25
		Total HAPs	0.11	0.45
		PM	0.3	1.0
		PM ₁₀	0.3	1.0
		SO_2	0.1	0.1
		VOC	2.3	10
	Waukesha Model	СО	3.3	14.3
94	L7042GSI Engine	NOx	3.3	14.3
	(1480 HP 4SRB)	Acetaldehyde	0.04	0.14
		Acrolein	0.03	0.13
		1,3-Butadiene	0.01	0.04
		Formaldehyde	0.16	0.72
		Total HAPs	0.30	1.31
		PM	0.3	1.2
		PM ₁₀	0.3	1.2
		SO_2	0.1	0.1
		VOC	2.9	12.8
05	Waukesha Model	СО	6.3	27.5
95	7044GSI Engine (1900 HP SI)	NO _x	4.2	18.4
	` '	Acetaldehyde	0.04	0.16
		Acrolein	0.04	0.15
		Formaldehyde	0.21	0.92
		Total HAPs	0.37	1.62
96	Waukesha Model	PM	0.3	1.2

	EMI	SSION SUMMARY		
Source	Description	D-11-4-14	Emission Rates	
Number	Description	Pollutant	lb/hr	tpy
	7044GSI Engine	PM ₁₀	0.3	1.2
	(1900 HP SI)	SO ₂	0.1	0.1
		VOC	2.9	12.8
		СО	6.3	27.5
		NO _x	4.2	18.4
		Acetaldehyde	0.04	0.16
		Acrolein	0.04	0.15
		Formaldehyde	0.21	0.92
		Total HAPs	0.37	1.62
		PM	0.3	1.0
		PM_{10}	0.3	1.0
		SO_2	0.1	0.1
		VOC	2.4	10.1
	Waukesha Model	СО	6.7	29.0
97	L7042GSI S5Engine	NOx	3.4	14.5
	(1500 HP 4SRB) ***	Acetaldehyde	0.03	0.13
		Acrolein	0.03	0.12
		1,3-Butadiene	0.01	0.03
		Formaldehyde	0.17	0.72
		Total HAPs	0.30	1.29
		PM	0.3	1.0
	Waukesha Model	PM_{10}	0.3	1.0
98	L7042GSI S5Engine	SO_2	0.1	0.1
	(1500 HP 4SRB) ***	VOC	2.4	10.1
		СО	6.7	29.0

Permit #: 1185-AOP-R13

EMISSION SUMMARY				
Source	Description	Pollutant	Emissio	n Rates
Number	Description	Ponutant	lb/hr	tpy
		NOx	3.4	14.5
		Acetaldehyde	0.03	0.13
		Acrolein	0.03	0.12
		1,3-Butadiene	0.01	0.03
		Formaldehyde	0.17	0.72
_		Total HAPs	0.30	1.29
99 Piping/Equipment Leaks	VOC	0.5	2.2	
	Total HAPs	0.05	0.22	

^{*}PM_{2.5} limits are source specific, if required. Not all sources have PM_{2.5} limits.

^{**}HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated.

^{***} SN-11 and SN-12 will continue to operate until March 31, 2022. SN-97 and SN-98 will be constructed on the site occupied by SN-11 and SN-12 so they will not be able to operate concurrently. The total allowable emissions reflect the highest emissions between the operation of SN-11/SN-12 and SN-97/SN-98.

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION III: PERMIT HISTORY

Permit #1185-A was issued to Arkansas Western Gas Company - Drake Compressor Station on August 26, 1991. Arkansas Western Gas Company requested that all existing sources at the facility be permitted. These sources included nine natural gas-fired reciprocating engines, six gas turbines, and a dehydrator reboiler burner. These sources were purchased between 1958 and 1974. Air Permit No. 1185-A also allowed the installation and operation of a new 1478 horsepower natural gas-fired reciprocating engine (SN-15). The emission limits for the new engine were below the significant emission rate representing a major modification under PSD. The permit outlined natural gas usage limits and required performance testing for each engine.

Permit #1185-AR-1 was issued to Arkansas Western Gas Company - Drake Compressor Station on October 4, 1993. The modification allowed the installation of a natural gas-fired emergency electric generator. Operation of the generator occurred only when public electric power failed and during one 30 minute test each week.

Permit #1185-AR-2 was issued to Arkansas Western Gas Company - Drake Compressor Station on March 26, 1996. The modification involved the addition of a natural gas reciprocating engine (SN-19) and the removal of one 330 HP engine (SN-07). The emission limits for the new engine were below the significant emission rate representing a major modification under PSD. The emissions from existing sources which were not addressed in the previous permit were also quantified, specifically, SN-20 through SN-81. The sources are associated with start-up, shutdown, safety, and auxiliary systems.

Permit #1185-AOP-R0 was issued to Arkansas Western Gas Company - Drake Compressor Station on November 13, 1998. This was the first permit issued to the facility under Regulation 26. The removal of two sources (SN-05 and SN-06) was authorized along with the addition of a new 1478 HP compressor unit (SN-87). The emission limits for the new engine were below the significant emission rate representing a major modification under PSD. Criteria pollutant emission limits listed in the permit were: VOC - 156.0 tpy, CO - 774.8 tpy, and NOx - 309.1 tpy.

Permit #1185-AOP-R1 modification was issued to AWGC –Drake Compressor Station on May 14, 2001. This modification was issued to allow the Permittee to replace a Waukesha L-1905G 4-cycle rich burn engine (also known as Model NKR) which powers the gas compressor designated as SN-16 with a Waukesha F817G 4-cycle rich burn engine. Emission limits for the replacement engine are: oxides of nitrogen - 14.6 tons per year, carbon monoxide - 45.2 tons per year, and volatile organic compounds - 2.7 tons per year. The emission limits for the replacement engine are below the significant emission rate representing a major modification under PSD. The emission limits for HAPs for all sources have been recalculated based on AP-42 Sections 3.1 and 3.2.

Permit #1185-AOP-R2 was issued on October 31, 2003. There were no physical changes in this Title V permit renewal. There were some small changes in the emission rates, which were the result of calculation accuracy. The VOC, CO, and NO_X emission rates for SN-08 were revised to reflect the true horsepower.

Permit #: 1185-AOP-R13

AFIN: 24-00071

Permit #1185-AOP-R3 was issued on July 26, 2005. The modification authorized the facility to replace the existing LRZB Waukesha Rich Burn compressor engine (SN-08) with a new 738 horsepower (HP), Waukesha 3521 GL Clean Burn compressor engine (SN-88). Emission changes due to the modification included an increase of 0.4 tpy of VOC and 1.01 tpy of Formaldehyde, and a decrease of 69.2 tpy of CO and 10.9 tpy of NOx.

Permit #1185-AOP-R4 was issued on August 7, 2007. The modification authorized the facility to install a new 1112 hp four cycle clean burn Waukesha 5108 GL engine (SN-89) and replace an existing Waukesha 817 (SN-16) with a new Waukesha VRG330 natural gas reciprocating engine (SN-90). Additionally, the facility increased the hours of operation for the emergency generator (SN-18) from 218 hours per year to 400 hour per year. AWG also limited the hours of operation at SN-15 and SN-87 to 15,000 combined hours annually. The facility retired SN-01, SN-02, SN-03, and SN-04 from service and requested that these engines be removed from the permit. The total potential emissions from the two (2) new engines included 23.3 tpy of NOx, 57.1 tpy of CO, and 12.5 tpy of VOC, which are all below the significance levels for a PSD review. The overall permitted emission changes included decreases of 16.4 tpy of VOC, 340.5 tpy of CO, and 83.1 tpy of NOx.

Permit #1185-AOP-R5 was issued on August 12, 2008. This was the second Title V renewal for the facility. There were no changes in the operation of the facility from the previous permit. PM, PM_{10} , and SO_2 emissions, which were considered negligible in the past, were added to the permit with this renewal.

Permit #1185-AOP-R6 was issued on April 18, 2014. This permitting action was necessary to: renew the facility's Title V air permit; remove the glycol dehydrators from the insignificant activities list and permit them as sources (SN-91 and SN-92); reduce the annual hours of operation of the Emergency Electrical Generator (SN-18) to 100 hours/year; permit SN-18 for PM/PM₁₀ and SO₂; update emission factors; permit reportable HAPs; and incorporate the applicable provisions of 40 CFR Part 63, Subpart HH and 40 CFR Part 63, Subpart ZZZZ. The total annual permitted emission rate limit changes associated with this permitting action included: increases of 1.9 tons per year (tpy) PM/PM₁₀; 0.9 tpy SO₂; 1.7 tpy VOC; 1.2 tpy NO_X; 1.61 tpy acetaldehyde; 1.05 tpy acrolein; 0.15 tpy 1,3-butadiene; 0.326 tpy formaldehyde; and 0.15 tpy POM; and a decrease of 6.3 tpy CO.

Permit #1185-AOP-R7 was issued May 23, 2017. This permit action changes the name from SourceGas Arkansas Inc. (Drake Compressor Station) to Black Hills Energy Arkansas, Inc. – Drake Compressor Station.

Permit #1185-AOP-R8 was issued December 19, 2019. This permit replaced two (SN-13 and SN-14) natural gas fired turbines. Also, this modification lowered the formaldehyde emissions limits for five existing natural gas-fired reciprocating engines (SN-15, SN-19, SN-87, SN-88, and SN-89). This modification decreased permitted emissions by 6.5 tpy of NO_x, 32.7 tpy of CO, 12.1 tpy of VOC, 0.2 tpy of SO₂, and 3.44 tpy of formaldehyde. PM/PM₁₀ emissions were increased by 0.4 tpy.

Permit #: 1185-AOP-R13

AFIN: 24-00071

Permit #1185-AOP-R9 was issued June 21, 2019. This permit modification incorporated the facility's renewal permit application. This modification increased formaldehyde emissions by 0.62 tpy due to using an emission factor which represented emissions for all operating loads.

Permit #1185-AOP-R 10 was issued January 8, 2020. This permit modification replaced SN-18 General Motors 305 (92 Hp) Emergency Generator with a Generac 82 Hp SG035 Emergency Generator. This modification increased VOC emissions by 0.1 tpy and decreased CO emissions by 0.5 tpy.

Permit #1185-AOP-R11 was issued January 10, 2020. This administrative amendment corrected errors in Permit #1185-AOP-R10. Errors included rates for formaldehyde for turbines and testing conditions.

Permit #1185-AOP-R12 was issued on December 2, 2020. This modification removed two existing Solar Turbines (SN-09 and SN-10) and replaced them with spark ignition (SI) reciprocating engines SN-95 (1,900 Hp) and SN-96 (1,900 Hp). Plantwide Condition #10 (One-time Formaldehyde test requirement) was removed because the facility completed the test requirement January 22, 2020. The test requirement was for SN-09, SN-10, SN-11, and SN-12. The facility tested sources SN-11 and SN-12 removed sources SN-09 and SN-10 (as stated above). This modification increased permitted emissions by 1.6 tpy of PM/PM $_{10}$, 1.5 tpy of VOC, 9.2 tpy of CO, and 2 tpy of NO $_{x}$.

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION IV: SPECIFIC CONDITIONS

SN-11, SN-12, SN-97, and SN-98 Solar Saturn Turbines (SN-11 and SN-12) and Waukesha Reciprocating Engines (SN-97 and SN-98)

Source Description

The purpose of the compressor station is to compress and dehydrate sweet natural gas. The dehydrated gas is sent to the compressors (SN-11 and SN-12) to be compressed, cooled, and delivered to the discharge piping system. The compressors are driven by Solar turbines, which run on natural gas and produce exhaust gases. SN-1 and SN-12 turbines were installed between 1964 and 1974. These units are not subject to 40 CFR 60, Subpart GG - Standards of Performance for Stationary Gas Turbines because they were constructed prior to the October 3, 1977 applicability date of the rule.

SN-97 and SN-98 are natural gas-fired reciprocating engines. These engines are used to compress sweet, dry natural gas from a gas gathering system into a gas transmission system for delivery to customers in Northwest Arkansas.

The facility will continue operating SN-11 and SN-12 until March 31, 2022 after which the facility will shut down the turbines, remove them from site, and begin construction on SN-97 and SN-98.

Specific Conditions

1. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #7, Plantwide Conditions #8, #9, and #10, and by operating at or below the maximum operating capacity. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

	Operating Scenario #1					
SN	Description	Pollutant	lb/hr	tpy		
		PM_{10}	0.1	0.4		
	Colon Cotyan Tymbino	SO_2	0.1	0.2		
11	Solar Saturn Turbine (1203 HP)	VOC	3.0	12.8		
		CO	6.0	26.0		
		NO_x	4.0	17.4		
		PM_{10}	0.1	0.4		
	Colon Cotumn Tumbino	SO_2	0.1	0.2		
12	Solar Saturn Turbine (1203 HP)	VOC	3.0	12.8		
		CO	6.0	26.0		
		NO_x	4.0	17.4		

Permit #: 1185-AOP-R13

AFIN: 24-00071

2. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #7, Plantwide Condition #9, and by operating at or below the maximum operating capacity. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

	Operating Scenario #1					
SN	Description	Pollutant	lb/hr	tpy		
		PM	0.1	0.4		
		Acetaldehyde	0.01	0.01		
11	Solar Saturn Turbine (1203 HP)	Acrolein	0.01	0.01		
11		1,3-Butadiene	0.01	0.01		
		Formaldehyde	0.15	0.68		
		POM	0.001	0.01		
		PM	0.1	0.4		
		Acetaldehyde	0.01	0.01		
12	Solar Saturn Turbine	Acrolein	0.01	0.01		
12	(1203 HP)	1,3-Butadiene	0.01	0.01		
		Formaldehyde	0.15	0.68		
		POM	0.001	0.01		

3. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this specific condition shall be demonstrated by compliance with Specific Condition #7 and burning pipeline natural gas for fuel.

Operating Scenario #1				
SN Limit Regulatory Citation				
11, 12 5% §18.501 and A.C.A.				

4. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #7, Plantwide Conditions #8, #9, and #10, and by operating at or below the maximum operating capacity. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

	Operating Scenario #2					
SN	Description	Pollutant	lb/hr	tpy		
		PM_{10}	0.3	1.0		
	Waukesha Model	SO_2	0.1	0.1		
97	L7042GSI S5Engine	VOC	2.4	10.1		
	(1500 HP 4SRB)	CO	6.7	29.0		
		NO_x	3.4	14.5		
98	Waukesha Model	PM_{10}	0.3	1.0		
90	L7042GSI S5Engine	SO_2	0.1	0.1		

Permit #: 1185-AOP-R13

AFIN: 24-00071

	Operating Scenario #2					
SN	Description	Pollutant	lb/hr	tpy		
	(1500 HP 4SRB)	VOC	2.4	10.1		
		CO	6.7	29.0		
		NO _x	3.4	14.5		

5. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #7, Plantwide Conditions #8, #9, and #10, and by operating at or below the maximum operating capacity. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

	Operating Scenario #2				
SN	Description	Pollutant	lb/hr	tpy	
		PM	0.3	1.0	
	Waylrasha Madal	Acetaldehyde	0.03	0.13	
97	Waukesha Model	Acrolein	0.03	0.12	
91	L7042GSI S5Engine (1500 HP 4SRB)	1,3-Butadiene	0.01	0.03	
		Formaldehyde	0.17	0.72	
		Total HAPs	0.30	1.29	
		PM	0.3	1.0	
	Waylyasha Madal	Acetaldehyde	0.03	0.13	
0.0	Waukesha Model	Acrolein	0.03	0.12	
98	L7042GSI S5Engine (1500 HP 4SRB)	1,3-Butadiene	0.01	0.03	
	(1300 HF 43KD)	Formaldehyde	0.17	0.72	
		Total HAPs	0.30	1.29	

6. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this specific condition shall be demonstrated by compliance with Specific Condition #7 and burning pipeline natural gas for fuel.

Operating Scenario #2				
SN Limit Regulatory Citation				
97 and 98 5% §18.501 and A.C.A.				

7. The permittee shall operate under Operating Scenario #1 until March 31, 2022 after which the facility shall cease operation of the Solar Turbines (SN-11 and SN-12) and remove them from the site. SN-97 and SN-98 shall be constructed at the site formerly occupied by SN-11 and SN-12 and the facility shall operate under Operating Scenario #2 henceforth. [Reg.19.501 *et seq.*, Reg.18.801, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

Permit #: 1185-AOP-R13

AFIN: 24-00071

SN-15, SN-19, SN-87, SN-88, SN-89, SN-90, SN-93, SN-94, SN-95, and SN-96 Waukesha Reciprocating Engines

Source Description

SN-15, SN-19, SN-87, SN-88, SN-89, SN-90, SN-93, SN-94, SN-95, and SN-96 are natural gas-fired reciprocating engines. These engines are used to compress sweet, dry natural gas from a gas gathering system into a gas transmission system for delivery to customers in Northwest Arkansas.

Specific Conditions

8. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Plantwide Conditions #8, #9, and #10; by operating at or below the maximum operating capacity; and additionally for SN-15 and SN-87, by compliance with Specific Condition #10. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
		PM_{10}	0.1	0.4
	Waukesha Model	SO_2	0.1	0.1
15	L7042 GL Engine	VOC	3.3	12.3
	(1478 HP 4SLB)	СО	8.2	30.6
		NO_x	6.6	24.5
		PM_{10}	0.1	0.4
	Waukesha Model	SO_2	0.1	0.1
19	L5108 GL Engine	VOC	3.3	14.1
	(1122 HP 4SLB)	CO	8.7	38.0
		NO_x	4.9	21.2
		PM_{10}	0.1	0.4
	Waukesha Model	SO_2	0.1	0.1
87	L7042 GL Engine	VOC	3.3	12.3
	(1478 HP 4SLB)	CO	8.2	30.6
		NO_x	6.6	24.5
		PM_{10}	0.1	0.3
	Waukesha 3521 GL	SO_2	0.1	0.1
88	Engine	VOC	2.0	8.6
	(738 HP 4SLB)	CO	5.2	22.7
		NO_x	3.0	12.9
		PM_{10}	0.1	0.4
	Waukesha Model	SO_2	0.1	0.1
89	L5108 GL Engine	VOC	3.3	14.1
	(1122 HP 4SLB)	CO	8.7	38.0
		NO_x	4.9	21.2

Permit #: 1185-AOP-R13

AFIN: 24-00071

SN	Description	Pollutant	lb/hr	tpy
	D 1 C 1	PM_{10}	0.1	0.1
	Rock Creek	SO_2	0.1	0.1
90	90 Waukesha VRG330 - Engine - (65 HP 4SRB) -	VOC	0.4	1.8
		СО	7.1	31.1
	(03 III 43KD)	NO_x	1.8	7.6
		PM_{10}	0.1	0.4
	Waukesha Model	SO_2	0.1	0.1
93	F3521G Engine	VOC	0.8	3.5
	(515 HP 4SRB)	CO	1.2	5.0
		NO_x	1.2	5.0
		PM_{10}	0.3	1.0
	Waukesha Model	SO_2	0.1	0.1
94	L7042GSI Engine	VOC	2.3	10.0
	(1480 HP 4SRB)	CO	3.3	14.3
		NO_x	3.3	14.3
		PM_{10}	0.3	1.2
	Waukesha Model	SO_2	0.1	0.1
95	7044GSI Engine	VOC	2.9	12.8
	(1900 HP SI)	CO	6.3	27.5
		NO_x	4.2	18.4
		PM_{10}	0.3	1.2
	Waukesha Model	SO_2	0.1	0.1
96	7044GSI Engine	VOC	2.9	12.8
	(1900 HP SI)	CO	6.3	27.5
		NO_x	4.2	18.4

9. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Plantwide Conditions #8, #9, and #10; by operating at or below the maximum operating capacity; and additionally for SN-15 and SN-87, by compliance with Specific Condition #10. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
		PM	0.1	0.4
		Acetaldehyde	0.10	0.35
	Waukesha Model	Acrolein	0.06	0.22
15	L7042 GL Engine	1,3-Butadiene	0.01	0.02
	(1478 HP 4SLB)	Formaldehyde	0.33	1.20
		POM	0.002	0.01
		Total HAPs	0.53	1.97
19	Waukesha Model	PM	0.1	0.4

SN	Description	Pollutant	lb/hr	tpy
	L5108 GL Engine	Acetaldehyde	0.08	0.31
	(1122 HP 4SLB)	Acrolein	0.05	0.20
	Waukesha Model	1,3-Butadiene	0.01	0.01
		Formaldehyde	0.25	1.10
		POM	0.002	0.01
		Total HAPs	0.40	1.75
		PM	0.1	0.4
		Acetaldehyde	0.10	0.35
	Waukesha Model	Acrolein	0.06	0.22
87	L7042 GL Engine	1,3-Butadiene	0.01	0.02
	(1478 HP 4SLB)	Formaldehyde	0.33	1.20
		POM	0.002	0.01
		Total HAPs	0.53	1.97
		PM	0.1	0.3
		Acetaldehyde	0.05	0.21
	Waukesha 3521 GL	Acrolein	0.03	0.13
88	Engine	1,3-Butadiene	0.01	0.01
	(738 HP 4SLB)	Formaldehyde	0.17	0.70
		POM	0.001	0.01
		Total HAPs	0.27	1.15
		PM	0.1	0.4
		Acetaldehyde	0.08	0.31
	Waukesha Model	Acrolein	0.05	0.20
89	L5108 GL Engine	1,3-Butadiene	0.01	0.01
	(1122 HP 4SLB)	Formaldehyde	0.25	1.10
		POM	0.002	0.01
		Total HAPs	0.40	1.75
		PM	0.1	0.1
	D1- C1-	Acetaldehyde	0.01	0.01
	Rock Creek	Acrolein	0.01	0.01
90	Waukesha VRG330	1,3-Butadiene	0.01	0.01
	Engine (65 HP 4SRB)	Formaldehyde	0.02	0.05
	(03 III 43KD)	POM	0.001	0.01
		Total HAPs	0.02	0.07
		PM	0.1	0.4
	XX711 X4 1 1	Acetaldehyde	0.02	0.05
02	Waukesha Model	Acrolein	0.01	0.04
93	F3521G Engine	1,3-Butadiene	0.01	0.01
	(515 HP 4SRB)	Formaldehyde	0.06	0.25
		Total HAPs	0.11	0.45
0.4	Waukesha Model	PM	0.3	1.0
94	L7042GSI Engine	Acetaldehyde	0.04	0.14

Permit #: 1185-AOP-R13

AFIN: 24-00071

SN	Description	Pollutant	lb/hr	tpy
	(1480 HP 4SRB)	Acrolein	0.03	0.13
		1,3-Butadiene	0.01	0.04
		Formaldehyde	0.16	0.72
		Total HAPs	0.30	1.31
		PM	0.3	1.2
	Waukesha Model	Acetaldehyde	0.04	0.16
95	7044GSI Engine	Acrolein	0.04	0.15
	(1900 HP SI)	Formaldehyde	0.21	0.92
		Total HAPs	0.37	1.62
		PM	0.3	1.2
	Waukesha Model	Acetaldehyde	0.04	0.16
96	7044GSI Engine	Acrolein	0.04	0.15
	(1900 HP SI)	Formaldehyde	0.21	0.92
		Total HAPs	0.37	1.62

10. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this specific condition shall be demonstrated by burning pipeline natural gas for fuel.

SN	Limit	Regulatory Citation
15, 19, 87, 88, 89, 90, 93, 94, 95, and 96	5%	§18.501 and A.C.A.

- 11. The permittee shall not operate the Waukesha Model L7042 GL engines (1478 HP) 4 cycle lean burn (SN-15 & SN-87) in excess of 15,000 hours combined per rolling 12 month period. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]
- 12. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #10. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The twelve month rolling totals and each individual month's data shall be maintained at the nearest manned location, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]

Permit #: 1185-AOP-R13

AFIN: 24-00071

SN-18 Emergency Electrical Generator

Source Description

An emergency electric generator (SN-18) is also at this facility. The electric generator is utilized during periods of power outages.

Specific Conditions

13. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by using pipeline natural gas as the fuel; by operating at or below the maximum operating capacity; compliance with Specific Condition #16. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
	Generac SG035 Emergency Generator (82HP 4SRB)	PM_{10}	0.1	0.1
		SO_2	0.1	0.1
18		VOC	0.4	0.1
		CO	29.1	1.5
		$\overline{NO_x}$	0.8	0.1

14. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by using pipeline natural gas as the fuel; by operating at or below the maximum operating capacity; compliance with Specific Condition #16 and Plantwide Condition #11. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
	Generac SG035 Emergency Generator (82HP 4SRB)	PM	0.1	0.1
		Acetaldehyde	0.01	0.01
		Acrolein	0.01	0.01
18		1,3-Butadiene	0.01	0.01
		Formaldehyde	0.02	0.01
		POM	0.001	0.01
		Total HAPs	0.02	0.01

15. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this specific condition shall be demonstrated by burning pipeline natural gas for fuel.

SN	Limit	Regulatory Citation
18	5%	§18.501 and A.C.A.

Permit #: 1185-AOP-R13

AFIN: 24-00071

16. The permittee shall not operate the emergency generator SN-18 in excess of 100 total hours (emergency and non-emergency) per calendar year in order to demonstrate compliance with the annual emission rate limits. Emergency operation in excess of these hours may be allowable but shall be reported and will be evaluated in accordance with Reg.19.602 and other applicable regulations. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

- 17. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #16. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The calendar year totals and each individual month's data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]
- 18. The permittee shall not exceed the emission rates set forth in the following table. [Reg.19.304 and 40 C.F.R. § 60.4233(d)]

Course	Emission Rate			
Source	Source g/Hp-hr			
SN-18	NO_x	CO		
	10.0	387.0		

- 19. The permittee must comply with the emission standards for field testing in 40 CFR 1048.101(c) for their non-emergency stationary SI ICE and with the emission standards in Table 1 to this subpart for their emergency stationary SI ICE. Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) manufactured prior to January 1, 2011, that were certified to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP, may optionally choose to meet those standards. [Reg.19.304 and 40 C.F.R. § 60.4233(d)]
- 20. The permittee must operate and maintain stationary SI ICE that achieve the emission standards as required in §60.4233 over the entire life of the engine. [Reg.19.304 and 40 C.F.R. § 60.4234]
- 21. The permittee must install a non-resettable hour meter upon startup of your emergency engine. [Reg.19.304 and 40 C.F.R. § 60.4237(c)]
- 22. The permittee must demonstrate compliance with the emission standards specified in \$60.4233(d) or (e) and according to the requirements specified in \$60.4244, as applicable, and according to paragraphs (b)(2)(i) and (ii) of this section. [Reg.19.304 and 40 C.F.R. \$ 60.4243(b)(2)(i)]
 - (b)(i) The permittee must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine

Permit #: 1185-AOP-R13

AFIN: 24-00071

in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance.

- 23. The permittee must operate the emergency stationary ICE according to the requirements in paragraphs (d)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (d)(1) through (3) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (d)(1) through (3) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines. [Reg.19.304 and 40 C.F.R. § 60.4243(d)]
 - (d)(1) There is no time limit on the use of emergency stationary ICE in emergency situations.
 - (d)(2) You may operate your emergency stationary ICE for any combination of the purposes specified in paragraphs (d)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (d)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (d)(2).
 - (i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.
 - (ii) Emergency stationary ICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §60.17), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.
 - (iii) Emergency stationary ICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.
 - (d)(3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance

Permit #: 1185-AOP-R13

AFIN: 24-00071

and testing and emergency demand response provided in paragraph (d)(2) of this section. Except as provided in paragraph (d)(3)(i) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

- (i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:
 - (A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;
 - (B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
 - (C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
 - (D) The power is provided only to the facility itself or to support the local transmission and distribution system.
 - (E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.
- 24. If you are an owner or operator of a stationary SI internal combustion engine that is less than or equal to 500 HP and you purchase a non-certified engine or you do not operate and maintain your certified stationary SI internal combustion engine and control device according to the manufacturer's written emission-related instructions, you are required to perform initial performance testing as indicated in this section, but you are not required to conduct subsequent performance testing unless the stationary engine is rebuilt or undergoes major repair or maintenance. A rebuilt stationary SI ICE means an engine that has been rebuilt as that term is defined in 40 CFR 94.11(a). [Reg.19.304 and 40 C.F.R. § 60.4243(f)]
- 25. The permittee when conducting the performance test, must follow the procedures in paragraphs (a) through (f) of this section. [Reg.19.304 and 40 C.F.R. § 60.4244]
 - (a) Each performance test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and according to the requirements in §60.8 and under the specific conditions that are specified by Table 2 to this subpart.

Permit #: 1185-AOP-R13

AFIN: 24-00071

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c). If your stationary SI internal combustion engine is non-operational, you do not need to startup the engine solely to conduct a performance test; however, you must conduct the performance test immediately upon startup of the engine.

- (c) You must conduct three separate test runs for each performance test required in this section, as specified in §60.8(f). Each test run must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and last at least 1 hour.
- (d) To determine compliance with the NO_X mass per unit output emission limitation, convert the concentration of NO_X in the engine exhaust using Equation 1 of this section:

$$ER = \frac{C_d \times 1.912 \times 10^{-3} \times Q \times T}{HP - hr}$$

Where:

 $ER = Emission rate of NO_X in g/HP-hr.$

 C_d = Measured NO_X concentration in parts per million by volume (ppmv). 1.912×10^{-3} = Conversion constant for ppm NO_X to grams per standard cubic

 1.912×10^{-3} = Conversion constant for ppm NO_X to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, horsepower-hour (HP-hr).

(e) To determine compliance with the CO mass per unit output emission limitation, convert the concentration of CO in the engine exhaust using Equation 2 of this section:

$$R = \frac{C_d \times 1.164 \times 10^{-3} \times Q \times T}{HP - hr}$$

Where:

ER = Emission rate of CO in g/HP-hr.

 C_d = Measured CO concentration in ppmv.

 1.164×10^{-3} = Conversion constant for ppm CO to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, in HP-hr.

- 26. The permittee must keep records of the information in paragraphs (a)(1) through (4) of this section. [Reg.19.304 and 40 C.F.R. § 60.4245]
- 27. For all stationary SI emergency ICE greater than 25 HP and less than 130 HP manufactured on or after July 1, 2008, that do not meet the standards applicable to non-

Permit #: 1185-AOP-R13

AFIN: 24-00071

emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. [Reg.19.304 and 40 C.F.R. § 60.4245(b)]

28. The permittee must submit a copy of each performance test as conducted in §60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference—see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7. [Reg.19.304 and 40 C.F.R. § 60.4245(d)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

SN-91 and SN-92 Sivals TEG Dehydrator (Lone Elm) and Bird TEG Dehydrator (Batson)

Source Description

SN-91 and SN-92 are triethylene glycol (TEG) dehydration units that are used to dry the natural gas. SN-91 has a reboiler rated at 0.75 MMBtu/hr and SN-92 has a reboiler rated at 0.50 MMBtu/hr.

Specific Conditions

29. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by using pipeline natural gas as the fuel. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
	Sivals TEG Dehydrator (0.75 MMBtu/hr Lone Elm Reboiler)	$\frac{\mathrm{PM}_{10}}{\mathrm{SO}_2}$	0.1 0.1	0.1
91		VOC CO	0.1 0.1	0.2 0.3
		NO _x	0.1	0.4
	Bird TEG Dehydrator (0.5 MMBtu/hr Batson Reboiler)	PM_{10}	0.1	0.1
		SO_2	0.1	0.1
92		VOC	0.2	0.7
		CO	0.1	0.2
		NO_x	0.1	0.3

30. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by using pipeline natural gas as the fuel. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
	Sivals TEG	PM	0.1	0.1
01	Dehydrator (0.75 MMBtu/hr Lone Elm Reboiler)	Formaldehyde	0.01	0.01
91		POM	0.001	0.01
		Total HAPs	0.01	0.01
	Bird TEG Dehydrator (0.5 MMBtu/hr	PM	0.1	0.1
02		Formaldehyde	0.01	0.01
(0.5 MMBtu/ Batson Reboil		POM	0.001	0.01
	Batson Reboiler)	Total HAPs	0.01	0.01

Permit #: 1185-AOP-R13

AFIN: 24-00071

31. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this specific condition shall be demonstrated by burning pipeline natural gas for fuel.

SN	Limit	Regulatory Citation
91 and 92	5%	§18.501 and A.C.A.

Permit #: 1185-AOP-R13

AFIN: 24-00071

SN-99 Piping/Equipment Leaks

Source Description

Fugitive emissions also occur due to leaks at valves, connectors, seals, and flanges. Fugitive equipment leaks release natural gas into the atmosphere.

Specific Conditions

32. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Plantwide Conditions #44 through #53, #61, and #63. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
99	Piping/Equipment Leaks	VOC	0.5	2.2

33. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Plantwide Conditions #44 through #53, #61, and #63. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
99	Piping/Equipment Leaks	Total HAPs	0.05	0.22

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION V: COMPLIANCE PLAN AND SCHEDULE

Black Hills Energy Arkansas, Inc.—Drake Compressor Station will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future regulations that may apply and determine their applicability with any necessary action taken on a timely basis.

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION VI: PLANTWIDE CONDITIONS

- 1. The permittee shall notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Reg.19.704, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Reg.19.410(B) and 40 C.F.R. § 52 Subpart E]
- 3. The permittee must test any equipment scheduled for testing, unless otherwise stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) new equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) operating equipment according to the time frames set forth by the Division of Environmental Quality or within 180 days of permit issuance if no date is specified. The permittee must notify the Division of Environmental Quality of the scheduled date of compliance testing at least fifteen (15) business days in advance of such test. The permittee shall submit the compliance test results to the Division of Environmental Quality within sixty (60) calendar days after completing the testing. [Reg.19.702 and/or Reg.18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 4. The permittee must provide:
 - a. Sampling ports adequate for applicable test methods;
 - b. Safe sampling platforms;
 - c. Safe access to sampling platforms; and
 - d. Utilities for sampling and testing equipment.

[Reg.19.702 and/or Reg.18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

- 5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee shall maintain the equipment in good condition at all times. [Reg.19.303 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 6. This permit subsumes and incorporates all previously issued air permits for this facility. [Reg. 26 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

Permit #: 1185-AOP-R13

AFIN: 24-00071

7. Unless otherwise specified in the permit, approval to construct any new major stationary source or a major modification subject to 40 C.F.R. § 52.21 shall become invalid if construction is not commenced within 18 months after receipt of such approval, if construction is discontinued for a period of 18 months or more, or if construction is not completed within a reasonable time. The Division of Environmental Quality may extend the 18-month period upon a satisfactory showing that an extension is justified. [Reg.19.901 *et seq.* and 40 C.F.R. § 52 Subpart E]

- 8. The permittee shall simultaneously conduct tests for CO and NO_x on one of each model of reciprocating engine (SN-15, SN-19, SN-87, SN-89, SN-90, SN-93, SN-94, SN-95, SN-96, SN-97, and SN-98) operating at the station in accordance with Plantwide Condition #3, and every 60 months thereafter. EPA Reference Method 7E shall be used to determine NOx and EPA Reference Method 10 shall be used to determine CO. Unless otherwise approved by the Department, testing shall be conducted with the source operating at least at 90% of its permitted capacity. When testing is conducted at less than 90%, emission testing results shall be extrapolated to correlate with 100% of the permitted capacity to demonstrate compliance. The permittee shall measure the operation rate during the test. The Department reserves the right to select the reciprocating engine to be tested. The reciprocating engines tested shall be rotated so that no reciprocated engine is tested twice before an engine of equal HP is tested once. If the tested emission rate for any pollutant is in excess of the permitted emission rate, all engines shall be tested for that pollutant. If at any time the facility has test results indicating an exceedance of a permitted emission rate, then the facility shall retest for the failing pollutant(s) within 60 days of the failing test, and every 12 months thereafter. When the facility demonstrates that the facility is in compliance with the permitted emission rates after two consecutive passing tests, then the facility may return to performing stack testing once every 60 months. [Reg.19.702 and 40 C.F.R. § 52 Subpart E]
- 9. The permittee shall only use pipeline quality natural gas to fire the reciprocating engines located at this facility. Pipeline quality natural gas is defined as gas which contains less than 0.5 grains total sulfur per 100 standard cubic feet of natural gas. Additionally, pipeline natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1100 BTU per standard cubic foot. Compliance with this condition may be demonstrated by a valid gas tariff, purchase contract, fuel analysis or other appropriate documentation, and testing will be conducted every five years.. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6 and 40 C.F.R. 72.2]
- 10. The permittee may replace any existing reciprocating engine (SN-15, SN-18, SN-19, SN-87 through SN-90, SN-93, SN-94, SN-95, SN-96, SN-97, and SN-98) on a temporary or permanent basis with existing engines, defined as engines with the same requirements under 40 CFR Part 63, Subpart ZZZZ and under 40 C.F.R. §60 Subpart JJJJ, which have the same or lower emission rates on a pound per hour basis, and have the same or lower horsepower, and which result in the same or lower actual emissions from the facility on pound per hour basis and which do not exceed permitted emissions on a ton per year

Permit #: 1185-AOP-R13

AFIN: 24-00071

basis, and do not violate any regulations promulgated by the EPA. The permittee shall conduct NO_X , and CO emission testing within 90 days of the date of replacement to verify the emissions from the newly installed reciprocating engine. The testing shall be conducted in accordance with EPA Reference Method 7E for NO_X and EPA Reference Method 10 for CO. The permittee shall notify ADEQ of the replacement within 30 days of startup. This does not apply to modifications which must go through the PSD applicability procedures as outlined in 40 CFR 52.21. Notwithstanding the above, as provided by Regulation 26, in the event an emergency occurs, the permittee shall have an affirmative defense of emergency to an action brought for non-compliance with technology-based emission limitations if the conditions of Regulation 26, Section 26.707 are met. [Reg.19.705, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311, and 40 C.F.R. § 70.6]

40 C.F.R. Part 63, Subpart ZZZZ Conditions

- 11. SN-15, SN-19, SN-87, SN-88, SN-89, SN-90, SN-93, and SN-94 are subject to 40 C.F.R. Part 63, Subpart ZZZZ. The permittee shall comply with all applicable provisions of 40 C.F.R. Part 63, Subpart ZZZZ which includes, but is not limited to, Plantwide Conditions #12 through #30. [Reg.19.304 and 40 CFR Part 63, Subpart ZZZZ]
- 12. The permittee shall comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013. [Reg.19.304 and 40 C.F.R. § 63.6595(a)(1)]
- 13. The permittee shall meet the applicable notification requirements in §63.6645 and in 40 CFR Part 63, Subpart A. [Reg.19.304 and 40 C.F.R. § 63.6595(c)]
- 14. The permittee shall comply with the following requirements. [Reg.19.304 and 40 C.F.R. § 63.6603(a) and Table 2d of 40 CFR Part 63, Subpart ZZZZ]

For each	You must meet the following requirement, except during	During periods of startup you must
	periods of startup	you must
SN-15, SN-19, SN-87, SN-88,	a. Change oil and filter every	Minimize the engine's time
and SN-89	2,160 hours of operation or	spent at idle and minimize the
	annually, whichever comes	engine's startup time at startup
(Non-emergency, non-black	first; ¹	to a period needed for
start 4SLB remote stationary	b. Inspect spark plugs every	appropriate and safe loading
RICE >500 HP)	2,160 hours of operation or	of the engine, not to exceed 30
	annually, whichever comes	minutes, after which time the
	first, and replace as necessary;	non-startup emission
	and	limitations apply.
	c. Inspect all hoses and belts	
	every 2,160 hours of operation	
	or annually, whichever comes	

Permit #: 1185-AOP-R13

For each	You must meet the following	During periods of startup
	requirement, except during periods of startup	you must
	first, and replace as necessary.	
SN-90	a. Change oil and filter every 1,440 hours of operation or	Minimize the engine's time spent at idle and minimize the
(Non-emergency, non-black start 4SRB stationary RICE	annually, whichever comes first; ¹	engine's startup time at startup to a period needed for
≤500 HP)	b. Inspect spark plugs every 1,440 hours of operation or	appropriate and safe loading of the engine, not to exceed 30
	annually, whichever comes first, and replace as necessary;	minutes, after which time the non-startup emission
	and	limitations apply.
	c. Inspect all hoses and belts	THE J
	every 1,440 hours of operation	
	or annually, whichever comes	
	first, and replace as necessary.	
SN-93 and SN-94	a. Change oil and filter every	Minimize the engine's time
	2,160 hours of operation or	spent at idle and minimize the
Non-emergency, non-black	annually, whichever comes	engine's startup time at startup
start 4SRB remote stationary	first; ¹	to a period needed for
RICE >500 HP	b. Inspect spark plugs every	appropriate and safe loading
	2,160 hours of operation or	of the engine, not to exceed 30 minutes, after which time the
	annually, whichever comes first, and replace as necessary;	non-startup emission
	and.	limitations apply.
	c. Inspect all hoses and belts	immunons uppry.
	every 2,160 hours of operation	
	or annually, whichever comes	
	first, and replace as necessary.	

Sources have the option to utilize an oil analysis program as described in § 63.6625(j) in order to extend the specified oil change requirement in Table 2d of 40 CFR Part 63, Subpart ZZZZ.

² If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of 40 CFR Part 63, Subpart ZZZZ, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

Permit #: 1185-AOP-R13

- 15. An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in §63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under 40 CFR Part 63, Subpart ZZZZ. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in §63.6675 of 40 CFR Part 63, Subpart ZZZZ as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in §63.6675 of 40 CFR Part 63, Subpart ZZZZ, the owner or operator must comply with all of the requirements for existing nonemergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation. [Reg.19.304 and 40 C.F.R. § 63.6603(f)]
- 16. The permittee shall be in compliance with the emission limitations, operating limitations, and other requirements in 40 CFR Part 63, Subpart ZZZZ that apply to you at all times. [Reg.19.304 and 40 C.F.R. § 63.6605(a)]
- 17. At all times the permittee shall operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. [Reg.19.304 and 40 C.F.R. § 63.6605(b)]
- 18. The permittee shall operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. [Reg.19.304 and 40 C.F.R. § 63.6625(e)]
- 19. The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d to 40 CFR Part 63, Subpart ZZZZ apply. [Reg.19.304 and 40 C.F.R. § 63.6625(h)]
- 20. If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 5, 6, 7, 9, or 11 of Table 2d to 40 CFR Part 63, Subpart

Permit #: 1185-AOP-R13

AFIN: 24-00071

ZZZZ, the permittee has the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Table 2d to 40 CFR Part 63, Subpart ZZZZ. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2d to 40 CFR Part 63, Subpart ZZZZ. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine. [Reg.19.304 and 40 C.F.R. § 63.6625(j)]

21. The permittee shall demonstrate continuous compliance with each applicable emission limitation, operating limitation, and other requirements in Table 2d to 40 CFR Part 63, Subpart ZZZZ as required by the following. [Reg.19.304 and 40 C.F.R. § 63.6640(a) and Table 6 of 40 CFR Part 63, Subpart ZZZZ]

For each	Complying with the requirement to	You must demonstrate continuous compliance by
SN-15, SN-19, SN-87, SN-88, SN-89, SN-90, SN93, and SN- 94	a. Work or Management practices	i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.

22. The permittee shall report each instance in which you did not meet each applicable emission limitation or operating limitation in Table 2d to 40 CFR Part 63, Subpart ZZZZ. These instances are deviations from the emission and operating limitations in 40 CFR

Permit #: 1185-AOP-R13

AFIN: 24-00071

Part 63, Subpart ZZZZ. These deviations must be reported according to the requirements in §63.6650. [Reg.19.304 and 40 C.F.R. § 63.6640(b)]

- 23. The permittee shall also report each instance in which you did not meet the applicable requirements in Table 8 to 40 CFR Part 63, Subpart ZZZZ. [Reg.19.304 and 40 C.F.R. § 63.6640(e)]
- 24. The permittee, for SN-93 and SN-94, must submit all notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following; [Reg.19.304 and 40 C.F.R. § 63.6645(a)(2)]
 - a. An existing stationary RICE located at an area source of HAP emissions.
- 25. If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions). [Reg.19.304 and 40 C.F.R. § 63.6645(f)]
- 26. Each affected source that has obtained a Title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in 40 CFR Part 63, Subpart ZZZZ in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of 40 CFR Part 63, Subpart ZZZZ along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in 40 CFR Part 63, Subpart ZZZZ, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority. [Reg.19.304 and 40 CFR §63.6650(f)]
- 27. The permittee shall keep the records described in §63.6655(a)(1) through (a)(5), (b)(1) through (b)(3) and (c). [Reg.19.304 and 40 CFR §63.6655(a)]
 - a. A copy of each notification and report that you submitted to comply with 40 CFR Part 63, Subpart ZZZZ, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv). [Reg.19.304 and 40 CFR §63.6655(a)(1)]
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment. [Reg.19.304 and 40 CFR §63.6655(a)(2)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

c. Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii). [Reg.19.304 and 40 CFR §63.6655(a)(3)]

- d. Records of all required maintenance performed on the air pollution control and monitoring equipment. [Reg.19.304 and 40 CFR §63.6655(a)(4)]
- e. Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation. [Reg.19.304 and 40 CFR §63.6655(a)(5)]
- 28. The permittee shall keep the records required in Table 6 of 40 CFR Part 63, Subpart ZZZZ to show continuous compliance with each applicable emission or operating limitation. [Reg.19.304 and 40 C.F.R. § 63.6655(d)]
- 29. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan. [Reg.19.304 and 40 C.F.R § 63.6655(e)]
- 30. Records must be in a form suitable and readily available for expeditious review according to § 63.10(b)(1). As specified in § 63.10(b)(1), the permittee shall keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record. The permittee shall keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1). [Reg.19.304 and 40 C.F.R. § 63.6660(a), (b), and (c)]

40 C.F.R. Part 60, Subpart JJJJ Conditions

- 31. SN-95, SN-96, SN-97, and SN-98 are subject to 40 C.F.R. Part 60, Subpart JJJJ. The permittee shall comply with all applicable provisions of 40 C.F.R. Part 60, Subpart JJJJ which includes, but is not limited to, Plantwide Conditions #32 through #40. [Reg.19.304 and 40 CFR Part 63, Subpart ZZZZ]
- 32. Owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich bum engines that use LPG) must comply with the emission standards in Table 1 to this subpart for their stationary SI ICE. For owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 100 HP (except gasoline and rich bum engines that use LPG) manufactured prior to January 1, 2011 that were certified to the certification emission standards in 40 CFR part 1048 applicable to engines that are not severe duty engines, if such stationary SI ICE was certified to a carbon monoxide (CO) standard above the standard in Table 1 to this subpart, then the owners and operators may meet the CO certification (not field testing) standard for which the engine was certified. [Reg.19.304 and 40 C.F.R. § 60.4233(e)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

33. Owners and operators of stationary SI ICE must operate and maintain stationary SI ICE that achieve the emission standards as required in §60.4233 over the entire life of the engine. [Reg.19.304 and 40 C.F.R. § 60.4234]

- 34. If you are an owner or operator of a stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(d) or (e), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) and (2) of this section. [Reg.19.304 and 40 C.F.R. § 60.4243]
- 35. The permittee must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) and (2) of this section. [Reg.19.304 and 40 C.F.R. § 60.4243(b)]
 - (b)(1) Purchasing an engine certified according to procedures specified in this subpart, for the same model year and demonstrating compliance according to one of the methods specified in paragraph (a) of this section.
 - (b)(2) Purchasing a non-certified engine and demonstrating compliance with the emission standards specified in §60.4233(d) or (e) and according to the requirements specified in §60.4244, as applicable, and according to paragraphs (b)(2)(i) and (ii) of this section.
 - (i) If you are an owner or operator of a stationary SI internal combustion engine greater than 25 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance.
 - (ii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.
- 36. Owners and operators of stationary SI natural gas fired engines may operate their engines using propane for a maximum of 100 hours per year as an alternative fuel solely during emergency operations, but must keep records of such use. If propane is used for more than 100 hours per year in an engine that is not certified to the emission standards when using propane, the owners and operators are required to conduct a performance test to demonstrate compliance with the emission standards of §60.4233. [Reg.19.304 and 40 C.F.R. § 60.4243(e)]
- 37. It is expected that air-to-fuel ratio controllers will be used with the operation of three-way catalysts/non-selective catalytic reduction. The AFR controller must be maintained and

Permit #: 1185-AOP-R13

AFIN: 24-00071

operated appropriately in order to ensure proper operation of the engine and control device to minimize emissions at all times. [Reg.19.304 and 40 C.F.R. § 60.4243(g)]

- 38. The permittee must keep records of the information in paragraphs (a)(1) through (4) of this section. [Reg.19.304 and 40 C.F.R. § 60.4245(a)]
 - (a)(1) All notifications submitted to comply with this subpart and all documentation supporting any notification.
 - (a)(2) Maintenance conducted on the engine.
 - (a)(3) If the stationary SI internal combustion engine is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards and information as required in 40 CFR parts 90, 1048, 1054, and 1060, as applicable.
 - (a)(4) If the stationary SI internal combustion engine is not a certified engine or is a certified engine operating in a non-certified manner and subject to \$60.4243(a)(2), documentation that the engine meets the emission standards.
- 39. Owners and operators of stationary SI ICE greater than or equal to 500 HP that have not been certified by an engine manufacturer to meet the emission standards in §60.4231 must submit an initial notification as required in §60.7(a)(1). The notification must include the information in paragraphs (c)(1) through (5) of this section. [Reg.19.304 and 40 C.F.R. § 60.4245(c)]
 - (c)(1) Name and address of the owner or operator;
 - (c)(2) The address of the affected source;
 - (c)(3) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;
 - (c)(4) Emission control equipment; and
 - (c)(5) Fuel used.
- 40. Owners and operators of stationary SI ICE that are subject to performance testing must submit a copy of each performance test as conducted in §60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference—see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7. [Reg.19.304 and 40 C.F.R. § 60.4245(d)]

40 C.F.R. Part 60, Subpart OOOOa Conditions

41. SN-93 through SN-99 are subject to 40 C.F.R. Part 60, Subpart OOOOa. The permittee shall comply with all applicable provisions of 40 C.F.R. Part 63, Subpart OOOOa which includes, but is not limited to, Plantwide Conditions #42 through #66. [Reg.19.304 and 40 C.F.R. § 60.5365a]

Permit #: 1185-AOP-R13

AFIN: 24-00071

42. You must reduce GHG (in the form of a limitation on emissions of methane) and VOC emissions by complying with the standards in paragraphs (a) through (d) of this section for each reciprocating compressor affected facility. [Reg.19.304 and 40 C.F.R. § 60.5385a]

- a. You must replace the reciprocating compressor rod packing according to either paragraph (a)(1) or (2) of this section, or you must comply with paragraph (a)(3) of this section. [40 C.F.R. § 60.5385a(a)]
 - i. On or before the compressor has operated for 26,000 hours. The number of hours of operation must be continuously monitored beginning upon initial startup of your reciprocating compressor affected facility, or the date of the most recent reciprocating compressor rod packing replacement, whichever is later. [40 C.F.R. § 60.5385a(a)(1)]
 - ii. Prior to 36 months from the date of the most recent rod packing replacement, or 36 months from the date of startup for a new reciprocating compressor for which the rod packing has not yet been replaced. [40 C.F.R. § 60.5385a(a)(2)]
 - iii. Collect the methane and VOC emissions from the rod packing using a rod packing emissions collection system that operates under negative pressure and route the rod packing emissions to a process through a closed vent system that meets the requirements of \$60.5411a(a) and (d). [40 C.F.R. \$ 60.5385a(a)(3)]
- b. You must demonstrate initial compliance with standards that apply to reciprocating compressor affected facilities as required by §60.5410a(c). [40 C.F.R. § 60.5385a(b)]
- c. You must demonstrate continuous compliance with standards that apply to reciprocating compressor affected facilities as required by §60.5415a(c). [40 C.F.R. § 60.5385a(c)]
- d. You must perform the reporting as required by \$60.5420a(b)(1) and (4) and the recordkeeping as required by \$60.5420a(c)(3), (6) through (9), and (17), as applicable. [40 C.F.R. \$ 60.5385a(d)]
- 43. You must monitor all fugitive emission components, as defined in §60.5430a, in accordance with paragraphs (b) through (g) of this section. You must repair all sources of fugitive emissions in accordance with paragraph (h) of this section. You must keep records in accordance with paragraph (i) of this section and report in accordance with paragraph (j) of this section. For purposes of this section, fugitive emissions are defined as: Any visible emission from a fugitive emissions component observed using optical gas imaging or an instrument reading of 500 ppm or greater using Method 21. [Reg.19.304 and 40 C.F.R. § 60.5397a(a)]
- 44. You must develop an emissions monitoring plan that covers the collection of fugitive emissions components at well sites and compressor stations within each company-defined

Permit #: 1185-AOP-R13

AFIN: 24-00071

area in accordance with paragraphs (c) and (d) of this section. [Reg.19.304 and 40 C.F.R. § 60.5397a(b)]

- 45. Fugitive emissions monitoring plans must include the elements specified in paragraphs (c)(1) through (8) of this section, at a minimum. [Reg.19.304 and 40 C.F.R. § 60.5397a(c)]
 - a. Frequency for conducting surveys. Surveys must be conducted at least as frequently as required by paragraphs (f) and (g) of this section. [40 C.F.R. § 60.5397a(c)(1)]
 - b. Technique for determining fugitive emissions (i.e., Method 21 at 40 CFR part 60, appendix A7, or optical gas imaging). [40 C.F.R. § 60.5397a(c)(2)]
 - c. Manufacturer and model number of fugitive emissions detection equipment to be used. [40 C.F.R. § 60.5397a(c)(3)]
 - d. Procedures and timeframes for identifying and repairing fugitive emissions components from which fugitive emissions are detected, including timeframes for fugitive emission components that are unsafe to repair. Your repair schedule must meet the requirements of paragraph (h) of this section at a minimum. [40 C.F.R. § 60.5397a(c)(4)]
 - e. Procedures and timeframes for verifying fugitive emission component repairs. [40 C.F.R. § 60.5397a(c)(5)]
 - f. Records that will be kept and the length of time records will be kept. [40 C.F.R. § 60.5397a(c)(6)]
 - g. If you are using optical gas imaging, your plan must also include the elements specified in paragraphs (c)(7)(i) through (vii) of this section. [40 C.F.R. § 60.5397a(c)(7)]
 - i. Verification that your optical gas imaging equipment meets the specifications of paragraphs (c)(7)(i)(A) and (B) of this section. This verification is an initial verification and may either be performed by the facility, by the manufacturer, or by a third party. For the purposes of complying with the fugitives emissions monitoring program with optical gas imaging, a fugitive emission is defined as any visible emissions observed using optical gas imaging. [40 C.F.R. § 60.5397a(c)(7)(i)]
 - (A) Your optical gas imaging equipment must be capable of imaging gases in the spectral range for the compound of highest concentration in the potential fugitive emissions. [40 C.F.R. § 60.5397a(c)(7)(i)(A)]
 - (B) Your optical gas imaging equipment must be capable of imaging a gas that is half methane, half propane at a concentration of 10,000 ppm at a flow rate of \leq 60g/hr from a quarter inch diameter orifice. [40 C.F.R. § 60.5397a(c)(7)(i)(B)]
 - ii. Procedure for a daily verification check. [40 C.F.R. § 60.5397a(c)(7)(ii)]
 - iii. Procedure for determining the operator's maximum viewing distance from the equipment and how the operator will ensure that this distance is maintained. [40 C.F.R. § 60.5397a(c)(7)(iii)]

Permit #: 1185-AOP-R13

- iv. Procedure for determining maximum wind speed during which monitoring can be performed and how the operator will ensure monitoring occurs only at wind speeds below this threshold. [40 C.F.R. § 60.5397a(c)(7)(iv)]
- v. Procedures for conducting surveys, including the items specified in paragraphs (c)(7)(v)(A) through (C) of this section. [40 C.F.R. § 60.5397a(c)(7)(v)]
 - (A) How the operator will ensure an adequate thermal background is present in order to view potential fugitive emissions. [40 C.F.R. § 60.5397a(c)(7)(v)(A)]
 - (B) How the operator will deal with adverse monitoring conditions, such as wind. [40 C.F.R. § 60.5397a(c)(7)(v)(B)]
 - (C) How the operator will deal with interferences (e.g., steam). [40 C.F.R. § 60.5397a(c)(7)(v)(C)]
- vi. Training and experience needed prior to performing surveys. [40 C.F.R. § 60.5397a(c)(7)(vi)]
- vii. Procedures for calibration and maintenance. At a minimum, procedures must comply with those recommended by the manufacturer. [40 C.F.R. § 60.5397a(c)(7)(vii)]
- h. If you are using Method 21 of appendix A-7 of this part, your plan must also include the elements specified in paragraphs (c)(8)(i) and (ii) of this section. For the purposes of complying with the fugitive emissions monitoring program using Method 21 a fugitive emission is defined as an instrument reading of 500 ppm or greater. [40 C.F.R. § 60.5397a(c)(8)]
 - i. Verification that your monitoring equipment meets the requirements specified in Section 6.0 of Method 21 at 40 CFR part 60, appendix A-7. For purposes of instrument capability, the fugitive emissions definition shall be 500 ppm or greater methane using a FID-based instrument. If you wish to use an analyzer other than a FID-based instrument, you must develop a site-specific fugitive emission definition that would be equivalent to 500 ppm methane using a FID-based instrument (e.g., 10.6 eV PID with a specified isobutylene concentration as the fugitive emission definition would provide equivalent response to your compound of interest). [40 C.F.R. § 60.5397a(c)(8)(i)]
 - ii. Procedures for conducting surveys. At a minimum, the procedures shall ensure that the surveys comply with the relevant sections of Method 21 at 40 CFR part 60, appendix A-7, including Section 8.3.1. [40 C.F.R. § 60.5397a(c)(8)(ii)]
- 46. Each fugitive emissions monitoring plan must include the elements specified in paragraphs (d)(1) through (4) of this section, at a minimum, as applicable. [Reg.19.304 and 40 C.F.R. § 60.5397a(d)]
 - a. Sitemap. [40 C.F.R. § 60.5397a(d)(1)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

b. A defined observation path that ensures that all fugitive emissions components are within sight of the path. The observation path must account for interferences. [40 C.F.R. § 60.5397a(d)(2)]

- c. If you are using Method 21, your plan must also include a list of fugitive emissions components to be monitored and method for determining location of fugitive emissions components to be monitored in the field (e.g. tagging, identification on a process and instrumentation diagram, etc.). [40 C.F.R. § 60.5397a(d)(3)]
- d. Your plan must also include the written plan developed for all of the fugitive emission components designated as difficult-to-monitor in accordance with paragraph (g)(3)(i) of this section, and the written plan for fugitive emission components designated as unsafe-to-monitor in accordance with paragraph (g)(3)(ii) of this section. [40 C.F.R. § 60.5397a(d)(4)]
- 47. Each monitoring survey shall observe each fugitive emissions component, as defined in §60.5430a, for fugitive emissions. [Reg.19.304 and 40 C.F.R. § 60.5397a(e)]
- 48. You must conduct an initial monitoring survey within 60 days of the startup of production, as defined in \$60.5430a, for each collection of fugitive emissions components at a new well site or by June 3, 2017, whichever is later. For a modified collection of fugitive emissions components at a well site, the initial monitoring survey must be conducted within 60 days of the first day of production for each collection of fugitive emission components after the modification or by June 3, 2017, whichever is later. Notwithstanding the preceding deadlines, for each collection of fugitive emissions components at a well site located on the Alaskan North Slope, as defined in \$60.5430a, that starts up production between September and March, you must conduct an initial monitoring survey within 6 months of the startup of production for a new well site, within 6 months of the first day of production after a modification of the collection of fugitive emission components, or by the following June 30, whichever is later. [Reg.19.304 and 40 C.F.R. \$ 60.5397a(f)(1)]
- 49. You must conduct an initial monitoring survey within 60 days of the startup of a new compressor station for each new collection of fugitive emissions components at the new compressor station or by June 3, 2017, whichever is later. For a modified collection of fugitive components at a compressor station, the initial monitoring survey must be conducted within 60 days of the modification or by June 3, 2017, whichever is later. [Reg.19.304 and 40 C.F.R. § 60.5397a(f)(2)]
- A monitoring survey of each collection of fugitive emissions components at a well site or at a compressor station must be performed at the frequencies specified in paragraphs (g)(1) and (2) of this section, with the exceptions noted in paragraphs (g)(3) and (4) of this section. [Reg.19.304 and 40 C.F.R. § 60.5397a(g)]
 - a. Except as provided herein, a monitoring survey of each collection of fugitive emissions components at a well site within a company-defined area must be

Permit #: 1185-AOP-R13

AFIN: 24-00071

conducted at least semiannually after the initial survey. Consecutive semiannual monitoring surveys must be conducted at least 4 months apart. A monitoring survey of each collection of fugitive emissions components at a well site located on the Alaskan North Slope must be conducted at least annually. Consecutive annual monitoring surveys must be conducted at least 9 months apart. [40 C.F.R. § 60.5397a(g)(1)]

- b. A monitoring survey of the collection of fugitive emissions components at a compressor station within a company-defined area must be conducted at least quarterly after the initial survey. Consecutive quarterly monitoring surveys must be conducted at least 60 days apart. [40 C.F.R. § 60.5397a(g)(2)]
- c. Fugitive emissions components that cannot be monitored without elevating the monitoring personnel more than 2 meters above the surface may be designated as difficult-to-monitor. Fugitive emissions components that are designated difficult-to-monitor must meet the specifications of paragraphs (g)(3)(i) through (iv) of this section. [40 C.F.R. § 60.5397a(g)(3)]
 - i. A written plan must be developed for all of the fugitive emissions components designated difficult-to-monitor. This written plan must be incorporated into the fugitive emissions monitoring plan required by paragraphs (b), (c), and (d) of this section. [40 C.F.R. § 60.5397a(g)(3)(i)]
 - ii. The plan must include the identification and location of each fugitive emissions component designated as difficult-to-monitor. [40 C.F.R. § 60.5397a(g)(3)(ii)]
 - iii. The plan must include an explanation of why each fugitive emissions component designated as difficult-to-monitor is difficult-to-monitor. [40 C.F.R. § 60.5397a(g)(3)(iii)]
 - iv. The plan must include a schedule for monitoring the difficult-to-monitor fugitive emissions components at least once per calendar year. [40 C.F.R. § 60.5397a(g)(3)(iv)]
- d. Fugitive emissions components that cannot be monitored because monitoring personnel would be exposed to immediate danger while conducting a monitoring survey may be designated as unsafe-to-monitor. Fugitive emissions components that are designated unsafe-to-monitor must meet the specifications of paragraphs (g)(4)(i) through (iv) of this section. [40 C.F.R. § 60.5397a(g)(4)]
 - i. A written plan must be developed for all of the fugitive emissions components designated unsafe-to-monitor. This written plan must be incorporated into the fugitive emissions monitoring plan required by paragraphs (b), (c), and (d) of this section. [40 C.F.R. § 60.5397a(g)(4)(i)]
 - ii. The plan must include the identification and location of each fugitive emissions component designated as unsafe-to-monitor. [40 C.F.R. § 60.5397a(g)(4)(ii)]
 - iii. The plan must include an explanation of why each fugitive emissions component designated as unsafe-to-monitor is unsafe-to-monitor. [40 C.F.R. § 60.5397a(g)(4)(iii)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

iv. The plan must include a schedule for monitoring the fugitive emissions components designated as unsafe-to-monitor. [40 C.F.R. § 60.5397a(g)(4)(iv)]

- e. The requirements of paragraph (g)(2) of this section are waived for any collection of fugitive emissions components at a compressor station located within an area that has an average calendar month temperature below 0 °Fahrenheit for two of three consecutive calendar months of a quarterly monitoring period. The calendar month temperature average for each month within the quarterly monitoring period must be determined using historical monthly average temperatures over the previous three years as reported by a National Oceanic and Atmospheric Administration source or other source approved by the Administrator. The requirements of paragraph (g)(2) of this section shall not be waived for two consecutive quarterly monitoring periods. [40 C.F.R. § 60.5397a(g)(5)]
- 51. Each identified source of fugitive emissions shall be repaired or replaced in accordance with paragraphs (h)(1) and (2) of this section. For fugitive emissions components also subject to the repair provisions of §§60.5416a(b)(9) through (12) and (c)(4) through (7), those provisions apply instead to those closed vent system and covers, and the repair provisions of paragraphs (h)(1) and (2) of this section do not apply to those closed vent systems and covers. [Reg.19.304 and 40 C.F.R. § 60.5397a(h)]
 - a. Each identified source of fugitive emissions shall be repaired or replaced as soon as practicable, but no later than 30 calendar days after detection of the fugitive emissions. [40 C.F.R. § 60.5397a(h)(1)]
 - b. If the repair or replacement is technically infeasible, would require a vent blowdown, a compressor station shutdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair or replacement must be completed during the next scheduled compressor station shutdown, well shutdown, well shut-in, after a planned vent blowdown or within 2 years, whichever is earlier. [40 C.F.R. § 60.5397a(h)(2)]
 - c. Each repaired or replaced fugitive emissions component must be resurveyed as soon as practicable, but no later than 30 days after being repaired, to ensure that there are no fugitive emissions. [40 C.F.R. § 60.5397a(h)(3)]
 - i. For repairs that cannot be made during the monitoring survey when the fugitive emissions are initially found, the operator may resurvey the repaired fugitive emissions components using either Method 21 or optical gas imaging within 30 days of finding such fugitive emissions. [40 C.F.R. § 60.5397a(h)(3)(i)]
 - ii. For each repair that cannot be made during the monitoring survey when the fugitive emissions are initially found, a digital photograph must be taken of that component or the component must be tagged for identification purposes. The digital photograph must include the date that the photograph was taken, must clearly identify the component by location within the site (e.g., the latitude and longitude of the component or by

Permit #: 1185-AOP-R13

- other descriptive landmarks visible in the picture). [40 C.F.R. § 60.5397a(h)(3)(ii)]
- iii. Operators that use Method 21 to resurvey the repaired fugitive emissions components are subject to the resurvey provisions specified in paragraphs (h)(3)(iii)(A) and (B) of this section. [40 C.F.R. § 60.5397a(h)(3)(iii)]
 - (A) A fugitive emissions component is repaired when the Method 21 instrument indicates a concentration of less than 500 ppm above background or when no soap bubbles are observed when the alternative screening procedures specified in section 8.3.3 of Method 21 are used. [40 C.F.R. § 60.5397a(h)(3)(iii)(A)]
 - (B) Operators must use the Method 21 monitoring requirements specified in paragraph (c)(8)(ii) of this section or the alternative screening procedures specified in section 8.3.3 of Method 21. [40 C.F.R. § 60.5397a(h)(3)(iii)(B)]
- iv. Operators that use optical gas imaging to resurvey the repaired fugitive emissions components, are subject to the resurvey provisions specified in paragraphs (h)(3)(iv)(A) and (B) of this section. [40 C.F.R. § 60.5397a(h)(3)(iv)]
 - (A) A fugitive emissions component is repaired when the optical gas imaging instrument shows no indication of visible emissions. [40 C.F.R. § 60.5397a(h)(3)(iv)(A)]
 - (B) Operators must use the optical gas imaging monitoring requirements specified in paragraph (c)(7) of this section. [40 C.F.R. § 60.5397a(h)(3)(iv)(B)]
- 52. Records for each monitoring survey shall be maintained as specified §60.5420a(c)(15). [Reg.19.304 and 40 C.F.R. § 60.5397a(i)]
- Annual reports shall be submitted for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station that include the information specified in \$60.5420a(b)(7). Multiple collection of fugitive emissions components at a well site or at a compressor station may be included in a single annual report. [Reg.19.304 and 40 C.F.R. § 60.5397a(j)]
- 54. If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in GHG (in the form of a limitation on emission of methane) and VOC emissions at least equivalent to the reduction in GHG and VOC emissions achieved under §\$60.5375a, 60.5385a, and 60.5397a, the Administrator will publish, in the Federal Register, a notice permitting the use of that alternative means for the purpose of compliance with §\$60.5375a, 60.5385a, and 60.5397a. The notice may condition permission on requirements related to the operation and maintenance of the alternative means. [Reg.19.304 and 40 C.F.R. § 60.5398a(a)]
- Any notice under paragraph (a) of this section must be published only after notice and an opportunity for a public hearing. [Reg.19.304 and 40 C.F.R. § 60.5398a(b)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

56. The Administrator will consider applications under this section from either owners or operators of affected facilities. [Reg.19.304 and 40 C.F.R. § 60.5398a(c)]

- 57. Determination of equivalence to the design, equipment, work practice or operational requirements of this section will be evaluated by the following guidelines: [Reg.19.304 and 40 C.F.R. § 60.5398a(d)]
 - a. The applicant must collect, verify and submit test data, covering a period of at least 12 months to demonstrate the equivalence of the alternative means of emission limitation. The application must include the following information: [40 C.F.R. § 60.5398a(d)(1)]
 - i. A description of the technology or process. [40 C.F.R. § 60.5398a(d)(1)(i)]
 - ii. The monitoring instrument and measurement technology or process. [40 C.F.R. § 60.5398a(d)(1)(ii)]
 - iii. A description of performance based procedures (i.e., method) and data quality indicators for precision and bias; the method detection limit of the technology or process. [40 C.F.R. § 60.5398a(d)(1)(iii)]
 - iv. For affected facilities under §60.5397a, the action criteria and level at which a fugitive emission exists. [40 C.F.R. § 60.5398a(d)(1)(iv)]
 - v. Any initial and ongoing quality assurance/quality control measures. [40 C.F.R. § 60.5398a(d)(1)(v)]
 - vi. Timeframes for conducting ongoing quality assurance/quality control. [40 C.F.R. § 60.5398a(d)(1)(vi)]
 - vii. Field data verifying viability and detection capabilities of the technology or process. [40 C.F.R. § 60.5398a(d)(1)(vii)]
 - viii. Frequency of measurements. [40 C.F.R. § 60.5398a(d)(1)(viii)]
 - ix. Minimum data availability. [40 C.F.R. § 60.5398a(d)(1)(ix)]
 - x. Any restrictions for using the technology or process. [40 C.F.R. 60.5398a(d)(1)(x)]
 - xi. Operation and maintenance procedures and other provisions necessary to ensure reduction in methane and VOC emissions at least equivalent to the reduction in methane and VOC emissions achieved under §60.5397a. [40 C.F.R. § 60.5398a(d)(1)(xi)]
 - xii. Initial and continuous compliance procedures, including recordkeeping and reporting. [40 C.F.R. § 60.5398a(d)(1)(xii)]
 - b. For each determination of equivalency requested, the emission reduction achieved by the design, equipment, work practice or operational requirements shall be demonstrated. [40 C.F.R. § 60.5398a(d)(2)]
 - c. For each affected facility for which a determination of equivalency is requested, the emission reduction achieved by the alternative means of emission limitation shall be demonstrated. [40 C.F.R. § 60.5398a(d)(3)]
 - d. Each owner or operator applying for a determination of equivalence to a work practice standard shall commit in writing to work practice(s) that provide for

Permit #: 1185-AOP-R13

AFIN: 24-00071

emission reductions equal to or greater than the emission reductions achieved by the required work practice. [40 C.F.R. § 60.5398a(d)(4)]

- 58. After notice and opportunity for public hearing, the Administrator will determine the equivalence of a means of emission limitation and will publish the determination in the Federal Register. [Reg.19.304 and 40 C.F.R. § 60.5398a(e)]
- 59. An application submitted under this section will be evaluated as set forth in paragraphs (f)(1) and (2) of this section. [Reg.19.304 and 40 C.F.R. § 60.5398a(f)]
 - a. The Administrator will compare the demonstrated emission reduction for the alternative means of emission limitation to the demonstrated emission reduction for the design, equipment, work practice or operational requirements and, if applicable, will consider the commitment in paragraph (d) of this section. [40 C.F.R. § 60.5398a(f)(1)]
 - b. The Administrator may condition the approval of the alternative means of emission limitation on requirements that may be necessary to ensure operation and maintenance to achieve the same emissions reduction as the design, equipment, work practice or operational requirements. (g) Any equivalent means of emission limitations approved under this section shall constitute a required work practice, equipment, design or operational standard within the meaning of section 111(h)(1) of the CAA. [40 C.F.R. § 60.5398a(f)(2)]
- 60. To achieve initial compliance with the standards for each reciprocating compressor affected facility you must comply with paragraphs (c)(1) through (4) of this section. [Reg.19.304 and 40 C.F.R. § 60.5410a(c)]
 - a. If complying with §60.5385a(a)(1) or (2), during the initial compliance period, you must continuously monitor the number of hours of operation or track the number of months since the last rod packing replacement. [40 C.F.R. § 60.5410a(c)(1)]
 - b. If complying with \$60.5385a(a)(3), you must operate the rod packing emissions collection system under negative pressure and route emissions to a process through a closed vent system that meets the requirements of \$60.5411a(a) and (d). [40 C.F.R. \$ 60.5410a(c)(2)]
 - c. You must submit the initial annual report for your reciprocating compressor as required in §60.5420a(b)(1) and (4). [40 C.F.R. § 60.5410a(c)(3)]
 - d. You must maintain the records as specified in §60.5420a(c)(3) for each reciprocating compressor affected facility. [40 C.F.R. § 60.5410a(c)(4)]
- 61. To achieve initial compliance with the fugitive emission standards for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, you must comply with paragraphs (j)(1) through (5) of this section. [Reg.19.304 and 40 C.F.R. § 60.5410a(j)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

a. You must develop a fugitive emissions monitoring plan as required in §60.5397a(b)(c), and (d). [40 C.F.R. § 60.5410a(j)(1)]

- b. You must conduct an initial monitoring survey as required in §60.5397a(f). [40 C.F.R. § 60.5410a(j)(2)]
- c. You must maintain the records specified in §60.5420a(c)(15). [40 C.F.R. § 60.5410a(j)(3)]
- d. You must repair each identified source of fugitive emissions for each affected facility as required in §60.5397a(h). [40 C.F.R. § 60.5410a(j)(4)]
- e. You must submit the initial annual report for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station compressor station as required in §60.5420a(b)(1) and (7). [40 C.F.R. § 60.5410a(j)(5)]
- 62. For each reciprocating compressor affected facility complying with §60.5385a(a)(1) or (2), you must demonstrate continuous compliance according to paragraphs (c)(1) through (3) of this section. For each reciprocating compressor affected facility complying with §60.5385a(a)(3), you must demonstrate continuous compliance according to paragraph (c)(4) of this section. [Reg.19.304 and 40 C.F.R. § 60.5415a(c)]
 - a. You must continuously monitor the number of hours of operation for each reciprocating compressor affected facility or track the number of months since initial startup or the date of the most recent reciprocating compressor rod packing replacement, whichever is later. [40 C.F.R. § 60.5415a(c)(1)]
 - b. You must submit the annual reports as required in §60.5420a(b)(1) and (4) and maintain records as required in §60.5420a(c)(3). [40 C.F.R. § 60.5415a(c)(2)]
 - c. You must replace the reciprocating compressor rod packing on or before the total number of hours of operation reaches 26,000 hours or the number of months since the most recent rod packing replacement reaches 36 months. [40 C.F.R. § 60.5415a(c)(3)]
 - d. You must operate the rod packing emissions collection system under negative pressure and continuously comply with the cover and closed vent requirements in §60.5416a(a) and (b). [40 C.F.R. § 60.5415a(c)(4)]
- 63. For each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, you must demonstrate continuous compliance with the fugitive emission standards specified in §60.5397a according to paragraphs (h)(1) through (4) of this section. [Reg.19.304 and 40 C.F.R. § 60.5415a(h)]
 - a. You must conduct periodic monitoring surveys as required in §60.5397a(g). [40 C.F.R. § 60.5415a(h)(1)]
 - b. You must repair or replace each identified source of fugitive emissions as required in §60.5397a(h). [40 C.F.R. § 60.5415a(h)(2)]
 - c. You must maintain records as specified in §60.5420a(c)(15). [40 C.F.R. § 60.5415a(h)(3)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

d. You must submit annual reports for collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station as required in §60.5420a(b)(1) and (7). [40 C.F.R. § 60.5415a(h)(4)]

- 64. You must submit the notifications according to paragraphs (a)(1) and (2) of this section if you own or operate one or more of the affected facilities specified in §60.5365a that was constructed, modified or reconstructed during the reporting period. [Reg.19.304 and 40 C.F.R. § 60.5420a(a)]
 - a. If you own or operate an affected facility that is the group of all equipment within a process unit at an onshore natural gas processing plant, or a sweetening unit at an onshore natural gas processing plant, you must submit the notifications required in §60.7(a)(1), (3), and (4). If you own or operate a well, centrifugal compressor, reciprocating compressor, pneumatic controller, pneumatic pump, storage vessel, or collection of fugitive emissions components at a well site or collection of fugitive emissions components at a compressor station, you are not required to submit the notifications required in §60.7(a)(1), (3), and (4). [40 C.F.R. § 60.5420a(a)(1)]
- 65. Reporting requirements. You must submit annual reports containing the information specified in paragraphs (b)(1) through (8) and (12) of this section and performance test reports as specified in paragraph (b)(9) or (10) of this section, if applicable, except as provided in paragraph (b)(13) of this section. You must submit annual reports following the procedure specified in paragraph (b)(11) of this section. The initial annual report is due no later than 90 days after the end of the initial compliance period as determined according to §60.5410a. Subsequent annual reports are due no later than same date each year as the initial annual report. If you own or operate more than one affected facility, you may submit one report for multiple affected facilities provided the report contains all of the information required as specified in paragraphs (b)(1) through (8) of this section, except as provided in paragraph (b)(13) of this section. Annual reports may coincide with title V reports as long as all the required elements of the annual report are included. You may arrange with the Administrator a common schedule on which reports required by this part may be submitted as long as the schedule does not extend the reporting period. [Reg.19.304 and 40 C.F.R. § 60.5420a(b)]
 - a. The general information specified in paragraphs (b)(1)(i) through (iv) of this section for all reports. [40 C.F.R. § 60.5420a(b)(1)]
 - i. The company name, facility site name associated with the affected facility, US Well ID or US Well ID associated with the affected facility, if applicable, and address of the affected facility. If an address is not available for the site, include a description of the site location and provide the latitude and longitude coordinates of the site in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983. [40 C.F.R. § 60.5420a(b)(1)(i)]

Permit #: 1185-AOP-R13

- ii. An identification of each affected facility being included in the annual report. [40 C.F.R. § 60.5420a(b)(1)(ii)]
- iii. Beginning and ending dates of the reporting period. [40 C.F.R. § 60.5420a(b)(1)(iii)]
- iv. A certification by a certifying official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. [40 C.F.R. § 60.5420a(b)(1)(iv)]
- b. For each reciprocating compressor affected facility, the information specified in paragraphs (b)(4)(i) and (ii) of this section. [40 C.F.R. § 60.5420a(b)(4)]
 - i. The cumulative number of hours of operation or the number of months since initial startup or since the previous reciprocating compressor rod packing replacement, whichever is later. Alternatively, a statement that emissions from the rod packing are being routed to a process through a closed vent system under negative pressure. [40 C.F.R. § 60.5420a(b)(4)(i)]
 - ii. Records of deviations specified in paragraph (c)(3)(iii) of this section that occurred during the reporting period. [40 C.F.R. § 60.5420a(b)(4)(ii)]
- c. For the collection of fugitive emissions components at each well site and the collection of fugitive emissions components at each compressor station within the company-defined area, the records of each monitoring survey including the information specified in paragraphs (b)(7)(i) through (xii) of this section. For the collection of fugitive emissions components at a compressor station, if a monitoring survey is waived under §60.5397a(g)(5), you must include in your annual report the fact that a monitoring survey was waived and the calendar months that make up the quarterly monitoring period for which the monitoring survey was waived. [40 C.F.R. § 60.5420a(b)(7)]
 - i. Date of the survey. [40 C.F.R. § 60.5420a(b)(7)(i)]
 - ii. Beginning and end time of the survey. [40 C.F.R. § 60.5420a(b)(7)(ii)]
 - iii. Name of operator(s) performing survey. If the survey is performed by optical gas imaging, you must note the training and experience of the operator. [40 C.F.R. § 60.5420a(b)(7)(iii)]
 - iv. Ambient temperature, sky conditions, and maximum wind speed at the time of the survey. [40 C.F.R. § 60.5420a(b)(7)(iv)]
 - v. Monitoring instrument used. [40 C.F.R. § 60.5420a(b)(7)(v)]
 - vi. Any deviations from the monitoring plan or a statement that there were no deviations from the monitoring plan. [40 C.F.R. § 60.5420a(b)(7)(vi)]
 - vii. Number and type of components for which fugitive emissions were detected. [40 C.F.R. § 60.5420a(b)(7)(vii)]
 - viii. Number and type of fugitive emissions components that were not repaired as required in §60.5397a(h). [40 C.F.R. § 60.5420a(b)(7)(viii)]
 - ix. Number and type of difficult-to-monitor and unsafe-to-monitor fugitive emission components monitored. [40 C.F.R. § 60.5420a(b)(7)(ix)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

x. The date of successful repair of the fugitive emissions component. [40 C.F.R. § 60.5420a(b)(7)(x)]

- xi. Number and type of fugitive emission components placed on delay of repair and explanation for each delay of repair. [40 C.F.R. § 60.5420a(b)(7)(xi)]
- xii. Type of instrument used to resurvey a repaired fugitive emissions component that could not be repaired during the initial fugitive emissions finding. [40 C.F.R. § 60.5420a(b)(7)(xii)]
- d. Within 60 days after the date of completing each performance test (see §60.8) required by this subpart, except testing conducted by the manufacturer as specified in §60.5413a(d), you must submit the results of the performance test following the procedure specified in either paragraph (b)(9)(i) or (ii) of this section. [40 C.F.R. § 60.5420a(b)(9)]
 - i. For data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT Web site (https://www3.epa.gov/ttn/chief/ert/ert info.html) at the time of the test, you must submit the results of the performance test to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI). (CEDRI can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/).) Performance test data must be submitted in a file format generated through the use of the EPA's ERT or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the EPA's ERT Web site. If you claim that some of the performance test information being submitted is confidential business information (CBI), you must submit a complete file generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT Web site, including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage media to the EPA. The electronic media must be clearly marked as CBI and mailed to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same ERT or alternate file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described earlier in this paragraph. [40 C.F.R. § 60.5420a(b)(9)(i)1
 - ii. For data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT Web site at the time of the test, you must submit the results of the performance test to the Administrator at the appropriate address listed in §60.4. [40 C.F.R. § 60.5420a(b)(9)(ii)]
- e. You must submit reports to the EPA via the CEDRI. (CEDRI can be accessed through the EPA's CDX (https://cdx.epa.gov/).) You must use the appropriate electronic report in CEDRI for this subpart or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the CEDRI Web site (https://www3.epa.gov/ttn/chief/cedri/). If the reporting form specific to this subpart is not available in CEDRI at the time that the report is due,

Permit #: 1185-AOP-R13

AFIN: 24-00071

you must submit the report to the Administrator at the appropriate address listed in §60.4. Once the form has been available in CEDRI for at least 90 calendar days, you must begin submitting all subsequent reports via CEDRI. The reports must be submitted by the deadlines specified in this subpart, regardless of the method in which the reports are submitted. [40 C.F.R. § 60.5420a(b)(11)]

- 66. Recordkeeping requirements. You must maintain the records identified as specified in §60.7(f) and in paragraphs (c)(1) through (16) of this section. All records required by this subpart must be maintained either onsite or at the nearest local field office for at least 5 years. Any records required to be maintained by this subpart that are submitted electronically via the EPA's CDX may be maintained in electronic format. [Reg.19.304 and 40 C.F.R. § 60.5420a(c)]
 - a. For each reciprocating compressor affected facility, you must maintain the records in paragraphs (c)(3)(i) through (iii) of this section. [40 C.F.R. § 60.5420a(c)(3)]
 - Records of the cumulative number of hours of operation or number of months since initial startup or the previous replacement of the reciprocating compressor rod packing, whichever is later. Alternatively, a statement that emissions from the rod packing are being routed to a process through a closed vent system under negative pressure. [40 C.F.R. § 60.5420a(c)(3)(i)]
 - ii. Records of the date and time of each reciprocating compressor rod packing replacement, or date of installation of a rod packing emissions collection system and closed vent system as specified in §60.5385a(a)(3). [40 C.F.R. § 60.5420a(c)(3)(ii)]
 - iii. Records of deviations in cases where the reciprocating compressor was not operated in compliance with the requirements specified in §60.5385a. [40 C.F.R. § 60.5420a(c)(3)(iii)]
 - b. For each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, the records identified in paragraphs (c)(15)(i) through (iii) of this section. [40 C.F.R. § 60.5420a(c)(15)]
 - i. The fugitive emissions monitoring plan as required in §60.5397a(b), (c), and (d). [40 C.F.R. § 60.5420a(c)(15)(i)]
 - ii. The records of each monitoring survey as specified in paragraphs (c)(15)(ii)(A) through (I) of this section. [40 C.F.R. § 60.5420a(c)(15)(ii)]
 - (A) Date of the survey. [40 C.F.R. § 60.5420a(c)(15)(ii)(A)]
 - (B) Beginning and end time of the survey. [40 C.F.R. § 60.5420a(c)(15)(ii)(B)]
 - (C) Name of operator(s) performing survey. You must note the training and experience of the operator. [40 C.F.R. § 60.5420a(c)(15)(ii)(C)]
 - (D) Monitoring instrument used. [40 C.F.R. § 60.5420a(c)(15)(ii)(D)]

Permit #: 1185-AOP-R13

- (E) When optical gas imaging is used to perform the survey, one or more digital photographs or videos, captured from the optical gas imaging instrument used for conduct of monitoring, of each required monitoring survey being performed. The digital photograph must include the date the photograph was taken and the latitude and longitude of the collection of fugitive emissions components at a well site or collection of fugitive emissions components at a compressor station imbedded within or stored with the digital file. As an alternative to imbedded latitude and longitude within the digital file, the digital photograph or video may consist of an image of the monitoring survey being performed with a separately operating GPS device within the same digital picture or video, provided the latitude and longitude output of the GPS unit can be clearly read in the digital image. [40 C.F.R. § 60.5420a(c)(15)(ii)(E)]
- (F) Fugitive emissions component identification when Method 21 is used to perform the monitoring survey. [40 C.F.R. § 60.5420a(c)(15)(ii)(F)]
- (G) Ambient temperature, sky conditions, and maximum wind speed at the time of the survey. [40 C.F.R. § 60.5420a(c)(15)(ii)(G)]
- (H) Any deviations from the monitoring plan or a statement that there were no deviations from the monitoring plan. [40 C.F.R. § 60.5420a(c)(15)(ii)(H)]
- (I) Documentation of each fugitive emission, including the information specified in paragraphs (c)(15)(ii)(I)(1) through (12) of this section. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)]
 - (1) Location. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(1)]
 - (2) Any deviations from the monitoring plan or a statement that there were no deviations from the monitoring plan. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(2)]
 - (3) Number and type of components for which fugitive emissions were detected. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(3)]
 - (4) Number and type of difficult-to-monitor and unsafe-tomonitor fugitive emission components monitored. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(4)]
 - (5) Instrument reading of each fugitive emissions component that requires repair when Method 21 is used for monitoring. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(5)]
 - (6) Number and type of fugitive emissions components that were not repaired as required in §60.5397a(h). [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(6)]
 - (7) Number and type of components that were tagged as a result of not being repaired during the monitoring survey when the fugitive emissions were initially found as required

Permit #: 1185-AOP-R13

AFIN: 24-00071

- in §60.5397a(h)(3)(ii). [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(7)]
- (8) If a fugitive emissions component is not tagged, a digital photograph or video of each fugitive emissions component that could not be repaired during the monitoring survey when the fugitive emissions were initially found as required in \$60.5397a(h)(3)(ii). The digital photograph or video must clearly identify the location of the component that must be repaired. Any digital photograph or video required under this paragraph can also be used to meet the requirements under paragraph (c)(15)(ii)(E) of this section, as long as the photograph or video is taken with the optical gas imaging instrument, includes the date and the latitude and longitude are either imbedded or visible in the picture. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(8)]
- (9) Repair methods applied in each attempt to repair the fugitive emissions components. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(9)]
- (10) Number and type of fugitive emission components placed on delay of repair and explanation for each delay of repair. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(10)]
- (11) The date of successful repair of the fugitive emissions component. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(11)]
- (12) Instrumentation used to resurvey a repaired fugitive emissions component that could not be repaired during the initial fugitive emissions finding. [40 C.F.R. § 60.5420a(c)(15)(ii)(I)(12)]
- iii. For the collection of fugitive emissions components at a compressor station, if a monitoring survey is waived under §60.5397a(g)(5), you must maintain records of the average calendar month temperature, including the source of the information, for each calendar month of the quarterly monitoring period for which the monitoring survey was waived. [40 C.F.R. § 60.5420a(c)(15)(iii)]

Permit Shield

67. Compliance with the conditions of this permit shall be deemed compliance with all applicable requirements, as of the date of permit issuance, included in and specifically identified in the following table of this condition. The permit specifically identifies the following as applicable requirements based upon the information submitted by the permittee in an application dated December 19, 2019.

Applicable Regulations

Permit #: 1185-AOP-R13

AFIN: 24-00071

Source No.	Regulation	Description
Facility	19	Regulations of the Arkansas Plan of Implementation for Air Pollution Control
Facility	26	Regulations of the Arkansas Operating Air Permit Program
SN-18	40 C.F.R. Part 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines
SN-93 and SN-94	40 C.F.R. Part 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced after September 18, 2015.
Facility	40 CFR Part 63, Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

The permit specifically identifies the following as inapplicable based upon information submitted by the permittee in an application dated December 19, 2013.

Inapplicable Regulations

Source No.	Regulation	Description
Facility	Reg.19.801	111(d) Designated facilities
Facility	Reg.26.401(g)	Applications for initial Phase II acid rain permits.
Facility	Reg.26.1201	Acid rain sources provisions
Varies	40 C.F.R. § 60	New source performance standards
Facility	40 C.F.R. § 79	Registration of fuels and fuel additives.
Facility	40 C.F.R. § 80	Registration of fuels and fuel additives.
Facility	40 C.F.R. § 81.304	Non-attainment

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION VII: INSIGNIFICANT ACTIVITIES

The Division of Environmental Quality deems the following types of activities or emissions as insignificant on the basis of size, emission rate, production rate, or activity in accordance with Group A of the Insignificant Activities list found in Regulation 18 and Regulation 19 Appendix A. Group B insignificant activities may be listed but are not required to be listed in permits. Insignificant activity emission determinations rely upon the information submitted by the permittee in an application dated December 19, 2019. [Reg.26.304 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

Description	Category
New Turbine Oil and Used Oil Drums (8)	A-2
Lubricants Drums (~10)	A-2
T-1 Condensate	A-3
T-2 Spill Containment	A-3
T-3 Condensate	A-3
T-4 Used Oil	A-3
T-5 Used Oil	A-3
T-6 Lube Oil	A-3
T-7 Lube Oil	A-3
Blowdowns and Venting	A-13
Parts Washer	A-13
Mercaptan Storage Tanks	A-13

Permit #: 1185-AOP-R13

AFIN: 24-00071

SECTION VIII: GENERAL PROVISIONS

- 1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute. [40 C.F.R. § 70.6(b)(2)]
- 2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 C.F.R. § 70.6(a)(2) and Reg.26.701(B)]
- 3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee's right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Division of Environmental Quality takes final action on the renewal application. The Division of Environmental Quality will not necessarily notify the permittee when the permit renewal application is due. [Reg.26.406]
- 4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, *et seq.* (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 C.F.R. § 70.6(a)(1)(ii) and Reg.26.701(A)(2)]
- 5. The permittee must maintain the following records of monitoring information as required by this permit.
 - a. The date, place as defined in this permit, and time of sampling or measurements;
 - b. The date(s) analyses performed;
 - c. The company or entity performing the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of such analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

[40 C.F.R. § 70.6(a)(3)(ii)(A) and Reg.26.701(C)(2)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 C.F.R. § 70.6(a)(3)(ii)(B) and Reg.26.701(C)(2)(b)]

7. The permittee must submit reports of all required monitoring every six (6) months. If the permit establishes no other reporting period, the reporting period shall end on the last day of the month six months after the issuance of the initial Title V permit and every six months thereafter. The report is due on the first day of the second month after the end of the reporting period. The first report due after issuance of the initial Title V permit shall contain six months of data and each report thereafter shall contain 12 months of data. The report shall contain data for all monitoring requirements in effect during the reporting period. If a monitoring requirement is not in effect for the entire reporting period, only those months of data in which the monitoring requirement was in effect are required to be reported. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Reg.26.2 must certify all required reports. The permittee will send the reports electronically using https://eportal.adeq.state.ar.us or mail them to the address below:

Division of Environmental Quality Office of Air Quality ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118-5317

[40 C.F.R. § 70.6(a)(3)(iii)(A) and Reg.26.701(C)(3)(a)]

- 8. The permittee shall report to the Division of Environmental Quality all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.
 - a. For all upset conditions (as defined in Reg.19.601), the permittee will make an initial report to the Division of Environmental Quality by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:
 - i. The facility name and location;
 - ii. The process unit or emission source deviating from the permit limit;
 - iii. The permit limit, including the identification of pollutants, from which deviation occurs;
 - iv. The date and time the deviation started;
 - v. The duration of the deviation:

Permit #: 1185-AOP-R13

AFIN: 24-00071

- vi. The emissions during the deviation;
- vii. The probable cause of such deviations;
- viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future; and
 - ix. The name of the person submitting the report.

The permittee shall make a full report in writing to the Division of Environmental Quality within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit's limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

b. For all deviations, the permittee shall report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a above. The semi-annual report must include all the information as required by the initial and full reports required in 8a.

[Reg.19.601, Reg.19.602, Reg.26.701(C)(3)(b), and 40 C.F.R. § 70.6(a)(3)(iii)(B)]

- 9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Regulation are declared to be separable and severable. [40 C.F.R. § 70.6(a)(5), Reg.26.701(E), and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Regulation 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. § 7401, *et seq.* and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 C.F.R. § 70.6(a)(6)(i) and Reg.26.701(F)(1)]
- 11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 C.F.R. § 70.6(a)(6)(ii) and Reg.26.701(F)(2)]
- 12. The Division of Environmental Quality may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. [40 C.F.R. § 70.6(a)(6)(iii) and Reg.26.701(F)(3)]

Permit #: 1185-AOP-R13

AFIN: 24-00071

13. This permit does not convey any property rights of any sort, or any exclusive privilege. [40 C.F.R. § 70.6(a)(6)(iv) and Reg.26.701(F)(4)]

- 14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Division of Environmental Quality may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 C.F.R. § 70.6(a)(6)(v) and Reg.26.701(F)(5)]
- 15. The permittee must pay all permit fees in accordance with the procedures established in Regulation 9. [40 C.F.R. § 70.6(a)(7) and Reg.26.701(G)]
- 16. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 C.F.R. § 70.6(a)(8) and Reg.26.701(H)]
- 17. If the permit allows different operating scenarios, the permittee shall, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 C.F.R. § 70.6(a)(9)(i) and Reg.26.701(I)(1)]
- 18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source's potential to emit, unless the Division of Environmental Quality specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 C.F.R. § 70.6(b) and Reg.26.702(A) and (B)]
- 19. Any document (including reports) required by this permit pursuant to 40 C.F.R. § 70 must contain a certification by a responsible official as defined in Reg.26.2. [40 C.F.R. § 70.6(c)(1) and Reg.26.703(A)]
- 20. The permittee must allow an authorized representative of the Division of Environmental Quality, upon presentation of credentials, to perform the following: [40 C.F.R. § 70.6(c)(2) and Reg.26.703(B)]
 - a. Enter upon the permittee's premises where the permitted source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
 - b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;

Permit #: 1185-AOP-R13

- Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and
- d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.
- 21. The permittee shall submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually. If the permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due on the first day of the second month after the end of the reporting period. The permittee must also submit the compliance certification to the Administrator as well as to the Division of Environmental Quality. All compliance certifications required by this permit must include the following: [40 C.F.R. § 70.6(c)(5) and Reg.26.703(E)(3)]
 - a. The identification of each term or condition of the permit that is the basis of the certification:
 - b. The compliance status;
 - c. Whether compliance was continuous or intermittent;
 - d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
 - e. Such other facts as the Division of Environmental Quality may require elsewhere in this permit or by § 114(a)(3) and § 504(b) of the Act.
- 22. Nothing in this permit will alter or affect the following: [Reg.26.704(C)]
 - a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
 - b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
 - c. The applicable requirements of the acid rain program, consistent with § 408(a) of the Act; or
 - d. The ability of EPA to obtain information from a source pursuant to § 114 of the Act.
- 23. This permit authorizes only those pollutant emitting activities addressed in this permit. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 24. The permittee may request in writing and at least 15 days in advance of the deadline, an extension to any testing, compliance or other dates in this permit. No such extensions are authorized until the permittee receives written Division of Environmental Quality approval. The Division of Environmental Quality may grant such a request, at its discretion in the following circumstances:

Permit #: 1185-AOP-R13

AFIN: 24-00071

a. Such an extension does not violate a federal requirement;

- b. The permittee demonstrates the need for the extension; and
- c. The permittee documents that all reasonable measures have been taken to meet the current deadline and documents reasons it cannot be met.

[Reg.18.314(A), Reg.19.416(A), Reg.26.1013(A), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

- 25. The permittee may request in writing and at least 30 days in advance, temporary emissions and/or testing that would otherwise exceed an emission rate, throughput requirement, or other limit in this permit. No such activities are authorized until the permittee receives written Division of Environmental Quality approval. Any such emissions shall be included in the facility's total emissions and reported as such. The Division of Environmental Quality may grant such a request, at its discretion under the following conditions:
 - a. Such a request does not violate a federal requirement;
 - b. Such a request is temporary in nature;
 - c. Such a request will not result in a condition of air pollution;
 - d. The request contains such information necessary for the Division of Environmental Quality to evaluate the request, including but not limited to, quantification of such emissions and the date/time such emission will occur;
 - e. Such a request will result in increased emissions less than five tons of any individual criteria pollutant, one ton of any single HAP and 2.5 tons of total HAPs; and
 - f. The permittee maintains records of the dates and results of such temporary emissions/testing.

[Reg.18.314(B), Reg.19.416(B), Reg.26.1013(B), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

- 26. The permittee may request in writing and at least 30 days in advance, an alternative to the specified monitoring in this permit. No such alternatives are authorized until the permittee receives written Division of Environmental Quality approval. The Division of Environmental Quality may grant such a request, at its discretion under the following conditions:
 - a. The request does not violate a federal requirement;
 - b. The request provides an equivalent or greater degree of actual monitoring to the current requirements; and
 - c. Any such request, if approved, is incorporated in the next permit modification application by the permittee.

Permit #: 1185-AOP-R13

AFIN: 24-00071

[Reg.18.314(C), Reg.19.416(C), Reg.26.1013(C), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

27. Any credible evidence based on sampling, monitoring, and reporting may be used to determine violations of applicable emission limitations. [Reg.18.1001, Reg.19.701, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

Appendix A

40 C.F.R. Part 60, Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engine

Displaying title 40, up to date as of 9/28/2021. Title 40 was last amended 9/28/2021.

ENHANCED CONTENT - TABLE OF CONTENTS

Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion 60.4230 - 60.4248

What This Subpart Covers

60.4230

§ 60.4230 Am I subject to this subpart?

Emission Standards for Manufacturers

60.4231 - 60.4232

§ 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing such engines?

§ 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines?

Emission Standards for Owners and Operators

60.4233 - 60.4234

§ 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine?

§ 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine?

Other Requirements for Owners and Operators

60.4235 - 60.4237

§ 60.4235 What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this subpart?

§ 60.4236 What is the deadline for importing or installing stationary SI ICE produced in previous model years?

§ 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine?

Compliance Requirements for Manufacturers

60.4238 - 60.4242

§ 60.4238 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines?

§ 60.4239 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines 19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines?

§ 60.4240 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines 19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines?

§ 60.4241 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines?

§ 60.4242 What other requirements must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

Compliance Requirements for Owners and Operators

60.4243

§ 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine?

Testing Requirements for Owners and Operators

60.4244

§ 60.4244 What test methods and other procedures must I use if I am an owner or operator of a stationary SI internal combustion engine?

Notification, Reports, and Records for Owners and Operators

60.4245

§ 60.4245 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary SI internal combustion engine?

General Provisions 60.4246

§ 60.4246 What parts of the General Provisions apply to me?

Mobile Source Provisions 60.4247

§ 60.4247 What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

Definitions 60.4248

§ 60.4248 What definitions apply to this subpart?

Table 1 to Subpart JJJJ of Part 60

NO_x, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

Table 2 to Subpart JJJJ of Part 60

Requirements for Performance Tests

Table 3 to Subpart JJJJ of Part 60

Applicability of General Provisions to Subpart JJJJ

Table 4 to Subpart JJJJ of Part 60

Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary Certification Program and Certifying Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ

Title 40

Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal **Combustion Engines**

Source: 73 FR 3591, Jan. 18, 2008, unless otherwise noted.

WHAT THIS SUBPART COVERS

§ 60.4230 Am I subject to this subpart?

- (a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.
 - (1) Manufacturers of stationary SI ICE with a maximum engine power less than or equal to 19 kilowatt (KW) (25 horsepower (HP)) that are manufactured on or after July 1, 2008.
 - (2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are gasoline fueled or that are rich burn engines fueled by liquefied petroleum gas (LPG), where the date of manufacture is:
 - (i) On or after July 1, 2008; or
 - (ii) On or after January 1, 2009, for emergency engines.
 - (3) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are not gasoline fueled and are not rich burn engines fueled by LPG, where the manufacturer participates in the voluntary manufacturer certification program described in this subpart and where the date of manufacture is:
 - On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);
 - (ii) On or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;
 - (iii) On or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or
 - (iv) On or after January 1, 2009, for emergency engines.
 - (4) Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured:

- eCFR :: 40 CFR Part 60 Subpart JJJJ -- Standards of Performance for Stationary Spark Ignition Internal Combustion Engines
- (i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);
- (ii) on or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;
- (iii) on or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or
- (iv) on or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 HP).
- (5) Owners and operators of stationary SI ICE that are modified or reconstructed after June 12, 2006, and any person that modifies or reconstructs any stationary SI ICE after June 12, 2006.
- (6) The provisions of § 60.4236 of this subpart are applicable to all owners and operators of stationary SI ICE that commence construction after June 12, 2006.
- (b) The provisions of this subpart are not applicable to stationary SI ICE being tested at an engine test cell/stand.
- (c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.
- (d) For the purposes of this subpart, stationary SI ICE using alcohol-based fuels are considered gasoline engines.
- (e) Stationary SI ICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C (or the exemptions described in 40 CFR parts 1048 and 1054, for engines that would need to be certified to standards in those parts), except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.
- (f) Owners and operators of facilities with internal combustion engines that are acting as temporary replacement units and that are located at a stationary source for less than 1 year and that have been properly certified as meeting the standards that would be applicable to such engine under the appropriate nonroad engine provisions, are not required to meet any other provisions under this subpart with regard to such engines.

[73 FR 3591, Jan. 18, 2008, as amended at 76 FR 37972, June 28, 2011; 86 FR 34360, June 29, 2021]

Emission Standards for Manufacturers

§ 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing such engines?

(a) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) manufactured on or after July 1, 2008 to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1054, as follows:

If engine displacement is	and manufacturing dates are	the engine must meet the following non-handheld emission standards identified in 40 CFR part 1054 and related requirements:
(1) Below 225 cc	July 1, 2008 to December 31, 2011	Phase 2.
(2) Below 225 cc	January 1, 2012 or later	Phase 3.
(3) At or above 225 cc	July 1, 2008 to December 31, 2010	Phase 2.

If engine displacement is	and manufacturing dates are	the engine must meet the following non-handheld emission standards identified in 40 CFR part 1054 and related requirements:
(4) At or above 225 cc	January 1, 2011 or later	Phase 3.

- (b) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) (except emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) that use gasoline and that are manufactured on or after the applicable date in § 60.4230(a)(4) for emergency stationary ICE with a maximum engine power greater than or equal to 130 HP, to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their emergency stationary SI ICE with a maximum engine power greater than 25 HP and less than 130 HP that use gasoline and that are manufactured on or after the applicable date in § 60.4230(a)(4) to the Phase 1 emission standards in 40 CFR part 1054, appendix I, applicable to class II engines, and other requirements for new nonroad SI engines in 40 CFR part 1054. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cubic centimeters (cc) that use gasoline to the certification emission standards and other requirements as appropriate for new nonroad SI engines in 40 CFR part 1054.
- (c) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) (except emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) that are rich burn engines that use LPG and that are manufactured on or after the applicable date in § 60.4230(a)(2), or manufactured on or after the applicable date in § 60.4230(a)(4) for emergency stationary ICE with a maximum engine power greater than or equal to 130 HP, to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their emergency stationary SI ICE greater than 25 HP and less than 130 HP that are rich burn engines that use LPG and that are manufactured on or after the applicable date in § 60.4230(a)(4) to the Phase 1 emission standards in 40 CFR part 1054, appendix I, applicable to class II engines, and other requirements for new nonroad SI engines in 40 CFR part 1054. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc that are rich burn engines that use LPG to the certification emission standards and other requirements as appropriate for new nonroad SI engines in 40 CFR part 1054.
- (d) Stationary SI internal combustion engine manufacturers who choose to certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG and emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) under the voluntary manufacturer certification program described in this subpart must certify those engines to the certification emission standards for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers who choose to certify their emergency stationary SI ICE greater than 25 HP and less than 130 HP (except gasoline and rich burn engines that use LPG), must certify those engines to the Phase 1 emission standards in 40 CFR part 1054, appendix I, applicable to class II engines, for new nonroad SI engines in 40 CFR part 1054. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or egual to 30 KW (40 HP) with a total displacement less than or egual to 1,000 cc (except gasoline and rich burn engines that use LPG) to the certification emission standards and other requirements as appropriate for new nonroad SI engines in 40 CFR part 1054. For stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG and emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) manufactured prior to January 1, 2011, manufacturers may choose to certify these engines to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP.
- (e) Stationary SI internal combustion engine manufacturers who choose to certify their stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) under the voluntary manufacturer certification program described in this subpart must certify those engines to the emission standards in Table 1 to this subpart. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) that are lean burn engines that use LPG to the certification emission standards for new nonroad SI engines in 40 CFR part 1048. For stationary SI ICE with a maximum engine power greater than or equal to 100 HP (75 KW) and less than 500 HP (373 KW) manufactured prior to

- January 1, 2011, and for stationary SI ICE with a maximum engine power greater than or equal to 500 HP (373 KW) manufactured prior to July 1, 2010, manufacturers may choose to certify these engines to the certification emission standards for new nonroad SI engines in 40 CFR part 1048 applicable to engines that are not severe duty engines.
- (f) Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, to the extent they apply to equipment manufacturers.
- (g) Notwithstanding the requirements in paragraphs (a) through (c) of this section, stationary SI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (e) of this section that are applicable to the model year, maximum engine power and displacement of the reconstructed stationary SI ICE.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59175, Oct. 8, 2008; 76 FR 37973, June 28, 2011; 78 FR 6697, Jan. 30, 2013; 86 FR 34360, June 29, 2021]

§ 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines?

Engines manufactured by stationary SI internal combustion engine manufacturers must meet the emission standards as required in § 60.4231 during the certified emissions life of the engines.

EMISSION STANDARDS FOR OWNERS AND OPERATORS

§ 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine?

- (a) Owners and operators of stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) manufactured on or after July 1, 2008, must comply with the emission standards in § 60.4231(a) for their stationary SI ICE.
- (b) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) manufactured on or after the applicable date in § 60.4230(a)(4) that use gasoline must comply with the emission standards in § 60.4231(b) for their stationary SI ICE.
- (c) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) manufactured on or after the applicable date in § 60.4230(a)(4) that are rich burn engines that use LPG must comply with the emission standards in § 60.4231(c) for their stationary SI ICE.
- (d) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards for field testing in 40 CFR 1048.101(c) for their non-emergency stationary SI ICE and with the emission standards in Table 1 to this subpart for their emergency stationary SI ICE. Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) manufactured prior to January 1, 2011, that were certified to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP, may optionally choose to meet those standards.
- (e) Owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards in Table 1 to this subpart for their stationary SI ICE. For owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 100 HP (except gasoline and rich burn engines that use LPG) manufactured prior to January 1, 2011 that were certified to the certification emission standards in 40 CFR part 1048 applicable to engines that are not severe duty engines, if such stationary SI ICE was certified to a carbon monoxide (CO) standard above the standard in Table 1 to this subpart, then the owners and operators may meet the CO certification (not field testing) standard for which the engine was certified.
- (f) Owners and operators of any modified or reconstructed stationary SI ICE subject to this subpart must meet the requirements as specified in paragraphs (f)(1) through (5) of this section.
 - (1) Owners and operators of stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with emission standards in § 60.4231(a) for their stationary SI ICE. Engines with a date of manufacture prior to July 1, 2008 must comply with the emission standards specified in § 60.4231(a) applicable to engines manufactured on July 1, 2008.

- (2) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are gasoline engines and are modified or reconstructed after June 12, 2006, must comply with the emission standards in § 60.4231(b) for their stationary SI ICE. Engines with a date of manufacture prior to July 1, 2008 (or January 1, 2009 for emergency engines) must comply with the emission standards specified in § 60.4231(b) applicable to engines manufactured on July 1, 2008 (or January 1, 2009 for emergency engines).
- (3) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are rich burn engines that use LPG, that are modified or reconstructed after June 12, 2006, must comply with the same emission standards as those specified in § 60.4231(c). Engines with a date of manufacture prior to July 1, 2008 (or January 1, 2009 for emergency engines) must comply with the emission standards specified in § 60.4231(c) applicable to engines manufactured on July 1, 2008 (or January 1, 2009 for emergency engines).
- (4) Owners and operators of stationary SI natural gas and lean burn LPG engines with a maximum engine power greater than 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with the same emission standards as those specified in paragraph (d) or (e) of this section, except that such owners and operators of non-emergency engines and emergency engines greater than or equal to 130 HP must meet a nitrogen oxides (NO_X) emission standard of 3.0 grams per HP-hour (g/HP-hr), a CO emission standard of 4.0 g/HP-hr (5.0 g/HP-hr for non-emergency engines less than 100 HP), and a volatile organic compounds (VOC) emission standard of 1.0 g/HP-hr, or a NO_X emission standard of 250 ppmvd at 15 percent oxygen (O₂), a CO emission standard 540 ppmvd at 15 percent O₂ for non-emergency engines less than 100 HP), and a VOC emission standard of 86 ppmvd at 15 percent O₂, where the date of manufacture of the engine is:
 - (i) Prior to July 1, 2007, for non-emergency engines with a maximum engine power greater than or equal to 500 HP (except lean burn natural gas engines and LPG engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);
 - (ii) Prior to July 1, 2008, for non-emergency engines with a maximum engine power less than 500 HP;
 - (iii) Prior to January 1, 2009, for emergency engines;
 - (iv) Prior to January 1, 2008, for non-emergency lean burn natural gas engines and LPG engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP.
- (5) Owners and operators of stationary SI landfill/digester gas ICE engines with a maximum engine power greater than 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with the same emission standards as those specified in paragraph (e) of this section for stationary landfill/digester gas engines. Engines with maximum engine power less than 500 HP and a date of manufacture prior to July 1, 2008 must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE with a maximum engine power less than 500 HP manufactured on July 1, 2008. Engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines greater than or equal to 500 HP and less than 1,350 HP) and a date of manufacture prior to July 1, 2007 must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE with a maximum engine power greater than or equal to 500 HP (except lean burn engines greater than or equal to 500 HP and less than 1,350 HP) manufactured on July 1, 2007. Lean burn engines greater than or equal to 500 HP and less than 1,350 HP with a date of manufacture prior to January 1, 2008 must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE that are lean burn engines greater than or equal to 500 HP and less than 1,350 HP and manufactured on January 1, 2008.
- (g) Owners and operators of stationary SI wellhead gas ICE engines may petition the Administrator for approval on a case-by-case basis to meet emission standards no less stringent than the emission standards that apply to stationary emergency SI engines greater than 25 HP and less than 130 HP due to the presence of high sulfur levels in the fuel, as specified in Table 1 to this subpart. The request must, at a minimum, demonstrate that the fuel has high sulfur levels that prevent the use of aftertreatment controls and also that the owner has reasonably made all attempts possible to obtain an engine that will meet the standards without the use of aftertreatment controls. The petition must request the most stringent standards reasonably applicable to the engine using the fuel.
- (h) Owners and operators of stationary SI ICE that are required to meet standards that reference 40 CFR 1048.101 must, if testing their engines in use, meet the standards in that section applicable to field testing, except as indicated in paragraph (e) of this section.

[73 FR 3591, Jan. 18, 2008, as amended at 76 FR 37973, June 28, 2011]

§ 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine?

Owners and operators of stationary SI ICE must operate and maintain stationary SI ICE that achieve the emission standards as required in § 60.4233 over the entire life of the engine.

Other Requirements for Owners and Operators

§ 60.4235 What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this subpart?

Owners and operators of stationary SI ICE subject to this subpart that use gasoline must use gasoline that meets the per gallon sulfur limit in 40 CFR 1090.205.

[73 FR 3591, Jan. 18, 2008, as amended at 85 FR 78463, Dec. 4, 2020]

§ 60.4236 What is the deadline for importing or installing stationary SI ICE produced in previous model years?

- (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the applicable requirements in § 60.4233.
- (b) After July 1, 2009, owners and operators may not install stationary SI ICE with a maximum engine power of greater than or equal to 500 HP that do not meet the applicable requirements in § 60.4233, except that lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP that do not meet the applicable requirements in § 60.4233 may not be installed after January 1, 2010.
- (c) For emergency stationary SI ICE with a maximum engine power of greater than 19 KW (25 HP), owners and operators may not install engines that do not meet the applicable requirements in § 60.4233 after January 1, 2011.
- (d) In addition to the requirements specified in §§ 60.4231 and 60.4233, it is prohibited to import stationary SI ICE less than or equal to 19 KW (25 HP), stationary rich burn LPG SI ICE, and stationary gasoline SI ICE that do not meet the applicable requirements specified in paragraphs (a), (b), and (c) of this section, after the date specified in paragraph (a), (b), and (c) of this section.
- (e) The requirements of this section do not apply to owners and operators of stationary SI ICE that have been modified or reconstructed, and they do not apply to engines that were removed from one existing location and reinstalled at a new location.

§ 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine?

- (a) Starting on July 1, 2010, if the emergency stationary SI internal combustion engine that is greater than or equal to 500 HP that was built on or after July 1, 2010, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.
- (b) Starting on January 1, 2011, if the emergency stationary SI internal combustion engine that is greater than or equal to 130 HP and less than 500 HP that was built on or after January 1, 2011, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.
- (c) If you are an owner or operator of an emergency stationary SI internal combustion engine that is less than 130 HP, was built on or after July 1, 2008, and does not meet the standards applicable to non-emergency engines, you must install a non-resettable hour meter upon startup of your emergency engine.

Compliance Requirements for Manufacturers

§ 60.4238 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in § 60.4231(a) must certify their stationary SI ICE using the certification and testing procedures required in 40 CFR part 1054, subparts C and F. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[86 FR 34361, June 29, 2021]

§ 60.4239 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines 19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in § 60.4231(b) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must test their engines as specified in that part. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1054, and manufacturers of stationary SI emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 emission standards in 40 CFR part 1054, appendix I, applicable to class II engines, must certify their stationary SI ICE using the certification and testing procedures required in 40 CFR part 1054, subparts C and F. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[86 FR 34361, June 29, 2021]

§ 60.4240 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines 19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in § 60.4231(c) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must test their engines as specified in that part. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1054, and manufacturers of stationary SI emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 emission standards in 40 CFR part 1054, appendix I, applicable to class II engines, must certify their stationary SI ICE using the certification and testing procedures required in 40 CFR part 1054, subparts C and F. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[86 FR 34361, June 29, 2021]

§ 60.4241 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines?

- (a) Manufacturers of stationary SI internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline and are not rich burn engines that use LPG can choose to certify their engines to the emission standards in § 60.4231(d) or (e), as applicable, under the voluntary certification program described in this subpart. Manufacturers who certify their engines under the voluntary certification program must meet the requirements as specified in paragraphs (b) through (g) of this section. In addition, manufacturers of stationary SI internal combustion engines who choose to certify their engines under the voluntary certification program, must also meet the requirements as specified in § 60.4247. Manufacturers of stationary SI internal combustion engines who choose not to certify their engines under this section must notify the ultimate purchaser that testing requirements apply as described in § 60.4243(b)(2); manufacturers must keep a copy of this notification for five years after shipping each engine and make those documents available to EPA upon request.
- (b) Manufacturers of engines other than those certified to standards in 40 CFR part 1054 must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must follow the same test procedures that apply to Large SI nonroad engines under 40 CFR part 1048, but must use the D-1 cycle of International Organization for Standardization 8178-4: 1996(E) (incorporated by reference, see § 60.17) or the test cycle requirements specified in Table 3 to 40 CFR 1048.505, except that Table 3 of 40 CFR 1048.505 applies to high load engines only. Manufacturers of any size may certify their stationary emergency engines at or above 130 hp using assigned deterioration factors established by EPA, consistent with 40 CFR 1048.240. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new

nonroad SI engines in 40 CFR part 1054, and manufacturers of emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 standards in 40 CFR part 1054, appendix I, applicable to class II engines, must certify their stationary SI ICE using the certification and testing procedures required in 40 CFR part 1054, subparts C and F. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

- (c) Certification of stationary SI ICE to the emission standards specified in § 60.4231(d) or (e), as applicable, is voluntary, but manufacturers who decide to certify are subject to all of the requirements indicated in this subpart with regard to the engines included in their certification. Manufacturers must clearly label their stationary SI engines as certified or non-certified engines.
- (d) Manufacturers of natural gas fired stationary SI ICE who conduct voluntary certification of stationary SI ICE to the emission standards specified in § 60.4231(d) or (e), as applicable, must certify their engines for operation using fuel that meets the definition of pipeline-quality natural gas. The fuel used for certifying stationary SI natural gas engines must meet the definition of pipeline-quality natural gas as described in § 60.4248. In addition, the manufacturer must provide information to the owner and operator of the certified stationary SI engine including the specifications of the pipeline-quality natural gas to which the engine is certified and what adjustments the owner or operator must make to the engine when installed in the field to ensure compliance with the emission standards.
- (e) Manufacturers of stationary SI ICE that are lean burn engines fueled by LPG who conduct voluntary certification of stationary SI ICE to the emission standards specified in § 60.4231(d) or (e), as applicable, must certify their engines for operation using fuel that meets the specifications in 40 CFR 1065.720.
- (f) Manufacturers may certify their engines for operation using gaseous fuels in addition to pipeline-quality natural gas; however, the manufacturer must specify the properties of that fuel and provide testing information showing that the engine will meet the emission standards specified in § 60.4231(d) or (e), as applicable, when operating on that fuel. The manufacturer must also provide instructions for configuring the stationary engine to meet the emission standards on fuels that do not meet the pipeline-quality natural gas definition. The manufacturer must also provide information to the owner and operator of the certified stationary SI engine regarding the configuration that is most conducive to reduced emissions where the engine will be operated on gaseous fuels with different quality than the fuel that it was certified to.
- (g) A stationary SI engine manufacturer may certify an engine family solely to the standards applicable to landfill/digester gas engines as specified in § 60.4231(d) or (e), as applicable, but must certify their engines for operation using landfill/digester gas and must add a permanent label stating that the engine is for use only in landfill/digester gas applications. The label must be added according to the labeling requirements specified in 40 CFR 1048.135(b).
- (h) For purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.
- (i) For engines being certified to the voluntary certification standards in Table 1 of this subpart, the VOC measurement shall be made by following the procedures in 40 CFR part 1065, subpart C, to determine the total NMHC emissions. As an alternative, manufacturers may measure ethane, as well as methane, for excluding such levels from the total VOC measurement.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59176, Oct. 8, 2008; 76 FR 37974, June 28, 2011; 86 FR 34361, June 29, 2021]

§ 60.4242 What other requirements must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

- (a) Stationary SI internal combustion engine manufacturers must meet the provisions of 40 CFR parts 1048, 1054, and 1068, as applicable, except that engines certified pursuant to the voluntary certification procedures in § 60.4241 are subject only to the provisions indicated in § 60.4247 and are permitted to provide instructions to owners and operators allowing for deviations from certified configurations, if such deviations are consistent with the provisions of § 60.4241(c) through (f). Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, as applicable. Labels on engines certified to 40 CFR part 1048 must refer to stationary engines, rather than or in addition to nonroad engines, as appropriate.
- (b) An engine manufacturer certifying an engine family or families to standards under this subpart that are identical to standards identified in 40 CFR part 1048 or 1054 for that model year may certify any such family that contains both nonroad and stationary engines as a single engine family and/or may include any such family containing stationary engines in the averaging, banking and trading provisions applicable for such engines under those parts. This paragraph (b) also applies to equipment or component manufacturers certifying to standards under 40 CFR part 1060.

- (c) Manufacturers of engine families certified to 40 CFR part 1048 may meet the labeling requirements referred to in paragraph (a) of this section for stationary SI ICE by either adding a separate label containing the information required in paragraph (a) of this section or by adding the words "and stationary" after the word "nonroad" to the label.
- (d) For all engines manufactured on or after January 1, 2011, and for all engines with a maximum engine power greater than 25 HP and less than 130 HP manufactured on or after July 1, 2008, a stationary SI engine manufacturer that certifies an engine family solely to the standards applicable to emergency engines must add a permanent label stating that the engines in that family are for emergency use only. The label must be added according to the labeling requirements specified in 40 CFR 1048.135(b).
- (e) All stationary SI engines subject to mandatory certification that do not meet the requirements of this subpart must be labeled and exported according to 40 CFR 1068.230. Manufacturers of stationary engines with a maximum engine power greater than 25 HP that are not certified to standards and other requirements under 40 CFR part 1048 are subject to the labeling provisions of 40 CFR 1048.20 pertaining to excluded stationary engines.
- (f) For manufacturers of gaseous-fueled stationary engines required to meet the warranty provisions in 40 CFR 1054.120, we may establish an hour-based warranty period equal to at least the certified emissions life of the engines (in engine operating hours) if we determine that these engines are likely to operate for a number of hours greater than the applicable useful life within 24 months. We will not approve an alternate warranty under this paragraph (f) for nonroad engines. An alternate warranty period approved under this paragraph (f) will be the specified number of engine operating hours or two years, whichever comes first. The engine manufacturer shall request this alternate warranty period in its application for certification or in an earlier submission. We may approve an alternate warranty period for an engine family subject to the following conditions:
 - (1) The engines must be equipped with non-resettable hour meters.
 - (2) The engines must be designed to operate for a number of hours substantially greater than the applicable certified emissions life.
 - (3) The emission-related warranty for the engines may not be shorter than any published warranty offered by the manufacturer without charge for the engines. Similarly, the emission-related warranty for any component shall not be shorter than any published warranty offered by the manufacturer without charge for that component.

[86 FR 34362, June 29, 2021]

COMPLIANCE REQUIREMENTS FOR OWNERS AND OPERATORS

§ 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine?

- (a) If you are an owner or operator of a stationary SI internal combustion engine that is manufactured after July 1, 2008, and must comply with the emission standards specified in § 60.4233(a) through (c), you must comply by purchasing an engine certified to the emission standards in § 60.4231(a) through (c), as applicable, for the same engine class and maximum engine power. In addition, you must meet one of the requirements specified in (a)(1) and (2) of this section.
 - (1) If you operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, you must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required if you are an owner or operator. You must also meet the requirements as specified in 40 CFR part 1068, subparts A through D, as they apply to you. If you adjust engine settings according to and consistent with the manufacturer's instructions, your stationary SI internal combustion engine will not be considered out of compliance.
 - (2) If you do not operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, your engine will be considered a non-certified engine, and you must demonstrate compliance according to (a)(2)(i) through (iii) of this section, as appropriate.
 - (i) If you are an owner or operator of a stationary SI internal combustion engine less than 100 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions, but no performance testing is required if you are an owner or operator.
 - (ii) If you are an owner or operator of a stationary SI internal combustion engine greater than or equal to 100 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air

- eCFR :: 40 CFR Part 60 Subpart JJJJ -- Standards of Performance for Stationary Spark Ignition Internal Combustion Engines pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test within 1 year of engine startup to demonstrate compliance.
- (iii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test within 1 year of engine startup and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.
- (b) If you are an owner or operator of a stationary SI internal combustion engine and must comply with the emission standards specified in § 60.4233(d) or (e), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) and (2) of this section.
 - (1) Purchasing an engine certified according to procedures specified in this subpart, for the same model year and demonstrating compliance according to one of the methods specified in paragraph (a) of this section.
 - (2) Purchasing a non-certified engine and demonstrating compliance with the emission standards specified in § 60.4233(d) or (e) and according to the requirements specified in § 60.4244, as applicable, and according to paragraphs (b)(2)(i) and (ii) of this section.
 - (i) If you are an owner or operator of a stationary SI internal combustion engine greater than 25 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance.
 - (ii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.
- (c) If you are an owner or operator of a stationary SI internal combustion engine that must comply with the emission standards specified in § 60.4233(f), you must demonstrate compliance according paragraph (b)(2)(i) or (ii) of this section, except that if you comply according to paragraph (b)(2)(i) of this section, you demonstrate that your non-certified engine complies with the emission standards specified in § 60.4233(f).
- (d) If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in paragraphs (d)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (d)(1) through (3) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (d) (1) through (3) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.
 - (1) There is no time limit on the use of emergency stationary ICE in emergency situations.
 - (2) You may operate your emergency stationary ICE for any combination of the purposes specified in paragraphs (d)(2) (i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (d)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (d)(2).
 - (i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.
 - (ii) Emergency stationary ICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see § 60.17), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

- (iii) Emergency stationary ICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.
- (3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (d)(2) of this section. Except as provided in paragraph (d)(3)(i) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
 - (i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:
 - (A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;
 - (B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
 - (C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
 - (D) The power is provided only to the facility itself or to support the local transmission and distribution system.
 - (E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.
 - (ii) [Reserved]
- (e) Owners and operators of stationary SI natural gas fired engines may operate their engines using propane for a maximum of 100 hours per year as an alternative fuel solely during emergency operations, but must keep records of such use. If propane is used for more than 100 hours per year in an engine that is not certified to the emission standards when using propane, the owners and operators are required to conduct a performance test to demonstrate compliance with the emission standards of § 60.4233.
- (f) If you are an owner or operator of a stationary SI internal combustion engine that is less than or equal to 500 HP and you purchase a non-certified engine or you do not operate and maintain your certified stationary SI internal combustion engine and control device according to the manufacturer's written emission-related instructions, you are required to perform initial performance testing as indicated in this section, but you are not required to conduct subsequent performance testing unless the stationary engine undergoes rebuild, major repair or maintenance. Engine rebuilding means to overhaul an engine or to otherwise perform extensive service on the engine (or on a portion of the engine or engine system). For the purpose of this paragraph (f), perform extensive service means to disassemble the engine (or portion of the engine or engine system), inspect and/or replace many of the parts, and reassemble the engine (or portion of the engine or engine system) in such a manner that significantly increases the service life of the resultant engine.
- (g) It is expected that air-to-fuel ratio controllers will be used with the operation of three-way catalysts/non-selective catalytic reduction. The AFR controller must be maintained and operated appropriately in order to ensure proper operation of the engine and control device to minimize emissions at all times.
- (h) If you are an owner/operator of an stationary SI internal combustion engine with maximum engine power greater than or equal to 500 HP that is manufactured after July 1, 2007 and before July 1, 2008, and must comply with the emission standards specified in sections 60.4233(b) or (c), you must comply by one of the methods specified in paragraphs (h)(1) through (h)(4) of this section.
 - (1) Purchasing an engine certified according to 40 CFR part 1048. The engine must be installed and configured according to the manufacturer's specifications.
 - (2) Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.
 - (3) Keeping records of engine manufacturer data indicating compliance with the standards.
 - (4) Keeping records of control device vendor data indicating compliance with the standards.

- (i) If you are an owner or operator of a modified or reconstructed stationary SI internal combustion engine and must comply with the emission standards specified in § 60.4233(f), you must demonstrate compliance according to one of the methods specified in paragraphs (i)(1) or (2) of this section.
 - (1) Purchasing, or otherwise owning or operating, an engine certified to the emission standards in § 60.4233(f), as applicable.
 - (2) Conducting a performance test to demonstrate initial compliance with the emission standards according to the requirements specified in § 60.4244. The test must be conducted within 60 days after the engine commences operation after the modification or reconstruction.

[73 FR 3591, Jan. 18, 2008, as amended at 76 FR 37974, June 28, 2011; 78 FR 6697, Jan. 30, 2013; 86 FR 34362, June 29, 2021]

Testing Requirements for Owners and Operators

§ 60.4244 What test methods and other procedures must I use if I am an owner or operator of a stationary SI internal combustion engine?

Owners and operators of stationary SI ICE who conduct performance tests must follow the procedures in paragraphs (a) through (f) of this section.

- (a) Each performance test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and according to the requirements in § 60.8 and under the specific conditions that are specified by Table 2 to this subpart.
- (b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in § 60.8(c). If your stationary SI internal combustion engine is non-operational, you do not need to startup the engine solely to conduct a performance test; however, you must conduct the performance test immediately upon startup of the engine.
- (c) You must conduct three separate test runs for each performance test required in this section, as specified in § 60.8(f). Each test run must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and last at least 1 hour.
- (d) To determine compliance with the NO_X mass per unit output emission limitation, convert the concentration of NO_X in the engine exhaust using Equation 1 of this section:

Where:

ER = Emission rate of NO_X in g/HP-hr.

C_d = Measured NO_X concentration in parts per million by volume (ppmv).

 1.912×10^{-3} = Conversion constant for ppm NO_X to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, horsepower-hour (HP-hr).

(e) To determine compliance with the CO mass per unit output emission limitation, convert the concentration of CO in the engine exhaust using Equation 2 of this section:

Where:

ER = Emission rate of CO in g/HP-hr.

C_d = Measured CO concentration in ppmv.

 1.164×10^{-3} = Conversion constant for ppm CO to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.
T = Time of test run, in hours.
HP-hr = Brake work of the engine, in HP-hr.
(f) For purposes of this subpart, when calculating emissions of VOC, emissions of formaldehyde should not be included. To determine compliance with the VOC mass per unit output emission limitation, convert the concentration of VOC in the engine exhaust using Equation 3 of this section:
Where:
ER = Emission rate of VOC in g/HP-hr.
C _d = VOC concentration measured as propane in ppmv.
1.833×10^{-3} = Conversion constant for ppm VOC measured as propane, to grams per standard cubic meter at 20 degrees Celsius.
Q = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.
T = Time of test run, in hours.
HP-hr = Brake work of the engine, in HP-hr.
(g) If the owner/operator chooses to measure VOC emissions using either Method 18 of 40 CFR part 60, appendix A, or Method 320 of 40 CFR part 63, appendix A, then it has the option of correcting the measured VOC emissions to account for the potential differences in measured values between these methods and Method 25A. The results from Method 18 and Method 320 can be corrected for response factor differences using Equations 4 and 5 of this section. The corrected VOC concentration can then be placed on a propane basis using Equation 6 of this section.
Where:
RF _i = Response factor of compound i when measured with EPA Method 25A.
C _{Mi} = Measured concentration of compound i in ppmv as carbon.
C _{Ai} = True concentration of compound i in ppmv as carbon.
Where:
C _{icorr} = Concentration of compound i corrected to the value that would have been measured by EPA Method 25A, ppmv as carbon.
C _{imeas} = Concentration of compound i measured by EPA Method 320, ppmv as carbon.
Where:
C _{Peq} = Concentration of compound i in mg of propane equivalent per DSCM.

Notification, Reports, and Records for Owners and Operators

eCFR :: 40 CFR Part 60 Subpart JJJJ -- Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

9/30/21, 1:13 PM

§ 60.4245 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary SI internal combustion engine?

Owners or operators of stationary SI ICE must meet the following notification, reporting and recordkeeping requirements.

- (a) Owners and operators of all stationary SI ICE must keep records of the information in paragraphs (a)(1) through (4) of this section.
 - (1) All notifications submitted to comply with this subpart and all documentation supporting any notification.
 - (2) Maintenance conducted on the engine.
 - (3) If the stationary SI internal combustion engine is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards and information as required in 40 CFR parts 1048, 1054, and 1060, as applicable.
 - (4) If the stationary SI internal combustion engine is not a certified engine or is a certified engine operating in a non-certified manner and subject to § 60.4243(a)(2), documentation that the engine meets the emission standards.
- (b) For all stationary SI emergency ICE greater than or equal to 500 HP manufactured on or after July 1, 2010, that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. For all stationary SI emergency ICE greater than or equal to 130 HP and less than 500 HP manufactured on or after July 1, 2011 that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. For all stationary SI emergency ICE greater than 25 HP and less than 130 HP manufactured on or after July 1, 2008, that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation.
- (c) Owners and operators of stationary SI ICE greater than or equal to 500 HP that have not been certified by an engine manufacturer to meet the emission standards in § 60.4231 must submit an initial notification as required in § 60.7(a)(1). The notification must include the information in paragraphs (c)(1) through (5) of this section.
 - (1) Name and address of the owner or operator;
 - The address of the affected source;
 - (3) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;
 - (4) Emission control equipment; and
 - (5) Fuel used.
- (d) Owners and operators of stationary SI ICE that are subject to performance testing must submit a copy of each performance test as conducted in § 60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7.
- (e) If you own or operate an emergency stationary SI ICE with a maximum engine power more than 100 HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 60.4243(d)(2)(ii) and (iii) or that operates for the purposes specified in § 60.4243(d)(3)(i), you must submit an annual report according to the requirements in paragraphs (e)(1) through (3) of this section.
 - (1) The report must contain the following information:
 - (i) Company name and address where the engine is located.
 - (ii) Date of the report and beginning and ending dates of the reporting period.
 - (iii) Engine site rating and model year.
 - (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

- eCFR :: 40 CFR Part 60 Subpart JJJJ -- Standards of Performance for Stationary Spark Ignition Internal Combustion Engines
- (v) Hours operated for the purposes specified in § 60.4243(d)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in § 60.4243(d)(2)(ii) and (iii).
- (vi) Number of hours the engine is contractually obligated to be available for the purposes specified in § 60.4243(d)(2)(ii) and (iii).
- (vii) Hours spent for operation for the purposes specified in § 60.4243(d)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in § 60.4243(d)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
- (2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
- (3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 60.4.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008; 78 FR 6697, Jan. 30, 2013; 81 FR 59809, Aug. 30, 2016; 86 FR 34362, June 29, 2021]

GENERAL PROVISIONS

§ 60.4246 What parts of the General Provisions apply to me?

Table 3 to this subpart shows which parts of the General Provisions in §§ 60.1 through 60.19 apply to you.

Mobile Source Provisions

§ 60.4247 What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

- (a) Manufacturers certifying to emission standards in 40 CFR part 1054 must meet the provisions of 40 CFR part 1054. Note that 40 CFR part 1054, appendix I, describes various provisions that do not apply for engines meeting Phase 1 standards in 40 CFR part 1054. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060 to the extent they apply to equipment manufacturers.
- (b) Manufacturers required to certify to emission standards in 40 CFR part 1048 must meet the provisions of 40 CFR part 1048. Manufacturers certifying to emission standards in 40 CFR part 1048 pursuant to the voluntary certification program must meet the requirements in Table 4 to this subpart as well as the standards in 40 CFR 1048.101.
- (c) For manufacturers of stationary SI internal combustion engines participating in the voluntary certification program and certifying engines to Table 1 to this subpart, Table 4 to this subpart shows which parts of the mobile source provisions in 40 CFR parts 1048, 1065, and 1068 apply to you. Compliance with the deterioration factor provisions under 40 CFR 1048.205(n) and 1048.240 will be required for engines built new on and after January 1, 2010. Prior to January 1, 2010, manufacturers of stationary internal combustion engines participating in the voluntary certification program have the option to develop their own deterioration factors based on an engineering analysis.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008; 86 FR 34362, June 29, 2021]

DEFINITIONS

§ 60.4248 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Certified emissions life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for certified emissions life for stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) are

given in 40 CFR 1054.107 and 1060.101, as appropriate. The values for certified emissions life for stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) certified to 40 CFR part 1048 are given in 40 CFR 1048.101(g). The certified emissions life for stationary SI ICE with a maximum engine power greater than 75 KW (100 HP) certified under the voluntary manufacturer certification program of this subpart is 5,000 hours or 7 years, whichever comes first. You may request in your application for certification that we approve a shorter certified emissions life for an engine family. We may approve a shorter certified emissions life, in hours of engine operation but not in years, if we determine that these engines will rarely operate longer than the shorter certified emissions life. If engines identical to those in the engine family have already been produced and are in use, your demonstration must include documentation from such in-use engines. In other cases, your demonstration must include an engineering analysis of information equivalent to such in-use data, such as data from research engines or similar engine models that are already in production. Your demonstration must also include any overhaul interval that you recommend, any mechanical warranty that you offer for the engine or its components, and any relevant customer design specifications. Your demonstration may include any other relevant information. The certified emissions life value may not be shorter than any of the following:

- (1) 1,000 hours of operation.
- (2) Your recommended overhaul interval.
- (3) Your mechanical warranty for the engine.

Certified stationary internal combustion engine means an engine that belongs to an engine family that has a certificate of conformity that complies with the emission standards and requirements in this part, or of 40 CFR part 1048 or 1054, as appropriate.

Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and sub-components comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any combined cycle steam/electric generating system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Date of manufacture means one of the following things:

- (1) For freshly manufactured engines and modified engines, date of manufacture means the date the engine is originally produced.
- (2) For reconstructed engines, date of manufacture means the date the engine was originally produced, except as specified in paragraph (3) of this definition.
- (3) Reconstructed engines are assigned a new date of manufacture if the fixed capital cost of the new and refurbished components exceeds 75 percent of the fixed capital cost of a comparable entirely new facility. An engine that is produced from a previously used engine block does not retain the date of manufacture of the engine in which the engine block was previously used if the engine is produced using all new components except for the engine block. In these cases, the date of manufacture is the date of reconstruction or the date the new engine is produced.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and carbon dioxide (CO₂).

Emergency stationary internal combustion engine means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary ICE must comply with the requirements specified in § 60.4243(d) in order to be considered emergency stationary ICE. If the engine does not comply with the requirements specified in § 60.4243(d), then it is not considered to be an emergency stationary ICE under this subpart.

(1) The stationary ICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc.

- (2) The stationary ICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in § 60.4243(d).
- (3) The stationary ICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in § 60.4243(d)(2)(ii) or (iii) and § 60.4243(d)(3)(i).

Engine manufacturer means the manufacturer of the engine. See the definition of "manufacturer" in this section.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Freshly manufactured engine means an engine that has not been placed into service. An engine becomes freshly manufactured when it is originally produced.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Installed means the engine is placed and secured at the location where it is intended to be operated.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining or natural gas production.

Manufacturer has the meaning given in section 216(1) of the Clean Air Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1048.801.

Model year means the calendar year in which an engine is manufactured (see "date of manufacture"), except as follows:

- (1) Model year means the annual new model production period of the engine manufacturer in which an engine is manufactured (see "date of manufacture"), if the annual new model production period is different than the calendar year and includes January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.
- (2) For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was manufactured (see "date of manufacture").

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Pipeline-quality natural gas means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions, and which is provided by a supplier through a pipeline. Pipeline-quality natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1,100 British thermal units per standard cubic foot.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to June 12, 2006, with passive emission control technology for NO_X (such as pre-combustion

chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to either: a gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle, aircraft, or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Stationary internal combustion engine test cell/stand means an engine test cell/stand, as defined in 40 CFR part 63, subpart PPPPP, that tests stationary ICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Subpart means 40 CFR part 60, subpart JJJJ.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Volatile organic compounds means volatile organic compounds as defined in 40 CFR 51.100(s).

Voluntary certification program means an optional engine certification program that manufacturers of stationary SI internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline and are not rich burn engines that use LPG can choose to participate in to certify their engines to the emission standards in § 60.4231(d) or (e), as applicable.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008; 76 FR 37974, June 28, 2011; 78 FR 6698, Jan. 30, 2013; 86 FR 34363, June 29, 2021]

Table 1 to Subpart JJJJ of Part 60 - NO_X , CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines \geq 100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

		Manufacture date	Emission standards ^a					
Engine type and fuel	Maximum engine power		g/HP-hr			ppmvd at 15% O ₂		
			NO _X	со	VOCd	NO _X	со	VOC _q
Non-Emergency SI Natural Gas ^b and Non-Emergency SI Lean Burn LPG ^b	100≤HP<500	7/1/2008	2.0	4.0	1.0	160	540	86
		1/1/2011	1.0	2.0	0.7	82	270	60
Non-Emergency SI Lean Burn Natural Gas and LPG	500≤HP<1,350	1/1/2008	2.0	4.0	1.0	160	540	86

	Maximum engine power	Manufacture date	Emission standards ^a					
Engine type and fuel			g/HP-hr			ppmvd at 15% O ₂		
			NO _X	со	VOCd	NO _X	со	VOCd
		7/1/2010	1.0	2.0	0.7	82	270	60
Non-Emergency SI Natural Gas and Non-Emergency SI Lean Burn LPG (except lean burn 500≤HP<1,350)	HP≥500	7/1/2007	2.0	4.0	1.0	160	540	86
	HP≥500	7/1/2010	1.0	2.0	0.7	82	270	60
Landfill/Digester Gas (except lean burn 500≤HP<1,350)	HP<500	7/1/2008	3.0	5.0	1.0	220	610	80
		1/1/2011	2.0	5.0	1.0	150	610	80
	HP≥500	7/1/2007	3.0	5.0	1.0	220	610	80
		7/1/2010	2.0	5.0	1.0	150	610	80
Landfill/Digester Gas Lean Burn	500≤HP<1,350	1/1/2008	3.0	5.0	1.0	220	610	80
		7/1/2010	2.0	5.0	1.0	150	610	80
Emergency	25 <hp<130< td=""><td>1/1/2009</td><td>^c 10</td><td>387</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></hp<130<>	1/1/2009	^c 10	387	N/A	N/A	N/A	N/A
	HP≥130		2.0	4.0	1.0	160	540	86

 $^{^{\}rm a}$ Owners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/HP-hr or ppmvd at 15 percent O₂.

[76 FR 37975, June 28, 2011]

Table 2 to Subpart JJJJ of Part 60 - Requirements for Performance Tests

As stated in § 60.4244, you must comply with the following requirements for performance tests within 10 percent of 100 percent peak (or the highest achievable) load].

For each	Complying with the requirement to	You must	Using	According to the following requirements
----------	--	----------	-------	---

^b Owners and operators of new or reconstructed non-emergency lean burn SI stationary engines with a site rating of greater than or equal to 250 brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart ZZZZ, Table 2a do not have to comply with the CO emission standards of Table 1 of this subpart.

^c The emission standards applicable to emergency engines between 25 HP and 130 HP are in terms of NO_X + HC.

^d For purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

For each	Complying with the requirement to	You must	Using	According to the following requirements
1. Stationary SI internal combustion engine demonstrating compliance according to § 60.4244	a. Limit the concentration of NO _X in the stationary SI internal combustion engine exhaust	i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;	(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate	(a) Alternatively, for NO _X , O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.
		ii. Determine the O_2 concentration of the stationary internal combustion engine exhaust at the sampling port location;	(2) Method 3, 3A, or 3B ^b of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005) a d	(b) Measurements to determine ${\rm O}_2$ concentration must be made at the same time as the measurements for ${\rm NO}_{\rm X}$ concentration.
		iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;	(3) Method 2 or 2C of 40 CFR part 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7	(c) Measurements to determine the exhaust flowrate must be made (1) at the same time as the measurement for NO _X concentration or, alternatively (2) according to the option in Section 11.1.2 of Method 1A of 40 CFR part 60, Appendix A-1, if applicable.

For each	Complying with the requirement to	You must	Using	According to the following requirements
		iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A,e or ASTM Method D6348-03 d e	(d) Measurements to determine moisture must be made at the same time as the measurement for NO_X concentration.
		v. Measure NO _X at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device	(5) Method 7E of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (Reapproved 2005),a d Method 320 of 40 CFR part 63, appendix A,e or ASTM Method D6348-03 d e	(e) Results of this test consist of the average of the three 1-hour or longer runs.

For each	Complying with the requirement to	You must	Using	According to the following requirements
	b. Limit the concentration of CO in the stationary SI internal combustion engine exhaust	i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;	(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate	(a) Alternatively, for CO, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.
		ii. Determine the O_2 concentration of the stationary internal combustion engine exhaust at the sampling port location;	(2) Method 3, 3A, or 3B ^b of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005) a d	(b) Measurements to determine O ₂ concentration must be made at the same time as the measurements for CO concentration.
		iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;	(3) Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7	(c) Measurements to determine the exhaust flowrate must be made (1) at the same time as the measurement for CO concentration or, alternatively (2) according to the option in Section 11.1.2 of Method 1A of 40 CFR part 60, Appendix A-1, if applicable.

For each	Complying with the requirement to	You must	Using	According to the following requirements
		iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, ^e or ASTM Method D6348-03 d e	(d) Measurements to determine moisture must be made at the same time as the measurement for CO concentration.
		v. Measure CO at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device	(5) Method 10 of 40 CFR part 60, appendix A4, ASTM Method D6522-00 (Reapproved 2005),a d e Method 320 of 40 CFR part 63, appendix A, ^e or ASTM Method D6348-03 d e	(e) Results of this test consist of the average of the three 1-hour or longer runs.

For each	Complying with the requirement to	You must	Using	According to the following requirements
	c. Limit the concentration of VOC in the stationary SI internal combustion engine exhaust	i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;	(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate	(a) Alternatively, for VOC, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.
		ii. Determine the O_2 concentration of the stationary internal combustion engine exhaust at the sampling port location;	(2) Method 3, 3A, or 3B ^b of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005) a d	(b) Measurements to determine ${\sf O}_2$ concentration must be made at the same time as the measurements for VOC concentration.
		iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;	(3) Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7	(c) Measurements to determine the exhaust flowrate must be made (1) at the same time as the measurement for VOC concentration or, alternatively (2) according to the option in Section 11.1.2 of Method 1A of 40 CFR part 60, Appendix A-1, if applicable.

For each	Complying with the requirement to	You must	Using	According to the following requirements
		iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and	(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, ^e or ASTM Method D6348-03 d e	(d) Measurements to determine moisture must be made at the same time as the measurement for VOC concentration.
		v. Measure VOC at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device	(5) Methods 25A and 18 of 40 CFR part 60, appendices A-6 and A-7, Method 25A with the use of a hydrocarbon cutter as described in 40 CFR 1065.265, Method 18 of 40 CFR part 60, appendix A-6,c e Method 320 of 40 CFR part 63, appendix A,e or ASTM Method D6348-03 d e	(e) Results of this test consist of the average of the three 1-hour or longer runs.

^a Also, you may petition the Administrator for approval to use alternative methods for portable analyzer.

^b You may use ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses, for measuring the O₂ content of the exhaust gas as an alternative to EPA Method 3B. AMSE PTC 19.10-1981 incorporated by reference, see 40 CFR 60.17

^c You may use EPA Method 18 of 40 CFR part 60, appendix A-6, provided that you conduct an adequate pre-survey test prior to the emissions test, such as the one described in OTM 11 on EPA's website (http://www.epa.gov/ttn/emc/prelim/otm11.pdf).

 $^{\rm d}$ Incorporated by reference; see 40 CFR 60.17.

[85 FR 63408, Oct. 7, 2020]

Table 3 to Subpart JJJJ of Part 60 - Applicability of General Provisions to Subpart JJJJ

[As stated in § 60.4246, you must comply with the following applicable General Provisions]

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 60.1	General applicability of the General Provisions	Yes	
§ 60.2	Definitions	Yes	Additional terms defined in § 60.4248.
§ 60.3	Units and abbreviations	Yes	
§ 60.4	Address	Yes	
§ 60.5	Determination of construction or modification	Yes	
§ 60.6	Review of plans	Yes	
§ 60.7	Notification and Recordkeeping	Yes	Except that § 60.7 only applies as specified in § 60.4245.
§ 60.8	Performance tests	Yes	Except that § 60.8 only applies to owners and operators who are subject to performance testing in subpart JJJJ.
§ 60.9	Availability of information	Yes	
§ 60.10	State Authority	Yes	
§ 60.11	Compliance with standards and maintenance requirements	Yes	Requirements are specified in subpart JJJJ.
§ 60.12	Circumvention	Yes	
§ 60.13	Monitoring requirements	No	
§ 60.14	Modification	Yes	
§ 60.15	Reconstruction	Yes	
§ 60.16	Priority list	Yes	
§ 60.17	Incorporations by reference	Yes	

^e You must meet the requirements in § 60.4245(d).

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 60.18	General control device requirements	No	
§ 60.19	General notification and reporting requirements	Yes	

Table 4 to Subpart JJJJ of Part 60 - Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary Certification Program and Certifying Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ

[As stated in § 60.4247, you must comply with the following applicable mobile source provisions if you are a manufacturer participating in the voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart JJJJ]

Mobile source provisions Subject of citation citation		Applies to subpart	Explanation
1048 subpart A	Overview and Applicability	Yes	
1048 subpart B	Emission Standards and Related Requirements	Yes	Except for the specific sections below.
1048.101	Exhaust Emission Standards	No	
1048.105	Evaporative Emission Standards	No	
1048.110	Diagnosing Malfunctions	No	
1048.140	Certifying Blue Sky Series Engines	No	
1048.145	Interim Provisions	No	
1048 subpart C	Certifying Engine Families	Yes	Except for the specific sections below.
1048.205(b)	AECD reporting	Yes	
1048.205(c)	OBD Requirements	No	
1048.205(n)	Deterioration Factors	Yes	Except as indicated in 60.4247(c).
1048.205(p)(1)	Deterioration Factor Discussion	Yes	
1048.205(p)(2)	Liquid Fuels as they require	No	
1048.240(b)(c)(d)	Deterioration Factors	Yes	
1048 subpart D	Testing Production-Line Engines	Yes	

Mobile source provisions citation	Subject of citation	Applies to subpart	Explanation	
1048 subpart E	Testing In-Use Engines	No		
1048 subpart F	Test Procedures	Yes		
1065.5(a)(4)	Raw sampling (refers reader back to the specific emissions regulation for guidance)	Yes		
1048 subpart G	Compliance Provisions	Yes		
1048 subpart H	Reserved			
1048 subpart I	Definitions and Other Reference Information	Yes		
1048 appendix I and II	Yes			
1065 (all subparts)	Engine Testing Procedures	Yes	Except for the specific section below.	
1065.715	Test Fuel Specifications for Natural Gas	No		
1068 (all subparts)	·		Except for the specific sections below.	
1068.245	Hardship Provisions for Unusual Circumstances	No		
1068.250	Hardship Provisions for Small-Volume Manufacturers	No		
1068.255	Hardship Provisions for Equipment Manufacturers and Secondary Engine Manufacturers	No		

Appendix B 40 C.F.R. Part 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Displaying title 40, up to date as of 9/28/2021. Title 40 was last amended 9/28/2021.

ENHANCED CONTENT - TABLE OF CONTENTS

Subpart ZZZZ National Emissions Standards for Hazardous Air Pollutants for Stationary 63.6580 - 63.6675 **Reciprocating Internal Combustion Engines**

What This Subpart Covers

63.6580 - 63.6595

- § 63.6580 What is the purpose of subpart ZZZZ?
- § 63.6585 Am I subject to this subpart?
- § 63.6590 What parts of my plant does this subpart cover?
- § 63.6595 When do I have to comply with this subpart?

Emission and Operating Limitations

63.6600 - 63.6604

- § 63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?
- § 63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?
- § 63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?
- § 63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?
- § 63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

General Compliance Requirements

63.6605

§ 63.6605 What are my general requirements for complying with this subpart?

Testing and Initial Compliance Requirements

63.6610 - 63.6630

- § 63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?
- § 63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?
- § 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?
- § 63.6615 When must I conduct subsequent performance tests?
- § 63.6620 What performance tests and other procedures must I use?
- § 63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?
- § 63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

Continuous Compliance Requirements

63.6635 - 63.6640

- § 63.6635 How do I monitor and collect data to demonstrate continuous compliance?
- § 63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

Notifications, Reports, and Records

63.6645 - 63.6660

- § 63.6645 What notifications must I submit and when?
- § 63.6650 What reports must I submit and when?
- § 63.6655 What records must I keep?
- § 63.6660 In what form and how long must I keep my records?

Other Requirements and Information

63.6665 - 63.6675

§ 63.6665 What parts of the General Provisions apply to me?

§ 63.6670 Who implements and enforces this subpart?

§ 63.6675 What definitions apply to this subpart?

Table 1a to Subpart ZZZZ of Part 63

Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

Table 1b to Subpart ZZZZ of Part 63

Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

Table 2a to Subpart ZZZZ of Part 63

Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

Table 2b to Subpart ZZZZ of Part 63

Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

Table 2c to Subpart ZZZZ of Part 63

Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

Table 2d to Subpart ZZZZ of Part 63

Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

Table 3 to Subpart ZZZZ of Part 63

Subsequent Performance Tests

Table 4 to Subpart ZZZZ of Part 63

Requirements for Performance Tests

Table 5 to Subpart ZZZZ of Part 63

Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

Table 6 to Subpart ZZZZ of Part 63

Continuous Compliance With Emission Limitations, and Other Requirements

Table 7 to Subpart ZZZZ of Part 63

Requirements for Reports

Table 8 to Subpart ZZZZ of Part 63

Applicability of General Provisions to Subpart ZZZZ.

Appendix A to Subpart ZZZZ of Part 63

Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

Title 40

Subpart ZZZZ - National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Source: 69 FR 33506, June 15, 2004, unless otherwise noted.

What This Subpart Covers

§ 63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§ 63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

- (a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a nonroad engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.
- (b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.
- (c) An area source of HAP emissions is a source that is not a major source.
- (d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.
- (e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.
- (f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in § 63.6675, which includes operating according to the provisions specified in § 63.6640(f).
 - (1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in § 63.6640(f)(4)(ii).
 - (2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in § 63.6640(f)(4)(ii).
 - (3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in § 63.6640(f)(4)(ii).

[69 FR 33506, June 15, 2004, as amended at 73 FR 3603, Jan. 18, 2008; 78 FR 6700, Jan. 30, 2013]

§ 63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

- (i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.
- (ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.
- (iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.
- (iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) New stationary RICE.

- (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.
- (ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.
- (iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) Reconstructed stationary RICE.

- (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after December 19, 2002.
- (ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after June 12, 2006.
- (iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in § 63.2 and reconstruction is commenced on or after June 12, 2006.

(b) Stationary RICE subject to limited requirements.

- (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of § 63.6645(f).
 - (i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
 - (ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
- (2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of § 63.6645(f) and the requirements of §§ 63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.
- (3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:
 - (i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
 - (ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

- (iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- (iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;
- (v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
- (c) Stationary RICE subject to Regulations under 40 CFR Part 60. An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.
 - (1) A new or reconstructed stationary RICE located at an area source;
 - (2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
 - (3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
 - (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
 - (5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
 - (6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
 - (7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9674, Mar. 3, 2010; 75 FR 37733, June 30, 2010; 75 FR 51588, Aug. 20, 2010; 78 FR 6700, Jan. 30, 2013]

§ 63.6595 When do I have to comply with this subpart?

- (a) Affected sources.
 - (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.
 - (2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.
 - (3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

- (4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.
- (5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.
- (7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.
- (b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.
 - (1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.
 - (2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.
- (c) If you own or operate an affected source, you must meet the applicable notification requirements in § 63.6645 and in 40 CFR part 63, subpart A.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3604, Jan. 18, 2008; 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 78 FR 6701, Jan. 30, 2013]

Emission and Operating Limitations

§ 63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

- (a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.
- (b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.
- (c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.
- (d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010]

§ 63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 9675, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010]

§ 63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§ 63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in § 63.6620 and Table 4 to this subpart.

- (a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.
- (b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.
 - (1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).
 - (2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.
 - (i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.
 - (ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.
 - (iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.
- (c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:
 - (1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in § 63.6625(i) in order to extend the specified oil change requirement.
 - (2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.

- (3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.
- (4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.
- (d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in § 63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in § 63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.
- (e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart IIII instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.
- (f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in § 63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in § 63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in § 63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

[75 FR 9675, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6701, Jan. 30, 2013]

§ 63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

- (a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 1090.305 for nonroad diesel fuel.
- (b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in § 63.6640(f)(4)(ii), you must use diesel fuel that meets the requirements in 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
- (c) Beginning January 1, 2015, if you own or operate a new emergency CI stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii), you must use diesel fuel that meets the requirements in 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
- (d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either § 63.6603(b)(1) or § 63.6603(b)(2), or are on offshore vessels that meet § 63.6603(c) are exempt from the requirements of this section.

9/30/21, 1:15 PM

GENERAL COMPLIANCE REQUIREMENTS

§ 63.6605 What are my general requirements for complying with this subpart?

- (a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.
- (b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

[75 FR 9675, Mar. 3, 2010, as amended at 78 FR 6702, Jan. 30, 2013]

TESTING AND INITIAL COMPLIANCE REQUIREMENTS

§ 63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

- (a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions in § 63.7(a)(2).
- (b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to § 63.7(a)(2)(ix).
- (c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to § 63.7(a)(2)(ix).
- (d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.
 - (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
 - (2) The test must not be older than 2 years.
 - (3) The test must be reviewed and accepted by the Administrator.
 - (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.
 - (5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§ 63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

[73 FR 3605, Jan. 18, 2008, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

- (a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in § 63.6595 and according to the provisions in § 63.7(a)(2).
- (b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.
 - (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
 - (2) The test must not be older than 2 years.
 - (3) The test must be reviewed and accepted by the Administrator.
 - (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

[75 FR 9676, Mar. 3, 2010, as amended at 75 FR 51589, Aug. 20, 2010]

§ 63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§ 63.6620 What performance tests and other procedures must I use?

- (a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.
- (b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.
 - (1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

- (2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.
- (3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
- (c) [Reserved]
- (d) You must conduct three separate test runs for each performance test required in this section, as specified in § 63.7(e) (3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.
- (e)
- (1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

Where:

C_i = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

C_o = concentration of CO, THC, or formaldehyde at the control device outlet, and

R = percent reduction of CO, THC, or formaldehyde emissions.

- (2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO₂). If pollutant concentrations are to be corrected to 15 percent oxygen and CO₂ concentration is measured in lieu of oxygen concentration measurement, a CO₂ correction factor is needed. Calculate the CO₂ correction factor as described in paragraphs (e) (2)(i) through (iii) of this section.
 - (i) Calculate the fuel-specific F_0 value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

Where:

 F_0 = Fuel factor based on the ratio of oxygen volume to the ultimate CO_2 volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is oxygen, percent/100.

 F_d = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu).

 F_c = Ratio of the volume of CO₂ produced to the gross calorific value of the fuel from Method 19, dsm³/J (dscf/10⁶ Btu)

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent O₂, as follows:

Where:

 X_{CO2} = CO_2 correction factor, percent.

5.9 = 20.9 percent $O_2 - 15$ percent O_2 , the defined O_2 correction value, percent.

(iii) Calculate the CO, THC, and formaldehyde gas concentrations adjusted to 15 percent O2 using CO2 as follows:

Where:

C_{adj} = Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent O₂.

C_d = Measured concentration of CO, THC, or formaldehyde, uncorrected.

 $X_{CO2} = CO_2$ correction factor, percent.

 $%CO_2$ = Measured CO_2 concentration measured, dry basis, percent.

- (f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.
- (g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.
 - (1) Identification of the specific parameters you propose to use as operating limitations;
 - (2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;
 - (3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;
 - (4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and
 - (5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.
- (h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.
 - (1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;
 - (2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;
 - (3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;
 - (4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;
 - (5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;
 - (6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and
 - (7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.
- (i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be

clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9676, Mar. 3, 2010; 78 FR 6702, Jan. 30, 2013]

§ 63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

- (a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O₂ or CO₂ according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.
 - (1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.
 - (2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in § 63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.
 - (3) As specified in § 63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.
 - (4) The CEMS data must be reduced as specified in § 63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.
- (b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.
 - (1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in § 63.8(d). As specified in § 63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.
 - (i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;
 - (ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;
 - (iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;
 - (iv) Ongoing operation and maintenance procedures in accordance with provisions in § 63.8(c)(1)(ii) and (c)(3); and
 - (v) Ongoing reporting and recordkeeping procedures in accordance with provisions in § 63.10(c), (e)(1), and (e)(2) (i).
 - (2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.
 - (3) The CPMS must collect data at least once every 15 minutes (see also § 63.6635).
 - (4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.
 - (5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.
 - (6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

- (c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.
- (d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.
- (e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:
 - (1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;
 - (2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;
 - (3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;
 - (4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;
 - (5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;
 - (6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.
 - (7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;
 - (8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;
 - (9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and
 - (10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.
- (f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.
- (g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either § 63.6603(b)(1) or § 63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet § 63.6603(c) do not have to meet the requirements of this paragraph (g).
 - (1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or
 - (2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.
- (h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.
- (i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis

must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51589, Aug. 20, 2010; 76 FR 12866, Mar. 9, 2011; 78 FR 6703, Jan. 30, 2013]

§ 63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

- (a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.
- (b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.
- (c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in § 63.6645.
- (d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.
- (e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
 - (1) The compliance demonstration must consist of at least three test runs.
 - (2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.
 - (3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.
 - (4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

- (5) You must measure O₂ using one of the O₂ measurement methods specified in Table 4 of this subpart.

 Measurements to determine O₂ concentration must be made at the same time as the measurements for CO or THC concentration.
- (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O₂ emissions simultaneously at the inlet and outlet of the control device.

[69 FR 33506, June 15, 2004, as amended at 78 FR 6704, Jan. 30, 2013]

CONTINUOUS COMPLIANCE REQUIREMENTS

§ 63.6635 How do I monitor and collect data to demonstrate continuous compliance?

- (a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.
- (b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.
- (c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§ 63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

- (a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.
- (b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in § 63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.
- (c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
 - (1) The compliance demonstration must consist of at least one test run.
 - (2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.
 - (3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.
 - (4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.
 - (5) You must measure O₂ using one of the O₂ measurement methods specified in Table 4 of this subpart. Measurements to determine O₂ concentration must be made at the same time as the measurements for CO or THC concentration.
 - (6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O₂ emissions simultaneously at the inlet and outlet of the control device.

- - (7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.
 - (d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).
 - (e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.
 - (f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f) (1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.
 - (1) There is no time limit on the use of emergency stationary RICE in emergency situations.
 - (2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2) (i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).
 - Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.
 - (ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see § 63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.
 - (iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.
 - (3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or nonemergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

- (4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
 - (i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.
 - (ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:
 - (A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.
 - (B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
 - (C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
 - (D) The power is provided only to the facility itself or to support the local transmission and distribution system.
 - (E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3606, Jan. 18, 2008; 75 FR 9676, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6704, Jan. 30, 2013]

Notifications, Reports, and Records

§ 63.6645 What notifications must I submit and when?

- (a) You must submit all of the notifications in §§ 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following;
 - (1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.
 - (2) An existing stationary RICE located at an area source of HAP emissions.
 - (3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.
 - (4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.
 - (5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.
- (b) As specified in § 63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004, or no later than 120 days after the source becomes subject to this subpart, whichever is later.
- (c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

- (d) As specified in § 63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008, or no later than 120 days after the source becomes subject to this subpart, whichever is later.
- (e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.
- (f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with § 63.6590(b), your notification should include the information in § 63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).
- (g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in § 63.7(b)(1).
- (h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to § 63.9(h)(2)(ii).
 - (1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.
 - (2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to § 63.10(d)(2).
- (i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in § 63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in § 63.6603(d) and identifying the state or local regulation that the engine is subject to.

[73 FR 3606, Jan. 18, 2008, as amended at 75 FR 9677, Mar. 3, 2010; 75 FR 51591, Aug. 20, 2010; 78 FR 6705, Jan. 30, 2013; 85 FR 73912, Nov. 19, 2020]

§ 63.6650 What reports must I submit and when?

- (a) You must submit each report in Table 7 of this subpart that applies to you.
- (b) Unless the Administrator has approved a different schedule for submission of reports under § 63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.
 - (1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in § 63.6595.
 - (2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in § 63.6595.
 - (3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
 - (4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
 - (5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates

- eCFR :: 40 CFR Part 63 Subpart ZZZZ -- National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating ... the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.
- (6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in § 63.6595 and ending on December 31.
- (7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in § 63.6595.
- (8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.
- (9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.
- (c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.
 - (1) Company name and address.
 - (2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.
 - (3) Date of report and beginning and ending dates of the reporting period.
 - (4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with § 63.6605(b), including actions taken to correct a malfunction.
 - (5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.
 - (6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in § 63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.
- (d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.
 - (1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.
 - (2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
- (e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.
 - (1) The date and time that each malfunction started and stopped.
 - (2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.
 - (3) The date, time, and duration that each CMS was out-of-control, including the information in § 63.8(c)(8).
 - (4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.
 - (5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.
 - (6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
 - (7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.

- (8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.
- (9) A brief description of the stationary RICE.
- (10) A brief description of the CMS.
- (11) The date of the latest CMS certification or audit.
- (12) A description of any changes in CMS, processes, or controls since the last reporting period.
- (f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.
- (g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.
 - (1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.
 - (2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.
 - (3) Any problems or errors suspected with the meters.
- (h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in § 63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.
 - (1) The report must contain the following information:
 - (i) Company name and address where the engine is located.
 - (ii) Date of the report and beginning and ending dates of the reporting period.
 - (iii) Engine site rating and model year.
 - (iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
 - (v) Hours operated for the purposes specified in § 63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
 - (vi) Number of hours the engine is contractually obligated to be available for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
 - (vii) Hours spent for operation for the purpose specified in § 63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
 - (viii) If there were no deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.
 - (ix) If there were deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.
 - (2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 63.13.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9677, Mar. 3, 2010; 78 FR 6705, Jan. 30, 2013]

§ 63.6655 What records must I keep?

- (a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a) (1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.
 - (1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in § 63.10(b)(2)(xiv).
 - (2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
 - (3) Records of performance tests and performance evaluations as required in § 63.10(b)(2)(viii).
 - (4) Records of all required maintenance performed on the air pollution control and monitoring equipment.
 - (5) Records of actions taken during periods of malfunction to minimize emissions in accordance with § 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- (b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.
 - (1) Records described in § 63.10(b)(2)(vi) through (xi).
 - (2) Previous (i.e., superseded) versions of the performance evaluation plan as required in § 63.8(d)(3).
 - (3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in § 63.8(f)(6)(i), if applicable.
- (c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.
- (d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.
- (e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;
 - (1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.
 - (2) An existing stationary emergency RICE.
 - (3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.
- (f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in § 63.6640(f) (2)(ii) or (iii) or § 63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.
 - (1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.
 - (2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 78 FR 6706, Jan. 30, 2013]

§ 63.6660 In what form and how long must I keep my records?

- (a) Your records must be in a form suitable and readily available for expeditious review according to § 63.10(b)(1).
- (b) As specified in § 63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- (c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1).

[69 FR 33506, June 15, 2004, as amended at 75 FR 9678, Mar. 3, 2010]

Other Requirements and Information

§ 63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§ 63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§ 63.6670 Who implements and enforces this subpart?

- (a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.
- (c) The authorities that will not be delegated to State, local, or tribal agencies are:
 - (1) Approval of alternatives to the non-opacity emission limitations and operating limitations in § 63.6600 under § 63.6(g).
 - (2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.
 - (3) Approval of major alternatives to monitoring under § 63.8(f) and as defined in § 63.90.
 - (4) Approval of major alternatives to recordkeeping and reporting under § 63.10(f) and as defined in § 63.90.
 - (5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in § 63.6610(b).

§ 63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(I)(5) (incorporated by reference, see § 63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;
- (2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.
- (4) Fails to satisfy the general duty to minimize emissions established by § 63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO₂.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in § 63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in § 63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

- (1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.
- (2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in § 63.6640(f).
- (3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in § 63.6640(f)(2)(ii) or (iii) and § 63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes "rich" glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The "lean" glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in § 63.2, except that:

- (1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;
- (2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in § 63.1271 of subpart HHH of this part, shall not be aggregated;

- (3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and
- (4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in § 63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NO_X) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NO_X , CO, and volatile organic compounds (VOC) into CO_2 , nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in § 63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to § 63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to § 63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C₃H₈.

Remote stationary RICE means stationary RICE meeting any of the following criteria:

- (1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.
- (2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.

- (i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
- (ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
- (iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.
- (3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NO_X (such as precombustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

[69 FR 33506, June 15, 2004, as amended at 71 FR 20467, Apr. 20, 2006; 73 FR 3607, Jan. 18, 2008; 75 FR 9679, Mar. 3, 2010; 75 FR 51592, Aug. 20, 2010; 76 FR 12867, Mar. 9, 2011; 78 FR 6706, Jan. 30, 2013]

Table 1a to Subpart ZZZZ of Part 63 - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each .	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
1. 4SRB stationary RICE	a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ¹
	b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(q) for alternative work practices.

[75 FR 9679, Mar. 3, 2010, as amended at 75 FR 51592, Aug. 20, 2010]

Table 1b to Subpart ZZZZ of Part 63 - Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

For each	You must meet the following operating limitation, except during periods of startup
1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂ and using NSCR;	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.1

For each	You must meet the following operating limitation, except during periods of startup
2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or	Comply with any operating limitations approved by the Administrator.
existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O ₂ and not using NSCR.	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2a to Subpart ZZZZ of Part 63 - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

For each .	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
1. 2SLB stationary RICE	a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O_2 . If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd or less at 15 percent O_2 until June 15, 2007	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ¹
2. 4SLB stationary RICE	a. Reduce CO emissions by 93 percent or more; or	
	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O ₂	
3. CI stationary RICE	a. Reduce CO emissions by 70 percent or more; or	

For each .	You must meet the following emission limitation, except during periods of startup	During periods of startup you must
	b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O ₂	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63 - Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§ 63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP:

For each	You must meet the following operating limitation, except during periods of startup
1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.1
2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst	a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and
	b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F. ¹

For each	You must meet the following operating limitation, except during periods of startup
3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and	Comply with any operating limitations approved by the Administrator.
New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and	
existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst.	

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]

Table 2c to Subpart ZZZZ of Part 63 - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§ 63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
----------	---	------------------------------------

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
1. Emergency stationary CI RICE and black start stationary CI RICE ¹	a. Change oil and filter every 500 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. ³
2. Non-Emergency, non-black start stationary CI RICE <100 HP	a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first. ² b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	
3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP	Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O ₂ .	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
4. Non-Emergency, non-black start CI stationary RICE 300 <hp≤500< td=""><td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td><td></td></hp≤500<>	a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O ₂ ; or b. Reduce CO emissions by 70 percent or more.	
5. Non-Emergency, non-black start stationary CI RICE >500 HP	a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O ₂ ; or b. Reduce CO emissions by 70 percent or more.	
6. Emergency stationary SI RICE and black start stationary SI RICE. ¹	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. ³	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary;	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. ³	
8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first; ² b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary;	
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary. ³	
9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500	Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O ₂ .	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500	Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O ₂ .	
11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500	Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O ₂ .	
12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O ₂ .	

¹ If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]

Table 2d to Subpart ZZZZ of Part 63 - Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§ 63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

² Sources have the option to utilize an oil analysis program as described in § 63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

³ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
1. Non-Emergency, non-black start CI stationary RICE ≤300 HP	a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first; 1 b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.
2. Non-Emergency, non-black start CI stationary RICE 300 <hp≤500< td=""><td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or</td><td></td></hp≤500<>	a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O ₂ ; or	
	b. Reduce CO emissions by 70 percent or more.	
3. Non-Emergency, non-black start Cl stationary RICE >500 HP	a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O ₂ ; or	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	b. Reduce CO emissions by 70 percent or more.	
4. Emergency stationary CI RICE and black start stationary CI RICE. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ¹	
	b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year. ²	a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ¹ ; b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.	
6. Non-emergency, non-black start 2SLB stationary RICE	a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.	
7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.	
10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	
11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP	a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹	
	b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	
12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Install NSCR to reduce HAP emissions from the stationary RICE.	

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; 1 b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and	
	c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	

¹ Sources have the option to utilize an oil analysis program as described in § 63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63 - Subsequent Performance Tests

As stated in §§ 63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

For each	Complying with the requirement to	You must
----------	-----------------------------------	----------

² If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

For each	Complying with the requirement to	You must
1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources	Reduce CO emissions and not using a CEMS	Conduct subsequent performance tests semiannually. ¹
2. 4SRB stationary RICE ≥5,000 HP located at major sources	Reduce formaldehyde emissions	Conduct subsequent performance tests semiannually. ¹
3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources	Limit the concentration of formaldehyde in the stationary RICE exhaust	Conduct subsequent performance tests semiannually. ¹
4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE	Limit or reduce CO emissions and not using a CEMS	Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.
5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE	Limit or reduce CO emissions and not using a CEMS	Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.

¹ After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6711, Jan. 30, 2013]

Table 4 to Subpart ZZZZ of Part 63 - Requirements for Performance Tests

As stated in §§ 63.6610, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

For each .	Complying with the requirement to	You must	Using	According to the following requirements
------------	-----------------------------------	----------	-------	---

For each .	Complying with the requirement to	You must	Using	According to the following requirements
1. 2SLB, 4SLB, and CI stationary RICE	a. reduce CO emissions	i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and		(a) For CO and O ₂ measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.
		ii. Measure the O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A- 2, or ASTM Method D6522-00 (Reapproved 2005) ^{a c} (heated probe not necessary)	(b) Measurements to determine O ₂ must be made at the same time as the measurements for CO concentration.
		iii. Measure the CO at the inlet and the outlet of the control device	(1) ASTM D6522-00 (Reapproved 2005) ^{a b c} (heated probe not necessary) or Method 10 of 40 CFR part 60, appendix A-	(c) The CO concentration must be at 15 percent O ₂ , dry basis.

For each .	Complying with the requirement to	You must	Using	According to the following requirements
2. 4SRB stationary RICE	a. reduce formaldehyde emissions	i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and		(a) For formaldehyde, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A.
		ii. Measure O ₂ at the inlet and outlet of the control device; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A- 2, or ASTM Method D6522-00 (Reapproved 2005) ^a (heated probe not necessary)	(a) Measurements to determine O ₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.
		iii. Measure moisture content at the inlet and outlet of the control device; and	(1) Method 4 of 40 CFR part 60, appendix A- 3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03a	(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or THC concentration.

For each .	Complying with the requirement to	You must	Using	According to the following requirements
		iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formalde-hyde at the inlet and the outlet of the control device	(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130	(a) Formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
		v. If demonstrating compliance with the THC percent reduction requirement, measure THC at the inlet and the outlet of the control device	(1) Method 25A, reported as propane, of 40 CFR part 60, appendix A-7	(a) THC concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

For each .	Complying with the requirement to	You must	Using	According to the following requirements
3. Stationary RICE	a. limit the concentration of formaldehyde or CO in the stationary RICE exhaust	i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary RICE; and		(a) For formaldehyde, CO, O ₂ , and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (`3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at `3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A. If using a control device, the sampling site must be located at the outlet of the control device.
		ii. Determine the O ₂ concentration of the stationary RICE exhaust at the sampling port location; and	(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A- 2, or ASTM Method D6522-00 (Reapproved 2005) ^a (heated probe not necessary)	(a) Measurements to determine O ₂ concentration must be made at the same time and location as the measurements for formaldehyde or CO concentration.
		iii. Measure moisture content of the station-ary RICE exhaust at the sampling port location; and	(1) Method 4 of 40 CFR part 60, appendix A- 3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03 ^a	(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or CO concentration.

For each .	Complying with the requirement to	You must	Using	According to the following requirements
		iv. Measure formalde-hyde at the exhaust of the station-ary RICE; or	(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130	(a) Formaldehyde concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.
		v. measure CO at the exhaust of the station-ary RICE	(1) Method 10 of 40 CFR part 60, appendix A- 4, ASTM Method D6522-00 (2005) ^{a c} , Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03 ^a	(a) CO concentration must be at 15 percent O ₂ , dry basis. Results of this test consist of the average of the three 1-hour or longer runs.

^a You may also use Methods 3A and 10 as options to ASTM-D6522-00 (2005). You may obtain a copy of ASTM-D6522-00 (2005) from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

[79 FR 11290, Feb. 27, 2014]

^b You may obtain a copy of ASTM-D6348-03 from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

Table 5 to Subpart ZZZZ of Part 63 - Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§ 63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

For each	Complying with the requirement to	You have demonstrated initial compliance if
1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions and using oxidation catalyst, and using a CPMS	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.
2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions and not using oxidation catalyst	i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.
4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, and not using oxidation catalyst	i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Reduce CO emissions, and using a CEMS	i. You have installed a CEMS to continuously monitor CO and either O ₂ or CO ₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in § 63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average reduction of CO calculated using § 63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.

For each	Complying with the requirement to	You have demonstrated initial compliance if
6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP	a. Limit the concentration of CO, and using a CEMS	i. You have installed a CEMS to continuously monitor CO and either $\rm O_2$ or $\rm CO_2$ at the outlet of the oxidation catalyst according to the requirements in § 63.6625(a); and
		ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
		iii. The average concentration of CO calculated using § 63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period.
7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and using NSCR	i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and not using NSCR	i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
		ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR	i. The average formaldehyde concentration, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b); and
		iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

For each	Complying with the requirement to	You have demonstrated initial compliance if
10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR	i. The average formaldehyde concentration, corrected to 15 percent O_2 , dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in § 63.6625(b); and
		iii. You have recorded the approved operating parameters (if any) during the initial performance test.
11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap<="" located="" of="" source="" td=""><td>a. Reduce CO emissions</td><td>i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.</td></hp≤500>	a. Reduce CO emissions	i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.
12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300 <hp≤500 an="" area="" at="" hap<="" located="" of="" source="" td=""><td>a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td><td>i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.</td></hp≤500>	a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust	i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O ₂ , dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.
13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install an oxidation catalyst	i. You have conducted an initial compliance demonstration as specified in § $63.6630(e)$ to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O_2 ;
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.

For each	Complying with the requirement to	You have demonstrated initial compliance if
14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install NSCR	i. You have conducted an initial compliance demonstration as specified in § 63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more;
		ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in § 63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.

[78 FR 6712, Jan. 30, 2013]

Table 6 to Subpart ZZZZ of Part 63 - Continuous Compliance With Emission Limitations, and Other Requirements

As stated in § 63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

For each	Complying with the requirement to	You must demonstrate continuous compliance by
----------	-----------------------------------	---

For each	Complying with the requirement to	You must demonstrate continuous compliance by
1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP	a. Reduce CO emissions and using an oxidation catalyst, and using a CPMS	i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved ^a ; and ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP	a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS	i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved ^a ; and ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance

For each	Complying with the requirement to	You must demonstrate continuous compliance by
3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE >250 HP located at a major source of HAP, new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS	i. Collecting the monitoring data according to § 63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to § 63.6620; and ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iii. Conducting an annual RATA of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B, as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.
4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and using NSCR	i. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		ii. Reducing these data to 4- hour rolling averages; and
		iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP	a. Reduce formaldehyde emissions and not using NSCR	i. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		ii. Reducing these data to 4- hour rolling averages; and
		iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP	a. Reduce formaldehyde emissions	Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent. ^a
7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit ^a ; and ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iii. Reducing these data to 4- hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR	i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit ^a ; and ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		iii. Reducing these data to 4- hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

You must Complying demonstrate with the For each . . . continuous requirement compliance by to 9. Existing emergency and black start stationary RICE ≤500 HP located a. Work or i. Operating and at a major source of HAP, existing non-emergency stationary RICE <100 Management maintaining the HP located at a major source of HAP, existing emergency and black stationary RICE practices start stationary RICE located at an area source of HAP, existing nonaccording to emergency stationary CI RICE ≤300 HP located at an area source of the HAP, existing non-emergency 2SLB stationary RICE located at an area manufacturer's source of HAP, existing non-emergency stationary SI RICE located at an emissionarea source of HAP which combusts landfill or digester gas equivalent related to 10 percent or more of the gross heat input on an annual basis, operation and existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP maintenance located at an area source of HAP, existing non-emergency 4SLB and instructions; or 4SRB stationary RICE >500 HP located at an area source of HAP that ii. Develop and operate 24 hours or less per calendar year, and existing non-emergency follow your 4SLB and 4SRB stationary RICE >500 HP located at an area source of own maintenance HAP that are remote stationary RICE plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE	a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		iii. Reducing these data to 4- hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance

For each	Complying with the requirement to	You must demonstrate continuous compliance by
11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE	a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst	i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		iii. Reducing these data to 4- hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
12. Existing limited use CI stationary RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		ii. Collecting the catalyst inlet temperature data according to § 63.6625(b); and
		iii. Reducing these data to 4- hour rolling averages; and
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
		v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

For each	Complying with the requirement to	You must demonstrate continuous compliance by
13. Existing limited use CI stationary RICE >500 HP	a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst	i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
		ii. Collecting the approved operating parameter (if any) data according to § 63.6625(b); and
		iii. Reducing these data to 4- hour rolling averages; and

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install an oxidation catalyst	i. Conducting annual compliance demonstrations as specified in § 63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O ₂ ; and either ii. Collecting the catalyst inlet temperature data according to § 63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.
15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year	a. Install NSCR	i. Conducting annual compliance demonstrations as specified in § 63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O ₂ , or the average reduction of emissions of THC is 30 percent or more; and either ii. Collecting the catalyst

For each	Complying with the requirement to	You must demonstrate continuous compliance by
		inlet temperature data according to § 63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.

^a After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6715, Jan. 30, 2013]

Table 7 to Subpart ZZZZ of Part 63 - Requirements for Reports

As stated in § 63.6650, you must comply with the following requirements for reports:

For each	You must submit a	The report must contain .	You must submit the
		••	report

For each	You must submit a	The report must contain .	You must submit the report
1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP	Compliance report	a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in § 63.8(c) (7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or	i. Semiannually according to the requirements in § 63.6650(b) (1)-(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in § 63.6650(b) (6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.
		b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in § 63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in § 63.8(c) (7), the information in § 63.6650(e); or	i. Semiannually according to the requirements in § 63.6650(b).

For each	You must submit a	The report must contain .	You must submit the report
		c. If you had a malfunction during the reporting period, the information in § 63.6650(c)(4).	i. Semiannually according to the requirements in § 63.6650(b).
2. New or reconstructed non-emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis	Report	a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and	i. Annually, according to the requirements in § 63.6650.
		b. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and	i. See item 2.a.i.
		c. Any problems or errors suspected with the meters.	i. See item 2.a.i.
3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year	Compliance report	a. The results of the annual compliance demonstration, if conducted during the reporting period.	i. Semiannually according to the requirements in § 63.6650(b) (1)-(5).
4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in § 63.6640(f)(4)(ii)	Report	a. The information in § 63.6650(h)(1)	i. annually according to the requirements in § 63.6650(h) (2)-(3).

[78 FR 6719, Jan. 30, 2013]

Table 8 to Subpart ZZZZ of Part 63 - Applicability of General Provisions to Subpart ZZZZ.

As stated in § 63.6665, you must comply with the following applicable general provisions.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.1	General applicability of the General Provisions	Yes.	
§ 63.2	Definitions	Yes	Additional terms defined in § 63.6675.
§ 63.3	Units and abbreviations	Yes.	
§ 63.4	Prohibited activities and circumvention	Yes.	
§ 63.5	Construction and reconstruction	Yes.	
§ 63.6(a)	Applicability	Yes.	
§ 63.6(b) (1)-(4)	Compliance dates for new and reconstructed sources	Yes.	
§ 63.6(b) (5)	Notification	Yes.	
§ 63.6(b) (6)	[Reserved]		
§ 63.6(b) (7)	Compliance dates for new and reconstructed area sources that become major sources	Yes.	
§ 63.6(c) (1)-(2)	Compliance dates for existing sources	Yes.	
§ 63.6(c) (3)-(4)	[Reserved]		
§ 63.6(c) (5)	Compliance dates for existing area sources that become major sources	Yes.	
§ 63.6(d)	[Reserved]		
§ 63.6(e)	Operation and maintenance	No.	
§ 63.6(f) (1)	Applicability of standards	No.	

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.6(f) (2)	Methods for determining compliance	Yes.	
§ 63.6(f) (3)	Finding of compliance	Yes.	
§ 63.6(g) (1)-(3)	Use of alternate standard	Yes.	
§ 63.6(h)	Opacity and visible emission standards	No	Subpart ZZZZ does not contain opacity or visible emission standards.
§ 63.6(i)	Compliance extension procedures and criteria	Yes.	
§ 63.6(j)	Presidential compliance exemption	Yes.	
§ 63.7(a) (1)-(2)	Performance test dates	Yes	Subpart ZZZZ contains performance test dates at §§ 63.6610, 63.6611, and 63.6612.
§ 63.7(a) (3)	CAA section 114 authority	Yes.	
§ 63.7(b) (1)	Notification of performance test	Yes	Except that § 63.7(b)(1) only applies as specified in § 63.6645.
§ 63.7(b) (2)	Notification of rescheduling	Yes	Except that § 63.7(b)(2) only applies as specified in § 63.6645.
§ 63.7(c)	Quality assurance/test plan	Yes	Except that § 63.7(c) only applies as specified in § 63.6645.
§ 63.7(d)	Testing facilities	Yes.	
§ 63.7(e) (1)	Conditions for conducting performance tests	No.	Subpart ZZZZ specifies conditions for conducting performance tests at § 63.6620.
§ 63.7(e) (2)	Conduct of performance tests and reduction of data	Yes	Subpart ZZZZ specifies test methods at § 63.6620.
§ 63.7(e) (3)	Test run duration	Yes.	
§ 63.7(e) (4)	Administrator may require other testing under section 114 of the CAA	Yes.	
§ 63.7(f)	Alternative test method provisions	Yes.	

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.7(g)	Performance test data analysis, recordkeeping, and reporting	Yes.	
§ 63.7(h)	Waiver of tests	Yes.	
§ 63.8(a) (1)	Applicability of monitoring requirements	Yes	Subpart ZZZZ contains specific requirements for monitoring at § 63.6625.
§ 63.8(a) (2)	Performance specifications	Yes.	
§ 63.8(a) (3)	[Reserved]		
§ 63.8(a) (4)	Monitoring for control devices	No.	
§ 63.8(b) (1)	Monitoring	Yes.	
§ 63.8(b) (2)-(3)	Multiple effluents and multiple monitoring systems	Yes.	
§ 63.8(c) (1)	Monitoring system operation and maintenance	Yes.	
§ 63.8(c) (1)(i)	Routine and predictable SSM	No	
§ 63.8(c) (1)(ii)	SSM not in Startup Shutdown Malfunction Plan	Yes.	
§ 63.8(c) (1)(iii)	Compliance with operation and maintenance requirements	No	
§ 63.8(c) (2)-(3)	Monitoring system installation	Yes.	
§ 63.8(c) (4)	Continuous monitoring system (CMS) requirements	Yes	Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).
§ 63.8(c) (5)	COMS minimum procedures	No	Subpart ZZZZ does not require COMS.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.8(c) (6)-(8)	CMS requirements	Yes	Except that subpart ZZZZ does not require COMS.
§ 63.8(d)	CMS quality control	Yes.	
§ 63.8(e)	CMS performance evaluation	Yes	Except for § 63.8(e)(5)(ii), which applies to COMS.
		Except that § 63.8(e) only applies as specified in § 63.6645.	
§ 63.8(f) (1)-(5)	Alternative monitoring method	Yes	Except that § 63.8(f)(4) only applies as specified in § 63.6645.
§ 63.8(f) (6)	Alternative to relative accuracy test	Yes	Except that § 63.8(f)(6) only applies as specified in § 63.6645.
§ 63.8(g)	Data reduction	Yes	Except that provisions for COMS are not applicable. Averaging periods for demonstrating compliance are specified at §§ 63.6635 and 63.6640.
§ 63.9(a)	Applicability and State delegation of notification requirements	Yes.	
§ 63.9(b) (1)-(5)	Initial notifications	Yes	Except that § 63.9(b)(3) is reserved.
		Except that § 63.9(b) only applies as specified in § 63.6645.	
§ 63.9(c)	Request for compliance extension	Yes	Except that § 63.9(c) only applies as specified in § 63.6645.
§ 63.9(d)	Notification of special compliance requirements for new sources	Yes	Except that § 63.9(d) only applies as specified in § 63.6645.
§ 63.9(e)	Notification of performance test	Yes	Except that § 63.9(e) only applies as specified in § 63.6645.
§ 63.9(f)	Notification of visible emission (VE)/opacity test	No	Subpart ZZZZ does not contain opacity or VE standards.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.9(g) (1)	Notification of performance evaluation	Yes	Except that § 63.9(g) only applies as specified in § 63.6645.
§ 63.9(g) (2)	Notification of use of COMS data	No	Subpart ZZZZ does not contain opacity or VE standards.
§ 63.9(g) (3)	Notification that criterion for alternative to RATA is exceeded	Yes	If alternative is in use.
		Except that § 63.9(g) only applies as specified in § 63.6645.	
§ 63.9(h) (1)-(6)	Notification of compliance status	Yes	Except that notifications for sources using a CEMS are due 30 days after completion of performance evaluations. § 63.9(h)(4) is reserved.
			Except that § 63.9(h) only applies as specified in § 63.6645.
§ 63.9(i)	Adjustment of submittal deadlines	Yes.	
§ 63.9(j)	Change in previous information	Yes.	
§ 63.9(k)	Electronic reporting procedures	Yes	Only as specified in § 63.9(j).
§ 63.10(a)	Administrative provisions for recordkeeping/reporting	Yes.	
§ 63.10(b)	Record retention	Yes	Except that the most recent 2 years of data do not have to be retained on site.
§ 63.10(b) (2)(i)-(v)	Records related to SSM	No.	
§ 63.10(b) (2)(vi)-(xi)	Records	Yes.	
§ 63.10(b) (2)(xii)	Record when under waiver	Yes.	
§ 63.10(b) (2)(xiii)	Records when using alternative to RATA	Yes	For CO standard if using RATA alternative.

General provisions citation	Subject of citation	Applies to subpart	Explanation
§ 63.10(b) (2)(xiv)	Records of supporting documentation	Yes.	
§ 63.10(b) (3)	Records of applicability determination	Yes.	
§ 63.10(c)	Additional records for sources using CEMS	Yes	Except that § 63.10(c)(2)-(4) and (9) are reserved.
§ 63.10(d) (1)	General reporting requirements	Yes.	
§ 63.10(d) (2)	Report of performance test results	Yes.	
§ 63.10(d) (3)	Reporting opacity or VE observations	No	Subpart ZZZZ does not contain opacity or VE standards.
§ 63.10(d) (4)	Progress reports	Yes.	
§ 63.10(d) (5)	Startup, shutdown, and malfunction reports	No.	
§ 63.10(e) (1) and (2) (i)	Additional CMS Reports	Yes.	
§ 63.10(e) (2)(ii)	COMS-related report	No	Subpart ZZZZ does not require COMS.
§ 63.10(e) (3)	Excess emission and parameter exceedances reports	Yes.	Except that § 63.10(e)(3)(i) (C) is reserved.
§ 63.10(e) (4)	Reporting COMS data	No	Subpart ZZZZ does not require COMS.
§ 63.10(f)	Waiver for recordkeeping/reporting	Yes.	
§ 63.11	Flares	No.	
§ 63.12	State authority and delegations	Yes.	
§ 63.13	Addresses	Yes.	
§ 63.14	Incorporation by reference	Yes.	
§ 63.15	Availability of information	Yes.	

9/30/21, 1:15 PM

Appendix A to Subpart ZZZZ of Part 63 - Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 Scope and Application. What is this Protocol?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O₂) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O2).

Analyte	CAS No.	Sensitivity
Carbon monoxide (CO)	630- 08-0	Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.
Oxygen (O ₂)	7782- 44-7	

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O₂, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 Summary of Protocol

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O₂ gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems

(e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 Definitions

- 3.1 Measurement System. The total equipment required for the measurement of CO and O_2 concentrations. The measurement system consists of the following major subsystems:
- 3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.
- 3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.
- 3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.
- 3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.
- 3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.
- 3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.
- 3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.
- 3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.
- 3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.
- **3.6** Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.
- 3.7 Repeatability Check. A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.
- 3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.
- 3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O₂ and moisture in the electrolyte reserve and provides a mechanism to de-gas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre- sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.
- 3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.

- 3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.
- 3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO₂ are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 Safety. [Reserved]

6.0 Equipment and Supplies.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below

6.2 Measurement System Components.

- **6.2.1 Sample Probe.** A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.
- 6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.
- **6.2.3** Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.
- 6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.
- 6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.
- 6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.
- 6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.
- **6.2.10 EC cell.** A device containing one or more EC cells to determine the CO and O_2 concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.
- 6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O₂; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the

analyzer responses.

6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 Reagents and Standards. What calibration gases are needed?

- 7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O_2 . Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ± 5 percent of the label value. Dry ambient air (20.9 percent O_2) is acceptable for calibration of the O_2 cell. If needed, any lower percentage O_2 calibration gas must be a mixture of O_2 in nitrogen.
- 7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O₂ Calibration Gas Concentration.

Select an O_2 gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O_2 . When the average exhaust gas O_2 readings are above 6 percent, you may use dry ambient air (20.9 percent O_2) for the up-scale O_2 calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO₂).

8.0 Sample Collection and Analysis

- 8.1 Selection of Sampling Sites.
- 8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.
- 8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.
- 8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct that the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the "sample conditioning phase" once per minute until constant readings are obtained. Then begin the "measurement data phase" and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the "measurement data phase" readings to calculate the average stack gas CO and O₂ concentrations.
- **8.3 EC Cell Rate.** Maintain the EC cell sample flow rate so that it does not vary by more than ±10 percent throughout the presampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than ±3 percent, as instructed by the EC cell manufacturer.

9.0 Quality Control (Reserved)

10.0 Calibration and Standardization

- 10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer's recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.
- 10.1.1 Zero Calibration. For both the O_2 and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.
- 10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to ± 3 percent of the up-scale gas value or ± 1 ppm, whichever is less restrictive, for the CO channel and less than or equal to ± 0.3 percent O₂ for the O₂ channel.
- 10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this "sample conditioning phase" once per minute until readings are constant for at least two minutes. Then begin the "measurement data phase" and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).
- 10.1.4 Up-Scale Calibration Error. The mean of the difference of the "measurement data phase" readings from the reported standard gas value must be less than or equal to ± 5 percent or ± 1 ppm for CO or ± 0.5 percent O_2 , whichever is less restrictive, respectively. The maximum allowable deviation from the mean measured value of any single "measurement data phase" reading must be less than or equal to ± 2 percent or ± 1 ppm for CO or ± 0.5 percent O_2 , whichever is less restrictive, respectively.
- 10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 Calculations and Data Analysis

Determine the CO and O_2 concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the "measurement data phase".

13.0 Protocol Performance

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the "measurement data phase". The maximum allowable deviation from the mean for each of the individual readings is ±2 percent, or ±1 ppm, whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ± 2 percent $or \pm 1$ ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed).

- 13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO_2 gas standards that are generally recognized as representative of diesel-fueled engine NO and NO_2 emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.
- 13.2.1 Interference Response. The combined NO and NO_2 interference response should be less than or equal to ± 5 percent of the up-scale CO calibration gas concentration.
- 13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.
- 13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.
- 13.3.2 Repeatability Check Calculations. Determine the highest and lowest average "measurement data phase" CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.
- 14.0 Pollution Prevention (Reserved)
- 15.0 Waste Management (Reserved)
- 16.0 Alternative Procedures (Reserved)

17.0 References

- (1) "Development of an Electrochemical Cell Emission Analyzer Test Protocol", Topical Report, Phil Juneau, Emission Monitoring, Inc., July 1997.
- (2) "Determination of Nitrogen Oxides, Carbon Monoxide, and Oxygen Emissions from Natural Gas-Fired Engines, Boilers, and Process Heaters Using Portable Analyzers", EMC Conditional Test Protocol 30 (CTM-30), Gas Research Institute Protocol GRI-96/0008, Revision 7, October 13, 1997.
- (3) "ICAC Test Protocol for Periodic Monitoring", EMC Conditional Test Protocol 34 (CTM-034), The Institute of Clean Air Companies, September 8, 1999.
- (4) "Code of Federal Regulations", Protection of Environment, 40 CFR, Part 60, Appendix A, Methods 1-4; 10.

Table 1: Appendix A - Sampling Run Data.

Facility	Engine I.D	Date	

Run Type:		(_)			(_)			(_)		(_)		
(X)	Pre-Sample Calibration		Stacl	Stack Gas Sample			Post-Sample Cal. Check			Repeatability Check			
Run #		1	1	2	2	3	3	4	4	Time	Scrub	o. OK	Flow- Rate
Gas		02	CO	02	СО	02	со	02	СО				
Sample Co Phase	nd.												
п													
п													
п													
п													
N.4													
Measureme Data Phase													
п													
II .													
II .													
п													
п													
II .													
П													
п													
п													
II													
N.A													
Mean													
Refresh Phase													
П													
II													
II .													
II													

[78 FR 6721, Jan. 30, 2013]

Appendix C

40 C.F.R. Part 60, Subpart OOOOa - Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

Displaying title 40, up to date as of 9/28/2021. Title 40 was last amended 9/28/2021.

ENHANCED CONTENT - TABLE OF CONTENTS

Subpart 0000a Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

60.5360a - 60.5439a

- § 60.5360a What is the purpose of this subpart?
- § 60.5365a Am I subject to this subpart?
- § 60.5370a When must I comply with this subpart?
- § 60.5375a What VOC standards apply to well affected facilities?
- § 60.5380a What VOC standards apply to centrifugal compressor affected facilities?
- § 60.5385a What VOC standards apply to reciprocating compressor affected facilities?
- § 60.5390a What VOC standards apply to pneumatic controller affected facilities?
- § 60.5393a What VOC standards apply to pneumatic pump affected facilities?
- § 60.5395a What VOC standards apply to storage vessel affected facilities?
- § 60.5397a What fugitive emissions VOC standards apply to the affected facility which is the collection of fugitive emissions components at a well site and the affected facility which is the collection of fugitive emissions components at a compressor station?
- § 60.5398a What are the alternative means of emission limitations for VOC from well completions, reciprocating compressors, the collection of fugitive emissions components at a well site and the collection of fugitive emissions components at a compressor station?
- § 60.5399a What alternative fugitive emissions standards apply to the affected facility which is the collection of fugitive emissions components at a well site and the affected facility which is the collection of fugitive emissions components at a compressor station: Equivalency with state, local, and tribal programs?
- § 60.5400a What equipment leak VOC standards apply to affected facilities at an onshore natural gas processing
- § 60.5401a What are the exceptions to the equipment leak VOC standards for affected facilities at onshore natural gas processing plants?
- § 60.5402a What are the alternative means of emission limitations for VOC equipment leaks from onshore natural gas processing plants?
- § 60.5405a What standards apply to sweetening unit affected facilities?
- § 60.5406a What test methods and procedures must I use for my sweetening unit affected facilities?
- § 60.5407a What are the requirements for monitoring of emissions and operations from my sweetening unit affected facilities?
- § 60.5408a What is an optional procedure for measuring hydrogen sulfide in acid gas Tutwiler Procedure?
- § 60.5410a How do I demonstrate initial compliance with the standards for my well, centrifugal compressor, reciprocating compressor, pneumatic controller, pneumatic pump, storage vessel, collection of fugitive emissions components at a well site, collection of fugitive emissions components at a compressor station, and equipment leaks at onshore natural gas processing plants and sweetening unit affected facilities?
- § 60.5411a What additional requirements must I meet to determine initial compliance for my covers and closed vent systems routing emissions from centrifugal compressor wet seal fluid degassing systems, reciprocating compressors, pneumatic pumps and storage vessels?
- § 60.5412a What additional requirements must I meet for determining initial compliance with control devices used to comply with the emission standards for my centrifugal compressor, and storage vessel affected facilities?
- § 60.5413a What are the performance testing procedures for control devices used to demonstrate compliance at my centrifugal compressor and storage vessel affected facilities?

- § 60.5415a How do I demonstrate continuous compliance with the standards for my well, centrifugal compressor, reciprocating compressor, pneumatic controller, pneumatic pump, storage vessel, collection of fugitive emissions components at a well site, and collection of fugitive emissions components at a compressor station affected facilities, equipment leaks at onshore natural gas processing plants and sweetening unit affected facilities?
- § 60.5416a What are the initial and continuous cover and closed vent system inspection and monitoring requirements for my centrifugal compressor, reciprocating compressor, pneumatic pump, and storage vessel affected facilities?
- § 60.5417a What are the continuous control device monitoring requirements for my centrifugal compressor and storage vessel affected facilities?
- § 60.5420a What are my notification, reporting, and recordkeeping requirements?
- § 60.5421a What are my additional recordkeeping requirements for my affected facility subject to VOC requirements for onshore natural gas processing plants?
- § 60.5422a What are my additional reporting requirements for my affected facility subject to VOC requirements for onshore natural gas processing plants?
- § 60.5423a What additional recordkeeping and reporting requirements apply to my sweetening unit affected facilities?
- § 60.5425a What parts of the General Provisions apply to me?
- § 60.5430a What definitions apply to this subpart?
- § 60.5432a How do I determine whether a well is a low pressure well using the low pressure well equation? §§ 60.5433a-60.5439a [Reserved]

Table 1 to Subpart 0000a of Part 60

Required Minimum Initial SO₂ Emission Reduction Efficiency (Z_i)

Table 2 to Subpart 0000a of Part 60

Required Minimum SO₂ Emission Reduction Efficiency (Z_c)

Table 3 to Subpart 0000a of Part 60

Applicability of General Provisions to Subpart 0000a

Title 40

Subpart OOOOa - Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

Source: 81 FR 35898, June 3, 2016, unless otherwise noted.

§ 60.5360a What is the purpose of this subpart?

- (a) This subpart establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities in the crude oil and natural gas production source category that commence construction, modification, or reconstruction after September 18, 2015.
- (b) [Reserved]

[85 FR 57070, Sept. 14, 2020, as amended at 85 FR 57438, Sept. 15, 2020]

§ 60.5365a Am I subject to this subpart?

You are subject to the applicable provisions of this subpart if you are the owner or operator of one or more of the onshore affected facilities listed in paragraphs (a) through (j) of this section, that is located within the Crude Oil and Natural Gas Production source category, as defined in § 60.5430a, for which you commence construction, modification, or reconstruction after September 18,

2015.

- (a) Each well affected facility, which is a single well that conducts a well completion operation following hydraulic fracturing or refracturing. The provisions of this paragraph do not affect the affected facility status of well sites for the purposes of § 60.5397a. The provisions of paragraphs (a)(1) through (4) of this section apply to wells that are hydraulically refractured:
 - (1) A well that conducts a well completion operation following hydraulic refracturing is not an affected facility, provided that the requirements of § 60.5375a(a)(1) through (4) are met. However, hydraulic refracturing of a well constitutes a modification of the well site for purposes of paragraph (i)(3)(iii) of this section, regardless of affected facility status of the well itself.
 - (2) A well completion operation following hydraulic refracturing not conducted pursuant to § 60.5375a(a)(1) through (4) is a modification to the well.
 - (3) Except as provided in § 60.5365a(i)(3)(iii), refracturing of a well, by itself, does not affect the modification status of other equipment, process units, storage vessels, compressors, pneumatic pumps, or pneumatic controllers.
 - (4) A well initially constructed after September 18, 2015, that conducts a well completion operation following hydraulic refracturing is considered an affected facility regardless of this provision.
- (b) Each centrifugal compressor affected facility, which is a single centrifugal compressor using wet seals. A centrifugal compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.
- (c) Each reciprocating compressor affected facility, which is a single reciprocating compressor. A reciprocating compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.
- (d) Each pneumatic controller affected facility:
 - (1) Each pneumatic controller affected facility not located at a natural gas processing plant, which is a single continuous bleed natural gas-driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh.
 - (2) Each pneumatic controller affected facility located at a natural gas processing plant, which is a single continuous bleed natural gas-driven pneumatic controller.
- (e) Each storage vessel affected facility, which is a single storage vessel as specified in paragraph (e)(1), (2), or (3) of this section.
 - (1) A single storage vessel that commenced construction, reconstruction, or modification after September 18, 2015, and on or before November 16, 2020, is a storage vessel affected facility if its potential for VOC emissions is equal to or greater than 6 tons per year (tpy) as determined according to this paragraph (e)(1). The potential for VOC emissions must be calculated using a generally accepted model or calculation methodology, based on the maximum average daily throughput (as defined in § 60.5430a) determined for a 30-day period prior to the applicable emission determination deadline specified in paragraphs (e)(2)(i) and (ii) of this section, except as provided in paragraph (e)(5)(iv). The determination may take into account requirements under a legally and practicably enforceable limit in an operating permit or other requirement established under a Federal, state, local, or tribal authority.
 - (2) Except as specified in paragraph (e)(3) of this section, a single storage vessel that commenced construction, reconstruction or modification after November 16, 2020, is a storage vessel affected facility if the potential for VOC emissions is equal to or greater than 6 tpy as determined according to paragraph (e)(2)(i) or (ii) of this section, except as provided in paragraph (e)(5)(iv) of this section. The determination may take into account requirements under a legally and practicably enforceable limit in an operating permit or other requirement established under a Federal, state, local, or tribal authority. The potential for VOC emissions is calculated on an individual storage vessel basis and is not averaged across the number of storage vessels at the site.
 - (i) For each storage vessel receiving liquids pursuant to the standards for well affected facilities in § 60.5375a, including wells subject to § 60.5375a(f), you must determine the potential for VOC emissions within 30 days after startup of production of the well, except as provided in paragraph (e)(5)(iv) of this section. The potential for VOC emissions must be calculated for each individual storage vessel using a generally accepted model or calculation methodology, based on the maximum average daily throughput, as defined in § 60.5430a, determined for a 30-day period of production.

- (ii) For each storage vessel located at a compressor station or onshore natural gas processing plant, you must determine the potential for VOC emissions prior to startup of the compressor station or onshore natural gas processing plant using either method described in paragraph (e)(2)(ii)(A) or (B) of this section.
 - (A) Determine the potential for VOC emissions using a generally accepted model or calculation methodology and based on the throughput established in a legally and practicably enforceable limit in an operating permit or other requirement established under a Federal, state, local, or tribal authority; or
 - (B) Determine the potential for VOC emissions using a generally accepted model or calculation methodology and based on projected maximum average daily throughput. Maximum average daily throughput is determined using a generally accepted engineering model (e.g., volumetric condensate rates from the storage vessels based on the maximum gas throughput capacity of each producing facility) to project the maximum average daily throughput for the storage vessel.
- (3) If a storage vessel battery, which consists of two or more storage vessels, meets all of the design and operational criteria specified in paragraphs (e)(3)(i) through (iv) of this section through legally and practicably enforceable standards in a permit or other requirement established under Federal, state, local, or tribal authority, then each storage vessel in such storage vessel battery is a storage vessel affected facility.
 - The storage vessels must be manifolded together with piping such that all vapors are shared among the headspaces of the storage vessels;
 - (ii) The storage vessels must be equipped with a closed vent system that is designed, operated, and maintained to route the vapors back to the process or to a control device;
 - (iii) The vapors collected in paragraph (e)(3)(i) of this section must be routed back to the process or to a control device that reduces VOC emissions by at least 95.0 percent; and
 - (iv) The VOC emissions, averaged across the number of storage vessels in the battery meeting all of the criteria of paragraphs (e)(3)(i) through (iii) of this section, are equal to or greater than 6 tpy.
 - (v) If a storage vessel battery meeting all of the criteria specified in paragraphs (e)(3)(i) through (iii) of this section through legally and practicably enforceable standards in a permit or other requirements established under Federal, state, local, or tribal authority, emits less than 6 tpy of VOC emissions averaged across the number of storage vessels in the battery, none of the storage vessels in the battery are storage vessel affected facilities.
- (4) A storage vessel affected facility that subsequently has its potential for VOC emissions decrease to less than 6 tpy shall remain an affected facility under this subpart.
- (5) For storage vessels not subject to a legally and practicably enforceable limit in an operating permit or other requirement established under Federal, state, local, or tribal authority, any vapor from the storage vessel that is recovered and routed to a process through a VRU designed and operated as specified in this section is not required to be included in the determination of potential for VOC emissions for purposes of determining affected facility status, provided you comply with the requirements in paragraphs (e)(5)(i) through (iv) of this section.
 - (i) You meet the cover requirements specified in § 60.5411a(b).
 - (ii) You meet the closed vent system requirements specified in § 60.5411a(c) and (d).
 - (iii) You must maintain records that document compliance with paragraphs (e)(5)(i) and (ii) of this section.
 - (iv) In the event of removal of apparatus that recovers and routes vapor to a process, or operation that is inconsistent with the conditions specified in paragraphs (e)(5)(i) and (ii) of this section, you must determine the storage vessel's potential for VOC emissions according to this section within 30 days of such removal or operation.
- (6) The requirements of this paragraph (e)(6) apply to each storage vessel affected facility immediately upon startup, startup of production, or return to service. A storage vessel affected facility that is reconnected to the original source of liquids is a storage vessel affected facility subject to the same requirements that applied before being removed from service. Any storage vessel that is used to replace any storage vessel affected facility is subject to the same requirements that applied to the storage vessel affected facility being replaced.
- (7) A storage vessel with a capacity greater than 100,000 gallons used to recycle water that has been passed through two stage separation is not a storage vessel affected facility.
- (f) The group of all equipment within a process unit at an onshore natural gas processing plant is an affected facility.

- (1) Addition or replacement of equipment for the purpose of process improvement that is accomplished without a capital expenditure shall not by itself be considered a modification under this subpart.
- (2) Equipment associated with a compressor station, dehydration unit, sweetening unit, underground storage vessel, field gas gathering system, or liquefied natural gas unit is covered by §§ 60.5400a, 60.5401a, 60.5402a, 60.5421a, and 60.5422a if it is located at an onshore natural gas processing plant. Equipment not located at the onshore natural gas processing plant site is exempt from the provisions of §§ 60.5400a, 60.5401a, 60.5402a, 60.5421a, and 60.5422a.
- (3) The equipment within a process unit of an affected facility located at onshore natural gas processing plants and described in paragraph (f) of this section are exempt from this subpart if they are subject to and controlled according to subparts VVa, GGG, or GGGa of this part.
- (g) Sweetening units located at onshore natural gas processing plants that commenced construction, modification, or reconstruction after September 18, 2015, and on or before November 16, 2020, and sweetening units that commence construction, modification, or reconstruction after November 16, 2020.
 - (1) Each sweetening unit that processes natural gas produced from either onshore or offshore wells is an affected facility; and
 - (2) Each sweetening unit that processes natural gas followed by a sulfur recovery unit is an affected facility.
 - (3) Facilities that have a design capacity less than 2 long tons per day (LT/D) of hydrogen sulfide (H₂S) in the acid gas (expressed as sulfur) are required to comply with recordkeeping and reporting requirements specified in § 60.5423a(c) but are not required to comply with §§ 60.5405a through 60.5407a and §§ 60.5410a(g) and 60.5415a(g).
 - (4) Sweetening facilities producing acid gas that is completely re-injected into oil-or-gas-bearing geologic strata or that is otherwise not released to the atmosphere are not subject to §§ 60.5405a through 60.5407a, 60.5410a(g), 60.5415a(g), and 60.5423a.
- (h) Each pneumatic pump affected facility:
 - (1) For natural gas processing plants, each pneumatic pump affected facility, which is a single natural gas-driven diaphragm pump.
 - (2) For well sites, each pneumatic pump affected facility, which is a single natural gas-driven diaphragm pump. A single natural gas-driven diaphragm pump that is in operation less than 90 days per calendar year is not an affected facility under this subpart provided the owner/operator keeps records of the days of operation each calendar year and submits such records to the EPA Administrator (or delegated enforcement authority) upon request. For the purposes of this section, any period of operation during a calendar day counts toward the 90 calendar day threshold.
- (i) Except as provided in § 60.5365a(i)(2), the collection of fugitive emissions components at a well site, as defined in § 60.5430a, is an affected facility.
 - (1) [Reserved]
 - (2) A well site that only contains one or more wellheads is not an affected facility under this subpart. The affected facility status of a separate tank battery surface site has no effect on the affected facility status of a well site that only contains one or more wellheads.
 - (3) For purposes of § 60.5397a, a "modification" to a well site occurs when:
 - (i) A new well is drilled at an existing well site;
 - (ii) A well at an existing well site is hydraulically fractured; or
 - (iii) A well at an existing well site is hydraulically refractured.
 - (4) For purposes of § 60.5397a, a "modification" to an existing source separate tank battery surface site occurs when:
 - (i) Any of the actions in paragraphs (i)(3)(i) through (iii) of this section occurs at an existing source separate tank battery surface site;
 - (ii) A well sending production to an existing source separate tank battery site is modified, as defined in paragraphs (i)(3)(i) through (iii) of this section; or

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
- (iii) A well site subject to the requirements in § 60.5397a removes all major production and processing equipment, as defined in § 60.5430a, such that it becomes a wellhead only well site and sends production to an existing source separate tank battery surface site.
- (j) The collection of fugitive emissions components at a compressor station, as defined in § 60.5430a, is an affected facility. For purposes of § 60.5397a, a "modification" to a compressor station occurs when:
 - (1) An additional compressor is installed at a compressor station; or
 - (2) One or more compressors at a compressor station is replaced by one or more compressors of greater total horsepower than the compressor(s) being replaced. When one or more compressors is replaced by one or more compressors of an equal or smaller total horsepower than the compressor(s) being replaced, installation of the replacement compressor(s) does not trigger a modification of the compressor station for purposes of § 60.5397a.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57070, Sept. 14, 2020; 85 FR 57438, Sept. 15, 2020]

§ 60.5370a When must I comply with this subpart?

- (a) You must be in compliance with the standards of this subpart no later than August 2, 2016 or upon startup, whichever is later.
- (b) At all times, including periods of startup, shutdown, and malfunction, owners and operators shall maintain and operate any affected facility including associated air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures, and inspection of the source. The provisions for exemption from compliance during periods of startup, shutdown and malfunctions provided for in 40 CFR 60.8(c) do not apply to this subpart.
- (c) You are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not otherwise required by law to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a). Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart.

§ 60.5375a What VOC standards apply to well affected facilities?

If you are the owner or operator of a well affected facility as described in § 60.5365a(a) that also meets the criteria for a well affected facility in § 60.5365(a) (in subpart OOOO of this part), you must reduce VOC emissions by complying with paragraphs (a) through (g) of this section. If you own or operate a well affected facility as described in § 60.5365a(a) that does not meet the criteria for a well affected facility in § 60.5365(a) (in subpart OOOO of this part), you must reduce VOC emissions by complying with paragraphs (f)(3) and (4) or paragraph (g) of this section for each well completion operation with hydraulic fracturing prior to November 30, 2016, and you must comply with paragraphs (a) through (g) of this section for each well completion operation with hydraulic fracturing on or after November 30, 2016.

- (a) Except as provided in paragraph (f) and (g) of this section, for each well completion operation with hydraulic fracturing you must comply with the requirements in paragraphs (a)(1) through (4) of this section. You must maintain a log as specified in paragraph (b) of this section.
 - (1) For each stage of the well completion operation, as defined in § 60.5430a, follow the requirements specified in paragraphs (a)(1)(i) through (iii) of this section.
 - (i) During the initial flowback stage, route the flowback into one or more well completion vessels or storage vessels and commence operation of a separator unless it is technically infeasible for a separator to function. The separator may be a production separator, but the production separator also must be designed to accommodate flowback. Any gas present in the initial flowback stage is not subject to control under this section.
 - (ii) During the separation flowback stage, route all recovered liquids from the separator to one or more well completion vessels or storage vessels, re-inject the recovered liquids into the well or another well, or route the recovered liquids to a collection system. Route the recovered gas from the separator into a gas flow line or collection system, re-inject the recovered gas into the well or another well, use the recovered gas as an onsite fuel source, or use the recovered gas for another useful purpose that a purchased fuel or raw material would

serve. If it is technically infeasible to route the recovered gas as required above, follow the requirements in paragraph (a)(3) of this section. If, at any time during the separation flowback stage, it is technically infeasible for a separator to function, you must comply with paragraph (a)(1)(i) of this section.

- (iii) You must have the separator onsite or otherwise available for use at a centralized facility or well pad that services the well affected facility during well completions. The separator must be available and ready for use to comply with paragraph (a)(1)(ii) of this section during the entirety of the flowback period, except as provided in paragraphs (a)(1)(iii)(A) through (C) of this section.
 - (A) A well that is not hydraulically fractured or refractured with liquids, or that does not generate condensate, intermediate hydrocarbon liquids, or produced water such that there is no liquid collection system at the well site is not required to have a separator onsite.
 - (B) If conditions allow for liquid collection, then the operator must immediately stop the well completion operation, install a separator, and restart the well completion operation in accordance with § 60.5375a(a) (1).
 - (C) The owner or operator of a well that meets the criteria of paragraph (a)(1)(iii)(A) or (B) of this section must submit the report in § 60.5420a(b)(2) and maintain the records in § 60.5420a(c)(1)(iii).

(2) [Reserved]

- (3) If it is technically infeasible to route the recovered gas as required in § 60.5375a(a)(1)(ii), then you must capture and direct recovered gas to a completion combustion device, except in conditions that may result in a fire hazard or explosion, or where high heat emissions from a completion combustion device may negatively impact tundra, permafrost or waterways. Completion combustion devices must be equipped with a reliable continuous pilot flame.
- (4) You have a general duty to safely maximize resource recovery and minimize releases to the atmosphere during flowback and subsequent recovery.
- (b) You must maintain a log for each well completion operation at each well affected facility. The log must be completed on a daily basis for the duration of the well completion operation and must contain the records specified in § 60.5420a(c)(1) (iii).
- (c) You must demonstrate initial compliance with the standards that apply to well affected facilities as required by § 60.5410a(a).
- (d) You must demonstrate continuous compliance with the standards that apply to well affected facilities as required by § 60.5415a(a).
- (e) You must perform the required notification, recordkeeping and reporting as required by § 60.5420a(a)(2), (b)(1) and (2), and (c)(1).
- (f) For each well affected facility specified in paragraphs (f)(1) and (2) of this section, you must comply with the requirements of paragraphs (f)(3) and (4) of this section.
 - (1) Each well completion operation with hydraulic fracturing at a wildcat or delineation well.
 - (2) Each well completion operation with hydraulic fracturing at a non-wildcat low pressure well or non-delineation low pressure well.
 - (3) You must comply with either paragraph (f)(3)(i) or (f)(3)(ii) of this section, unless you meet the requirements in paragraph (g) of this section. You must also comply with paragraph (b) of this section.
 - (i) Route all flowback to a completion combustion device, except in conditions that may result in a fire hazard or explosion, or where high heat emissions from a completion combustion device may negatively impact tundra, permafrost or waterways. Completion combustion devices must be equipped with a reliable continuous pilot flame.
 - (ii) Route all flowback into one or more well completion vessels and commence operation of a separator unless it is technically infeasible for a separator to function. Any gas present in the flowback before the separator can function is not subject to control under this section. Capture and direct recovered gas to a completion combustion device, except in conditions that may result in a fire hazard or explosion, or where high heat emissions from a completion combustion device may negatively impact tundra, permafrost, or waterways. Completion combustion devices must be equipped with a reliable continuous pilot flame.

- (4) You must submit the notification as specified in § 60.5420a(a)(2), submit annual reports as specified in § 60.5420a(b)(1) and (2) and maintain records specified in § 60.5420a(c)(1)(iii) for each wildcat and delineation well. You must submit the notification as specified in § 60.5420a(a)(2), submit annual reports as specified in § 60.5420a(b)(1) and (2), and maintain records as specified in § 60.5420a(c)(1)(iii) and (vii) for each low pressure well.
- (g) For each well affected facility with less than 300 scf of gas per stock tank barrel of oil produced, you must comply with paragraphs (g)(1) and (2) of this section.
 - (1) You must maintain records specified in § 60.5420a(c)(1)(vi).
 - (2) You must submit reports specified in § 60.5420a(b)(1) and (2).

[81 FR 35898, June 3, 2016, as amended at 85 FR 57070, Sept. 14, 2020; 85 FR 57439, Sept. 15, 2020]

§ 60.5380a What VOC standards apply to centrifugal compressor affected facilities?

You must comply with the VOC standards in paragraphs (a) through (d) of this section for each centrifugal compressor affected facility.

(a)

- (1) You must reduce VOC emissions from each centrifugal compressor wet seal fluid degassing system by 95.0 percent.
- (2) If you use a control device to reduce emissions, you must equip the wet seal fluid degassing system with a cover that meets the requirements of § 60.5411a(b). The cover must be connected through a closed vent system that meets the requirements of § 60.5411a(a) and (d) and the closed vent system must be routed to a control device that meets the conditions specified in § 60.5412a(a), (b) and (c). As an alternative to routing the closed vent system to a control device, you may route the closed vent system to a process.
- (b) You must demonstrate initial compliance with the standards that apply to centrifugal compressor affected facilities as required by § 60.5410a(b).
- (c) You must demonstrate continuous compliance with the standards that apply to centrifugal compressor affected facilities as required by § 60.5415a(b).
- (d) You must perform the reporting as required by § 60.5420a(b)(1) and (3), and the recordkeeping as required by § 60.5420a(c)(2), (6) through (11), and (17), as applicable.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57070, Sept. 14, 2020]

§ 60.5385a What VOC standards apply to reciprocating compressor affected facilities?

You must reduce VOC emissions by complying with the standards in paragraphs (a) through (d) of this section for each reciprocating compressor affected facility.

- (a) You must replace the reciprocating compressor rod packing according to either paragraph (a)(1) or (2) of this section, or you must comply with paragraph (a)(3) of this section.
 - (1) On or before the compressor has operated for 26,000 hours. The number of hours of operation must be continuously monitored beginning upon initial startup of your reciprocating compressor affected facility, August 2, 2016, or the date of the most recent reciprocating compressor rod packing replacement, whichever is latest.
 - (2) Prior to 36 months from the date of the most recent rod packing replacement, or 36 months from the date of startup for a new reciprocating compressor for which the rod packing has not yet been replaced.
 - (3) Collect the VOC emissions from the rod packing using a rod packing emissions collection system that operates under negative pressure and route the rod packing emissions to a process through a closed vent system that meets the requirements of § 60.5411a(a) and (d).
- (b) You must demonstrate initial compliance with standards that apply to reciprocating compressor affected facilities as required by § 60.5410a(c).

- (c) You must demonstrate continuous compliance with standards that apply to reciprocating compressor affected facilities as required by § 60.5415a(c).
- (d) You must perform the reporting as required by § 60.5420a(b)(1) and (4) and the recordkeeping as required by § 60.5420a(c)(3), (6) through (9), and (17), as applicable.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57070, Sept. 14, 2020; 85 FR 57439, Sept. 15, 2020]

§ 60.5390a What VOC standards apply to pneumatic controller affected facilities?

For each pneumatic controller affected facility you must comply with the VOC standards, based on natural gas as a surrogate for VOC, in either paragraph (b)(1) or (c)(1) of this section, as applicable. Pneumatic controllers meeting the conditions in paragraph (a) of this section are exempt from the requirements in paragraph (b)(1) or (c)(1) of this section.

(a) The requirements of paragraph (b)(1) or (c)(1) of this section are not required if you determine that the use of a pneumatic controller affected facility with a bleed rate greater than the applicable standard is required based on functional needs, including but not limited to response time, safety and positive actuation. However, you must tag such pneumatic controller with the month and year of installation, reconstruction or modification, and identification information that allows traceability to the records for that pneumatic controller, as required in § 60.5420a(c)(4)(ii).

(b)

- (1) Each pneumatic controller affected facility at a natural gas processing plant must have a bleed rate of zero.
- (2) Each pneumatic controller affected facility at a natural gas processing plant must be tagged with the month and year of installation, reconstruction or modification, and identification information that allows traceability to the records for that pneumatic controller as required in § 60.5420a(c)(4)(iv).

(c)

- (1) Each pneumatic controller affected facility at a location other than at a natural gas processing plant must have a bleed rate less than or equal to 6 standard cubic feet per hour.
- (2) Each pneumatic controller affected facility at a location other than at a natural gas processing plant must be tagged with the month and year of installation, reconstruction or modification, and identification information that allows traceability to the records for that controller as required in § 60.5420a(c)(4)(iii).
- (d) You must demonstrate initial compliance with standards that apply to pneumatic controller affected facilities as required by § 60.5410a(d).
- (e) You must demonstrate continuous compliance with standards that apply to pneumatic controller affected facilities as required by § 60.5415a(d).
- (f) You must perform the reporting as required by § 60.5420a(b)(1) and (5) and the recordkeeping as required by § 60.5420a(c)(4).

[81 FR 35898, June 3, 2016, as amended at 85 FR 57070, Sept. 14, 2020]

§ 60.5393a What VOC standards apply to pneumatic pump affected facilities?

For each pneumatic pump affected facility you must comply with the VOC standards, based on natural gas as a surrogate for VOC, in either paragraph (a) or (b) of this section, as applicable, on or after November 30, 2016.

- (a) Each pneumatic pump affected facility at a natural gas processing plant must have a natural gas emission rate of zero.
- (b) For each pneumatic pump affected facility at a well site you must reduce natural gas emissions by 95.0 percent, except as provided in paragraphs (b)(3), (4), and (5) of this section.
 - (1-2) [Reserved]
 - (3) You are not required to install a control device solely for the purpose of complying with the 95.0 percent reduction requirement of paragraph (b) of this section. If you do not have a control device installed on site by the compliance date and you do not have the ability to route to a process, then you must comply instead with the provisions of

paragraphs (b)(3)(i) and (ii) of this section. For the purposes of this section, boilers and process heaters are not considered control devices. In addition, routing emissions from pneumatic pump discharges to boilers and process heaters is not considered routing to a process.

- (i) Submit a certification in accordance with § 60.5420a(b)(8)(i)(A) in your next annual report, certifying that there is no available control device or process on site and maintain the records in § 60.5420a(c)(16)(i) and (ii).
- (ii) If you subsequently install a control device or have the ability to route to a process, you are no longer required to comply with paragraph (b)(3)(i) of this section and must submit the information in § 60.5420a(b)(8)(ii) in your next annual report and maintain the records in § 60.5420a(c)(16)(i), (ii), and
- (iii) . You must be in compliance with the requirements of paragraph (b) of this section within 30 days of startup of the control device or within 30 days of the ability to route to a process.
- (4) If the control device available on site is unable to achieve a 95-percent reduction and there is no ability to route the emissions to a process, you must still route the pneumatic pump affected facility's emissions to that control device. If you route the pneumatic pump affected facility to a control device installed on site that is designed to achieve less than a 95-percent reduction, you must submit the information specified in § 60.5420a(b)(8)(i)(C) in your next annual report and maintain the records in § 60.5420a(c)(16)(iii).
- (5) If an owner or operator determines, through an engineering assessment, that routing a pneumatic pump to a control device or a process is technically infeasible, the requirements specified in paragraphs (b)(5)(i) through (iv) of this section must be met.
 - (i) The owner or operator shall conduct the assessment of technical infeasibility in accordance with the criteria in paragraph (b)(5)(iii) of this section and have it certified by either a qualified professional engineer or an inhouse engineer with expertise on the design and operation of the pneumatic pump in accordance with paragraph (b)(5)(ii) of this section.
 - (ii) The following certification, signed and dated by the qualified professional engineer or in-house engineer, shall state: "I certify that the assessment of technical infeasibility was prepared under my direction or supervision. I further certify that the assessment was conducted and this report was prepared pursuant to the requirements of § 60.5393a(b)(5)(iii). Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete."
 - (iii) The assessment of technical infeasibility to route emissions from the pneumatic pump to an existing control device onsite or to a process shall include, but is not limited to, safety considerations, distance from the control device or process, pressure losses and differentials in the closed vent system, and the ability of the control device or process to handle the pneumatic pump emissions which are routed to them. The assessment of technical infeasibility shall be prepared under the direction or supervision of the qualified professional engineer or in-house engineer who signs the certification in accordance with paragraph (b)(5)(ii) of this section.
 - (iv) The owner or operator shall maintain the records specified in § 60.5420a(c)(16)(iv).
- (6) If the pneumatic pump is routed to a control device or a process and the control device or process is subsequently removed from the location or is no longer available, you are no longer required to be in compliance with the requirements of paragraph (b) of this section, and instead must comply with paragraph (b)(3) of this section and report the change in the next annual report in accordance with § 60.5420a(b)(8)(ii).
- (c) If you use a control device or route to a process to reduce emissions, you must connect the pneumatic pump affected facility through a closed vent system that meets the requirements of §§ 60.5411a(d) and (e), 60.5415a(b)(3), and 60.5416a(d).
- (d) You must demonstrate initial compliance with standards that apply to pneumatic pump affected facilities as required by § 60.5410a(e).
- (e) You must perform the reporting as required by § 60.5420a(b)(1) and (8) and the recordkeeping as required by § 60.5420a(c)(6) through (10), (16), and (17), as applicable.

[81 FR 35898, June 3, 2016, as amended at 82 FR 25733, June 5, 2017; 85 FR 57070, Sept. 14, 2020; 85 FR 57439, Sept. 15, 2020]

§ 60.5395a What VOC standards apply to storage vessel affected facilities?

Each storage vessel affected facility must comply with the VOC standards in this section, except as provided in paragraph (e) of this section.

- (a) You must comply with the requirements of paragraphs (a)(1) and (2) of this section. After 12 consecutive months of compliance with paragraph (a)(2) of this section, you may continue to comply with paragraph (a)(2) of this section, or you may comply with paragraph (a)(3) of this section, if applicable. If you choose to meet the requirements in paragraph (a)(3) of this section, you are not required to comply with the requirements of paragraph (a)(2) of this section except as
 - (1) Determine the potential for VOC emissions in accordance with § 60.5365a(e).

provided in paragraphs (a)(3)(i) and (ii) of this section.

- (2) Reduce VOC emissions by 95.0 percent within 60 days after startup. For storage vessel affected facilities receiving liquids pursuant to the standards for well affected facilities in § 60.5375a(a)(1)(i) or (ii), you must achieve the required emissions reductions within 60 days after startup of production as defined in § 60.5430a.
- (3) Maintain the uncontrolled actual VOC emissions from the storage vessel affected facility at less than 4 tpy without considering control. Prior to using the uncontrolled actual VOC emission rate for compliance purposes, you must demonstrate that the uncontrolled actual VOC emissions have remained less than 4 tpy as determined monthly for 12 consecutive months. After such demonstration, you must determine the uncontrolled actual VOC emission rate each month. The uncontrolled actual VOC emissions must be calculated using a generally accepted model or calculation methodology, and the calculations must be based on the average throughput for the month. You may no longer comply with this paragraph and must instead comply with paragraph (a)(2) of this section if your storage vessel affected facility meets the conditions specified in paragraphs (a)(3)(i) or (ii) of this section.
 - (i) If a well feeding the storage vessel affected facility undergoes fracturing or refracturing, you must comply with paragraph (a)(2) of this section as soon as liquids from the well following fracturing or refracturing are routed to the storage vessel affected facility.
 - (ii) If the monthly emissions determination required in this section indicates that VOC emissions from your storage vessel affected facility increase to 4 tpy or greater and the increase is not associated with fracturing or refracturing of a well feeding the storage vessel affected facility, you must comply with paragraph (a)(2) of this section within 30 days of the monthly determination.

(b) Control requirements.

- (1) Except as required in paragraph (b)(2) of this section, if you use a control device to reduce VOC emissions from your storage vessel affected facility, you must equip the storage vessel with a cover that meets the requirements of § 60.5411a(b) and is connected through a closed vent system that meets the requirements of § 60.5411a(c) and (d), and you must route emissions to a control device that meets the conditions specified in § 60.5412a(c) or (d). As an alternative to routing the closed vent system to a control device, you may route the closed vent system to a process.
- (2) If you use a floating roof to reduce emissions, you must meet the requirements of § 60.112b(a)(1) or (2) and the relevant monitoring, inspection, recordkeeping, and reporting requirements in 40 CFR part 60, subpart Kb.
- (c) Requirements for storage vessel affected facilities that are removed from service or returned to service. If you remove a storage vessel affected facility from service, you must comply with paragraphs (c)(1) through (3) of this section. A storage vessel is not an affected facility under this subpart for the period that it is removed from service.
 - (1) For a storage vessel affected facility to be removed from service, you must comply with the requirements of paragraphs (c)(1)(i) and (ii) of this section.
 - (i) You must completely empty and degas the storage vessel, such that the storage vessel no longer contains crude oil, condensate, produced water or intermediate hydrocarbon liquids. A storage vessel where liquid is left on walls, as bottom clingage or in pools due to floor irregularity is considered to be completely empty.
 - (ii) You must submit a notification as required in § 60.5420a(b)(6)(v) in your next annual report, identifying each storage vessel affected facility removed from service during the reporting period and the date of its removal from service.
 - (2) If a storage vessel identified in paragraph (c)(1)(ii) of this section is returned to service, you must determine its affected facility status as provided in § 60.5365a(e).
 - (3) For each storage vessel affected facility returned to service during the reporting period, you must submit a notification in your next annual report as required in § 60.5420a(b)(6)(vi), identifying each storage vessel affected facility and the date of its return to service.
- (d) Compliance, notification, recordkeeping, and reporting. You must comply with paragraphs (d)(1) through (3) of this section.
 - (1) You must demonstrate initial compliance with standards as required by § 60.5410a(h) and (i).

- (2) You must demonstrate continuous compliance with standards as required by § 60.5415a(e)(3).
- (3) You must perform the required reporting as required by § 60.5420a(b)(1) and (6) and the recordkeeping as required by § 60.5420a(c)(5) through (8), (12) through (14), and (17), as applicable.
- (e) Exemptions. This subpart does not apply to storage vessels subject to and controlled in accordance with the requirements for storage vessels in 40 CFR part 60, subpart Kb, and 40 CFR part 63, subparts G, CC, HH, or WW.

[77 FR 49542, Aug. 16, 2012, as amended at 85 FR 57440, Sept. 15, 2020]

§ 60.5397a What fugitive emissions VOC standards apply to the affected facility which is the collection of fugitive emissions components at a well site and the affected facility which is the collection of fugitive emissions components at a compressor station?

For each affected facility under § 60.5365a(i) and (j), you must reduce VOC emissions by complying with the requirements of paragraphs (a) through (j) of this section. The requirements in this section are independent of the closed vent system and cover requirements in § 60.5411a.

- (a) You must comply with paragraph (a)(1) of this section, unless your affected facility under § 60.5365a(i) (i.e., the collection of fugitive emissions components at a well site) meets the conditions specified in either paragraph (a)(1)(i) or (ii) of this section. If your affected facility under § 60.5365a(i) (i.e., the collection of fugitive emissions components at a well site) meets the conditions specified in either paragraph (a)(1)(i) or (ii) of this section, you must comply with either paragraph (a)(1) or (2) of this section.
 - (1) You must monitor all fugitive emission components, as defined in § 60.5430a, in accordance with paragraphs (b) through (g) of this section. You must repair all sources of fugitive emissions in accordance with paragraph (h) of this section. You must keep records in accordance with paragraph (i) of this section and report in accordance with paragraph (j) of this section. For purposes of this section, fugitive emissions are defined as any visible emission from a fugitive emissions component observed using optical gas imaging or an instrument reading of 500 parts per million (ppm) or greater using Method 21 of appendix A-7 to this part.
 - (i) First 30-day production. For the collection of fugitive emissions components at a well site, where the total production of the well site is at or below 15 barrels of oil equivalent (boe) per day for the first 30 days of production, according to § 60.5415a(j), you must comply with the provisions of either paragraph (a)(1) or (2) of this section. Except as provided in this paragraph (a)(1)(i), the calculation must be performed within 45 days of the end of the first 30 days of production. To convert gas production to equivalent barrels of oil, divide the cubic feet of gas produced by 6,000. For well sites that commenced construction, reconstruction, or modification between October 15, 2019, and November 16, 2020, the owner or operator may use the records of the first 30 days of production after becoming subject to this subpart, if available, to determine if the total well site production is at or below 15 boe per day, provided this determination is completed by December 14, 2020.
 - (ii) Well site production decline. For the collection of fugitive emissions components at a well site, where, at any time, the total production of the well site is at or below 15 boe per day based on a rolling 12-month average, you must comply with the provisions of either paragraph (a)(1) or (2) of this section. To convert gas production to equivalent barrels of oil, divide the cubic feet of gas produced by 6,000.
 - (2) You must maintain the total production for the well site at or below 15 boe per day based on a rolling 12-month average, according to §§ 60.5410a(k) and 60.5415a(i), comply with the reporting requirements in § 60.5420a(b)(7) (i)(C), and the recordkeeping requirements in § 60.5420a(c)(15)(ii), until such time that you perform any of the actions in paragraphs (a)(2)(i) through (v) of this section occur, you must comply with paragraph (a)(3) of this section.
 - (i) A new well is drilled at the well site;
 - (ii) A well at the well site is hydraulically fractured;
 - (iii) A well at the well site is hydraulically refractured;
 - (iv) A well at the well site is stimulated in any manner for the purpose of increasing production, including well workovers; or
 - (v) A well at the well site is shut-in for the purpose of increasing production from the well.

- (3) You must determine the total production for the well site for the first 30 days after any of the actions listed in paragraphs (a)(2)(i) through (v) of this section is completed, according to § 60.5415a(j), comply with paragraph (a) (3)(i) or (ii) of this section, the reporting requirements in § 60.5420a(b)(7)(i)(C), and the recordkeeping requirements in § 60.5420a(c)(15)(iii).
 - (i) If the total production for the well site is at or below 15 boe per day for the first 30 days after the action is completed, according to § 60.5415a(j), you must either continue to comply with paragraph (a)(2) of this section or comply with paragraph (a)(1) of this section.
 - (ii) If the total production for the well site is greater than 15 boe per day for the first 30 days after the action is completed, according to § 60.5415a(j), you must comply with paragraph (a)(1) of this section and conduct an initial monitoring survey for the collection of fugitive emissions components at the well site in accordance with the same schedule as for modified well sites as specified in § 60.5397a(f)(1).
- (b) You must develop an emissions monitoring plan that covers the collection of fugitive emissions components at well sites and compressor stations within each company-defined area in accordance with paragraphs (c) and (d) of this section.
- (c) Fugitive emissions monitoring plans must include the elements specified in paragraphs (c)(1) through (8) of this section, at a minimum.
 - (1) Frequency for conducting surveys. Surveys must be conducted at least as frequently as required by paragraphs (f) and (g) of this section.
 - (2) Technique for determining fugitive emissions (*i.e.*, Method 21 of appendix A-7 to this part or optical gas imaging meeting the requirements in paragraphs (c)(7)(i) through (vii) of this section).
 - (3) Manufacturer and model number of fugitive emissions detection equipment to be used.
 - (4) Procedures and timeframes for identifying and repairing fugitive emissions components from which fugitive emissions are detected, including timeframes for fugitive emission components that are unsafe to repair. Your repair schedule must meet the requirements of paragraph (h) of this section at a minimum.
 - (5) Procedures and timeframes for verifying fugitive emission component repairs.
 - (6) Records that will be kept and the length of time records will be kept.
 - (7) If you are using optical gas imaging, your plan must also include the elements specified in paragraphs (c)(7)(i) through (vii) of this section.
 - (i) Verification that your optical gas imaging equipment meets the specifications of paragraphs (c)(7)(i)(A) and (B) of this section. This verification is an initial verification, and may either be performed by the facility, by the manufacturer, or by a third party. For the purposes of complying with the fugitive emissions monitoring program with optical gas imaging, a fugitive emission is defined as any visible emissions observed using optical gas imaging.
 - (A) Your optical gas imaging equipment must be capable of imaging gases in the spectral range for the compound of highest concentration in the potential fugitive emissions.
 - (B) Your optical gas imaging equipment must be capable of imaging a gas that is half methane, half propane at a concentration of 10,000 ppm at a flow rate of ≤60g/hr from a quarter inch diameter orifice.
 - (ii) Procedure for a daily verification check.
 - (iii) Procedure for determining the operator's maximum viewing distance from the equipment and how the operator will ensure that this distance is maintained.
 - (iv) Procedure for determining maximum wind speed during which monitoring can be performed and how the operator will ensure monitoring occurs only at wind speeds below this threshold.
 - (v) Procedures for conducting surveys, including the items specified in paragraphs (c)(7)(v)(A) through (C) of this section.
 - (A) How the operator will ensure an adequate thermal background is present in order to view potential fugitive emissions.
 - (B) How the operator will deal with adverse monitoring conditions, such as wind.
 - (C) How the operator will deal with interferences (e.g., steam).
 - (vi) Training and experience needed prior to performing surveys.

- (vii) Procedures for calibration and maintenance. At a minimum, procedures must comply with those recommended by the manufacturer.
- (8) If you are using Method 21 of appendix A-7 of this part, your plan must also include the elements specified in paragraphs (c)(8)(i) through (iii) of this section. For the purposes of complying with the fugitive emissions monitoring program using Method 21 of appendix A-7 of this part a fugitive emission is defined as an instrument reading of 500 ppm or greater.
 - Verification that your monitoring equipment meets the requirements specified in Section 6.0 of Method 21 at 40 CFR part 60, appendix A-7. For purposes of instrument capability, the fugitive emissions definition shall be 500 ppm or greater methane using a FID-based instrument. If you wish to use an analyzer other than a FID-based instrument, you must develop a site-specific fugitive emission definition that would be equivalent to 500 ppm methane using a FID-based instrument (e.g., 10.6 eV PID with a specified isobutylene concentration as the fugitive emission definition would provide equivalent response to your compound of interest).
 - (ii) Procedures for conducting surveys. At a minimum, the procedures shall ensure that the surveys comply with the relevant sections of Method 21 at 40 CFR part 60, appendix A-7, including Section 8.3.1.
 - (iii) Procedures for calibration. The instrument must be calibrated before use each day of its use by the procedures specified in Method 21 of appendix A-7 of this part. At a minimum, you must also conduct precision tests at the interval specified in Method 21 of appendix A-7 of this part, Section 8.1.2, and a calibration drift assessment at the end of each monitoring day. The calibration drift assessment must be conducted as specified in paragraph (c)(8)(iii)(A) of this section. Corrective action for drift assessments is specified in paragraphs (c)(8)(iii)(B) and (C) of this section.
 - (A) Check the instrument using the same calibration gas that was used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. If multiple scales are used, record the instrument reading for each scale used. Divide the arithmetic difference of the initial and posttest calibration response by the corresponding calibration gas value for each scale and multiply by 100 to express the calibration drift as a percentage.
 - (B) If a calibration drift assessment shows a negative drift of more than 10 percent, then all equipment with instrument readings between the fugitive emission definition multiplied by (100 minus the percent of negative drift/divided by 100) and the fugitive emission definition that was monitored since the last calibration must be re-monitored.
 - (C) If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment with instrument readings above the fugitive emission definition and below the fugitive emission definition multiplied by (100 plus the percent of positive drift/divided by 100) monitored since the last calibration may be re-monitored.
- (d) Each fugitive emissions monitoring plan must include the elements specified in paragraphs (d)(1) through (3) of this section, at a minimum, as applicable.
 - (1) If you are using optical gas imaging, your plan must include procedures to ensure that all fugitive emissions components are monitored during each survey. Example procedures include, but are not limited to, a sitemap with an observation path, a written narrative of where the fugitive emissions components are located and how they will be monitored, or an inventory of fugitive emissions components.
 - (2) If you are using Method 21 of appendix A-7 of this part, your plan must include a list of fugitive emissions components to be monitored and method for determining the location of fugitive emissions components to be monitored in the field (e.g., tagging, identification on a process and instrumentation diagram, etc.).
 - (3) Your fugitive emissions monitoring plan must include the written plan developed for all of the fugitive emissions components designated as difficult-to-monitor in accordance with paragraph (g)(3) of this section, and the written plan for fugitive emissions components designated as unsafe-to-monitor in accordance with paragraph (q)(4) of this section.
- (e) Each monitoring survey shall observe each fugitive emissions component, as defined in § 60.5430a, for fugitive emissions.

(f)

(1) You must conduct an initial monitoring survey within 90 days of the startup of production, as defined in § 60.5430a, for each collection of fugitive emissions components at a new well site or by June 3, 2017, whichever is later. For a modified collection of fugitive emissions components at a well site, the initial monitoring survey must be conducted within 90 days of the startup of production for each collection of fugitive emissions components after the modification or by June 3, 2017, whichever is later. Notwithstanding the preceding deadlines, for each collection of fugitive emissions components at a well site located on the Alaskan North Slope, as defined in § 60.5430a, that starts up production between September and March, you must conduct an initial monitoring survey within 6 months of the startup of production for a new well site, within 6 months of the first day of production after a modification of the collection of fugitive emission components, or by the following June 30, whichever is latest.

- (2) You must conduct an initial monitoring survey within 90 days of the startup of a new compressor station for each collection of fugitive emissions components at the new compressor station or by June 3, 2017, whichever is later. For a modified collection of fugitive emissions components at a compressor station, the initial monitoring survey must be conducted within 90 days of the modification or by June 3, 2017, whichever is later. Notwithstanding the preceding deadlines, for each collection of fugitive emissions components at a new compressor station located on the Alaskan North Slope that starts up between September and March, you must conduct an initial monitoring survey within 6 months of the startup date for new compressor stations, within 6 months of the modification, or by the following June 30, whichever is latest.
- (g) A monitoring survey of each collection of fugitive emissions components at a well site or at a compressor station must be performed at the frequencies specified in paragraphs (g)(1) and (2) of this section, with the exceptions noted in paragraphs (g)(3) through (5) of this section.
 - (1) Except as provided in this paragraph (g)(1), a monitoring survey of each collection of fugitive emissions components at a well site must be conducted at least semiannually after the initial survey. Consecutive semiannual monitoring surveys must be conducted at least 4 months apart and no more than 7 months apart. A monitoring survey of each collection of fugitive emissions components at a well site located on the Alaskan North Slope must be conducted at least annually. Consecutive annual monitoring surveys must be conducted at least 9 months apart and no more than 13 months apart.
 - (2) Except as provided in this paragraph (g)(2), a monitoring survey of the collection of fugitive emissions components at a compressor station must be conducted at least semiannually after the initial survey. Consecutive semiannual monitoring surveys must be conducted at least 4 months apart and no more than 7 months apart. A monitoring survey of the collection of fugitive emissions components at a compressor station located on the Alaskan North Slope must be conducted at least annually. Consecutive annual monitoring surveys must be conducted at least 9 months apart and no more than 13 months apart.
 - (3) Fugitive emissions components that cannot be monitored without elevating the monitoring personnel more than 2 meters above the surface may be designated as difficult-to-monitor. Fugitive emissions components that are designated difficult-to-monitor must meet the specifications of paragraphs (g)(3)(i) through (iv) of this section.
 - (i) A written plan must be developed for all of the fugitive emissions components designated difficult-to-monitor.
 This written plan must be incorporated into the fugitive emissions monitoring plan required by paragraphs (b), (c), and (d) of this section.
 - (ii) The plan must include the identification and location of each fugitive emissions component designated as difficult-to-monitor.
 - (iii) The plan must include an explanation of why each fugitive emissions component designated as difficult-to-monitor is difficult-to-monitor.
 - (iv) The plan must include a schedule for monitoring the difficult-to-monitor fugitive emissions components at least once per calendar year.
 - (4) Fugitive emissions components that cannot be monitored because monitoring personnel would be exposed to immediate danger while conducting a monitoring survey may be designated as unsafe-to-monitor. Fugitive emissions components that are designated unsafe-to-monitor must meet the specifications of paragraphs (g)(4)(i) through (iv) of this section.
 - (i) A written plan must be developed for all of the fugitive emissions components designated unsafe-to-monitor.
 This written plan must be incorporated into the fugitive emissions monitoring plan required by paragraphs (b),
 (c), and (d) of this section.
 - (ii) The plan must include the identification and location of each fugitive emissions component designated as unsafe-to-monitor.
 - (iii) The plan must include an explanation of why each fugitive emissions component designated as unsafe-to-monitor is unsafe-to-monitor.

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
- (iv) The plan must include a schedule for monitoring the fugitive emissions components designated as unsafe-tomonitor.
- (5) You are no longer required to comply with the requirements of paragraph (g)(1) of this section when the owner or operator removes all major production and processing equipment, as defined in § 60.5430a, such that the well site becomes a wellhead only well site. If any major production and processing equipment is subsequently added to the well site, then the owner or operator must comply with the requirements in paragraphs (f)(1) and (g)(1) of this section.
- (h) Each identified source of fugitive emissions shall be repaired, as defined in § 60.5430a, in accordance with paragraphs (h)(1) and (2) of this section.
 - (1) A first attempt at repair shall be made no later than 30 calendar days after detection of the fugitive emissions.
 - (2) Repair shall be completed as soon as practicable, but no later than 30 calendar days after the first attempt at repair as required in paragraph (h)(1) of this section.
 - (3) If the repair is technically infeasible, would require a vent blowdown, a compressor station shutdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair must be completed during the next scheduled compressor station shutdown for maintenance, scheduled well shutdown, scheduled well shut-in, after a scheduled vent blowdown, or within 2 years, whichever is earliest. For purposes of this paragraph (h) (3), a vent blowdown is the opening of one or more blowdown valves to depressurize major production and processing equipment, other than a storage vessel.
 - (4) Each identified source of fugitive emissions must be resurveyed to complete repair according to the requirements in paragraphs (h)(4)(i) through (iv) of this section, to ensure that there are no fugitive emissions.
 - (i) The operator may resurvey the fugitive emissions components to verify repair using either Method 21 of appendix A-7 of this part or optical gas imaging.
 - (ii) For each repair that cannot be made during the monitoring survey when the fugitive emissions are initially found, a digital photograph must be taken of that component or the component must be tagged during the monitoring survey when the fugitives were initially found for identification purposes and subsequent repair. The digital photograph must include the date that the photograph was taken and must clearly identify the component by location within the site (e.g., the latitude and longitude of the component or by other descriptive landmarks visible in the picture).
 - (iii) Operators that use Method 21 of appendix A-7 of this part to resurvey the repaired fugitive emissions components are subject to the resurvey provisions specified in paragraphs (h)(4)(iii)(A) and (B) of this section.
 - (A) A fugitive emissions component is repaired when the Method 21 instrument indicates a concentration of less than 500 ppm above background or when no soap bubbles are observed when the alternative screening procedures specified in section 8.3.3 of Method 21 of appendix A-7 of this part are used.
 - (B) Operators must use the Method 21 monitoring requirements specified in paragraph (c)(8)(ii) of this section or the alternative screening procedures specified in section 8.3.3 of Method 21 of appendix A-7 of this part.
 - (iv) Operators that use optical gas imaging to resurvey the repaired fugitive emissions components, are subject to the resurvey provisions specified in paragraphs (h)(4)(iv)(A) and (B) of this section.
 - (A) A fugitive emissions component is repaired when the optical gas imaging instrument shows no indication of visible emissions.
 - (B) Operators must use the optical gas imaging monitoring requirements specified in paragraph (c)(7) of this section.
- (i) Records for each monitoring survey shall be maintained as specified § 60.5420a(c)(15).
- (j) Annual reports shall be submitted for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station that include the information specified in § 60.5420a(b)(7). Multiple collection of fugitive emissions components at a well site or at a compressor station may be included in a single annual report.

[81 FR 35898, June 3, 2016, as amended at 83 FR 10638, Mar. 12, 2018; 85 FR 57070, Sept. 14, 2020; 85 FR 57440, Sept. 15, 2020]

§ 60.5398a What are the alternative means of emission limitations for VOC from well completions, reciprocating compressors, the collection of fugitive emissions components at a well site and the collection of fugitive emissions components at a compressor station?

- (a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under § 60.5375a, § 60.5385a, or § 60.5397a, the Administrator will publish, in the Federal Register, a notice permitting the use of that alternative means for the purpose of compliance with § 60.5375a, § 60.5385a, or § 60.5397a. The authority to approve an alternative means of emission limitation is retained by the Administrator and shall not be delegated to States under section 111(c) of the Clean Air Act (CAA).
- (b) Any notice under paragraph (a) of this section must be published only after notice and an opportunity for a public hearing.
- (c) Determination of equivalence to the design, equipment, work practice, or operational requirements of this section will be evaluated by the following guidelines:
 - (1) The applicant must provide information that is sufficient for demonstrating the alternative means of emission limitation achieves emission reductions that are at least equivalent to the emission reductions that would be achieved by complying with the relevant standards. At a minimum, the application must include the following information:
 - (i) Details of the specific equipment or components that would be included in the alternative.
 - (ii) A description of the alternative work practice, including, as appropriate, the monitoring method, monitoring instrument or measurement technology, and the data quality indicators for precision and bias.
 - (iii) The method detection limit of the technology, technique, or process and a description of the procedures used to determine the method detection limit. At a minimum, the applicant must collect, verify, and submit field data encompassing seasonal variations to support the determination of the method detection limit. The field data may be supplemented with modeling analyses, controlled test site data, or other documentation.
 - (iv) Any initial and ongoing quality assurance/quality control measures necessary for maintaining the technology, technique, or process, and the timeframes for conducting such measures.
 - (v) Frequency of measurements. For continuous monitoring techniques, the minimum data availability.
 - (vi) Any restrictions for using the technology, technique, or process.
 - (vii) Initial and continuous compliance procedures, including recordkeeping and reporting, if the compliance procedures are different than those specified in this subpart.
 - (2) For each technology, technique, or process for which a determination of equivalency is requested, the application must provide a demonstration that the emission reduction achieved by the alternative means of emission limitation is at least equivalent to the emission reduction that would be achieved by complying with the relevant standards in this subpart.
- (d) Any alternative means of emission limitations approved under this section shall constitute a required work practice, equipment, design, or operational standard within the meaning of section 111(h)(1) of the CAA.

[85 FR 57442, Sept. 15, 2020]

§ 60.5399a What alternative fugitive emissions standards apply to the affected facility which is the collection of fugitive emissions components at a well site and the affected facility which is the collection of fugitive emissions components at a compressor station: Equivalency with state, local, and tribal programs?

This section provides alternative fugitive emissions standards based on programs under state, local, or tribal authorities for the collection of fugitive emissions components, as defined in \S 60.5430a, located at well sites and compressor stations. Paragraphs (a) through (e) of this section outline the procedure for submittal and approval of alternative fugitive emissions standards. Paragraphs (f) through (n) provide approved alternative fugitive emissions standards. The terms "fugitive emissions components" and "repaired" are defined in \S 60.5430a and must be applied to the alternative fugitive emissions standards in this section. The requirements for a monitoring plan as specified in \S 60.5397a(c) and (d) apply to the alternative fugitive emissions standards in this section.

- (a) Alternative fugitive emissions standards. If, in the Administrator's judgment, an alternative fugitive emissions standard will achieve a reduction in VOC emissions at least equivalent to the reductions achieved under § 60.5397a, the Administrator will publish, in the Federal Register, a notice permitting use of the alternative fugitive emissions standard for the purpose of compliance with § 60.5397a. The authority to approve alternative fugitive emissions standards is retained by the Administrator and shall not be delegated to States under section 111(c) of the CAA.
- (b) **Notice**. Any notice under paragraph (a) of this section will be published only after notice and an opportunity for public hearing.
- (c) **Evaluation guidelines.** Determination of alternative fugitive emissions standards to the design, equipment, work practice, or operational requirements of § 60.5397a will be evaluated by the following guidelines:
 - (1) The monitoring instrument, including the monitoring procedure;
 - (2) The monitoring frequency;
 - (3) The fugitive emissions definition;
 - (4) The repair requirements; and
 - (5) The recordkeeping and reporting requirements.
- (d) Approval of alternative fugitive emissions standard. Any alternative fugitive emissions standard approved under this section shall:
 - (1) Constitute a required design, equipment, work practice, or operational standard within the meaning of section 111(h)(1) of the CAA; and
 - (2) Be made available for use by any owner or operator in meeting the relevant standards and requirements established for affected facilities under § 60.5397a.
- (e) Notification.
 - (1) An owner or operator must notify the Administrator of adoption of the alternative fugitive emissions standards within the first annual report following implementation of the alternative fugitive emissions standard, as specified in § 60.5420a(a)(3).
 - (2) An owner or operator implementing one of the alternative fugitive emissions standards must submit the reports specified in § 60.5420a(b)(7)(iii). An owner or operator must also maintain the records specified by the specific alternative fugitive emissions standard for a period of at least 5 years.
- (f) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a well site or a compressor station in the State of California. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a well site or a compressor station in the State of California may elect to reduce VOC emissions through compliance with the monitoring, repair, and recordkeeping requirements in the California Code of Regulations, title 17, sections 95665-95667, effective January 1, 2020, as an alternative to complying with the requirements in § 60.5397a(f)(1) and (2), (g)(1) through (4), (h), and (i). The information specified in § 60.5420a(b)(7)(iii)(A) and the information specified in either § 60.5420a(b)(7)(iii)(B) or (C) may be provided as an alternative to the requirements in § 60.5397a(j).
- (g) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a well site or a compressor station in the State of Colorado. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a well site or a compressor station in the State of Colorado may elect to comply with the monitoring, repair, and recordkeeping requirements in Colorado Regulation 7, Part D, section I.L or II.E, effective February 14, 2020, for well sites and compressor stations, as an alternative to complying with the requirements in § 60.5397a(f)(1) and (2), (g)(1) through (4), (h), and (i), provided the monitoring instrument used is an optical gas imaging or a Method 21 instrument (see appendix A-7 of this part). Monitoring must be conducted on at least a semiannual basis for well sites and compressor stations. If using the alternative in this paragraph (g), the information specified in § 60.5420a(b)(7)(iii)(A) and (C) must be provided in lieu of the requirements in § 60.5397a(j).
- (h) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a well site in the State of Ohio. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a well site in the State of Ohio may elect to comply with the monitoring, repair, and recordkeeping requirements in Ohio General Permits 12.1, Section C.5 and 12.2, Section C.5, effective April 14, 2014, as an alternative to complying with the requirements in § 60.5397a(f)(1), (g)(1), (3), and (4), (h), and (i), provided the monitoring instrument used is optical gas imaging or a Method 21 instrument (see appendix A-7 of this part) with a leak definition and reading

- of 500 ppm or greater. Monitoring must be conducted on at least a semiannual basis and skip periods cannot be applied. The information specified in § 60.5420a(b)(7)(iii)(A) and the information specified in either § 60.5420a(b)(7)(iii)(B) or (C) may be provided as an alternative to the requirements in § 60.5397a(j).
- (i) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a compressor station in the State of Ohio. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a compressor station in the State of Ohio may elect to comply with the monitoring, repair, and recordkeeping requirements in Ohio General Permit 18.1, effective February 7, 2017, as an alternative to complying with the requirements in § 60.5397a(f)(2), (g)(2) through (4), (h), and (i), provided the monitoring instrument used is optical gas imaging or a Method 21 instrument (see appendix A-7 of this part) with a leak definition and reading of 500 ppm or greater. Monitoring must be conducted on at least a semiannual basis and skip periods cannot be applied. The information specified in § 60.5420a(b)(7)(iii)(A) and the information specified in either § 60.5420a(b)(7)(iii)(B) or (C) may be provided as an alternative to the requirements in § 60.5397a(j).
- (j) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a well site in the State of Pennsylvania. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a well site in the State of Pennsylvania may elect to comply with the monitoring, repair, and recordkeeping requirements in Pennsylvania General Permit 5A, section G, effective August 8, 2018, as an alternative to complying with the requirements in § 60.5397a(f)(2), (g)(2) through (4), (h), and (i), provided the monitoring instrument used is an optical gas imaging or a Method 21 instrument (see appendix A-7 of this part). The information specified in § 60.5420a(b)(7)(iii)(A) and the information specified in either § 60.5420a(b)(7)(iii)(B) or (C) may be provided as an alternative to the requirements in § 60.5397a(j).
- (k) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a compressor station in the State of Pennsylvania. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a compressor station in the State of Pennsylvania may elect to comply with the monitoring, repair, and recordkeeping requirements in Pennsylvania General Permit 5, section G, effective August 8, 2018, as an alternative to complying with the requirements in § 60.5397a(f)(2), (g)(2) through (4), (h), and (i), provided the monitoring instrument used is an optical gas imaging or a Method 21 instrument (see appendix A-7 of this part). The information specified in § 60.5420a(b)(7)(iii)(A) and the information specified in either § 60.5420a(b)(7)(iii)(B) or (C) may be provided as an alternative to the requirements in § 60.5397a(j).
- (I) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a well site in the State of Texas. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a well site in the State of Texas may elect to comply with the monitoring, repair, and recordkeeping requirements in the Air Quality Standard Permit for Oil and Gas Handling and Production Facilities, section (e)(6), effective November 8, 2012, or at 30 Texas Administrative Code section 116.620, effective September 4, 2000, as an alternative to complying with the requirements in § 60.5397a(f)(2), (g)(2) through (4), (h), and (i), provided the monitoring instrument used is optical gas imaging or a Method 21 instrument (see appendix A-7 of this part) with a leak definition and reading of 500 ppm or greater. Monitoring must be conducted on at least a semiannual basis and skip periods may not be applied. If using the requirement in this paragraph (I), the information specified in § 60.5420a(b)(7)(iii)(A) and (C) must be provided in lieu of the requirements in § 60.5397a(j).
- (m) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a compressor station in the State of Texas. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, located at a compressor in the State of Texas may elect to comply with the monitoring, repair, and recordkeeping requirements in the Air Quality Standard Permit for Oil and Gas Handling and Production Facilities, section (e)(6), effective November 8, 2012, or at 30 Texas Administrative Code section 116.620, effective September 4, 2000, as an alternative to complying with the requirements in § 60.5397a(f)(2), (g)(2) through (4), (h), and (i), provided the monitoring instrument used is optical gas imaging or a Method 21 instrument (see appendix A-7 of this part) with a leak definition and reading of 500 ppm or greater. Monitoring must be conducted on at least a semiannual basis and skip periods may not be applied. If using the alternative in this paragraph (m), the information specified in § 60.5420a(b)(7) (iii)(A) and (C) must be provided in lieu of the requirements in § 60.5397a(j).
- (n) Alternative fugitive emissions requirements for the collection of fugitive emissions components located at a well site in the State of Utah. An affected facility, which is the collection of fugitive emissions components, as defined in § 60.5430a, and is required to control emissions in accordance with Utah Administrative Code R307-506 and R307-507, located at a well site in the State of Utah may elect to comply with the monitoring, repair, and recordkeeping requirements in the Utah Administrative Code R307-509, effective March 2, 2018, as an alternative to complying with the requirements in § 60.5397a(f)(2), (g)(2) through (4), (h), and (i). If using the alternative in this paragraph (n), the information specified in § 60.5420a(b)(7)(iii)(A) and (C) must be provided in lieu of the requirements in § 60.5397a(j).

§ 60.5400a What equipment leak VOC standards apply to affected facilities at an onshore natural gas processing plant?

This section applies to the group of all equipment, except compressors, within a process unit located at an onshore natural gas processing plant.

- (a) You must comply with the requirements of §§ 60.482-1a(a), (b), (d), and (e), 60.482-2a, and 60.482-4a through 60.482-11a, except as provided in § 60.5401a, as soon as practicable but no later than 180 days after the initial startup of the process unit.
- (b) You may elect to comply with the requirements of §§ 60.483-1a and 60.483-2a, as an alternative.
- (c) You may apply to the Administrator for permission to use an alternative means of emission limitation that achieves a reduction in emissions of VOC at least equivalent to that achieved by the controls required in this subpart according to the requirements of § 60.5402a.
- (d) You must comply with the provisions of § 60.485a except as provided in paragraph (f) of this section.
- (e) You must comply with the provisions of §§ 60.486a and 60.487a except as provided in §§ 60.5401a, 60.5421a, and 60.5422a.
- (f) You must use the following provision instead of § 60.485a(d)(1): Each piece of equipment is presumed to be in VOC service or in wet gas service unless an owner or operator demonstrates that the piece of equipment is not in VOC service or in wet gas service. For a piece of equipment to be considered not in VOC service, it must be determined that the VOC content can be reasonably expected never to exceed 10.0 percent by weight. For a piece of equipment to be considered in wet gas service, it must be determined that it contains or contacts the field gas before the extraction step in the process. For purposes of determining the percent VOC content of the process fluid that is contained in or contacts a piece of equipment, procedures that conform to the methods described in ASTM E169-93, E168-92, or E260-96 (incorporated by reference as specified in § 60.17) must be used.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57071, Sept. 14, 2020; 85 FR 57445, Sept. 15, 2020]

§ 60.5401a What are the exceptions to the equipment leak VOC standards for affected facilities at onshore natural gas processing plants?

(a) You may comply with the following exceptions to the provisions of § 60.5400a(a) and (b).

(b)

- (1) Each pressure relief device in gas/vapor service may be monitored quarterly and within 5 days after each pressure release to detect leaks by the methods specified in § 60.485a(b) except as provided in §§ 60.5400a(c) and in paragraph (b)(4) of this section, and 60.482-4a(a) through (c) of subpart VVa of this part.
- (2) If an instrument reading of 500 ppm or greater is measured, a leak is detected.

(3)

- (i) When a leak is detected, it must be repaired as soon as practicable, but no later than 15 calendar days after it is detected, except as provided in § 60.482-9a.
- (ii) A first attempt at repair must be made no later than 5 calendar days after each leak is detected.

(4)

- (i) Any pressure relief device that is located in a nonfractionating plant that is monitored only by non-plant personnel may be monitored after a pressure release the next time the monitoring personnel are onsite, instead of within 5 days as specified in paragraph (b)(1) of this section and § 60.482-4a(b)(1).
- (ii) No pressure relief device described in paragraph (b)(4)(i) of this section may be allowed to operate for more than 30 days after a pressure release without monitoring.
- (c) Sampling connection systems are exempt from the requirements of § 60.482-5a.
- (d) Pumps in light liquid service, valves in gas/vapor and light liquid service, pressure relief devices in gas/vapor service, and connectors in gas/vapor service and in light liquid service that are located at a nonfractionating plant that does not have the design capacity to process 283,200 standard cubic meters per day (scmd) (10 million standard cubic feet per day) or

more of field gas are exempt from the routine monitoring requirements of §§ 60.482-2a(a)(1), 60.482-7a(a), 60.482-11a(a), and paragraph (b)(1) of this section.

- (e) Pumps in light liquid service, valves in gas/vapor and light liquid service, pressure relief devices in gas/vapor service, and connectors in gas/vapor service and in light liquid service within a process unit that is located in the Alaskan North Slope are exempt from the monitoring requirements of §§ 60.482-2a(a)(1), 60.482-7a(a), and 60.482-11a(a) and paragraph (b) (1) of this section.
- (f) An owner or operator may use the following provisions instead of § 60.485a(e):
 - (1) Equipment is in heavy liquid service if the weight percent evaporated is 10 percent or less at 150 °Celsius (302 °Fahrenheit) as determined by ASTM Method D86-96 (incorporated by reference as specified in § 60.17).
 - (2) Equipment is in light liquid service if the weight percent evaporated is greater than 10 percent at 150 °Celsius (302 °Fahrenheit) as determined by ASTM Method D86-96 (incorporated by reference as specified in § 60.17).
- (g) An owner or operator may use the following provisions instead of § 60.485a(b)(2): A calibration drift assessment shall be performed, at a minimum, at the end of each monitoring day. Check the instrument using the same calibration gas(es) that were used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. Record the instrument reading for each scale used as specified in § 60.486a(e)(8). For each scale, divide the arithmetic difference of the most recent calibration and the post-test calibration response by the corresponding calibration gas value, and multiply by 100 to express the calibration drift as a percentage. If any calibration drift assessment shows a negative drift of more than 10 percent from the most recent calibration response, then all equipment monitored since the last calibration with instrument readings below the appropriate leak definition and above the leak definition multiplied by (100 minus the percent of negative drift/divided by 100) must be re-monitored. If any calibration drift assessment shows a positive drift of more than 10 percent from the most recent calibration response, then, at the owner/operator's discretion, all equipment since the last calibration with instrument readings above the appropriate leak definition and below the leak definition multiplied by (100 plus the percent of positive drift/divided by 100) may be re-monitored.

[77 FR 49542, Aug. 16, 2012, as amended at 85 FR 57445, Sept. 15, 2020]

§ 60.5402a What are the alternative means of emission limitations for VOC equipment leaks from onshore natural gas processing plants?

- (a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under any design, equipment, work practice or operational standard, the Administrator will publish, in the Federal Register, a notice permitting the use of that alternative means for the purpose of compliance with that standard. The notice may condition permission on requirements related to the operation and maintenance of the alternative means.
- (b) Any notice under paragraph (a) of this section must be published only after notice and an opportunity for a public hearing.
- (c) The Administrator will consider applications under this section from either owners or operators of affected facilities, or manufacturers of control equipment.
- (d) An application submitted under paragraph (c) of this section must meet the following criteria:
 - (1) The applicant must collect, verify and submit test data, covering a period of at least 12 months, necessary to support the finding in paragraph (a) of this section.
 - (2) The application must include operation, maintenance, and other provisions necessary to assure reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under the design, equipment, work practice or operational standard in paragraph (a) of this section by including the information specified in paragraphs (d)(2)(i) through (x) of this section.
 - (i) A description of the technology or process.
 - (ii) The monitoring instrument and measurement technology or process.
 - (iii) A description of performance based procedures (i.e. method) and data quality indicators for precision and bias; the method detection limit of the technology or process.
 - (iv) The action criteria and level at which a fugitive emission exists.

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
 - (v) Any initial and ongoing quality assurance/quality control measures.
 - (vi) Timeframes for conducting ongoing quality assurance/quality control.
 - (vii) Field data verifying viability and detection capabilities of the technology or process.
 - (viii) Frequency of measurements.
 - (ix) Minimum data availability.
 - (x) Any restrictions for using the technology or process.
- (3) The application must include initial and continuous compliance procedures including recordkeeping and reporting.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57071, Sept. 14, 2020]

§ 60.5405a What standards apply to sweetening unit affected facilities?

- (a) During the initial performance test required by § 60.8(b), you must achieve at a minimum, an SO₂ emission reduction efficiency (Z_i) to be determined from Table 1 of this subpart based on the sulfur feed rate (X) and the sulfur content of the acid gas (Y) of the affected facility.
- (b) After demonstrating compliance with the provisions of paragraph (a) of this section, you must achieve at a minimum, an SO₂ emission reduction efficiency (Z_c) to be determined from Table 2 of this subpart based on the sulfur feed rate (X) and the sulfur content of the acid gas (Y) of the affected facility.

§ 60.5406a What test methods and procedures must I use for my sweetening unit affected facilities?

- (a) In conducting the performance tests required in § 60.8, you must use the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in § 60.8(b).
- (b) During a performance test required by § 60.8, you must determine the minimum required reduction efficiencies (Z) of SO₂ emissions as required in § 60.5405a(a) and (b) as follows:
 - (1) The average sulfur feed rate (X) must be computed as follows:

 $X = KQ_aY$

Where:

X = average sulfur feed rate, Mg/D (LT/D).

Q_a = average volumetric flow rate of acid gas from sweetening unit, dscm/day (dscf/day).

Y = average H₂S concentration in acid gas feed from sweetening unit, percent by volume, expressed as a decimal.

K = (32 kg S/kg-mole)/((24.04 dscm/kg-mole)(1000 kg S/Mg)).

- = 1.331×10^{-3} Mg/dscm, for metric units.
- = (32 lb S/lb-mole)/((385.36 dscf/lb-mole)(2240 lb S/long ton)).
- = 3.707×10^{-5} long ton/dscf, for English units.
- (2) You must use the continuous readings from the process flowmeter to determine the average volumetric flow rate (Q_a) in dscm/day (dscf/day) of the acid gas from the sweetening unit for each run.
- (3) You must use the Tutwiler procedure in § 60.5408a or a chromatographic procedure following ASTM E260-96 (incorporated by reference as specified in § 60.17) to determine the H₂S concentration in the acid gas feed from the sweetening unit (Y). At least one sample per hour (at equally spaced intervals) must be taken during each 4-hour run. The arithmetic mean of all samples must be the average H₂S concentration (Y) on a dry basis for the run. By multiplying the result from the Tutwiler procedure by 1.62 × 10⁻³, the units gr/100 scf are converted to volume percent.

- (4) Using the information from paragraphs (b)(1) and (3) of this section, Tables 1 and 2 of this subpart must be used to determine the required initial (Z_i) and continuous (Z_c) reduction efficiencies of SO_2 emissions.
- (c) You must determine compliance with the SO₂ standards in § 60.5405a(a) or (b) as follows:
 - (1) You must compute the emission reduction efficiency (R) achieved by the sulfur recovery technology for each run using the following equation:
 - R = (100S)/(S + E)
 - (2) You must use the level indicators or manual soundings to measure the liquid sulfur accumulation rate in the product storage vessels. You must use readings taken at the beginning and end of each run, the tank geometry, sulfur density at the storage temperature, and sample duration to determine the sulfur production rate (S) in kg/hr (lb/hr) for each run.
 - (3) You must compute the emission rate of sulfur for each run as follows:

```
E = C_e Q_{sd}/K_1
 Where:
```

E = emission rate of sulfur per run, kg/hr.

C_e = concentration of sulfur equivalent (SO²⁺ reduced sulfur), g/dscm (lb/dscf).

Q_{sd} = volumetric flow rate of effluent gas, dscm/hr (dscf/hr).

 K_1 = conversion factor, 1000 g/kg (7000 gr/lb).

- (4) The concentration (C_e) of sulfur equivalent must be the sum of the SO₂ and TRS concentrations, after being converted to sulfur equivalents. For each run and each of the test methods specified in this paragraph (c) of this section, you must use a sampling time of at least 4 hours. You must use Method 1 of appendix A-1 of this part to select the sampling site. The sampling point in the duct must be at the centroid of the cross-section if the area is less than 5 m² (54 ft²) or at a point no closer to the walls than 1 m (39 in) if the cross-sectional area is 5 m² or more, and the centroid is more than 1 m (39 in) from the wall.
 - You must use Method 6 of appendix A-4 of this part to determine the SO₂ concentration. You must take eight samples of 20 minutes each at 30-minute intervals. The arithmetic average must be the concentration for the run. The concentration must be multiplied by 0.5×10^{-3} to convert the results to sulfur equivalent. In place of Method 6 of appendix A of this part, you may use ANSI/ASME PTC 19.10-1981, Part 10 (manual portion only) (incorporated by reference as specified in § 60.17).
 - (ii) You must use Method 15 of appendix A-5 of this part to determine the TRS concentration from reduction-type devices or where the oxygen content of the effluent gas is less than 1.0 percent by volume. The sampling rate must be at least 3 liters/min (0.1 ft³/min) to insure minimum residence time in the sample line. You must take sixteen samples at 15-minute intervals. The arithmetic average of all the samples must be the concentration for the run. The concentration in ppm reduced sulfur as sulfur must be multiplied by 1.333×10^{-3} to convert the results to sulfur equivalent.
 - (iii) You must use Method 16A of appendix A-6 of this part or Method 15 of appendix A-5 of this part or ANSI/ASME PTC 19.10-1981, Part 10 (manual portion only) (incorporated by reference as specified in § 60.17) to determine the reduced sulfur concentration from oxidation-type devices or where the oxygen content of the effluent gas is greater than 1.0 percent by volume. You must take eight samples of 20 minutes each at 30minute intervals. The arithmetic average must be the concentration for the run. The concentration in ppm reduced sulfur as sulfur must be multiplied by 1.333×10^{-3} to convert the results to sulfur equivalent.
 - (iv) You must use Method 2 of appendix A-1 of this part to determine the volumetric flow rate of the effluent gas. A velocity traverse must be conducted at the beginning and end of each run. The arithmetic average of the two measurements must be used to calculate the volumetric flow rate (Q_{sd}) for the run. For the determination of the effluent gas molecular weight, a single integrated sample over the 4-hour period may be taken and analyzed or grab samples at 1-hour intervals may be taken, analyzed, and averaged. For the moisture content, you must take two samples of at least 0.10 dscm (3.5 dscf) and 10 minutes at the beginning of the 4-hour run and near the end of the time period. The arithmetic average of the two runs must be the moisture content for the run.

§ 60.5407a What are the requirements for monitoring of emissions and operations from my sweetening unit affected facilities?

- (a) If your sweetening unit affected facility is subject to the provisions of § 60.5405a(a) or (b) you must install, calibrate, maintain, and operate monitoring devices or perform measurements to determine the following operations information on a daily basis:
 - (1) The accumulation of sulfur product over each 24-hour period. The monitoring method may incorporate the use of an instrument to measure and record the liquid sulfur production rate, or may be a procedure for measuring and recording the sulfur liquid levels in the storage vessels with a level indicator or by manual soundings, with subsequent calculation of the sulfur production rate based on the tank geometry, stored sulfur density, and elapsed time between readings. The method must be designed to be accurate within ±2 percent of the 24-hour sulfur accumulation.
 - (2) The H₂S concentration in the acid gas from the sweetening unit for each 24-hour period. At least one sample per 24-hour period must be collected and analyzed using the equation specified in § 60.5406a(b)(1). The Administrator may require you to demonstrate that the H₂S concentration obtained from one or more samples over a 24-hour period is within ±20 percent of the average of 12 samples collected at equally spaced intervals during the 24-hour period. In instances where the H₂S concentration of a single sample is not within ±20 percent of the average of the 12 equally spaced samples, the Administrator may require a more frequent sampling schedule.
 - (3) The average acid gas flow rate from the sweetening unit. You must install and operate a monitoring device to continuously measure the flow rate of acid gas. The monitoring device reading must be recorded at least once per hour during each 24-hour period. The average acid gas flow rate must be computed from the individual readings.
 - (4) The sulfur feed rate (X). For each 24-hour period, you must compute X using the equation specified in § 60.5406a(b) (1).
 - (5) The required sulfur dioxide emission reduction efficiency for the 24-hour period. You must use the sulfur feed rate and the H₂S concentration in the acid gas for the 24-hour period, as applicable, to determine the required reduction efficiency in accordance with the provisions of § 60.5405a(b).
- (b) Where compliance is achieved through the use of an oxidation control system or a reduction control system followed by a continually operated incineration device, you must install, calibrate, maintain, and operate monitoring devices and continuous emission monitors as follows:
 - (1) A continuous monitoring system to measure the total sulfur emission rate (E) of SO₂ in the gases discharged to the atmosphere. The SO₂ emission rate must be expressed in terms of equivalent sulfur mass flow rates (kg/hr (lb/hr)). The span of this monitoring system must be set so that the equivalent emission limit of § 60.5405a(b) will be between 30 percent and 70 percent of the measurement range of the instrument system.
 - (2) Except as provided in paragraph (b)(3) of this section: A monitoring device to measure the temperature of the gas leaving the combustion zone of the incinerator, if compliance with § 60.5405a(a) is achieved through the use of an oxidation control system or a reduction control system followed by a continually operated incineration device. The monitoring device must be certified by the manufacturer to be accurate to within ±1 percent of the temperature being measured.
 - (3) When performance tests are conducted under the provision of § 60.8 to demonstrate compliance with the standards under § 60.5405a, the temperature of the gas leaving the incinerator combustion zone must be determined using the monitoring device. If the volumetric ratio of sulfur dioxide to sulfur dioxide plus total reduced sulfur (expressed as SO₂) in the gas leaving the incinerator is equal to or less than 0.98, then temperature monitoring may be used to demonstrate that sulfur dioxide emission monitoring is sufficient to determine total sulfur emissions. At all times during the operation of the facility, you must maintain the average temperature of the gas leaving the combustion zone of the incinerator at or above the appropriate level determined during the most recent performance test to ensure the sulfur compound oxidation criteria are met. Operation at lower average temperatures may be considered by the Administrator to be unacceptable operation and maintenance of the affected facility. You may request that the minimum incinerator temperature be reestablished by conducting new performance tests under § 60.8.
 - (4) Upon promulgation of a performance specification of continuous monitoring systems for total reduced sulfur compounds at sulfur recovery plants, you may, as an alternative to paragraph (b)(2) of this section, install, calibrate, maintain, and operate a continuous emission monitoring system for total reduced sulfur compounds as required in paragraph (d) of this section in addition to a sulfur dioxide emission monitoring system. The sum of the equivalent sulfur mass emission rates from the two monitoring systems must be used to compute the total sulfur emission rate (E).

- (c) Where compliance is achieved through the use of a reduction control system not followed by a continually operated incineration device, you must install, calibrate, maintain, and operate a continuous monitoring system to measure the emission rate of reduced sulfur compounds as SO₂ equivalent in the gases discharged to the atmosphere. The SO₂ equivalent compound emission rate must be expressed in terms of equivalent sulfur mass flow rates (kg/hr (lb/hr)). The span of this monitoring system must be set so that the equivalent emission limit of § 60.5405a(b) will be between 30 and 70 percent of the measurement range of the system. This requirement becomes effective upon promulgation of a performance specification for continuous monitoring systems for total reduced sulfur compounds at sulfur recovery plants.
- (d) For those sources required to comply with paragraph (b) or (c) of this section, you must calculate the average sulfur emission reduction efficiency achieved (R) for each 24-hour clock interval. The 24-hour interval may begin and end at any selected clock time, but must be consistent. You must compute the 24-hour average reduction efficiency (R) based on the 24-hour average sulfur production rate (S) and sulfur emission rate (E), using the equation in § 60.5406a(c)(1).
 - (1) You must use data obtained from the sulfur production rate monitoring device specified in paragraph (a) of this section to determine S.
 - (2) You must use data obtained from the sulfur emission rate monitoring systems specified in paragraphs (b) or (c) of this section to calculate a 24-hour average for the sulfur emission rate (E). The monitoring system must provide at least one data point in each successive 15-minute interval. You must use at least two data points to calculate each 1-hour average. You must use a minimum of 18 1-hour averages to compute each 24-hour average.
- (e) In lieu of complying with paragraphs (b) or (c) of this section, those sources with a design capacity of less than 152 Mg/D (150 LT/D) of H₂S expressed as sulfur may calculate the sulfur emission reduction efficiency achieved for each 24-hour period by:

Where:

R = The sulfur dioxide removal efficiency achieved during the 24-hour period, percent.

 K_2 = Conversion factor, 0.02400 Mg/D per kg/hr (0.01071 LT/D per lb/hr).

S = The sulfur production rate during the 24-hour period, kg/hr (lb/hr).

X =The sulfur feed rate in the acid gas, Mg/D (LT/D).

- (f) The monitoring devices required in paragraphs (b)(1), (b)(3) and (c) of this section must be calibrated at least annually according to the manufacturer's specifications, as required by § 60.13(b).
- (g) The continuous emission monitoring systems required in paragraphs (b)(1), (b)(3), and (c) of this section must be subject to the emission monitoring requirements of § 60.13 of the General Provisions. For conducting the continuous emission monitoring system performance evaluation required by § 60.13(c), Performance Specification 2 of appendix B of this part must apply, and Method 6 of appendix A-4 of this part must be used for systems required by paragraph (b) of this section. In place of Method 6 of appendix A-4 of this part, ASME PTC 19.10-1981 (incorporated by reference see § 60.17) may be used.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57445, Sept. 15, 2020]

§ 60.5408a What is an optional procedure for measuring hydrogen sulfide in acid gas - Tutwiler Procedure?

The Tutwiler procedure may be found in the Gas Engineers Handbook, Fuel Gas Engineering practices, The Industrial Press, 93 Worth Street, New York, NY, 1966, First Edition, Second Printing, page 6/25 (Docket A-80-20-A, Entry II-I-67).

- (a) When an instantaneous sample is desired and H₂S concentration is 10 grains per 1000 cubic foot or more, a 100 ml Tutwiler burette is used. For concentrations less than 10 grains, a 500 ml Tutwiler burette and more dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine.
- (b) *Apparatus*. (See Figure 1 of this subpart.) A 100 or 500 ml capacity Tutwiler burette, with two-way glass stopcock at bottom and three-way stopcock at top that connect either with inlet tubulature or glass-stoppered cylinder, 10 ml capacity, graduated in 0.1 ml subdivision; rubber tubing connecting burette with leveling bottle.

(c) Reagents.

- (1) Iodine stock solution, 0.1N. Weight 12.7 g iodine, and 20 to 25 g cp potassium iodide (KI) for each liter of solution. Dissolve KI in as little water as necessary; dissolve iodine in concentrated KI solution, make up to proper volume, and store in glass-stoppered brown glass bottle.
- (2) Standard iodine solution, 1 ml=0.001771 g I. Transfer 33.7 ml of above 0.1N stock solution into a 250 ml volumetric flask; add water to mark and mix well. Then, for 100 ml sample of gas, 1 ml of standard iodine solution is equivalent to 100 grains H₂S per cubic feet of gas.
- (3) **Starch solution.** Rub into a thin paste about one teaspoonful of wheat starch with a little water; pour into about a pint of boiling water; stir; let cool and decant off clear solution. Make fresh solution every few days.
- (d) *Procedure*. Fill leveling bulb with starch solution. Raise (L), open cock (G), open (F) to (A), and close (F) when solutions starts to run out of gas inlet. Close (G). Purge gas sampling line and connect with (A). Lower (L) and open (F) and (G). When liquid level is several ml past the 100 ml mark, close (G) and (F), and disconnect sampling tube. Open (G) and bring starch solution to 100 ml mark by raising (L); then close (G). Open (F) momentarily, to bring gas in burette to atmospheric pressure, and close (F). Open (G), bring liquid level down to 10 ml mark by lowering (L). Close (G), clamp rubber tubing near (E) and disconnect it from burette. Rinse graduated cylinder with a standard iodine solution (0.00171 g I per ml); fill cylinder and record reading. Introduce successive small amounts of iodine through (F); shake well after each addition; continue until a faint permanent blue color is obtained. Record reading; subtract from previous reading, and call difference D
- (e) With every fresh stock of starch solution perform a blank test as follows: Introduce fresh starch solution into burette up to 100 ml mark. Close (F) and (G). Lower (L) and open (G). When liquid level reaches the 10 ml mark, close (G). With air in burette, titrate as during a test and up to same end point. Call ml of iodine used C. Then,
 - Grains H_2S per 100 cubic foot of gas = 100 (D-C)
- (f) Greater sensitivity can be attained if a 500 ml capacity Tutwiler burette is used with a more dilute (0.001N) iodine solution. Concentrations less than 1.0 grains per 100 cubic foot can be determined in this way. Usually, the starch-iodine end point is much less distinct, and a blank determination of end point, with H₂S-free gas or air, is required.

§ 60.5410a How do I demonstrate initial compliance with the standards for my well, centrifugal compressor, reciprocating compressor, pneumatic controller, pneumatic pump, storage vessel, collection of fugitive emissions components at a well site, collection of fugitive emissions components at a compressor station, and equipment leaks at onshore natural gas processing plants and sweetening unit affected facilities?

You must determine initial compliance with the standards for each affected facility using the requirements in paragraphs (a) through (k) of this section. Except as otherwise provided in this section, the initial compliance period begins on August 2, 2016, or upon initial startup, whichever is later, and ends no later than 1 year after the initial startup date for your affected facility or no later than 1 year after August 2, 2016. The initial compliance period may be less than 1 full year.

- (a) To achieve initial compliance with the VOC standards for each well completion operation conducted at your well affected facility you must comply with paragraphs (a)(1) through (4) of this section.
 - (1) You must submit the notification required in § 60.5420a(a)(2).
 - (2) You must submit the initial annual report for your well affected facility as required in § 60.5420a(b)(1) and (2).
 - (3) You must maintain a log of records as specified in § 60.5420a(c)(1)(i) through (iv), as applicable, for each well completion operation conducted during the initial compliance period. If you meet the exemption for wells with a GOR less than 300 scf per stock barrel of oil produced, you do not have to maintain the records in § 60.5420a(c)(1) (i) through (iv) and must maintain the record in § 60.5420a(c)(1)(vi).
 - (4) For each well affected facility subject to both § 60.5375a(a)(1) and (3), as an alternative to retaining the records specified in § 60.5420a(c)(1)(i) through (iv), you may maintain records in accordance with § 60.5420a(c)(1)(v) of one or more digital photographs with the date the photograph was taken and the latitude and longitude of the well site imbedded within or stored with the digital file showing the equipment for storing or re-injecting recovered liquid, equipment for routing recovered gas to the gas flow line and the completion combustion device (if applicable) connected to and operating at each well completion operation that occurred during the initial compliance period. As an alternative to imbedded latitude and longitude within the digital photograph, the digital photograph may consist

of a photograph of the equipment connected and operating at each well completion operation with a photograph of a separately operating GPS device within the same digital picture, provided the latitude and longitude output of the GPS unit can be clearly read in the digital photograph.

(b)

- (1) To achieve initial compliance with standards for your centrifugal compressor affected facility you must reduce VOC emissions from each centrifugal compressor wet seal fluid degassing system by 95.0 percent or greater as required by § 60.5380a(a) and as demonstrated by the requirements of § 60.5413a.
- (2) If you use a control device to reduce emissions, you must equip the wet seal fluid degassing system with a cover that meets the requirements of § 60.5411a(b) that is connected through a closed vent system that meets the requirements of § 60.5411a(a) and (d) and is routed to a control device that meets the conditions specified in § 60.5412a(a), (b) and (c). As an alternative to routing the closed vent system to a control device, you may route the closed vent system to a process.
- (3) You must conduct an initial performance test as required in § 60.5413a within 180 days after initial startup or by August 2, 2016, whichever is later, and you must comply with the continuous compliance requirements in § 60.5415a(b).
- (4) You must conduct the initial inspections required in § 60.5416a(a) and (b).
- (5) You must install and operate the continuous parameter monitoring systems in accordance with § 60.5417a(a) through (g), as applicable.
- (6) [Reserved]
- (7) You must submit the initial annual report for your centrifugal compressor affected facility as required in § 60.5420a(b)(1) and (3).
- (8) You must maintain the records as specified in § 60.5420a(c)(2), (6) through (11), and (17), as applicable.
- (c) To achieve initial compliance with the standards for each reciprocating compressor affected facility you must comply with paragraphs (c)(1) through (4) of this section.
 - (1) If complying with § 60.5385a(a)(1) or (2), during the initial compliance period, you must continuously monitor the number of hours of operation or track the number of months since initial startup, since August 2, 2016, or since the last rod packing replacement, whichever is latest.
 - (2) If complying with § 60.5385a(a)(3), you must operate the rod packing emissions collection system under negative pressure and route emissions to a process through a closed vent system that meets the requirements of § 60.5411a(a) and (d).
 - (3) You must submit the initial annual report for your reciprocating compressor as required in § 60.5420a(b)(1) and (4).
 - (4) You must maintain the records as specified in § 60.5420a(c)(3) for each reciprocating compressor affected facility.
- (d) To achieve initial compliance with VOC emission standards for your pneumatic controller affected facility you must comply with the requirements specified in paragraphs (d)(1) through (6) of this section, as applicable.
 - (1) You must demonstrate initial compliance by maintaining records as specified in § 60.5420a(c)(4)(ii) of your determination that the use of a pneumatic controller affected facility with a bleed rate greater than the applicable standard is required as specified in § 60.5390a(b)(1) or (c)(1).
 - (2) If you own or operate a pneumatic controller affected facility located at a natural gas processing plant, your pneumatic controller must be driven by a gas other than natural gas, resulting in zero natural gas emissions.
 - (3) If you own or operate a pneumatic controller affected facility located other than at a natural gas processing plant, the controller manufacturer's design specifications for the controller must indicate that the controller emits less than or equal to 6 standard cubic feet of gas per hour.
 - (4) You must tag each new pneumatic controller affected facility according to the requirements of § 60.5390a(b)(2) or (c)(2).
 - (5) You must include the information in paragraph (d)(1) of this section and a listing of the pneumatic controller affected facilities specified in paragraphs (d)(2) and (3) of this section in the initial annual report submitted for your pneumatic controller affected facilities constructed, modified or reconstructed during the period covered by the annual report according to the requirements of § 60.5420a(b)(1) and (5).
 - (6) You must maintain the records as specified in § 60.5420a(c)(4) for each pneumatic controller affected facility.

- (e) To achieve initial compliance with emission standards for your pneumatic pump affected facility you must comply with the requirements specified in paragraphs (e)(1) through (7) of this section, as applicable.
 - (1) If you own or operate a pneumatic pump affected facility located at a natural gas processing plant, your pneumatic pump must be driven by a gas other than natural gas, resulting in zero natural gas emissions.
 - (2) If you own or operate a pneumatic pump affected facility located at a well site, you must reduce emissions in accordance with § 60.5393a(b)(1) or (2), and you must collect the pneumatic pump emissions through a closed vent system that meets the requirements of § 60.5411a(d) and (e).
 - (3) If you own or operate a pneumatic pump affected facility located at a well site and there is no control device or process available on site, you must submit the certification in § 60.5420a(b)(8)(i)(A).
 - (4) If you own or operate a pneumatic pump affected facility located at a well site, and you are unable to route to an existing control device or to a process due to technical infeasibility, you must submit the certification in § 60.5420a(b)(8)(i)(B).
 - (5) If you own or operate a pneumatic pump affected facility located at a well site and you reduce emissions in accordance with § 60.5393a(b)(4), you must collect the pneumatic pump emissions through a closed vent system that meets the requirements of § 60.5411a(d) and (e).
 - (6) You must submit the initial annual report for your pneumatic pump affected facility required in § 60.5420a(b)(1) and (8).
 - (7) You must maintain the records as specified in § 60.5420a(c)(6),
 - (8) through (10), (16), and (17), as applicable, for each pneumatic pump affected facility.
- (f) For affected facilities at onshore natural gas processing plants, initial compliance with the VOC standards is demonstrated if you are in compliance with the requirements of § 60.5400a.
- (g) For sweetening unit affected facilities, initial compliance is demonstrated according to paragraphs (g)(1) through (3) of this section.
 - (1) To determine compliance with the standards for SO₂ specified in § 60.5405a(a), during the initial performance test as required by § 60.8, the minimum required sulfur dioxide emission reduction efficiency (Z_i) is compared to the emission reduction efficiency (R) achieved by the sulfur recovery technology as specified in paragraphs (g)(1)(i) and (ii) of this section.
 - (i) If $R \ge Z_i$, your affected facility is in compliance.
 - (ii) If R < Z_i, your affected facility is not in compliance.
 - (2) The emission reduction efficiency (R) achieved by the sulfur reduction technology must be determined using the procedures in § 60.5406a(c)(1).
 - (3) You must submit the results of paragraphs (g)(1) and (2) of this section in the initial annual report submitted for your sweetening unit affected facilities.
- (h) For each storage vessel affected facility you must comply with paragraphs (h)(1) through (6) of this section. Except as otherwise provided in this paragraph (h), you must demonstrate initial compliance by August 2, 2016, or within 60 days after startup, whichever is later.
 - (1) You must determine the potential VOC emission rate as specified in § 60.5365a(e).
 - (2) You must reduce VOC emissions in accordance with § 60.5395a(a).
 - (3) If you use a control device to reduce emissions, you must equip the storage vessel with a cover that meets the requirements of § 60.5411a(b) and is connected through a closed vent system that meets the requirements of § 60.5411a(c) and (d) to a control device that meets the conditions specified in § 60.5412a(d) within 60 days after startup for storage vessels constructed, modified, or reconstructed at well sites with no other wells in production, or upon startup for storage vessels constructed, modified, or reconstructed at well sites with one or more wells already in production.
 - (4) You must conduct an initial performance test as required in § 60.5413a within 180 days after initial startup or within 180 days of August 2, 2016, whichever is later, and you must comply with the continuous compliance requirements in § 60.5415a(e).
 - (5) You must submit the information required for your storage vessel affected facility in your initial annual report as specified in § 60.5420a(b)(1) and (6).

- (6) You must maintain the records required for your storage vessel affected facility, as specified in § 60.5420a(c)(5) through (8), (12) through (14), and (17), as applicable, for each storage vessel affected facility.
- (i) For each storage vessel affected facility that complies by using a floating roof, you must submit a statement that you are complying with § 60.112(b)(a)(1) or (2) in accordance with § 60.5395a(b)(2) with the initial annual report specified in § 60.5420a(b).
- (j) To achieve initial compliance with the fugitive emission standards for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station you must comply with paragraphs (j)(1) through (5) of this section.
 - (1) You must develop a fugitive emissions monitoring plan as required in § 60.5397a(b), (c), and (d).
 - (2) You must conduct an initial monitoring survey as required in § 60.5397a(f).
 - (3) You must maintain the records specified in § 60.5420a(c)(15).
 - (4) You must repair each identified source of fugitive emissions for each affected facility as required in § 60.5397a(h).
 - (5) You must submit the initial annual report for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station compressor station as required in § 60.5420a(b)(1) and (7).
- (k) To demonstrate initial compliance with the requirement to maintain the total well site production at or below 15 boe per day based on a rolling 12-month average, as specified in § 60.5397a(a)(2), you must comply with paragraphs (k)(1) through (3) of this section.
 - (1) You must demonstrate that the total daily combined oil and natural gas production for all wells at the well site is at or below 15 boe per day, based on a 12-month average from the previous 12 months of operation, according to paragraphs (k)(1)(i) through (iii) of this section within 45 days of the end of each month. The rolling 12-month average of the total well site production determined according to paragraph (k)(1)(iii) of this section must be at or below 15 boe per day.
 - (i) Determine the daily combined oil and natural gas production for each individual well at the well site for the month. To convert gas production to equivalent barrels of oil, divide the cubic feet of gas produced by 6,000.
 - (ii) Sum the daily production for each individual well at the well site to determine the total well site production and divide by the number of days in the month. This is the average daily total well site production for the month.
 - (iii) Use the result determined in paragraph (k)(1)(ii) of this section and average with the daily total well site production values determined for each of the preceding 11 months to calculate the rolling 12-month average of the total well site production.
 - (2) You must maintain records as specified in § 60.5420a(c)(15)(ii).
 - (3) You must submit compliance information in the initial and subsequent annual reports as specified in § 60.5420a(b) (7)(i)(C) and (b)(7)(iv).

[81 FR 35898, June 3, 2016, as amended at 82 FR 25733, June 5, 2017; 85 FR 57071, Sept. 14, 2020; 85 FR 57445, Sept. 15, 2020]

§ 60.5411a What additional requirements must I meet to determine initial compliance for my covers and closed vent systems routing emissions from centrifugal compressor wet seal fluid degassing systems, reciprocating compressors, pneumatic pumps and storage vessels?

You must meet the applicable requirements of this section for each cover and closed vent system used to comply with the emission standards for your centrifugal compressor wet seal degassing systems, reciprocating compressors, pneumatic pumps, and storage vessels.

- (a) Closed vent system requirements for reciprocating compressors and centrifugal compressor wet seal degassing systems.
 - (1) You must design the closed vent system to route all gases, vapors, and fumes emitted from the reciprocating compressor rod packing emissions collection system to a process. You must design the closed vent system to route all gases, vapors, and fumes emitted from the centrifugal compressor wet seal fluid degassing system to a process or a control device that meets the requirements specified in § 60.5412a(a) through (c).

- (2) You must design and operate the closed vent system with no detectable emissions as demonstrated by § 60.5416a(b).
- (3) You must meet the requirements specified in paragraphs (a)(3)(i) and (ii) of this section if the closed vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device.
 - (i) Except as provided in paragraph (a)(3)(ii) of this section, you must comply with either paragraph (a)(3)(i)(A) or (B) of this section for each bypass device.
 - (A) You must properly install, calibrate, maintain, and operate a flow indicator at the inlet to the bypass device that could divert the stream away from the control device or process to the atmosphere that is capable of taking periodic readings as specified in § 60.5416a(a)(4)(i) and sounds an alarm, or initiates notification via remote alarm to the nearest field office, when the bypass device is open such that the stream is being, or could be, diverted away from the control device or process to the atmosphere. You must maintain records of each time the alarm is activated according to § 60.5420a(c)(8).
 - (B) You must secure the bypass device valve installed at the inlet to the bypass device in the non-diverting position using a car-seal or a lock-and-key type configuration.
 - (ii) Low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, and safety devices are not subject to the requirements of paragraph (a)(3)(i) of this section.
- (b) Cover requirements for storage vessels and centrifugal compressor wet seal fluid degassing systems.
 - (1) The cover and all openings on the cover (e.g., access hatches, sampling ports, pressure relief devices and gauge wells) shall form a continuous impermeable barrier over the entire surface area of the liquid in the storage vessel or wet seal fluid degassing system.
 - (2) Each cover opening shall be secured in a closed, sealed position (e.g., covered by a gasketed lid or cap) whenever material is in the unit on which the cover is installed except during those times when it is necessary to use an opening as follows:
 - (i) To add material to, or remove material from the unit (this includes openings necessary to equalize or balance the internal pressure of the unit following changes in the level of the material in the unit);
 - (ii) To inspect or sample the material in the unit;
 - (iii) To inspect, maintain, repair, or replace equipment located inside the unit; or
 - (iv) To vent liquids, gases, or fumes from the unit through a closed vent system designed and operated in accordance with the requirements of paragraph (a) or (c), and (d), of this section to a control device or to a process.
 - (3) Each storage vessel thief hatch shall be equipped, maintained and operated with a weighted mechanism or equivalent, to ensure that the lid remains properly seated and sealed under normal operating conditions, including such times when working, standing/breathing, and flash emissions may be generated. You must select gasket material for the hatch based on composition of the fluid in the storage vessel and weather conditions.
- (c) Closed vent system requirements for storage vessel affected facilities using a control device or routing emissions to a process.
 - (1) You must design the closed vent system to route all gases, vapors, and fumes emitted from the material in the storage vessel affected facility to a control device that meets the requirements specified in § 60.5412a(c) and (d), or to a process.
 - (2) You must design and operate a closed vent system with no detectable emissions, as determined using olfactory, visual, and auditory inspections or optical gas imaging inspections as specified in § 60.5416a(c).
 - (3) You must meet the requirements specified in paragraphs (c)(3)(i) and (ii) of this section if the closed vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device or to a process.
 - (i) Except as provided in paragraph (c)(3)(ii) of this section, you must comply with either paragraph (c)(3)(i)(A) or (B) of this section for each bypass device.
 - (A) You must properly install, calibrate, maintain, and operate a flow indicator at the inlet to the bypass device that could divert the stream away from the control device or process to the atmosphere that sounds an alarm, or initiates notification via remote alarm to the nearest field office, when the bypass device is open

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
 such that the stream is being, or could be, diverted away from the control device or process to the
 - such that the stream is being, or could be, diverted away from the control device or process to the atmosphere. You must maintain records of each time the alarm is activated according to § 60.5420a(c) (8).
 - (B) You must secure the bypass device valve installed at the inlet to the bypass device in the non-diverting position using a car-seal or a lock-and-key type configuration.
 - (ii) Low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, and safety devices are not subject to the requirements of paragraph (c)(3)(i) of this section.
- (d) Closed vent systems requirements for centrifugal compressor wet seal fluid degassing systems, reciprocating compressors, pneumatic pumps and storage vessels using a control device or routing emissions to a process.
 - (1) You must conduct an assessment that the closed vent system is of sufficient design and capacity to ensure that all emissions from the affected facility are routed to the control device and that the control device is of sufficient design and capacity to accommodate all emissions from the affected facility, and have it certified by a qualified professional engineer or an in-house engineer with expertise on the design and operation of the closed vent system in accordance with paragraphs (d)(1)(i) and (ii) of this section.
 - (i) You must provide the following certification, signed and dated by a qualified professional engineer or an inhouse engineer: "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart 0000a of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete."
 - (ii) The assessment shall be prepared under the direction or supervision of a qualified professional engineer or an in-house engineer who signs the certification in paragraph (d)(1)(i) of this section.
 - (2) [Reserved]
- (e) Closed vent system requirements for pneumatic pump affected facilities using a control device or routing emissions to a process.
 - (1) You must design the closed vent system to route all gases, vapors, and fumes emitted from the pneumatic pump to a control device or a process.
 - (2) You must design and operate a closed vent system with no detectable emissions, as demonstrated by § 60.5416a(b), olfactory, visual, and auditory inspections or optical gas imaging inspections as specified in § 60.5416a(d).
 - (3) You must meet the requirements specified in paragraphs (e)(3)(i) and (ii) of this section if the closed vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device or to a process.
 - (i) Except as provided in paragraph (e)(3)(ii) of this section, you must comply with either paragraph (e)(3)(i)(A) or (B) of this section for each bypass device.
 - (A) You must properly install, calibrate, maintain, and operate a flow indicator at the inlet to the bypass device that could divert the stream away from the control device or process to the atmosphere that sounds an alarm, or initiates notification via remote alarm to the nearest field office, when the bypass device is open such that the stream is being, or could be, diverted away from the control device or process to the atmosphere. You must maintain records of each time the alarm is activated according to § 60.5420a(c) (8).
 - (B) You must secure the bypass device valve installed at the inlet to the bypass device in the non-diverting position using a car-seal or a lock-and-key type configuration.
 - (ii) Low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, and safety devices are not subject to the requirements of paragraph (e)(3)(i) of this section.

[81 FR 35898, June 3, 2016, as amended at 82 FR 25733, June 5, 2017; 85 FR 57446, Sept. 15, 2020]

§ 60.5412a What additional requirements must I meet for determining initial compliance with control devices used to comply with the emission standards for my centrifugal compressor, and storage vessel affected facilities?

You must meet the applicable requirements of this section for each control device used to comply with the emission standards for your centrifugal compressor affected facility, or storage vessel affected facility.

- (a) Each control device used to meet the emission reduction standard in § 60.5380a(a)(1) for your centrifugal compressor affected facility must be installed according to paragraphs (a)(1) through (3) of this section. As an alternative, you may install a control device model tested under § 60.5413a(d), which meets the criteria in § 60.5413a(d)(11) and meet the continuous compliance requirements in § 60.5413a(e).
 - (1) Each combustion device (e.g., thermal vapor incinerator, catalytic vapor incinerator, boiler, or process heater) must be designed and operated in accordance with one of the performance requirements specified in paragraphs (a)(1)(i) through (iv) of this section. If a boiler or process heater is used as the control device, then you must introduce the vent stream into the flame zone of the boiler or process heater.
 - (i) You must reduce the mass content of VOC in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of § 60.5413a(b), with the exceptions noted in § 60.5413a(a).
 - (ii) You must reduce the concentration of TOC in the exhaust gases at the outlet to the device to a level equal to or less than 275 parts per million by volume as propane on a wet basis corrected to 3 percent oxygen as determined in accordance with the applicable requirements of § 60.5413a(b), with the exceptions noted in § 60.5413a(a).
 - (iii) You must operate at a minimum temperature of 760 °Celsius, provided the control device has demonstrated, during the performance test conducted under § 60.5413a(b), that combustion zone temperature is an indicator of destruction efficiency.
 - (iv) You must introduce the vent stream with the primary fuel or use the vent stream as the primary fuel in a boiler or process heater.
 - (2) Each vapor recovery device (e.g., carbon adsorption system or condenser) or other non-destructive control device must be designed and operated to reduce the mass content of VOC in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of § 60.5413a(b). As an alternative to the performance testing requirements in § 60.5413a(b), you may demonstrate initial compliance by conducting a design analysis for vapor recovery devices according to the requirements of § 60.5413a(c).
 - (3) You must design and operate a flare in accordance with the requirements of § 60.18(b), and you must conduct the compliance determination using Method 22 of appendix A-7 of this part to determine visible emissions.
- (b) You must operate each control device installed on your centrifugal compressor affected facility in accordance with the requirements specified in paragraphs (b)(1) and (2) of this section.
 - (1) You must operate each control device used to comply with this subpart at all times when gases, vapors, and fumes are vented from the wet seal fluid degassing system affected facility as required under § 60.5380a(a)(1) through the closed vent system to the control device. You may vent more than one affected facility to a control device used to comply with this subpart.
 - (2) For each control device monitored in accordance with the requirements of § 60.5417a(a) through (g), you must demonstrate compliance according to the requirements of § 60.5415a(b)(2), as applicable.
- (c) For each carbon adsorption system used as a control device to meet the requirements of paragraph (a)(2) or (d)(2) of this section, you must manage the carbon in accordance with the requirements specified in paragraphs (c)(1) and (2) of this section.
 - (1) Following the initial startup of the control device, you must replace all carbon in the control device with fresh carbon on a regular, predetermined time interval that is no longer than the carbon service life established according to § 60.5413a(c)(2) or (3) or according to the design required in paragraph (d)(2) of this section, for the carbon adsorption system. You must maintain records identifying the schedule for replacement and records of each carbon replacement as required in § 60.5420a(c)(10) and (12).
 - (2) You must either regenerate, reactivate, or burn the spent carbon removed from the carbon adsorption system in one of the units specified in paragraphs (c)(2)(i) through (vi) of this section.
 - (i) Regenerate or reactivate the spent carbon in a unit for which you have been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart X.
 - (ii) Regenerate or reactivate the spent carbon in a unit equipped with an operating organic air emission controls in accordance with an emissions standard for VOC under another subpart in 40 CFR part 63 or this part.

- (iii) Burn the spent carbon in a hazardous waste incinerator for which the owner or operator complies with the requirements of 40 CFR part 63, subpart EEE and has submitted a Notification of Compliance under 40 CFR 63.1207(j).
- (iv) Burn the spent carbon in a hazardous waste boiler or industrial furnace for which the owner or operator complies with the requirements of 40 CFR part 63, subpart EEE and has submitted a Notification of Compliance under 40 CFR 63.1207(j).
- (v) Burn the spent carbon in an industrial furnace for which you have been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 266, subpart H.
- (vi) Burn the spent carbon in an industrial furnace that you have designed and operated in accordance with the interim status requirements of 40 CFR part 266, subpart H.
- (d) Each control device used to meet the emission reduction standard in § 60.5395a(a)(2) for your storage vessel affected facility must be installed according to paragraphs (d)(1) through (4) of this section, as applicable. As an alternative to paragraph (d)(1) of this section, you may install a control device model tested under § 60.5413a(d), which meets the criteria in § 60.5413a(d)(11) and meet the continuous compliance requirements in § 60.5413a(e).
 - (1) For each combustion control device (e.g., thermal vapor incinerator, catalytic vapor incinerator, boiler, or process heater) you must meet the requirements in paragraphs (d)(1)(i) through (iv) of this section.
 - (i) Ensure that each enclosed combustion control device is maintained in a leak free condition.
 - (ii) Install and operate a continuous burning pilot flame.
 - (iii) Operate the combustion control device with no visible emissions, except for periods not to exceed a total of 1 minute during any 15 minute period. A visible emissions test using section 11 of EPA Method 22 of appendix A-7 of this part must be performed at least once every calendar month, separated by at least 15 days between each test. The observation period shall be 15 minutes. Devices failing the visible emissions test must follow manufacturer's repair instructions, if available, or best combustion engineering practice as outlined in the unit inspection and maintenance plan, to return the unit to compliant operation. All inspection, repair and maintenance activities for each unit must be recorded in a maintenance and repair log and must be available for inspection. Following return to operation from maintenance or repair activity, each device must pass a Method 22 of appendix A-7 of this part visual observation as described in this paragraph.
 - (iv) Each enclosed combustion control device (e.g., thermal vapor incinerator, catalytic vapor incinerator, boiler, or process heater) must be designed and operated in accordance with one of the performance requirements specified in paragraphs (d)(1)(iv)(A) through (D) of this section. If a boiler or process heater is used as the control device, then you must introduce the vent stream into the flame zone of the boiler or process heater.
 - (A) You must reduce the mass content of VOC in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of § 60.5413a(b).
 - (B) You must reduce the concentration of TOC in the exhaust gases at the outlet to the device to a level equal to or less than 275 parts per million by volume as propane on a wet basis corrected to 3 percent oxygen as determined in accordance with the applicable requirements of § 60.5413a(b).
 - (C) You must operate at a minimum temperature of 760 °Celsius, provided the control device has demonstrated, during the performance test conducted under § 60.5413a(b), that combustion zone temperature is an indicator of destruction efficiency.
 - (D) You must introduce the vent stream with the primary fuel or use the vent stream as the primary fuel in a boiler or process heater.
 - (2) Each vapor recovery device (e.g., carbon adsorption system or condenser) or other non-destructive control device must be designed and operated to reduce the mass content of VOC in the gases vented to the device by 95.0 percent by weight or greater. A carbon replacement schedule must be included in the design of the carbon adsorption system.
 - (3) You must design and operate a flare in accordance with the requirements of § 60.18(b), and you must conduct the compliance determination using Method 22 of appendix A-7 of this part to determine visible emissions.
 - (4) You must operate each control device used to comply with this subpart at all times when gases, vapors, and fumes are vented from the storage vessel affected facility through the closed vent system to the control device. You may vent more than one affected facility to a control device used to comply with this subpart.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57071, Sept. 14, 2020; 85 FR 57447, Sept. 15, 2020]

§ 60.5413a What are the performance testing procedures for control devices used to demonstrate compliance at my centrifugal compressor and storage vessel affected facilities?

This section applies to the performance testing of control devices used to demonstrate compliance with the emissions standards for your centrifugal compressor affected facility or storage vessel affected facility. You must demonstrate that a control device achieves the performance requirements of § 60.5412a(a)(1) or (2) or (d)(1) or (2) using the performance test methods and procedures specified in this section. For condensers and carbon adsorbers, you may use a design analysis as specified in paragraph (c) of this section in lieu of complying with paragraph (b) of this section. In addition, this section contains the requirements for enclosed combustion control device performance tests conducted by the manufacturer applicable to storage vessel and centrifugal compressor affected facilities.

- (a) **Performance test exemptions**. You are exempt from the requirements to conduct performance tests and design analyses if you use any of the control devices described in paragraphs (a)(1) through (7) of this section.
 - (1) A flare that is designed and operated in accordance with § 60.18(b). You must conduct the compliance determination using Method 22 of appendix A-7 of this part to determine visible emissions.
 - (2) A boiler or process heater with a design heat input capacity of 44 megawatts or greater.
 - (3) A boiler or process heater into which the vent stream is introduced with the primary fuel or is used as the primary fuel.
 - (4) A boiler or process heater burning hazardous waste for which you have been issued a final permit under 40 CFR part 270 and comply with the requirements of 40 CFR part 266, subpart H; you have certified compliance with the interim status requirements of 40 CFR part 266, subpart H; you have submitted a Notification of Compliance under 40 CFR 63.1207(j) and comply with the requirements of 40 CFR part 63, subpart EEE; or you comply with 40 CFR part 63, subpart EEE and will submit a Notification of Compliance under 40 CFR 63.1207(j) by the date specified in § 60.5420(b)(9) for submitting the initial performance test report.
 - (5) A hazardous waste incinerator for which you have submitted a Notification of Compliance under 40 CFR 63.1207(j), or for which you will submit a Notification of Compliance under 40 CFR 63.1207(j) by the date specified in § 60.5420a(b)(9) for submitting the initial performance test report, and you comply with the requirements of 40 CFR part 63, subpart EEE.
 - (6) A performance test is waived in accordance with § 60.8(b).
 - (7) A control device whose model can be demonstrated to meet the performance requirements of § 60.5412a(a)(1) or (d)(1) through a performance test conducted by the manufacturer, as specified in paragraph (d) of this section.
- (b) Test methods and procedures. You must use the test methods and procedures specified in paragraphs (b)(1) through (5) of this section, as applicable, for each performance test conducted to demonstrate that a control device meets the requirements of § 60.5412a(a)(1) or (2) or (d)(1) or (2). You must conduct the initial and periodic performance tests according to the schedule specified in paragraph (b)(5) of this section. Each performance test must consist of a minimum of 3 test runs. Each run must be at least 1 hour long.
 - (1) You must use Method 1 or 1A of appendix A-1 of this part, as appropriate, to select the sampling sites specified in paragraphs (b)(1)(i) and (ii) of this section. Any references to particulate mentioned in Methods 1 and 1A do not apply to this section.
 - (i) Sampling sites must be located at the inlet of the first control device and at the outlet of the final control device to determine compliance with a control device percent reduction requirement.
 - (ii) The sampling site must be located at the outlet of the combustion device to determine compliance with a TOC exhaust gas concentration limit.
 - (2) You must determine the gas volumetric flowrate using Method 2, 2A, 2C, or 2D of appendix A-2 of this part, as appropriate.
 - (3) To determine compliance with the control device percent reduction performance requirement in § 60.5412a(a)(1)(i), (a)(2) or (d)(1)(iv)(A), you must use Method 25A of appendix A-7 of this part. You must use Method 4 of appendix A-3 of this part to convert the Method 25A results to a dry basis. You must use the procedures in paragraphs (b)(3) (i) through (iii) of this section to calculate percent reduction efficiency.
 - (i) You must compute the mass rate of TOC using the following equations:

eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...

 $E_i = K_2 C_i M_p Q_i$

 $E_o = K_2 C_o M_p Q_o$

Where:

 E_{i} , E_{o} = Mass rate of TOC at the inlet and outlet of the control device, respectively, dry basis, kilograms per hour.

 K_2 = Constant, 2.494 × 10⁻⁶ (parts per million) (gram-mole per standard cubic meter) (kilogram/gram) (minute/hour), where standard temperature (gram-mole per standard cubic meter) is 20 °Celsius.

C_i, C_o = Concentration of TOC, as propane, of the gas stream as measured by Method 25A at the inlet and outlet of the control device, respectively, dry basis, parts per million by volume.

M_p = Molecular weight of propane, 44.1 gram/gram-mole.

Q_i, Q_o = Flowrate of gas stream at the inlet and outlet of the control device, respectively, dry standard cubic meter per minute.

(ii) You must calculate the percent reduction in TOC as follows:

Where:

R_{cd} = Control efficiency of control device, percent.

Ei, = Mass rate of TOC at the inlet to the control device as calculated under paragraph (b)(3)(i) of this section, kilograms per hour.

 E_0 = Mass rate of TOC at the outlet of the control device, as calculated under paragraph (b)(3)(i) of this section, kilograms per hour.

- (iii) If the vent stream entering a boiler or process heater with a design capacity less than 44 megawatts is introduced with the combustion air or as a secondary fuel, you must determine the weight-percent reduction of total TOC across the device by comparing the TOC in all combusted vent streams and primary and secondary fuels with the TOC exiting the device, respectively.
- (4) You must use Method 25A of appendix A-7 of this part to measure TOC, as propane, to determine compliance with the TOC exhaust gas concentration limit specified in § 60.5412a(a)(1)(ii) or (d)(1)(iv)(B). You may also use Method 18 of appendix A-6 of this part to measure methane and ethane. You may subtract the measured concentration of methane and ethane from the Method 25A measurement to demonstrate compliance with the concentration limit. You must determine the concentration in parts per million by volume on a wet basis and correct it to 3 percent oxygen, using the procedures in paragraphs (b)(4)(i) through (iii) of this section.
 - (i) If you use Method 18 to determine methane and ethane, you must take either an integrated sample or a minimum of four grab samples per hour. If grab sampling is used, then the samples must be taken at approximately equal intervals in time, such as 15-minute intervals during the run. You must determine the average methane and ethane concentration per run. The samples must be taken during the same time as the Method 25A sample.
 - (ii) You may subtract the concentration of methane and ethane from the Method 25A TOC, as propane, concentration for each run.
 - (iii) You must correct the TOC concentration (minus methane and ethane, if applicable) to 3 percent oxygen as specified in paragraphs (b)(4)(iii)(A) and (B) of this section.
 - (A) You must use the emission rate correction factor for excess air, integrated sampling and analysis procedures of Method 3A or 3B of appendix A-2 of this part, ASTM D6522-00 (Reapproved 2005), or ANSI/ASME PTC 19.10-1981, Part 10 (manual portion only) (incorporated by reference as specified in § 60.17) to determine the oxygen concentration. The samples must be taken during the same time that the samples are taken for determining TOC concentration.

(B) You must correct the TOC concentration for percent oxygen as follows:

Where:

C_c = TOC concentration, as propane, corrected to 3 percent oxygen, parts per million by volume on a wet basis.

C_m = TOC concentration, as propane, (minus methane and ethane, if applicable), parts per million by volume on a wet basis.

 $%O_{2m}$ = Concentration of oxygen, percent by volume as measured, wet.

- (5) You must conduct performance tests according to the schedule specified in paragraphs (b)(5)(i) and (ii) of this section.
 - (i) You must conduct an initial performance test within 180 days after initial startup for your affected facility. You must submit the performance test results as required in § 60.5420a(b)(9).
 - (ii) You must conduct periodic performance tests for all control devices required to conduct initial performance tests except as specified in paragraphs (b)(5)(ii)(A) and (B) of this section. You must conduct the first periodic performance test no later than 60 months after the initial performance test required in paragraph (b)(5)(i) of this section. You must conduct subsequent periodic performance tests at intervals no longer than 60 months following the previous periodic performance test or whenever you desire to establish a new operating limit. You must submit the periodic performance test results as specified in § 60.5420a(b)(9).
 - (A) A control device whose model is tested under, and meets the criteria of paragraph (d) of this section. For centrifugal compressor affected facilities, if you do not continuously monitor the gas flow rate in accordance with § 60.5417a(d)(1)(viii), then you must comply with the periodic performance testing requirements of paragraph (b)(5)(ii).
 - (B) A combustion control device tested under paragraph (b) of this section that meets the outlet TOC performance level specified in § 60.5412a(a)(1)(ii) or (d)(1)(iv)(B) and that establishes a correlation between firebox or combustion chamber temperature and the TOC performance level. For centrifugal compressor affected facilities, you must establish a limit on temperature in accordance with § 60.5417a(f) and continuously monitor the temperature as required by § 60.5417a(d).
- (c) Control device design analysis to meet the requirements of § 60.5412a(a)(2) or (d)(2).
 - (1) For a condenser, the design analysis must include an analysis of the vent stream composition, constituent concentrations, flowrate, relative humidity and temperature and must establish the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream and the design average temperatures of the coolant fluid at the condenser inlet and outlet.
 - (2) For a regenerable carbon adsorption system, the design analysis shall include the vent stream composition, constituent concentrations, flowrate, relative humidity and temperature and shall establish the design exhaust vent stream organic compound concentration level, adsorption cycle time, number and capacity of carbon beds, type and working capacity of activated carbon used for the carbon beds, design total regeneration stream flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time and design service life of the carbon.
 - (3) For a nonregenerable carbon adsorption system, such as a carbon canister, the design analysis shall include the vent stream composition, constituent concentrations, flowrate, relative humidity and temperature and shall establish the design exhaust vent stream organic compound concentration level, capacity of the carbon bed, type and working capacity of activated carbon used for the carbon bed and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule. In addition, these systems shall incorporate dual carbon canisters in case of emission breakthrough occurring in one canister.
 - (4) If you and the Administrator do not agree on a demonstration of control device performance using a design analysis, then you must perform a performance test in accordance with the requirements of paragraph (b) of this section to resolve the disagreement. The Administrator may choose to have an authorized representative observe the performance test.
- (d) Performance testing for combustion control devices manufacturers' performance test.

- (1) This paragraph (d) applies to the performance testing of a combustion control device conducted by the device manufacturer. The manufacturer must demonstrate that a specific model of control device achieves the performance requirements in paragraph (d)(11) of this section by conducting a performance test as specified in paragraphs (d)(2) through (10) of this section. You must submit a test report for each combustion control device in accordance with the requirements in paragraph (d)(12) of this section.
- (2) Performance testing must consist of three 1-hour (or longer) test runs for each of the four firing rate settings specified in paragraphs (d)(2)(i) through (iv) of this section, making a total of 12 test runs per test. Propene (propylene) gas must be used for the testing fuel. All fuel analyses must be performed by an independent third-party laboratory (not affiliated with the control device manufacturer or fuel supplier).
 - (i) 90-100 percent of maximum design rate (fixed rate).
 - (ii) 70-100-70 percent (ramp up, ramp down). Begin the test at 70 percent of the maximum design rate. During the first 5 minutes, incrementally ramp the firing rate to 100 percent of the maximum design rate. Hold at 100 percent for 5 minutes. In the 10-15 minute time range, incrementally ramp back down to 70 percent of the maximum design rate. Repeat three more times for a total of 60 minutes of sampling.
 - (iii) 30-70-30 percent (ramp up, ramp down). Begin the test at 30 percent of the maximum design rate. During the first 5 minutes, incrementally ramp the firing rate to 70 percent of the maximum design rate. Hold at 70 percent for 5 minutes. In the 10-15 minute time range, incrementally ramp back down to 30 percent of the maximum design rate. Repeat three more times for a total of 60 minutes of sampling.
 - (iv) 0-30-0 percent (ramp up, ramp down). Begin the test at the minimum firing rate. During the first 5 minutes, incrementally ramp the firing rate to 30 percent of the maximum design rate. Hold at 30 percent for 5 minutes. In the 10-15 minute time range, incrementally ramp back down to the minimum firing rate. Repeat three more times for a total of 60 minutes of sampling.
- (3) All models employing multiple enclosures must be tested simultaneously and with all burners operational. Results must be reported for each enclosure individually and for the average of the emissions from all interconnected combustion enclosures/chambers. Control device operating data must be collected continuously throughout the performance test using an electronic Data Acquisition System. A graphic presentation or strip chart of the control device operating data and emissions test data must be included in the test report in accordance with paragraph (d) (12) of this section. Inlet fuel meter data may be manually recorded provided that all inlet fuel data readings are included in the final report.
- (4) Inlet testing must be conducted as specified in paragraphs (d)(4)(i) and (ii) of this section.
 - (i) The inlet gas flow metering system must be located in accordance with Method 2A of appendix A-1 of this part (or other approved procedure) to measure inlet gas flow rate at the control device inlet location. You must position the fitting for filling fuel sample containers a minimum of eight pipe diameters upstream of any inlet gas flow monitoring meter.
 - (ii) Inlet flow rate must be determined using Method 2A of appendix A-1 of this part. Record the start and stop reading for each 60-minute THC test. Record the gas pressure and temperature at 5-minute intervals throughout each 60-minute test.
- (5) Inlet gas sampling must be conducted as specified in paragraphs (d)(5)(i) and (ii) of this section.
 - (i) At the inlet gas sampling location, securely connect a fused silica-coated stainless steel evacuated canister fitted with a flow controller sufficient to fill the canister over a 3-hour period. Filling must be conducted as specified in paragraphs (d)(5)(i)(A) through (C) of this section.
 - (A) Open the canister sampling valve at the beginning of each test run, and close the canister at the end of each test run.
 - (B) Fill one canister across the three test runs such that one composite fuel sample exists for each test condition.
 - (C) Label the canisters individually and record sample information on a chain of custody form.
 - (ii) Analyze each inlet gas sample using the methods in paragraphs (d)(5)(ii)(A) through (C) of this section. You must include the results in the test report required by paragraph (d)(12) of this section.
 - (A) Hydrocarbon compounds containing between one and five atoms of carbon plus benzene using ASTM D1945-03 (incorporated by reference as specified in § 60.17).

- (B) Hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), nitrogen (N₂), oxygen (O₂) using ASTM D1945-03 (incorporated by reference as specified in § 60.17).
- (C) Higher heating value using ASTM D3588-98 or ASTM D4891-89 (incorporated by reference as specified in § 60.17).
- (6) Outlet testing must be conducted in accordance with the criteria in paragraphs (d)(6)(i) through (v) of this section.
 - (i) Sample and flow rate must be measured in accordance with paragraphs (d)(6)(i)(A) and (B) of this section.
 - (A) The outlet sampling location must be a minimum of four equivalent stack diameters downstream from the highest peak flame or any other flow disturbance, and a minimum of one equivalent stack diameter upstream of the exit or any other flow disturbance. A minimum of two sample ports must be used.
 - (B) Flow rate must be measured using Method 1 of appendix A-1 of this part for determining flow measurement traverse point location, and Method 2 of appendix A-1 of this part for measuring duct velocity. If low flow conditions are encountered (i.e., velocity pressure differentials less than 0.05 inches of water) during the performance test, a more sensitive manometer must be used to obtain an accurate flow profile.
 - (ii) Molecular weight and excess air must be determined as specified in paragraph (d)(7) of this section.
 - (iii) Carbon monoxide must be determined as specified in paragraph (d)(8) of this section.
 - (iv) THC must be determined as specified in paragraph (d)(9) of this section.
 - (v) Visible emissions must be determined as specified in paragraph (d)(10) of this section.
- (7) Molecular weight and excess air determination must be performed as specified in paragraphs (d)(7)(i) through (iii) of this section.
 - (i) An integrated bag sample must be collected during the moisture test required by Method 4 of appendix A-3 of this part following the procedure specified in (d)(7)(i)(A) and (B) of this section. Analyze the bag sample using a gas chromatograph-thermal conductivity detector (GC-TCD) analysis meeting the criteria in paragraphs (d) (7)(i)(C) and (D) of this section.
 - (A) Collect the integrated sample throughout the entire test, and collect representative volumes from each traverse location.
 - (B) Purge the sampling line with stack gas before opening the valve and beginning to fill the bag. Clearly label each bag and record sample information on a chain of custody form.
 - (C) The bag contents must be vigorously mixed prior to the gas chromatograph analysis.
 - (D) The GC-TCD calibration procedure in Method 3C of appendix A-2 of this part must be modified by using EPA Alt-045 as follows: For the initial calibration, triplicate injections of any single concentration must agree within 5 percent of their mean to be valid. The calibration response factor for a single concentration re-check must be within 10 percent of the original calibration response factor for that concentration. If this criterion is not met, repeat the initial calibration using at least three concentration levels.
 - (ii) Calculate and report the molecular weight of oxygen, carbon dioxide, methane and nitrogen in the integrated bag sample and include in the test report specified in paragraph (d)(12) of this section. Moisture must be determined using Method 4 of appendix A-3 of this part. Traverse both ports with the sampling train required by Method 4 of appendix A-3 of this part during each test run. Ambient air must not be introduced into the integrated bag sample required by Method 3C of appendix A-2 of this part during the port change.
 - (iii) Excess air must be determined using resultant data from the EPA Method 3C tests and EPA Method 3B of appendix A-2 of this part, equation 3B-1, or ANSI/ASME PTC 19.10-1981, Part 10 (manual portion only) (incorporated by reference as specified in § 60.17).
- (8) Carbon monoxide must be determined using Method 10 of appendix A-4 of this part. Run the test simultaneously with Method 25A of appendix A-7 of this part using the same sampling points. An instrument range of 0-10 parts per million by volume-dry (ppmvd) is recommended.
- (9) Total hydrocarbon determination must be performed as specified by in paragraphs (d)(9)(i) through (vii) of this section.

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
- (i) Conduct THC sampling using Method 25A of appendix A-7 of this part, except that the option for locating the probe in the center 10 percent of the stack is not allowed. The THC probe must be traversed to 16.7 percent, 50 percent, and 83.3 percent of the stack diameter during each test run.
- (ii) A valid test must consist of three Method 25A tests, each no less than 60 minutes in duration.
- (iii) A 0-10 parts per million by volume-wet (ppmvw) (as propane) measurement range is preferred; as an alternative a 0-30 ppmvw (as propane) measurement range may be used.
- (iv) Calibration gases must be propane in air and be certified through EPA Protocol 1 "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards," (incorporated by reference as specified in § 60.17).
- (v) THC measurements must be reported in terms of ppmvw as propane.
- (vi) THC results must be corrected to 3 percent CO₂, as measured by Method 3C of appendix A-2 of this part. You must use the following equation for this diluent concentration correction:

Where:

C_{meas} = The measured concentration of the pollutant.

 CO_{2meas} = The measured concentration of the CO_2 diluent.

3 = The corrected reference concentration of CO₂ diluent.

C_{corr} = The corrected concentration of the pollutant.

- (vii) Subtraction of methane or ethane from the THC data is not allowed in determining results.
- (10) Visible emissions must be determined using Method 22 of appendix A-7 of this part. The test must be performed continuously during each test run. A digital color photograph of the exhaust point, taken from the position of the observer and annotated with date and time, must be taken once per test run and the 12 photos included in the test report specified in paragraph (d)(12) of this section.
- (11) Performance test criteria.
 - (i) The control device model tested must meet the criteria in paragraphs (d)(11)(i)(A) through (D) of this section. These criteria must be reported in the test report required by paragraph (d)(12) of this section.
 - (A) Results from Method 22 of appendix A-7 of this part determined under paragraph (d)(10) of this section with no indication of visible emissions.
 - (B) Average results from Method 25A of appendix A-7 of this part determined under paragraph (d)(9) of this section equal to or less than 10.0 ppmvw THC as propane corrected to 3.0 percent CO₂.
 - (C) Average CO emissions determined under paragraph (d)(8) of this section equal to or less than 10 parts ppmvd, corrected to 3.0 percent CO_2 .
 - (D) Excess air determined under paragraph (d)(7) of this section equal to or greater than 150 percent.
 - (ii) The manufacturer must determine a maximum inlet gas flow rate which must not be exceeded for each control device model to achieve the criteria in paragraph (d)(11)(iii) of this section. The maximum inlet gas flow rate must be included in the test report required by paragraph (d)(12) of this section.
 - (iii) A manufacturer must demonstrate a destruction efficiency of at least 95 percent for THC, as propane. A control device model that demonstrates a destruction efficiency of 95 percent for THC, as propane, will meet the control requirement for 95-percent destruction of VOC (if applicable) required under this subpart.
- (12) The owner or operator of a combustion control device model tested under this paragraph (d)(12) must submit the information listed in paragraphs (d)(12)(i) through (vi) of this section for each test run in the test report required by this section in accordance with § 60.5420a(b)(10). Owners or operators who claim that any of the performance test information being submitted is confidential business information (CBI) must submit a complete file including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage media to

the EPA. The electronic media must be clearly marked as CBI and mailed to Attn: CBI Document Control Officer; Office of Air Quality Planning and Standards (OAQPS), Room 521; 109 T.W. Alexander Drive; Research Triangle Park, NC 27711. The same file with the CBI omitted must be submitted to Oil_and_Gas_PT@EPA.GOV.

- (i) A full schematic of the control device and dimensions of the device components.
- (ii) The maximum net heating value of the device.
- (iii) The test fuel gas flow range (in both mass and volume). Include the maximum allowable inlet gas flow rate.
- (iv) The air/stream injection/assist ranges, if used.
- (v) The test conditions listed in paragraphs (d)(12)(v)(A) through (0) of this section, as applicable for the tested model.
 - (A) Fuel gas delivery pressure and temperature.
 - (B) Fuel gas moisture range.
 - (C) Purge gas usage range.
 - (D) Condensate (liquid fuel) separation range.
 - (E) Combustion zone temperature range. This is required for all devices that measure this parameter.
 - (F) Excess air range.
 - (G) Flame arrestor(s).
 - (H) Burner manifold.
 - (I) Pilot flame indicator.
 - (J) Pilot flame design fuel and calculated or measured fuel usage.
 - (K) Tip velocity range.
 - (L) Momentum flux ratio.
 - (M) Exit temperature range.
 - (N) Exit flow rate.
 - (0) Wind velocity and direction.
- (vi) The test report must include all calibration quality assurance/quality control data, calibration gas values, gas cylinder certification, strip charts, or other graphic presentations of the data annotated with test times and calibration values.
- (e) Continuous compliance for combustion control devices tested by the manufacturer in accordance with paragraph (d) of this section. This paragraph (e) applies to the demonstration of compliance for a combustion control device tested under the provisions in paragraph (d) of this section. Owners or operators must demonstrate that a control device achieves the performance criteria in paragraph (d)(11) of this section by installing a device tested under paragraph (d) of this section, complying with the criteria specified in paragraphs (e)(1) through (8) of this section, maintaining the records specified in § 60.5420a(c)(2) or (c)(5)(vi) and submitting the report specified in § 60.5420a(b)(10).
 - (1) The inlet gas flow rate must be equal to or less than the maximum specified by the manufacturer.
 - (2) A pilot flame must be present at all times of operation.
 - (3) Devices must be operated with no visible emissions, except for periods not to exceed a total of 1 minute during any 15-minute period. A visible emissions test conducted according to section 11 of EPA Method 22 of appendix A-7 of this part must be performed at least once every calendar month, separated by at least 15 days between each test. The observation period shall be 15 minutes.
 - (4) Devices failing the visible emissions test must follow manufacturer's repair instructions, if available, or best combustion engineering practice as outlined in the unit inspection and maintenance plan, to return the unit to compliant operation. All repairs and maintenance activities for each unit must be recorded in a maintenance and repair log and must be available for inspection.
 - (5) Following return to operation from maintenance or repair activity, each device must pass a visual observation according to EPA Method 22 of appendix A-7 of this part as described in paragraph (e)(3) of this section.

- (6) If the owner or operator operates a combustion control device model tested under this section, an electronic copy of the performance test results required by this section shall be submitted via email to Oil_and_Gas_PT@EPA.GOV unless the test results for that model of combustion control device are posted at the following Web site: epa.gov/airquality/oilandgas/.
- (7) Ensure that each enclosed combustion control device is maintained in a leak free condition.
- (8) Operate each control device following the manufacturer's written operating instructions, procedures and maintenance schedule to ensure good air pollution control practices for minimizing emissions.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57071, Sept. 14, 2020; 85 FR 57447, Sept. 15, 2020]

§ 60.5415a How do I demonstrate continuous compliance with the standards for my well, centrifugal compressor, reciprocating compressor, pneumatic controller, pneumatic pump, storage vessel, collection of fugitive emissions components at a well site, and collection of fugitive emissions components at a compressor station affected facilities, equipment leaks at onshore natural gas processing plants and sweetening unit affected facilities?

- (a) For each well affected facility, you must demonstrate continuous compliance by submitting the reports required by § 60.5420a(b)(1) and (2) and maintaining the records for each completion operation specified in § 60.5420a(c)(1).
- (b) For each centrifugal compressor affected facility and each pneumatic pump affected facility, you must demonstrate continuous compliance according to paragraph (b)(3) of this section. For each centrifugal compressor affected facility, you also must demonstrate continuous compliance according to paragraphs (b)(1) and (2) of this section.
 - (1) You must reduce VOC emissions from the wet seal fluid degassing system by 95.0 percent or greater.
 - (2) For each control device used to reduce emissions, you must demonstrate continuous compliance with the performance requirements of § 60.5412a(a) using the procedures specified in paragraphs (b)(2)(i) through (vii) of this section. If you use a condenser as the control device to achieve the requirements specified in § 60.5412a(a)(2), you may demonstrate compliance according to paragraph (b)(2)(viii) of this section. You may switch between compliance with paragraphs (b)(2)(i) through (vii) of this section and compliance with paragraph (b)(2)(viii) of this section only after at least 1 year of operation in compliance with the selected approach. You must provide notification of such a change in the compliance method in the next annual report, following the change.
 - (i) You must operate below (or above) the site specific maximum (or minimum) parameter value established according to the requirements of § 60.5417a(f)(1).
 - (ii) You must calculate the daily average of the applicable monitored parameter in accordance with § 60.5417a(e) except that the inlet gas flow rate to the control device must not be averaged.
 - (iii) Compliance with the operating parameter limit is achieved when the daily average of the monitoring parameter value calculated under paragraph (b)(2)(ii) of this section is either equal to or greater than the minimum monitoring value or equal to or less than the maximum monitoring value established under paragraph (b)(2)(i) of this section. When performance testing of a combustion control device is conducted by the device manufacturer as specified in § 60.5413a(d), compliance with the operating parameter limit is achieved when the criteria in § 60.5413a(e) are met.
 - (iv) You must operate the continuous monitoring system required in § 60.5417a(a) at all times the affected source is operating, except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions and required monitoring system quality assurance or quality control activities (including, as applicable, system accuracy audits and required zero and span adjustments). A monitoring system malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring system failures that are caused in part by poor maintenance or careless operation are not malfunctions. You are required to complete monitoring system repairs in response to monitoring system malfunctions and to return the monitoring system to operation as expeditiously as practicable.
 - (v) You may not use data recorded during monitoring system malfunctions, repairs associated with monitoring system malfunctions, or required monitoring system quality assurance or control activities in calculations used to report emissions or operating levels. You must use all the data collected during all other required data collection periods to assess the operation of the control device and associated control system.

- (vi) Failure to collect required data is a deviation of the monitoring requirements, except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions and required quality monitoring system quality assurance or quality control activities (including, as applicable, system accuracy audits and required zero and span adjustments).
- (vii) If you use a combustion control device to meet the requirements of § 60.5412a(a)(1) and you demonstrate compliance using the test procedures specified in § 60.5413a(b), or you use a flare designed and operated in accordance with § 60.18(b), you must comply with paragraphs (b)(2)(vii)(A) through (D) of this section.
 - (A) A pilot flame must be present at all times of operation.
 - (B) Devices must be operated with no visible emissions, except for periods not to exceed a total of 1 minute during any 15-minute period. A visible emissions test conducted according to section 11 of EPA Method 22, 40 CFR part 60, appendix A, must be performed at least once every calendar month, separated by at least 15 days between each test. The observation period shall be 15 minutes.
 - (C) Devices failing the visible emissions test must follow manufacturer's repair instructions, if available, or best combustion engineering practice as outlined in the unit inspection and maintenance plan, to return the unit to compliant operation. All repairs and maintenance activities for each unit must be recorded in a maintenance and repair log and must be available for inspection.
 - (D) Following return to operation from maintenance or repair activity, each device must pass a Method 22 of appendix A-7 of this part visual observation as described in paragraph (b)(2)(vii)(B) of this section.
- (viii) If you use a condenser as the control device to achieve the percent reduction performance requirements specified in § 60.5412a(a)(2), you must demonstrate compliance using the procedures in paragraphs (b)(2) (viii)(A) through (E) of this section.
 - (A) You must establish a site-specific condenser performance curve according to § 60.5417a(f)(2).
 - (B) You must calculate the daily average condenser outlet temperature in accordance with § 60.5417a(e).
 - (C) You must determine the condenser efficiency for the current operating day using the daily average condenser outlet temperature calculated under paragraph (b)(2)(viii)(B) of this section and the condenser performance curve established under paragraph (b)(2)(viii)(A) of this section.
 - (D) Except as provided in paragraphs (b)(2)(viii)(D)(1) and (2) of this section, at the end of each operating day, you must calculate the 365-day rolling average TOC emission reduction, as appropriate, from the condenser efficiencies as determined in paragraph (b)(2)(viii)(C) of this section.
 - (1) After the compliance dates specified in § 60.5370a(a), if you have less than 120 days of data for determining average TOC emission reduction, you must calculate the average TOC emission reduction for the first 120 days of operation after the compliance date. You have demonstrated compliance with the overall 95.0 percent reduction requirement if the 120-day average TOC emission reduction is equal to or greater than 95.0 percent.
 - (2) After 120 days and no more than 364 days of operation after the compliance date specified in § 60.5370a(a), you must calculate the average TOC emission reduction as the TOC emission reduction averaged over the number of days between the current day and the applicable compliance date. You have demonstrated compliance with the overall 95.0 percent reduction requirement if the average TOC emission reduction is equal to or greater than 95.0 percent.
 - (E) If you have data for 365 days or more of operation, you have demonstrated compliance with the TOC emission reduction if the rolling 365-day average TOC emission reduction calculated in paragraph (b)(2) (viii)(D) of this section is equal to or greater than 95.0 percent.
- (3) You must submit the annual reports required by § 60.5420a(b)(1), (3), and (8) and maintain the records as specified in § 60.5420a(c)(2), (6) through (11), (16), and (17), as applicable.
- (c) For each reciprocating compressor affected facility complying with § 60.5385a(a)(1) or (2), you must demonstrate continuous compliance according to paragraphs (c)(1) through (3) of this section. For each reciprocating compressor affected facility complying with § 60.5385a(a)(3), you must demonstrate continuous compliance according to paragraph (c)(4) of this section.
 - (1) You must continuously monitor the number of hours of operation for each reciprocating compressor affected facility or track the number of months since initial startup, since August 2, 2016, or since the date of the most recent reciprocating compressor rod packing replacement, whichever is latest.

- (2) You must submit the annual reports as required in § 60.5420a(b)(1) and (4) and maintain records as required in § 60.5420a(c)(3).
- (3) You must replace the reciprocating compressor rod packing on or before the total number of hours of operation reaches 26,000 hours or the number of months since the most recent rod packing replacement reaches 36 months.
- (4) You must operate the rod packing emissions collection system under negative pressure and continuously comply with the cover and closed vent requirements in § 60.5416a(a) and (b).
- (d) For each pneumatic controller affected facility, you must demonstrate continuous compliance according to paragraphs (d)(1) through (3) of this section.
 - (1) You must continuously operate the pneumatic controllers as required in § 60.5390a(a), (b), or (c).
 - (2) You must submit the annual reports as required in § 60.5420a(b)(1) and (5).
 - (3) You must maintain records as required in § 60.5420a(c)(4).
- (e) You must demonstrate continuous compliance according to paragraph (e)(3) of this section for each storage vessel affected facility, for which you are using a control device or routing emissions to a process to meet the requirement of § 60.5395a(a)(2).
 - (1-2) [Reserved]
 - (3) For each storage vessel affected facility, you must comply with paragraphs (e)(3)(i) and (ii) of this section.
 - (i) You must reduce VOC emissions as specified in § 60.5395a(a)(2).
 - (ii) For each control device installed to meet the requirements of § 60.5395a(a)(2), you must demonstrate continuous compliance with the performance requirements of § 60.5412a(d) for each storage vessel affected facility using the procedure specified in paragraph (e)(3)(ii)(A) and either (e)(3)(ii)(B) or (e)(3)(ii)(C) of this section.
 - (A) You must comply with § 60.5416a(c) for each cover and closed vent system.
 - (B) You must comply with § 60.5417a(h) for each control device.
 - (C) Each closed vent system that routes emissions to a process must be operated as specified in § 60.5411a(c)(2) and (3).
- (f) For affected facilities at onshore natural gas processing plants, continuous compliance with VOC requirements is demonstrated if you are in compliance with the requirements of § 60.5400a.
- (g) For each sweetening unit affected facility, you must demonstrate continuous compliance with the standards for SO₂ specified in § 60.5405a(b) according to paragraphs (g)(1) and (2) of this section.
 - (1) The minimum required SO_2 emission reduction efficiency (Z_c) is compared to the emission reduction efficiency (R) achieved by the sulfur recovery technology.
 - (i) If $R \ge Z_c$, your affected facility is in compliance.
 - (ii) If R < Z_c, your affected facility is not in compliance.
 - (2) The emission reduction efficiency (R) achieved by the sulfur reduction technology must be determined using the procedures in § 60.5406a(c)(1).
- (h) For each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, you must demonstrate continuous compliance with the fugitive emission standards specified in § 60.5397a(a)(1) according to paragraphs (h)(1) through (4) of this section.
 - (1) You must conduct periodic monitoring surveys as required in § 60.5397a(g).
 - (2) You must repair each identified source of fugitive emissions as required in § 60.5397a(h).
 - (3) You must maintain records as specified in § 60.5420a(c)(15).
 - (4) You must submit annual reports for collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station as required in § 60.5420a(b)(1) and (7).
- (i) For each collection of fugitive emissions components at a well site complying with § 60.5397a(a)(2), you must demonstrate continuous compliance according to paragraphs (i)(1) through (4) of this section. You must perform the calculations shown in paragraphs (i)(1) through (4) of this section within 45 days of the end of each month. The rolling

12-month average of the total well site production determined according to paragraph (i)(4) of this section must be at or below 15 boe per day.

- (1) Begin with the most recent 12-month average.
- (2) Determine the daily combined oil and natural gas production of each individual well at the well site for the month. To convert gas production to equivalent barrels of oil, divide the cubic feet of gas produced by 6,000.
- (3) Sum the daily production for each individual well at the well site and divide by the number of days in the month. This is the average daily total well site production for the month.
- (4) Use the result determined in paragraph (i)(3) of this section and average with the daily total well site production values determined for each of the preceding 11 months to calculate the rolling 12-month average of the total well site production.
- (j) To demonstrate that the well site produced at or below 15 boe per day for the first 30 days after startup of production as specified in § 60.5397a(3), you must calculate the daily production for each individual well at the well site during the first 30 days of production after completing any action listed in § 60.5397a(a)(2)(i) through (v) and sum the individual well production values to obtain the total well site production. The calculation must be performed within 45 days of the end of the first 30 days of production after completing any action listed in § 60.5397a(a)(2)(i) through (v). To convert gas production to equivalent barrels of oil, divide cubic feet of gas produced by 6,000.

[81 FR 35898, June 3, 2016, as amended at 82 FR 25733, June 5, 2017; 85 FR 57071, Sept. 14, 2020; 85 FR 57447, Sept. 15, 2020]

§ 60.5416a What are the initial and continuous cover and closed vent system inspection and monitoring requirements for my centrifugal compressor, reciprocating compressor, pneumatic pump, and storage vessel affected facilities?

For each closed vent system or cover at your centrifugal compressor, reciprocating compressor, pneumatic pump, and storage vessel affected facilities, you must comply with the applicable requirements of paragraphs (a) through (d) of this section.

- (a) Inspections for closed vent systems and covers installed on each centrifugal compressor or reciprocating compressor affected facility. Except as provided in paragraphs (b)(11) and (12) of this section, you must inspect each closed vent system according to the procedures and schedule specified in paragraphs (a)(1) and (2) of this section, inspect each cover according to the procedures and schedule specified in paragraph (a)(3) of this section, and inspect each bypass device according to the procedures of paragraph (a)(4) of this section.
 - (1) For each closed vent system joint, seam, or other connection that is permanently or semi-permanently sealed (e.g., a welded joint between two sections of hard piping or a bolted and gasketed ducting flange), you must meet the requirements specified in paragraphs (a)(1)(i) and (ii) of this section.
 - (i) Conduct an initial inspection according to the test methods and procedures specified in paragraph (b) of this section to demonstrate that the closed vent system operates with no detectable emissions. You must maintain records of the inspection results as specified in § 60.5420a(c)(6).
 - (ii) Conduct annual visual inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in piping; loose connections; liquid leaks; or broken or missing caps or other closure devices. You must monitor a component or connection using the test methods and procedures in paragraph (b) of this section to demonstrate that it operates with no detectable emissions following any time the component is repaired or replaced or the connection is unsealed. You must maintain records of the inspection results as specified in § 60.5420a(c)(6).
 - (2) For closed vent system components other than those specified in paragraph (a)(1) of this section, you must meet the requirements of paragraphs (a)(2)(i) through (iii) of this section.
 - (i) Conduct an initial inspection according to the test methods and procedures specified in paragraph (b) of this section to demonstrate that the closed vent system operates with no detectable emissions. You must maintain records of the inspection results as specified in § 60.5420a(c)(6).
 - (ii) Conduct annual inspections according to the test methods and procedures specified in paragraph (b) of this section to demonstrate that the components or connections operate with no detectable emissions. You must maintain records of the inspection results as specified in § 60.5420a(c)(6).

- (iii) Conduct annual visual inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in ductwork; loose connections; liquid leaks; or broken or missing caps or other closure devices. You must maintain records of the inspection results as specified in § 60.5420a(c)(6).
- (3) For each cover, you must meet the requirements in paragraphs (a)(3)(i) and (ii) of this section.
 - (i) Conduct visual inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the cover, or between the cover and the separator wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the case where the storage vessel is buried partially or entirely underground, you must inspect only those portions of the cover that extend to or above the ground surface, and those connections that are on such portions of the cover (e.g., fill ports, access hatches, gauge wells, etc.) and can be opened to the atmosphere.
 - (ii) You must initially conduct the inspections specified in paragraph (a)(3)(i) of this section following the installation of the cover. Thereafter, you must perform the inspection at least once every calendar year, except as provided in paragraphs (b)(11) and (12) of this section. You must maintain records of the inspection results as specified in § 60.5420a(c)(7).
- (4) For each bypass device, except as provided for in § 60.5411a(a)(3)(ii), you must meet the requirements of paragraph (a)(4)(i) or (ii) of this section.
 - (i) Set the flow indicator to take a reading at least once every 15 minutes at the inlet to the bypass device that could divert the steam away from the control device to the atmosphere.
 - (ii) If the bypass device valve installed at the inlet to the bypass device is secured in the non-diverting position using a car-seal or a lock-and-key type configuration, visually inspect the seal or closure mechanism at least once every month to verify that the valve is maintained in the non-diverting position and the vent stream is not diverted through the bypass device. You must maintain records of the inspections according to § 60.5420a(c) (8).
- (b) No detectable emissions test methods and procedures. If you are required to conduct an inspection of a closed vent system or cover at your centrifugal compressor or reciprocating compressor affected facility as specified in paragraph (a)(1), (2), or (3) of this section, you must meet the requirements of paragraphs (b)(1) through (13) of this section.
 - You must conduct the no detectable emissions test procedure in accordance with Method 21 of appendix A-7 of this part.
 - (2) The detection instrument must meet the performance criteria of Method 21 of appendix A-7 of this part, except that the instrument response factor criteria in section 8.1.1 of Method 21 must be for the average composition of the fluid and not for each individual organic compound in the stream.
 - (3) You must calibrate the detection instrument before use on each day of its use by the procedures specified in Method 21 of appendix A-7 of this part.
 - (4) Calibration gases must be as specified in paragraphs (b)(4)(i) and (ii) of this section.
 - (i) Zero air (less than 10 parts per million by volume hydrocarbon in air).
 - (ii) A mixture of methane in air at a concentration less than 10,000 parts per million by volume.
 - (5) You may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If you choose to adjust the instrument readings for the background level, you must determine the background level value according to the procedures in Method 21 of appendix A-7 of this part.
 - (6) Your detection instrument must meet the performance criteria specified in paragraphs (b)(6)(i) and (ii) of this section.
 - (i) Except as provided in paragraph (b)(6)(ii) of this section, the detection instrument must meet the performance criteria of Method 21 of appendix A-7 of this part, except the instrument response factor criteria in section 8.1.1 of Method 21 must be for the average composition of the process fluid, not each individual volatile organic compound in the stream. For process streams that contain nitrogen, air, or other inerts that are not organic hazardous air pollutants or volatile organic compounds, you must calculate the average stream response factor on an inert-free basis.
 - (ii) If no instrument is available that will meet the performance criteria specified in paragraph (b)(6)(i) of this section, you may adjust the instrument readings by multiplying by the average response factor of the process fluid, calculated on an inert-free basis, as described in paragraph (b)(6)(i) of this section.

- (7) You must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (b)(7)(i) or (ii) of this section.
 - (i) If you choose not to adjust the detection instrument readings for the background organic concentration level, then you must directly compare the maximum organic concentration value measured by the detection instrument to the applicable value for the potential leak interface as specified in paragraph (b)(8) of this section.
 - (ii) If you choose to adjust the detection instrument readings for the background organic concentration level, you must compare the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (b) (5) of this section with the applicable value for the potential leak interface as specified in paragraph (b)(8) of this section.
- (8) A potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (b)(7) of this section is less than 500 parts per million by volume.
- (9) **Repairs.** In the event that a leak or defect is detected, you must repair the leak or defect as soon as practicable according to the requirements of paragraphs (b)(9)(i) and (ii) of this section, except as provided in paragraph (b) (10) of this section.
 - (i) A first attempt at repair must be made no later than 5 calendar days after the leak is detected.
 - (ii) Repair must be completed no later than 15 calendar days after the leak is detected.
- (10) **Delay of repair**. Delay of repair of a closed vent system or cover for which leaks or defects have been detected is allowed if the repair is technically infeasible without a shutdown, or if you determine that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. You must complete repair of such equipment by the end of the next shutdown.
- (11) Unsafe to inspect requirements. You may designate any parts of the closed vent system or cover as unsafe to inspect if the requirements in paragraphs (b)(11)(i) and (ii) of this section are met. Unsafe to inspect parts are exempt from the inspection requirements of paragraphs (a)(1) through (3) of this section.
 - (i) You determine that the equipment is unsafe to inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (a)(1), (2), or (3) of this section.
 - (ii) You have a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.
- (12) Difficult to inspect requirements. You may designate any parts of the closed vent system or cover as difficult to inspect, if the requirements in paragraphs (b)(12)(i) and (ii) of this section are met. Difficult to inspect parts are exempt from the inspection requirements of paragraphs (a)(1) through (3) of this section.
 - (i) You determine that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface.
 - (ii) You have a written plan that requires inspection of the equipment at least once every 5 years.
- (13) **Records.** Records shall be maintained as specified in this section and in § 60.5420a(c)(9).
- (c) Cover and closed vent system inspections for storage vessel affected facilities. If you install a control device or route emissions to a process, you must comply with the inspection and recordkeeping requirements for each closed vent system and cover as specified in paragraphs (c)(1) and (2) of this section. You must also comply with the requirements of paragraphs (c)(3) through (7) of this section.
 - (1) Closed vent system inspections. For each closed vent system, you must conduct an inspection as specified in paragraphs (c)(1)(i) through (iii) or paragraph (c)(1)(iv) of this section.
 - (i) You must maintain records of the inspection results as specified in § 60.5420a(c)(6).
 - (ii) Conduct olfactory, visual, and auditory inspections at least once every calendar month for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in piping; loose connections; liquid leaks; or broken or missing caps or other closure devices.
 - (iii) Monthly inspections must be separated by at least 14 calendar days.

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
- (iv) Conduct optical gas imaging inspections for any visible emissions at the same frequency as the frequency for the collection of fugitive emissions components located at the same type of site, as specified in § 60.5397a(g) (1).
- (2) **Cover inspections.** For each cover, you must conduct inspections as specified in paragraphs (c)(2)(i) through (iii) or paragraph (c)(2)(iv) of this section.
 - (i) You must maintain records of the inspection results as specified in § 60.5420a(c)(7).
 - (ii) Conduct olfactory, visual and auditory inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the cover, or between the cover and the separator wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the case where the storage vessel is buried partially or entirely underground, you must inspect only those portions of the cover that extend to or above the ground surface, and those connections that are on such portions of the cover (e.g., fill ports, access hatches, gauge wells, etc.) and can be opened to the atmosphere.
 - (iii) Monthly inspections must be separated by at least 14 calendar days.
 - (iv) Conduct optical gas imaging inspections for any visible emissions at the same frequency as the frequency for the collection of fugitive emissions components located at the same type of site, as specified in § 60.5397a(g) (1).
- (3) For each bypass device, except as provided for in § 60.5411a(c)(3)(ii), you must meet the requirements of paragraphs (c)(3)(i) or (ii) of this section.
 - (i) You must properly install, calibrate and maintain a flow indicator at the inlet to the bypass device that could divert the stream away from the control device or process to the atmosphere. Set the flow indicator to trigger an audible alarm, or initiate notification via remote alarm to the nearest field office, when the bypass device is open such that the stream is being, or could be, diverted away from the control device or process to the atmosphere. You must maintain records of each time the alarm is sounded according to § 60.5420a(c)(8).
 - (ii) If the bypass device valve installed at the inlet to the bypass device is secured in the non-diverting position using a car-seal or a lock-and-key type configuration, visually inspect the seal or closure mechanism at least once every month to verify that the valve is maintained in the non-diverting position and the vent stream is not diverted through the bypass device. You must maintain records of the inspections and records of each time the key is checked out, if applicable, according to § 60.5420a(c)(8).
- (4) Repairs. In the event that a leak or defect is detected, you must repair the leak or defect as soon as practicable according to the requirements of paragraphs (c)(4)(i) through (iii) of this section, except as provided in paragraph (c)(5) of this section.
 - (i) A first attempt at repair must be made no later than 5 calendar days after the leak is detected.
 - (ii) Repair must be completed no later than 30 calendar days after the leak is detected.
 - (iii) Grease or another applicable substance must be applied to deteriorating or cracked gaskets to improve the seal while awaiting repair.
- (5) **Delay of repair.** Delay of repair of a closed vent system or cover for which leaks or defects have been detected is allowed if the repair is technically infeasible without a shutdown, or if you determine that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. You must complete repair of such equipment by the end of the next shutdown.
- (6) Unsafe to inspect requirements. You may designate any parts of the closed vent system or cover as unsafe to inspect if the requirements in paragraphs (c)(6)(i) and (ii) of this section are met. Unsafe to inspect parts are exempt from the inspection requirements of paragraphs (c)(1) and (2) of this section.
 - (i) You determine that the equipment is unsafe to inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (c)(1) or (2) of this section.
 - (ii) You have a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.
- (7) **Difficult to inspect requirements.** You may designate any parts of the closed vent system or cover as difficult to inspect, if the requirements in paragraphs (c)(7)(i) and (ii) of this section are met. Difficult to inspect parts are exempt from the inspection requirements of paragraphs (c)(1) and (2) of this section.

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
- (i) You determine that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface.
- (ii) You have a written plan that requires inspection of the equipment at least once every 5 years.
- (d) Closed vent system inspections for pneumatic pump affected facilities. If you install a control device or route emissions to a process, you must comply with the inspection and recordkeeping requirements for each closed vent system as specified in paragraph (d)(1) of this section. You must also comply with the requirements of paragraphs (c)(3) through (7) of this section.
 - (1) For each closed vent system, you must conduct an inspection as specified in paragraphs (d)(1)(i) through (iii), paragraph (d)(1)(iv), or paragraph (d)(1)(v) of this section.
 - (i) You must maintain records of the inspection results as specified in § 60.5420a(c)(6).
 - (ii) Conduct olfactory, visual, and auditory inspections at least once every calendar month for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in piping; loose connections; liquid leaks; or broken or missing caps or other closure devices.
 - (iii) Monthly inspections must be separated by at least 14 calendar days.
 - (iv) Conduct optical gas imaging inspections for any visible emissions at the same frequency as the frequency for the collection of fugitive components located at the same type of site, as specified in § 60.5397a(g)(1).
 - (v) Conduct inspections as specified in paragraphs (a)(1) and (2) of this section.
 - (2) [Reserved]

[81 FR 35898, June 3, 2016, as amended at 82 FR 25733, June 5, 2017; 85 FR 57448, Sept. 15, 2020]

§ 60.5417a What are the continuous control device monitoring requirements for my centrifugal compressor and storage vessel affected facilities?

You must meet the applicable requirements of this section to demonstrate continuous compliance for each control device used to meet emission standards for your storage vessel affected facility or centrifugal compressor affected facility.

- (a) For each control device used to comply with the emission reduction standard for centrifugal compressor affected facilities in § 60.5380a(a)(1), you must install and operate a continuous parameter monitoring system for each control device as specified in paragraphs (c) through (g) of this section, except as provided for in paragraph (b) of this section. If you install and operate a flare in accordance with § 60.5412a(a)(3), you are exempt from the requirements of paragraphs (e) and (f) of this section. If you install and operate an enclosed combustion device or control device which is not specifically listed in paragraph (d) of this section, you must demonstrate continuous compliance according to paragraphs (h)(1) through (4) of this section.
- (b) You are exempt from the monitoring requirements specified in paragraphs (c) through (g) of this section for the control devices listed in paragraphs (b)(1) and (2) of this section.
 - (1) A boiler or process heater in which all vent streams are introduced with the primary fuel or are used as the primary fuel.
 - (2) A boiler or process heater with a design heat input capacity equal to or greater than 44 megawatts.
- (c) If you are required to install a continuous parameter monitoring system, you must meet the specifications and requirements in paragraphs (c)(1) through (4) of this section.
 - (1) Each continuous parameter monitoring system must measure data values at least once every hour and record the parameters in paragraphs (c)(1)(i) or (ii) of this section.
 - (i) Each measured data value.
 - (ii) Each block average value for each 1-hour period or shorter periods calculated from all measured data values during each period. If values are measured more frequently than once per minute, a single value for each minute may be used to calculate the hourly (or shorter period) block average instead of all measured values.
 - (2) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (c)(2)(i) through (v) of this section. You must install, calibrate, operate, and maintain each continuous parameter monitoring system in accordance with the

procedures in your approved site-specific monitoring plan. Heat sensing monitoring devices that indicate the continuous ignition of a pilot flame are exempt from the calibration, quality assurance and quality control requirements in this section.

- (i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations.
- (ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements.
- (iii) Equipment performance checks, system accuracy audits, or other audit procedures.
- (iv) Ongoing operation and maintenance procedures in accordance with provisions in § 60.13(b).
- (v) Ongoing reporting and recordkeeping procedures in accordance with provisions in § 60.7(c), (d), and (f).
- (3) You must conduct the continuous parameter monitoring system equipment performance checks, system accuracy audits, or other audit procedures specified in the site-specific monitoring plan at least once every 12 months.
- (4) You must conduct a performance evaluation of each continuous parameter monitoring system in accordance with the site-specific monitoring plan. Heat sensing monitoring devices that indicate the continuous ignition a pilot flame are exempt from the calibration, quality assurance and quality control requirements in this section.
- (d) You must install, calibrate, operate, and maintain a device equipped with a continuous recorder to measure the values of operating parameters appropriate for the control device as specified in paragraph (d)(1), (2), or (3) of this section.
 - (1) A continuous monitoring system that measures the operating parameters in paragraphs (d)(1)(i) through (viii) of this section, as applicable.
 - (i) For a thermal vapor incinerator that demonstrates during the performance test conducted under § 60.5413a(b) that combustion zone temperature is an accurate indicator of performance, a temperature monitoring device equipped with a continuous recorder. The monitoring device must have a minimum accuracy of ±1 percent of the temperature being monitored in °Celsius, or ±2.5 °Celsius, whichever value is greater. You must install the temperature sensor at a location representative of the combustion zone temperature.
 - (ii) For a catalytic vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device must be capable of monitoring temperature at two locations and have a minimum accuracy of ±1 percent of the temperature being monitored in °Celsius, or ±2.5 °Celsius, whichever value is greater. You must install one temperature sensor in the vent stream at the nearest feasible point to the catalyst bed inlet, and you must install a second temperature sensor in the vent stream at the nearest feasible point to the catalyst bed outlet.
 - (iii) For a flare, a heat sensing monitoring device equipped with a continuous recorder that indicates the continuous ignition of the pilot flame. The heat sensing monitoring device is exempt from the calibration requirements of this section.
 - (iv) For a boiler or process heater, a temperature monitoring device equipped with a continuous recorder. The temperature monitoring device must have a minimum accuracy of ±1 percent of the temperature being monitored in °Celsius, or ±2.5 °Celsius, whichever value is greater. You must install the temperature sensor at a location representative of the combustion zone temperature.
 - (v) For a condenser, a temperature monitoring device equipped with a continuous recorder. The temperature monitoring device must have a minimum accuracy of ±1 percent of the temperature being monitored in "Celsius, or ±2.5 "Celsius, whichever value is greater. You must install the temperature sensor at a location in the exhaust vent stream from the condenser.
 - (vi) For a regenerative-type carbon adsorption system, a continuous monitoring system that meets the specifications in paragraphs (d)(1)(vi)(A) and (B) of this section.
 - (A) The continuous parameter monitoring system must measure and record the average total regeneration stream mass flow or volumetric flow during each carbon bed regeneration cycle. The flow sensor must have a measurement sensitivity of 5 percent of the flow rate or 10 cubic feet per minute, whichever is greater. You must check the mechanical connections for leakage at least every month, and you must perform a visual inspection at least every 3 months of all components of the flow continuous parameter monitoring system for physical and operational integrity and all electrical connections for oxidation and galvanic corrosion if your flow continuous parameter monitoring system is not equipped with a redundant flow sensor; and

- (B) The continuous parameter monitoring system must measure and record the average carbon bed temperature for the duration of the carbon bed steaming cycle and measure the actual carbon bed temperature after regeneration and within 15 minutes of completing the cooling cycle. The temperature monitoring device must have a minimum accuracy of ±1 percent of the temperature being monitored in °Celsius, or ±2.5 °Celsius, whichever value is greater.
- (vii) For a nonregenerative-type carbon adsorption system, you must monitor the design carbon replacement interval established using a design analysis performed as specified in § 60.5413a(c)(3). The design carbon replacement interval must be based on the total carbon working capacity of the control device and source operating schedule.
- (viii) For a combustion control device whose model is tested under § 60.5413a(d), a continuous monitoring system meeting the requirements of paragraphs (d)(1)(viii)(A) and (B) of this section. If you comply with the periodic testing requirements of § 60.5413a(b)(5)(ii), you are not required to continuously monitor the gas flow rate under paragraph (d)(1)(viii)(A) of this section.
 - (A) The continuous monitoring system must measure gas flow rate at the inlet to the control device. The monitoring instrument must have an accuracy of ±2 percent or better at the maximum expected flow rate. The flow rate at the inlet to the combustion device must not exceed the maximum flow rate determined by the manufacturer.
 - (B) A monitoring device that continuously indicates the presence of the pilot flame while emissions are routed to the control device.
- (2) An organic monitoring device equipped with a continuous recorder that measures the concentration level of organic compounds in the exhaust vent stream from the control device. The monitor must meet the requirements of Performance Specification 8 or 9 of appendix B of this part. You must install, calibrate, and maintain the monitor according to the manufacturer's specifications.
- (3) A continuous monitoring system that measures operating parameters other than those specified in paragraph (d)(1) or (2) of this section, upon approval of the Administrator as specified in § 60.13(i).
- (e) You must calculate the daily average value for each monitored operating parameter for each operating day, using the data recorded by the monitoring system, except for inlet gas flow rate and data from the heat sensing devices that indicate the presence of a pilot flame. If the emissions unit operation is continuous, the operating day is a 24-hour period. If the emissions unit operation is not continuous, the operating day is the total number of hours of control device operation per 24-hour period. Valid data points must be available for 75 percent of the operating hours in an operating day to compute the daily average.
- (f) For each operating parameter monitor installed in accordance with the requirements of paragraph (d) of this section, you must comply with paragraph (f)(1) of this section for all control devices. When condensers are installed, you must also comply with paragraph (f)(2) of this section.
 - (1) You must establish a minimum operating parameter value or a maximum operating parameter value, as appropriate for the control device, to define the conditions at which the control device must be operated to continuously achieve the applicable performance requirements of § 60.5412a(a)(1) or (2). You must establish each minimum or maximum operating parameter value as specified in paragraphs (f)(1)(i) through (iii) of this section.
 - (i) If you conduct performance tests in accordance with the requirements of § 60.5413a(b) to demonstrate that the control device achieves the applicable performance requirements specified in § 60.5412a(a)(1) or (2), then you must establish the minimum operating parameter value or the maximum operating parameter value based on values measured during the performance test and supplemented, as necessary, by a condenser design analysis or control device manufacturer recommendations or a combination of both.
 - (ii) If you use a condenser design analysis in accordance with the requirements of § 60.5413a(c) to demonstrate that the control device achieves the applicable performance requirements specified in § 60.5412a(a)(2), then you must establish the minimum operating parameter value or the maximum operating parameter value based on the condenser design analysis and supplemented, as necessary, by the condenser manufacturer's recommendations.
 - (iii) If you operate a control device where the performance test requirement was met under § 60.5413a(d) to demonstrate that the control device achieves the applicable performance requirements specified in § 60.5412a(a)(1), then your control device inlet gas flow rate must not exceed the maximum inlet gas flow rate determined by the manufacturer.

- - (2) If you use a condenser as specified in paragraph (d)(1)(v) of this section, you must establish a condenser performance curve showing the relationship between condenser outlet temperature and condenser control efficiency, according to the requirements of paragraphs (f)(2)(i) and (ii) of this section.
 - (i) If you conduct a performance test in accordance with the requirements of § 60.5413a(b) to demonstrate that the condenser achieves the applicable performance requirements in § 60.5412a(a)(2), then the condenser performance curve must be based on values measured during the performance test and supplemented as necessary by control device design analysis, or control device manufacturer's recommendations, or a combination or both.
 - (ii) If you use a control device design analysis in accordance with the requirements of § 60.5413a(c)(1) to demonstrate that the condenser achieves the applicable performance requirements specified in § 60.5412a(a) (2), then the condenser performance curve must be based on the condenser design analysis and supplemented, as necessary, by the control device manufacturer's recommendations.
 - (g) A deviation for a given control device is determined to have occurred when the monitoring data or lack of monitoring data result in any one of the criteria specified in paragraphs (q)(1) through (6) of this section being met. If you monitor multiple operating parameters for the same control device during the same operating day and more than one of these operating parameters meets a deviation criterion specified in paragraphs (g)(1) through (6) of this section, then a single excursion is determined to have occurred for the control device for that operating day.
 - (1) A deviation occurs when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit) established in paragraph (f)(1) of this section or when the heat sensing device indicates that there is no pilot flame present.
 - (2) If you are subject to § 60.5412a(a)(2), a deviation occurs when the 365-day average condenser efficiency calculated according to the requirements specified in § 60.5415a(b)(2)(viii)(D) is less than 95.0 percent.
 - (3) If you are subject to § 60.5412a(a)(2) and you have less than 365 days of data, a deviation occurs when the average condenser efficiency calculated according to the procedures specified in § 60.5415a(b)(2)(viii)(D)(1) or (2) is less than 95.0 percent.
 - (4) A deviation occurs when the monitoring data are not available for at least 75 percent of the operating hours in a day.
 - (5) If the closed vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device, a deviation occurs when the requirements of paragraph (g)(5)(i) or (ii) of this section are met.
 - For each bypass line subject to § 60.5411a(a)(3)(i)(A), the flow indicator indicates that flow has been detected and that the stream has been diverted away from the control device to the atmosphere.
 - (ii) For each bypass line subject to § 60.5411a(a)(3)(i)(B), if the seal or closure mechanism has been broken, the bypass line valve position has changed, the key for the lock-and-key type lock has been checked out, or the car-seal has broken.
 - (6) For a combustion control device whose model is tested under § 60.5413a(d), a deviation occurs when the conditions of paragraphs (g)(6)(i) or (ii) of this section are met.
 - The inlet gas flow rate exceeds the maximum established during the test conducted under § 60.5413a(d).
 - Failure of the monthly visible emissions test conducted under § 60.5413a(e)(3) occurs.
 - (h) For each control device used to comply with the emission reduction standard in § 60.5395a(a)(2) for your storage vessel affected facility, you must demonstrate continuous compliance according to paragraphs (h)(1) through (h)(4) of this section. You are exempt from the requirements of this paragraph if you install a control device model tested in accordance with § 60.5413a(d)(2) through (10), which meets the criteria in § 60.5413a(d)(11), the reporting requirement in § 60.5413a(d)(12), and meet the continuous compliance requirement in § 60.5413a(e).
 - (1) For each combustion device you must conduct inspections at least once every calendar month according to paragraphs (h)(1)(i) through (iv) of this section. Monthly inspections must be separated by at least 14 calendar days.
 - Conduct visual inspections to confirm that the pilot is lit when vapors are being routed to the combustion device and that the continuous burning pilot flame is operating properly.
 - (ii) Conduct inspections to monitor for visible emissions from the combustion device using section 11 of EPA Method 22 of appendix A of this part. The observation period shall be 15 minutes. Devices must be operated with no visible emissions, except for periods not to exceed a total of 1 minute during any 15 minute period.

- eCFR :: 40 CFR Part 60 Subpart OOOOa -- Standards of Performance for Crude Oil and Natural Gas Facilities for which Constru...
- (iii) Conduct olfactory, visual and auditory inspections of all equipment associated with the combustion device to ensure system integrity.
- (iv) For any absence of the pilot flame, or other indication of smoking or improper equipment operation (e.g., visual, audible, or olfactory), you must ensure the equipment is returned to proper operation as soon as practicable after the event occurs. At a minimum, you must perform the procedures specified in paragraphs (h)(1)(iv)(A) and (B) of this section.
 - (A) You must check the air vent for obstruction. If an obstruction is observed, you must clear the obstruction as soon as practicable.
 - (B) You must check for liquid reaching the combustor.
- (2) For each vapor recovery device, you must conduct inspections at least once every calendar month to ensure physical integrity of the control device according to the manufacturer's instructions. Monthly inspections must be separated by at least 14 calendar days.
- (3) Each control device must be operated following the manufacturer's written operating instructions, procedures and maintenance schedule to ensure good air pollution control practices for minimizing emissions. Records of the manufacturer's written operating instructions, procedures, and maintenance schedule must be available for inspection as specified in § 60.5420a(c)(13).
- (4) Conduct a periodic performance test no later than 60 months after the initial performance test as specified in § 60.5413a(b)(5)(ii) and conduct subsequent periodic performance tests at intervals no longer than 60 months following the previous periodic performance test.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57449, Sept. 15, 2020]

§ 60.5420a What are my notification, reporting, and recordkeeping requirements?

- (a) **Notifications.** You must submit the notifications according to paragraphs (a)(1) and (2) of this section if you own or operate one or more of the affected facilities specified in § 60.5365a that was constructed, modified, or reconstructed during the reporting period.
 - (1) If you own or operate an affected facility that is the group of all equipment within a process unit at an onshore natural gas processing plant, or a sweetening unit, you must submit the notifications required in §§ 60.7(a)(1), (3), and (4) and 60.15(d). If you own or operate a well, centrifugal compressor, reciprocating compressor, pneumatic controller, pneumatic pump, storage vessel, collection of fugitive emissions components at a well site, or collection of fugitive emissions components at a compressor station, you are not required to submit the notifications required in §§ 60.7(a)(1), (3), and (4) and 60.15(d).

(2)

- (i) If you own or operate a well affected facility, you must submit a notification to the Administrator no later than 2 days prior to the commencement of each well completion operation listing the anticipated date of the well completion operation. The notification shall include contact information for the owner or operator; the United States Well Number; the latitude and longitude coordinates for each well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983; and the planned date of the beginning of flowback. You may submit the notification in writing or in electronic format.
- (ii) If you are subject to state regulations that require advance notification of well completions and you have met those notification requirements, then you are considered to have met the advance notification requirements of paragraph (a)(2)(i) of this section.
- (3) An owner or operator electing to comply with the provisions of § 60.5399a shall notify the Administrator of the alternative fugitive emissions standard selected within the annual report, as specified in paragraph (b)(7) of this section.
- (b) Reporting requirements. You must submit annual reports containing the information specified in paragraphs (b)(1) through (8) and (12) of this section and performance test reports as specified in paragraph (b)(9) or (10) of this section, if applicable. You must submit annual reports following the procedure specified in paragraph (b)(11) of this section. The initial annual report is due no later than 90 days after the end of the initial compliance period as determined according to § 60.5410a. Subsequent annual reports are due no later than same date each year as the initial annual report. If you own or operate more than one affected facility, you may submit one report for multiple affected facilities provided the report contains all of the information required as specified in paragraphs (b)(1) through (8) and (12) of this section. Annual

reports may coincide with title V reports as long as all the required elements of the annual report are included. You may arrange with the Administrator a common schedule on which reports required by this part may be submitted as long as the schedule does not extend the reporting period.

- (1) The general information specified in paragraphs (b)(1)(i) through (iv) of this section is required for all reports.
 - (i) The company name, facility site name associated with the affected facility, U.S. Well ID or U.S. Well ID associated with the affected facility, if applicable, and address of the affected facility. If an address is not available for the site, include a description of the site location and provide the latitude and longitude coordinates of the site in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983.
 - (ii) An identification of each affected facility being included in the annual report.
 - (iii) Beginning and ending dates of the reporting period.
 - (iv) A certification by a certifying official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (2) For each well affected facility that is subject to § 60.5375a(a) or (f), the records of each well completion operation conducted during the reporting period, including the information specified in paragraphs (b)(2)(i) through (xiv) of this section, if applicable. In lieu of submitting the records specified in paragraphs (b)(2)(i) through (xiv) of this section, the owner or operator may submit a list of each well completion with hydraulic fracturing completed during the reporting period, and the digital photograph required by paragraph (c)(1)(v) of this section for each well completion. For each well affected facility that routes flowback entirely through one or more production separators, only the records specified in paragraphs (b)(2)(i) through (iv) and (vi) of this section are required to be reported. For periods where salable gas is unable to be separated, the records specified in paragraphs (b)(2)(iv) and (viii) through (xii) of this section must also be reported, as applicable. For each well affected facility that is subject to § 60.5375a(g), the record specified in paragraph (b)(2)(xv) of this section is required to be reported.
 - (i) Well Completion ID.
 - (ii) Latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983.
 - (iii) U.S. Well ID.
 - (iv) The date and time of the onset of flowback following hydraulic fracturing or refracturing or identification that the well immediately starts production.
 - (v) The date and time of each attempt to direct flowback to a separator as required in § 60.5375a(a)(1)(ii).
 - (vi) The date and time that the well was shut in and the flowback equipment was permanently disconnected, or the startup of production.
 - (vii) The duration (in hours) of flowback.
 - (viii) The duration (in hours) of recovery and disposition of recovery (i.e., routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source, or used for another useful purpose that a purchased fuel or raw material would serve).
 - (ix) The duration (in hours) of combustion.
 - (x) The duration (in hours) of venting.
 - (xi) The specific reasons for venting in lieu of capture or combustion.
 - (xii) For any deviations recorded as specified in paragraph (c)(1)(ii) of this section, the date and time the deviation began, the duration of the deviation, and a description of the deviation.
 - (xiii) For each well affected facility subject to § 60.5375a(f), a record of the well type (i.e., wildcat well, delineation well, or low pressure well (as defined § 60.5430a)) and supporting inputs and calculations, if applicable.
 - (xiv) For each well affected facility for which you claim an exception under § 60.5375a(a)(3), the specific exception claimed and reasons why the well meets the claimed exception.
 - (xv) For each well affected facility with less than 300 scf of gas per stock tank barrel of oil produced, the supporting analysis that was performed in order the make that claim, including but not limited to, GOR values for established leases and data from wells in the same basin and field.

- (3) For each centrifugal compressor affected facility, the information specified in paragraphs (b)(3)(i) through (v) of this section.
 - (i) An identification of each centrifugal compressor using a wet seal system constructed, modified, or reconstructed during the reporting period.
 - (ii) For each deviation that occurred during the reporting period and recorded as specified in paragraph (c)(2) of this section, the date and time the deviation began, the duration of the deviation, and a description of the deviation.
 - (iii) If required to comply with § 60.5380a(a)(2), the information in paragraphs (b)(3)(iii)(A) through (C) of this section.
 - (A) Dates of each inspection required under § 60.5416a(a) and (b);
 - (B) Each defect or leak identified during each inspection, date of repair or the date of anticipated repair if the repair is delayed; and
 - (C) Date and time of each bypass alarm or each instance the key is checked out if you are subject to the bypass requirements of § 60.5416a(a)(4).
 - (iv) If complying with § 60.5380a(a)(1) with a control device tested under § 60.5413a(d) which meets the criteria in § 60.5413a(d)(11) and (e), the information in paragraphs (b)(3)(iv)(A) through (D) of this section.
 - (A) Identification of the compressor with the control device.
 - (B) Make, model, and date of purchase of the control device.
 - (C) For each instance where the inlet gas flow rate exceeds the manufacturer's listed maximum gas flow rate, where there is no indication of the presence of a pilot flame, or where visible emissions exceeded 1 minute in any 15-minute period, include the date and time the deviation began, the duration of the deviation, and a description of the deviation.
 - (D) For each visible emissions test following return to operation from a maintenance or repair activity, the date of the visible emissions test, the length of the test, and the amount of time for which visible emissions were present.
 - (v) If complying with § 60.5380a(a)(1) with a control device not tested under § 60.5413a(d), identification of the compressor with the tested control device, the date the performance test was conducted, and pollutant(s) tested. Submit the performance test report following the procedures specified in paragraph (b)(9) of this section.
- (4) For each reciprocating compressor affected facility, the information specified in paragraphs (b)(4)(i) through (iii) of this section.
 - (i) The cumulative number of hours of operation or the number of months since initial startup, since August 2, 2016, or since the previous reciprocating compressor rod packing replacement, whichever is latest. Alternatively, a statement that emissions from the rod packing are being routed to a process through a closed vent system under negative pressure.
 - (ii) If applicable, for each deviation that occurred during the reporting period and recorded as specified in paragraph (c)(3)(iii) of this section, the date and time the deviation began, duration of the deviation and a description of the deviation.
 - (iii) If required to comply with § 60.5385a(a)(3), the information in paragraphs (b)(4)(iii)(A) through (C) of this section.
 - (A) Dates of each inspection required under § 60.5416a(a) and (b);
 - (B) Each defect or leak identified during each inspection, and date of repair or date of anticipated repair if repair is delayed; and
 - (C) Date and time of each bypass alarm or each instance the key is checked out if you are subject to the bypass requirements of § 60.5416a(a)(4).
- (5) For each pneumatic controller affected facility, the information specified in paragraphs (b)(5)(i) through (iii) of this section.

- (i) An identification of each pneumatic controller constructed, modified, or reconstructed during the reporting period, including the month and year of installation, reconstruction or modification and identification information that allows traceability to the records required in paragraph (c)(4)(iii) or (iv) of this section.
- (ii) If applicable, reason why the use of pneumatic controller affected facilities with a natural gas bleed rate greater than the applicable standard are required.
- (iii) For each instance where the pneumatic controller was not operated in compliance with the requirements specified in § 60.5390a, a description of the deviation, the date and time the deviation began, and the duration of the deviation.
- (6) For each storage vessel affected facility, the information in paragraphs (b)(6)(i) through (ix) of this section.
 - (i) An identification, including the location, of each storage vessel affected facility for which construction, modification, or reconstruction commenced during the reporting period. The location of the storage vessel shall be in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983.
 - (ii) Documentation of the VOC emission rate determination according to § 60.5365a(e)(1) for each storage vessel that became an affected facility during the reporting period or is returned to service during the reporting period.
 - (iii) For each deviation that occurred during the reporting period and recorded as specified in paragraph (c)(5) of this section, the date and time the deviation began, duration of the deviation and a description of the deviation.
 - (iv) A statement that you have met the requirements specified in § 60.5410a(h)(2) and (3).
 - (v) For each storage vessel constructed, modified, reconstructed, or returned to service during the reporting period complying with § 60.5395a(a)(2) with a control device tested under § 60.5413a(d) which meets the criteria in § 60.5413a(d)(11) and (e), the information in paragraphs (b)(6)(v)(A) through (D) of this section.
 - (A) Identification of the storage vessel with the control device.
 - (B) Make, model, and date of purchase of the control device.
 - (C) For each instance where the inlet gas flow rate exceeds the manufacturer's listed maximum gas flow rate, where there is no indication of the presence of a pilot flame, or where visible emissions exceeded 1 minute in any 15-minute period, include the date and time the deviation began, the duration of the deviation, and a description of the deviation.
 - (D) For each visible emissions test following return to operation from a maintenance or repair activity, the date of the visible emissions test, the length of the test, and the amount of time for which visible emissions were present.
 - (vi) If complying with § 60.5395a(a)(2) with a control device not tested under § 60.5413a(d), identification of the storage vessel with the tested control device, the date the performance test was conducted, and pollutant(s) tested. Submit the performance test report following the procedures specified in paragraph (b)(9) of this section.
 - (vii) If required to comply with § 60.5395a(b)(1), the information in paragraphs (b)(6)(vii)(A) through (C) of this section.
 - (A) Dates of each inspection required under § 60.5416a(c);
 - (B) Each defect or leak identified during each inspection, and date of repair or date of anticipated repair if repair is delayed; and
 - (C) Date and time of each bypass alarm or each instance the key is checked out if you are subject to the bypass requirements of § 60.5416a(c)(3).
 - (viii) You must identify each storage vessel affected facility that is removed from service during the reporting period as specified in § 60.5395a(c)(1)(ii), including the date the storage vessel affected facility was removed from service.
 - (ix) You must identify each storage vessel affected facility returned to service during the reporting period as specified in § 60.5395a(c)(3), including the date the storage vessel affected facility was returned to service.

(7) For the collection of fugitive emissions components at each well site and the collection of fugitive emissions components at each compressor station, report the information specified in paragraphs (b)(7)(i) through (iii) of this section, as applicable.

(i)

- (A) Designation of the type of site (i.e., well site or compressor station) at which the collection of fugitive emissions components is located.
- (B) For each collection of fugitive emissions components at a well site that became an affected facility during the reporting period, you must include the date of the startup of production or the date of the first day of production after modification. For each collection of fugitive emissions components at a compressor station that became an affected facility during the reporting period, you must include the date of startup or the date of modification.
- (C) For each collection of fugitive emissions components at a well site that meets the conditions specified in either § 60.5397a(a)(1)(i) or (ii), you must specify the well site is a low production well site and submit the total production for the well site.
- (D) For each collection of fugitive emissions components at a well site where during the reporting period you complete the removal of all major production and processing equipment such that the well site contains only one or more wellheads, you must include the date of the change to status as a wellhead only well site.
- (E) For each collection of fugitive emissions components at a well site where you previously reported under paragraph (b)(7)(i)(C) of this section the removal of all major production and processing equipment and during the reporting period major production and processing equipment is added back to the well site, the date that the first piece of major production and processing equipment is added back to the well site.
- (ii) For each fugitive emissions monitoring survey performed during the annual reporting period, the information specified in paragraphs (b)(7)(ii)(A) through (G) of this section.
 - (A) Date of the survey.
 - (B) Monitoring instrument used.
 - (C) Any deviations from the monitoring plan elements under § 60.5397a(c)(1), (2), and (7) and (c)(8)(i) or a statement that there were no deviations from these elements of the monitoring plan.
 - (D) Number and type of components for which fugitive emissions were detected.
 - (E) Number and type of fugitive emissions components that were not repaired as required in § 60.5397a(h).
 - (F) Number and type of fugitive emission components (including designation as difficult-to-monitor or unsafe-to-monitor, if applicable) on delay of repair and explanation for each delay of repair.
 - (G) Date of planned shutdown(s) that occurred during the reporting period if there are any components that have been placed on delay of repair.
- (iii) For each collection of fugitive emissions components at a well site or collection of fugitive emissions components at a compressor station complying with an alternative fugitive emissions standard under § 60.5399a, in lieu of the information specified in paragraphs (b)(7)(i) and (ii) of this section, you must provide the information specified in paragraphs (b)(7)(iii)(A) through (C) of this section.
 - (A) The alternative standard with which you are complying.
 - (B) The site-specific reports specified by the specific alternative fugitive emissions standard, submitted in the format in which they were submitted to the state, local, or tribal authority. If the report is in hard copy, you must scan the document and submit it as an electronic attachment to the annual report required in paragraph (b) of this section.
 - (C) If the report specified by the specific alternative fugitive emissions standard is not site-specific, you must submit the information specified in paragraphs (b)(7)(i) and (ii) of this section for each individual site complying with the alternative standard.
- (8) For each pneumatic pump affected facility, the information specified in paragraphs (b)(8)(i) through (iv) of this section.

- (i) For each pneumatic pump that is constructed, modified or reconstructed during the reporting period, you must provide certification that the pneumatic pump meets one of the conditions described in paragraph (b)(8)(i)(A), (B), or (C) of this section.
 - (A) No control device or process is available on site.
 - (B) A control device or process is available on site and the owner or operator has determined in accordance with § 60.5393a(b)(5) that it is technically infeasible to capture and route the emissions to the control device or process.
 - (C) Emissions from the pneumatic pump are routed to a control device or process. If the control device is designed to achieve less than 95 percent emissions reduction, specify the percent emissions reductions the control device is designed to achieve.
- (ii) For any pneumatic pump affected facility which has been previously reported as required under paragraph (b) (8)(i) of this section and for which a change in the reported condition has occurred during the reporting period, provide the identification of the pneumatic pump affected facility and the date it was previously reported and a certification that the pneumatic pump meets one of the conditions described in paragraph (b)(8)(ii)(A), (B), (C), or (D) of this section.
 - (A) A control device has been added to the location and the pneumatic pump now reports according to paragraph (b)(8)(i)(C) of this section.
 - (B) A control device has been added to the location and the pneumatic pump affected facility now reports according to paragraph (b)(8)(i)(B) of this section.
 - (C) A control device or process has been removed from the location or otherwise is no longer available and the pneumatic pump affected facility now report according to paragraph (b)(8)(i)(A) of this section.
 - (D) A control device or process has been removed from the location or is otherwise no longer available and the owner or operator has determined in accordance with § 60.5393a(b)(5) through an engineering evaluation that it is technically infeasible to capture and route the emissions to another control device or process.
- (iii) For each deviation that occurred during the reporting period and recorded as specified in paragraph (c)(16)(ii) of this section, the date and time the deviation began, duration of the deviation, and a description of the deviation.
- (iv) If required to comply with § 60.5393a(b), the information in paragraphs (b)(8)(iv)(A) through (C) of this section.
 - (A) Dates of each inspection required under § 60.5416a(d);
 - (B) Each defect or leak identified during each inspection, and date of repair or date of anticipated repair if repair is delayed; and
 - (C) Date and time of each bypass alarm or each instance the key is checked out if you are subject to the bypass requirements of § 60.5416a(c)(3).
- (9) Within 60 days after the date of completing each performance test (see § 60.8) required by this subpart, except testing conducted by the manufacturer as specified in § 60.5413a(d), you must submit the results of the performance test following the procedure specified in either paragraph (b)(9)(i) or (ii) of this section.
 - (i) For data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT website (https://www.epa.gov/electronic-reporting-air-emissions/electronic-reporting-tool-ert) at the time of the test, you must submit the results of the performance test to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI), except as outlined in this paragraph (b)(9)(i). (CEDRI can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/).) The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as confidential business information (CBI). Anything submitted using CEDRI cannot later be claimed CBI. Performance test data must be submitted in a file format generated through the use of the EPA's ERT or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the EPA's ERT website. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, you must submit a complete file generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT website, including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage media to the EPA. The electronic media must be clearly marked as CBI and mailed to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC

27703. The same ERT or alternate file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described earlier in this paragraph (b)(9)(i). All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.

- (ii) For data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT website at the time of the test, you must submit the results of the performance test to the Administrator at the appropriate address listed in § 60.4.
- (10) For combustion control devices tested by the manufacturer in accordance with § 60.5413a(d), an electronic copy of the performance test results required by § 60.5413a(d) shall be submitted via email to Oil_and_Gas_PT@EPA.GOV unless the test results for that model of combustion control device are posted at the following website: epa.gov/airquality/oilandgas/.
- (11) You must submit reports to the EPA via CEDRI, except as outlined in this paragraph (b)(11). (CEDRI can be accessed through the EPA's CDX (https://cdx.epa.gov/).) The EPA will make all the information submitted through CEDRI available to the public without further notice to you. Do not use CEDRI to submit information you claim as CBI. Anything submitted using CEDRI cannot later be claimed CBI. You must use the appropriate electronic report in CEDRI for this subpart or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the CEDRI website (https://www.epa.gov/electronic-reporting-air-emissions/cedri/). If the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, you must submit the report to the Administrator at the appropriate address listed in § 60.4. Once the form has been available in CEDRI for at least 90 calendar days, you must begin submitting all subsequent reports via CEDRI. The reports must be submitted by the deadlines specified in this subpart, regardless of the method in which the reports are submitted. Although we do not expect persons to assert a claim of CBI, if you wish to assert a CBI claim, submit a complete report generated using the appropriate form in CEDRI or an alternate electronic file consistent with the XML schema listed on the EPA's CEDRI website, including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage medium to the EPA. The electronic medium shall be clearly marked as CBI and mailed to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Fuels and Incineration Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same file with the CBI omitted shall be submitted to the EPA via CEDRI. All CBI claims must be asserted at the time of submission. Furthermore, under CAA section 114(c), emissions data is not entitled to confidential treatment, and the EPA is required to make emissions data available to the public. Thus, emissions data will not be protected as CBI and will be made publicly available.
- (12) You must submit the certification signed by the qualified professional engineer or in-house engineer according to § 60.5411a(d) for each closed vent system routing to a control device or process.
- (13) If you are required to electronically submit a report through CEDRI in the EPA's CDX, you may assert a claim of EPA system outage for failure to timely comply with the reporting requirement. To assert a claim of EPA system outage, you must meet the requirements outlined in paragraphs (b)(13)(i) through (vii) of this section.
 - (i) You must have been or will be precluded from accessing CEDRI and submitting a required report within the time prescribed due to an outage of either the EPA's CEDRI or CDX systems.
 - (ii) The outage must have occurred within the period of time beginning 5 business days prior to the date that the submission is due.
 - (iii) The outage may be planned or unplanned.
 - (iv) You must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or caused a delay in reporting.
 - (v) You must provide to the Administrator a written description identifying:
 - (A) The date(s) and time(s) when CDX or CEDRI was accessed and the system was unavailable;
 - (B) A rationale for attributing the delay in reporting beyond the regulatory deadline to the EPA system outage;
 - (C) Measures taken or to be taken to minimize the delay in reporting; and
 - (D) The date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported.
 - (vi) The decision to accept the claim of EPA system outage and allow an extension to the reporting deadline is solely within the discretion of the Administrator.

- (vii) In any circumstance, the report must be submitted electronically as soon as possible after the outage is resolved.
- (14) If you are required to electronically submit a report through CEDRI in the EPA's CDX, the owner or operator may assert a claim of force majeure for failure to timely comply with the reporting requirement. To assert a claim of force majeure, you must meet the requirements outlined in paragraphs (b)(14)(i) through (v) of this section.
 - (i) You may submit a claim if a force majeure event is about to occur, occurs, or has occurred or there are lingering effects from such an event within the period of time beginning 5 business days prior to the date the submission is due. For the purposes of this section, a force majeure event is defined as an event that will be or has been caused by circumstances beyond the control of the affected facility, its contractors, or any entity controlled by the affected facility that prevents you from complying with the requirement to submit a report electronically within the time period prescribed. Examples of such events are acts of nature (e.g., hurricanes, earthquakes, or floods), acts of war or terrorism, or equipment failure or safety hazard beyond the control of the affected facility (e.g., large scale power outage).
 - (ii) You must submit notification to the Administrator in writing as soon as possible following the date you first knew, or through due diligence should have known, that the event may cause or caused a delay in reporting.
 - (iii) You must provide to the Administrator:
 - (A) A written description of the force majeure event;
 - (B) A rationale for attributing the delay in reporting beyond the regulatory deadline to the force majeure event;
 - (C) Measures taken or to be taken to minimize the delay in reporting; and
 - (D) The date by which you propose to report, or if you have already met the reporting requirement at the time of the notification, the date you reported.
 - (iv) The decision to accept the claim of force majeure and allow an extension to the reporting deadline is solely within the discretion of the Administrator.
 - (v) In any circumstance, the reporting must occur as soon as possible after the force majeure event occurs.
- (c) Recordkeeping requirements. You must maintain the records identified as specified in § 60.7(f) and in paragraphs (c)(1) through (18) of this section. All records required by this subpart must be maintained either onsite or at the nearest local field office for at least 5 years. Any records required to be maintained by this subpart that are submitted electronically via the EPA's CDX may be maintained in electronic format.
 - (1) The records for each well affected facility as specified in paragraphs (c)(1)(i) through (vii) of this section, as applicable. For each well affected facility for which you make a claim that the well affected facility is not subject to the requirements for well completions pursuant to § 60.5375a(g), you must maintain the record in paragraph (c)(1) (vi) of this section, only. For each well affected facility that routes flowback entirely through one or more production separators that are designed to accommodate flowback, only records of the United States Well Number, the latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983, the Well Completion ID, and the date and time of startup of production are required. For periods where salable gas is unable to be separated, records of the date and time of onset of flowback, the duration and disposition of recovery, the duration of combustion and venting (if applicable), reasons for venting (if applicable), and deviations are required.
 - (i) Records identifying each well completion operation for each well affected facility.
 - (ii) Records of deviations in cases where well completion operations with hydraulic fracturing were not performed in compliance with the requirements specified in § 60.5375a, including the date and time the deviation began, the duration of the deviation, and a description of the deviation.
 - (iii) You must maintain the records specified in paragraphs (c)(1)(iii)(A) through (C) of this section.
 - (A) For each well affected facility required to comply with the requirements of § 60.5375a(a), you must record: The latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983; the United States Well Number; the date and time of the onset of flowback following hydraulic fracturing or refracturing; the date and time of each attempt to direct flowback to a separator as required in § 60.5375a(a)(1)(ii); the date and time of each occurrence of returning to the initial flowback stage under § 60.5375a(a)(1)(i); and the date and time that the well was shut in and the flowback equipment was permanently disconnected, or the startup of production; the duration of flowback; duration of recovery and disposition of recovery (i.e., routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source,

- or used for another useful purpose that a purchased fuel or raw material would serve); duration of combustion; duration of venting; and specific reasons for venting in lieu of capture or combustion. The duration must be specified in hours. In addition, for wells where it is technically infeasible to route the recovered gas as specified in § 60.5375a(a)(1)(ii), you must record the reasons for the claim of technical infeasibility with respect to all four options provided in § 60.5375a(a)(1)(ii).
- (B) For each well affected facility required to comply with the requirements of § 60.5375a(f), you must record: Latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983; the United States Well Number; the date and time of the onset of flowback following hydraulic fracturing or refracturing; the date and time that the well was shut in and the flowback equipment was permanently disconnected, or the startup of production; the duration of flowback; duration of recovery and disposition of recovery (i.e., routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source, or used for another useful purpose that a purchased fuel or raw material would serve); duration of combustion; duration of venting; and specific reasons for venting in lieu of capture or combustion. The duration must be specified in hours.
- (C) For each well affected facility for which you make a claim that it meets the criteria of § 60.5375a(a)(1)(iii) (A), you must maintain the following:
 - (1) The latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983; the United States Well Number; the date and time of the onset of flowback following hydraulic fracturing or refracturing; the date and time that the well was shut in and the flowback equipment was permanently disconnected, or the startup of production; the duration of flowback; duration of recovery and disposition of recovery (i.e., routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source, or used for another useful purpose that a purchased fuel or raw material would serve); duration of combustion; duration of venting; and specific reasons for venting in lieu of capture or combustion. The duration must be specified in hours.
 - (2) If applicable, records that the conditions of § 60.5375a(a)(1)(iii)(A) are no longer met and that the well completion operation has been stopped and a separator installed. The records shall include the date and time the well completion operation was stopped and the date and time the separator was installed.
 - (3) A record of the claim signed by the certifying official that no liquids collection is at the well site. The claim must include a certification by a certifying official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (iv) For each well affected facility for which you claim an exception under § 60.5375a(a)(3), you must record: The latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983; the United States Well Number; the specific exception claimed; the starting date and ending date for the period the well operated under the exception; and an explanation of why the well meets the claimed exception.
- (v) For each well affected facility required to comply with both § 60.5375a(a)(1) and (3), if you are using a digital photograph in lieu of the records required in paragraphs (c)(1)(i) through (iv) of this section, you must retain the records of the digital photograph as specified in § 60.5410a(a)(4).
- (vi) For each well affected facility for which you make a claim that the well affected facility is not subject to the well completion standards according to § 60.5375a(g), you must maintain:
 - (A) A record of the analysis that was performed in order the make that claim, including but not limited to, GOR values for established leases and data from wells in the same basin and field;
 - (B) the latitude and longitude of the well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using North American Datum of 1983; the United States Well Number;
 - (C) A record of the claim signed by the certifying official. The claim must include a certification by a certifying official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.
- (vii) For each well affected facility subject to § 60.5375a(f), a record of the well type (i.e., wildcat well, delineation well, or low pressure well (as defined § 60.5430a)) and supporting inputs and calculations, if applicable.

- (2) For each centrifugal compressor affected facility, you must maintain records of deviations in cases where the centrifugal compressor was not operated in compliance with the requirements specified in § 60.5380a, including a description of each deviation, the date and time each deviation began and the duration of each deviation. Except as specified in paragraph (c)(2)(viii) of this section, you must maintain the records in paragraphs (c)(2)(i) through (vii) of this section for each control device tested under § 60.5413a(d) which meets the criteria in § 60.5413a(d)(11) and (e) and used to comply with § 60.5380a(a)(1) for each centrifugal compressor.
 - (i) Make, model, and serial number of purchased device.
 - (ii) Date of purchase.
 - (iii) Copy of purchase order.
 - (iv) Location of the centrifugal compressor and control device in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983.
 - (v) Inlet gas flow rate.
 - (vi) Records of continuous compliance requirements in § 60.5413a(e) as specified in paragraphs (c)(2)(vi)(A) through (E) of this section.
 - (A) Records that the pilot flame is present at all times of operation.
 - (B) Records that the device was operated with no visible emissions except for periods not to exceed a total of 1 minute during any 15-minute period.
 - (C) Records of the maintenance and repair log.
 - (D) Records of the visible emissions test following return to operation from a maintenance or repair activity, including the date of the visible emissions test, the length of the test, and the amount of time for which visible emissions were present.
 - (E) Records of the manufacturer's written operating instructions, procedures, and maintenance schedule to ensure good air pollution control practices for minimizing emissions.
 - (vii) Records of deviations for instances where the inlet gas flow rate exceeds the manufacturer's listed maximum gas flow rate, where there is no indication of the presence of a pilot flame, or where visible emissions exceeded 1 minute in any 15-minute period, including a description of the deviation, the date and time the deviation began, and the duration of the deviation.
 - (viii) As an alternative to the requirements of paragraph (c)(2)(iv) of this section, you may maintain records of one or more digital photographs with the date the photograph was taken and the latitude and longitude of the centrifugal compressor and control device imbedded within or stored with the digital file. As an alternative to imbedded latitude and longitude within the digital photograph, the digital photograph may consist of a photograph of the centrifugal compressor and control device with a photograph of a separately operating GPS device within the same digital picture, provided the latitude and longitude output of the GPS unit can be clearly read in the digital photograph.
- (3) For each reciprocating compressor affected facility, you must maintain the records in paragraphs (c)(3)(i) through (iii) of this section.
 - (i) Records of the cumulative number of hours of operation or number of months since initial startup, since August 2, 2016, or since the previous replacement of the reciprocating compressor rod packing, whichever is latest. Alternatively, a statement that emissions from the rod packing are being routed to a process through a closed vent system under negative pressure.
 - (ii) Records of the date and time of each reciprocating compressor rod packing replacement, or date of installation of a rod packing emissions collection system and closed vent system as specified in § 60.5385a(a)(3).
 - (iii) Records of deviations in cases where the reciprocating compressor was not operated in compliance with the requirements specified in § 60.5385a, including the date and time the deviation began, duration of the deviation, and a description of the deviation.
- (4) For each pneumatic controller affected facility, you must maintain the records identified in paragraphs (c)(4)(i) through (v) of this section, as applicable.

- (i) Records of the month and year of installation, reconstruction, or modification, location in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983, identification information that allows traceability to the records required in paragraph (c)(4)(iii) or (iv) of this section and manufacturer specifications for each pneumatic controller constructed, modified, or reconstructed.
- (ii) Records of the demonstration that the use of pneumatic controller affected facilities with a natural gas bleed rate greater than the applicable standard are required and the reasons why.
- (iii) If the pneumatic controller is not located at a natural gas processing plant, records of the manufacturer's specifications indicating that the controller is designed such that natural gas bleed rate is less than or equal to 6 standard cubic feet per hour.
- (iv) If the pneumatic controller is located at a natural gas processing plant, records of the documentation that the natural gas bleed rate is zero.
- (v) For each instance where the pneumatic controller was not operated in compliance with the requirements specified in § 60.5390a, a description of the deviation, the date and time the deviation began, and the duration of the deviation.
- (5) For each storage vessel affected facility, you must maintain the records identified in paragraphs (c)(5)(i) through (vii) of this section.
 - (i) If required to reduce emissions by complying with § 60.5395a(a)(2), the records specified in §§ 60.5420a(c)(6) through (8) and 60.5416a(c)(6)(ii) and (c)(7)(ii). You must maintain the records in paragraph (c)(5)(vi) of this section for each control device tested under § 60.5413a(d) which meets the criteria in § 60.5413a(d)(11) and (e) and used to comply with § 60.5395a(a)(2) for each storage vessel.
 - (ii) Records of each VOC emissions determination for each storage vessel affected facility made under § 60.5365a(e) including identification of the model or calculation methodology used to calculate the VOC emission rate.
 - (iii) For each instance where the storage vessel was not operated in compliance with the requirements specified in §§ 60.5395a, 60.5411a, 60.5412a, and 60.5413a, as applicable, a description of the deviation, the date and time each deviation began, and the duration of the deviation.
 - (iv) For storage vessels that are skid-mounted or permanently attached to something that is mobile (such as trucks, railcars, barges or ships), records indicating the number of consecutive days that the vessel is located at a site in the crude oil and natural gas production source category. If a storage vessel is removed from a site and, within 30 days, is either returned to the site or replaced by another storage vessel at the site to serve the same or similar function, then the entire period since the original storage vessel was first located at the site, including the days when the storage vessel was removed, will be added to the count towards the number of consecutive days.
 - (v) You must maintain records of the identification and location in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983 of each storage vessel affected facility.
 - (vi) Except as specified in paragraph (c)(5)(vi)(G) of this section, you must maintain the records specified in paragraphs (c)(5)(vi)(A) through (H) of this section for each control device tested under § 60.5413a(d) which meets the criteria in § 60.5413a(d)(11) and (e) and used to comply with § 60.5395a(a)(2) for each storage vessel.
 - (A) Make, model, and serial number of purchased device.
 - (B) Date of purchase.
 - (C) Copy of purchase order.
 - (D) Location of the control device in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983.
 - (E) Inlet gas flow rate.
 - (F) Records of continuous compliance requirements in § 60.5413a(e) as specified in paragraphs (c)(5)(vi)(F) (1) through (5) of this section.
 - (1) Records that the pilot flame is present at all times of operation.

- (2) Records that the device was operated with no visible emissions except for periods not to exceed a total of 1 minute during any 15-minute period.
- (3) Records of the maintenance and repair log.
- (4) Records of the visible emissions test following return to operation from a maintenance or repair activity, including the date of the visible emissions test, the length of the test, and the amount of time for which visible emissions were present.
- (5) Records of the manufacturer's written operating instructions, procedures, and maintenance schedule to ensure good air pollution control practices for minimizing emissions.
- (G) Records of deviations for instances where the inlet gas flow rate exceeds the manufacturer's listed maximum gas flow rate, where there is no indication of the presence of a pilot flame, or where visible emissions exceeded 1 minute in any 15-minute period, including a description of the deviation, the date and time the deviation began, and the duration of the deviation.
- (H) As an alternative to the requirements of paragraph (c)(5)(vi)(D) of this section, you may maintain records of one or more digital photographs with the date the photograph was taken and the latitude and longitude of the storage vessel and control device imbedded within or stored with the digital file. As an alternative to imbedded latitude and longitude within the digital photograph, the digital photograph may consist of a photograph of the storage vessel and control device with a photograph of a separately operating GPS device within the same digital picture, provided the latitude and longitude output of the GPS unit can be clearly read in the digital photograph.
- (vii) Records of the date that each storage vessel affected facility is removed from service and returned to service, as applicable.
- (6) Records of each closed vent system inspection required under § 60.5416a(a)(1) and (2) and (b) for centrifugal compressors and reciprocating compressors, § 60.5416a(c)(1) for storage vessels, or § 60.5416a(e) for pneumatic pumps as required in paragraphs (c)(6)(i) through (iii) of this section.
 - (i) A record of each closed vent system inspection or no detectable emissions monitoring survey. You must include an identification number for each closed vent system (or other unique identification description selected by you) and the date of the inspection.
 - (ii) For each defect or leak detected during inspections required by § 60.5416a(a)(1) and (2), (b), (c)(1), or (d), you must record the location of the defect or leak, a description of the defect or the maximum concentration reading obtained if using Method 21 of appendix A-7 of this part, the date of detection, and the date the repair to correct the defect or leak is completed.
 - (iii) If repair of the defect is delayed as described in § 60.5416a(b)(10), you must record the reason for the delay and the date you expect to complete the repair.
- (7) A record of each cover inspection required under § 60.5416a(a)(3) for centrifugal or reciprocating compressors or § 60.5416a(c)(2) for storage vessels as required in paragraphs (c)(7)(i) through (iii) of this section.
 - (i) A record of each cover inspection. You must include an identification number for each cover (or other unique identification description selected by you) and the date of the inspection.
 - (ii) For each defect detected during inspections required by § 60.5416a(a)(3) or (c)(2), you must record the location of the defect, a description of the defect, the date of detection, the corrective action taken the repair the defect, and the date the repair to correct the defect is completed.
 - (iii) If repair of the defect is delayed as described in § 60.5416a(b)(10) or (c)(5), you must record the reason for the delay and the date you expect to complete the repair.
- (8) If you are subject to the bypass requirements of § 60.5416a(a)(4) for centrifugal compressors or reciprocating compressors, or § 60.5416a(c)(3) for storage vessels or pneumatic pumps, you must prepare and maintain a record of each inspection or a record of each time the key is checked out or a record of each time the alarm is sounded.
- (9) [Reserved]
- (10) For each centrifugal compressor or pneumatic pump affected facility, records of the schedule for carbon replacement (as determined by the design analysis requirements of § 60.5413a(c)(2) or (3)) and records of each carbon replacement as specified in § 60.5412a(c)(1).

- (11) For each centrifugal compressor affected facility subject to the control device requirements of § 60.5412a(a), (b), and (c), records of minimum and maximum operating parameter values, continuous parameter monitoring system data, calculated averages of continuous parameter monitoring system data, results of all compliance calculations, and results of all inspections.
- (12) For each carbon adsorber installed on storage vessel affected facilities, records of the schedule for carbon replacement (as determined by the design analysis requirements of § 60.5412a(d)(2)) and records of each carbon replacement as specified in § 60.5412a(c)(1).
- (13) For each storage vessel affected facility subject to the control device requirements of § 60.5412a(c) and (d), you must maintain records of the inspections, including any corrective actions taken, the manufacturers' operating instructions, procedures and maintenance schedule as specified in § 60.5417a(h)(3). You must maintain records of EPA Method 22 of appendix A-7 of this part, section 11 results, which include: Company, location, company representative (name of the person performing the observation), sky conditions, process unit (type of control device), clock start time, observation period duration (in minutes and seconds), accumulated emission time (in minutes and seconds), and clock end time. You may create your own form including the above information or use Figure 22-1 in EPA Method 22 of appendix A-7 of this part. Manufacturer's operating instructions, procedures and maintenance schedule must be available for inspection.
- (14) A log of records as specified in § 60.5412a(d)(1)(iii), for all inspection, repair, and maintenance activities for each control device failing the visible emissions test.
- (15) For each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, maintain the records identified in paragraphs (c)(15)(i) through (viii) of this section.
 - (i) The date of the startup of production or the date of the first day of production after modification for each collection of fugitive emissions components at a well site and the date of startup or the date of modification for each collection of fugitive emissions components at a compressor station.
 - (ii) For each collection of fugitive emissions components at a well site complying with § 60.5397a(a)(2), you must maintain records of the daily production and calculations demonstrating that the rolling 12-month average is at or below 15 boe per day no later than 12 months before complying with § 60.5397a(a)(2).
 - (iii) For each collection of fugitive emissions components at a well site complying with § 60.5397a(a)(3)(i), you must keep records of daily production and calculations for the first 30 days after completion of any action listed in § 60.5397a(a)(2)(i) through (v) demonstrating that total production from the well site is at or below 15 boe per day, or maintain records demonstrating the rolling 12-month average total production for the well site is at or below 15 boe per day.
 - (iv) For each collection of fugitive emissions components at a well site complying with § 60.5397a(a)(3)(ii), you must keep the records specified in paragraphs (c)(15)(i), (vi), and (vii) of this section.
 - (v) For each collection of fugitive emissions components at a well site where you complete the removal of all major production and processing equipment such that the well site contains only one or more wellheads, record the date the well site completes the removal of all major production and processing equipment from the well site, and, if the well site is still producing, record the well ID or separate tank battery ID receiving the production from the well site. If major production and processing equipment is subsequently added back to the well site, record the date that the first piece of major production and processing equipment is added back to the well site.
 - (vi) The fugitive emissions monitoring plan as required in § 60.5397a(b), (c), and (d).
 - (vii) The records of each monitoring survey as specified in paragraphs (c)(15)(vii)(A) through (I) of this section.
 - (A) Date of the survey.
 - (B) Beginning and end time of the survey.
 - (C) Name of operator(s), training, and experience of the operator(s) performing the survey.
 - (D) Monitoring instrument used.
 - (E) Fugitive emissions component identification when Method 21 of appendix A-7 of this part is used to perform the monitoring survey.

- (F) Ambient temperature, sky conditions, and maximum wind speed at the time of the survey. For compressor stations, operating mode of each compressor (*i.e.*, operating, standby pressurized, and not operating-depressurized modes) at the station at the time of the survey.
- (G) Any deviations from the monitoring plan or a statement that there were no deviations from the monitoring plan.
- (H) Records of calibrations for the instrument used during the monitoring survey.
- Documentation of each fugitive emission detected during the monitoring survey, including the information specified in paragraphs (c)(15)(vii)(I)(1) through (8) of this section.
 - (1) Location of each fugitive emission identified.
 - (2) Type of fugitive emissions component, including designation as difficult-to-monitor or unsafe-to-monitor, if applicable.
 - (3) If Method 21 of appendix A-7 of this part is used for detection, record the component ID and instrument reading.
 - (4) For each repair that cannot be made during the monitoring survey when the fugitive emissions are initially found, a digital photograph or video must be taken of that component or the component must be tagged for identification purposes. The digital photograph must include the date that the photograph was taken and must clearly identify the component by location within the site (e.g., the latitude and longitude of the component or by other descriptive landmarks visible in the picture). The digital photograph or identification (e.g., tag) may be removed after the repair is completed, including verification of repair with the resurvey.
 - (5) The date of first attempt at repair of the fugitive emissions component(s).
 - (6) The date of successful repair of the fugitive emissions component, including the resurvey to verify repair and instrument used for the resurvey.
 - (7) Identification of each fugitive emission component placed on delay of repair and explanation for each delay of repair
 - (8) Date of planned shutdowns that occur while there are any components that have been placed on delay of repair.
- (viii) For each collection of fugitive emissions components at a well site or collection of fugitive emissions components at a compressor station complying with an alternative means of emissions limitation under § 60.5399a, you must maintain the records specified by the specific alternative fugitive emissions standard for a period of at least 5 years.
- (16) For each pneumatic pump affected facility, you must maintain the records identified in paragraphs (c)(16)(i) through (v) of this section.
 - Records of the date, location, and manufacturer specifications for each pneumatic pump constructed, modified, or reconstructed.
 - (ii) Records of deviations in cases where the pneumatic pump was not operated in compliance with the requirements specified in § 60.5393a, including the date and time the deviation began, duration of the deviation, and a description of the deviation.
 - (iii) Records on the control device used for control of emissions from a pneumatic pump including the installation date, and manufacturer's specifications. If the control device is designed to achieve less than 95-percent emission reduction, maintain records of the design evaluation or manufacturer's specifications which indicate the percentage reduction the control device is designed to achieve.
 - (iv) Records substantiating a claim according to § 60.5393a(b)(5) that it is technically infeasible to capture and route emissions from a pneumatic pump to a control device or process; including the certification according to § 60.5393a(b)(5)(ii) and the records of the engineering assessment of technical infeasibility performed according to § 60.5393a(b)(5)(iii).
 - (v) You must retain copies of all certifications, engineering assessments, and related records for a period of five years and make them available if directed by the implementing agency.
- (17) For each closed vent system routing to a control device or process, the records of the assessment conducted according to § 60.5411a(d):

- (i) A copy of the assessment conducted according to § 60.5411a(d)(1);
- (ii) A copy of the certification according to § 60.5411a(d)(1)(i); and
- (iii) The owner or operator shall retain copies of all certifications, assessments, and any related records for a period of 5 years, and make them available if directed by the delegated authority.
- (18) A copy of each performance test submitted under paragraph (b)(9) of this section.

[85 FR 57449, Sept. 15, 2020]

§ 60.5421a What are my additional recordkeeping requirements for my affected facility subject to VOC requirements for onshore natural gas processing plants?

- (a) You must comply with the requirements of paragraph (b) of this section in addition to the requirements of § 60.486a.
- (b) The following recordkeeping requirements apply to pressure relief devices subject to the requirements of § 60.5401a(b) (1).
 - (1) When each leak is detected as specified in § 60.5401a(b)(2), a weatherproof and readily visible identification, marked with the equipment identification number, must be attached to the leaking equipment. The identification on the pressure relief device may be removed after it has been repaired.
 - (2) When each leak is detected as specified in § 60.5401a(b)(2), the information specified in paragraphs (b)(2)(i) through (x) of this section must be recorded in a log and shall be kept for 2 years in a readily accessible location:
 - (i) The instrument and operator identification numbers and the equipment identification number.
 - (ii) The date the leak was detected and the dates of each attempt to repair the leak.
 - (iii) Repair methods applied in each attempt to repair the leak.
 - (iv) "Above 500 ppm" if the maximum instrument reading measured by the methods specified in § 60.5400a(d) after each repair attempt is 500 ppm or greater.
 - (v) "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
 - (vi) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown.
 - (vii) The expected date of successful repair of the leak if a leak is not repaired within 15 days.
 - (viii) Dates of process unit shutdowns that occur while the equipment is unrepaired.
 - (ix) The date of successful repair of the leak.
 - (x) A list of identification numbers for equipment that are designated for no detectable emissions under the provisions of § 60.482-4a(a). The designation of equipment subject to the provisions of § 60.482-4a(a) must be signed by the owner or operator.

§ 60.5422a What are my additional reporting requirements for my affected facility subject to VOC requirements for onshore natural gas processing plants?

(a) You must comply with the requirements of paragraphs (b) and (c) of this section in addition to the requirements of § 60.487a(a), (b)(1) through (3) and (5), and (c)(2)(i) through (iv) and (vii) through (viii). You must submit semiannual reports to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI). (CEDRI can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/).) Use the appropriate electronic report in CEDRI for this subpart or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the CEDRI website (https://www3.epa.gov/ttn/chief/cedri/). If the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, submit the report to the Administrator at the appropriate address listed in § 60.4. Once the form has been available in CEDRI for at least 90 days, you must begin submitting all subsequent reports via CEDRI. The report must be submitted by the deadline specified in this subpart, regardless of the method in which the report is submitted.

- (b) An owner or operator must include the following information in the initial semiannual report in addition to the information required in § 60.487a(b)(1) through (3) and (5): Number of pressure relief devices subject to the requirements of § 60.5401a(b) except for those pressure relief devices designated for no detectable emissions under the provisions of § 60.482-4a(a) and those pressure relief devices complying with § 60.482-4a(c).
- (c) An owner or operator must include the information specified in paragraphs (c)(1) and (2) of this section in all semiannual reports in addition to the information required in § 60.487a(c)(2)(i) through (iv) and (vii) through (viii):
 - (1) Number of pressure relief devices for which leaks were detected as required in § 60.5401a(b)(2); and
 - (2) Number of pressure relief devices for which leaks were not repaired as required in § 60.5401a(b)(3).

[81 FR 35898, June 3, 2016, as amended at 85 FR 57457, Sept. 15, 2020]

§ 60.5423a What additional recordkeeping and reporting requirements apply to my sweetening unit affected facilities?

- (a) You must retain records of the calculations and measurements required in §§ 60.5405a(a) and (b) and 60.5407a(a) through (g) for at least 2 years following the date of the measurements. This requirement is included under § 60.7(f) of the General Provisions.
- (b) You must submit a report of excess emissions to the Administrator in your annual report if you had excess emissions during the reporting period. The procedures for submitting annual reports are located in § 60.5420a(b). For the purpose of these reports, excess emissions are defined as specified in paragraphs (b)(1) and (2) of this section. The report must contain the information specified in paragraph (b)(3) of this section.
 - (1) Any 24-hour period (at consistent intervals) during which the average sulfur emission reduction efficiency (R) is less than the minimum required efficiency (Z).
 - (2) For any affected facility electing to comply with the provisions of § 60.5407a(b)(2), any 24-hour period during which the average temperature of the gases leaving the combustion zone of an incinerator is less than the appropriate operating temperature as determined during the most recent performance test in accordance with the provisions of § 60.5407a(b)(3). Each 24-hour period must consist of at least 96 temperature measurements equally spaced over the 24 hours.
 - (3) For each period of excess emissions during the reporting period, include the following information in your report:
 - (i) The date and time of commencement and completion of each period of excess emissions;
 - (ii) The required minimum efficiency (Z) and the actual average sulfur emissions reduction (R) for periods defined in paragraph (b)(1) of this section; and
 - (iii) The appropriate operating temperature and the actual average temperature of the gases leaving the combustion zone for periods defined in paragraph (b)(2) of this section.
- (c) To certify that a facility is exempt from the control requirements of these standards, for each facility with a design capacity less than 2 LT/D of H2S in the acid gas (expressed as sulfur) you must keep, for the life of the facility, an analysis demonstrating that the facility's design capacity is less than 2 LT/D of H₂S expressed as sulfur.
- (d) If you elect to comply with § 60.5407a(e) you must keep, for the life of the facility, a record demonstrating that the facility's design capacity is less than 150 LT/D of H2S expressed as sulfur.
- (e) The requirements of paragraph (b) of this section remain in force until and unless the EPA, in delegating enforcement authority to a state under section 111(c) of the Act, approves reporting requirements or an alternative means of compliance surveillance adopted by such state. In that event, affected sources within the state will be relieved of obligation to comply with paragraph (b) of this section, provided that they comply with the requirements established by the state. Electronic reporting to the EPA cannot be waived, and as such, the provisions of this paragraph do not relieve owners or operators of affected facilities of the requirement to submit the electronic reports required in this section to the EPA.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57458, Sept. 15, 2020]

§ 60.5425a What parts of the General Provisions apply to me?

Table 3 to this subpart shows which parts of the General Provisions in §§ 60.1 through 60.19 apply to you.

§ 60.5430a What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act, in subpart A or subpart VVa of part 60; and the following terms shall have the specific meanings given them.

Acid gas means a gas stream of hydrogen sulfide (H_2S) and carbon dioxide (CO_2) that has been separated from sour natural gas by a sweetening unit.

Alaskan North Slope means the approximately 69,000 square-mile area extending from the Brooks Range to the Arctic Ocean.

API Gravity means the weight per unit volume of hydrocarbon liquids as measured by a system recommended by the American Petroleum Institute (API) and is expressed in degrees.

Artificial lift equipment means mechanical pumps including, but not limited to, rod pumps and electric submersible pumps used to flowback fluids from a well.

Bleed rate means the rate in standard cubic feet per hour at which natural gas is continuously vented (bleeds) from a pneumatic controller.

Capital expenditure means, in addition to the definition in 40 CFR 60.2, an expenditure for a physical or operational change to an existing facility that:

- (1) Exceeds P, the product of the facility's replacement cost, R, and an adjusted annual asset guideline repair allowance, A, as reflected by the following equation: P = R × A, where:
 - (i) The adjusted annual asset guideline repair allowance, A, is the product of the percent of the replacement cost, Y, and the applicable basic annual asset guideline repair allowance, B, divided by 100 as reflected by the following equation: $A = Y \times (B \div 100)$;
 - (ii) The percent Y is determined from the following equation: Y = (CPI of date of construction/most recently available CPI of date of project), where the "CPI-U, U.S. city average, all items" must be used for each CPI value; and
 - (iii) The applicable basic annual asset guideline repair allowance, B, is 4.5.
- (2) [Reserved]

Centrifugal compressor means any machine for raising the pressure of a natural gas by drawing in low pressure natural gas and discharging significantly higher pressure natural gas by means of mechanical rotating vanes or impellers. Screw, sliding vane, and liquid ring compressors are not centrifugal compressors for the purposes of this subpart.

Certifying official means one of the following:

- (1) For a corporation: A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities with an affected facility subject to this subpart and either:
 - (i) The facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars); or
 - (ii) The Administrator is notified of such delegation of authority prior to the exercise of that authority. The Administrator reserves the right to evaluate such delegation;
- (2) For a partnership (including but not limited to general partnerships, limited partnerships, and limited liability partnerships) or sole proprietorship: A general partner or the proprietor, respectively. If a general partner is a corporation, the provisions of paragraph (1) of this definition apply;
- (3) For a municipality, State, Federal, or other public agency: Either a principal executive officer or ranking elected official. For the purposes of this part, a principal executive officer of a Federal agency includes the chief executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., a Regional Administrator of EPA); or
- (4) For affected facilities:

- (i) The designated representative in so far as actions, standards, requirements, or prohibitions under title IV of the CAA or the regulations promulgated thereunder are concerned; or
- (ii) The designated representative for any other purposes under this part.

Coil tubing cleanout means the process where an operator runs a string of coil tubing to the packed proppant within a well and jets the well to dislodge the proppant and provide sufficient lift energy to flow it to the surface. Coil tubing cleanout includes mechanical methods to remove solids and/or debris from a wellbore.

Collection system means any infrastructure that conveys gas or liquids from the well site to another location for treatment, storage, processing, recycling, disposal or other handling.

Completion combustion device means any ignition device, installed horizontally or vertically, used in exploration and production operations to combust otherwise vented emissions from completions. Completion combustion devices include pit flares.

Compressor station means any permanent combination of one or more compressors that move natural gas at increased pressure through gathering pipelines. This includes, but is not limited to, gathering and boosting stations. The combination of one or more compressors located at a well site, or located at an onshore natural gas processing plant, is not a compressor station for purposes of § 60.5397a.

Condensate means hydrocarbon liquid separated from natural gas that condenses due to changes in the temperature, pressure, or both, and remains liquid at standard conditions.

Continuous bleed means a continuous flow of pneumatic supply natural gas to a pneumatic controller.

Crude Oil and Natural Gas Production source category means:

- (1) Crude oil production, which includes the well and extends to the point of custody transfer to the crude oil transmission pipeline or any other forms of transportation; and
- (2) Natural gas production and processing, which includes the well and extends to, but does not include, the point of custody transfer to the natural gas transmission and storage segment.

Custody meter means the meter where natural gas or hydrocarbon liquids are measured for sales, transfers, and/or royalty determination.

Custody meter assembly means an assembly of fugitive emissions components, including the custody meter, valves, flanges, and connectors necessary for the proper operation of the custody meter.

Custody transfer means the transfer of crude oil or natural gas after processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation.

Dehydrator means a device in which an absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber).

Delineation well means a well drilled in order to determine the boundary of a field or producing reservoir.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart including, but not limited to, any emission limit, operating limit, or work practice standard;
- (2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) Fails to meet any emission limit, operating limit, or work practice standard in this subpart during startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart.

9/30/21, 12:55 PM

Equipment, as used in the standards and requirements in this subpart relative to the equipment leaks of VOC from onshore natural gas processing plants, means each pump, pressure relief device, open-ended valve or line, valve, and flange or other connector that is in VOC service or in wet gas service, and any device or system required by those same standards and requirements in this subpart.

Field gas means feedstock gas entering the natural gas processing plant.

Field gas gathering means the system used transport field gas from a field to the main pipeline in the area.

First attempt at repair means, for the purposes of fugitive emissions components, an action taken for the purpose of stopping or reducing fugitive emissions to the atmosphere. First attempts at repair include, but are not limited to, the following practices where practicable and appropriate: Tightening bonnet bolts; replacing bonnet bolts; tightening packing gland nuts; or injecting lubricant into lubricated packing.

Flare means a thermal oxidation system using an open (without enclosure) flame. Completion combustion devices as defined in this section are not considered flares.

Flow line means a pipeline used to transport oil and/or gas to a processing facility or a mainline pipeline.

Flowback means the process of allowing fluids and entrained solids to flow from a well following a treatment, either in preparation for a subsequent phase of treatment or in preparation for cleanup and returning the well to production. The term flowback also means the fluids and entrained solids that emerge from a well during the flowback process. The flowback period begins when material introduced into the well during the treatment returns to the surface following hydraulic fracturing or refracturing. The flowback period ends when either the well is shut in and permanently disconnected from the flowback equipment or at the startup of production. The flowback period includes the initial flowback stage and the separation flowback stage. Screenouts, coil tubing cleanouts, and plug drill-outs are not considered part of the flowback process.

Fugitive emissions component means any component that has the potential to emit fugitive emissions of VOC at a well site or compressor station, including valves, connectors, pressure relief devices, open-ended lines, flanges, covers and closed vent systems not subject to § 60.5411 or § 60.5411a, thief hatches or other openings on a controlled storage vessel not subject to § 60.5395 or § 60.5395a, compressors, instruments, and meters. Devices that vent as part of normal operations, such as natural gas-driven pneumatic controllers or natural gas-driven pumps, are not fugitive emissions components, insofar as the natural gas discharged from the device's vent is not considered a fugitive emission. Emissions originating from other than the device's vent, such as the thief hatch on a controlled storage vessel, would be considered fugitive emissions.

Gas to oil ratio (GOR) means the ratio of the volume of gas at standard temperature and pressure that is produced from a volume of oil when depressurized to standard temperature and pressure.

Hydraulic fracturing means the process of directing pressurized fluids containing any combination of water, proppant, and any added chemicals to penetrate tight formations, such as shale or coal formations, that subsequently require high rate, extended flowback to expel fracture fluids and solids during completions.

Hydraulic refracturing means conducting a subsequent hydraulic fracturing operation at a well that has previously undergone a hydraulic fracturing operation.

In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485a(e) or § 60.5401a(f)(2).

In wet gas service means that a compressor or piece of equipment contains or contacts the field gas before the extraction step at a gas processing plant process unit.

Initial flowback stage means the period during a well completion operation which begins at the onset of flowback and ends at the separation flowback stage.

Intermediate hydrocarbon liquid means any naturally occurring, unrefined petroleum liquid.

Intermittent/snap-action pneumatic controller means a pneumatic controller that is designed to vent non-continuously.

Liquefied natural gas unit means a unit used to cool natural gas to the point at which it is condensed into a liquid which is colorless, odorless, non-corrosive and non-toxic.

Liquid collection system means tankage and/or lines at a well site to contain liquids from one or more wells or to convey liquids to another site.

Local distribution company (LDC) custody transfer station means a metering station where the LDC receives a natural gas supply from an upstream supplier, which may be an interstate transmission pipeline or a local natural gas producer, for delivery to customers through the LDC's intrastate transmission or distribution lines.

Low pressure well means a well that satisfies at least one of the following conditions:

- The static pressure at the wellhead following fracturing but prior to the onset of flowback is less than the flow line pressure;
- (2) The pressure of flowback fluid immediately before it enters the flow line, as determined under § 60.5432a, is less than the flow line pressure; or
- (3) Flowback of the fracture fluids will not occur without the use of artificial lift equipment.

Major production and processing equipment means reciprocating or centrifugal compressors, glycol dehydrators, heater/treaters, separators, and storage vessels collecting crude oil, condensate, intermediate hydrocarbon liquids, or produced water, for the purpose of determining whether a well site is a wellhead only well site.

Maximum average daily throughput means the following:

- (1) For storage vessels that commenced construction, reconstruction, or modification after September 18, 2015, and on and before November 16, 2020, *maximum average daily throughput* means the earliest calculation of daily average throughput during the 30-day PTE evaluation period employing generally accepted methods.
- (2) For storage vessels that commenced construction, reconstruction, or modification after November 16, 2020, maximum average daily throughput means the earliest calculation of daily average throughput, determined as described in paragraph (3) or (4) of this definition, to an individual storage vessel over the days that production is routed to that storage vessel during the 30-day PTE evaluation period employing generally accepted methods specified in § 60.5365a(e)(1).
- (3) If throughput to the individual storage vessel is measured on a daily basis (e.g., via level gauge automation or daily manual gauging), the maximum average daily throughput is the average of all daily throughputs for days on which throughput was routed to that storage vessel during the 30-day evaluation period; or
- (4) If throughput to the individual storage vessel is not measured on a daily basis (e.g., via manual gauging at the start and end of loadouts), the maximum average daily throughput is the highest, of the average daily throughputs, determined for any production period to that storage vessel during the 30-day evaluation period, as determined by averaging total throughput to that storage vessel over each production period. A production period begins when production begins to be routed to a storage vessel and ends either when throughput is routed away from that storage vessel or when a loadout occurs from that storage vessel, whichever happens first. Regardless of the determination methodology, operators must not include days during which throughput is not routed to an individual storage vessel when calculating maximum average daily throughput for that storage vessel.

Natural gas-driven diaphragm pump means a positive displacement pump powered by pressurized natural gas that uses the reciprocating action of flexible diaphragms in conjunction with check valves to pump a fluid. A pump in which a fluid is displaced by a piston driven by a diaphragm is not considered a diaphragm pump for purposes of this subpart. A lean glycol circulation pump that relies on energy exchange with the rich glycol from the contactor is not considered a diaphragm pump.

Natural gas-driven pneumatic controller means a pneumatic controller powered by pressurized natural gas.

Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane that are extracted from field gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both. A Joule-Thompson valve, a dew point depression valve, or an isolated or standalone Joule-Thompson skid is not a natural gas processing plant.

Natural gas transmission means the pipelines used for the long distance transport of natural gas (excluding processing). Specific equipment used in natural gas transmission includes the land, mains, valves, meters, boosters, regulators, storage vessels, dehydrators, compressors, and their driving units and appurtenances, and equipment used for transporting gas from a production

plant, delivery point of purchased gas, gathering system, storage area, or other wholesale source of gas to one or more distribution area(s).

Natural gas transmission and storage segment means the transport or storage of natural gas prior to delivery to a "local distribution company custody transfer station" (as defined in this section) or to a final end user (if there is no local distribution company custody transfer station). For the purposes of this subpart, natural gas enters the natural gas transmission and storage segment after the natural gas processing plant, when present. If no natural gas processing plant is present, natural gas enters the natural gas transmission and storage segment after the point of "custody transfer" (as defined in this section). A compressor station that transports natural gas prior to the point of "custody transfer" or to a natural gas processing plant (if present) is not considered a part of the natural gas transmission and storage segment.

Nonfractionating plant means any gas plant that does not fractionate mixed natural gas liquids into natural gas products.

Non-natural gas-driven pneumatic controller means an instrument that is actuated using other sources of power than pressurized natural gas; examples include solar, electric, and instrument air.

Onshore means all facilities except those that are located in the territorial seas or on the outer continental shelf.

Plug drill-out means the removal of a plug (or plugs) that was used to isolate different sections of the well.

Pneumatic controller means an automated instrument used for maintaining a process condition such as liquid level, pressure, delta-pressure and temperature.

Pressure vessel means a storage vessel that is used to store liquids or gases and is designed not to vent to the atmosphere as a result of compression of the vapor headspace in the pressure vessel during filling of the pressure vessel to its design capacity.

Process unit means components assembled for the extraction of natural gas liquids from field gas, the fractionation of the liquids into natural gas products, or other operations associated with the processing of natural gas products. A process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the products.

Produced water means water that is extracted from the earth from an oil or natural gas production well, or that is separated from crude oil, condensate, or natural gas after extraction.

Qualified Professional Engineer means an individual who is licensed by a state as a Professional Engineer to practice one or more disciplines of engineering and who is qualified by education, technical knowledge and experience to make the specific technical certifications required under this subpart. Professional engineers making these certifications must be currently licensed in at least one state in which the certifying official is located.

Reciprocating compressor means a piece of equipment that increases the pressure of a process gas by positive displacement, employing linear movement of the driveshaft.

Reciprocating compressor rod packing means a series of flexible rings in machined metal cups that fit around the reciprocating compressor piston rod to create a seal limiting the amount of compressed natural gas that escapes to the atmosphere, or other mechanism that provides the same function.

Recovered gas means gas recovered through the separation process during flowback.

Recovered liquids means any crude oil, condensate or produced water recovered through the separation process during flowback.

Reduced emissions completion means a well completion following fracturing or refracturing where gas flowback that is otherwise vented is captured, cleaned, and routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source, or used for other useful purpose that a purchased fuel or raw material would serve, with no direct release to the atmosphere.

Reduced sulfur compounds means H₂S, carbonyl sulfide (COS), and carbon disulfide (CS₂).

Removed from service means that a storage vessel affected facility has been physically isolated and disconnected from the process for a purpose other than maintenance in accordance with § 60.5395a(c)(1).

Repaired means, for the purposes of fugitive emissions components, that fugitive emissions components are adjusted, replaced, or otherwise altered, in order to eliminate fugitive emissions as defined in § 60.5397a and resurveyed as specified in § 60.5397a(h) (4) and it is verified that emissions from the fugitive emissions components are below the applicable fugitive emissions definition.

Returned to service means that a storage vessel affected facility that was removed from service has been:

- (1) Reconnected to the original source of liquids or has been used to replace any storage vessel affected facility; or
- (2) Installed in any location covered by this subpart and introduced with crude oil, condensate, intermediate hydrocarbon liquids or produced water.

Routed to a process or route to a process means the emissions are conveyed via a closed vent system to any enclosed portion of a process that is operational where the emissions are predominantly recycled and/or consumed in the same manner as a material that fulfills the same function in the process and/or transformed by chemical reaction into materials that are not regulated materials and/or incorporated into a product; and/or recovered.

Salable quality gas means natural gas that meets the flow line or collection system operator specifications, regardless of whether such gas is sold.

Screenout means an attempt to clear proppant from the wellbore to dislodge the proppant out of the well.

Separation flowback stage means the period during a well completion operation when it is technically feasible for a separator to function. The separation flowback stage ends either at the startup of production, or when the well is shut in and permanently disconnected from the flowback equipment.

Startup of production means the beginning of initial flow following the end of flowback when there is continuous recovery of salable quality gas and separation and recovery of any crude oil, condensate, or produced water, except as otherwise provided in this definition. For the purposes of the fugitive monitoring requirements of § 60.5397a, startup of production means the beginning of the continuous recovery of salable quality gas and separation and recovery of any crude oil, condensate, or produced water.

Storage vessel means a tank or other vessel that contains an accumulation of crude oil, condensate, intermediate hydrocarbon liquids, or produced water, and that is constructed primarily of nonearthen materials (such as wood, concrete, steel, fiberglass, or plastic) which provide structural support. A well completion vessel that receives recovered liquids from a well after startup of production following flowback for a period which exceeds 60 days is considered a storage vessel under this subpart. A tank or other vessel shall not be considered a storage vessel if it has been removed from service in accordance with the requirements of § 60.5395a(c)(1) until such time as such tank or other vessel has been returned to service. For the purposes of this subpart, the following are not considered storage vessels:

- (1) Vessels that are skid-mounted or permanently attached to something that is mobile (such as trucks, railcars, barges or ships), and are intended to be located at a site for less than 180 consecutive days. If you do not keep or are not able to produce records, as required by § 60.5420a(c)(5)(iv), showing that the vessel has been located at a site for less than 180 consecutive days, the vessel described herein is considered to be a storage vessel from the date the original vessel was first located at the site. This exclusion does not apply to a well completion vessel as described above.
- (2) Process vessels such as surge control vessels, bottoms receivers or knockout vessels.
- (3) Pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere.

Sulfur production rate means the rate of liquid sulfur accumulation from the sulfur recovery unit.

Sulfur recovery unit means a process device that recovers element sulfur from acid gas.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Sweetening unit means a process device that removes hydrogen sulfide and/or carbon dioxide from the sour natural gas stream.

Total Reduced Sulfur (TRS) means the sum of the sulfur compounds hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide as measured by Method 16 of appendix A-6 of this part.

Total SO_2 equivalents means the sum of volumetric or mass concentrations of the sulfur compounds obtained by adding the quantity existing as SO_2 to the quantity of SO_2 that would be obtained if all reduced sulfur compounds were converted to SO_2 (ppmv or kg/dscm (lb/dscf)).

UIC Class I oilfield disposal well means a well with a UIC Class I permit that meets the definition in 40 CFR 144.6(a)(2) and receives eligible fluids from oil and natural gas exploration and production operations.

UIC Class II oilfield disposal well means a well with a UIC Class II permit where wastewater resulting from oil and natural gas production operations is injected into underground porous rock formations not productive of oil or gas, and sealed above and below by unbroken, impermeable strata.

Underground storage vessel means a storage vessel stored below ground.

Well means a hole drilled for the purpose of producing oil or natural gas, or a well into which fluids are injected.

Well completion means the process that allows for the flowback of petroleum or natural gas from newly drilled wells to expel drilling and reservoir fluids and tests the reservoir flow characteristics, which may vent produced hydrocarbons to the atmosphere via an open pit or tank.

Well completion operation means any well completion with hydraulic fracturing or refracturing occurring at a well affected facility.

Well completion vessel means a vessel that contains flowback during a well completion operation following hydraulic fracturing or refracturing. A well completion vessel may be a lined earthen pit, a tank or other vessel that is skid-mounted or portable. A well completion vessel that receives recovered liquids from a well after startup of production following flowback for a period which exceeds 60 days is considered a storage vessel under this subpart.

Well site means one or more surface sites that are constructed for the drilling and subsequent operation of any oil well, natural gas well, or injection well. For purposes of the fugitive emissions standards at § 60.5397a, well site also means a separate tank battery surface site collecting crude oil, condensate, intermediate hydrocarbon liquids, or produced water from wells not located at the well site (e.g., centralized tank batteries). Also, for the purposes of the fugitive emissions standards at § 60.5397a, a well site does not include:

- (1) UIC Class II oilfield disposal wells and disposal facilities;
- (2) UIC Class I oilfield disposal wells; and
- (3) The flange immediately upstream of the custody meter assembly and equipment, including fugitive emissions components, located downstream of this flange.

Wellhead means the piping, casing, tubing and connected valves protruding above the earth's surface for an oil and/or natural gas well. The wellhead ends where the flow line connects to a wellhead valve. The wellhead does not include other equipment at the well site except for any conveyance through which gas is vented to the atmosphere.

Wellhead only well site means, for the purposes of the fugitive emissions standards at § 60.5397a, a well site that contains one or more wellheads and no major production and processing equipment.

Wildcat well means a well outside known fields or the first well drilled in an oil or gas field where no other oil and gas production exists.

[81 FR 35898, June 3, 2016, as amended at 85 FR 57072, Sept. 14, 2020; 85 FR 57458, Sept. 15, 2020]

§ 60.5432a How do I determine whether a well is a low pressure well using the low pressure well equation?

(a) To determine that your well is a low pressure well subject to § 60.5375a(f), you must determine whether the characteristics of the well are such that the well meets the definition of low pressure well in § 60.5430a. To determine that the well meets the definition of low pressure well in § 60.5430a, you must use the low pressure well equation below:

W	nere
---	------

- (1) P_L is the pressure of flowback fluid immediately before it enters the flow line, expressed in pounds force per square inch (psia), and is to be calculated using the equation above;
- (2) PR is the pressure of the reservoir containing oil, gas, and water at the well site, expressed in psia;
- (3) Lis the true vertical depth of the well, expressed in feet (ft);
- (4) q_0 is the flow rate of oil in the well, expressed in cubic feet/second (cu ft/sec);
- (5) q_a is the flow rate of gas in the well, expressed in cu ft/sec;
- (6) q_w is the flow rate of water in the well, expressed in cu ft/sec;
- (7) ρ_0 is the density of oil in the well, expressed in pounds mass per cubic feet (lbm/cu ft).
 - (b) You must determine the four values in paragraphs (a)(4) through (7) of this section, using the calculations in paragraphs (b)(1) through (b)(15) of this section.
 - (1) Determine the value of the bottom hole pressure, P_{BH} (psia), based on available information at the well site, or by calculating it using the reservoir pressure, P_R (psia), in the following equation:
 - (2) Determine the value of the bottom hole temperature, T_{BH} (F), based on available information at the well site, or by calculating it using the true vertical depth of the well, L (ft), in the following equation:
 - $T_{BH}(F) = (0.014 \times L) + 79.081$
 - (3) Calculate the value of the applicable natural gas specific gravity that would result from a separator pressure of 100 psig, γ_{gs} , using the following equation with: Separator at standard conditions (pressure, p = 14.7 (psia), temperature, T = 60 (F)); the oil API gravity at the well site, γ_0 ; and the gas specific gravity at the separator under standard conditions, $\gamma_{gp} = 0.75$:
 - (4) Calculate the value of the applicable dissolved GOR, Rs (scf/STBO), using the following equation with: The bottom hole pressure, P_{BH} (psia), determined in (b)(1) of this section; the bottom hole temperature, T_{BH} (F), determined in (b)(2) of this section; the gas gravity at separator pressure of 100 psig, γ_{gs} , calculated in (b)(3) of this section; the oil API gravity, γ_{o} , at the well site; and the constants, C1, C2, and C3, found in Table A:

Table A - Coefficients for the correlation for R_s

Constant	γ _{API} ≤ 30	γ _{ΑΡΙ} > 30
C1	0.0362	0.0178
C2	1.0937	1.1870
C3	25.7240	23.931

(5) Calculate the value of the oil formation volume factor, Bo (bbl/STBO), using the following equation with: the bottom hole temperature, T_{BH} (F), determined in paragraph (b)(2) of this section; the gas gravity at separator pressure of 100 psig, γ_{gs} , calculated in paragraph (b)(3) of this section; the dissolved GOR, Rs (scf/STBO), calculated in paragraph (b)(4) of this section; the oil API gravity, γ_{O} , at the well site; and the constants, C1, C2, and C3, found in Table B:

Table B - Coefficients for the Correlation for B_0

9/30/21, 12:55 PM

Constant	γ _{API} ≤ 30	γ _{ΑΡΙ} > 30
C1	4.677 × 10 ⁻⁴	4.670×10^{-4}
C2	1.751 × 10 ⁻⁵	1.100 × 10 ⁻⁵
C3	-1.811 × 10 ⁻⁸	1.337 × 10 ⁻⁹

(6) Calculate the density of oil at the wellhead,

using the following equation with the value of the oil API gravity, yo, at the well site:

(7) Calculate the density of oil at bottom hole conditions,

using the following equation with: the dissolved GOR, Rs (scf/STBO), calculated in paragraph (b)(4) of this section; the oil formation volume factor, Bo (bbl/STBO), calculated in paragraph (b)(5) of this section; the oil density at the wellhead,

calculated in paragraph (b)(6) of this section; and the dissolved gas gravity, γ_{qd} = 0.77:

(8) Calculate the density of oil in the well,

using the following equation with the density of oil at the wellhead,

calculated in paragraph (b)(6) of this section; and the density of oil at bottom hole conditions,

calculated in paragraph (b)(7) of this section:

- (9) Calculate the oil flow rate, q_o (cu ft/sec,) using the following equation with: the oil formation volume factor, Bo (bbl/STBO), as calculated in paragraph (b)(5) of this section; and the estimated oil production rate at the well head, Qo (STBO/day):
- (10) Calculate the critical pressure, P_c (psia), and critical temperature, T_c (R), using the equations below with: Gas gravity at standard conditions (pressure, P = 14.7 (psia), temperature, T = 60 (F)), $\gamma = 0.75$; and where the mole fractions of nitrogen, carbon dioxide and hydrogen sulfide in the gas are $X_N = 0.168225$, $X_{CO} = 0.013163$, and $X_H = 0.013680$, respectively:

$$P_c(psia) = 678 - 50 \cdot (\gamma_g - 0.5) - 206.7 \cdot X_N + 440 \cdot X_{CO} + 606.7 \cdot X_H + 2_S$$

 $T_c(R) = 326 + 315.7 \cdot (\gamma_g - 0.5) - 240 \cdot X_N + 2 \cdot 88.3 \cdot X_{CO} + 133.3 \cdot X_H + 2_S$

(11) Calculate reduced pressure, P_r , and reduced temperature, T_r , using the following equations with: the bottom hole pressure, P_{BH} , as determined in paragraph (b)(1) of this section; the bottom hole temperature, T_{BH} (F), as determined in paragraph (b)(2) of this section in the following equations:

(12)

 (i) Calculate the gas compressibility factor, Z, using the following equation with the reduced pressure, P_r, calculated in paragraph (b)(11) of this section:

- (ii) The values for A, B, C, D in the above equation, are calculated using the following equations with the reduced pressure, P_r , and reduced temperature, T_r , calculated in paragraph (b)(11) of this section:
- (13) Calculate the gas formation volume factor,

using the bottom hole pressure, P_{BH} (psia), as determined in paragraph (b)(1) of this section; and the bottom hole temperature, T_{BH} (F), as determined in paragraph (b)(2) of this section:

(14) Calculate the gas flow rate,

using the following equation with: the value of gas formation volume factor,

calculated in paragraph (b)(13) of this section; the estimated gas production rate, Qg (scf/day); the estimated oil production rate, Qo (STBO/day); and the dissolved GOR, Rs (scf/STBO), as calculated in paragraph (b)(4) of this section:

(15) Calculate the flow rate of water in the well, q_w (cu ft/sec), using the following equation with the water production rate Qw (bbl/day) at the well site:

§§ 60.5433a-60.5439a [Reserved]

Table 1 to Subpart OOOOa of Part 60 - Required Minimum Initial SO₂ Emission Reduction Efficiency (Z_i)

H ₂ S content of acid gas (Y), %	Sulfur feed rate (X), LT/D				
	2.0 < X < 5.0	5.0 < X < 15.0	15.0 < X < 300.0	X > 300.0	
Y > 50	79.0	88.51X ^{0.0101} Y ^{0.0125} or 99.9, whichever is smaller.			
20 < Y < 50	79.0	88.51X ^{0.0101} Y ^{0.0125} or 97.9, whichever is smaller 97.9		97.9	
10 < Y < 20	79.0	$88.51X^{0.0101}Y^{0.0125}$ or 93.5, whichever is smaller	93.5	93.5	
Y < 10	79.0	79.0	79.0	79.0	

Table 2 to Subpart OOOOa of Part 60 - Required Minimum SO₂ Emission Reduction Efficiency (Z_c)

H ₂ S content of acid gas (Y), %	Sulfur feed rate (X), LT/D			
	2.0 < X < 5.0	5.0 < X < 15.0	15.0 < X < 300.0	X > 300.0
Y > 50	74.0	85.35X ^{0.0144} Y ^{0.0128} or 99.9, whichever is smaller.		
20 < Y < 50	74.0	85.35X ^{0.0144} Y ^{0.0128} or 97.5, whichever is smaller 97.5		97.5
10 < Y < 20	74.0	85.35X ^{0.0144} Y ^{0.0128} or 90.8, whichever is smaller	90.8	90.8

LI Cooptont of said gos	Sulfur feed rate (X), LT/D			
H ₂ S content of acid gas (Y), %	2.0 < X < 5.0	5.0 < X < 15.0	15.0 < X < 300.0	X > 300.0
Y < 10	74.0	74.0	74.0	74.0

X =The sulfur feed rate from the sweetening unit (*i.e.*, the H_2S in the acid gas), expressed as sulfur, Mg/D(LT/D), rounded to one decimal place.

Y =The sulfur content of the acid gas from the sweetening unit, expressed as mole percent H_2S (dry basis) rounded to one decimal place.

Z = The minimum required sulfur dioxide (SO₂) emission reduction efficiency, expressed as percent carried to one decimal place. Z_i refers to the reduction efficiency required at the initial performance test. Z_c refers to the reduction efficiency required on a continuous basis after compliance with Z_i has been demonstrated.

As stated in § 60.5425a, you must comply with the following applicable General Provisions:

Table 3 to Subpart OOOOa of Part 60 - Applicability of General Provisions to Subpart OOOOa

General provisions citation	Subject of citation	Applies to subpart?	Explanation
§ 60.1	General applicability of the General Provisions	Yes	
§ 60.2	Definitions	Yes	Additional terms defined in § 60.5430a.
§ 60.3	Units and abbreviations	Yes	
§ 60.4	Address	Yes	
§ 60.5	Determination of construction or modification	Yes	
§ 60.6	Review of plans	Yes	
§ 60.7	Notification and record keeping	Yes	Except that § 60.7 only applies as specified in § 60.5420a(a).
§ 60.8	Performance tests	Yes	Except that the format of performance test reports is described in § 60.5420a(b). Performance testing is required for control devices used on storage vessels, centrifugal compressors, and pneumatic pumps, except that performance testing is not required for a control device used solely on pneumatic pump(s).

General provisions citation	Subject of citation	Applies to subpart?	Explanation
§ 60.9	Availability of information	Yes	
§ 60.10	State authority	Yes	
§ 60.11	Compliance with standards and maintenance requirements	No	Requirements are specified in subpart 0000a.
§ 60.12	Circumvention	Yes	
§ 60.13	Monitoring requirements	Yes	Continuous monitors are required for storage vessels.
§ 60.14	Modification	Yes	To the extent any provision in § 60.14 conflicts with specific provisions in subpart 0000a, it is superseded by subpart 0000a provisions.
§ 60.15	Reconstruction	Yes	Except that § 60.15(d) does not apply to wells, pneumatic controllers, pneumatic pumps, centrifugal compressors, reciprocating compressors, storage vessels, or the collection of fugitive emissions components at a well site or the collection of fugitive emissions components at a compressor station.
§ 60.16	Priority list	Yes	
§ 60.17	Incorporations by reference	Yes	
§ 60.18	General control device and work practice requirements	Yes	
§ 60.19	General notification and reporting requirement	Yes	

[81 FR 35898, June 3, 2016, as amended at 85 FR 57460, Sept. 15, 2020]