ADEQ DRAFT OPERATING AIR PERMIT

Pursuant to the Regulations of the Arkansas Operating Air Permit Program, Regulation 26:

Permit No.: 2395-AOP-R0

IS ISSUED TO:

Aronda Manufacturing, Inc. 1446 County Road 3291 Clarksville, AR 72830 Johnson County AFIN: 36-00508

THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

AND

THE PERMITTEE IS SUBJECT TO ALL LIMITS AND HEREIN.	CONDITIONS CONTAINED
Signed:	
Stuart Spencer	Date
Associate Director, Office of Air Quality	

AFIN: 36-00508

Table of Contents

SECTION I: FACILITY INFORMATION	4
SECTION II: INTRODUCTION	5
Summary of Permit Activity	5
Process Description	5
Regulations	6
Emission Summary	7
SECTION III: PERMIT HISTORY	8
SECTION IV: SPECIFIC CONDITIONS	9
SN-01 & SN-02	9
SN-04	32
SECTION V: COMPLIANCE PLAN AND SCHEDULE	33
SECTION VI: PLANTWIDE CONDITIONS	34
SECTION VII: INSIGNIFICANT ACTIVITIES	35
SECTION VIII: GENERAL PROVISIONS	36
Appendix A: 40 C.F.R. Part 63, Subpart WWWW	
Appendix B: 40 C.F.R. Part 63, Subpart VVVV	

AFIN: 36-00508

List of Acronyms and Abbreviations

Ark. Code Ann. Arkansas Code Annotated

AFIN ADEQ Facility Identification Number

C.F.R. Code of Federal Regulations

CO Carbon Monoxide

HAP Hazardous Air Pollutant

lb/hr Pound Per Hour

MVAC Motor Vehicle Air Conditioner

No. Number

NO_x Nitrogen Oxide

PM Particulate Matter

PM₁₀ Particulate Matter Smaller Than Ten Microns

SNAP Significant New Alternatives Program (SNAP)

SO₂ Sulfur Dioxide

SSM Startup, Shutdown, and Malfunction Plan

Tpy Tons Per Year

UTM Universal Transverse Mercator

VOC Volatile Organic Compound

AFIN: 36-00508

SECTION I: FACILITY INFORMATION

PERMITTEE: Aronda Manufacturing, Inc.

AFIN: 36-00508

PERMIT NUMBER: 2395-AOP-R0

FACILITY ADDRESS: 1446 County Road 3291

Clarksville, AR 72830

MAILING ADDRESS: 1446 County Road 3291

Clarksville, AR 72830

COUNTY: Johnson County

CONTACT NAME: Ronald Dail

CONTACT POSITION: President

TELEPHONE NUMBER: (479) 647-8019

REVIEWING ENGINEER: Alexander Sudibjo

UTM North South (Y): Zone 15: 3928240.12 m

UTM East West (X): Zone 15: 450171.68 m

AFIN: 36-00508

SECTION II: INTRODUCTION

Summary of Permit Activity

Aronda Manufacturing, Inc (Aronda) located at 1446 County Road 3291, Clarksville, Arkansas manufactures fiberglass boat component parts using an open molding process. Aronda is planning to expand operations to produce boat hulls using the same manufacturing process and components currently used for producing boat components. Expanding into hull manufacturing makes the facility subject to NESHAP VVVV. This is the initial Title V air permit for the facility. The facility's permitted annual emissions are 0.5 tpy PM/PM₁₀, 46.6 tpy VOC, 44.34 tpy styrene, 44.90 tpy total HAPs, and 22.34 tpy acetone.

Process Description

Separate molds are used for each component part or boat hull, which are built on the inside of the open mold using glass roving saturated with a thermosetting liquid resin. The liquid resin is mixed with a catalyst before it is applied to the glass, which causes a cross-linking reaction between the resin molecules. The catalyzed resin hardens to form a rigid shape consisting of the plastic resin reinforced with glass fibers.

The fiberglass boat component and hull manufacturing process follows these production steps:

Step 1

Before each use, molds are cleaned and treated with a mold release agent that prevents the part from sticking to the mold. Emissions from the release agent are accounted for in Spray Booth #1.

Step 2

The open mold is first spray-coated with a clear or pigmented polyester resin known as gel coat. The gel coat will become the outer surface of the finished part. The gel coat is mixed with a catalyst as it is applied so that it will harden. The catalyst is mixed inside the spray gun, using an "internal mix" process. A variety of specific gel coats are used at the facility to produce different colors and/or finishes.

The gel coating spray process is accomplished in Spray Booth #1 at Aronda and is ventilated by a 36" diameter filtered wall fan attached to a vertical 22" diameter pipe that exhaust 20 feet above ground level designated as stack point SN-01. Styrene and methyl methacrylate (MMA) are the primary VOC emitted from the gel coats. Both styrene and MMA are monomers, volatile organic compounds that partially combine with themselves or other similar compounds by a cross-linking reaction to become part of the cured resin.

Step 3

After the gel coat has hardened, the inside of the gel coat is coated with a skin coat of polyester resin and short glass fibers. Continuous strand glass and catalyzed polyester resin are fed through a chopper gun, which deposits the resin-saturated "chop" on the mold. Once

AFIN: 36-00508

deposited, the mold is then hand rolled with a metal or plastic roller to compact the fibers and remove air bubbles. At Aronda, this step is accomplished in Spray Booth #2 and is ventilated by a filtered 36" diameter wall fan attached to a vertical 22" diameter pipe that exhaust 20 feet above ground level designated as stack point SN-02. In the polyester resin solution, styrene is the primary VOC emitted.

Step 4

After the resin has cured, the part is removed from the mold. The part is moved to Trim Booth #3, where the edges are trimmed and holes in the parts (if required) are cut. This process is all done using hand held equipment and is designated as producing insignificant amount of emissions. The booth is ventilated using a 36" diameter wall filtered fan designated as stack point SN-03. This process qualifies as group B insignificant activity.

Resin and gel coat application equipment requires solvent cleaning to remove uncured resin or gel coat after each use. In the Aronda facility, 100% acetone is used as the solvent cleaning agent (SN-04).

Regulations

The following table contains the regulations applicable to this permit.

Regulations
Arkansas Air Pollution Control Code, Regulation 18, effective March 14, 2016
Regulations of the Arkansas Plan of Implementation for Air Pollution Control, Regulation 19, effective March 14, 2016
Regulations of the Arkansas Operating Air Permit Program, Regulation 26, effective March 14, 2016
40 C.F.R. Part 63, Subpart WWWW—National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production (Appendix A)
40 C.F.R. Part 63, Subpart VVVV—National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing (Appendix B)

AFIN: 36-00508

Emission Summary

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

EMISSION SUMMARY				
Source	December	Pollutant	Emission Rates	
Number	L'Accrintion De		lb/hr	tpy
		PM	0.4	0.5
Tota	l Allowable Emissions	PM_{10}	0.4	0.5
1018	ii Anowable Emissions	PM _{2.5}	See Note ¹	
		VOC	44.8	46.6
	HAPs ²	Styrene	42.62	44.34
	пару	Total HAPs ³	43.17	44.90
	Air Contaminants ⁴	Acetone	21.48	22.34
	Spray Booth #1	PM	0.1	01
		PM_{10}	0.1	0.1
SN-01		VOC	6.7	7.0
		Styrene	6.09	6.34
		Total HAPs ³	6.64	6.90
	Spray Booth #1	PM	0.3	0.4
SN-01		PM_{10}	0.3	0.4
		VOC	38.1	39.6
		Styrene	36.53	38.00
		Total HAPs ³	36.53	38.00
SN-04	Cleaning Operation	Acetone	21.48	22.34

¹PM_{2.5} limits are source specific, if required. Not all sources have PM_{2.5} limits.

²HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated.

³Total HAPs include styrene emissions.

⁴ Air Contaminants such as ammonia, acetone, and certain halogenated solvents are not VOCs or HAPs.

AFIN: 36-00508

SECTION III: PERMIT HISTORY

Permit #2395-AOP-R0 is the initial Title V air permit for this facility.

AFIN: 36-00508

SECTION IV: SPECIFIC CONDITIONS

SN-01 & SN-02 Spray Booths

Source Description

The gel coating spray process is accomplished in Spray Booth #1 at Aronda and is ventilated by a 36" diameter filtered wall fan attached to a vertical 22" diameter pipe that exhaust 20 feet above ground level designated as stack point SN-01. Styrene and methyl methacrylate (MMA) are the primary VOC emitted from the gel coats. Both styrene and MMA are monomers, volatile organic compounds that partially combine with themselves or other similar compounds by a cross-linking reaction to become part of the cured resin.

After the gel coat has hardened, the inside of the gel coat is coated with a skin coat of polyester resin and short glass fibers. Continuous strand glass and catalyzed polyester resin are fed through a chopper gun, which deposits the resin-saturated "chop" on the mold. Once deposited, the mold is then hand rolled with a metal or plastic roller to compact the fibers and remove air bubbles. At Aronda, this step is accomplished in Spray Booth #2 and is ventilated by a filtered 36" diameter wall fan attached to a vertical 22" diameter pipe that exhaust 20 feet above ground level designated as stack point SN-02. In the polyester resin solution, styrene is the primary VOC emitted.

Specific Conditions

1. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #5. [Reg.19.501 *et seq.* and 40 C.F.R. § 52 Subpart E]

SN	Description	Pollutant	lb/hr	tpy
SN-01	Spray Booth #1	PM_{10}	0.1	0.1
	Spray Booth #1	VOC	6.7	7.0
SNI 02	Smary Booth #2	PM_{10}	0.3	0.4
SN-02	Spray Booth #2	VOC	38.1	39.6

2. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #5. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 36-00508

SN	Description	Pollutant	lb/hr	tpy
		PM	0.1	0.1
SN-01	Spray Booth #1	Styrene	6.09	6.34
		Total HAPs ¹	6.64	6.90
		PM	0.3	0.4
SN-02	Spray Booth #2	Styrene	36.53	38.00
		Total HAPs ¹	36.53	38.00

¹Total HAPs include styrene emissions.

3. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9.

SN	Limit	Regulatory Citation
01 & 02	20%	Reg.19.503

- 4. Monthly observations of the opacity from SN-01 and SN-02 shall be conducted by a person trained but not necessarily certified in EPA Reference Method 9. If visible emissions in excess of the permitted levels are detected, the permittee shall immediately take action to identify the cause of the visible emissions in excess of the permit limit, implement corrective action, and document that visible emissions did not appear to be in excess of the permitted opacity following the corrective action. The permittee shall maintain records which contain the following items in order to demonstrate compliance with this specific condition. These records shall be updated monthly, kept on site, and made available to Department personnel upon request. [Reg.19.705 and 40 C.F.R. § 52 Subpart E]
 - (a) The date and time of the observation.
 - (b) If visible emissions which appeared to be above the permitted limit were detected.
 - (c) If visible emissions which appeared to be above the permitted limit were detected, the cause of the exceedance of the opacity limit, the corrective action taken, and if the visible emissions appeared to be below the permitted limit after the corrective action was taken.
 - (d) The name of the person conducting the opacity observations.
- 5. The permittee shall not exceed the following usage limit for each product at the facility per rolling 12 month period. [Reg.19.705, Reg.18.1004, 40 C.F.R. § 70.6, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

Product Code	Product Description	Usage Limit (lb/yr)
LHA-8008	Low HAP Gulf Sand Gel Coat	21,000
LHB-9062	Low HAP Medium Gray Primer Gel Coat	13,800
HD-5624	Avocado Gel Coat	1,728
HD-8579	Veranda Dark Tan Gel Coat	307.2
966-AT-539	HAP33 Gray Metallic Armorcote	348
966-RT-330	HAP33 Red Metallic Armorcote	360
LHA-3062	Low HAP Jet Black Gel Coat	1,632
LHA-2443	Low HAP Off White Gel Coat	3,480
LHA-2900	Low HAP White Gel Coat	1,440
966-LT-587	HAP33 Blue Metallic Armorcote	360
AG-37629	Veranda GY Gel Coat	324
LHM-1513	Low HAP Marine Clear Gel Coat	1,444.8
LHA-8578	Low HAP Veranda Lt Tan Gel Coat	348
HD-9166	Alumacraft Graphite Gel Coat	1,087.2
XTEND 838	Release Agent	73.2
H834-RCZ-35	Polyester Resin Solution	226,800

- 6. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #5. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The twelve month rolling totals and each individual month's data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Reg.19.705, Reg.18.1004, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]
- 7. The facility shall construct a vertical stack for SN-01 and SN-02 with a stack height at a minimum of 20 feet and stack inside diameter not to exceed 22 inches. Construction of the stack shall commence no later than 180 days after the issuance of Permit #2395-AOP-R0, and notifications shall take place according to the requirements of Plantwide Condition #1. [Reg.19.705 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 36-00508

NESHAP WWWW Conditions

8. SN-01 and SN-02 are subject to 40 C.F.R. Part 63, Subpart WWWW—National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production. A copy of NESHAP WWWW is attached as Appendix A of this permit. [Reg.19.304 and 40 C.F.R § 63.5785]

9. The permittee shall meet the following organic HAP emissions limits for the open molding operation at SN-01. [Reg.19.304 and 40 C.F.R § 63.5805(c)]

While Using	Organic HAP Emission Limits (lb/ton)
Tooling gel coating	440 lb/ton
White/off-white pigmented gel coating	267 lb/ton
All other pigmented gel coating	377 lb/ton
Corrosion-resistant/high strength or high performance gel coat	605 lb/ton
Fire retardant gel coat	854 lb/ton
Clear production gel coat	522 lb/ton

10. The permittee shall meet the following organic HAP emissions limits for the open molding operation at SN-02. [Reg.19.304 and 40 C.F.R § 63.5805(c)]

While Using	Organic HAP Emission Limits (lb/ton)
Manual resin application	87 lb/ton

- 11. If the facility meets or exceeds the 100 tpy total HAPs threshold in any calendar year, the permittee shall notify the Department in the compliance report. The permittee may at the same time request a one-time exemption from the requirements of 40 C.F.R § 63.5805(a)(1) or (d) in the compliance report if the permittee can demonstrate all of the following: [Reg.19.304 and 40 C.F.R § 63.5805(e)]
 - (a) The exceedance of the threshold was due to circumstances that will not be repeated.
 - (b) The average annual organic HAP emissions from the potentially affected operations for the last 3 years were below 100 tpy.
 - (c) Projected organic HAP emissions for the next calendar year are below 100 tpy, based on projected resin and gel coat use and the HAP emission factors calculated according to the procedures in 40 C.F.R. § 63.5799.

AFIN: 36-00508

12. If you apply for an exemption in Specific Condition #11 and subsequently exceed the HAP emission thresholds specified in Specific Conditions #9 or #10 over the next 12-month period, you must notify the Department in your semiannual report, the exemption is removed, and your facility must comply with 40. C.F.R. § 63.5805(a)(1) or (d) within 3 years from the time your organic HAP emissions first exceeded the threshold. [Reg.19.304 and 40 C.F.R § 63.5805(f)]

- 13. You must use one of the following methods to meet the standards for open molding operation listed in Specific Conditions #9 and #10. You may use any control method that reduces organic HAP emissions, including reducing resin and gel coat organic HAP content, changing to nonatomized mechanical application, using covered curing techniques, and routing part or all of your emissions to an add-on control. You may use different compliance options for the different operations listed in Specific Conditions #9 and #10. The necessary calculations must be completed within 30 days after the end of each month. You may switch between the compliance options in paragraphs (a) through (d) of this Condition. When you change to an option based on a 12-month rolling average, you must base the average on the previous 12 months of data calculated using the compliance option you are changing to, unless you were previously using an option that did not require you to maintain records of resin and gel coat use. In this case, you must immediately begin collecting resin and gel coat use data and demonstrate compliance 12 months after changing options. [Reg.19.304 and 40 C.F.R § 63.5810]
 - (a) Demonstrate that an individual resin or gel coat, as applied, meets the applicable emission limit in Specific Conditions #9 and #10. [Reg.19.304 and 40 C.F.R § 63.5810(a)]
 - (i) Calculate your actual organic HAP emissions factor for each different process stream within each operation type. A process stream is defined as each individual combination of resin or gel coat, application technique, and control technique. Process streams within operations types are considered different from each other if any of the following four characteristics vary: the neat resin plus or neat gel coat plus organic HAP content, the gel coat type, the application technique, or the control technique. You must calculate organic HAP emissions factors for each different process stream by using the appropriate equations in Table 1 to NESHAP WWWW for open molding and for centrifugal casting, or sitespecific organic HAP emissions factors discussed in §63.5796. The emission factor calculation should include any and all emission reduction techniques used including any add-on controls. If you are using vapor suppressants to reduce HAP emissions, you must determine the vapor suppressant effectiveness (VSE) by conducting testing according to the procedures specified in appendix A to subpart WWWW of 40 CFR part 63. If you are using an add-on control device to reduce HAP emissions, you must determine the add-on control factor by conducting capture and control efficiency testing using the procedures specified in §63.5850. The

AFIN: 36-00508

organic HAP emissions factor calculated from the equations in Table 1 to NESHAP WWWW, or a site-specific emissions factor, is multiplied by the add-on control factor to calculate the organic HAP emissions factor after control. Use Equation 1 of this Condition to calculate the add-on control factor used in the organic HAP emissions factor equations.

Add-on Control Factor =
$$1 - \frac{\% \text{ Control Efficiency}}{100}$$
 (Eq. 1)

Where:

Percent Control Efficiency = a value calculated from organic HAP emissions test measurements made according to the requirements of §63.5850 to NESHAP WWWW.

- (ii) If the calculated emission factor is less than or equal to the appropriate emission limit, you have demonstrated that this process stream complies with the emission limit in Specific Conditions #9 and #10. It is not necessary that all your process streams, considered individually, demonstrate compliance to use this option for some process streams. However, for any individual resin or gel coat you use, if any of the process streams that include that resin or gel coat are to be used in any averaging calculations described in paragraphs (b) through (d) of this Condition, then all process streams using that individual resin or gel coat must be included in the averaging calculations.
- (b) Demonstrate that, on average, you meet the individual organic HAP emissions limits for each combination of operation type and resin application method or gel coat type. Demonstrate that on average you meet the individual organic HAP emissions limits for each unique combination of operation type and resin application method or gel coat type shown in Specific Conditions #9 and #10 that applies to you. [Reg.19.304 and 40 C.F.R § 63.5810(b)]
 - (i) Group the process streams described in paragraph (a) to this Condition by operation type and resin application method or gel coat type listed in Specific Conditions #9 and #10 and then calculate a weighted average emission factor based on the amounts of each individual resin or gel coat used for the last 12 months. To do this, sum the product of each individual organic HAP emissions factor calculated in paragraph (a)(i) of this Condition and the amount of neat resin plus and neat gel coat plus usage that corresponds to the individual factors and divide the numerator by the total amount of neat resin plus and neat gel coat plus used in that operation type as shown in Equation 2 of this Condition.

AFIN: 36-00508

Where:

Actual Process Stream EF_i = actual organic HAP emissions factor for process stream i, lbs/ton;

 $Material_i = neat resin plus or neat gel coat plus used during the last 12 calendar months for process stream i, tons;$

n = number of process streams where you calculated an organic HAP emissions factor.

- (ii) You may, but are not required to, include process streams where you have demonstrated compliance as described in paragraph (a) of this Condition, subject to the limitations described in paragraph (a)(ii) of this Condition, and you are not required to and should not include process streams for which you will demonstrate compliance using the procedures in paragraph (d) of this Condition.
- (iii) Compare each organic HAP emissions factor calculated in paragraph (b)(i) of this Condition with its corresponding organic HAP emissions limit in Specific Conditions #9 and #10. If all emissions factors are equal to or less than their corresponding emission limits, then you are in compliance.
- (c) Demonstrate compliance with a weighted average emission limit. Demonstrate each month that you meet each weighted average of the organic HAP emissions limits in Specific Conditions #9 and #10. When using this option, you must demonstrate compliance with the weighted average organic HAP emissions limit for all your open molding operations, and then separately demonstrate compliance with the weighted average organic HAP emissions limit for all your centrifugal casting operations. Open molding operations and centrifugal casting operations may not be averaged with each other. [Reg.19.304 and 40 C.F.R § 63.5810(c)]
 - (i) Each month calculate the weighted average organic HAP emissions limit for all open molding operations and the weighted average organic HAP emissions limit for all centrifugal casting operations for your facility for the last 12-month period to determine the organic HAP emissions limit you must meet. To do this, multiply the individual organic HAP emissions limits in Specific Conditions #9 and #10 for each open molding (centrifugal casting) operation type by the amount of neat resin plus or neat gel coat plus used in the last 12 months for each open molding (centrifugal casting) operation type, sum these results, and then divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) over the last 12 months as shown in Equation 3 of this Condition.

Weighted Average Emission Limit=
$$\frac{\sum_{i=1}^{n} (EL_{i} * Material_{i})}{\sum_{i=1}^{n} Material_{i}}$$
 (Eq. 3)

Where:

AFIN: 36-00508

 EL_i = organic HAP emissions limit for operation type i, lbs/ton from Specific Conditions #9 and #10:

 $Material_i = neat \ resin \ plus \ or \ neat \ gel \ coat \ plus \ used \ during \ the \ last \ 12-month \ period \ for \ operation \ type \ i, \ tons;$

n = number of operations.

(ii) Each month calculate your weighted average organic HAP emissions factor for open molding and centrifugal casting. To do this, multiply your actual open molding (centrifugal casting) operation organic HAP emissions factors calculated in paragraph (b)(i) of this Condition and the amount of neat resin plus and neat gel coat plus used in each open molding (centrifugal casting) operation type, sum the results, and divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) operations as shown in Equation 4 of this Condition.

Actual Weighted

Average organic

HAP Emissions

Factor

$$\frac{\sum_{i=1}^{n} (Actual Operation EF_i * Material_i)}{\sum_{i=1}^{n} Material_i}$$
(Eq. 4)

Where:

Actual Individual EF_i = Actual organic HAP emissions factor for operation type i, lbs/ton;

 $Material_i = neat resin plus or neat gel coat plus used during the last 12 calendar months for operation type i, tons; <math>n = number of operations$.

- (iii) Compare the values calculated in paragraphs (c)(i) and (ii) of this Condition. If each 12-month rolling average organic HAP emissions factor is less than or equal to the corresponding 12-month rolling average organic HAP emissions limit, then you are in compliance.
- (d) Meet the organic HAP emissions limit for one application method and use the same resin(s) for all application methods of that resin type. This option is limited to resins of the same type. The resin types for which this option may be used are noncorrosion-resistant, corrosion-resistant and/or high strength, and tooling. [Reg.19.304 and 40 C.F.R § 63.5810(d)]
 - (i) For any combination of manual resin application, mechanical resin application, filament application, or centrifugal casting, you may elect to meet the organic HAP emissions limit for any one of these application methods and use the same resin in all of the resin application methods listed in this paragraph (d)(i). Table 7 to NESHAP WWWW presents the possible combinations based on a facility selecting the application process that results in the highest allowable organic HAP content resin. If the resin

- organic HAP content is below the applicable value shown in Table 7 to NESHAP WWWW, the resin is in compliance.
- (ii) You may also use a weighted average organic HAP content for each application method described in paragraph (d)(i) of this Condition. Calculate the weighted average organic HAP content monthly. Use Equation 2 in paragraph (b)(i) of this Condition except substitute organic HAP content for organic HAP emissions factor. You are in compliance if the weighted average organic HAP content based on the last 12 months of resin use is less than or equal to the applicable organic HAP contents in Table 7 to NESHAP WWWW.
- (iii) You may simultaneously use the averaging provisions in paragraph (b) or (c) of this Condition to demonstrate compliance for any operations and/or resins you do not include in your compliance demonstrations in paragraphs (d)(i) and (ii) of this Condition. However, any resins for which you claim compliance under the option in paragraphs (d)(i) and (ii) of this Condition may not be included in any of the averaging calculations described in paragraph (b) or (c) of this Condition.
- (iv) You do not have to keep records of resin use for any of the individual resins where you demonstrate compliance under the option in paragraph (d)(i) of this Condition unless you elect to include that resin in the averaging calculations described in paragraph (d)(ii) of this Condition.
- 14. The permittee shall demonstrate initial compliance with the organic HAP emissions limits specified in Specific Conditions #9 and #10 by: [Reg.19.304 and 40 C.F.R § 63.5860]
 - (a) Meeting the appropriate organic HAP emissions limits for these operations as calculated using the procedures in Specific Condition #13 on a 12-month rolling average 1 year after the appropriate compliance date, and/or
 - (b) Demonstrating that any individual resins or gel coats not included in paragraph (a) above, as applied, meet their applicable emission limits, or
 - (c) Demonstrating using the appropriate values in Table 7 to NESHAP WWWW that the weighted average of all resins and gel coats for each resin type and application method meet the appropriate organic HAP contents.
- 15. The permittee shall collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP emissions limits based on an organic HAP emissions limit in Specific Conditions #9 and #10. You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP content limits in Table 7 to NESHAP WWWW if you are averaging organic HAP contents. Resin use records may be based on purchase records if you can reasonably estimate how the resin is applied. The organic HAP content records may be based on MSDS or on resin specifications supplied by the resin supplier. [Reg.19.304 and 40 C.F.R § 63.5895(c)]

- 16. Resin and gel coat use records are not required for the individual resins and gel coats that are demonstrated, as applied, to meet their applicable emission as defined in Specific Condition #13(a). However, you must retain the records of resin and gel coat organic HAP content, and you must include the list of these resins and gel coats and identify their application methods in your semiannual compliance reports. If after you have initially demonstrated that a specific combination of an individual resin or gel coat, application method, and controls meets its applicable emission limit, and the resin or gel coat changes or the organic HAP content increases, or you change the application method or controls, then you again must demonstrate that the individual resin or gel coat meets its emission limit as specified in Specific Condition #13(a). If any of the previously mentioned changes results in a situation where an individual resin or gel coat now exceeds its applicable emission limit in Specific Conditions #9 and #10, you must begin collecting resin and gel coat use records and calculate compliance using one of the averaging options on a 12-month rolling average. [Reg.19.304 and 40 C.F.R § 63.5895(d)]
- 17. The permittee shall demonstrate continuous compliance with the organic HAP emissions limits specified in Specific Conditions #9 and #10 according to the methods specified in the following paragraphs: [Reg.19.304 and 40 C.F.R § 63.5900]
 - (a) Compliance with organic HAP emissions limits is demonstrated by maintaining an organic HAP emissions factor value less than or equal to the appropriate organic HAP emissions limit listed in Specific Conditions #9 and #10, on a 12-month rolling average, and/or by including in each compliance report a statement that individual resins and gel coats, as applied, meet the appropriate organic HAP emissions limits, as discussed in Specific Condition #16.
 - (b) Compliance with organic HAP content limits in Table 7 to NESHAP WWWW is demonstrated by maintaining an average organic HAP content value less than or equal to the appropriate organic HAP contents listed in Table 7 to NESHAP WWWW, on a 12-month rolling average, and/or by including in each compliance report a statement that resins and gel coats individually meet the appropriate organic HAP content limits in Table 7 to NESHAP WWWW, as discussed in Specific Condition #16.
 - (c) You must report each deviation from each standard in Specific Conditions #9 and #10. The deviations must be reported according to the requirements in §63.5910.
 - (d) Except as provided in Specific Condition #17(e), during periods of startup, shutdown, or malfunction, you must meet the organic HAP emissions limits and work practice standards that apply to you.
 - (e) When you use an add-on control device to meet standards in Specific Conditions #9 and #10, you are not required to meet those standards during periods of startup, shutdown, or malfunction, but you must operate your affected source to minimize emissions in accordance with 40 C.F.R. § 63.6(e)(1).
 - (f) Consistent with 40 C.F.R. §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of malfunction for those affected sources and standards specified in paragraph (d) of this Condition are not violations if you demonstrate to the

AFIN: 36-00508

Administrator's satisfaction that you were operating in accordance with 40 C.F.R. § 63.6(e)(1). The Administrator will determine whether deviations that occur during a period of startup, shutdown, and malfunction are violations, according to the provisions in 40 C.F.R. § 63.6(e).

- 18. The permittee shall submit an Initial Notification containing the information specified in 40 C.F.R. § 63.9(b)(2) no later than the dates specified in 40 C.F.R § 63.9(b)(2). If you change any information submitted in any notification, you must submit the changes in writing to the Department within 15 calendar days after the change. [Reg.19.304 and 40 C.F.R § 63.5905]
- 19. The permittee shall submit the following reports. [Reg.19.304 and 40 C.F.R § 63.5910(a)]

You must submit a(n)	The report must contain	You must submit the report
1. Compliance report	a. A statement that there were no deviations during that reporting period if there were no deviations from any emission limitations (emission limit, operating limit, opacity limit, and visible emission limit) that apply to you and there were no deviations from the requirements for work practice standards in Table 4 to this subpart that apply to you. If there were no periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control as specified in §63.8(c)(7), the report must also contain a statement that there were no periods during which the CMS was out of control during the reporting period	Semiannually according to the requirements in §63.5910(b).
	b. The information in §63.5910(d) if you have a deviation from any emission limitation (emission limit, operating limit, or work practice standard) during the reporting period. If there were periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control, as specified in §63.8(c)(7), the report must contain the information	Semiannually according to the requirements in \$63.5910(b).

	in §63.5910(e)	
	c. The information in §63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan	Semiannually according to the requirements in §63.5910(b).
2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent with your startup, shutdown, and malfunction plan	a. Actions taken for the event	By fax or telephone within 2 working days after starting actions inconsistent with the plan.
	b. The information in §63.10(d)(5)(ii)	By letter within 7 working days after the end of the event unless you have made alternative arrangements with the permitting authority. (§63.10(d)(5)(ii)).

- 20. Unless the Department has approved a different schedule for submission of reports under §63.10(a), the permittee shall submit each report by the date specified in Specific Condition #19 and according to the following paragraphs. [Reg.19.304 and 40 C.F.R § 63.5910(b)]
 - (a) The first compliance report must cover the period beginning on the date on which the facility became a major source and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the date on which the facility became a major source.
 - (b) The first compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the date on which the facility became a major source.
 - (c) Each subsequent compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
 - (d) Each subsequent compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
 - (e) For each affected source that is subject to permitting requirements pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 C.F.R § 70.6 (a)(3)(iii)(A) or §

AFIN: 36-00508

71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the above dates.

- 21. The compliance report must contain the following information: [Reg.19.304 and 40 C.F.R § 63.5910(c)]
 - (a) Company name and address.
 - (b) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.
 - (c) Date of the report and beginning and ending dates of the reporting period.
 - (d) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information in 40 C.F.R. § 63.10(d)(5)(i).
 - (e) If there are no deviations from any organic HAP emissions limitations (emissions limit and operating limit) that apply to you, and there are no deviations from the requirements for work practice standards in Table 4 to this subpart, a statement that there were no deviations from the organic HAP emissions limitations or work practice standards during the reporting period.
 - (f) If there were no periods during which the continuous monitoring system (CMS), including a continuous emissions monitoring system (CEMS) and an operating parameter monitoring system were out of control, as specified in 40 C.F.R. § 63.8(c)(7), a statement that there were no periods during which the CMS was out of control during the reporting period.
- 22. For each deviation from an organic HAP emissions limitation (*i.e.*, emissions limit and operating limit) and for each deviation from the requirements for work practice standards that occurs at an affected source where you are not using a CMS to comply with the organic HAP emissions limitations or work practice standards in this subpart, the compliance report must contain the information in Specific Condition #21(a) through (d) and #22(a) through (b). This includes periods of startup, shutdown, and malfunction. [Reg.19.304 and 40 C.F.R § 63.5910(d)]
 - (a) The total operating time of each affected source during the reporting period.
 - (b) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
- 23. You must report if you have exceeded the 100 tpy organic HAP emissions threshold if that exceedance would make your facility subject to 40 C.F.R. § 63.5805(a)(1) or (d). Include with this report any request for an exemption under Specific Condition #11. If you receive an exemption under Specific Condition #11 and subsequently exceed the 100 tpy organic HAP emissions threshold, you must report this exceedance as required in Specific Condition #12. [Reg.19.304 and 40 C.F.R § 63.5910(f)]

AFIN: 36-00508

- 24. The permittee shall report all deviations as defined in NESHAP WWWW in the semiannual monitoring report required by 40 C.F.R. § 70.6(a)(3)(iii)(A) or § 71.6(a)(3)(iii)(A). If the permittee submits a compliance report according to Specific Condition #19 along with, or as part of, the semiannual monitoring report required by 40 C.F.R. § 70.6(a)(3)(iii)(A) or § 71.6(a)(3)(iii)(A), and the compliance report includes all required information concerning deviations from any organic HAP emissions limitation (including any operating limit) or work practice requirement in this subpart, submission of the compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the Department. [Reg.19.304 and 40 C.F.R § 63.5910(g)]
- 25. The permittee shall keep records of the following items. You must maintain all applicable records in such a manner that they can be readily accessed and are suitable for inspection according to 40 C.F.R. § 63.10(b)(1). You must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record. You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to 40 C.F.R. § 63.10(b)(1). You can keep the records offsite for the remaining 3 years. You may keep records in hard copy or computer readable form including, but not limited to, paper, microfilm, computer floppy disk, magnetic tape, or microfiche. [Reg.19.304 and 40 C.F.R §§ 63.5915 and 63.5920]
 - (a) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirements in 40 C.F.R. § 63.10(b)(2)(xiv).
 - (b) The records in 40 C.F.R. § 63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction.
 - (c) Records of performance tests, design, and performance evaluations as required in 40 C.F.R. § 63.10(b)(2).
 - (d) You must keep all data, assumptions, and calculations used to determine organic HAP emissions factors or average organic HAP contents for operations listed in Specific Conditions #9, #10, and table 7 to NESHAP WWWW.
- 26. The permittee shall comply with all General Provisions as specified in Table 15 to NESHAP WWWW. [Reg.19.304 and 40 C.F.R § 63.5925]

NESHAP VVVV Conditions

27. SN-01 and SN-02 are subject to 40 C.F.R. Part 63, Subpart VVVV—National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing. A copy of NESHAP VVVV is attached as Appendix B of this permit. [Reg.19.304 and 40 C.F.R § 63.5683]

AFIN: 36-00508

28. The permittee shall limit organic HAP emissions from open molding operations to the limit specified by equation 1 below, based on a 12-month rolling average. [Reg.19.304 and 40 C.F.R § 63.5698(b)]

$$HAP\ Limit = \left[46 \left(M_{R}\right) + 159 \left(M_{PG}\right) + 291 \left(M_{CG}\right) + 54 \left(M_{TR}\right) + 214 \left(M_{TG}\right)\right] \qquad \left(Eq.\ 1\right)$$

Where:

HAP Limit= total allowable organic HAP that can be emitted from the open molding operations, kilograms.

 M_R = mass of production resin used in the past 12 months, excluding any materials exempt under 40 C.F.R § 63.5698(d), megagrams.

 M_{PG} = mass of pigmented gel coat used in the past 12 months, excluding any materials exempt under 40 C.F.R § 63.5698(d), megagrams.

 M_{CG} = mass of clear gel coat used in the past 12 months, excluding any materials exempt under 40 C.F.R § 63.5698(d), megagrams.

 $M_{\text{\tiny TR}}$ = mass of tooling resin used in the past 12 months, excluding any materials exempt under 40 C.F.R § 63.5698(d), megagrams.

 M_{TG} = mass of tooling gel coat used in the past 12 months, excluding any materials exempt under 40 C.F.R § 63.5698(d), megagrams.

- 29. The permittee has chosen the maximum achievable control technology (MACT) model point value averaging (emissions averaging) option for complying with the open molding emission limit. For those open molding operations and materials complying using the emissions averaging option, you must demonstrate compliance by performing the following steps. [Reg.19.304, 40 C.F.R §§ 63.5701 and 63.5704(a)]
 - (a) Use the methods specified in Specific Condition #35 to determine the organic HAP content of resins and gel coats.
 - (b) Complete the calculations described in §63.5710 to show that the organic HAP emissions do not exceed the limit specified in Specific Condition #28.
 - (c) Keep records as specified below for each resin and gel coat.
 - (i) Hazardous air pollutant content.
 - (ii) Amount of material used per month.
 - (iii) Application method used for production resin and tooling resin. This record is not required if all production resins and tooling resins are applied with nonatomized technology.
 - (iv) Calculations performed to demonstrate compliance based on MACT model point values, as described in Specific Condition #31.
 - (d) Prepare and submit the implementation plan described in Specific Condition #30 to the Department and keep it up to date.
 - (e) Submit semiannual compliance reports to the Department as specified in Specific Condition #37.

AFIN: 36-00508

- 30. The permittee shall prepare an implementation plan for all open molding operations for which you comply by using the emissions averaging option described in Specific Condition #29. The implementation plan must describe the steps you will take to bring the open molding operations covered by NESHAP VVVV into compliance. For each operation included in the emissions average, your implementation plan must include the following elements:
 - (a) A description of each operation included in the average.
 - (b) The maximum organic HAP content of the materials used, the application method used (if any atomized resin application methods are used in the average), and any other methods used to control emissions.
 - (c) Calculations showing that the operations covered by the plan will comply with the open molding emission limit specified in Specific Condition #28.

The permittee shall submit the implementation plan to the Department with the notification of compliance status specified in Specific Condition #36. The permittee shall keep the implementation plan on site and provide it to the Department when asked. If the permittee revises the implementation plan, the permittee shall submit the revised plan with the next semiannual compliance report specified in Specific Condition #37. [Reg.19.304 and 40 C.F.R § 63.5707]

- 31. Compliance using emissions averaging shall be demonstrated by the following actions: [Reg.19.304 and 40 C.F.R § 63.5710]
 - (a) Compliance using the emissions averaging option is demonstrated on a 12-month rolling-average basis and is determined at the end of every month (12 times per year). The first 12-month rolling-average period begins upon startup.
 - (b) At the end of the twelfth month after your compliance date and at the end of every subsequent month, use equation 1 of this Condition to demonstrate that the organic HAP emissions from those operations included in the average do not exceed the emission limit in Specific Condition #28 calculated for the same 12-month period. (Include terms in equation 1 of Specific Condition #28 and equation 1 of this Condition for only those operations and materials included in the average.)

$$\mathit{HAP} \text{ emissions} = \left[\left(\mathsf{PV}_{\mathsf{R}} \right) \left(M_{\mathsf{R}} \right) + \left(PV_{\mathsf{PG}} \right) \left(M_{\mathsf{PG}} \right) + \left(PV_{\mathsf{CG}} \right) \left(M_{\mathsf{CG}} \right) + \left(PV_{\mathsf{TR}} \right) \left(M_{\mathsf{TR}} \right) + \left(PV_{\mathsf{TG}} \right) \left(M_{\mathsf{TG}} \right) \right] \qquad \left(\mathit{Eq. 1} \right)$$

Where:

HAP emissions= Organic HAP emissions calculated using MACT model point values for each operation included in the average, kilograms.

 PV_R = Weighted-average MACT model point value for production resin used in the past 12 months, kilograms per megagram.

 M_R = Mass of production resin used in the past 12 months, megagrams.

 PV_{PG} = Weighted-average MACT model point value for pigmented gel coat used in the past 12 months, kilograms per megagram.

 M_{PG} = Mass of pigmented gel coat used in the past 12 months, megagrams.

AFIN: 36-00508

 PV_{CG} = Weighted-average MACT model point value for clear gel coat used in the past 12 months, kilograms per megagram.

 M_{CG} = Mass of clear gel coat used in the past 12 months, megagrams.

 PV_{TR} = Weighted-average MACT model point value for tooling resin used in the past 12 months, kilograms per megagram.

 M_{TR} = Mass of tooling resin used in the past 12 months, megagrams.

 PV_{TG} = Weighted-average MACT model point value for tooling gel coat used in the past 12 months, kilograms per megagram.

 M_{TG} = Mass of tooling gel coat used in the past 12 months, megagrams.

(c) At the end of every month, use equation 2 of this Condition to compute the weighted-average MACT model point value for each open molding resin and gel coat operation included in the average.

$$PV_{OP} = \frac{\sum_{i=1}^{n} (M_i \text{ PV}_i)}{\sum_{i=1}^{n} (M_i)} \qquad (Eq. 2)$$

Where:

 PV_{OP} = weighted-average MACT model point value for each open molding operation (PV_{R} , PV_{PG} , PV_{CG} , PV_{TR} , and PV_{TG}) included in the average, kilograms of HAP per megagram of material applied.

 $M_{\mbox{\tiny i}} = mass$ of resin or gel coat i used within an operation in the past 12 months, megagrams.

n = number of different open molding resins and gel coats used within an operation in the past 12 months.

PV_i = the MACT model point value for resin or gel coat i used within an operation in the past 12 months, kilograms of HAP per megagram of material applied.

- (d) You must use the equations in Table 3 to NESHAP VVVV to calculate the MACT model point value (PV_i) for each resin and gel coat used in each operation in the past 12 months.
- (e) If the organic HAP emissions, as calculated in Specific Condition #31(b), are less than the organic HAP limit calculated in Specific Condition #28 for the same 12-month period, then you are in compliance with the emission limit in Specific Condition #28 for those operations and materials included in the average.
- 32. The permittee shall meet the following standards for resin and gel coat application equipment cleaning operations: [Reg.19.304 and 40 C.F.R § 63.5734]
 - (a) For routine flushing of resin and gel coat application equipment (e.g., spray guns, flowcoaters, brushes, rollers, and squeegees), you must use a cleaning solvent that contains no more than 5 percent organic HAP by weight. For removing cured

AFIN: 36-00508

resin or gel coat from application equipment, no organic HAP content limit applies.

- (b) You must store organic HAP-containing solvents used for removing cured resin or gel coat in containers with covers. The covers must have no visible gaps and must be in place at all times, except when equipment to be cleaned is placed in or removed from the container. On containers with a capacity greater than 7.6 liters, the distance from the top of the container to the solvent surface must be no less than 0.75 times the diameter of the container. Containers that store organic HAP-containing solvents used for removing cured resin or gel coat are exempt from the requirements of 40 CFR part 63, subpart T. Cured resin or gel coat means resin or gel coat that has changed from a liquid to a solid.
- 33. The permittee shall demonstrate compliance with the resin and gel coat application equipment cleaning standards by the following action: [Reg.19.304 and 40 C.F.R § 63.5737]
 - (a) Determine and record the organic HAP content of the cleaning solvents subject to the standards specified in Specific Condition #32 using the methods specified in Specific Condition #35.
 - (b) If you recycle cleaning solvents on site, you may use documentation from the solvent manufacturer or supplier or a measurement of the organic HAP content of the cleaning solvent as originally obtained from the solvent supplier for demonstrating compliance, subject to Specific Condition #35 for demonstrating compliance with organic HAP content limits.
 - (c) At least once per month, you must visually inspect any containers holding organic HAP-containing solvents used for removing cured resin and gel coat to ensure that the containers have covers with no visible gaps. Keep records of the monthly inspections and any repairs made to the covers.
- 34. The permittee shall use carpet and fabric adhesives that contain no more than 5 percent organic HAP by weight. To demonstrate compliance with this emission limit, you must determine and record the organic HAP content of the carpet and fabric adhesives using the methods in Specific Condition #35. [Reg.19.304 and 40 C.F.R § 63.5740]
- 35. The permittee shall determine the organic HAP content of materials using one of the following methods: [Reg.19.304 and 40 C.F.R § 63.5758]
 - (a) Determine the organic HAP content for each material used. To determine the organic HAP content for each material used in your open molding resin and gel coat operations, carpet and fabric adhesive operations, or aluminum recreational boat surface coating operations, you must use one of the following options.
 - (i) Method 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the following procedures when determining organic HAP content by Method 311.

- (A) Include in the organic HAP total each organic HAP that is measured to be present at 0.1 percent by mass or more for Occupational Safety and Health Administration (OSHA)-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is measured to be 0.5 percent of the material by mass, you do not need to include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value truncated to four places after the decimal point (for example, 0.1234).
- (B) Calculate the total organic HAP content in the test material by adding up the individual organic HAP contents and truncating the result to three places after the decimal point (for example, 0.123).
- (ii) *Method 24 (appendix A to 40 CFR part 60)*. You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum coatings and use that value as a substitute for mass fraction of organic HAP.
- (iii) ASTM D1259-85 (Standard Test Method for Nonvolatile Content of Resins). You may use ASTM D1259-85 (available for purchase from ASTM) to measure the mass fraction of volatile matter of resins and gel coats for open molding operations and use that value as a substitute for mass fraction of organic HAP.
- (iv) Alternative method. You may use an alternative test method for determining mass fraction of organic HAP if you obtain prior approval by the Administrator. You must follow the procedure in §63.7(f) to submit an alternative test method for approval.
- (v) Information from the supplier or manufacturer of the material. You may rely on information other than that generated by the test methods specified above, such as manufacturer's formulation data, according to the following paragraphs:
 - (A) Include in the organic HAP total each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is 0.5 percent of the material by mass, you do not have to include it in the organic HAP total.
 - (B) If the organic HAP content is provided by the material supplier or manufacturer as a range, then you must use the upper limit of the range for determining compliance. If a separate measurement of the total organic HAP content using the methods specified in paragraphs (a)(i) through (iv) of this Condition exceeds the upper limit of the range of the total organic HAP content provided by the

- material supplier or manufacturer, then you must use the measured organic HAP content to determine compliance.
- (C) If the organic HAP content is provided as a single value, you may assume the value is a manufacturing target value and actual organic HAP content may vary from the target value. If a separate measurement of the total organic HAP content using the methods specified in paragraphs (a)(i) through (iv) of this Condition is less than 2 percentage points higher than the value for total organic HAP content provided by the material supplier or manufacturer, then you may use the provided value to demonstrate compliance. If the measured total organic HAP content exceeds the provided value by 2 percentage points or more, then you must use the measured organic HAP content to determine compliance.
- (vi) Solvent blends. Solvent blends may be listed as single components for some regulated materials in certifications provided by manufacturers or suppliers. Solvent blends may contain organic HAP which must be counted toward the total organic HAP content of the materials. When detailed organic HAP content data for solvent blends are not available, you may use the values for organic HAP content that are listed in Table 5 or 6 to NESHAP VVVV. You may use Table 6 to NESHAP VVVV only if the solvent blends in the materials you use do not match any of the solvent blends in Table 5 to NESHAP VVVV and you know only whether the blend is either aliphatic or aromatic. However, if test results indicate higher values than those listed in Table 5 or 6 to NESHAP VVVV, then the test results must be used for determining compliance.
- (b) Determine the volume fraction solids in aluminum recreational boat surface coatings. To determine the volume fraction of coating solids (liters of coating solids per liter of coating) for each aluminum recreational boat surface coating, you must use one of the methods specified in the following paragraphs. If the results obtained with Specific Condition #35(b)(ii) or (iii) do not to agree with those obtained according to Specific Condition #35(b)(i), you must use the results obtained with Specific Condition #35(b)(i) to determine compliance.
 - (i) ASTM Method D2697-86(1998) or D6093-97. You may use ASTM Method D2697-86(1998) or D6093-97 (available for purchase from ASTM) to determine the volume fraction of coating solids for each coating. Divide the nonvolatile volume percent obtained with the methods by 100 to calculate volume fraction of coating solids.
 - (ii) Information from the supplier or manufacturer of the material. You may obtain the volume fraction of coating solids for each coating from the supplier or manufacturer.
 - (iii) Calculation of volume fraction of coating solids. You may determine it using equation 1:

AFIN: 36-00508

Solids=1 -
$$\frac{m_{\text{volatiles}}}{D_{\text{ave}}}$$
 (Eq. 1)

Where:

Solids = volume fraction of coating solids, liters coating solids per liter coating.

m_{volatiles} = Total volatile matter content of the coating, including organic HAP, volatile organic compounds, water, and exempt compounds, determined according to Method 24 in appendix A of 40 CFR part 60, grams volatile matter per liter coating.

 D_{avg} = average density of volatile matter in the coating, grams volatile matter per liter volatile matter, determined from test results using ASTM Method D1475-90 (available for purchase from ASTM), information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475-90 test results and other information sources, the test results will take precedence.

- (c) Determine the density of each aluminum recreational boat wipedown solvent and surface coating. Determine the density of all aluminum recreational boat wipedown solvents, surface coatings, thinners, and other additives from test results using ASTM Method D1475-90, information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475-90 test results and other information sources, you must use the test results to demonstrate compliance.
- 36. The permittee shall submit all of the notifications in Table 7 to NESHAP VVVV that apply to you by the dates in the table. The notifications are described more fully in 40 C.F.R. part 63, subpart A, General Provisions, referenced in Table 8 to NESHAP VVVV. If you change any information submitted in any notification, you must submit the changes in writing to the Department within 15 calendar days after the change. [Reg.19.304 and 40 C.F.R § 63.5761]
- 37. The permittee shall submit the following reports. To the extent possible, you must organize each report according to the operations covered by NESHAP VVVV and the compliance procedure followed for that operation. [Reg.19.304 and 40 C.F.R § 63.5764]
 - (a) Unless the Department has approved a different schedule for submission of reports under 40 C.F.R. § 63.10(a), you must submit each report by the dates in the following paragraphs.
 - (i) If your source is not controlled by an add-on control device (i.e., you are complying with organic HAP content limits, application equipment requirements, or MACT model point value averaging provisions), the first compliance report must cover the period beginning 12 months after startup

- and ending on June 30 or December 31, whichever date is the first date following the end of the first 12-month period startup.
- (ii) The first compliance report must be postmarked or delivered no later than 60 calendar days after the end of the compliance reporting period specified in Specific Condition #37(a)(i).
- (iii) Each subsequent compliance report must cover the applicable semiannual reporting period from January 1 through June 30 or from July 1 through December 31.
- (iv) Each subsequent compliance report must be postmarked or delivered no later than 60 calendar days after the end of the semiannual reporting period.
- (v) For each affected source that is subject to permitting regulations pursuant to 40 C.F.R. part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 C.F.R. §70.6(a)(3)(iii)(A) or 40 C.F.R. § 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the dates specified in this Condition.
- (b) The compliance report must include the following information.
 - (i) Company name and address.
 - (ii) A statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the report.
 - (iii) The date of the report and the beginning and ending dates of the reporting period.
 - (iv) A description of any changes in the manufacturing process since the last compliance report.
 - (v) A statement or table showing, for each regulated operation, the applicable organic HAP content limit, application equipment requirement, or MACT model point value averaging provision with which you are complying. The statement or table must also show the actual weighted-average organic HAP content or weighted-average MACT model point value (if applicable) for each operation during each of the rolling 12-month averaging periods that end during the reporting period.
 - (vi) If you were in compliance with the emission limits and work practice standards during the reporting period, you must include a statement to that effect.
 - (vii) If you deviated from an emission limit or work practice standard during the reporting period, you must also include the following information in the semiannual compliance report.
 - (A) A description of the operation involved in the deviation.
 - (B) The quantity, organic HAP content, and application method (if relevant) of the materials involved in the deviation.

- (C) A description of any corrective action you took to minimize the deviation and actions you have taken to prevent it from happening again.
- (D) A statement of whether or not your facility was in compliance for the 12-month averaging period that ended at the end of the reporting period.
- 38. The permittee shall keep the following records in addition to records specified in individual sections of NESHAP VVVV. The records must be readily available and in a form so they can be easily inspected and reviewed. You must keep each record for 5 years following the date that each record is generated. You must keep each record on site for at least 2 years after the date that each record is generated. You can keep the records offsite for the remaining 3 years. You can keep the records on paper or an alternative media, such as microfilm, computer, computer disks, magnetic tapes, or on microfiche. [Reg.19.304, 40 C.F.R §§ 63.5764 and 63.5770]
 - (a) You must keep a copy of each notification and report that you submitted to comply with NESHAP VVVV.
 - (b) You must keep all documentation supporting any notification or report that you submitted.
 - (c) If your facility is not controlled by an add-on control device (i.e., you are complying with organic HAP content limits, application equipment requirements, or MACT model point value averaging provisions), you must keep the following records.
 - (i) The total amounts of open molding production resin, pigmented gel coat, clear gel coat, tooling resin, and tooling gel coat used per month and the weighted-average organic HAP contents for each operation, expressed as weight-percent. For open molding production resin and tooling resin, you must also record the amounts of each applied by atomized and nonatomized methods.
- 39. The permittee shall comply with all General Provisions as specified in Table 8 to NESHAP VVVV. [Reg.19.304 and 40 C.F.R § 63.5773]

AFIN: 36-00508

SN-04 Cleaning Operation

Source Description

The facility uses an acetone-based solution to clean the equipment.

Specific Conditions

40. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by compliance with Specific Condition #41. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

SN	Description	Pollutant	lb/hr	tpy
SN-04	Cleaning Operation	Acetone	21.48	22.34

- 41. The permittee shall not use in excess of 44,676 pounds of acetone in a rolling 12 month period. [Reg.18.1004 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 42. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #41. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The twelve month rolling totals and each individual month's data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Reg.19.705, Reg.18.1004, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 36-00508

SECTION V: COMPLIANCE PLAN AND SCHEDULE

Aronda Manufacturing, Inc. will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future regulations that may apply and determine their applicability with any necessary action taken on a timely basis.

AFIN: 36-00508

SECTION VI: PLANTWIDE CONDITIONS

- 1. The permittee shall notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Reg.19.704, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Reg.19.410(B) and 40 C.F.R. § 52 Subpart E]
- 3. The permittee must test any equipment scheduled for testing, unless otherwise stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) new equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) operating equipment according to the time frames set forth by the Department or within 180 days of permit issuance if no date is specified. The permittee must notify the Department of the scheduled date of compliance testing at least fifteen (15) business days in advance of such test. The permittee shall submit the compliance test results to the Department within sixty (60) calendar days after completing the testing. [Reg.19.702 and/or Reg.18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 4. The permittee must provide:
 - a. Sampling ports adequate for applicable test methods;
 - b. Safe sampling platforms;
 - c. Safe access to sampling platforms; and
 - d. Utilities for sampling and testing equipment.

[Reg.19.702 and/or Reg.18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

- 5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee shall maintain the equipment in good condition at all times. [Reg.19.303 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 6. This permit subsumes and incorporates all previously issued air permits for this facility. [Reg. 26 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

AFIN: 36-00508

SECTION VII: INSIGNIFICANT ACTIVITIES

The Department deems the following types of activities or emissions as insignificant on the basis of size, emission rate, production rate, or activity in accordance with Group A of the Insignificant Activities list found in Regulation 18 and Regulation 19 Appendix A. Group B insignificant activities may be listed but are not required to be listed in permits. Insignificant activity emission determinations rely upon the information submitted by the permittee in an application dated November 21, 2017. [Reg.26.304 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]

Description	Category			
No Group A insignificant activities are listed in the application. The following are Group B insignificant activities reported by the facility:				
Hand trimming and cutting (SN-03)	B-17			

AFIN: 36-00508

SECTION VIII: GENERAL PROVISIONS

- 1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 *et seq.*) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute. [40 C.F.R. § 70.6(b)(2)]
- 2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 C.F.R. § 70.6(a)(2) and Reg.26.701(B)]
- 3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee's right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Department takes final action on the renewal application. The Department will not necessarily notify the permittee when the permit renewal application is due. [Reg.26.406]
- 4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, *et seq.* (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 C.F.R. § 70.6(a)(1)(ii) and Reg.26.701(A)(2)]
- 5. The permittee must maintain the following records of monitoring information as required by this permit.
 - a. The date, place as defined in this permit, and time of sampling or measurements;
 - b. The date(s) analyses performed;
 - c. The company or entity performing the analyses;
 - d. The analytical techniques or methods used;
 - e. The results of such analyses; and
 - f. The operating conditions existing at the time of sampling or measurement.

[40 C.F.R. § 70.6(a)(3)(ii)(A) and Reg.26.701(C)(2)]

AFIN: 36-00508

6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 C.F.R. § 70.6(a)(3)(ii)(B) and Reg.26.701(C)(2)(b)]

7. The permittee must submit reports of all required monitoring every six (6) months. If the permit establishes no other reporting period, the reporting period shall end on the last day of the month six months after the issuance of the initial Title V permit and every six months thereafter. The report is due on the first day of the second month after the end of the reporting period. The first report due after issuance of the initial Title V permit shall contain six months of data and each report thereafter shall contain 12 months of data. The report shall contain data for all monitoring requirements in effect during the reporting period. If a monitoring requirement is not in effect for the entire reporting period, only those months of data in which the monitoring requirement was in effect are required to be reported. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Reg.26.2 must certify all required reports. The permittee will send the reports to the address below:

Arkansas Department of Environmental Quality Office of Air Quality ATTN: Compliance Inspector Supervisor 5301 Northshore Drive North Little Rock, AR 72118-5317

[40 C.F.R. § 70.6(a)(3)(iii)(A) and Reg.26.701(C)(3)(a)]

- 8. The permittee shall report to the Department all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.
 - a. For all upset conditions (as defined in Reg.19.601), the permittee will make an initial report to the Department by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:
 - i. The facility name and location;
 - ii. The process unit or emission source deviating from the permit limit;
 - iii. The permit limit, including the identification of pollutants, from which deviation occurs;
 - iv. The date and time the deviation started;
 - v. The duration of the deviation;
 - vi. The emissions during the deviation;
 - vii. The probable cause of such deviations;
 - viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future; and

AFIN: 36-00508

ix. The name of the person submitting the report.

The permittee shall make a full report in writing to the Department within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit's limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

b. For all deviations, the permittee shall report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a above. The semi-annual report must include all the information as required by the initial and full reports required in 8a.

[Reg.19.601, Reg.19.602, Reg.26.701(C)(3)(b), and 40 C.F.R. § 70.6(a)(3)(iii)(B)]

- 9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Regulation are declared to be separable and severable. [40 C.F.R. § 70.6(a)(5), Reg.26.701(E), and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Regulation 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. § 7401, *et seq.* and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 C.F.R. § 70.6(a)(6)(i) and Reg.26.701(F)(1)]
- 11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 C.F.R. § 70.6(a)(6)(ii) and Reg.26.701(F)(2)]
- 12. The Department may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. [40 C.F.R. § 70.6(a)(6)(iii) and Reg.26.701(F)(3)]
- 13. This permit does not convey any property rights of any sort, or any exclusive privilege. [40 C.F.R. § 70.6(a)(6)(iv) and Reg.26.701(F)(4)]

AFIN: 36-00508

- 14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Department may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 C.F.R. § 70.6(a)(6)(v) and Reg.26.701(F)(5)]
- 15. The permittee must pay all permit fees in accordance with the procedures established in Regulation 9. [40 C.F.R. § 70.6(a)(7) and Reg.26.701(G)]
- 16. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 C.F.R. § 70.6(a)(8) and Reg.26.701(H)]
- 17. If the permit allows different operating scenarios, the permittee shall, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 C.F.R. § 70.6(a)(9)(i) and Reg.26.701(I)(1)]
- 18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source's potential to emit, unless the Department specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 C.F.R. § 70.6(b) and Reg.26.702(A) and (B)]
- 19. Any document (including reports) required by this permit pursuant to 40 C.F.R. § 70 must contain a certification by a responsible official as defined in Reg.26.2. [40 C.F.R. § 70.6(c)(1) and Reg.26.703(A)]
- 20. The permittee must allow an authorized representative of the Department, upon presentation of credentials, to perform the following: [40 C.F.R. § 70.6(c)(2) and Reg.26.703(B)]
 - a. Enter upon the permittee's premises where the permitted source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
 - b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;
 - c. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and
 - d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.

AFIN: 36-00508

- 21. The permittee shall submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually. If the permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due on the first day of the second month after the end of the reporting period. The permittee must also submit the compliance certification to the Administrator as well as to the Department. All compliance certifications required by this permit must include the following: [40 C.F.R. § 70.6(c)(5) and Reg.26.703(E)(3)]
 - a. The identification of each term or condition of the permit that is the basis of the certification;
 - b. The compliance status;
 - c. Whether compliance was continuous or intermittent;
 - d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
 - e. Such other facts as the Department may require elsewhere in this permit or by § 114(a)(3) and § 504(b) of the Act.
- 22. Nothing in this permit will alter or affect the following: [Reg.26.704(C)]
 - a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
 - b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
 - c. The applicable requirements of the acid rain program, consistent with § 408(a) of the Act; or
 - d. The ability of EPA to obtain information from a source pursuant to § 114 of the Act.
- 23. This permit authorizes only those pollutant emitting activities addressed in this permit. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311]
- 24. The permittee may request in writing and at least 15 days in advance of the deadline, an extension to any testing, compliance or other dates in this permit. No such extensions are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion in the following circumstances:
 - a. Such an extension does not violate a federal requirement;
 - b. The permittee demonstrates the need for the extension; and
 - c. The permittee documents that all reasonable measures have been taken to meet the current deadline and documents reasons it cannot be met.

AFIN: 36-00508

[Reg.18.314(A), Reg.19.416(A), Reg.26.1013(A), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

- 25. The permittee may request in writing and at least 30 days in advance, temporary emissions and/or testing that would otherwise exceed an emission rate, throughput requirement, or other limit in this permit. No such activities are authorized until the permittee receives written Department approval. Any such emissions shall be included in the facility's total emissions and reported as such. The Department may grant such a request, at its discretion under the following conditions:
 - a. Such a request does not violate a federal requirement;
 - b. Such a request is temporary in nature;
 - c. Such a request will not result in a condition of air pollution;
 - d. The request contains such information necessary for the Department to evaluate the request, including but not limited to, quantification of such emissions and the date/time such emission will occur;
 - e. Such a request will result in increased emissions less than five tons of any individual criteria pollutant, one ton of any single HAP and 2.5 tons of total HAPs; and
 - f. The permittee maintains records of the dates and results of such temporary emissions/testing.

[Reg.18.314(B), Reg.19.416(B), Reg.26.1013(B), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

- 26. The permittee may request in writing and at least 30 days in advance, an alternative to the specified monitoring in this permit. No such alternatives are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion under the following conditions:
 - a. The request does not violate a federal requirement;
 - b. The request provides an equivalent or greater degree of actual monitoring to the current requirements; and
 - c. Any such request, if approved, is incorporated in the next permit modification application by the permittee.

[Reg.18.314(C), Reg.19.416(C), Reg.26.1013(C), Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

27. Any credible evidence based on sampling, monitoring, and reporting may be used to determine violations of applicable emission limitations. [Reg.18.1001, Reg.19.701, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. § 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]

Appendix A

40 C.F.R. Part 63, Subpart WWWW—National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production

Subpart WWWW—National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production

Contents

What This Subpart Covers

§63.5780 What is the purpose of this subpart?

§63.5785 Am I subject to this subpart?

§63.5787 What if I also manufacture fiberglass boats or boat parts?

§63.5790 What parts of my plant does this subpart cover?

§63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source?

Calculating Organic HAP Emissions Factors for Open Molding and Centrifugal Casting

§63.5796 What are the organic HAP emissions factor equations in Table 1 to this subpart, and how are they used in this subpart?

§63.5797 How do I determine the organic HAP content of my resins and gel coats?

§63.5798 What if I want to use, or I manufacture, an application technology (new or existing) whose organic HAP emissions characteristics are not represented by the equations in Table 1 to this subpart?

§63.5799 How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining which paragraphs of §63.5805 apply?

Compliance Dates and Standards

§63.5800 When do I have to comply with this subpart?

§63.5805 What standards must I meet to comply with this subpart?

Options for Meeting Standards

§63.5810 What are my options for meeting the standards for open molding and centrifugal casting operations at new and existing sources?

§63.5820 What are my options for meeting the standards for continuous lamination/casting operations?

§63.5830 What are my options for meeting the standards for pultrusion operations subject to the 60 weight percent organic HAP emissions reductions requirement?

General Compliance Requirements

§63.5835 What are my general requirements for complying with this subpart?

Testing and Initial Compliance Requirements

§63.5840 By what date must I conduct a performance test or other initial compliance demonstration?

§63.5845 When must I conduct subsequent performance tests?

§63.5850 How do I conduct performance tests, performance evaluations, and design evaluations?

§63.5855 What are my monitor installation and operation requirements?

§63.5860 How do I demonstrate initial compliance with the standards?

§63.5865 What data must I generate to demonstrate compliance with the standards for continuous lamination/casting operations?

§63.5870 How do I calculate annual uncontrolled and controlled organic HAP emissions from my wet-out area(s) and from my oven(s) for continuous lamination/casting operations?

§63.5875 How do I determine the capture efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations?

§63.5880 How do I determine how much neat resin plus is applied to the line and how much neat gel coat plus is applied to the line for continuous lamination/casting operations?

§63.5885 How do I calculate percent reduction to demonstrate compliance for continuous lamination/casting operations?

§63.5890 How do I calculate an organic HAP emissions factor to demonstrate compliance for continuous lamination/casting operations?

Continuous Compliance Requirements

§63.5895 How do I monitor and collect data to demonstrate continuous compliance?

§63.5900 How do I demonstrate continuous compliance with the standards?

Notifications, Reports, and Records

§63.5905 What notifications must I submit and when?

§63.5910 What reports must I submit and when?

§63.5915 What records must I keep?

§63.5920 In what form and how long must I keep my records?

Other Requirements and Information

§63.5925 What parts of the General Provisions apply to me?

§63.5930 Who implements and enforces this subpart?

§63.5935 What definitions apply to this subpart?

Table 1 to Subpart WWWW of Part 63—Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams

Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

Table 3 to Subpart WWWW of Part 63—Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and Existing Centrifugal Casting and Continuous Lamination/Casting Sources that Emit Less Than 100 TPY of HAP

Table 4 to Subpart WWWW of Part 63—Work Practice Standards

Table 5 to Subpart WWWW of Part 63—Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement

Table 6 to Subpart WWWW of Part 63—Basic Requirements for Performance Tests, Performance Evaluations, and Design Evaluations for New and Existing Sources Using Add-On Control Devices

Table 7 to Subpart WWWW of Part 63—Options Allowing Use of the Same Resin Across Different Operations That Use the Same Resin Type

Table 8 to Subpart WWWW of Part 63—Initial Compliance With Organic HAP Emissions Limits

Table 9 to Subpart WWWW of Part 63—Initial Compliance With Work Practice Standards

Table 10 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Percent Reduction Limit on a Per Line Basis

Table 11 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination and Continuous Casting Lines Complying With a Percent Reduction Limit or a Lbs/Ton Limit on an Averaging Basis Table 12 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Lbs/Ton Organic HAP Emissions Limit on a Per Line Basis

Table 13 to Subpart WWWW of Part 63—Applicability and Timing of Notifications

Table 14 to Subpart WWWW of Part 63—Requirements for Reports

Table 15 to Subpart WWWW of Part 63—Applicability of General Provisions (Subpart A) to Subpart WWWW of Part 63

Appendix A to Subpart WWWW of Part 63—Test Method for Determining Vapor Suppressant Effectiveness

SOURCE: 68 FR 19402, Apr. 21, 2003, unless otherwise noted.

What This Subpart Covers

§63.5780 What is the purpose of this subpart?

This subpart establishes national emissions standards for hazardous air pollutants (NESHAP) for reinforced plastic composites production. This subpart also establishes requirements to demonstrate initial and continuous compliance with the hazardous air pollutants (HAP) emissions standards.

§63.5785 Am I subject to this subpart?

- (a) You are subject to this subpart if you own or operate a reinforced plastic composites production facility that is located at a major source of HAP emissions. Reinforced plastic composites production is limited to operations in which reinforced and/or nonreinforced plastic composites or plastic molding compounds are manufactured using thermoset resins and/or gel coats that contain styrene to produce plastic composites. The resins and gel coats may also contain materials designed to enhance the chemical, physical, and/or thermal properties of the product. Reinforced plastic composites production also includes cleaning, mixing, HAP-containing materials storage, and repair operations associated with the production of plastic composites.
- (b) You are not subject to this subpart if your facility only repairs reinforced plastic composites. Repair includes the non-routine manufacture of individual components or parts intended to repair a larger item as defined in §63.5935
- (c) You are not subject to this subpart if your facility is a research and development facility as defined in section 112(c)(7) of the Clean Air Act (CAA).
- (d) You are not subject to this subpart if your reinforced plastic composites operations use less than 1.2 tons per year (tpy) of thermoset resins and gel coats that contain styrene combined.

§63.5787 What if I also manufacture fiberglass boats or boat parts?

- (a) If your source meets the applicability criteria in §63.5785, and is not subject to the Boat Manufacturing NESHAP (40 CFR part 63, subpart VVVV), you are subject to this subpart regardless of the final use of the parts you manufacture.
- (b) If your source is subject to 40 CFR part 63, subpart VVVV, and all the reinforced plastic composites you manufacture are used in manufacturing your boats, you are not subject to this subpart.
- (c) If you are subject to 40 CFR part 63, subpart VVVV, and meet the applicability criteria in §63.5785, and produce reinforced plastic composites that are not used in fiberglass boat manufacture at your facility, all operations associated with the manufacture of the reinforced plastic composites parts that are not used in fiberglass boat manufacture at your facility are subject to this subpart, except as noted in paragraph (d) of this section.
- (d) Facilities potentially subject to both this subpart and 40 CFR part 63, subpart VVVV may elect to have the operations in paragraph (c) of this section covered by 40 CFR part 63, subpart VVVV, in lieu of this subpart, if they

can demonstrate that this will not result in any organic HAP emissions increase compared to complying with this subpart.

§63.5790 What parts of my plant does this subpart cover?

- (a) This subpart applies to each new or existing affected source at reinforced plastic composites production facilities.
- (b) The affected source consists of all parts of your facility engaged in the following operations: Open molding, closed molding, centrifugal casting, continuous lamination, continuous casting, polymer casting, pultrusion, sheet molding compound (SMC) manufacturing, bulk molding compound (BMC) manufacturing, mixing, cleaning of equipment used in reinforced plastic composites manufacture, HAP-containing materials storage, and repair operations on parts you also manufacture.
- (c) The following operations are specifically excluded from any requirements in this subpart: application of mold sealing and release agents; mold stripping and cleaning; repair of parts that you did not manufacture, including nonroutine manufacturing of parts; personal activities that are not part of the manufacturing operations (such as hobby shops on military bases); prepreg materials as defined in §63.5935; non-gel coat surface coatings; application of putties, polyputties, and adhesives; repair or production materials that do not contain resin or gel coat; research and development operations as defined in section 112(c)(7) of the CAA; polymer casting; and closed molding operations (except for compression/injection molding). Note that the exclusion of certain operations from any requirements applies only to operations specifically listed in this paragraph. The requirements for any co-located operations still apply.
- (d) Production resins that must meet military specifications are allowed to meet the organic HAP limit contained in that specification. In order for this exemption to be used, you must supply to the permitting authority the specifications certified as accurate by the military procurement officer, and those specifications must state a requirement for a specific resin, or a specific resin HAP content. Production resins for which this exemption is used must be applied with nonatomizing resin application equipment unless you can demonstrate this is infeasible. You must keep a record of the resins for which you are using this exemption.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50124, Aug. 25, 2005]

§63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source?

- (a) A reinforced plastic composites production facility is a new affected source if it meets all the criteria in paragraphs (a)(1) and (2) of this section.
- (1) You commence construction of the source after August 2, 2001.
- (2) You commence construction, and no other reinforced plastic composites production source exists at that site.
- (b) For the purposes of this subpart, an existing affected source is any affected source that is not a new affected source.

[70 FR 50124, Aug. 25, 2005]

Calculating Organic HAP Emissions Factors for Open Molding and Centrifugal Casting

\$63.5796 What are the organic HAP emissions factor equations in Table 1 to this subpart, and how are they used in this subpart?

Emissions factors are used in this subpart to determine compliance with certain organic HAP emissions limits in Tables 3 and 5 to this subpart. You may use the equations in Table 1 to this subpart to calculate your emissions factors. Equations are available for each open molding operation and centrifugal casting operation and have units of pounds of organic HAP emitted per ton (lb/ton) of resin or gel coat applied. These equations are intended to provide a method for you to demonstrate compliance without the need to conduct for a HAP emissions test. In lieu of these equations, you can elect to use site-specific organic HAP emissions factors to demonstrate compliance provided your site-specific organic HAP emissions factors are incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data. You may also use the organic HAP emissions factors calculated using the equations in Table 1 to this subpart, combined with resin and gel coat use data, to calculate your organic HAP emissions.

§63.5797 How do I determine the organic HAP content of my resins and gel coats?

In order to determine the organic HAP content of resins and gel coats, you may rely on information provided by the material manufacturer, such as manufacturer's formulation data and material safety data sheets (MSDS), using the procedures specified in paragraphs (a) through (c) of this section, as applicable.

- (a) Include in the organic HAP total each organic HAP that is present at 0.1 percent by mass or more for Occupational Safety and Health Administration-defined carcinogens, as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other organic HAP compounds.
- (b) If the organic HAP content is provided by the material supplier or manufacturer as a range, you must use the upper limit of the range for determining compliance. If a separate measurement of the total organic HAP content, such as an analysis of the material by EPA Method 311 of appendix A to 40 CFR part 63, exceeds the upper limit of the range of the total organic HAP content provided by the material supplier or manufacturer, then you must use the measured organic HAP content to determine compliance.
- (c) If the organic HAP content is provided as a single value, you may use that value to determine compliance. If a separate measurement of the total organic HAP content is made and is less than 2 percentage points higher than the value for total organic HAP content provided by the material supplier or manufacturer, then you still may use the provided value to demonstrate compliance. If the measured total organic HAP content exceeds the provided value by 2 percentage points or more, then you must use the measured organic HAP content to determine compliance.

§63.5798 What if I want to use, or I manufacture, an application technology (new or existing) whose organic HAP emissions characteristics are not represented by the equations in Table 1 to this subpart?

If you wish to use a resin or gel coat application technology (new or existing), whose emission characteristics are not represented by the equations in Table 1 to this subpart, you may use the procedures in paragraphs (a) or (b) of this section to establish an organic HAP emissions factor. This organic HAP emissions factor may then be used to determine compliance with the emission limits in this subpart, and to calculate facility organic HAP emissions.

- (a) Perform an organic HAP emissions test to determine a site-specific organic HAP emissions factor using the test procedures in §63.5850.
- (b) Submit a petition to the Administrator for administrative review of this subpart. This petition must contain a description of the resin or gel coat application technology and supporting organic HAP emissions test data obtained using EPA test methods or their equivalent. The emission test data should be obtained using a range of resin or gel coat HAP contents to demonstrate the effectiveness of the technology under the different conditions, and to demonstrate that the technology will be effective at different sites. We will review the submitted data, and, if appropriate, update the equations in Table 1 to this subpart.

§63.5799 How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining which paragraphs of §63.5805 apply?

To calculate your facility's organic HAP emissions in tpy for purposes of determining which paragraphs in §63.5805 apply to you, you must use the procedures in either paragraph (a) of this section for new facilities prior to startup, or paragraph (b) of this section for existing facilities and new facilities after startup. You are not required to calculate or report emissions under this section if you are an existing facility that does not have centrifugal casting or continuous lamination/casting operations, or a new facility that does not have any of the following operations: Open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC and BMC manufacturing, and mixing. Emissions calculation and emission reporting procedures in other sections of this subpart still apply. Calculate organic HAP emissions prior to any add-on control device, and do not include organic HAP emissions from any resin or gel coat used in operations subject to the Boat Manufacturing NESHAP, 40 CFR part 63, subpart VVVV, or from the manufacture of large parts as defined in §63.5805(d)(2). For centrifugal casting operations at existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the Table 1 footnotes to this subpart present more information on calculating centrifugal casting organic HAP emissions. The timing and reporting of these calculations is discussed in paragraph (c) of this section.

- (a) For new facilities prior to startup, calculate a weighted average organic HAP emissions factor for the operations specified in §63.5805(c) and (d) on a lbs/ton of resin and gel coat basis. Base the weighted average on your projected operation for the 12 months subsequent to facility startup. Multiply the weighted average organic HAP emissions factor by projected resin use over the same period. You may calculate your organic HAP emissions factor based on the factors in Table 1 to this subpart, or you may use any HAP emissions factor approved by us, such as factors from the "Compilation of Air Pollutant Emissions Factors, Volume I: Stationary Point and Area Sources (AP-42)," or organic HAP emissions test data from similar facilities.
- (b) For existing facilities and new facilities after startup, you may use the procedures in either paragraph (b)(1) or (2) of this section. If the emission factors for an existing facility have changed over the period of time prior to their initial compliance date due to incorporation of pollution-prevention control techniques, existing facilities may base the average emission factor on their operations as they exist on the compliance date. If an existing facility has accepted an enforceable permit limit that would result in less than 100 tpy of HAP measured prior to any add-on controls, and can demonstrate that they will operate at that level subsequent to the compliance date, they can be deemed to be below the 100 tpy threshold.
- (1) Use a calculated emission factor. Calculate a weighted average organic HAP emissions factor on a lbs/ton of resin and gel coat basis. Base the weighted average on the prior 12 months of operation. Multiply the weighted average organic HAP emissions factor by resin and gel coat use over the same period. You may calculate this organic HAP emissions factor based on the equations in Table 1 to this subpart, or you may use any organic HAP emissions factor approved by us, such as factors from AP-42, or site-specific organic HAP emissions factors if they are supported by HAP emissions test data.
- (2) Conduct performance testing. Conduct performance testing using the test procedures in §63.5850 to determine a site-specific organic HAP emissions factor in units of lbs/ton of resin and gel coat used. Conduct the test under conditions expected to result in the highest possible organic HAP emissions. Multiply this factor by annual resin and gel coat use to determine annual organic HAP emissions. This calculation must be repeated and reported annually.
- (c) Existing facilities must initially perform this calculation based on their 12 months of operation prior to April 21, 2003, and include this information with their initial notification report. Existing facilities must repeat the calculation based on their resin and gel coat use in the 12 months prior to their initial compliance date, and submit this information with their initial compliance report. After their initial compliance date, existing and new facilities must recalculate organic HAP emissions over the 12-month period ending June 30 or December 31, whichever date is the first date following their compliance date specified in §63.5800. Subsequent calculations should cover the periods in the semiannual compliance reports.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50124, Aug. 25, 2005]

Compliance Dates and Standards

§63.5800 When do I have to comply with this subpart?

You must comply with the standards in this subpart by the dates specified in Table 2 to this subpart. Facilities meeting an organic HAP emissions standard based on a 12-month rolling average must begin collecting data on the compliance date in order to demonstrate compliance.

§63.5805 What standards must I meet to comply with this subpart?

You must meet the requirements of paragraphs (a) through (h) of this section that apply to you. You may elect to comply using any options to meet the standards described in §§63.5810 through 63.5830. Use the procedures in §63.5799 to determine if you meet or exceed the 100 tpy threshold.

- (a) If you have an existing facility that has any centrifugal casting or continuous casting/lamination operations, you must meet the requirements of paragraph (a)(1) or (2) of this section:
- (1) If the combination of all centrifugal casting and continuous lamination/casting operations emit 100 tpy or more of HAP, you must reduce the total organic HAP emissions from centrifugal casting and continuous lamination/casting operations by at least 95 percent by weight. As an alternative to meeting the 95 percent by weight requirement, centrifugal casting operations may meet the applicable organic HAP emissions limits in Table 5 to this subpart and continuous lamination/casting operations may meet an organic HAP emissions limit of 1.47 lbs/ton of neat resin plus and neat gel coat plus applied. For centrifugal casting, the percent reduction requirement does not apply to organic HAP emissions that occur during resin application onto an open centrifugal casting mold using open molding application techniques.
- (2) If the combination of all centrifugal casting and continuous lamination/casting operations emit less than 100 tpy of HAP, then centrifugal casting and continuous lamination/casting operations must meet the appropriate requirements in Table 3 to this subpart.
- (b) All operations at existing facilities not listed in paragraph (a) of this section must meet the organic HAP emissions limits in Table 3 to this subpart and the work practice standards in Table 4 to this subpart that apply, regardless of the quantity of HAP emitted.
- (c) If you have a new facility that emits less than 100 tpy of HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC manufacturing, mixing, and BMC manufacturing, you must meet the organic HAP emissions limits in Table 3 to this subpart and the work practice standards in Table 4 to this subpart that apply to you.
- (d)(1) Except as provided in paragraph (d)(2) of this section, if you have a new facility that emits 100 tpy or more of HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC manufacturing, mixing, and BMC manufacturing, you must reduce the total organic HAP emissions from these operations by at least 95 percent by weight and meet any applicable work practice standards in Table 4 to this subpart that apply to you. As an alternative to meeting 95 percent by weight, you may meet the organic HAP emissions limits in Table 5 to this subpart. If you have a continuous lamination/casting operation, that operation may alternatively meet an organic HAP emissions limit of 1.47 lbs/ton of neat resin plus and neat gel coat plus applied.
- (2)(i) If your new facility manufactures large reinforced plastic composites parts using open molding or pultrusion operations, the specific open molding and pultrusion operations used to produce large parts are not required to reduce HAP emissions by 95 weight percent, but must meet the emission limits in Table 3 to this subpart.
- (ii) A large open molding part is defined as a part that, when the final finished part is enclosed in the smallest rectangular six-sided box into which the part can fit, the total interior volume of the box exceeds 250 cubic feet, or any interior sides of the box exceed 50 square feet.

- (iii) A large pultruded part is a part that exceeds an outside perimeter of 24 inches or has more than 350 reinforcements.
- (e) If you have a new or existing facility subject to paragraph (a)(2) or (c) of this section at its initial compliance date that subsequently meets or exceeds the 100 tpy threshold in any calendar year, you must notify your permitting authority in your compliance report. You may at the same time request a one-time exemption from the requirements of paragraph (a)(1) or (d) of this section in your compliance report if you can demonstrate all of the following:
- (1) The exceedance of the threshold was due to circumstances that will not be repeated.
- (2) The average annual organic HAP emissions from the potentially affected operations for the last 3 years were below 100 tpy.
- (3) Projected organic HAP emissions for the next calendar year are below 100 tpy, based on projected resin and gel coat use and the HAP emission factors calculated according to the procedures in §63.5799.
- (f) If you apply for an exemption in paragraph (e) of this section and subsequently exceed the HAP emission thresholds specified in paragraph (a)(2) or (c) of this section over the next 12-month period, you must notify the permitting authority in your semiannual report, the exemption is removed, and your facility must comply with paragraph (a)(1) or (d) of this section within 3 years from the time your organic HAP emissions first exceeded the threshold.
- (g) If you have repair operations subject to this subpart as defined in §63.5785, these repair operations must meet the requirements in Tables 3 and 4 to this subpart and are not required to meet the 95 percent organic HAP emissions reduction requirements in paragraph (a)(1) or (d) of this section.
- (h) If you use an add-on control device to comply with this subpart, you must meet all requirements contained in 40 CFR part 63, subpart SS.

[70 FR 50124, Aug. 25, 2005]

Options for Meeting Standards

§63.5810 What are my options for meeting the standards for open molding and centrifugal casting operations at new and existing sources?

You must use one of the following methods in paragraphs (a) through (d) of this section to meet the standards for open molding or centrifugal casting operations in Table 3 or 5 to this subpart. You may use any control method that reduces organic HAP emissions, including reducing resin and gel coat organic HAP content, changing to nonatomized mechanical application, using covered curing techniques, and routing part or all of your emissions to an add-on control. You may use different compliance options for the different operations listed in Table 3 or 5 to this subpart. The necessary calculations must be completed within 30 days after the end of each month. You may switch between the compliance options in paragraphs (a) through (d) of this section. When you change to an option based on a 12-month rolling average, you must base the average on the previous 12 months of data calculated using the compliance option you are changing to, unless you were previously using an option that did not require you to maintain records of resin and gel coat use. In this case, you must immediately begin collecting resin and gel coat use data and demonstrate compliance 12 months after changing options.

(a) Demonstrate that an individual resin or gel coat, as applied, meets the applicable emission limit in Table 3 or 5 to this subpart. (1) Calculate your actual organic HAP emissions factor for each different process stream within each operation type. A process stream is defined as each individual combination of resin or gel coat, application technique, and control technique. Process streams within operations types are considered different from each other if any of the following four characteristics vary: the neat resin plus or neat gel coat plus organic HAP content, the gel

coat type, the application technique, or the control technique. You must calculate organic HAP emissions factors for each different process stream by using the appropriate equations in Table 1 to this subpart for open molding and for centrifugal casting, or site-specific organic HAP emissions factors discussed in §63.5796. The emission factor calculation should include any and all emission reduction techniques used including any add-on controls. If you are using vapor suppressants to reduce HAP emissions, you must determine the vapor suppressant effectiveness (VSE) by conducting testing according to the procedures specified in appendix A to subpart WWWW of 40 CFR part 63. If you are using an add-on control device to reduce HAP emissions, you must determine the add-on control factor by conducting capture and control efficiency testing using the procedures specified in §63.5850. The organic HAP emissions factor calculated from the equations in Table 1 to this subpart, or a site-specific emissions factor, is multiplied by the add-on control factor to calculate the organic HAP emissions factor after control. Use Equation 1 of this section to calculate the add-on control factor used in the organic HAP emissions factor equations.

Add-on Control Factor =
$$1 - \frac{\% \text{ Control Efficiency}}{100}$$
 (Eq. 1)

Where:

Percent Control Efficiency = a value calculated from organic HAP emissions test measurements made according to the requirements of §63.5850 to this subpart.

- (2) If the calculated emission factor is less than or equal to the appropriate emission limit, you have demonstrated that this process stream complies with the emission limit in Table 3 to this subpart. It is not necessary that all your process streams, considered individually, demonstrate compliance to use this option for some process streams. However, for any individual resin or gel coat you use, if any of the process streams that include that resin or gel coat are to be used in any averaging calculations described in paragraphs (b) through (d) of this section, then all process streams using that individual resin or gel coat must be included in the averaging calculations.
- (b) Demonstrate that, on average, you meet the individual organic HAP emissions limits for each combination of operation type and resin application method or gel coat type. Demonstrate that on average you meet the individual organic HAP emissions limits for each unique combination of operation type and resin application method or gel coat type shown in Table 3 to this subpart that applies to you.
- (1)(i) Group the process streams described in paragraph (a) to this section by operation type and resin application method or gel coat type listed in Table 3 to this subpart and then calculate a weighted average emission factor based on the amounts of each individual resin or gel coat used for the last 12 months. To do this, sum the product of each individual organic HAP emissions factor calculated in paragraph (a)(1) of this section and the amount of neat resin plus and neat gel coat plus usage that corresponds to the individual factors and divide the numerator by the total amount of neat resin plus and neat gel coat plus used in that operation type as shown in Equation 2 of this section.

Where:

Actual Process Stream EF_i = actual organic HAP emissions factor for process stream i, lbs/ton;

Material_i = neat resin plus or neat gel coat plus used during the last 12 calendar months for process stream i, tons;

n = number of process streams where you calculated an organic HAP emissions factor.

- (ii) You may, but are not required to, include process streams where you have demonstrated compliance as described in paragraph (a) of this section, subject to the limitations described in paragraph (a)(2) of this section, and you are not required to and should not include process streams for which you will demonstrate compliance using the procedures in paragraph (d) of this section.
- (2) Compare each organic HAP emissions factor calculated in paragraph (b)(1) of this section with its corresponding organic HAP emissions limit in Table 3 or 5 to this subpart. If all emissions factors are equal to or less than their corresponding emission limits, then you are in compliance.
- (c) Demonstrate compliance with a weighted average emission limit. Demonstrate each month that you meet each weighted average of the organic HAP emissions limits in Table 3 or 5 to this subpart that apply to you. When using this option, you must demonstrate compliance with the weighted average organic HAP emissions limit for all your open molding operations, and then separately demonstrate compliance with the weighted average organic HAP emissions limit for all your centrifugal casting operations. Open molding operations and centrifugal casting operations may not be averaged with each other.
- (1) Each month calculate the weighted average organic HAP emissions limit for all open molding operations and the weighted average organic HAP emissions limit for all centrifugal casting operations for your facility for the last 12-month period to determine the organic HAP emissions limit you must meet. To do this, multiply the individual organic HAP emissions limits in Table 3 or 5 to this subpart for each open molding (centrifugal casting) operation type by the amount of neat resin plus or neat gel coat plus used in the last 12 months for each open molding (centrifugal casting) operation type, sum these results, and then divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) over the last 12 months as shown in Equation 3 of this section.

Weighted Average Emission Limit=
$$\frac{\sum_{i=1}^{n} (EL_{i} * Material_{i})}{\sum_{i=1}^{n} Material_{i}}$$
 (Eq. 3)

Where:

EL_i = organic HAP emissions limit for operation type i, lbs/ton from Tables 3 or 5 to this subpart;

Material_i = neat resin plus or neat gel coat plus used during the last 12-month period for operation type i, tons;

n = number of operations.

(2) Each month calculate your weighted average organic HAP emissions factor for open molding and centrifugal casting. To do this, multiply your actual open molding (centrifugal casting) operation organic HAP emissions factors calculated in paragraph (b)(1) of this section and the amount of neat resin plus and neat gel coat plus used in each open molding (centrifugal casting) operation type, sum the results, and divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) operations as shown in Equation 4 of this section.

Actual Weighted

Average organic

HAP Emissions

Factor

$$\frac{\sum_{i=1}^{n} (Actual Operation EF_i * Material_i)}{\sum_{i=1}^{n} Material_i} \qquad (Eq. 4)$$

Where:

Actual Individual EF_i = Actual organic HAP emissions factor for operation type i, lbs/ton;

Material_i = neat resin plus or neat gel coat plus used during the last 12 calendar months for operation type i, tons;

n = number of operations.

- (3) Compare the values calculated in paragraphs (c)(1) and (2) of this section. If each 12-month rolling average organic HAP emissions factor is less than or equal to the corresponding 12-month rolling average organic HAP emissions limit, then you are in compliance.
- (d) Meet the organic HAP emissions limit for one application method and use the same resin(s) for all application methods of that resin type. This option is limited to resins of the same type. The resin types for which this option may be used are noncorrosion-resistant, corrosion-resistant and/or high strength, and tooling.
- (1) For any combination of manual resin application, mechanical resin application, filament application, or centrifugal casting, you may elect to meet the organic HAP emissions limit for any one of these application methods and use the same resin in all of the resin application methods listed in this paragraph (d)(1). Table 7 to this subpart presents the possible combinations based on a facility selecting the application process that results in the highest allowable organic HAP content resin. If the resin organic HAP content is below the applicable value shown in Table 7 to this subpart, the resin is in compliance.
- (2) You may also use a weighted average organic HAP content for each application method described in paragraph (d)(1) of this section. Calculate the weighted average organic HAP content monthly. Use Equation 2 in paragraph (b)(1) of this section except substitute organic HAP content for organic HAP emissions factor. You are in compliance if the weighted average organic HAP content based on the last 12 months of resin use is less than or equal to the applicable organic HAP contents in Table 7 to this subpart.
- (3) You may simultaneously use the averaging provisions in paragraph (b) or (c) of this section to demonstrate compliance for any operations and/or resins you do not include in your compliance demonstrations in paragraphs (d)(1) and (2) of this section. However, any resins for which you claim compliance under the option in paragraphs (d)(1) and (2) of this section may not be included in any of the averaging calculations described in paragraph (b) or (c) of this section.
- (4) You do not have to keep records of resin use for any of the individual resins where you demonstrate compliance under the option in paragraph (d)(1) of this section unless you elect to include that resin in the averaging calculations described in paragraph (d)(2) of this section.

[70 FR 50125, Aug. 25, 2005]

§63.5820 What are my options for meeting the standards for continuous lamination/casting operations?

You must use one or more of the options in paragraphs (a) through (d) of this section to meet the standards in §63.5805. Use the calculation procedures in §§63.5865 through 63.5890.

- (a) Compliant line option. Demonstrate that each continuous lamination line and each continuous casting line complies with the applicable standard.
- (b) Averaging option. Demonstrate that all continuous lamination and continuous casting lines combined, comply with the applicable standard.

- (c) *Add-on control device option*. If your operation must meet the 58.5 weight percent organic HAP emissions reduction limit in Table 3 to this subpart, you have the option of demonstrating that you achieve 95 percent reduction of all wet-out area organic HAP emissions.
- (d) Combination option. Use any combination of options in paragraphs (a) and (b) of this section or, for affected sources at existing facilities, any combination of options in paragraphs (a), (b), and (c) of this section (in which one or more lines meet the standards on their own, two or more lines averaged together meet the standards, and one or more lines have their wet-out areas controlled to a level of 95 percent).

§63.5830 What are my options for meeting the standards for pultrusion operations subject to the 60 weight percent organic HAP emissions reductions requirement?

You must use one or more of the options in paragraphs (a) through (e) of this section to meet the 60 weight percent organic HAP emissions limit in Table 3 to this subpart, as required in §63.5805.

- (a) Achieve an overall reduction in organic HAP emissions of 60 weight percent by capturing the organic HAP emissions and venting them to a control device or any combination of control devices. Conduct capture and destruction efficiency testing as specified in 63.5850 to this subpart to determine the percent organic HAP emissions reduction.
- (b) Design, install, and operate wet area enclosures and resin drip collection systems on pultrusion machines that meet the criteria in paragraphs (b)(1) through (10) of this section.
- (1) The enclosure must cover and enclose the open resin bath and the forming area in which reinforcements are prewet or wet-out and moving toward the die(s). The surfaces of the enclosure must be closed except for openings to allow material to enter and exit the enclosure.
- (2) For open bath pultrusion machines with a radio frequency pre-heat unit, the enclosure must extend from the beginning of the resin bath to within 12.5 inches or less of the entrance of the radio frequency pre-heat unit. If the stock that is within 12.5 inches or less of the entrance to the radio frequency pre-heat unit has any drip, it must be enclosed. The stock exiting the radio frequency pre-heat unit is not required to be in an enclosure if the stock has no drip between the exit of the radio frequency pre-heat unit to within 0.5 inches of the entrance of the die.
- (3) For open bath pultrusion machines without a radio frequency pre-heat unit, the enclosure must extend from the beginning of the resin bath to within 0.5 inches or less of the die entrance.
- (4) For pultrusion lines with pre-wet area(s) prior to direct die injection, no more than 12.5 inches of open wet stock is permitted between the entrance of the first pre-wet area and the entrance to the die. If the pre-wet stock has any drip, it must be enclosed.
- (5) The total open area of the enclosure must not exceed two times the cross sectional area of the puller window(s) and must comply with the requirements in paragraphs (b)(5)(i) through (iii) of this section.
- (i) All areas that are open need to be included in the total open area calculation with the exception of access panels, doors, and/or hatches that are part of the enclosure.
- (ii) The area that is displaced by entering reinforcement or exiting product is considered open.
- (iii) Areas that are covered by brush covers are considered closed.
- (6) Open areas for level control devices, monitoring devices, agitation shafts, and fill hoses must have no more than 1.0 inch clearance.

- (7) The access panels, doors, and/or hatches that are part of the enclosure must close tightly. Damaged access panels, doors, and/or hatches that do not close tightly must be replaced.
- (8) The enclosure may not be removed from the pultrusion line, and access panels, doors, and/or hatches that are part of the enclosure must remain closed whenever resin is in the bath, except for the time period discussed in paragraph (b)(9) of this section.
- (9) The maximum length of time the enclosure may be removed from the pultrusion line or the access panels, doors, and/or hatches and may be open, is 30 minutes per 8 hour shift, 45 minutes per 12 hour shift, or 90 minutes per day if the machine is operated for 24 hours in a day. The time restrictions do not apply if the open doors or panels do not cause the limit of two times the puller window area to be exceeded. Facilities may average the times that access panels, doors, and/or hatches are open across all operating lines. In that case the average must not exceed the times shown in this paragraph (b)(9). All lines included in the average must have operated the entire time period being averaged.
- (10) No fans, blowers, and/or air lines may be allowed within the enclosure. The enclosure must not be ventilated.
- (c) Use direct die injection pultrusion machines with resin drip collection systems that meet all the criteria specified in paragraphs (c)(1) through (3) of this section.
- (1) All the resin that is applied to the reinforcement is delivered directly to the die.
- (2) No exposed resin is present, except at the face of the die.
- (3) Resin drip is captured in a closed system and recycled back to the process.
- (d) Use a preform injection system that meets the definition in §63.5935
- (e) Use any combination of options in paragraphs (a) through (d) of this section in which different pultrusion lines comply with different options described in paragraphs (a) through (d) of this section, and
- (1) Each individual pultrusion machine meets the 60 percent reduction requirement, or
- (2) The weighted average reduction based on resin throughput of all machines combined is 60 percent. For purposes of the average percent reduction calculation, wet area enclosures reduce organic HAP emissions by 60 percent, and direct die injection and preform injection reduce organic HAP emissions by 90 percent.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50127, Aug. 25, 2005]

General Compliance Requirements

§63.5835 What are my general requirements for complying with this subpart?

- (a) You must be in compliance at all times with the work practice standards in Table 4 to this subpart, as well as the organic HAP emissions limits in Tables 3, or 5, or the organic HAP content limits in Table 7 to this subpart, as applicable, that you are meeting without the use of add-on controls.
- (b) You must be in compliance with all organic HAP emissions limits in this subpart that you meet using add-on controls, except during periods of startup, shutdown, and malfunction.
- (c) You must always operate and maintain your affected source, including air pollution control and monitoring equipment, according to the provisions in §63.6(e)(1)(i).

(d) You must develop a written startup, shutdown, and malfunction plan according to the provisions in §63.6(e)(3) for any organic HAP emissions limits you meet using an add-on control.

[68 FR 19402, Apr. 21, 2003, as amended at 71 FR 20466, Apr. 20, 2006]

Testing and Initial Compliance Requirements

§63.5840 By what date must I conduct a performance test or other initial compliance demonstration?

You must conduct performance tests, performance evaluations, design evaluations, capture efficiency testing, and other initial compliance demonstrations by the compliance date specified in Table 2 to this subpart, with three exceptions. Open molding and centrifugal casting operations that elect to meet an organic HAP emissions limit on a 12-month rolling average must initiate collection of the required data on the compliance date, and demonstrate compliance 1 year after the compliance date. New sources that use add-on controls to initially meet compliance must demonstrate compliance within 180 days after their compliance date.

§63.5845 When must I conduct subsequent performance tests?

You must conduct a performance test every 5 years following the initial performance test for any standard you meet with an add-on control device.

§63.5850 How do I conduct performance tests, performance evaluations, and design evaluations?

- (a) If you are using any add-on controls to meet an organic HAP emissions limit in this subpart, you must conduct each performance test, performance evaluation, and design evaluation in 40 CFR part 63, subpart SS, that applies to you. The basic requirements for performance tests, performance evaluations, and design evaluations are presented in Table 6 to this subpart.
- (b) Each performance test must be conducted according to the requirements in §63.7(e)(1) and under the specific conditions that 40 CFR part 63, subpart SS, specifies.
- (c) Each performance evaluation must be conducted according to the requirements in §63.8(e) as applicable and under the specific conditions that 40 CFR part 63, subpart SS, specifies.
- (d) You may not conduct performance tests or performance evaluations during periods of startup, shutdown, or malfunction, as specified in §63.7(e)(1).
- (e) You must conduct the control device performance test using the emission measurement methods specified in paragraphs (e)(1) through (5) of this section.
- (1) Use either Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select the sampling sites.
- (2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.
- (3) Use Method 18 of appendix A to 40 CFR part 60 to measure organic HAP emissions or use Method 25A of appendix A to 40 CFR part 60 to measure total gaseous organic emissions as a surrogate for total organic HAP emissions. If you use Method 25A, you must assume that all gaseous organic emissions measured as carbon are organic HAP emissions. If you use Method 18 and the number of organic HAP in the exhaust stream exceeds five, you must take into account the use of multiple chromatographic columns and analytical techniques to get an accurate measure of at least 90 percent of the total organic HAP mass emissions. Do not use Method 18 to measure organic HAP emissions from a combustion device; use instead Method 25A and assume that all gaseous organic mass emissions measured as carbon are organic HAP emissions.

- (4) You may use American Society for Testing and Materials (ASTM) D6420-99 (available for purchase from at least one of the following addresses: 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.) in lieu of Method 18 of 40 CFR part 60, appendix A, under the conditions specified in paragraphs (c)(4)(i) through (iii) of this section.
- (i) If the target compound(s) is listed in Section 1.1 of ASTM D6420-99 and the target concentration is between 150 parts per billion by volume and 100 parts per million by volume.
- (ii) If the target compound(s) is not listed in Section 1.1 of ASTM D6420-99, but is potentially detected by mass spectrometry, an additional system continuing calibration check after each run, as detailed in Section 10.5.3 of ASTM D6420-99, must be followed, met, documented, and submitted with the performance test report even if you do not use a moisture condenser or the compound is not considered soluble.
- (iii) If a minimum of one sample/analysis cycle is completed at least every 15 minutes.
- (5) Use the procedures in EPA Method 3B of appendix A to 40 CFR part 60 to determine an oxygen correction factor if required by §63.997(e)(2)(iii)(C). You may use American Society of Mechanical Engineers (ASME) PTC 19-10-1981-Part 10 (available for purchase from ASME, P.O. Box 2900, 22 Law Drive, Fairfield, New Jersey, 07007-2900, or online at www.asme.org/catalog) as an alternative to EPA Method 3B of appendix A to 40 CFR part 60.
- (f) The control device performance test must consist of three runs and each run must last at least 1 hour. The production conditions during the test runs must represent normal production conditions with respect to the types of parts being made and material application methods. The production conditions during the test must also represent maximum potential emissions with respect to the organic HAP content of the materials being applied and the material application rates.
- (g) If you are using a concentrator/oxidizer control device, you must test the combined flow upstream of the concentrator, and the combined outlet flow from both the oxidizer and the concentrator to determine the overall control device efficiency. If the outlet flow from the concentrator and oxidizer are exhausted in separate stacks, you must test both stacks simultaneously with the inlet to the concentrator to determine the overall control device efficiency.
- (h) During the test, you must also monitor and record separately the amounts of production resin, tooling resin, pigmented gel coat, clear gel coat, and tooling gel coat applied inside the enclosure that is vented to the control device.

§63.5855 What are my monitor installation and operation requirements?

You must monitor and operate all add-on control devices according to the procedures in 40 CFR part 63, subpart SS.

§63.5860 How do I demonstrate initial compliance with the standards?

- (a) You demonstrate initial compliance with each organic HAP emissions standard in paragraphs (a) through (h) of §63.5805 that applies to you by using the procedures shown in Tables 8 and 9 to this subpart.
- (b) If using an add-on control device to demonstrate compliance, you must also establish each control device operating limit in 40 CFR part 63, subpart SS, that applies to you.

Emission Factor, Percent Reduction, and Capture Efficiency Calculation Procedures for Continuous Lamination/Casting Operations

§63.5865 What data must I generate to demonstrate compliance with the standards for continuous lamination/casting operations?

- (a) For continuous lamination/casting affected sources complying with a percent reduction requirement, you must generate the data identified in Tables 10 and 11 to this subpart for each data requirement that applies to your facility.
- (b) For continuous lamination/casting affected sources complying with a lbs/ton limit, you must generate the data identified in Tables 11 and 12 to this subpart for each data requirement that applies to your facility.

§63.5870 How do I calculate annual uncontrolled and controlled organic HAP emissions from my wet-out area(s) and from my oven(s) for continuous lamination/casting operations?

To calculate your annual uncontrolled and controlled organic HAP emissions from your wet-out areas and from your ovens, you must develop uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to apply to each formula applied on each line, determine how much of each formula for each end product is applied each year on each line, and assign uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to each formula. You must determine the overall capture efficiency using the procedures in §63.5850 to this subpart.

- (a) To develop uncontrolled and controlled organic HAP emissions estimation equations and factors, you must, at a minimum, do the following, as specified in paragraphs (a)(1) through (6) of this section:
- (1) Identify each end product and the thickness of each end product produced on the line. Separate end products into the following end product groupings, as applicable: corrosion-resistant gel coated end products, noncorrosion-resistant gel coated end products, corrosion-resistant nongel coated end products. This step creates end product/thickness combinations.
- (2) Identify each formula used on the line to produce each end product/thickness combination. Identify the amount of each such formula applied per year. Rank each formula used to produce each end product/thickness combination according to usage within each end product/thickness combination.
- (3) For each end product/thickness combination being produced, select the formula with the highest usage rate for testing.
- (4) If not already selected, also select the worst-case formula (likely to be associated with the formula with the highest organic HAP content, type of HAP, application of gel coat, thin product, low line speed, higher resin table temperature) amongst all formulae. (You may use the results of the worst-case formula test for all formulae if desired to limit the amount of testing required.)
- (5) For each formula selected for testing, conduct at least one test (consisting of three runs). During the test, track information on organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table.
- (6) Using the test results, develop uncontrolled and controlled organic HAP emissions estimation equations (or factors) or series of equations (or factors) that best fit the results for estimating uncontrolled and controlled organic HAP emissions, taking into account the organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table.
- (b) In lieu of using the method specified in paragraph (a) of this section for developing uncontrolled and controlled organic HAP emissions estimation equations and factors, you may either method specified in paragraphs (b)(1) and (2) of this section, as applicable.

- (1) For either uncontrolled or controlled organic HAP emissions estimates, you may use previously established, facility-specific organic HAP emissions equations or factors, provided they allow estimation of both wet-out area and oven organic HAP emissions, where necessary, and have been approved by your permitting authority. If a previously established equation or factor is specific to the wet-out area only, or to the oven only, then you must develop the corresponding uncontrolled or controlled equation or factor for the other organic HAP emissions source.
- (2) For uncontrolled (controlled) organic HAP emissions estimates, you may use controlled (uncontrolled) organic HAP emissions estimates and control device destruction efficiency to calculate your uncontrolled (controlled) organic HAP emissions provided the control device destruction efficiency was calculated at the same time you collected the data to develop your facility's controlled (uncontrolled) organic HAP emissions estimation equations and factors.
- (c) Assign to each formula an uncontrolled organic HAP emissions estimation equation or factor based on the end product/thickness combination for which that formula is used.
- (d)(1) To calculate your annual uncontrolled organic HAP emissions from wet-out areas that do not have any capture and control and from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to a control device, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results.
- (2) To calculate your annual uncontrolled organic HAP emissions that escape from the enclosure on the wet-out area, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor, sum the individual results, and multiply the summation by 1 minus the percent capture (expressed as a fraction).
- (3) To calculate your annual uncontrolled oven organic HAP emissions, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor and sum the individual results.
- (4) To calculate your annual controlled organic HAP emissions, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results to obtain total annual controlled organic HAP emissions.
- (e) Where a facility is calculating both uncontrolled and controlled organic HAP emissions estimation equations and factors, you must test the same formulae. In addition, you must develop both sets of equations and factors from the same tests.

§63.5875 How do I determine the capture efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations?

- (a) The capture efficiency of a wet-out area enclosure is assumed to be 100 percent if it meets the design and operation requirements for a permanent total enclosure (PTE) specified in EPA Method 204 of appendix M to 40 CFR part 51. If a PTE does not exist, then a temporary total enclosure must be constructed and verified using EPA Method 204, and capture efficiency testing must be determined using EPA Methods 204B through E of appendix M to 40 CFR part 51.
- (b) The capture efficiency of an oven is to be considered 100 percent, provided the oven is operated under negative pressure.

§63.5880 How do I determine how much neat resin plus is applied to the line and how much neat gel coat plus is applied to the line for continuous lamination/casting operations?

Use the following procedures to determine how much neat resin plus and neat gel coat plus is applied to the line each year.

- (a) Track formula usage by end product/thickness combinations.
- (b) Use in-house records to show usage. This may be either from automated systems or manual records.
- (c) Record daily the usage of each formula/end product combination on each line. This is to be recorded at the end of each run (*i.e.*, when a changeover in formula or product is made) and at the end of each shift.
- (d) Sum the amounts from the daily records to calculate annual usage of each formula/end product combination by line.

§63.5885 How do I calculate percent reduction to demonstrate compliance for continuous lamination/casting operations?

You may calculate percent reduction using any of the methods in paragraphs (a) through (d) of this section.

(a) Compliant line option. If all of your wet-out areas have PTE that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51, and all of your wet-out area organic HAP emissions and oven organic HAP emissions are vented to an add-on control device, use Equation 1 of this section to demonstrate compliance. In all other situations, use Equation 2 of this section to demonstrate compliance.

$$PR = \frac{(\text{Inlet}) - (\text{Outlet})}{(\text{Inlet})} \times 100 \quad \text{(Eq. 1)}$$

Where:

PR = percent reduction;

Inlet + HAP emissions entering the control device, lbs per year;

Outlet = HAP emissions existing the control device to the atmosphere, lbs per year.

$$PR = \frac{(WAE_{ci} + O_{ci}) - (WAE_{co} + O_{co})}{(WAE_{ci} + WAE_{u} + O_{ci} + O_{u})} \times 100$$
 (Eq. 2)

Where:

PR = percent reduction;

WAEi_{ci} = wet-out area organic HAP emissions, lbs per year, vented to a control device;

WAEi_u = wet-out area organic HAP emissions, lbs per year, not vented to a control device;

Oj_u = oven organic HAP emissions, lbs per year, not vented to a control device;

Oj_{ci} = oven organic HAP emissions, lbs per year, vented to a control device;

 $WAEi_{co}$ = wet-out area organic HAP emissions, lbs per year, from the control device outlet;

 Oj_{co} = oven organic HAP emissions, lbs per year, from the control device outlet.

(b) Averaging option. Use Equation 3 of this section to calculate percent reduction.

$$PR = \frac{\left(\sum_{i=1}^{m} WAEi_{ci} + \sum_{j=1}^{n} Oj_{ci}\right) - \left(\sum_{i=1}^{m} WAEi_{co} + \sum_{j=1}^{n} Oj_{co}\right)}{\left(\sum_{i=1}^{m} WAEi_{ci} + \sum_{j=1}^{n} Oj_{ci} + \sum_{i=1}^{m} WAEi_{u} + \sum_{j=1}^{n} Oj_{u}\right)} \times 100$$
 (Eq. 3)

Where:

PR = percent reduction;

WAEici = wet-out area organic HAP emissions from wet-out area i, lbs per year, sent to a control device;

WAEi_u = wet-out area organic HAP emissions from wet-out area i, lbs per year, not sent to a control device;

WAEi_{co} = wet-out area organic HAP emissions from wet-out area i, lbs per year, at the outlet of a control device;

 Oj_u = organic HAP emissions from oven j, lbs per year, not sent to a control device;

Oj_{ci} = organic HAP emissions from oven j, lbs per year, sent to a control device;

 Oj_{co} = organic HAP emissions from oven j, lbs per year, at the outlet of the control device;

m = number of wet-out areas;

n = number of ovens.

- (c) Add-on control device option. Use Equation 1 of this section to calculate percent reduction.
- (d) Combination option. Use Equations 1 through 3 of this section, as applicable, to calculate percent reduction.

[70 FR 50127, Aug. 25, 2005]

§63.5890 How do I calculate an organic HAP emissions factor to demonstrate compliance for continuous lamination/casting operations?

(a) Compliant line option. Use Equation 1 of this section to calculate an organic HAP emissions factor in lbs/ton.

$$E = \frac{WAE_u + WAE_c + O_u + O_c}{(R + G)} \quad (Eq. \ 1)$$

Where:

E = HAP emissions factor in lbs/ton of resin and gel coat

WAE_u = uncontrolled wet-out area organic HAP emissions, lbs per year

WAE_c = controlled wet-out area organic HAP emissions, lbs per year

O_u = uncontrolled oven organic HAP emissions, lbs per year

O_c = controlled oven organic HAP emissions, lbs per year

R = total usage of neat resin plus, tpy

G = total usage of neat gel coat plus, tpy

(b) Averaging option. Use Equation 2 of this section to demonstrate compliance.

$$E = \frac{\sum_{i=1}^{m} WAE_{ui} + \sum_{i=1}^{o} WAE_{ci} + \sum_{j=1}^{n} O_{uj} + \sum_{j=1}^{p} O_{cj}}{(R + G)}$$
 (Eq. 2)

Where:

E = HAP emissions factor in lbs/ton of resin and gel coat

 WAE_{ui} = uncontrolled organic HAP emissions from wet-out area i, lbs per year

 $WAE_{ci} = controlled organic HAP emissions from wet-out area i, lbs per year$

 O_{uj} = uncontrolled organic HAP emissions from oven j, lbs per year

 O_{cj} = controlled organic HAP emissions from oven j, lbs per year

i = number of wet-out areas

j = number of ovens

m = number of wet-out areas uncontrolled

n = number of ovens uncontrolled

o = number of wet-out areas controlled

p = number of ovens controlled

R = total usage of neat resin plus, tpy

G = total usage of neat gel coat plus, tpy

(c) Combination option. Use Equations 1 and 2 of this section, as applicable, to demonstrate compliance.

Continuous Compliance Requirements

§63.5895 How do I monitor and collect data to demonstrate continuous compliance?

- (a) During production, you must collect and keep a record of data as indicated in 40 CFR part 63, subpart SS, if you are using an add-on control device.
- (b) You must monitor and collect data as specified in paragraphs (b)(1) through (4) of this section.
- (1) Except for monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), you must conduct all monitoring in continuous operation (or collect data at all required intervals) at all times that the affected source is operating.
- (2) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities for purposes to this subpart, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. You must use all the data collected during all other periods in assessing the operation of the control device and associated control system.
- (3) At all times, you must maintain necessary parts for routine repairs of the monitoring equipment.
- (4) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring equipment to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.
- (c) You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP emissions limits based on an organic HAP emissions limit in Tables 3 or 5 to this subpart. You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP content limits in Table 7 to this subpart if you are averaging organic HAP contents. Resin use records may be based on purchase records if you can reasonably estimate how the resin is applied. The organic HAP content records may be based on MSDS or on resin specifications supplied by the resin supplier.
- (d) Resin and gel coat use records are not required for the individual resins and gel coats that are demonstrated, as applied, to meet their applicable emission as defined in §63.5810(a). However, you must retain the records of resin and gel coat organic HAP content, and you must include the list of these resins and gel coats and identify their application methods in your semiannual compliance reports. If after you have initially demonstrated that a specific combination of an individual resin or gel coat, application method, and controls meets its applicable emission limit, and the resin or gel coat changes or the organic HAP content increases, or you change the application method or controls, then you again must demonstrate that the individual resin or gel coat meets its emission limit as specified in paragraph (a) of §63.5810. If any of the previously mentioned changes results in a situation where an individual resin or gel coat now exceeds its applicable emission limit in Table 3 or 5 of this subpart, you must begin collecting resin and gel coat use records and calculate compliance using one of the averaging options on a 12-month rolling average.
- (e) For each of your pultrusion machines, you must record all times that wet area enclosures doors or covers are open and there is resin present in the resin bath.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005]

§63.5900 How do I demonstrate continuous compliance with the standards?

(a) You must demonstrate continuous compliance with each standard in §63.5805 that applies to you according to the methods specified in paragraphs (a)(1) through (3) of this section.

- (1) Compliance with organic HAP emissions limits for sources using add-on control devices is demonstrated following the procedures in 40 CFR part 63, subpart SS. Sources using add-on controls may also use continuous emissions monitors to demonstrate continuous compliance as an alternative to control parameter monitoring.
- (2) Compliance with organic HAP emissions limits is demonstrated by maintaining an organic HAP emissions factor value less than or equal to the appropriate organic HAP emissions limit listed in Table 3 or 5 to this subpart, on a 12-month rolling average, and/or by including in each compliance report a statement that individual resins and gel coats, as applied, meet the appropriate organic HAP emissions limits, as discussed in §63.5895(d).
- (3) Compliance with organic HAP content limits in Table 7 to this subpart is demonstrated by maintaining an average organic HAP content value less than or equal to the appropriate organic HAP contents listed in Table 7 to this subpart, on a 12-month rolling average, and/or by including in each compliance report a statement that resins and gel coats individually meet the appropriate organic HAP content limits in Table 7 to this subpart, as discussed in §63.5895(d).
- (4) Compliance with the work practice standards in Table 4 to this subpart is demonstrated by performing the work practice required for your operation.
- (b) You must report each deviation from each standard in §63.5805 that applies to you. The deviations must be reported according to the requirements in §63.5910.
- (c) Except as provided in paragraph (d) of this section, during periods of startup, shutdown or malfunction, you must meet the organic HAP emissions limits and work practice standards that apply to you.
- (d) When you use an add-on control device to meet standards in §63.5805, you are not required to meet those standards during periods of startup, shutdown, or malfunction, but you must operate your affected source to minimize emissions in accordance with §63.6(e)(1).
- (e) Consistent with §§63.6(e) and 63.7(e)(1), deviations that occur during a period of malfunction for those affected sources and standards specified in paragraph (d) of this section are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with §63.6(e)(1). The Administrator will determine whether deviations that occur during a period of startup, shutdown, and malfunction are violations, according to the provisions in §63.6(e).

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005; 71 FR 20466, Apr. 20, 2006]

Notifications, Reports, and Records

§63.5905 What notifications must I submit and when?

- (a) You must submit all of the notifications in Table 13 to this subpart that apply to you by the dates specified in Table 13 to this subpart. The notifications are described more fully in 40 CFR part 63, subpart A, referenced in Table 13 to this subpart.
- (b) If you change any information submitted in any notification, you must submit the changes in writing to the Administrator within 15 calendar days after the change.

§63.5910 What reports must I submit and when?

(a) You must submit each report in Table 14 to this subpart that applies to you.

- (b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date specified in Table 14 to this subpart and according to paragraphs (b)(1) through (5) of this section.
- (1) The first compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.5800 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.5800.
- (2) The first compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.5800.
- (3) Each subsequent compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.
- (4) Each subsequent compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.
- (5) For each affected source that is subject to permitting requirements pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to §70.6 (a)(3)(iii)(A) or §71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (4) of this section.
- (c) The compliance report must contain the information in paragraphs (c)(1) through (6) of this section:
- (1) Company name and address.
- (2) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.
- (3) Date of the report and beginning and ending dates of the reporting period.
- (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information in §63.10(d)(5)(i).
- (5) If there are no deviations from any organic HAP emissions limitations (emissions limit and operating limit) that apply to you, and there are no deviations from the requirements for work practice standards in Table 4 to this subpart, a statement that there were no deviations from the organic HAP emissions limitations or work practice standards during the reporting period.
- (6) If there were no periods during which the continuous monitoring system (CMS), including a continuous emissions monitoring system (CEMS) and an operating parameter monitoring system were out of control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out of control during the reporting period.
- (d) For each deviation from an organic HAP emissions limitation (*i.e.*, emissions limit and operating limit) and for each deviation from the requirements for work practice standards that occurs at an affected source where you are not using a CMS to comply with the organic HAP emissions limitations or work practice standards in this subpart, the compliance report must contain the information in paragraphs (c)(1) through (4) of this section and in paragraphs (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction.
- (1) The total operating time of each affected source during the reporting period.

- (2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
- (e) For each deviation from an organic HAP emissions limitation (*i.e.*, emissions limit and operating limit) occurring at an affected source where you are using a CMS to comply with the organic HAP emissions limitation in this subpart, you must include the information in paragraphs (c)(1) through (4) of this section and in paragraphs (e)(1) through (12) of this section. This includes periods of startup, shutdown, and malfunction.
- (1) The date and time that each malfunction started and stopped.
- (2) The date and time that each CMS was inoperative, except for zero (low-level) and high-level checks.
- (3) The date, time, and duration that each CMS was out of control, including the information in §63.8(c)(8).
- (4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of startup, shutdown, or malfunction, or during another period.
- (5) A summary of the total duration of the deviation during the reporting period and the total duration as a percent of the total source operating time during that reporting period.
- (6) A breakdown of the total duration of the deviations during the reporting period into those that are due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes.
- (7) A summary of the total duration of CMS downtime during the reporting period and the total duration of CMS downtime as a percent of the total source operating time during that reporting period.
- (8) An identification of each organic HAP that was monitored at the affected source.
- (9) A brief description of the process units.
- (10) A brief description of the CMS.
- (11) The date of the latest CMS certification or audit.
- (12) A description of any changes in CMS, processes, or controls since the last reporting period.
- (f) You must report if you have exceeded the 100 tpy organic HAP emissions threshold if that exceedance would make your facility subject to §63.5805(a)(1) or (d). Include with this report any request for an exemption under §63.5805(e). If you receive an exemption under §63.5805(e) and subsequently exceed the 100 tpy organic HAP emissions threshold, you must report this exceedance as required in §63.5805(f).
- (g) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by \$70.6(a)(3)(iii)(A) or \$71.6(a)(3)(iii)(A). If an affected source submits a compliance report pursuant to Table 14 to this subpart along with, or as part of, the semiannual monitoring report required by \$70.6(a)(3)(iii)(A) or \$71.6(a)(3)(iii)(A), and the compliance report includes all required information concerning deviations from any organic HAP emissions limitation (including any operating limit) or work practice requirement in this subpart, submission of the compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permitting authority.

- (h) Submit compliance reports and startup, shutdown, and malfunction reports based on the requirements in table 14 to this subpart, and not based on the requirements in §63.999.
- (i) Where multiple compliance options are available, you must state in your next compliance report if you have changed compliance options since your last compliance report.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005]

§63.5915 What records must I keep?

- (a) You must keep the records listed in paragraphs (a)(1) through (3) of this section.
- (1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirements in §63.10(b)(2)(xiv).
- (2) The records in §63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction.
- (3) Records of performance tests, design, and performance evaluations as required in §63.10(b)(2).
- (b) If you use an add-on control device, you must keep all records required in 40 CFR part 63, subpart SS, to show continuous compliance with this subpart.
- (c) You must keep all data, assumptions, and calculations used to determine organic HAP emissions factors or average organic HAP contents for operations listed in tables 3, 5, and 7 to this subpart.
- (d) You must keep a certified statement that you are in compliance with the work practice requirements in Table 4 to this subpart, as applicable.
- (e) For a new or existing continuous lamination/ casting operation, you must keep the records listed in paragraphs (e)(1) through (4) of this section, when complying with the percent reduction and/or lbs/ton requirements specified in paragraphs (a) and (c) through (d) of §63.5805.
- (1) You must keep all data, assumptions, and calculations used to determine percent reduction and/or lbs/ton as applicable;
- (2) You must keep a brief description of the rationale for the assignment of an equation or factor to each formula;
- (3) When using facility-specific organic HAP emissions estimation equations or factors, you must keep all data, assumptions, and calculations used to derive the organic HAP emissions estimation equations and factors and identification and rationale for the worst-case formula; and
- (4) For all organic HAP emissions estimation equations and organic HAP emissions factors, you must keep documentation that the appropriate permitting authority has approved them.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50129, Aug. 25, 2005]

§63.5920 In what form and how long must I keep my records?

(a) You must maintain all applicable records in such a manner that they can be readily accessed and are suitable for inspection according to §63.10(b)(1).

- (b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- (c) You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1). You can keep the records offsite for the remaining 3 years.
- (d) You may keep records in hard copy or computer readable form including, but not limited to, paper, microfilm, computer floppy disk, magnetic tape, or microfiche.

Other Requirements and Information

§63.5925 What parts of the General Provisions apply to me?

Table 15 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you.

§63.5930 Who implements and enforces this subpart?

- (a) This subpart can be administered by us, the EPA, or a delegated authority such as your State, local, or tribal agency. If the EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency has the authority to administer and enforce this subpart. You should contact your EPA Regional Office to find out if this subpart is delegated to your State, local, or tribal agency.
- (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are not delegated.
- (c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (4) of this section:
- (1) Approval of alternatives to the organic HAP emissions standards in §63.5805 under §63.6(g).
- (2) Approval of major changes to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.
- (3) Approval of major changes to monitoring under §63.8(f) and as defined in §63.90.
- (4) Approval of major changes to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

§63.5935 What definitions apply to this subpart?

Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows:

Atomized mechanical application means application of resin or gel coat with spray equipment that separates the liquid into a fine mist. This fine mist may be created by forcing the liquid under high pressure through an elliptical orifice, bombarding a liquid stream with directed air jets, or a combination of these techniques.

Bulk molding compound (BMC) means a putty-like molding compound containing resin(s) in a form that is ready to mold. In addition to resins, BMC may contain catalysts, fillers, and reinforcements. Bulk molding compound can be used in compression molding and injection molding operations to manufacture reinforced plastic composites products.

BMC manufacturing means a process that involves the preparation of BMC.

Centrifugal casting means a process for fabricating cylindrical composites, such as pipes, in which composite materials are positioned inside a rotating hollow mandrel and held in place by centrifugal forces until the part is sufficiently cured to maintain its physical shape.

Charge means the amount of SMC or BMC that is placed into a compression or injection mold necessary to complete one mold cycle.

Cleaning means removal of composite materials, such as cured and uncured resin from equipment, finished surfaces, floors, hands of employees, or any other surfaces.

Clear production gel coat means an unpigmented, quick-setting resin used to improve the surface appearance and/or performance of composites. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Closed molding means a grouping of processes for fabricating composites in a way that HAP-containing materials are not exposed to the atmosphere except during the material loading stage (e.g., compression molding, injection molding, and resin transfer molding). Processes where the mold is covered with plastic (or equivalent material) prior to resin application, and the resin is injected into the covered mold are also considered closed molding.

Composite means a shaped and cured part produced by using composite materials.

Composite materials means the raw materials used to make composites. The raw materials include styrene containing resins. They may also include gel coat, monomer, catalyst, pigment, filler, and reinforcement.

Compression molding means a closed molding process for fabricating composites in which composite materials are placed inside matched dies that are used to cure the materials under heat and pressure without exposure to the atmosphere. The addition of mold paste or in-mold coating is considered part of the closed molding process. The composite materials used in this process are generally SMC or BMC.

Compression/injection molding means a grouping of processes that involves the use of compression molding and/or injection molding.

Continuous casting means a continuous process for fabricating composites in which composite materials are placed on an in-line conveyor belt to produce cast sheets that are cured in an oven.

Continuous lamination means a continuous process for fabricating composites in which composite materials are typically sandwiched between plastic films, pulled through compaction rollers, and cured in an oven. This process is generally used to produce flat or corrugated products on an in-line conveyor.

Continuous lamination/casting means a grouping of processes that involves the use of continuous lamination and/or continuous casting.

Controlled emissions means those organic HAP emissions that are vented from a control device to the atmosphere.

Corrosion-resistant gel coat means a gel coat used on a product made with a corrosion-resistant resin that has a corrosion-resistant end-use application.

Corrosion-resistant end-use applications means applications where the product is manufactured specifically for an application that requires a level of chemical inertness or resistance to chemical attack above that required for typical reinforced plastic composites products. These applications include, but are not limited to, chemical processing and storage; pulp and paper production; sewer and wastewater treatment; power generation; potable water transfer and storage; food and drug processing; pollution or odor control; metals production and plating; semiconductor

manufacturing; petroleum production, refining, and storage; mining; textile production; nuclear materials storage; swimming pools; and cosmetic production, as well as end-use applications that require high strength resins.

Corrosion-resistant industry standard includes the following standards: ASME RTP-1 or Sect. X; ASTM D5364, D3299, D4097, D2996, D2997, D3262, D3517, D3754, D3840, D4024, D4160, D4161, D4162, D4184, D3982, or D3839; ANSI/AWWA C950; UL 215, 1316 or 1746, IAPMO PS-199, or written customer requirements for resistance to specified chemical environments.

Corrosion-resistant product means a product made with a corrosion-resistant resin and is manufactured to a corrosion-resistant industry standard, or a food contact industry standard, or is manufactured for corrosion-resistant end-use applications involving continuous or temporary chemical exposures.

Corrosion-resistant resin means a resin that either:

- (1) Displays substantial retention of mechanical properties when undergoing ASTM C-581 coupon testing, where the resin is exposed for 6 months or more to one of the following materials: Material with a pH \geq 2.0 or \leq 3.0, oxidizing or reducing agents, organic solvents, or fuels or additives as defined in 40 CFR 79.2. In the coupon testing, the exposed resin needs to demonstrate a minimum of 50 percent retention of the relevant mechanical property compared to the same resin in unexposed condition. In addition, the exposed resin needs to demonstrate an increased retention of the relevant mechanical property of at least 20 percentage points when compared to a similarly exposed general-purpose resin. For example, if the general-purpose resin retains 45 percent of the relevant property when tested as specified above, then a corrosion-resistant resin needs to retain at least 65 percent (45 percent plus 20 percent) of its property. The general-purpose resin used in the test needs to have an average molecular weight of greater than 1,000, be formulated with a 1:2 ratio of maleic anhydride to phthalic anhydride and 100 percent diethylene glycol, and a styrene content between 43 to 48 percent; or
- (2) Complies with industry standards that require specific exposure testing to corrosive media, such as UL 1316, UL 1746, or ASTM F-1216.

Doctor box means the box or trough on an SMC machine into which the liquid resin paste is delivered before it is metered onto the carrier film.

Filament application means an open molding process for fabricating composites in which reinforcements are fed through a resin bath and wound onto a rotating mandrel. The materials on the mandrel may be rolled out or worked by using nonmechanical tools prior to curing. Resin application to the reinforcement on the mandrel by means other than the resin bath, such as spray guns, pressure-fed rollers, flow coaters, or brushes is not considered filament application.

Filled Resin means that fillers have been added to a resin such that the amount of inert substances is at least 10 percent by weight of the total resin plus filler mixture. Filler putty made from a resin is considered a filled resin.

Fillers means inert substances dispersed throughout a resin, such as calcium carbonate, alumina trihydrate, hydrous aluminum silicate, mica, feldspar, wollastonite, silica, and talc. Materials that are not considered to be fillers are glass fibers or any type of reinforcement and microspheres.

Fire retardant gel coat means a gel coat used for products for which low-flame spread/low-smoke resin is used.

Fluid impingement technology means a spray gun that produces an expanding non-misting curtain of liquid by the impingement of low-pressure uninterrupted liquid streams.

Food contact industry standard means a standard related to food contact application contained in Food and Drug Administration's regulations at 21 CFR 177.2420.

Gel Coat means a quick-setting resin used to improve surface appearance and/or performance of composites. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Gel coat application means a process where either clear production, pigmented production, white/off-white or tooling gel coat is applied.

HAP-containing materials storage means an ancillary process which involves keeping HAP-containing materials, such as resins, gel coats, catalysts, monomers, and cleaners, in containers or bulk storage tanks for any length of time. Containers may include small tanks, totes, vessels, and buckets.

High Performance gel coat means a gel coat used on products for which National Sanitation Foundation, United States Department of Agriculture, ASTM, durability, or other property testing is required.

High strength gel coat means a gel coat applied to a product that requires high strength resin.

High strength resins means polyester resins which have a casting tensile strength of 10,000 pounds per square inch or more and which are used for manufacturing products that have high strength requirements such as structural members and utility poles.

Injection molding means a closed molding process for fabricating composites in which composite materials are injected under pressure into a heated mold cavity that represents the exact shape of the product. The composite materials are cured in the heated mold cavity.

Low Flame Spread/Low Smoke Products means products that meet the following requirements. The products must meet both the applicable flame spread requirements and the applicable smoke requirements. Interior or exterior building application products must meet an ASTM E-84 Flame Spread Index of less than or equal to 25, and Smoke Developed Index of less than or equal to 450, or pass National Fire Protection Association 286 Room Corner Burn Test with no flash over and total smoke released not exceeding 1000 meters square. Mass transit application products must meet an ASTM E-162 Flame Spread Index of less than or equal to 35 and ASTM E662 Smoke Density Ds @ 1.5 minutes less than or equal to 100 and Ds @ 4 minutes less than to equal to 200. Duct application products must meet ASTM E084 Flame Spread Index less than or equal to 25 and Smoke Developed Index less than or equal to 50 on the interior and/or exterior of the duct.

Manual resin application means an open molding process for fabricating composites in which composite materials are applied to the mold by pouring or by using hands and nonmechanical tools, such as brushes and rollers. Materials are rolled out or worked by using nonmechanical tools prior to curing. The use of pressure-fed rollers and flow coaters to apply resin is not considered manual resin application.

Mechanical resin application means an open molding process for fabricating composites in which composite materials (except gel coat) are applied to the mold by using mechanical tools such as spray guns, pressure-fed rollers, and flow coaters. Materials are rolled out or worked by using nonmechanical tools prior to curing.

Mixing means the blending or agitation of any HAP-containing materials in vessels that are 5.00 gallons (18.9 liters) or larger, and includes the mixing of putties or polyputties. Mixing may involve the blending of resin, gel coat, filler, reinforcement, pigments, catalysts, monomers, and any other additives.

Mold means a cavity or matrix into or onto which the composite materials are placed and from which the product takes its form.

Neat gel coat means the resin as purchased for the supplier, but not including any inert fillers.

Neat gel coat plus means neat gel coat plus any organic HAP-containing materials that are added to the gel coat by the supplier or the facility, excluding catalysts and promoters. Neat gel coat plus does include any additions of styrene or methyl methacrylate monomer in any form, including in catalysts and promoters.

Neat resin means the resin as purchased from the supplier, but not including any inert fillers.

Neat resin plus means neat resin plus any organic HAP-containing materials that are added to the resin by the supplier or the facility. Neat resin plus does not include any added filler, reinforcements, catalysts, or promoters. Neat resin plus does include any additions of styrene or methyl methacrylate monomer in any form, including in catalysts and promoters.

Nonatomized mechanical application means the use of application tools other than brushes to apply resin and gel coat where the application tool has documentation provided by its manufacturer or user that this design of the application tool has been organic HAP emissions tested, and the test results showed that use of this application tool results in organic HAP emissions that are no greater than the organic HAP emissions predicted by the applicable nonatomized application equation(s) in Table 1 to this subpart. In addition, the device must be operated according to the manufacturer's directions, including instructions to prevent the operation of the device at excessive spray pressures. Examples of nonatomized application include flow coaters, pressure fed rollers, and fluid impingement spray guns.

Noncorrosion-resistant resin means any resin other than a corrosion-resistant resin or a tooling resin.

Noncorrosion-resistant product means any product other than a corrosion-resistant product or a mold.

Non-routine manufacture means that you manufacture parts to replace worn or damaged parts of a reinforced plastic composites product, or a product containing reinforced plastic composite parts, that was originally manufactured in another facility. For a part to qualify as non-routine manufacture, it must be used for repair or replacement, and the manufacturing schedule must be based on the current or anticipated repair needs of the reinforced plastic composites product, or a product containing reinforced plastic composite parts.

Operation means a specific process typically found at a reinforced plastic composites facility. Examples of operations are noncorrosion-resistant manual resin application, corrosion-resistant mechanical resin application, pigmented gel coat application, mixing and HAP-containing materials storage.

Operation group means a grouping of individual operations based primarily on mold type. Examples are open molding, closed molding, and centrifugal casting.

Open molding means a process for fabricating composites in a way that HAP-containing materials are exposed to the atmosphere. Open molding includes processes such as manual resin application, mechanical resin application, filament application, and gel coat application. Open molding also includes application of resins and gel coats to parts that have been removed from the open mold.

Pigmented gel coat means a gel coat that has a color, but does not contain 10 percent of more titanium dioxide by weight. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Polymer casting means a process for fabricating composites in which composite materials are ejected from a casting machine or poured into an open, partially open, or closed mold and cured. After the composite materials are poured into the mold, they are not rolled out or worked while the mold is open, except for smoothing the material and/or vibrating the mold to remove bubbles. The composite materials may or may not include reinforcements. Products produced by the polymer casting process include cultured marble products and polymer concrete.

Preform Injection means a form of pultrusion where liquid resin is injected to saturate reinforcements in an enclosed system containing one or more chambers with openings only large enough to admit reinforcements. Resin, which drips out of the chamber(s) during the process, is collected in closed piping or covered troughs and then into a covered reservoir for recycle. Resin storage vessels, reservoirs, transfer systems, and collection systems are covered or shielded from the ambient air. Preform injection differs from direct die injection in that the injection chambers are not directly attached to the die.

Prepreg materials means reinforcing fabric received precoated with resin which is usually cured through the addition of heat.

Pultrusion means a continuous process for manufacturing composites that have a uniform cross-sectional shape. The process consists of pulling a fiber-reinforcing material through a resin impregnation chamber or bath and through a shaping die, where the resin is subsequently cured. There are several types of pultrusion equipment, such as open bath, resin injection, and direct die injection equipment.

Repair means application of resin or gel coat to a part to correct a defect, where the resin or gel coat application occurs after the part has gone through all the steps of its typical production process, or the application occurs outside the normal production area. For purposes of this subpart, rerouting a part back through the normal production line, or part of the normal production line, is not considered repair.

Resin transfer molding means a process for manufacturing composites whereby catalyzed resin is transferred or injected into a closed mold in which fiberglass reinforcement has been placed.

Sheet molding compound (SMC) means a ready-to-mold putty-like molding compound that contains resin(s) processed into sheet form. The molding compound is sandwiched between a top and a bottom film. In addition to resin(s), it may also contain catalysts, fillers, chemical thickeners, mold release agents, reinforcements, and other ingredients. Sheet molding compound can be used in compression molding to manufacture reinforced plastic composites products.

Shrinkage controlled resin means a resin that when promoted, catalyzed, and filled according to the resin manufacturer's recommendations demonstrates less than 0.3 percent linear shrinkage when tested according to ASTM D2566.

SMC manufacturing means a process which involves the preparation of SMC.

Tooling gel coat means a gel coat that is used to form the surface layer of molds. Tooling gel coats generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Tooling resin means a resin that is used to produce molds. Tooling resins generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Uncontrolled oven organic HAP emissions means those organic HAP emissions emitted from the oven through closed vent systems to the atmosphere and not to a control device. These organic HAP emissions do not include organic HAP emissions that may escape into the workplace through the opening of panels or doors on the ovens or other similar fugitive organic HAP emissions in the workplace.

Uncontrolled wet-out area organic HAP emissions means any or all of the following: Organic HAP emissions from wet-out areas that do not have any capture and control, organic HAP emissions that escape from wet-out area enclosures, and organic HAP emissions from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to an add-on control device.

Unfilled means that there has been no addition of fillers to a resin or that less than 10 percent of fillers by weight of the total resin plus filler mixture has been added.

Vapor suppressant means an additive, typically a wax, that migrates to the surface of the resin during curing and forms a barrier to seal in the styrene and reduce styrene emissions.

Vapor-suppressed resin means a resin containing a vapor suppressant added for the purpose of reducing styrene emissions during curing.

White and off-white gel coat means a gel coat that contains 10 percent of more titanium dioxide by weight.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50129, Aug. 25, 2005]

Table 1 to Subpart WWWW of Part 63—Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams

Table 1, to Subpart WMMM of Part 63--Equations to Calculate Organic MAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams As specified in \$63.5816, use the equations in the following table to calculate organic MAP emissions factors for specific open molding and centrifugal casting process streams:

If your operation	And you use	21.17	Hen this operants HAB	Has this assessin HEB omissions
type is a new or existing			Endesions Factor (EF) Equation for materials with less than 33 percent organic HAP (19 percent organic HAP 234 nonatomized gel coat)	Factor (EF) Equation for materials with 33 percent or more organic MAP (19 percent for nonatomized gel quat) 234
1. open molding operation	a. manual resin application	i. nonvapor-suppressed resin	BP = 0.126 x MAAP x 2000	EP = ((0.286 x %HAP)-0.0529) x 2000
		ii. vapor-suppressed resin	RP = 0.126 x MAP x 2000 x (1-(0.5 x VBE factor))	EP = {(0.2%6 x %HAP)-0.0529} x 2000 x (1-{0.5 x VSE factor})
		iii. vacuum bagging/closed- nold curing with roll out	SF = 0.126 x WAR x 2000 x 0.8	EF = {{0.286 x NHAP}-0.0529} x 2000 x 0.8
		<pre>iv. vacuum hagging/closed- mold curing without roll- out</pre>	EF = (0.126 x *HAP x 2000 x 0.5	XP = [10.286 x *HAP]-0.0529) x 2000 x 0.5
	 atomized mechanical resin application 	i. nonvapor-suppressed resin	EF = 0.169 x %HAP x 2000	$EF = ((0.714 \times WAP) - 0.18) \times 2000$
		ii. vapor-suppressed resin	EF = 0.169 x %HAP x 2000 x (1-(0.45 x VSE factor))	$EP = ((0.714 \times %HAP) - 0.18) \times 2000 \times (1 - (0.45 \times VSE factor))$
		iii. vacuum bagging/closed- mold curing with roll-out	EF = 0.169 x %HAP x 2000 x 0.85	EP = ((0.714 x %BAP)-0.18) x 2000 x 0.85
		<pre>iv. vacuum bagging/closed-mold curing without roll-out</pre>	BP = 0.169 x VHAP x 2000 x 0.55	BP = ((0.714 × %HAP)-0.18) × 2000 × 0.55
	c. nonatomized nechanical resin application	i. nonvapor-suppressed resin	SF = 0.107 × VHAP × 2000	BP = {{0.157 x MAP}-0.0165} x 2000
		ii. vapor-suppressed resin	EF = 0.107 x %HAP x 2000 x [1-(0.45 x VSE factor])	Z? = ([0.157 x WAZF]-0.0165) x 2000 x (L.[0.45 x VSE factor])
		iii. closed-mold curing with roll-out	EF = 0.107 x 8HAP x 2000 x 0.85	EF = ([0.157 x %HAP]-0.0165) x 2000 x 0.05
		<pre>iv. vacuum Dagging/closed-mold ouring without roll-out</pre>	EF = 0.107 x %HAP x 2000 x 0.55	BP = ((0.157 x %MAP)-0.0165) x 2000 x 0.55
	mized mechanical in application wit notic or automated ay control	nonvapor-suppressed resin	EF = 0.159 x %HAP x 2000 x 0.77	EF = 0.77 x ((0.714 x \$HAE)-0.18 x 2000
	e. filament application 6	i. nonvapor-suppressed resin	BF = 0.184 x WHAP x 2000	EF = {(0.2746 x 8HAP)-0.0298 x 2000
		ii. vapor-suppressed resin	EF = 0.12 x 9HAP x 2000	R? = [10.2746 x hHAP]-0.0298 x 2000 x 0.65
	f. atomized spray gel coat application	nonvapor-suppressed gel	EF = 0.445 x %HAP x 2000	E7 = ((1.03646 x %HAP)-0.195) x 2000

spray a heart air blown through nonvapor-suppressed resin EF = 0.558 x (%HAP) x 2000 EF = 0.558 x (WHAP) x 2000

Footnotes to Table 1

be the most appropriate method to calculate emission estimates for other purposes. However, this does not preclude a facilit) in this table to calculate emission factors for purposes other then rule compliance if these equations are the most accurate emission limits in subpart WWWW emission factors to demonstrate compliance with the table are intended for use in calculating The equations in this

prior multiply the EF above by the add-on control organic MAP per ton of resin or gel coat appl 961 i.e., 33 percent HAP should be input as 0.33, ö in the reain add-on control device multiply the EF have units of lbs of organic MAP per t organic HAP] any other and with an add-on control factors have units of] Input the percent HAP as a decimal, methyl methacrylate, operation emissions means total weight percent of organic HAP (atyrene, ² To obtain the organic HAP emissions factor value for an calculated using Equation 1 of \$63.5810. The organic HAP the addition of fillers, catalyst, and promoters. Percent HAP

* The VSE factor means the percent reduction in organic HAP emissions expressed as a decimal measured by the VSE test method of appendix A to this

for It may only be used appropriate mechanical a spray should use the an developed for mechanical atomized controlled spray. It may operations using hand held spray gune must use the appropriatemated or robotic spray systems using monatomized spray : This equation is based on a organic HAP emissions factor equation Spray equation. application equation λ 11 systems with atomized spray. mechanical nonatomized organic MAP emissions factor mechanical or robotic spray

use the appropriate manual If resin is applied manually or with a spray gun, to filament application using an open resin bath. emissions factor equation. nechanical application organic HAP Applies only

ö

Centrifugal casting operations where the mold is resin to an to apply is vented during spinning. application techniques the mold considered to be closed H mechanical after resin injection are are for centrifugal sealed

uses mechanical or vented, treat the th covered cure and no rollout to determine an emission factor for operations prior to the closing of the centritugal casting sold is vented during spinning, use the appropriate centrifugal casting equation to tion of the process where spinning and cure occur. If a centrifugal casting operation uses mechanical or here spinning and cure occur. If a centrifugal casting operation uses centrifugal casting mold, and the mold is then closed and is not vents lout to determine emission factors. emission factor for the portion of the process where spinning and operation as open molding with covered cure and no rollout to determine resin application techniques to apply resin to an open calculate an

[70 FR 50129, Aug. 26, 2005]

Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic **Composites Facilities**

As required in §§63.5800 and 63.5840 you must demonstrate compliance with the standards by the dates in the following table:

If your facility is	And	Then you must comply by this date
1. An existing source	a. Is a major source on or before the publication date of this subpart	i. April 21, 2006, or ii. You must accept and meet an enforceable HAP emissions limit below the major source threshold prior to April 21, 2006.
2. An existing source that is an area source	Becomes a major source after the publication date of this subpart	3 years after becoming a major source or April 21, 2006, whichever is later.
3. An existing source, and emits less than 100 tpy of organic HAP from the combination of all centrifugal casting and continuous lamination/casting operations at the time of initial compliance with this subpart	Subsequently increases its actual organic HAP emissions to 100 tpy or more from these operations, which requires that the facility must now comply with the standards in §63.5805(b)	3 years of the date your semi-annual compliance report indicates your facility meets or exceeds the 100 tpy threshold.
4. A new source	Is a major source at startup	Upon startup or April 21, 2003, whichever is later.
5. A new source	Is an area source at startup and becomes a major source	Immediately upon becoming a major source.
6. A new source, and emits less than 100 tpy of organic HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC and BMC manufacturing, and mixing operations at the time of initial compliance with this subpart	Subsequently increases its actual organic HAP emissions to 100 tpy or more from the combination of these operations, which requires that the facility must now meet the standards in §63.5805(d)	3 years from the date that your semi-annual compliance report indicates your facility meets or exceeds the 100 tpy threshold.

Table 3 to Subpart WWWW of Part 63—Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and Existing Centrifugal Casting and Continuous Lamination/Casting Sources that Emit Less Than 100 TPY of HAP

As specified in §63.5805, you must meet the following organic HAP emissions limits that apply to you:

If your operation type is	And you use	¹ Your organic HAP emissions limit is
1. open molding—corrosion-resistant and/or high strength (CR/HS)	a. mechanical resin applicationb. filament applicationc. manual resin application	113 lb/ton. 171 lb/ton. 123 lb/ton.
2. open molding—non- CR/HS	a. mechanical resin applicationb. filament applicationc. manual resin application	88 lb/ton. 188 lb/ton. 87 lb/ton.
3. open molding—tooling	a. mechanical resin application b. manual resin application	254 lb/ton. 157 lb/ton.
4. open molding—low-flame spread/low-smoke products	a. mechanical resin applicationb. filament applicationc. manual resin application	497 lb/ton. 270 lb/ton. 238 lb/ton.
5. open molding—shrinkage controlled resins ²	a. mechanical resin applicationb. filament applicationc. manual resin application	354 lb/ton. 215 lb/ton. 180 lb/ton.

10. continuous lamination/casting	N/A	reduce total organic HAP emissions by at least 58.5 weight percent or not exceed an organic HAP emissions limit of 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus.
9. pultrusion ⁶	N/A	reduce total organic HAP emissions by at least 60 weight percent.
8. centrifugal casting—non- CR/HS	a. resin application with the mold closed, and the mold is vented during spinning and cure b. resin application with the mold closed, and mold is not vented during the spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning and cure	20 lb/ton. ⁴ NA—this is considered to be a closed molding operation. 20 lb/ton. ⁴ Use the appropriate open molding emission limit. ⁵
7. centrifugal casting— CR/HS	a. resin application with the mold closed, and the mold is vented during spinning and cure b. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning and cure	25 lb/ton. ⁴ NA—this is considered to be a closed molding operation. 25 lb/ton. ⁴ Use the appropriate open molding emission limit. ⁵
6. open molding—gel coat ³	a. tooling gel coating b. white/off white pigmented gel coating c. all other pigmented gel coating d. CR/HS or high performance gel coat e. fire retardant gel coat f. clear production gel coat	440 lb/ton. 267 lb/ton. 377 lb/ton. 605 lb/ton. 854 lb/ton. 522 lb/ton.

¹Organic HAP emissions limits for open molding and centrifugal casting are expressed as lb/ton. You must be at or below these values based on a 12-month rolling average.

²This emission limit applies regardless of whether the shrinkage controlled resin is used as a production resin or a tooling resin.

³If you only apply gel coat with manual application, for compliance purposes treat the gel coat as if it were applied using atomized spray guns to determine both emission limits and emission factors. If you use multiple application methods and any portion of a specific gel coat is applied using nonatomized spray, you may use the nonatomized spray gel coat equation to calculate an emission factor for the manually applied portion of that gel coat. Otherwise, use the atomized spray gel coat application equation to calculate emission factors.

⁴For compliance purposes, calculate your emission factor using only the appropriate centrifugal casting equation in item 2 of Table 1 to this subpart, or a site specific emission factor for after the mold is closed as discussed in §63.5796.

⁵Calculate your emission factor using the appropriate open molding covered cure emission factor in item 1 of Table 1 to this subpart, or a site specific emission factor as discussed in §63.5796.

⁶Pultrusion machines that produce parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more are not subject to this requirement. Their requirement is the work practice of air flow management which is described in Table 4 to this subpart.

[70 FR 50131, Aug. 25, 2005]

Table 4 to Subpart WWWW of Part 63—Work Practice Standards

As specified in §63.5805, you must meet the work practice standards in the following table that apply to you:

For	You must
1. a new or existing closed molding operation using compression/injection molding	uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill all molds for one cycle. For machines with robotic loaders, no more than one charge may be exposed prior to the loader. For machines fed by hoppers, sufficient material may be uncovered to fill the hopper. Hoppers must be closed when not adding materials. Materials may be uncovered to feed to slitting machines. Materials must be recovered after slitting.
2. a new or existing cleaning operation	not use cleaning solvents that contain HAP, except that styrene may be used as a cleaner in closed systems, and organic HAP containing cleaners may be used to clean cured resin from application equipment. Application equipment includes any equipment that directly contacts resin.
3. a new or existing materials HAP-containing materials storage operation	keep containers that store HAP-containing materials closed or covered except during the addition or removal of materials. Bulk HAP-containing materials storage tanks may be vented as necessary for safety.
4. an existing or new SMC manufacturing operation	close or cover the resin delivery system to the doctor box on each SMC manufacturing machine. The doctor box itself may be open.
5. an existing or new SMC manufacturing operation	use a nylon containing film to enclose SMC.
6. all mixing or BMC manufacturing operations ¹	use mixer covers with no visible gaps present in the mixer covers, except that gaps of up to 1 inch are permissible around mixer shafts and any required instrumentation.
7. all mixing or BMC manufacturing operations ¹	close any mixer vents when actual mixing is occurring,

	except that venting is allowed during addition of materials, or as necessary prior to adding materials or opening the cover for safety. Vents routed to a 95 percent efficient control device are exempt from this requirement.
8. all mixing or BMC manufacturing operations ¹	keep the mixer covers closed while actual mixing is occurring except when adding materials or changing covers to the mixing vessels.
9. a new or existing pultrusion operation manufacturing parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more that is not subject to the 95 percent organic HAP emission reduction requirement	i. not allow vents from the building ventilation system, or local or portable fans to blow directly on or across the wetout area(s), ii. not permit point suction of ambient air in the wet-out area(s) unless that air is directed to a control device, iii. use devices such as deflectors, baffles, and curtains when practical to reduce air flow velocity across the wet-out area(s), iv. direct any compressed air exhausts away from resin and wet-out area(s),
	v. convey resin collected from drip-off pans or other devices to reservoirs, tanks, or sumps via covered troughs, pipes, or other covered conveyance that shields the resin from the ambient air, vi. cover all reservoirs, tanks, sumps, or HAP-containing materials storage vessels except when they are being charged or filled, and
	vii. cover or shield from ambient air resin delivery systems to the wet-out area(s) from reservoirs, tanks, or sumps where practical.

¹Containers of 5 gallons or less may be open when active mixing is taking place, or during periods when they are in process (i.e., they are actively being used to apply resin). For polymer casting mixing operations, containers with a surface area of 500 square inches or less may be open while active mixing is taking place.

[70 FR 50133, Aug. 25, 2005]

Table 5 to Subpart WWWW of Part 63—Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are Based on a 95 Percent Reduction Requirement

As specified in §63.5805, as an alternative to the 95 percent organic HAP emissions reductions requirement, you may meet the appropriate organic HAP emissions limits in the following table:

If your operation type is	And you use	LYour organic HAP emissions limit is a ¹
1. Open molding—corrosion-resistant and/or high strength (CR/HS)	a. Mechanical resin application	6 lb/ton.
	b. Filament application	9 lb/ton.
	c. Manual resin application	7 lb/ton.
2. Open molding—non-CR/HS	a. mechanical resin application	13 lb/ton.
	b. Filament application	10 lb/ton.
	c. Manual resin application	5 lb/ton.
3. Open molding—tooling	a. Mechanical resin application	13 lb/ton.

	b. Manual resin application	8 lb/ton.
4. Open molding—low flame spread/low smoke products	a. Mechanical resin application	25 lb/ton.
	b. Filament application	14 lb/ton.
	c. Manual resin application	12 lb/ton.
5. Open molding—shrinkage controlled resins	a. Mechanical resin application	18 lb/ton.
	b. Filament application	11 lb/ton.
	c. Manual resin application	9 lb/ton.
6. Open molding—gel coat ²	a. Tooling gel coating	22 lb/ton.
	b. White/off white pigmented gel coating	22 lb/ton.
	c. All other pigmented gel coating	19 lb/ton.
	d. CR/HS or high performance gel coat	31 lb/ton.
	e. Fire retardant gel coat	43 lb/ton.
	f. Clear production gel coat	27 lb/ton.
7. Centrifugal casting—CR/HS ³⁴	A vent system that moves heated air through the mold	27 lb/ton.
8. Centrifugal casting—non-CR/HS ^{3 4}	A vent system that moves heated air through the mold	21 lb/ton.
7. Centrifugal casting—CR/HS ³⁴	A vent system that moves ambient air through the mold	2 lb/ton.
8. Centrifugal casting—non-CR/HS ^{3 4}	A vent system that moves ambient air through the mold	1 lb/ton.
9. SMC Manufacturing	N/A	2.4 lb/ton.

¹Organic HAP emissions limits for open molding and centrifugal casting expressed as lb/ton are calculated using the equations shown in Table 1 to this subpart. You must be at or below these values based on a 12-month rolling average.

³Centrifugal casting operations where the mold is not vented during spinning and cure are considered to be closed molding and are not subject to any emissions limit. Centrifugal casting operations where the mold is not vented during spinning and cure, and the resin is applied to the open centrifugal casting mold using mechanical or manual open molding resin application techniques are considered to be open molding operations and the appropriate open molding emission limits apply.

⁴Centrifugal casting operations where the mold is vented during spinning and the resin is applied to the open centrifugal casting mold using mechanical or manual open molding resin application techniques, use the appropriate centrifugal casting emission limit to determine compliance. Calculate your emission factor using the appropriate centrifugal casting emission factor in Table 1 to this subpart, or a site specific emission factor as discussed in §63.5796.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50133, Aug. 25, 2005]

²These limits are for spray application of gel coat. Manual gel coat application must be included as part of spray gel coat application for compliance purposes using the same organic HAP emissions factor equation and organic HAP emissions limit. If you only apply gel coat with manual application, treat the manually applied gel coat as if it were applied with atomized spray for compliance determinations.

Table 6 to Subpart WWWW of Part 63—Basic Requirements for Performance Tests, Performance Evaluations, and Design Evaluations for New and Existing Sources Using Add-On Control Devices

As required in §63.5850 you must conduct performance tests, performance evaluations, and design evaluation according to the requirements in the following table:

For	You must	Using	According to the following requirements
1. Each enclosure used to collect and route organic HAP emissions to an addon control device that is a PTE	Meet the requirements for a PTE	EPA method 204 of appendix M of 40 CFR part 51	Enclosures that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51 for a PTE are assumed to have a capture efficiency of 100%. Note that the criteria that all access doors and windows that are not treated as natural draft openings shall be closed during routine operation of the process is not intended to require that these doors and windows be closed at all times. It means that doors and windows must be closed any time that you are not actually moving parts or equipment through them. Also, any styrene retained in hollow parts and liberated outside the PTE is not considered to be a violation of the EPA Method 204 criteria.
2. Each enclosure used to collect and route organic HAP emissions to an addon control device that is not a PTE	a. Determine the capture efficiency of each enclosure used to capture organic HAP emissions sent to an add-on control device	i. EPA methods 204B through E of appendix M of 40 CFR part 51, or	(1) Enclosures that do not meet the requirements for a PTE must determine the capture efficiency by constructing a temporary total enclosure according to the requirements of EPA Method 204 of appendix M of 40 CFR part 51 and measuring the mass flow rates of the organic HAP in the exhaust streams going to the atmosphere and to the control device. Test runs for EPA Methods 204B through E of appendix M of 40 CFR part 51 must be at least 3 hours.
		ii. An alternative test method that meets the requirements in 40 CFR part 51, appendix M	(1) The alternative test method must the data quality objectives and lower confidence limit approaches for alternative capture efficiency protocols requirements contained in 40 CFR part 63 subpart KK, appendix A.
3. Each control device used to comply with a percent reduction requirement, or an organic HAP emissions limit	Determine the control efficiency of each control device used to control organic HAP emissions	The test methods specified in §63.5850 to this subpart	Testing and evaluation requirements are contained in 40 CFR part 63, subpart SS, and §63.5850 to this subpart.
4. Determining organic HAP emission factors for any operation	Determine the mass organic HAP emissions rate	The test methods specified in \$63.5850 to this subpart	Testing and evaluation requirements are contained in 40 CFR part 63, subpart SS, and \$63.5850 to this subpart.

Table 7 to Subpart WWWW of Part 63—Options Allowing Use of the Same Resin Across Different Operations That Use the Same Resin Type

As specified in §63.5810(d), when electing to use the same resin(s) for multiple resin application methods, you may use any resin(s) with an organic HAP content less than or equal to the values shown in the following table, or any combination of resins whose weighted average organic HAP content based on a 12-month rolling average is less than or equal to the values shown the following table:

If your facility has the following resin type and application method	The highest resin weight is* * * percent organic HAP content, or weighted average weight percent organic HAP content, you can use for	is
1. CR/HS resins, centrifugal casting ¹²	a. CR/HS mechanical	³ 48.0
	b. CR/HS filament application	48.0
	c. CR/HS manual	48.0
2. CR/HS resins, nonatomized mechanical	a. CR/HS filament application	46.4
	b. CR/HS manual	46.4
3. CR/HS resins, filament application	CR/HS manual	42.0
4. non-CR/HS resins, filament application	a. non-CR/HS mechanical	³ 45.0
	b. non-CR/HS manual	45.0
	c. non-CR/HS centrifugal casting 12	45.0
5. non-CR/HS resins, nonatomized mechanical	a. non-CR/HS manual	38.5
	b. non-CR/HS centrifugal casting ^{1 2}	38.5
6. non-CR/HS resins, centrifugal casting ^{1 2}	non-CR/HS manual	37.5
7. tooling resins, nonatomized mechanical	tooling manual	91.4
8. tooling resins, manual	tooling atomized mechanical	45.9

¹If the centrifugal casting operation blows heated air through the molds, then 95 percent capture and control must be used if the facility wishes to use this compliance option.

[70 FR 50133, Aug. 25, 2005]

Table 8 to Subpart WWWW of Part 63—Initial Compliance With Organic HAP Emissions Limits

As specified in §63.5860(a), you must demonstrate initial compliance with organic HAP emissions limits as specified in the following table:

For	That must meet the following organic HAP emissions limit	You have demonstrated initial compliance if
1. open molding and centrifugal casting operations		i. you have met the appropriate organic HAP emissions limits for these operations as calculated

²If the centrifugal casting molds are not vented, the facility may treat the centrifugal casting operations as if they were vented if they wish to use this compliance option.

³Nonatomized mechanical application must be used.

	Tables 3 or 5 to this subpart, or an organic HAP content limit shown in Table 7 to this subpart	using the procedures in §63.5810 on a 12-month rolling average 1 year after the appropriate compliance date, and/or ii. you demonstrate that any individual resins or gel coats not included in (i) above, as applied, meet their applicable emission limits, or iii. you demonstrate using the appropriate values in Table 7 to this subpart that the weighted average of all resins and gel coats for each resin type and application method meet the appropriate organic HAP contents.
2. open molding centrifugal casting, continuous lamination/casting, SMC and BMC manufacturing, and mixing operations	a. reduce total organic HAP emissions by at least 95 percent by weight	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 95 percent by weight.
3. continuous lamination/casting operations	a. reduce total organic HAP emissions, by at least 58.5 weight percent, or	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency in Table 6 to this subpart and the calculation procedures specified in §§63.5865 through 63.5890, are reduced by at least 58.5 percent by weight.
	b. not exceed an organic HAP emissions limit of 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart and the calculation procedures specified in §§63.5865 through 63.5890, do not exceed 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus.
4. continuous lamination/casting operations	a. reduce total organic HAP emissions by at least 95 weight percent or	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart and the calculation procedures specified in §§63.5865 through 63.5890, are reduced by at least 95 percent by weight
	b. not exceed an organic HAP emissions limit of 1.47 lbs of organic HAP per ton of neat resin plus and neat gel coat plus	total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 and the calculation procedures specified in §§63.5865 through 63.5890, do not exceed 1.47 lbs of organic HAP of per ton of neat resin plus and neat gel coat plus.
5. pultrusion operations	a. reduce total organic HAP emissions by at least 60 percent by weight	i. total organic HAP emissions, based on the results of the capture efficiency and add-on control device destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 60 percent by weight, and/or ii. as part of the notification of initial compliance status, the owner/operator submits a certified statement that all pultrusion lines not controlled with an add-on control device, but for which an emission reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the criteria of §63.5830.
6. pultrusion operations	a. reduce total organic HAP emissions by at least 95 percent by weight	i. total organic HAP emissions, based on the results of the capture efficiency and add-on control device destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 95 percent by weight.

Table 9 to Subpart WWWW of Part 63—Initial Compliance With Work Practice Standards

As specified in §63.5860(a), you must demonstrate initial compliance with work practice standards as specified in the following table:

For	That must meet the following standards	You have demonstrated initial compliance if
1. a new or existing closed molding operation using compression/injection molding	uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill all molds for one cycle. For machines with robotic loaders, no more than one charge may be exposed prior to the loader. For machines fed by hoppers, sufficient material may be uncovered to fill the hopper. Hoppers must be closed when not adding materials. Materials may be uncovered to feed to slitting machines. Materials must be recovered after slitting	the owner or operator submits a certified statement in the notice of compliance status that only one charge is uncovered, unwrapped, or exposed per mold cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when adding materials, and materials are recovered after slitting.
2. a new or existing cleaning operation	not use cleaning solvents that contain HAP, except that styrene may be used in closed systems, and organic HAP containing materials may be used to clean cured resin from application equipment. Application equipment includes any equipment that directly contacts resin between storage and applying resin to the mold or reinforcement	the owner or operator submits a certified statement in the notice of compliance status that all cleaning materials, except styrene contained in closed systems, or materials used to clean cured resin from application equipment, contain no HAP.
3. a new or existing materials HAP-containing materials storage operation	keep containers that store HAP- containing materials closed or covered except during the addition or removal of materials. Bulk HAP-containing materials storage tanks may be vented as necessary for safety	the owner or operator submits a certified statement in the notice of compliance status that all HAP-containing storage containers are kept closed or covered except when adding or removing materials, and that any bulk storage tanks are vented only as necessary for safety.
4. an existing or new SMC manufacturing operation	close or cover the resin delivery system to the doctor box on each SMC manufacturing machine. The doctor box itself may be open	the owner or operator submits a certified statement in the notice of compliance status that the resin delivery system is closed or covered.
5. an existing or new SMC manufacturing operation	use a nylon containing film to enclose SMC	the owner or operator submits a certified statement in the notice of compliance status that a nylon-containing film is used to enclose SMC.
6. an existing or new mixing or BMC	use mixer covers with no visible gaps	the owner or operator submits a

manufacturing operation	present in the mixer covers, except that gaps of up to 1 inch are permissible around mixer shafts and any required instrumentation	certified statement in the notice of compliance status that mixer covers are closed during mixing except when adding materials to the mixers, and that gaps around mixer shafts and required instrumentation are less than 1 inch.
7. an existing mixing or BMC manufacturing operation	not actively vent mixers to the atmosphere while the mixing agitator is turning, except that venting is allowed during addition of materials, or as necessary prior to adding materials for safety	the owner or operator submits a certified statement in the notice of compliance status that mixers are not actively vented to the atmosphere when the agitator is turning except when adding materials or as necessary for safety.
8. a new or existing mixing or BMC manufacturing operation	keep the mixer covers closed during mixing except when adding materials to the mixing vessels	the owner or operator submits a certified statement in the notice of compliance status that mixers closed except when adding materials to the mixing vessels.
9. a new or existing pultrusion operation manufacturing parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more that is not subject to the 95 percent organic HAP emission reduction requirement	i. Not allow vents from the building ventilation system, or local or portable fans to blow directly on or across the wet-out area(s), ii. not permit point suction of ambient air in the wet-out area(s) unless that air is directed to a control device, iii. use devices such as deflectors, baffles, and curtains when practical to reduce air flow velocity across the wet-out area(s), iv. direct any compressed air exhausts away from resin and wet-out area(s), v. convey resin collected from drip-off pans or other devices to reservoirs, tanks, or sumps via covered troughs, pipes, or other covered conveyance that shields the resin from the ambient air, vi. clover all reservoirs, tanks, sumps, or HAP-containing materials storage vessels except when they are being charged or filled, and vii. cover or shield from ambient air resin delivery systems to the wet-out area(s) from reservoirs, tanks, or sumps where practical.	the owner or operator submits a certified statement in the notice of compliance status that they have complied with all the requirements listed in 9.i through 9.vii.

[70 FR 50135, Aug. 25, 2005]

Table 10 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Percent Reduction Limit on a Per Line Basis

As required in §63.5865(a), in order to comply with a percent reduction limit for continuous lamination lines and continuous casting lines you must determine the data in the following table:

For each line where the wet-out area	And the oven	You must determine
Has an enclosure that is not a permanent total enclosure (PTE) and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions, iv. The capture efficiency of the wet-out area enclosure,
		v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
2. Has an enclosure that is a PTE and the captured organic HAP emissions are controlled by an addon control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions, iv. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
3. Is uncontrolled	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual uncontrolled oven organic HAP emissions, iii. Annual controlled oven organic HAP emissions, iv. The capture efficiency of the oven, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.
4. Has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions, iv. Annual controlled oven organic HAP emissions; v. The capture efficiency of the wet-out area enclosure, vi. Inlet organic HAP emissions to the addon control device, vii. Outlet organic HAP emissions from the add-on control device, and viii. The amount of neat resin plus and neat gel coat plus applied.

5. Has an enclosure that is a PTE and the captured organic HAP emissions are controlled by an addon control device	a. Is controlled by an add-on control	i. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, ii. The capture efficiency of the oven, and
		iii. The destruction efficiency of the add-on control device.

Table 11 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination and Continuous Casting Lines Complying With a Percent Reduction Limit or a Lbs/Ton Limit on an Averaging Basis

As required in §63.5865, in order to comply with a percent reduction limit or a lbs/ton limit on an averaging basis for continuous lamination lines and continuous casting lines you must determine the data in the following table:

For each	That	You must determine
1. Wet-out area	Is uncontrolled	Annual uncontrolled wet-out area organic HAP emissions.
2. Wet-out area	a. Has an enclosure that is not a PTE	i. The capture efficiency of the enclosure, andii. Annual organic HAP emissions that escape the enclosure.
3. Wet-out area	Has an enclosure that is a PTE	That the enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE.
4. Oven	Is uncontrolled	Annual uncontrolled oven organic HAP emissions.
5. Line	a. Is controlled or uncontrolled	i. The amount of neat resin plus applied, andii. The amount of neat gel coat plus applied.
6. Add-on control device		i. Total annual inlet organic HAP emissions, and total annual outlet organic HAP emissions.

Table 12 to Subpart WWWW of Part 63—Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Lbs/Ton Organic HAP Emissions Limit on a Per Line Basis

As required in §63.5865(b), in order to comply with a lbs/ton organic HAP emissions limit for continuous lamination lines and continuous casting lines you must determine the data in the following table:

For each line where the wet- out area	And the oven	You must determine
1. Is uncontrolled	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual uncontrolled oven organic HAP emissions, and iii. Annual neat resin plus and neat gel coat plus applied.
2. Has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions,
		iv. The capture efficiency of the wet-out area enclosure, v. The destruction efficiency of the add-on control device, and

		vi. The amount of neat resin plus and neat gel coat plus applied.
3. Has an enclosure that is a PTE, and the captured organic HAP emissions are controlled by an add-on control device	a. Is uncontrolled	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions,
		iv. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
4. Is uncontrolled	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual uncontrolled oven organic HAP emissions, iii. Annual controlled oven organic HAP emissions,
		iv. The capture efficiency of the oven, v. The destruction efficiency of the add-on control device, and vi. The amount of neat resin plus and neat gel coat plus applied.
5. Has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device	a. Is controlled by an add-on control device	i. Annual uncontrolled wet-out area organic HAP emissions, ii. Annual controlled wet-out area organic HAP emissions, iii. Annual uncontrolled oven organic HAP emissions,
		iv. Annual controlled oven organic HAP emissions, v. The capture efficiency of the wet-out area enclosure, vi. The capture efficiency of the oven,
		vii. The destruction efficiency of the add-on control device, and viii. The amount of neat resin plus and neat gel coat plus applied.
6. Has an enclosure that is a PTE, and the captured organic HAP emissions are controlled by add-on control device	a. Is controlled by an add-on control device	i. That the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, ii. The capture efficiency of the oven, iii. Inlet organic HAP emissions to the an addon control device, and
		iv. Outlet organic HAP emissions from the add-on control device.

Table 13 to Subpart WWWW of Part 63—Applicability and Timing of Notifications

As required in §63.5905(a), you must determine the applicable notifications and submit them by the dates shown in the following table:

If your facility	You must submit	By this date
1. Is an existing source subject to this subpart	An Initial Notification containing the information specified in §63.9(b)(2)	No later than the dates specified in §63.9(b)(2).
2. Is a new source subject to this subpart	The notifications specified in §63.9(b)(4) and (5)	No later than the dates specified §63.9(b)(4) and (5).
3. Qualifies for a compliance extension as specified in §63.9(c)	A request for a compliance extension as specified in §63.9(c)	No later than the dates specified in §63.6(i).
4. Is complying with organic HAP emissions limit averaging provisions	A Notification of Compliance Status as specified in §63.9(h)	No later than 1 year plus 30 days after your facility's compliance date.
5. Is complying with organic HAP content limits, application equipment requirements, or organic HAP emissions limit other than organic HAP emissions limit averaging	A Notification of Compliance Status as specified in §63.9(h)	No later than 30 calendar days after your facility's compliance date.
6. Is complying by using an add-on control device	a. A notification of intent to conduct a performance test as specified in §63.9(e)	No later than the date specified in §63.9(e).
	b. A notification of the date for the CMS performance evaluation as specified in §63.9(g)	The date of submission of notification of intent to conduct a performance test.
	c. A Notification of Compliance Status as specified in §63.9(h)	No later than 60 calendar days after the completion of the add-on control device performance test and CMS performance evaluation.

Table 14 to Subpart WWWW of Part 63—Requirements for Reports

As required in §63.5910(a), (b), (g), and (h), you must submit reports on the schedule shown in the following table:

You must submit a(n)	The report must contain	You must submit the report
1. Compliance report	a. A statement that there were no deviations during that reporting period if there were no deviations from any emission limitations (emission limit, operating limit, opacity limit, and visible emission limit) that apply to you and there were no deviations from the requirements for work practice standards in Table 4 to this subpart that apply to you. If there were no periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control as specified in \$63.8(c)(7), the report must also contain a statement that there were no periods during which the CMS was out of control during the reporting period	Semiannually according to the requirements in \$63.5910(b).
	b. The information in §63.5910(d) if you have a	Semiannually according to the

	b. The information in §63.10(d)(5)(ii)	By letter within 7 working days after the end of the event unless you have made alternative arrangements with the permitting authority. (§63.10(d)(5)(ii)).
2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent with your startup, shutdown, and malfunction plan	a. Actions taken for the event	By fax or telephone within 2 working days after starting actions inconsistent with the plan.
	c. The information in §63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan	Semiannually according to the requirements in §63.5910(b).
	deviation from any emission limitation (emission limit, operating limit, or work practice standard) during the reporting period. If there were periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control, as specified in §63.8(c)(7), the report must contain the information in §63.5910(e)	requirements in §63.5910(b).

$Table~15~to~Subpart~WWWW~of~Part~63\\ --Applicability~of~General~Provisions~(Subpart~A)~to~Subpart~WWWW~of~Part~63\\ --Applicability~of~General~Provisions~(Subpart~A)~to~Subpart~A)\\$

As specified in §63.5925, the parts of the General Provisions which apply to you are shown in the following table:

The general provisions reference	That addresses	And applies to subpart WWWW of part 63	Subject to the following additional information
§63.1(a)(1)	General applicability of the general provisions	Yes	Additional terms defined in subpart WWWW of Part 63, when overlap between subparts A and WWWW of Part 63 of this part, subpart WWWW of Part 63 takes precedence.
§63.1(a)(2) through (4)	General applicability of the general provisions	Yes	
§63.1(a)(5)	Reserved	No	
§63.1(a)(6)	General applicability of the general provisions	Yes	
§63.1(a)(7) through (9)	Reserved	No	
§63.1(a)(10) through (14)	General applicability of the general provisions	Yes	
§63.1(b)(1)	Initial applicability determination	Yes	Subpart WWWW of Part 63 clarifies the applicability in §§63.5780 and

			63.5785.	
§63.1(b)(2)	Reserved	No.		
§63.1(b)(3)	Record of the applicability determination	Yes		
\$63.1(c)(1)	Applicability of this part after a relevant standard has been set under this part	Yes	Subpart WWWW of Part 63 clarified the applicability of each paragraph subpart A to sources subject to subpart WWWW of Part 63.	
\$63.1(c)(2)	Title V operating permit requirement	Yes	All major affected sources are required to obtain a title V operating permit. Area sources are not subject to subpart WWWW of Part 63.	
§63.1(c)(3) and (4)	Reserved	No		
§63.1(c)(5)	Notification requirements for an area source that increases HAP emissions to major source levels	Yes		
§63.1(d)	Reserved	No		
§63.1(e)	Applicability of permit program before a relevant standard has been set under this part	Yes		
§63.2	Definitions	Yes	Subpart WWWW of Part 63 defines terms in §63.5935. When overlap between subparts A and WWWW of Part 63 occurs, you must comply with the subpart WWWW of Part 63 definitions, which take precedence over the subpart A definitions.	
§63.3	Units and abbreviations	Yes	Other units and abbreviations used in subpart WWWW of Part 63 are defined in subpart WWWW of Part 63.	
§63.4	Prohibited activities and circumvention	Yes	§63.4(a)(3) through (5) is reserved and does not apply.	
§63.5(a)(1) and (2)	Applicability of construction and reconstruction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.	
§63.5(b)(1)	Relevant standards for new sources upon construction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.	
§63.5(b)(2)	Reserved	No		
§63.5(b)(3)	New construction/reconstruction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.	
§63.5(b)(4)	Construction/reconstruction notification	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.	
§63.5(b)(5)	Reserved	No		
§63.5(b)(6)	Equipment addition or process change	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.	

§63.5(c)	Reserved	No	
§63.5(d)(1)	General application for approval of construction or reconstruction	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§63.5(d)(2)	Application for approval of construction	Yes	
§63.5(d)(3)	Application for approval of reconstruction	No	
§63.5(d)(4)	Additional information	Yes	
§63.5(e)(1) through (5)	Approval of construction or reconstruction	Yes	
§63.5(f)(1) and (2)	Approval of construction or reconstruction based on prior State preconstruction review	Yes	
§63.6(a)(1)	Applicability of compliance with standards and maintenance requirements	Yes	
§63.6(a)(2)	Applicability of area sources that increase HAP emissions to become major sources	Yes	
§63.6(b)(1) through (5)	Compliance dates for new and reconstructed sources	Yes	Subpart WWWW of Part 63 clarifies compliance dates in §63.5800.
§63.6(b)(6)	Reserved	No	
§63.6(b)(7)	Compliance dates for new operations or equipment that cause an area source to become a major source	Yes	New operations at an existing facility are not subject to new source standards.
§63.6(c)(1) and (2)	Compliance dates for existing sources	Yes	Subpart WWWW of Part 63 clarifies compliance dates in §63.5800.
§63.6(c)(3) and (4)	Reserved	No	
§63.6(c)(5)	Compliance dates for existing area sources that become major	Yes	Subpart WWWW of Part 63 clarifies compliance dates in §63.5800.
§63.6(d)	Reserved	No	
§63.6(e)(1) and (2)	Operation & maintenance requirements	Yes	
\$63.6(e)(3)	Startup, shutdown, and malfunction plan and recordkeeping	Yes	Subpart WWWW of Part 63 requires a startup, shutdown, and malfunction plan only for sources using add-on controls.
\$63.6(f)(1)	Compliance except during periods of startup, shutdown, and malfunction	No	Subpart WWWW of Part 63 requires compliance during periods of startup, shutdown, and malfunction, except startup, shutdown, and malfunctions for sources using add-on controls.
§63.6(f)(2) and (3)	Methods for determining compliance	Yes	
§63.6(g)(1) through (3)	Alternative standard	Yes	
§63.6(h)	Opacity and visible emission Standards	No	Subpart WWWW of Part 63 does not contain opacity or visible emission standards.
§63.6(i)(1) through (14)	Compliance extensions	Yes	
§63.6(i)(15)	Reserved	No	
§63.6(i)(16)	Compliance extensions	Yes	

§63.6(j)	Presidential compliance exemption	Yes	
§63.7(a)(1)	Applicability of performance testing requirements	Yes	
§63.7(a)(2)	Performance test dates	No	Subpart WWWW of Part 63 initial compliance requirements are in §63.5840.
§63.7(a)(3)	CAA Section 114 authority	Yes	
§63.7(b)(1)	Notification of performance test	Yes	
§63.7(b)(2)	Notification rescheduled performance test	Yes	
§63.7(c)	Quality assurance program, including test plan	Yes	Except that the test plan must be submitted with the notification of the performance test.
§63.7(d)	Performance testing facilities	Yes	
\$63.7(e)	Conditions for conducting performance tests	Yes	Performance test requirements are contained in §63.5850. Additional requirements for conducting performance tests for continuous lamination/casting are included in §63.5870.
§63.7(f)	Use of alternative test method	Yes	
§63.7(g)	Performance test data analysis, recordkeeping, and reporting	Yes	
§63.7(h)	Waiver of performance tests	Yes	
§63.8(a)(1) and (2)	Applicability of monitoring requirements	Yes	
§63.8(a)(3)	Reserved	No	
§63.8(a)(4)	Monitoring requirements when using flares	Yes	
§63.8(b)(1)	Conduct of monitoring exceptions	Yes	
§63.8(b)(2) and (3)	Multiple effluents and multiple monitoring systems	Yes	
§63.8(c)(1)	Compliance with CMS operation and maintenance requirements	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§63.8(c)(2) and (3)	Monitoring system installation	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
\$63.8(c)(4)	CMS requirements	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§63.8(c)(5)	Continuous Opacity Monitoring System (COMS) minimum procedures	No	Subpart WWWW of Part 63 does not contain opacity standards.
\$63.8(c)(6) through (8)	CMS calibration and periods CMS is out of control	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§63.8(d)	CMS quality control program, including	Yes	This section applies if you elect to

	test plan and all previous versions		use a CMS to demonstrate continuous compliance with an emission limit.	
\$63.8(e)(1)	Performance evaluation of CMS	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
\$63.8(e)(2)	Notification of performance evaluation	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
\$63.8(e)(3) and (4)	CMS requirements/alternatives	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
\$63.8(e)(5)(i)	Reporting performance evaluation results	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
§63.8(e)(5)(ii)	Results of COMS performance evaluation	No	Subpart WWWW of Part 63 does not contain opacity standards.	
§63.8(f)(1) through (3)	Use of an alternative monitoring method	Yes		
§63.8(f)(4)	Request to use an alternative monitoring method	Yes		
§63.8(f)(5)	Approval of request to use an alternative monitoring method	Yes		
§63.8(f)(6)	Request for alternative to relative accuracy test and associated records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
§63.8(g)(1) through (5)	Data reduction	Yes		
§63.9(a)(1) through (4)	Notification requirements and general information	Yes		
§63.9(b)(1)	Initial notification applicability	Yes		
§63.9(b)(2)	Notification for affected source with initial startup before effective date of standard	Yes		
§63.9(b)(3)	Reserved	No		
§63.9(b)(4)(i)	Notification for a new or reconstructed major affected source with initial startup after effective date for which an application for approval of construction or reconstruction is required	Yes		
§63.9(b)(4)(ii) through (iv)	Reserved	No		
\$63.9(b)(4)(v)	Notification for a new or reconstructed major affected source with initial startup after effective date for which an application for approval of construction or	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.	

	reconstruction is required		
\$63.9(b)(5)	Notification that you are subject to this subpart for new or reconstructed affected source with initial startup after effective date and for which an application for approval of construction or reconstruction is not required	Yes	Existing facilities do not become reconstructed under subpart WWWW of Part 63.
§63.9(c)	Request for compliance extension	Yes	
§63.9(d)	Notification of special compliance requirements for new source	Yes	
§63.9(e)	Notification of performance test	Yes	
§63.9(f)	Notification of opacity and visible emissions observations	No	Subpart WWWW of Part 63 does not contain opacity or visible emission standards.
\$63.9(g)(1)	Additional notification requirements for sources using CMS	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§63.9(g)(2)	Notification of compliance with opacity emission standard	No	Subpart WWWW of Part 63 does not contain opacity emission standards.
\$63.9(g)(3)	Notification that criterion to continue use of alternative to relative accuracy testing has been exceeded	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.
§63.9(h)(1) through (3)	Notification of compliance status	Yes	
§63.9(h)(4)	Reserved	No	
§63.9(h)(5) and (6)	Notification of compliance status	Yes	
§63.9(i)	Adjustment of submittal deadlines	Yes	
§63.9(j)	Change in information provided	Yes	
§63.10(a)	Applicability of recordkeeping and reporting	Yes	
§63.10(b)(1)	Records retention	Yes	
§63.10(b)(2)(i) through (v)	Records related to startup, shutdown, and malfunction	Yes	Only applies to facilities that use an add-on control device.
\$63.10(b)(2)(vi) through (xi)	CMS records, data on performance tests, CMS performance evaluations, measurements necessary to determine conditions of performance tests, and performance evaluations	Yes	
§63.10(b)(2)(xii)	Record of waiver of recordkeeping and reporting	Yes	
§63.10(b)(2)(xiii)	Record for alternative to the relative accuracy test	Yes	
§63.10(b)(2)(xiv)	Records supporting initial notification and notification of compliance status	Yes	
§63.10(b)(3)	Records for applicability determinations	Yes	
§63.10(c)(1)	CMS records	Yes	This section applies if you elect to

			use a CMS to demonstrate continuous compliance with an emission limit.	
§63.10(c)(2) through (4)	Reserved	No		
\$63.10(c)(5) through (8)	CMS records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
§63.10(c)(9)	Reserved	No		
§63.10(c)(10) through (15)	CMS records	Yes	This section applies if you elect to use a CMS to demonstrate continuous compliance with an emission limit.	
§63.10(d)(1)	General reporting requirements	Yes		
§63.10(d)(2)	Report of performance test results	Yes		
§63.10(d)(3)	Reporting results of opacity or visible emission observations	No	Subpart WWWW of Part 63 does not contain opacity or visible emission standards.	
§63.10(d)(4)	Progress reports as part of extension of compliance	Yes		
§63.10(d)(5)	Startup, shutdown, and malfunction reports	Yes	Only applies if you use an add-on control device.	
\$63.10(e)(1) through (3)	Additional reporting requirements for CMS	Yes	This section applies if you have an add-on control device and elect to use a CEM to demonstrate continuous compliance with an emission limit.	
§63.10(e)(4)	Reporting COMS data	No	Subpart WWWW of Part 63 does not contain opacity standards.	
§63.10(f)	Waiver for recordkeeping or reporting	Yes		
§63.11	Control device requirements	Yes	Only applies if you elect to use a flare as a control device.	
§63.12	State authority and delegations	Yes		
§63.13	Addresses of State air pollution control agencies and EPA Regional Offices	Yes		
§63.14	Incorporations by reference	Yes		
§63.15	Availability of information and confidentiality	Yes		

Appendix A to Subpart WWWW of Part 63—Test Method for Determining Vapor Suppressant Effectiveness

1. Scope and Application

1.1 Applicability. If a facility is using vapor suppressants to reduce hazardous air pollutant (HAP) emissions, the organic HAP emission factor equations in Table 1 to this subpart require that the vapor suppressant effectiveness factor be determined. The vapor suppressant effectiveness factor is then used as one of the inputs into the appropriate organic HAP emission factor equation. The vapor suppressant effectiveness factor test is not intended to quantify overall volatile emissions from a resin, nor to be used as a stand-alone test for emissions determination.

This test is designed to evaluate the performance of film forming vapor suppressant resin additives. The results of this test are used only in combination with the organic HAP emissions factor equations in Table 1 to this subpart to generate emission factors.

- 1.1.1 The open molding process consists of application of resin and reinforcements to the mold surface, followed by a manual rollout process to consolidate the laminate, and the curing stage where the laminate surface is not disturbed. Emission studies have shown that approximately 50 percent to 55 percent of the emissions occur while the resin is being applied to the mold. Vapor suppressants have little effect during this portion of the lamination process, but can have a significant effect during the curing stage. Therefore, if a suppressant is 100 percent effective, the overall emissions from the process would be reduced by 45 percent to 50 percent, representing the emissions generated during the curing stage. In actual practice, vapor suppressant effectiveness will be less than 100 percent and the test results determine the specific effectiveness in terms of the vapor suppressant effectiveness factor. This factor represents the effectiveness of a specific combination of suppressant additive and resin formulation.
- 1.1.2 A resin manufacturer may supply a molder with a vapor-suppressed resin, and employ this test to provide the molder with the vapor suppressant effectiveness factor for that combination of resin and vapor suppressant. The factor qualifies the effectiveness of the vapor suppressant when the resin is tested in the specific formulation supplied to the molder. The addition of fillers or other diluents by the molder may impact the effectiveness of the vapor suppressant. The formulation, including resin/glass ratio and filler content, used in the test should be similar to the formulation to be used in production. The premise of this method is to compare laminate samples made with vapor suppressant additive and made without the additive. The difference in emissions between the two yields the vapor suppressant effectiveness factor.
- 1.1.3 The method uses a mass balance determination to establish the relative loss of the volatile component from unsaturated polyester or vinyl ester resins, with and without vapor suppressant additives. The effectiveness of a specific vapor suppressant and resin mixture is determined by comparing the relative volatile weight losses from vapor suppressed and non-suppressed resins. The volatile species are not separately analyzed. While the species contained in the volatile component are not determined, an extended listing of potential monomer that may be contained in unsaturated polyester or vinyl ester resins is provided in Table 1.1. However, most polyester and vinyl ester resin formulations presently used by the composites industry only contain styrene monomer.

Table 1.1—List of Monomers Potentially Present in Unsaturated Polyester/Vinyl Ester Resins

Monomer	CAS No.		
Styrene	100-42-5.		
Vinyl toluene	25013-15-4.		
Methyl methacrylate	80-62-6.		
Alpha methyl styrene	98-83-9.		
Para methyl styrene	Vinyl toluene isomer.		
Chlorostyrene	1331-28-8.		
Diallyl phthalate	131-17-9.		
Other volatile monomers	Various.		

2. Summary of Method

2.1 Differences in specific resin and suppressant additive chemistry affect the performance of a vapor suppressant. The purpose of this method is to quantify the effectiveness of a specific combination of vapor suppressant and unsaturated polyester or vinyl ester resin as they are to be used in production. This comparative test quantifies the loss of volatiles from a fiberglass reinforced laminate during the roll-out and curing emission phases, for resins formulated with and without a suppressant additive. A criterion for this method is the testing of a non-vapor suppressed resin system and testing the same resin with a vapor suppressant. The two resins are as identical as

possible with the exception of the addition of the suppressant to one. The exact formulation used for the test will be determined by the in-use production requirements. Each formulation of resin, glass, fillers, and additives is developed to meet particular customer and or performance specifications.

2.2 The result of this test is used as an input factor in the organic HAP emissions factor equations in Table 1 to this subpart, which allows these equations to predict emissions from a specific combination of resin and suppressant. This test does not provide an emission rate for the entire lamination process.

3. Definitions and Acronyms

- 3.1 Definitions
- 3.1.1 *Vapor suppressant.* An additive that inhibits the evaporation of volatile components in unsaturated polyester or vinyl ester resins.
- 3.1.2 Unsaturated polyester resin. A thermosetting resin commonly used in composites molding.
- 3.1.3 Unsaturated vinyl ester resin. A thermosetting resin used in composites molding for corrosion resistant and high performance applications.
- 3.1.4 *Laminate*. A combination of fiber reinforcement and a thermoset resin.
- 3.1.5 Chopped strand mat. Glass fiber reinforcement with random fiber orientation.
- 3.1.6 *Initiator*. A curing agent added to an unsaturated polyester or vinyl ester resin.
- 3.1.7 Resin application roller. A tool used to saturate and compact a wet laminate.
- 3.1.8 *Gel time*. The time from the addition of initiator to a resin to the state of resin gelation.
- 3.1.9 *Filled resin system.* A resin, which includes the addition of inert organic or inorganic materials to modify the resin properties, extend the volume and to lower the cost. Fillers include, but are not limited to; mineral particulates; microspheres; or organic particulates. This test is not intended to be used to determine the vapor suppressant effectiveness of a filler.
- 3.1.10 *Material safety data sheet.* Data supplied by the manufacturer of a chemical product, listing hazardous chemical components, safety precautions, and required personal protection equipment for a specific product.
- 3.1.11 *Tare(ed)*. Reset a balance to zero after a container or object is placed on the balance; that is to subtract the weight of a container or object from the balance reading so as to weigh only the material placed in the container or on the object.
- 3.1.12 *Percent glass.* The specified glass fiber weight content in a laminate. It is usually determined by engineering requirements for the laminate.
- 3.2 Acronyms:
- 3.2.1 VS—vapor suppressed or vapor suppressant.
- 3.2.2 NVS—non-vapor suppressed.
- 3.2.3 *VSE*—vapor suppressant effectiveness.

- 3.2.4 VSE Factor—vapor suppressant effectiveness, factor used in the equations in Table 1 to this subpart.
- 3.2.5 *CSM*—chopped strand mat.
- 3.2.6 *MSDS*—material safety data sheet.

4. Interferences

There are no identified interferences which affect the results of this test.

5. Safety

Standard laboratory safety procedures should be used when conducting this test. Refer to specific MSDS for handling precautions.

6. Equipment and Supplies

NOTE: Mention of trade names or specific products or suppliers does not constitute an endorsement by the Environmental Protection Agency.

- 6.1 Required Equipment.
- 6.1.1 Balance enclosure.1
- 6.1.2 Two (2) laboratory balances—accurate to ± 0.01 g.2
- 6.1.3 Stop watch or balance data recording output to data logger with accuracy ±1 second.3
- 6.1.4 Thermometer—accurate to ± 2.0 °F(± 1.0 °C).4
- 6.1.5 A lipped pan large enough to hold the cut glass without coming into contact with the vertical sides, *e.g.* a pizza pan.5
- 6.1.6 Mylar film sufficient to cover the bottom of the pan.6
- 6.1.7 Tape to keep the Mylar from shifting in the bottom of the pan.7
- 6.1.8 Plastic tri-corner beakers of equivalent—250 ml to 400 ml capacity.8
- 6.1.9 Eye dropper or pipette.9
- 6.1.10 Disposable resin application roller, $\frac{3}{16}$ "- $\frac{3}{4}$ " diameter × 3"-6" roller length.10
- 6.1.11 Hygrometer or psychrometer11 accurate to ±5 percent
- 6.1.12 Insulating board, (Teflon, cardboard, foam board etc.) to prevent the balance from becoming a heat sink.12
- 6.2 Optional Equipment.
- 6.2.1 Laboratory balance—accurate to $\pm .01g$ with digital output, such as an RS-232 bi-directional interface13 for use with automatic data recording devices.

- 6.2.2 Computer with recording software configured to link to balance digital output. Must be programmed to record data at the minimum intervals required for manual data acquisition.
- 6.3 Supplies.
- 6.3.1 Chopped strand mat—1.5 oz/ft.2 14

7. Reagents and Standards

- 7.1 *Initiator*. The initiator type, brand, and concentration will be specified by resin manufacturer, or as required by production operation.
- 7.2 Polyester or vinyl ester resin.
- 7.3 Vapor suppressant additive.

8. Sample Collection, Preservation, and Storage

This test method involves the immediate recording of data during the roll out and curing phases of the lamination process during each test run. Samples are neither collected, preserved, nor stored.

9. Quality Control

Careful attention to the prescribed test procedure, routing equipment calibration, and replicate testing are the quality control activities for this test method. Refer to the procedures in section 11. A minimum of six test runs of a resin system without a suppressant and six test runs of the same resin with a suppressant shall be performed for each resin and suppressant test combination.

10. Calibration and Standardization

- 10.1 The laboratory balances, stopwatch, hygrometer and thermometer shall be maintained in a state of calibration prior to testing and thereafter on a scheduled basis as determined by the testing laboratory. This shall be accomplished by using certified calibration standards.
- 10.2 Calibration records shall be maintained for a period of 3 years.

11. Test Procedure

- 11.1 Test Set-up.
- 11.1.1 The laboratory balance is located in an enclosure to prevent fluctuations in balance readings due to localized air movement. The front of enclosure is open to permit work activity, but positioned so that local airflow will not effect balance readings. The ambient temperature is determined by suspending the thermometer at a point inside the enclosure.
- 11.1.2 The bottom of the aluminum pan is covered with the Mylar film. The film is held in position with tape or by friction between the pan and the film.
- 11.1.3 The resin and pan are brought to room temperature. This test temperature must be between 70 °F and 80 °F. The testing temperature cannot vary more than ± 2 °F during the measurement of test runs. Temperature shall be recorded at the same time weight is recorded on suppressed and non-suppressed test data sheets, shown in Table 17.1.

- 11.1.4 The relative humidity may not change more than ± 15 percent during the test runs. This is determined by recording the relative humidity in the vicinity of the test chamber at the beginning and end of an individual test run. This data is recorded on the test data sheets shown in Table 17.1.
- 11.1.5 Two plies of nominal 1.5 oz/ft2 chopped strand mat (CSM) are cut into a square or rectangle with the minimum surface area of 60 square inches (*i.e.* a square with a side dimension of 7.75 inches).
- 11.1.6 The appropriate resin application roller is readily available.
- 11.2 Resin Gel Time/Initiator Percentage
- 11.2.1 Previous testing has indicated that resin gel time influences the emissions from composite production. The testing indicated that longer the gel times led to higher emissions. There are a number of factors that influence gel time including initiator type, initiator brand, initiator level, temperature and resin additives. Under actual usage conditions a molder will adjust the initiator to meet a gel time requirement. In this test procedure, the vapor suppressed and non-vapor suppressed resin systems will be adjusted to the same gel time by selecting the appropriate initiator level for each.
- 11.2.2 All test runs within a test will be processed in a manner that produces the same resin gel time ± 2 minutes. To facilitate the resin mixing procedure, master batches of resin and resin plus vapor suppressant of resin are prepared. These resin master batches will have all of the required ingredients except initiator; this includes filler for filled systems. The gel times for the tests are conducted using the master batch and adjustments to meet gel time requirements shall be made to the master batch before emission testing is conducted. Test temperatures must be maintained within the required range, during gel time testing. Further gel time testing is not required after the non-vapor suppressed and vapor suppressed master batches are established with gel times within ± 2 minutes. A sufficient quantity of each resin should be prepared to allow for additional test specimens in the event one or more test fails to meet the data acceptance criteria discussed in Section 11.5 and shown in Table 17.2.
- 11.2.3 The specific brand of initiator and the nominal percentage level recommended by the resin manufacturer will be indicated on the resin certificate of analysis15; or, if a unique gel time is required in a production laminate, initiator brand and percentage will be determined by that specific requirement.

11.2.4 Examples:

- 11.2.4.1 The resin for a test run is specified as having a 15-minute cup gel time at $77\,^{\circ}$ F using Brand X initiator at 1.5 percent by weight. The non-suppressed control resin has a 15-minute gel time. The suppressed resin has a gel time of 17-minutes. An initiator level of 1.5 percent would be selected for the both the non-suppressed and the suppressed test samples.
- 11.2.4.2 Based on a specific production requirement, a resin is processed in production using 2.25 percent of Brand Y initiator, which produces a 20-minute gel time. This initiator at level of 2.25 percent produces a 20 minute gel time for the non-suppressed control resin, but yields a 25-minute gel time for the suppressed resin sample. The suppressed resin is retested at 2.50 percent initiator and produces a 21-minute gel time. The initiator levels of 2.25 percent and 2.50 percent respectively would yield gel times within ±2 minutes.
- 11.3 Test Run Procedure for Unfilled Resin (see the data sheet shown in Table 17.1).
- 11.3.1 The insulating board is placed on the balance.
- 11.3.2 The aluminum pan with attached Mylar film is placed on the balance, and the balance is tared (weight reading set to zero with the plate on the balance.)
- 11.3.3 Place two plies of 1.5 oz. CSM on the balance and record the weight (glass weight).

- 11.3.4 The resin beaker and stirring rod are put on the second balance and tared.
- 11.3.5 The required resin weight and initiator weight are calculated (refer to calculation formulas in 12.2).
- 11.3.6 The disposable resin application roller is placed on the edge of the plate.
- 11.3.7 The balance is tared, with the aluminum pan, Mylar film, glass mat, and resin application roller on the balance pan.
- 11.3.8 Resin is weighed into a beaker, as calculated, using the second balance. The mixing stick should be tared with the beaker weight.
- 11.3.9 Initiator is weighed into the resin, as calculated, using an eyedropper or a pipette, and the combination is mixed.
- 11.3.10 Initiated resin is poured on chopped strand mat in a pe-determined pattern (see Figure 11.6).
- 11.3.11 A stopwatch is started from zero.
- 11.3.12 The initial laminate weight is recorded.
- 11.3.13 The plate is removed from balance to enable roll-out of the laminate.
- 11.3.14 The wet laminate is rolled with the resin application roller to completely distribute the resin, saturate the chopped strand mat, and eliminate air voids. Roll-out time should be in the range of 2 to 316 minutes and vary less than ± 10 percent of the average time required for the complete set of six suppressed and six non-suppressed runs.
- 11.3.15 Record the rollout end time (time from start to completion of rollout).
- 11.3.16 Place the resin application roller on the edge of the plate when rollout is completed.
- 11.3.17 Place the plate back on the balance pan. Immediately record the weight.
- 11.3.18 For the first test in a series of six tests, weight is recorded every 5-minute interval (suppressed and non-suppressed). The end of the test occurs when three consecutive equal weights are recorded or a weight gain is observed (the last weight before the increased weight is the end of test weight). For the remaining five tests in the series, after the initial weights are taken, the next weight is recorded 30 minutes before the end of the test, as suggested by the results from the first test. It is likely that the time to reach the end point of a suppressed resin test will be shorter than the time required to complete a non-suppressed test. Therefore, the time to start taking data manually may be different for suppressed and non-suppressed resins.
- 11.4 Test Run Procedures for Filled Resin Systems17 Note that the procedure for filled systems differs from the procedure for unfilled systems. With filled systems, resin is applied to one ply of the CSM and the second ply is placed on top of the resin.
- 11.4.1 The insulating board is placed on the balance.
- 11.4.2 The aluminum pan with attached Mylar film is placed on the balance, and the balance is tared (weight reading set to zero with the plate on the balance.)
- 11.4.3 Place two plies of 1.5 oz. CSM on the balance and record the weight (glass weight).

- 11.4.4 Remove the top ply of fiberglass and record its weight (weight of 1st layer of glass).
- 11.4.5 The required resin weight and initiator weight are calculated (refer to calculation formulas in 12.2). Calculate the weight of filled resin and initiator based on the 2 layers of fiberglass.
- 11.4.6 The resin beaker and stirring rod are put on the second balance and tared.
- 11.4.7 A disposable resin application roller is placed on the edge of the plate.
- 11.4.8 The balance is tared, with the aluminum pan, Mylar film, glass mat, and resin application roller on the balance pan.
- 11.4.9 Resin is weighed into the beaker, as calculated, using the second balance. The mixing stick should be tared with the beaker weight.
- 11.4.10 Initiator is weighed into the resin, as calculated, using an eyedropper or a pipette, and the combination is mixed.
- 11.4.11 Initiated resin is poured on the single ply of CSM in a pre-determined pattern. Refer to Figure 11.6.
- 11.4.12 A stopwatch is started from zero.
- 11.4.13 Record the weight of the resin ans single ply of CSM (L_1) . The initial laminate weight equals L_1 plus the weight of second glass layer.
- 11.4.14 Replace the second layer of fiberglass.
- 11.4.15 Remove the plate from the balance to allow roll-out of the laminate.
- 11.4.16 Roll the wet laminate with the resin application roller to completely distribute the resin, saturate the chopped strand mat, and eliminate air voids. Roll-out time should be in the range of 2 to 316 minutes and vary less than ± 10 percent of the average time required for the complete set of six suppressed and six non-suppressed runs.
- 11.4.17 Record the roll-out end time (time from start to completion of rollout).
- 11.4.18 Place the resin application roller on the edge of the plate when rollout is completed.
- 11.4.19 Place the plate back on the balance pan. The initial weight is recorded immediately.
- 11.4.20 For the first test run in a series of six, weight is recorded at every 5-minute interval (suppressed and non-suppressed). The end of the test occurs when three consecutive equal weights are recorded or a weight gain is observed (the last weight before the increased weight is the end of test weight). For the remaining five tests in the series, after the initial weights are taken, the next weight is recorded 30 minutes before the end of the test, as suggested by the results from the first test. It is likely that the time to reach the end point of a suppressed resin test will be shorter than the time required to complete a non-suppressed test. Therefore, the time to start taking data manually may be different for suppressed and non-suppressed resins.
- 11.5 Data Acceptance Criteria:
- 11.5.1 A test set is designed as twelve individual test runs using the same resin, initiator, and gel time, six of the test runs use the resin non-vapor suppressed and the other six use it vapor suppressed.

- 11.5.2 If a test run falls outside any of the time, temperature, weight or humidity variation requirements, it must be discarded and run again.
- 11.5.3 The laminate roll out time for each individual test run must vary less than ± 10 percent of the average time required for the complete set of six suppressed and six non-suppressed runs.
- 11.5.4 Test temperature for each test run must be maintained within ± 2 °F and the average must be between 70° and 80 °F. Refer to 11.1.3.
- 11.5.5 The difference in the amount of resin for each run must be within ± 10 percent of the average weight for the complete set of six suppressed and six non-suppressed runs.
- 11.5.6 The relative humidity from each test run must be within ± 15 percent of the average humidity for the complete set of six suppressed and six non-suppressed tests. Refer to 11.1.4
- 11.5.7 The glass content for each test set must be within ± 10 percent of the average resin-to-/glass ratio for the complete set of six suppressed and six non-suppressed runs. Refer to 12.2).
- 11.5.8 The filler content for each test of a test set must be within ± 5 percent of the average filler content for the complete set of six suppressed and six non-suppressed runs. Refer to 12.2.
- 11.6 Resin Application Pour Pattern:
- 11.6.1 To facilitate the distribution of resin across the chopped strand mat, and to provide consistency from test to test, a uniform pour pattern should be used. A typical pour pattern is shown below:

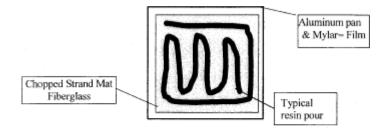


Figure 11.6 Resin Distribution Diagram

11.6.2 The resin is to be evenly distributed across the entire surface of the chopped strand mat using the resin application roller to achieve a wet look across the surface of the laminate. Pushing excess resin off the reinforcement and onto the Mylar sheet should be avoided. No resin is to be pushed more than $\frac{1}{2}$ inch beyond the edge of the glass mat. If excess resin is pushed further from the glass mat, it will void the test run. As part of this process, typical visible air voids are to be eliminated by the rollout process. If the pour pattern is different from the above, it must be recorded and attached to test data sheet 17.1.

12. Data Analysis and Calculations

12.1 Data Analysis:

This test method requires a simple mass balance calculation, no special data analysis is necessary.

- 12.2 Calculations:
- 12.2.1 The target glass content (percent) for unfilled resin systems is determined from the specific production parameters being evaluated. In absence of any specific production requirements the target may be set at the tester's discretion.
- 12.2.2 Glass content determination (expressed as a per cent):

% Glass = Glass wt(g)/(Glass wt(g) + Resin weight (g))

12.2.3 Weight of resin required:

Resin weight required = (Glass wt (g)/% glass)—Glass wt (g)

12.2.4 Filled resin formulation determination for filled resin systems (e.g. > 30 percent filler by weight for a particulate filler, or >1 percent by weight for a lightweight filler, such as hollow microspheres):

% Resin content = resin
weight(g)/(resin weight(g) + glass
weight(g) + filler weight(g))
% Glass content = glass
weight(g)/(resin weight(g) + glass
weight(g) + filler weight(g))

2 (2)

Filler content = filler

weight(g)/(resin weight(g) + glass

weight(g) + filler weight(g))

12.2.5 Initiator weight determination:

Initiator weight $(g) = Resin weight(g) \times Initiator %$

12.2.6 Emission weight loss determination:

Emissions weight loss (g) = Initial resin weight (g)-Final resin weight (g)

12.2.7 % Emission weight loss:

% Emission Weight Loss = (Emission weight loss (g) Initial resin weight (g) \times 100

12.2.8 Average % Emission Weight Loss (assuming six test runs):

Average % Emission Weight Loss =
$$\sum_{i}^{N-6}$$
 (% Emission Weight Loss_i)/6

12.2.9 VSE Factor calculation:

VSE Factor = 1 -(Average % VS Emission Weight Loss/Average NVS Emission Weight Loss)

Table 12.1—Example Calculation

Test #	% VS weight loss	% NVS weight loss
1	6.87	10.86
2	6.76	11.23
3	5.80	12.02
4	5.34	11.70
5	6.11	11.91
6	6.61	10.63
Average Weight Loss	6.25	11.39
VSE Factor		0.4

VSE Factor = 0.45

VSE Factor is used as input into the appropriate equation in Table 1 to this subpart.

Example from Table 1 to this subpart:

Manual Resin Application, 35 percent HAP resin, VSE Factor of 0.45

HAP Emissions with vapor suppresants = $((0.286 \times \%HAP) - 0.0529) \times 2000 \times (1 - (0.5 \times VSE factor))$

HAP Emissions with vapor suppresants = $((0.286 \times .35) - 0.0529) \times 2000 \times (1 - (0.5 \times .45))$

HAP Emissions with vapor suppresants = 73 pounds of HAP emissions per ton of resin.

13. Method Performance

13.1 Bias:

The bias of this test method has not been determined.

13.2 Precision Testing

13.2.1 Subsequent to the initial development of this test protocol by the Composites Fabricators Association, a series of tests were conducted in three different laboratory facilities. The purpose of this round robin testing was to verify the precision of the test method in various laboratories. Each laboratory received a sample of an orthophthalic polyester resin from the same production batch, containing 48 per cent styrene by weight. Each testing site was also provided with the same vapor suppressant additive. The suppressant manufacturer specified the percentage level of

suppressant additive. The resin manufacturer specified the type and level of initiator required to produce a 20 minute gel time. The target glass content was 30 percent by weight.

13.2.2 Each laboratory independently conducted the VSE test according to this method. A summary of the results is included in Table 13.1.

Table 13.1—Round Robin Testing Results

	Test Lab 1		Test Lab 2		Test Lab 3	
	NVS	VS	NVS	S	NVS	VS
Average percent WT Loss	4.24	1.15	4.69	1.84	5.73	1.61
Standard Deviation	0.095	0.060	0.002	0.002	0.020	0.003
VSE Factor		0.730		0.607		0.720

13.3 Comparison to EPA Reference Methods This test has no corresponding EPA reference method.

14. Pollution Prevention

The sample size used in this method produces a negligible emission of HAP, and has an insignificant impact upon the atmosphere.

15. Waste Management

The spent and waste materials generated during this test are disposed according to required facility procedures, and waste management recommendations on the corresponding material safety data sheets.

16. References and footnotes

16.1 Footnotes:

1Balance Enclosure—The purpose of the balance enclosure is to prevent localized airflow from adversely affecting the laboratory balance. The enclosure may be a simple three-sided box with a top and an open face. The configuration of the enclosure is secondary to the purpose of providing a stable and steady balance reading, free from the effects of airflow, for accurate measurements. The enclosure can be fabricated locally. A typical enclosure is shown in Figure 17.1.

2Laboratory Balance—Ohaus Precision Standard Series P/N TS400D or equivalent—Paul N. Gardner Co. 316 NE 1st St. Pompano Beach, FL 33060 or other suppliers.

3Stop Watch—Local supply.

4Thermometer—Mercury thermometer—ASTM No. 21C or equivalent; Digital thermometer—P/N TH-33033 or equivalent—Paul N. Gardner Co. 316 NE 1st St. Pompano Beach, FL 33060 or other suppliers.

5Aluminum Pan—Local supply.

6Mylar—Local supply.

7Double Sided Tape—3M Double Stick Tape or equivalent, local supply.

8Laboratory Beakers—250 to 400ml capacity—Local laboratory supply.

9Eye Dropper or Pipette—Local laboratory supply.

10Disposable Resin Application Roller Source—Wire Handle Roller P/N 205-050-300 or Plastic Handle Roller P/N 215-050-300 or equivalent; ES Manufacturing Inc., 2500 26st Ave. North, St. Petersburg, FL 33713, www.esmfg.com, or other source. Refer to Figure 17.3.

11Hygrometer or Psychrometer—Model# THWD-1, or equivalent—Part # 975765 by Amprobe Instrument, 630 Merrick Road, P.O. Box 329, Lynbrook, NY 11563, 516-593-5600

12Insulating Board (Teflon, cardboard, foam board etc.)—Local supply.

13Laboratory Balance With Digital Output—Ohaus Precision Standard Series P/N TS120S or equivalent—Paul N. Gardner Co. 316 NE 1st St. Pompano Beach, FL 33060 or other suppliers.

14Chopped Strand Mat—1.5 oz/ft2 Sources: Owens Corning Fiberglas—Fiberglas M-723; PPG Industries—ABM HTX; Vetrotex America—M-127 or equivalent.

15Certificate of Analysis: Resin gel time, as recorded on the resin certificate of analysis, is measured using a laboratory standard gel time procedure. This procedure typically uses a 100 gram cup sample at 77 °F (25 °C), a specific type of initiator and a specified percentage.

16Roll-out times may vary with resin viscosity or resin additive. The important aspect of this step is to produce the same roll-out time for both the suppressed and non-suppressed samples.

17While this test can be used with filled resin systems, the test is not designed to determine the effect of the filler on emissions, but rather to measure the effect of the suppressant additive in the resin system. When evaluating a filled system both the non-vapor suppressed and vapor suppressed samples should be formulated with the same type and level of filler.

- 16.2 References
- 1. Phase 1—Baseline Study Hand Lay-up, CFA, 1996
- 2. CFA Vapor Suppressant Effectiveness Test Development, 4/3/98, correspondence with Dr. Madeleine Strum, EPA, OAQPS
- 3. CFA Vapor Suppressant Effectiveness Screening Tests, 4/4/98
- 4. Styrene Suppressant Systems Study, Reichhold Chemical, 11/30/98
- 5. Evaluation of the CFA's New Proposed Vapor Suppressant Effectiveness Test, Technical Service Request #: ED-01-98, BYK Chemie, 6/3/98
- 6. Second Evaluation of the CFA's New Proposed Vapor Suppressant Effectiveness Test, Technical Service Request #: ED-02-98, BYK Chemie, 1/26/99

17. Data Sheets and Figures

17.1 This data sheet, or a similar data sheet, is used to record the test data for filled, unfilled, suppressed and non-suppressed tests. If additional time is required, the data sheet may be extended.

Table 17.1 Test Data Sheet

Test Number	Test Type				
	VS () NVS ()				
Resin	Filled	Unfilled ()			
Initiator			Initiator,		
Vapor Suppressant			VS, %		
Weight of 2 layers of glass, g	Weight of 1 st glass layer, g		Weight of 2 nd glass layer, g		
Initial Resin Weight, (g)		Time (Min.)	Weight g	Temp °F	
Glass content, (%)		55			
Initial Temperature °F:		60			
Initial Humidity %		65			
Resin Initiator Level,%		70			
Resin gel time, (min.)		75			
Resin filler content, %		80			
Roll out time, (min.)		85			
Time, Weight, (min.) g	Temp,	90			

Initial		95	
		100	
0		105	
5		110	
10		115	
15		120	
20		125	
25		130	
30		135	
35		140	
40		145	
45		150	
50		155	
Final Time, min.	Final Weight, g.	Final Temp,	Final Humidity, %

17.2 Data Acceptance Criteria Worksheet:

The following worksheet is used to determine the quality of collected data (i.e. insure the data collected all meets acceptance criteria)

Table 17.2—Data Acceptance Criteria Worksheet

Test No.	Temperature		Laminate roll out time,	Relative humidity, %		Resin weight,	Glass content,	Resin distribution	Meets criteria	
	Min	Max	Delta	min	Initial	Final	(g)	%	distribution	Y/N
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
	Avera	ge								
Criteria	±2	±10% of	±15 of	±15 of	±10%	±10%	$< \frac{1}{2}$ inch	All Y		

°F Average Average of Avg. of Avg. of mat

17.3 VSE Factor Calculation

Table 17.3—Calculations Worksheet

Vapor suppress	Non-	Non-vapor suppressed			
Test #	% Weight loss	Test #	% Weight loss		
Average Weight Loss					
VSE Factor					

VSE Factor = 1—(% Average Weight Loss $_{VS}$ / % Average Weight Loss $_{NVS}$)

17.4 Figures

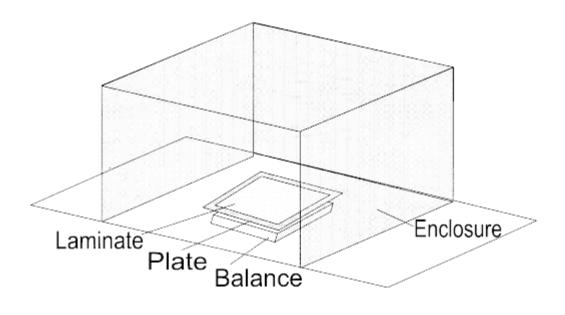


Figure 17.1. Typical Balance Enclosure

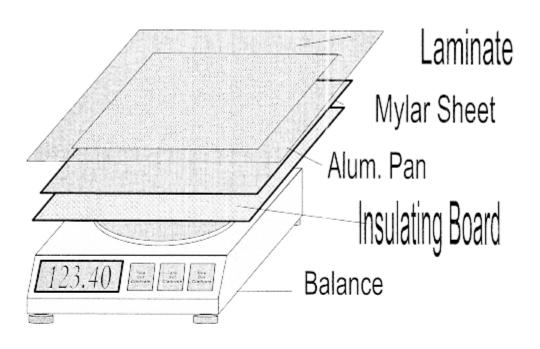
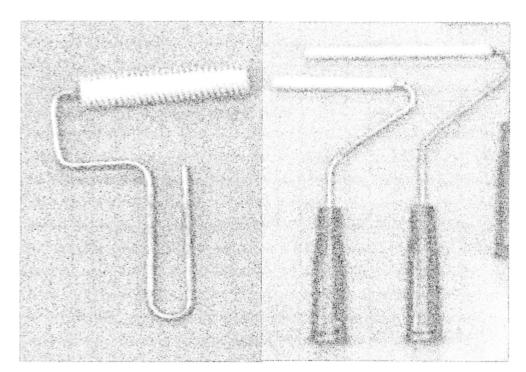



Figure 17.2. Scale, Plate, Insulating Board, Mylar, Laminate Order

FRP Rollers

Figure 17.3. Typical FRP Rollers

Subpart VVVV—National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing

Contents

What the Subpart Covers

§63.5680	What is the purpose of this subpart?
§63.5683	Does this subpart apply to me?
§63.5686	How do I demonstrate that my facility is not a major source?
§63.5689	What parts of my facility are covered by this subpart?
§63.5692	How do I know if my boat manufacturing facility is a new source or an existing source?
9 6 2 5 6 0 5	XXII . T 1 '.1 .1 .0

§63.5695 When must I comply with this subpart?

Standards for Open Molding Resin and Gel Coat Operations

§63.5698	What emission limit must I meet for o	open molding resin and gel coat operations?
0.60 5701	XX71	1.1 .1 11 1.0

§63.5701 What are my options for complying with the open molding emission limit?

§63.5704 What are the general requirements for complying with the open molding emission limit?

§63.5707 What is an implementation plan for open molding operations and when do I need to prepare one?

§63.5710 How do I demonstrate compliance using emissions averaging?

§63.5713 How do I demonstrate compliance using compliant materials?

§63.5714 How do I demonstrate compliance if I use filled resins?

Demonstrating Compliance for Open Molding Operations Controlled by Add-On Control Devices

863	5715	What	operating	limite	must l	meet?
QUJ.) / 1.)	vv Hat	ODELAUITE	HIHILS	musu	meet

§63.5716 When must I conduct a performance test?

§63.5719 How do I conduct a performance test?

§63.5722 How do I use the performance test data to demonstrate initial compliance?

§63.5725 What are the requirements for monitoring and demonstrating continuous compliance?

Standards for Closed Molding Resin Operations

§63.5728 What standards must I meet for closed molding resin operations?

Standards for Resin and Gel Coat Mixing Operations

§63.5731 What standards must I meet for resin and gel coat mixing operations?

Standards for Resin and Gel Coat Application Equipment Cleaning Operations

§63.5734 What standards must I meet for resin and gel coat application equipment cleaning operations?

§63.5737 How do I demonstrate compliance with the resin and gel coat application equipment cleaning standards?

Standards for Carpet and Fabric Adhesive Operations

§63.5740 What emission limit must I meet for carpet and fabric adhesive operations?

Standards for Aluminum Recreational Boat Surface Coating Operations

§63.5743 What standards must I meet for aluminum recreational boat surface coating operations?

§63.5746 How do I demonstrate compliance with the emission limits for aluminum wipedown solvents and aluminum coatings?

§63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents?

§63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

§63.5753 How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings?

§63.5755 How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun cleaning work practice standards?

Methods for Determining Hazardous Air Pollutant Content

§63.5758 How do I determine the organic HAP content of materials?

Notifications, Reports, and Records

§63.5761 What notifications must I submit and when?

§63.5764 What reports must I submit and when?

§63.5767 What records must I keep?

§63.5770 In what form and for how long must I keep my records?

Other Information You Need To Know

§63.5773 What parts of the General Provisions apply to me?

§63.5776 Who implements and enforces this subpart?

Definitions

§63.5779 What definitions apply to this subpart?

Table 1 to Subpart VVVV of Part 63—Compliance Dates for New and Existing Boat Manufacturing Facilities

Table 2 to Subpart VVVV of Part 63—Alternative Organic HAP Content Requirements for Open Molding Resin and Gel Coat Operations

Table 3 to Subpart VVVV of Part 63—MACT Model Point Value Formulas for Open Molding Operations

Table 4 to Subpart VVVV of Part 63—Operating Limits if Using an Add-on Control Device for Open Molding Operations

Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends

Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups

Table 7 to Subpart VVVV of Part 63—Applicability and Timing of Notifications

Table 8 to Subpart VVVV of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart VVVV

SOURCE: 66 FR 44232, Aug. 22, 2001, unless otherwise noted.

What the Subpart Covers

§63.5680 What is the purpose of this subpart?

(a) This subpart establishes national emission standards for hazardous air pollutants (HAP) for new and existing boat manufacturing facilities with resin and gel coat operations, carpet and fabric adhesive operations, or aluminum recreational boat surface coating operations. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission standards.

§63.5683 Does this subpart apply to me?

- (a) This subpart applies to you if you meet both of the criteria listed in paragraphs (a)(1) and (2) of this section.
- (1) You are the owner or operator of a boat manufacturing facility that builds fiberglass boats or aluminum recreational boats.
- (2) Your boat manufacturing facility is a major source of HAP either in and of itself, or because it is collocated with other sources of HAP, such that all sources combined constitute a major source.
- (b) A boat manufacturing facility is a facility that manufactures hulls or decks of boats from fiberglass or aluminum, or assembles boats from premanufactured hulls and decks, or builds molds to make fiberglass hulls or decks. A facility that manufactures only parts of boats (such as hatches, seats, or lockers) or boat trailers is not considered a boat manufacturing facility for the purpose of this subpart.
- (c) A major source is any stationary source or group of stationary sources located within a contiguous area and under common control that emits or can potentially emit, considering controls, in the aggregate, 9.1 megagrams (10 tons) or more per year of a single HAP or 22.7 megagrams (25 tons) or more per year of a combination of HAP.
- (d) This subpart does not apply to aluminum coating operations on aluminum boats intended for commercial or military (nonrecreational) use, antifoulant coatings, assembly adhesives, fiberglass hull and deck coatings, research and development activities, mold sealing and release agents, mold stripping and cleaning solvents, and wood coatings as defined in §63.5779. This subpart does not apply to materials contained in handheld aerosol cans.

§63.5686 How do I demonstrate that my facility is not a major source?

You can demonstrate that your facility is not a major source by using the procedures in either paragraph (a) or (b) of this section.

- (a) *Emission option*. You must demonstrate that your facility does not emit, and does not have the potential to emit as defined in §63.2, considering federally enforceable permit limits, 9.1 megagrams (10 tons) or more per year of a single HAP or 22.7 megagrams (25 tons) or more per year of a combination of HAP. To calculate your facility's potential to emit, you must include emissions from the boat manufacturing facility and all other sources that are collocated and under common ownership or control with the boat manufacturing facility.
- (b) *Material consumption option*. This option can be used if you manufacture either fiberglass boats or aluminum recreational boats at your facility. You must meet the criteria in paragraph (b)(1), (2), or (3) of this section and comply with the requirements in paragraph (c) of this section. If you initially rely on the limits and criteria specified in paragraph (b)(1), (2), or (3) of this section to become an area source, but then exceed the relevant limit (without first obtaining and complying with other limits that keep your potential to emit HAP below major source levels), your facility will then become a major source, and you must comply with all applicable provisions of this subpart beginning on the compliance date specified in §63.5695. Nothing in this paragraph is intended to preclude you from limiting your facility's potential to emit through other federally enforceable mechanisms available through your permitting authority.
- (1) If your facility is primarily a fiberglass boat manufacturing facility, you must demonstrate that you consume less than 45.4 megagrams per rolling 12-month period of all combined polyester-and vinylester-based resins and gel coats (including tooling and production resins and gel coats, and clear gel coats), and you must demonstrate that at

least 90 percent of total annual HAP emissions at the facility (including emissions from aluminum recreational boat manufacturing or other source categories) originate from the fiberglass boat manufacturing materials.

- (2) If your facility is primarily an aluminum recreational boat manufacturing facility, you must demonstrate that it consumes less than 18.2 megagrams per rolling 12-month period of all combined surface coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives; and you must demonstrate that at least 90 percent of total annual HAP emissions at the facility (including emissions from fiberglass boat manufacturing or other source categories) originate from the aluminum recreational boat manufacturing materials.
- (3) If your facility is a fiberglass boat or an aluminum recreational boat manufacturing facility, you must demonstrate that the boat manufacturing materials consumed per rolling 12-month period contain a total of less than 4.6 megagrams of any single HAP and less than 11.4 megagrams of all combined HAP, and you must demonstrate that at least 90 percent of total annual HAP emissions at the facility (including emissions from other source categories) originate from these boat manufacturing materials.
- (c) If you use the material consumption option described in paragraph (b) of this section to demonstrate that you are not a major source, you must comply with the requirements of paragraphs (c)(1) through (3) of this section.
- (1) If your facility has HAP emissions that do not originate from boat manufacturing operations or materials described in paragraph (b), then you must keep any records necessary to demonstrate that the 90 percent criterion is met.
- (2) A rolling 12-month period includes the previous 12 months of operation. You must maintain records of the total amount of materials described in paragraph (b) of this section used each month, and, if necessary, the HAP content of each material and the calculation of the total HAP consumed each month. Because records are needed for a 12-month period, you must keep records beginning no later than 12 months before the compliance date specified in §63.5695. Records must be kept for 5 years after they are created.
- (3) In determining whether the 90 percent criterion included in paragraph (b) of this section is met, you do not need to include materials used in routine janitorial, building, or facility grounds maintenance; personal uses by employees or other persons; or products used for maintaining motor vehicles operated by the facility.

§63.5689 What parts of my facility are covered by this subpart?

The affected source (the portion of your boat manufacturing facility covered by this subpart) is the combination of all of the boat manufacturing operations listed in paragraphs (a) through (f) of this section.

- (a) Open molding resin and gel coat operations (including pigmented gel coat, clear gel coat, production resin, tooling gel coat, and tooling resin).
- (b) Closed molding resin operations.
- (c) Resin and gel coat mixing operations.
- (d) Resin and gel coat application equipment cleaning operations.
- (e) Carpet and fabric adhesive operations.
- (f) Aluminum hull and deck coating operations, including solvent wipedown operations and paint spray gun cleaning operations, on aluminum recreational boats.

§63.5692 How do I know if my boat manufacturing facility is a new source or an existing source?

- (a) A boat manufacturing facility is a new source if it meets the criteria in paragraphs (a)(1) through (3) of this section.
- (1) You commence construction of the affected source after July 14, 2000.
- (2) It is a major source.
- (3) It is a completely new boat manufacturing affected source where no other boat manufacturing affected source existed prior to the construction of the new source.
- (b) For the purposes of this subpart, an existing source is any source that is not a new source.

§63.5695 When must I comply with this subpart?

You must comply with the standards in this subpart by the compliance dates specified in Table 1 to this subpart.

Standards for Open Molding Resin and Gel Coat Operations

§63.5698 What emission limit must I meet for open molding resin and gel coat operations?

- (a) You must limit organic HAP emissions from the five open molding operations listed in paragraphs (a)(1) through (5) of this section to the emission limit specified in paragraph (b) of this section. Operations listed in paragraph (d) are exempt from this limit.
- (1) Production resin.
- (2) Pigmented gel coat.
- (3) Clear gel coat.
- (4) Tooling resin.
- (5) Tooling gel coat.
- (b) You must limit organic HAP emissions from open molding operations to the limit specified by equation 1 of this section, based on a 12-month rolling average.

$$HAP\ Limit = \left[46 \left(M_{R}\right) + 159 \left(M_{PG}\right) + 291 \left(M_{CG}\right) + 54 \left(M_{TR}\right) + 214 \left(M_{TG}\right)\right] \qquad \left(Eq.\ 1\right)$$

Where:

HAP Limit= total allowable organic HAP that can be emitted from the open molding operations, kilograms.

 M_R = mass of production resin used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.

 M_{PG} = mass of pigmented gel coat used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.

 M_{CG} = mass of clear gel coat used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.

 M_{TR} = mass of tooling resin used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.

 M_{TG} = mass of tooling gel coat used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.

- (c) The open molding emission limit is the same for both new and existing sources.
- (d) The materials specified in paragraphs (d)(1) through (3) of this section are exempt from the open molding emission limit specified in paragraph (b) of this section.
- (1) Production resins (including skin coat resins) that must meet specifications for use in military vessels or must be approved by the U.S. Coast Guard for use in the construction of lifeboats, rescue boats, and other life-saving appliances approved under 46 CFR subchapter Q or the construction of small passenger vessels regulated by 46 CFR subchapter T. Production resins for which this exemption is used must be applied with nonatomizing (non-spray) resin application equipment. You must keep a record of the resins for which you are using this exemption.
- (2) Pigmented, clear, and tooling gel coat used for part or mold repair and touch up. The total gel coat materials included in this exemption must not exceed 1 percent by weight of all gel coat used at your facility on a 12-month rolling-average basis. You must keep a record of the amount of gel coats used per month for which you are using this exemption and copies of calculations showing that the exempt amount does not exceed 1 percent of all gel coat used.
- (3) Pure, 100 percent vinylester resin used for skin coats. This exemption does not apply to blends of vinylester and polyester resins used for skin coats. The total resin materials included in the exemption cannot exceed 5 percent by weight of all resin used at your facility on a 12-month rolling-average basis. You must keep a record of the amount of 100 percent vinylester skin coat resin used per month that is eligible for this exemption and copies of calculations showing that the exempt amount does not exceed 5 percent of all resin used.

§63.5701 What are my options for complying with the open molding emission limit?

You must use one or more of the options listed in paragraphs (a) through (c) of this section to meet the emission limit in §63.5698 for the resins and gel coats used in open molding operations at your facility.

- (a) Maximum achievable control technology (MACT) model point value averaging (emissions averaging) option. (1) Demonstrate that emissions from the open molding resin and gel coat operations that you average meet the emission limit in §63.5698 using the procedures described in §63.5710. Compliance with this option is based on a 12-month rolling average.
- (2) Those operations and materials not included in the emissions average must comply with either paragraph (b) or (c) of this section.
- (b) *Compliant materials option*. Demonstrate compliance by using resins and gel coats that meet the organic HAP content requirements in Table 2 to this subpart. Compliance with this option is based on a 12-month rolling average.
- (c) *Add-on control option*. Use an enclosure and add-on control device, and demonstrate that the resulting emissions meet the emission limit in §63.5698. Compliance with this option is based on control device performance testing and control device monitoring.

§63.5704 What are the general requirements for complying with the open molding emission limit?

- (a) *Emissions averaging option*. For those open molding operations and materials complying using the emissions averaging option, you must demonstrate compliance by performing the steps in paragraphs (a)(1) through (5) of this section.
- (1) Use the methods specified in §63.5758 to determine the organic HAP content of resins and gel coats.
- (2) Complete the calculations described in §63.5710 to show that the organic HAP emissions do not exceed the limit specified in §63.5698.
- (3) Keep records as specified in paragraphs (a)(3)(i) through (iv) of this section for each resin and gel coat.
- (i) Hazardous air pollutant content.
- (ii) Amount of material used per month.
- (iii) Application method used for production resin and tooling resin. This record is not required if all production resins and tooling resins are applied with nonatomized technology.
- (iv) Calculations performed to demonstrate compliance based on MACT model point values, as described in §63.5710.
- (4) Prepare and submit the implementation plan described in §63.5707 to the Administrator and keep it up to date.
- (5) Submit semiannual compliance reports to the Administrator as specified in §63.5764.
- (b) Compliant materials option. For each open molding operation complying using the compliant materials option, you must demonstrate compliance by performing the steps in paragraphs (b)(1) through (4) of this section.
- (1) Use the methods specified in §63.5758 to determine the organic HAP content of resins and gel coats.
- (2) Complete the calculations described in §63.5713 to show that the weighted-average organic HAP content does not exceed the limit specified in Table 2 to this subpart.
- (3) Keep records as specified in paragraphs (b)(3)(i) through (iv) of this section for each resin and gel coat.
- (i) Hazardous air pollutant content.
- (ii) Application method for production resin and tooling resin. This record is not required if all production resins and tooling resins are applied with nonatomized technology.
- (iii) Amount of material used per month. This record is not required for an operation if all materials used for that operation comply with the organic HAP content requirements.
- (iv) Calculations performed, if required, to demonstrate compliance based on weighted-average organic HAP content as described in §63.5713.
- (4) Submit semiannual compliance reports to the Administrator as specified in §63.5764.
- (c) Add-on control option. If you are using an add-on control device, you must demonstrate compliance by performing the steps in paragraphs (c)(1) through (5) of this section.

- (1) Conduct a performance test of the control device as specified in §§63.5719 and 63.5722 to demonstrate initial compliance.
- (2) Use the performance test results to determine control device parameters to monitor after the performance test as specified in §63.5725.
- (3) Comply with the operating limits specified in §63.5715 and the control device and emission capture system monitoring requirements specified in §63.5725 to demonstrate continuous compliance.
- (4) Keep the records specified in §63.5767.
- (5) Submit to the Administrator the notifications and reports specified in §§63.5761 and 63.5764.

§63.5707 What is an implementation plan for open molding operations and when do I need to prepare one?

- (a) You must prepare an implementation plan for all open molding operations for which you comply by using the emissions averaging option described in §63.5704(a).
- (b) The implementation plan must describe the steps you will take to bring the open molding operations covered by this subpart into compliance. For each operation included in the emissions average, your implementation plan must include the elements listed in paragraphs (b)(1) through (3) of this section.
- (1) A description of each operation included in the average.
- (2) The maximum organic HAP content of the materials used, the application method used (if any atomized resin application methods are used in the average), and any other methods used to control emissions.
- (3) Calculations showing that the operations covered by the plan will comply with the open molding emission limit specified in §63.5698.
- (c) You must submit the implementation plan to the Administrator with the notification of compliance status specified in §63.5761.
- (d) You must keep the implementation plan on site and provide it to the Administrator when asked.
- (e) If you revise the implementation plan, you must submit the revised plan with your next semiannual compliance report specified in §63.5764.

§63.5710 How do I demonstrate compliance using emissions averaging?

- (a) Compliance using the emissions averaging option is demonstrated on a 12-month rolling-average basis and is determined at the end of every month (12 times per year). The first 12-month rolling-average period begins on the compliance date specified in §63.5695.
- (b) At the end of the twelfth month after your compliance date and at the end of every subsequent month, use equation 1 of this section to demonstrate that the organic HAP emissions from those operations included in the average do not exceed the emission limit in §63.5698 calculated for the same 12-month period. (Include terms in equation 1 of §63.5698 and equation 1 of this section for only those operations and materials included in the average.)

$$HAP \text{ emissions} = \left[(PV_R)(M_R) + (PV_{PG})(M_{PG}) + (PV_{CG})(M_{CG}) + (PV_{TR})(M_{TR}) + (PV_{TG})(M_{TG}) \right] \qquad (Eq. 1)$$

Where:

HAP emissions= Organic HAP emissions calculated using MACT model point values for each operation included in the average, kilograms.

 PV_R = Weighted-average MACT model point value for production resin used in the past 12 months, kilograms per megagram.

 M_R = Mass of production resin used in the past 12 months, megagrams.

 PV_{PG} = Weighted-average MACT model point value for pigmented gel coat used in the past 12 months, kilograms per megagram.

 M_{PG} = Mass of pigmented gel coat used in the past 12 months, megagrams.

 PV_{CG} = Weighted-average MACT model point value for clear gel coat used in the past 12 months, kilograms per megagram.

 M_{CG} = Mass of clear gel coat used in the past 12 months, megagrams.

 PV_{TR} = Weighted-average MACT model point value for tooling resin used in the past 12 months, kilograms per megagram.

 M_{TR} = Mass of tooling resin used in the past 12 months, megagrams.

 PV_{TG} = Weighted-average MACT model point value for tooling gel coat used in the past 12 months, kilograms per megagram.

 M_{TG} = Mass of tooling gel coat used in the past 12 months, megagrams.

(c) At the end of every month, use equation 2 of this section to compute the weighted-average MACT model point value for each open molding resin and gel coat operation included in the average.

$$PV_{QP} = \frac{\sum_{i=1}^{n} (M_i \text{ PV}_i)}{\sum_{i=1}^{n} (M_i)} \qquad (Eq. 2)$$

Where:

 PV_{OP} = weighted-average MACT model point value for each open molding operation (PV_R , PV_{PG} , PV_{CG} , PV_{TR} , and PV_{TG}) included in the average, kilograms of HAP per megagram of material applied.

 M_i = mass of resin or gel coat i used within an operation in the past 12 months, megagrams.

n = number of different open molding resins and gel coats used within an operation in the past 12 months.

PV_i = the MACT model point value for resin or gel coat i used within an operation in the past 12 months, kilograms of HAP per megagram of material applied.

- (d) You must use the equations in Table 3 to this subpart to calculate the MACT model point value (PV_i) for each resin and gel coat used in each operation in the past 12 months.
- (e) If the organic HAP emissions, as calculated in paragraph (b) of this section, are less than the organic HAP limit calculated in §63.5698(b) for the same 12-month period, then you are in compliance with the emission limit in §63.5698 for those operations and materials included in the average.

[66 FR 44232, Aug. 22, 2001; 66 FR 50504, Oct. 3, 2001]

§63.5713 How do I demonstrate compliance using compliant materials?

- (a) Compliance using the organic HAP content requirements listed in Table 2 to this subpart is based on a 12-month rolling average that is calculated at the end of every month. The first 12-month rolling-average period begins on the compliance date specified in §63.5695. If you are using filled material (production resin or tooling resin), you must comply according to the procedure described in §63.5714.
- (b) At the end of the twelfth month after your compliance date and at the end of every subsequent month, review the organic HAP contents of the resins and gel coats used in the past 12 months in each operation. If all resins and gel coats used in an operation have organic HAP contents no greater than the applicable organic HAP content limits in Table 2 to this subpart, then you are in compliance with the emission limit specified in §63.5698 for that 12-month period for that operation. In addition, you do not need to complete the weighted-average organic HAP content calculation contained in paragraph (c) of this section for that operation.
- (c) At the end of every month, you must use equation 1 of this section to calculate the weighted-average organic HAP content for all resins and gel coats used in each operation in the past 12 months.

$$Weighted - Average \; \text{HAP Content } \left(\%\right) = \frac{\sum\limits_{i=1}^n \left(M_i \; \text{HAP}_i\right)}{\sum\limits_{i=1}^n \left(M_i\right)} \qquad \left(\textit{Eq. 1}\right)$$

Where:

 M_i = mass of open molding resin or gel coat i used in the past 12 months in an operation, megagrams.

HAP_i = Organic HAP content, by weight percent, of open molding resin or gel coat i used in the past 12 months in an operation. Use the methods in §63.5758 to determine organic HAP content.

n = number of different open molding resins or gel coats used in the past 12 months in an operation.

(d) If the weighted-average organic HAP content does not exceed the applicable organic HAP content limit specified in Table 2 to this subpart, then you are in compliance with the emission limit specified in §63.5698.

§63.5714 How do I demonstrate compliance if I use filled resins?

(a) If you are using a filled production resin or filled tooling resin, you must demonstrate compliance for the filled material on an as-applied basis using equation 1 of this section.

$$PV_F = PV_u \times \frac{(100 - \% \text{ Filler})}{100} \qquad (Eq. 1)$$

Where:

 PV_F = The as-applied MACT model point value for a filled production resin or tooling resin, kilograms organic HAP per megagram of filled material.

 PV_u = The MACT model point value for the neat (unfilled) resin, before filler is added, as calculated using the formulas in Table 3 to this subpart.

- % Filler = The weight-percent of filler in the as-applied filled resin system.
- (b) If the filled resin is used as a production resin and the value of PV_F calculated by equation 1 of this section does not exceed 46 kilograms of organic HAP per megagram of filled resin applied, then the filled resin is in compliance.
- (c) If the filled resin is used as a tooling resin and the value of PV_F calculated by equation 1 of this section does not exceed 54 kilograms of organic HAP per megagram of filled resin applied, then the filled resin is in compliance.
- (d) If you are including a filled resin in the emissions averaging procedure described in $\S63.5710$, then use the value of PV $_{\rm F}$ calculated using equation 1 of this section for the value of PV $_{\rm F}$ in equation 2 of $\S63.5710$.

Demonstrating Compliance for Open Molding Operations Controlled by Add-On Control Devices

§63.5715 What operating limits must I meet?

- (a) For open molding operations on which you use a thermal oxidizer as an add-on control device, you must meet the operating limits specified in Table 4 to this subpart that apply to the emission capture system and thermal oxidizer. You must establish the operating limits during the performance test according to the procedures in §63.5725. You must meet the operating limits at all times after you establish them.
- (b) If you use an add-on control device other than a thermal oxidizer, or wish to monitor an alternative parameter and comply with a different operating limit, you must apply to the Administrator for approval of alternative monitoring under §63.8(f).

§63.5716 When must I conduct a performance test?

- (a) If your source is an existing source, you must complete the add-on control device performance test no later than the compliance date specified in §63.5695.
- (b) If your source is a new source, you must complete the add-on control device performance test no later than 180 days after the compliance date specified in §63.5695.
- (c) You must conduct a performance test every 5 years as part of renewing your 40 CFR part 70 or 71 operating permit.

§63.5719 How do I conduct a performance test?

- (a) You must capture the emissions using a permanent enclosure (such as a spray booth or similar containment device) and direct the captured emissions to the add-on control device.
- (b) You must measure emissions as specified in paragraph (b)(1) or (2) of this section.
- (1) If the enclosure vented to the control device is a permanent total enclosure as defined in Method 204 of appendix M to 40 CFR part 51, then you may measure emissions only at the outlet of the control device.

- (2) If the permanent enclosure vented to the control device is not a total enclosure, you must build a temporary total enclosure, as defined in Method 204 of appendix M to 40 CFR part 51, around the permanent enclosure. You must then simultaneously measure emissions from the control device outlet and the emissions from the temporary total enclosure outlet. You determine compliance from the combined emissions from the control device outlet and the temporary total enclosure outlet.
- (c) You must conduct the control device performance test using the emission measurement methods specified in paragraphs (c)(1) through (4) of this section.
- (1) Use either Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select the sampling sites.
- (2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.
- (3) Use Method 18 of appendix A to 40 CFR part 60 to measure organic HAP emissions or use Method 25A of appendix A to 40 CFR part 60 to measure total gaseous organic emissions as a surrogate for total organic HAP emissions. If you use Method 25A, you must assume that all gaseous organic emissions measured as carbon are organic HAP emissions. If you use Method 18 and the number of organic HAP in the exhaust stream exceeds five, you must take into account the use of multiple chromatographic columns and analytical techniques to get an accurate measure of at least 90 percent of the total organic HAP mass emissions. Do not use Method 18 to measure organic HAP emissions from a combustion device; use instead Method 25A and assume that all gaseous organic mass emissions measured as carbon are organic HAP emissions.
- (4) You may use American Society for Testing and Materials (ASTM) D6420-99 (available for purchase from at least one of the following addresses: 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.) in lieu of Method 18 of 40 CFR part 60, appendix A, under the conditions specified in paragraphs (c)(4)(i) through (iii) of this section.
- (i) If the target compound(s) is listed in Section 1.1 of ASTM D6420-99 and the target concentration is between 150 parts per billion by volume and 100 parts per million by volume.
- (ii) If the target compound(s) is not listed in Section 1.1 of ASTM D6420-99, but is potentially detected by mass spectrometry, an additional system continuing calibration check after each run, as detailed in Section 10.5.3 of ASTM D6420-99, must be followed, met, documented, and submitted with the performance test report even if you do not use a moisture condenser or the compound is not considered soluble.
- (iii) If a minimum of one sample/analysis cycle is completed at least every 15 minutes.
- (d) The control device performance test must consist of three runs and each run must last at least 1 hour. The production conditions during the test runs must represent normal production conditions with respect to the types of parts being made and material application methods. The production conditions during the test must also represent maximum potential emissions with respect to the organic HAP content of the materials being applied and the material application rates.
- (e) During the test, you must also monitor and record separately the amounts of production resin, tooling resin, pigmented gel coat, clear gel coat, and tooling gel coat applied inside the enclosure that is vented to the control device.

§63.5722 How do I use the performance test data to demonstrate initial compliance?

Demonstrate initial compliance with the open molding emission limit as described in paragraphs (a) through (c) of this section:

- (a) Calculate the organic HAP limit you must achieve using equation 1 of §63.5698. For determining initial compliance, the organic HAP limit is based on the amount of material used during the performance test, in megagrams, rather than during the past 12 months. Calculate the limit using the megagrams of resin and gel coat applied inside the enclosure during the three runs of the performance test and equation 1 of §63.5698.
- (b) Add the total measured emissions, in kilograms, from all three of the 1-hour runs of the performance test.
- (c) If the total emissions from the three 1-hour runs of the performance test are less than the organic HAP limit calculated in paragraph (a) of this section, then you have demonstrated initial compliance with the emission limit in §63.5698 for those operations performed in the enclosure and controlled by the add-on control device.

§63.5725 What are the requirements for monitoring and demonstrating continuous compliance?

- (a) You must establish control device parameters that indicate proper operation of the control device.
- (b) You must install, operate, and maintain a continuous parameter monitoring system as specified in paragraphs (b)(1) through (8) of this section.
- (1) The continuous parameter monitoring system must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four successive cycles of operation to have a valid hour of data.
- (2) You must have valid data from at least 90 percent of the hours during which the process operated.
- (3) You must determine the average of all recorded readings for each successive 3-hour period of the emission capture system and add-on control device operation.
- (4) You must maintain the continuous parameter monitoring system at all times and have available necessary parts for routine repairs of the monitoring equipment.
- (5) You must operate the continuous parameter monitoring system and collect emission capture system and add-on control device parameter data at all times that a controlled open molding operation is being performed, except during monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, if applicable, calibration checks and required zero and span adjustments).
- (6) You must not use emission capture system or add-on control device parameter data recorded during monitoring malfunctions, associated repairs, out-of-control periods, or required quality assurance or control activities when calculating data averages. You must use all the data collected during all other periods in calculating the data averages for determining compliance with the emission capture system and add-on control device operating limits.
- (7) You must record the results of each inspection, calibration, and validation check.
- (8) Any period for which the monitoring system is out-of-control, as defined in §63.7(d)(7), or malfunctioning, and data are not available for required calculations is a deviation from the monitoring requirements. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the continuous parameter monitoring system to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.
- (c) Enclosure bypass line. You must meet the requirements of paragraphs (c)(1) and (2) of this section for each emission capture system enclosure that contains bypass lines that could divert emissions away from the add-on control device to the atmosphere.

- (1) You must monitor or secure the valve or closure mechanism controlling the bypass line in a nondiverting position in such a way that the valve or closure mechanism cannot be opened without creating a record that the valve was opened. The method used to monitor or secure the valve or closure mechanism must meet one of the requirements specified in paragraphs (c)(1)(i) through (iv) of this section.
- (i) Flow control position indicator. Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow control position indicator that takes a reading at least once every 15 minutes and provides a record indicating whether the emissions are directed to the add-on control device or diverted from the add-on control device. The time of occurrence and flow control position must be recorded, as well as every time the flow direction is changed. The flow control position indicator must be installed at the entrance to any bypass line that could divert the emissions away from the add-on control device to the atmosphere.
- (ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal or closure mechanism at least once every month to ensure that the valve is maintained in the closed position, and the emissions are not diverted away from the add-on control device to the atmosphere.
- (iii) *Valve closure continuous monitoring*. Ensure that any bypass line valve is in the closed (non-diverting) position through monitoring of valve position at least once every 15 minutes. You must inspect the monitoring system at least once every month to verify that the monitor will indicate valve position.
- (iv) *Automatic shutdown system*. Use an automatic shutdown system in which the open molding operation is stopped when flow is diverted by the bypass line away from the add-on control device to the atmosphere when the open molding operation is running. You must inspect the automatic shutdown system at least once every month to verify that it will detect diversions of flow and shut down the open molding operation.
- (2) If any bypass line is opened, you must include a description of why the bypass line was opened and the length of time it remained open in the semiannual compliance reports required in §63.5764(d).
- (d) *Thermal oxidizers*. If you are using a thermal oxidizer or incinerator as an add-on control device, you must comply with the requirements in paragraphs (d)(1) through (6) of this section.
- (1) You must install a combustion temperature monitoring device in the firebox of the thermal oxidizer or incinerator, or in the duct immediately downstream of the firebox before any substantial heat exchange occurs. You must meet the requirements in paragraphs (b) and (d)(1)(i) through (vii) of this section for each temperature monitoring device.
- (i) Locate the temperature sensor in a position that provides a representative temperature.
- (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger.
- (iii) Shield the temperature sensor system from electromagnetic interference and chemical contaminants.
- (iv) If a chart recorder is used, it must have a sensitivity in the minor division of at least 10 °C.
- (v) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor must yield a reading within 16.7 °C of the process temperature sensor's reading.
- (vi) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range or install a new temperature sensor.

- (vii) At least monthly, inspect all components for integrity and all electrical connections for continuity, oxidation, and galvanic corrosion.
- (2) Before or during the performance test, you must conduct a performance evaluation of the combustion temperature monitoring system according to \$63.8(e). Section 63.8(e) specifies the general requirements for continuous monitoring systems and requirements for notifications, the site-specific performance evaluation plan, conduct of the performance evaluation, and reporting of performance evaluation results.
- (3) During the performance test required by §63.5716, you must monitor and record the combustion temperature and determine the average combustion temperature for the three 1-hour test runs. This average temperature is the minimum operating limit for the thermal oxidizer.
- (4) Following the performance test, you must continuously monitor the combustion temperature and record the average combustion temperature no less frequently than every 15 minutes.
- (5) You must operate the incinerator or thermal oxidizer so that the average combustion temperature in any 3-hour period does not fall below the average combustion temperature recorded during the performance test.
- (6) If the average combustion temperature in any 3-hour period falls below the average combustion temperature recorded during the performance test, or if you fail to collect the minimum data specified in paragraph (d)(4) of this section, it is a deviation for the operating limit in §63.5715.
- (e) Other control devices. If you are using a control device other a thermal oxidizer, then you must comply with alternative monitoring requirements and operating limits approved by the Administrator under §63.8(f).
- (f) *Emission capture system*. For each enclosure in the emission capture system, you must comply with the requirements in paragraphs (f)(1) through (5) of this section.
- (1) You must install a device to measure and record either the flow rate or the static pressure in the duct from each enclosure to the add-on control device.
- (2) You must install a device to measure and record the pressure drop across at least one opening in each enclosure.
- (3) Each flow measurement device must meet the requirements in paragraphs (b) and (f)(3)(i) through (iv) of this section.
- (i) Locate the flow sensor in a position that provides a representative flow measurement in the duct between each enclosure in the emission capture system and the add-on control device.
- (ii) Reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.
- (iii) Conduct a flow sensor calibration check at least semiannually.
- (iv) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.
- (4) For each pressure measurement device, you must comply with the requirements in paragraphs (a) and (f)(4)(i) through (vii) of this section.
- (i) Locate each pressure drop sensor in or as close to a position that provides a representative measurement of the pressure drop across each enclosure opening you are monitoring.

- (ii) Locate each duct static pressure sensor in a position that provides a representative measurement of the static pressure in the duct between the enclosure and control device.
- (iii) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.
- (iv) Check the pressure tap for plugging daily.
- (v) Use an inclined manometer with a measurement sensitivity of 0.0004 millimeters mercury (mmHg) to check gauge calibration quarterly and transducer calibration monthly.
- (vi) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range or install a new pressure sensor.
- (vii) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.
- (5) For each capture device that is not part of a permanent total enclosure as defined in Method 204 in appendix M to 40 CFR part 51, you must establish an operating limit for either the gas volumetric flow rate or duct static pressure, as specified in paragraphs (f)(5)(i) and (ii) of this section. You must also establish an operating limit for pressure drop across at least one opening in each enclosure according to paragraphs (f)(5)(iii) and (iv) of this section. The operating limits for a permanent total enclosure are specified in Table 4 to this subpart.
- (i) During the emission test required by §63.5716 and described in §63.5719, you must monitor and record either the gas volumetric flow rate or the duct static pressure for each separate enclosure in your emission capture system at least once every 15 minutes during each of the three test runs at a point in the duct between the enclosure and the add-on control device inlet.
- (ii) Following the emission test, calculate and record the average gas volumetric flow rate or duct static pressure for the three test runs for each enclosure. This average gas volumetric flow rate or duct static pressure is the minimum operating limit for that specific enclosure.
- (iii) During the emission test required by §63.5716 and described in §63.5719, you must monitor and record the pressure drop across the opening of each enclosure in your emission capture system at least once every 15 minutes during each of the three test runs.
- (iv) Following the emission test, calculate and record the average pressure drop for the three test runs for each enclosure. This average pressure drop is the minimum operating limit for that specific enclosure.

Standards for Closed Molding Resin Operations

§63.5728 What standards must I meet for closed molding resin operations?

- (a) If a resin application operation meets the definition of closed molding specified in §63.5779, there is no requirement to reduce emissions from that operation.
- (b) If the resin application operation does not meet the definition of closed molding, then you must comply with the limit for open molding resin operations specified in §63.5698.
- (c) Open molding resin operations that precede a closed molding operation must comply with the limit for open molding resin and gel coat operations specified in §63.5698. Examples of these operations include gel coat or skin coat layers that are applied before lamination is performed by closed molding.

Standards for Resin and Gel Coat Mixing Operations

§63.5731 What standards must I meet for resin and gel coat mixing operations?

- (a) All resin and gel coat mixing containers with a capacity equal to or greater than 208 liters, including those used for on-site mixing of putties and polyputties, must have a cover with no visible gaps in place at all times.
- (b) The work practice standard in paragraph (a) of this section does not apply when material is being manually added to or removed from a container, or when mixing or pumping equipment is being placed in or removed from a container.
- (c) To demonstrate compliance with the work practice standard in paragraph (a) of this section, you must visually inspect all mixing containers subject to this standard at least once per month. The inspection should ensure that all containers have covers with no visible gaps between the cover and the container, or between the cover and equipment passing through the cover.
- (d) You must keep records of which mixing containers are subject to this standard and the results of the inspections, including a description of any repairs or corrective actions taken.

Standards for Resin and Gel Coat Application Equipment Cleaning Operations

§63.5734 What standards must I meet for resin and gel coat application equipment cleaning operations?

- (a) For routine flushing of resin and gel coat application equipment (e.g., spray guns, flowcoaters, brushes, rollers, and squeegees), you must use a cleaning solvent that contains no more than 5 percent organic HAP by weight. For removing cured resin or gel coat from application equipment, no organic HAP content limit applies.
- (b) You must store organic HAP-containing solvents used for removing cured resin or gel coat in containers with covers. The covers must have no visible gaps and must be in place at all times, except when equipment to be cleaned is placed in or removed from the container. On containers with a capacity greater than 7.6 liters, the distance from the top of the container to the solvent surface must be no less than 0.75 times the diameter of the container. Containers that store organic HAP-containing solvents used for removing cured resin or gel coat are exempt from the requirements of 40 CFR part 63, subpart T. Cured resin or gel coat means resin or gel coat that has changed from a liquid to a solid.

§63.5737 How do I demonstrate compliance with the resin and gel coat application equipment cleaning standards?

- (a) Determine and record the organic HAP content of the cleaning solvents subject to the standards specified in §63.5734 using the methods specified in §63.5758.
- (b) If you recycle cleaning solvents on site, you may use documentation from the solvent manufacturer or supplier or a measurement of the organic HAP content of the cleaning solvent as originally obtained from the solvent supplier for demonstrating compliance, subject to the conditions in §63.5758 for demonstrating compliance with organic HAP content limits.
- (c) At least once per month, you must visually inspect any containers holding organic HAP-containing solvents used for removing cured resin and gel coat to ensure that the containers have covers with no visible gaps. Keep records of the monthly inspections and any repairs made to the covers.

Standards for Carpet and Fabric Adhesive Operations

§63.5740 What emission limit must I meet for carpet and fabric adhesive operations?

- (a) You must use carpet and fabric adhesives that contain no more than 5 percent organic HAP by weight.
- (b) To demonstrate compliance with the emission limit in paragraph (a) of this section, you must determine and record the organic HAP content of the carpet and fabric adhesives using the methods in §63.5758.

Standards for Aluminum Recreational Boat Surface Coating Operations

§63.5743 What standards must I meet for aluminum recreational boat surface coating operations?

- (a) For aluminum wipedown solvent operations and aluminum surface coating operations, you must comply with either the separate emission limits in paragraphs (a)(1) and (2) of this section, or the combined emission limit in paragraph (a)(3) of this section. Compliance with these limitations is based on a 12-month rolling average that is calculated at the end of every month.
- (1) You must limit emissions from aluminum wipedown solvents to no more than 0.33 kilograms of organic HAP per liter of total coating solids applied from aluminum primers, clear coats, and top coats combined. No limit applies when cleaning surfaces are receiving decals or adhesive graphics.
- (2) You must limit emissions from aluminum recreational boat surface coatings (including thinners, activators, primers, topcoats, and clear coats) to no more than 1.22 kilograms of organic HAP per liter of total coating solids applied from aluminum primers, clear coats, and top coats combined.
- (3) You must limit emissions from the combined aluminum surface coatings and aluminum wipedown solvents to no more than 1.55 kilograms of organic HAP per liter of total coating solids applied from aluminum primers, clear coats, and top coats combined.
- (b) You must comply with the work practice standard in paragraph (b)(1), (2), (3), or (4) of this section when cleaning aluminum coating spray guns with solvents containing more than 5 percent organic HAP by weight.
- (1) Clean spray guns in an enclosed device. Keep the device closed except when you place spray guns in or remove them from the device.
- (2) Disassemble the spray gun and manually clean the components in a vat. Keep the vat closed when you are not using it.
- (3) Clean spray guns by placing solvent in the pressure pot and forcing the solvent through the gun. Do not use atomizing air during this procedure. Direct the used cleaning solvent from the spray gun into a container that you keep closed when you are not using it.
- (4) An alternative gun cleaning process or technology approved by the Administrator according to the procedures in §63.6(g).

§63.5746 How do I demonstrate compliance with the emission limits for aluminum wipedown solvents and aluminum coatings?

To demonstrate compliance with the emission limits for aluminum wipedown solvents and aluminum coatings specified in §63.5743(a), you must meet the requirements of paragraphs (a) through (f) of this section.

(a) Determine and record the organic HAP content (kilograms of organic HAP per kilogram of material, or weight fraction) of each aluminum wipedown solvent and aluminum coating (including primers, topcoats, clear coats, thinners, and activators). Use the methods in §63.5758 to determine organic HAP content.

- (b) Use the methods in §63.5758(b) to determine the solids content (liters of solids per liter of coating, or volume fraction) of each aluminum surface coating, including primers, topcoats, and clear coats. Keep records of the solids content.
- (c) Use the methods in §63.5758(c) to determine the density of each aluminum surface coating and wipedown solvent
- (d) Compliance is based on a 12-month rolling average calculated at the end of every month. The first 12-month rolling-average period begins on the compliance date specified in §63.5695.
- (e) At the end of the twelfth month after your compliance date and at the end of every subsequent month, use the procedures in §63.5749 to calculate the organic HAP from aluminum wipedown solvents per liter of coating solids, and use the procedures in §63.5752 to calculate the kilograms of organic HAP from aluminum coatings per liter of coating solids.
- (f) Keep records of the calculations used to determine compliance.
- (g) Approval of alternative means of demonstrating compliance. You may apply to the Administrator for permission to use an alternative means (such as an add-on control system) of limiting emissions from aluminum wipedown solvent and coating operations and demonstrating compliance with the emission limits in §63.5743(a).
- (1) The application must include the information listed in paragraphs (g)(1)(i) through (iii) of this section.
- (i) An engineering evaluation that compares the emissions using the alternative means to the emissions that would result from using the strategy specified in paragraphs (a) through (e) of this section. The engineering evaluation may include the results from an emission test that accurately measures the capture efficiency and control device efficiency achieved by the control system and the composition of the associated coatings so that the emissions comparison can be made.
- (ii) A proposed monitoring protocol that includes operating parameter values to be monitored for compliance and an explanation of how the operating parameter values will be established through a performance test.
- (iii) Details of appropriate recordkeeping and reporting procedures.
- (2) The Administrator will approve the alternative means of limiting emissions if the Administrator determines that HAP emissions will be no greater than if the source uses the procedures described in paragraphs (a) through (e) of this section to demonstrate compliance.
- (3) The Administrator's approval may specify operation, maintenance, and monitoring requirements to ensure that emissions from the regulated operations are no greater than those that would otherwise result from regulated operations in compliance with this subpart.

§63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents?

(a) Use equation 1 of this section to calculate the weighted-average organic HAP content of aluminum wipedown solvents used in the past 12 months.

$$HAP_{WD} = \frac{\sum_{j=1}^{n} (Vol_{j})(D_{j})(W_{j})}{\sum_{i=1}^{m} (Vol_{i})(Solids_{i})} \qquad (Eq. 1)$$

Where:

HAP_{WD} = weighted-average organic HAP content of aluminum wipedown solvents, kilograms of HAP per liter of total coating solids from aluminum primers, top coats, and clear coats.

n = number of different wipedown solvents used in the past 12 months.

Vol_i = volume of aluminum wipedown solvent j used in the past 12 months, liters.

 D_i = density of aluminum wipedown solvent j, kilograms per liter.

 W_i = mass fraction of organic HAP in aluminum wipedown solvent j.

m = number of different aluminum surface coatings (primers, top coats, and clear coats) used in the past 12 months.

Vol_i = volume of aluminum primer, top coat, or clear coat i used in the past 12 months, liters.

Solids_i = solids content aluminum primer, top coat, or clear coat i, liter solids per liter of coating.

(b) Compliance is based on a 12-month rolling average. If the weighted-average organic HAP content does not exceed 0.33 kilograms of organic HAP per liter of total coating solids, then you are in compliance with the emission limit specified in §63.5743(a)(1).

§63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

(a) Use equation 1 of this section to calculate the weighted-average HAP content for all aluminum surface coatings used in the past 12 months.

$$HAP_{SC} = \frac{\sum_{i=1}^{m} (Vol_i)(D_i)(W_i) + \sum_{k=1}^{D} (Vol_k)(D_k)(W_k)}{\sum_{i=1}^{m} (Vol_i)(Solids_i)}$$
(Eq. 1)

Where:

HAP_{SC} = weighted-average organic HAP content for all aluminum coating materials, kilograms of organic HAP per liter of coating solids.

m = number of different aluminum primers, top coats, and clear coats used in the past 12 months.

Vol_i = volume of aluminum primer, top coat, or clear coat i used in the past 12 months, liters.

D_i = density of coating i, kilograms per liter.

W_i = mass fraction of organic HAP in coating i, kilograms of organic HAP per kilogram of coating.

p = number of different thinners, activators, and other coating additives used in the past 12 months.

 Vol_k = total volume of thinner, activator, or additive k used in the past 12 months, liters.

 D_k = density of thinner, activator, or additive k, kilograms per liter.

 W_k = mass fraction of organic HAP in thinner, activator, or additive k, kilograms of organic HAP per kilogram of thinner or activator.

Solids_i = solids content of aluminum primer, top coat, or clear coat i, liter solids per liter of coating.

(b) Compliance is based on a 12-month rolling average. If the weighted-average organic HAP content does not exceed 1.22 kilograms of organic HAP per liter of coating solids, then you are in compliance with the emission limit specified in §63.5743(a)(2).

§63.5753 How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings?

(a) Use equation 1 of this section to calculate the combined weighted-average organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings.

$$HAP_{Combined} = HAP_{WD} + HAP_{SC}$$
 (Eq. 1)

Where:

 HAP_{WD} = the weighted-average organic HAP content of aluminum wipedown solvents used in the past 12 months, calculated using equation 1 of 63.5749.

 HAP_{SC} = the weighted average organic HAP content of aluminum recreational boat surface coatings used in the past 12 months, calculated using equation 1 of §63.5752.

(b) Compliance is based on a 12-month rolling average. If the combined organic HAP content does not exceed 1.55 kilograms of organic HAP per liter of total coating solids, then you are in compliance with the emission limit specified in §63.5743(a)(3).

§63.5755 How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun cleaning work practice standards?

You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or (b) of this section.

- (a) Demonstrate that solvents used to clean the aluminum coating spray guns contain no more than 5 percent organic HAP by weight by determining organic HAP content with the methods in §63.5758. Keep records of the organic HAP content determination.
- (b) For solvents containing more than 5 percent organic HAP by weight, comply with the requirements in paragraph (b)(1) or (b)(2), and paragraph (b)(3) of this section.
- (1) If you are using an enclosed spray gun cleaner, visually inspect it at least once per month to ensure that covers are in place and the covers have no visible gaps when the cleaner is not in use, and that there are no leaks from hoses or fittings.
- (2) If you are manually cleaning the gun or spraying solvent into a container that can be closed, visually inspect all solvent containers at least once per month to ensure that the containers have covers and the covers fit with no visible gaps.

(3) Keep records of the monthly inspections and any repairs that are made to the enclosed gun cleaners or the covers.

Methods for Determining Hazardous Air Pollutant Content

§63.5758 How do I determine the organic HAP content of materials?

- (a) Determine the organic HAP content for each material used. To determine the organic HAP content for each material used in your open molding resin and gel coat operations, carpet and fabric adhesive operations, or aluminum recreational boat surface coating operations, you must use one of the options in paragraphs (a)(1) through (6) of this section.
- (1) Method 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified in paragraphs (a)(1)(i) and (ii) of this section when determining organic HAP content by Method 311.
- (i) Include in the organic HAP total each organic HAP that is measured to be present at 0.1 percent by mass or more for Occupational Safety and Health Administration (OSHA)-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is measured to be 0.5 percent of the material by mass, you do not need to include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value truncated to four places after the decimal point (for example, 0.1234).
- (ii) Calculate the total organic HAP content in the test material by adding up the individual organic HAP contents and truncating the result to three places after the decimal point (for example, 0.123).
- (2) Method 24 (appendix A to 40 CFR part 60). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum coatings and use that value as a substitute for mass fraction of organic HAP.
- (3) ASTM D1259-85 (Standard Test Method for Nonvolatile Content of Resins). You may use ASTM D1259-85 (available for purchase from ASTM) to measure the mass fraction of volatile matter of resins and gel coats for open molding operations and use that value as a substitute for mass fraction of organic HAP.
- (4) *Alternative method*. You may use an alternative test method for determining mass fraction of organic HAP if you obtain prior approval by the Administrator. You must follow the procedure in §63.7(f) to submit an alternative test method for approval.
- (5) Information from the supplier or manufacturer of the material. You may rely on information other than that generated by the test methods specified in paragraphs (a)(1) through (4) of this section, such as manufacturer's formulation data, according to paragraphs (a)(5)(i) through (iii) of this section.
- (i) Include in the organic HAP total each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is 0.5 percent of the material by mass, you do not have to include it in the organic HAP total.
- (ii) If the organic HAP content is provided by the material supplier or manufacturer as a range, then you must use the upper limit of the range for determining compliance. If a separate measurement of the total organic HAP content using the methods specified in paragraphs (a)(1) through (4) of this section exceeds the upper limit of the range of the total organic HAP content provided by the material supplier or manufacturer, then you must use the measured organic HAP content to determine compliance.
- (iii) If the organic HAP content is provided as a single value, you may assume the value is a manufacturing target value and actual organic HAP content may vary from the target value. If a separate measurement of the total organic

HAP content using the methods specified in paragraphs (a)(1) through (4) of this section is less than 2 percentage points higher than the value for total organic HAP content provided by the material supplier or manufacturer, then you may use the provided value to demonstrate compliance. If the measured total organic HAP content exceeds the provided value by 2 percentage points or more, then you must use the measured organic HAP content to determine compliance.

- (6) Solvent blends. Solvent blends may be listed as single components for some regulated materials in certifications provided by manufacturers or suppliers. Solvent blends may contain organic HAP which must be counted toward the total organic HAP content of the materials. When detailed organic HAP content data for solvent blends are not available, you may use the values for organic HAP content that are listed in Table 5 or 6 to this subpart. You may use Table 6 to this subpart only if the solvent blends in the materials you use do not match any of the solvent blends in Table 5 to this subpart and you know only whether the blend is either aliphatic or aromatic. However, if test results indicate higher values than those listed in Table 5 or 6 to this subpart, then the test results must be used for determining compliance.
- (b) Determine the volume fraction solids in aluminum recreational boat surface coatings. To determine the volume fraction of coating solids (liters of coating solids per liter of coating) for each aluminum recreational boat surface coating, you must use one of the methods specified in paragraphs (b)(1) through (3) of this section. If the results obtained with paragraphs (b)(2) or (3) of this section do not to agree with those obtained according to paragraph (b)(1) of this section, you must use the results obtained with paragraph (b)(1) of this section to determine compliance.
- (1) ASTM Method D2697-86(1998) or D6093-97. You may use ASTM Method D2697-86(1998) or D6093-97 (available for purchase from ASTM) to determine the volume fraction of coating solids for each coating. Divide the nonvolatile volume percent obtained with the methods by 100 to calculate volume fraction of coating solids.
- (2) *Information from the supplier or manufacturer of the material*. You may obtain the volume fraction of coating solids for each coating from the supplier or manufacturer.
- (3) Calculation of volume fraction of coating solids. You may determine it using equation 1 of this section:

$$Solids=1-\frac{m_{volatiles}}{D_{ave}} \qquad (Eq. 1)$$

Where:

Solids = volume fraction of coating solids, liters coating solids per liter coating.

mvolatiles = Total volatile matter content of the coating, including organic HAP, volatile organic compounds, water, and exempt compounds, determined according to Method 24 in appendix A of 40 CFR part 60, grams volatile matter per liter coating.

 D_{avg} = average density of volatile matter in the coating, grams volatile matter per liter volatile matter, determined from test results using ASTM Method D1475-90 (available for purchase from ASTM), information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475-90 test results and other information sources, the test results will take precedence.

(c) Determine the density of each aluminum recreational boat wipedown solvent and surface coating. Determine the density of all aluminum recreational boat wipedown solvents, surface coatings, thinners, and other additives from test results using ASTM Method D1475-90, information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between

ASTM Method D1475-90 test results and other information sources, you must use the test results to demonstrate compliance.

Notifications, Reports, and Records

§63.5761 What notifications must I submit and when?

- (a) You must submit all of the notifications in Table 7 to this subpart that apply to you by the dates in the table. The notifications are described more fully in 40 CFR part 63, subpart A, General Provisions, referenced in Table 8 to this subpart.
- (b) If you change any information submitted in any notification, you must submit the changes in writing to the Administrator within 15 calendar days after the change.

§63.5764 What reports must I submit and when?

- (a) You must submit the applicable reports specified in paragraphs (b) through (e) of this section. To the extent possible, you must organize each report according to the operations covered by this subpart and the compliance procedure followed for that operation.
- (b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the dates in paragraphs (b)(1) through (5) of this section.
- (1) If your source is not controlled by an add-on control device (i.e., you are complying with organic HAP content limits, application equipment requirements, or MACT model point value averaging provisions), the first compliance report must cover the period beginning 12 months after the compliance date specified for your source in §63.5695 and ending on June 30 or December 31, whichever date is the first date following the end of the first 12-month period after the compliance date that is specified for your source in §63.5695. If your source is controlled by an add-on control device, the first compliance report must cover the period beginning on the compliance date specified for your source in §63.5695 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.5695.
- (2) The first compliance report must be postmarked or delivered no later than 60 calendar days after the end of the compliance reporting period specified in paragraph (b)(1) of this section.
- (3) Each subsequent compliance report must cover the applicable semiannual reporting period from January 1 through June 30 or from July 1 through December 31.
- (4) Each subsequent compliance report must be postmarked or delivered no later than 60 calendar days after the end of the semiannual reporting period.
- (5) For each affected source that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (4) of this section.
- (c) The compliance report must include the information specified in paragraphs (c)(1) through (7) of this section.
- (1) Company name and address.
- (2) A statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the report.

- (3) The date of the report and the beginning and ending dates of the reporting period.
- (4) A description of any changes in the manufacturing process since the last compliance report.
- (5) A statement or table showing, for each regulated operation, the applicable organic HAP content limit, application equipment requirement, or MACT model point value averaging provision with which you are complying. The statement or table must also show the actual weighted-average organic HAP content or weighted-average MACT model point value (if applicable) for each operation during each of the rolling 12-month averaging periods that end during the reporting period.
- (6) If you were in compliance with the emission limits and work practice standards during the reporting period, you must include a statement to that effect.
- (7) If you deviated from an emission limit or work practice standard during the reporting period, you must also include the information listed in paragraphs (c)(7)(i) through (iv) of this section in the semiannual compliance report.
- (i) A description of the operation involved in the deviation.
- (ii) The quantity, organic HAP content, and application method (if relevant) of the materials involved in the deviation.
- (iii) A description of any corrective action you took to minimize the deviation and actions you have taken to prevent it from happening again.
- (iv) A statement of whether or not your facility was in compliance for the 12-month averaging period that ended at the end of the reporting period.
- (d) If your facility has an add-on control device, you must submit semiannual compliance reports and quarterly excess emission reports as specified in §63.10(e). The contents of the reports are specified in §63.10(e).
- (e) If your facility has an add-on control device, you must complete a startup, shutdown, and malfunction plan as specified in §63.6(e), and you must submit the startup, shutdown, and malfunction reports specified in §63.10(e)(5).

§63.5767 What records must I keep?

You must keep the records specified in paragraphs (a) through (d) of this section in addition to records specified in individual sections of this subpart.

- (a) You must keep a copy of each notification and report that you submitted to comply with this subpart.
- (b) You must keep all documentation supporting any notification or report that you submitted.
- (c) If your facility is not controlled by an add-on control device (i.e., you are complying with organic HAP content limits, application equipment requirements, or MACT model point value averaging provisions), you must keep the records specified in paragraphs (c)(1) through (3) of this section.
- (1) The total amounts of open molding production resin, pigmented gel coat, clear gel coat, tooling resin, and tooling gel coat used per month and the weighted-average organic HAP contents for each operation, expressed as weight-percent. For open molding production resin and tooling resin, you must also record the amounts of each applied by atomized and nonatomized methods.

- (2) The total amount of each aluminum coating used per month (including primers, top coats, clear coats, thinners, and activators) and the weighted-average organic HAP content as determined in §63.5752.
- (3) The total amount of each aluminum wipedown solvent used per month and the weighted-average organic HAP content as determined in §63.5749.
- (d) If your facility has an add-on control device, you must keep the records specified in §63.10(b) relative to control device startup, shut down, and malfunction events; control device performance tests; and continuous monitoring system performance evaluations.

§63.5770 In what form and for how long must I keep my records?

- (a) Your records must be readily available and in a form so they can be easily inspected and reviewed.
- (b) You must keep each record for 5 years following the date that each record is generated.
- (c) You must keep each record on site for at least 2 years after the date that each record is generated. You can keep the records offsite for the remaining 3 years.
- (d) You can keep the records on paper or an alternative media, such as microfilm, computer, computer disks, magnetic tapes, or on microfiche.

Other Information You Need To Know

§63.5773 What parts of the General Provisions apply to me?

You must comply with the requirements of the General Provisions in 40 CFR part 63, subpart A, as specified in Table 8 to this subpart.

§63.5776 Who implements and enforces this subpart?

- (a) If the Administrator has delegated authority to your State or local agency, the State or local agency has the authority to implement and enforce this subpart.
- (b) In delegating implementation and enforcement authority of this subpart to a State or local agency under 40 CFR part 63, subpart E, the authorities that are retained by the Administrator of the U.S. EPA and are not transferred to the State or local agency are listed in paragraphs (b)(1) through (4) of this section.
- (1) Under $\S63.6(g)$, the authority to approve alternatives to the standards listed in paragraphs (b)(1)(i) through (vii) of this section is not delegated.
- (i) §63.5698—Emission limit for open molding resin and gel coat operations.
- (ii) §63.5728—Standards for closed molding resin operations.
- (iii) §63.5731(a)—Standards for resin and gel coat mixing operations.
- (iv) §63.5734—Standards for resin and gel coat application equipment cleaning operations.
- (v) §63.5740(a)—Emission limit for carpet and fabric adhesive operations.
- (vi) §63.5743—Standards for aluminum recreational boat surface coating operations.

- (vii) §63.5746(g)—Approval of alternative means of demonstrating compliance with the emission limits for aluminum recreational boat surface coating operations.
- (2) Under §63.7(e)(2)(ii) and (f), the authority to approve alternatives to the test methods listed in paragraphs (b)(2)(i) through (iv) of this section is not delegated.
- (i) §63.5719(b)—Method for determining whether an enclosure is a total enclosure.
- (ii) §63.5719(c)—Methods for measuring emissions from a control device.
- (iii) §63.5725(d)(1)—Performance specifications for thermal oxidizer combustion temperature monitors.
- (iv) §63.5758—Method for determining hazardous air pollutant content of regulated materials.
- (3) Under §63.8(f), the authority to approve major alternatives to the monitoring requirements listed in §63.5725 is not delegated. A "major alternative" is defined in §63.90.
- (4) Under §63.10(f), the authority to approve major alternatives to the reporting and recordkeeping requirements listed in §§63.5764, 63.5767, and 63.5770 is not delegated. A "major alternative" is defined in §63.90.

Definitions

§63.5779 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act, in §63.2, and in this section as follows:

Add-on control means an air pollution control device, such as a thermal oxidizer, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere.

Administrator means the Administrator of the United States Environmental Protection Agency (U.S. EPA) or an authorized representative (for example, a State delegated the authority to carry out the provisions of this subpart).

Aluminum recreational boat means any marine or freshwater recreational boat that has a hull or deck constructed primarily of aluminum. A recreational boat is a vessel which by design and construction is intended by the manufacturer to be operated primarily for pleasure, or to be leased, rented or chartered to another for the latter's pleasure (rather than for commercial or military purposes); and whose major structural components are fabricated and assembled in an indoor, production-line manufacturing plant or similar land-side operation and not in a dry dock, graving dock, or marine railway on the navigable waters of the United States.

Aluminum recreational boat surface coating operation means the application of primers or top coats to aluminum recreational boats. It also includes the application of clear coats over top coats. Aluminum recreational boat surface coating operations do not include the application of wood coatings or antifoulant coatings to aluminum recreational boats.

Aluminum coating spray gun cleaning means the process of flushing or removing paints or coatings from the interior or exterior of a spray gun used to apply aluminum primers, clear coats, or top coats to aluminum recreational boats.

Aluminum wipedown solvents means solvents used to remove oil, grease, welding smoke, or other contaminants from the aluminum surfaces of a boat before priming or painting. Aluminum wipedown solvents contain no coating solids; aluminum surface preparation materials that contain coating solids are considered coatings for the purpose of this subpart and are not wipedown solvents.

Antifoulant coating means any coating that is applied to the underwater portion of a boat specifically to prevent or reduce the attachment of biological organisms and that is registered with EPA as a pesticide under the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. section 136, et seq.). For the purpose of this subpart, primers used with antifoulant coatings to prepare the surface to accept the antifoulant coating are considered antifoulant coatings.

Assembly adhesive means any chemical material used in the joining of one fiberglass, metal, foam, or wood parts to another to form a temporary or permanently bonded assembly. Assembly adhesives include, but are not limited to, methacrylate adhesives and putties made from polyester or vinylester resin mixed with inert fillers or fibers.

Atomized resin application means a resin application technology in which the resin leaves the application equipment and breaks into droplets or an aerosol as it travels from the application equipment to the surface of the part. Atomized resin application includes, but is not limited to, resin spray guns and resin chopper spray guns.

Boat means any type of vessel, other than a seaplane, that can be used for transportation on the water.

Boat manufacturing facility means a facility that manufactures the hulls or decks of boats from fiberglass or aluminum or assembles boats from premanufactured hulls and decks, or builds molds to make fiberglass hulls or decks. A facility that manufactures only parts of boats (such as hatches, seats, or lockers) or boat trailers, but no boat hulls or decks or molds for fiberglass boat hulls or decks, is not considered a boat manufacturing facility for the purpose of this subpart.

Carpet and fabric adhesive means any chemical material that permanently attaches carpet, fabric, or upholstery to any surface of a boat.

Clear gel coat means gel coats that are clear or translucent so that underlying colors are visible. Clear gel coats are used to manufacture parts for sale. Clear gel coats do not include tooling gel coats used to build or repair molds.

Closed molding means any molding process in which pressure is used to distribute the resin through the reinforcing fabric placed between two mold surfaces to either saturate the fabric or fill the mold cavity. The pressure may be clamping pressure, fluid pressure, atmospheric pressure, or vacuum pressure used either alone or in combination. The mold surfaces may be rigid or flexible. Closed molding includes, but is not limited to, compression molding with sheet molding compound, infusion molding, resin injection molding (RIM), vacuum-assisted resin transfer molding (VARTM), resin transfer molding (RTM), and vacuum-assisted compression molding. Processes in which a closed mold is used only to compact saturated fabric or remove air or excess resin from the fabric (such as in vacuum bagging), are not considered closed molding. Open molding steps, such as application of a gel coat or skin coat layer by conventional open molding prior to a closed molding process, are not closed molding.

Cured resin and gel coat means resin or gel coat that has been polymerized and changed from a liquid to a solid.

Deviation means any instance in which an affected source subject to this subpart or an owner or operator of such a source:

- (1) Fails to meet any requirement or obligation established by this subpart, including, but not limited to, any emission limit, operating limit, or work practice requirement;
- (2) Fails to meet any term or condition which is adopted to implement an applicable requirement in this subpart and which is included in the operating permit for any affected source required to obtain such permit; or
- (3) Fails to meet any emission limit, operating limit, or work practice requirement in this subpart during any startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart.

Enclosure means a structure, such as a spray booth, that surrounds a source of emissions and captures and directs the emissions to an add-on control device.

Fiberglass boat means a vessel in which either the hull or deck is built from a composite material consisting of a thermosetting resin matrix reinforced with fibers of glass, carbon, aramid, or other material.

Fiberglass hull and deck coatings means coatings applied to the exterior or interior surface of fiberglass boat hulls and decks on the completed boat. Polyester and vinylester resins and gel coats used in building fiberglass parts are not fiberglass hull and deck coatings for the purpose of this subpart.

Filled resin means a resin to which an inert material has been added to change viscosity, density, shrinkage, or other physical properties.

Gel coat means a thermosetting resin surface coating containing styrene (Chemical Abstract Service or CAS No. 100-42-5) or methyl methacrylate (CAS No. 80-62-6), either pigmented or clear, that provides a cosmetic enhancement or improves resistance to degradation from exposure to the elements. Gel coat layers do not contain any reinforcing fibers and gel coats are applied directly to mold surfaces or to a finished laminate.

Hazardous air pollutant or HAP means any air pollutant listed in, or pursuant to section 112(b) of the Clean Air Act.

Hazardous air pollutant content or HAP content means the amount of HAP contained in a regulated material at the time it is applied to the part being manufactured. If no HAP is added to a material as a thinner or diluent, then the HAP content is the same as the HAP content of the material as purchased from the supplier. For resin and gel coat, HAP content does not include any HAP contained in the catalyst added to the resin or gel coat during application to initiate curing.

Hazardous air pollutant data sheet (HDS) means documentation furnished by a material supplier or an outside laboratory to provide the organic HAP content of the material by weight, measured using an EPA Method, manufacturer's formulation data, or an equivalent method. For aluminum coatings, the HDS also documents the solids content by volume, determined from the manufacturer's formulation data. The purpose of the HDS is to help the affected source in showing compliance with the organic HAP content limits contained in this subpart. The HDS must state the maximum total organic HAP concentration, by weight, of the material. It must include any organic HAP concentrations equal to or greater than 0.1 percent by weight for individual organic HAP that are carcinogens, as defined by the Occupational Safety and Health Administration Hazard Communication Standard (29 CFR part 1910), and 1.0 percent by weight for all other individual organic HAP, as formulated. The HDS must also include test conditions if EPA Method 311 is used for determining organic HAP content.

Maximum achievable control technology (MACT) model point value means a number calculated for open molding operations that is a surrogate for emissions and is used to determine if your open molding operations are in compliance with the provisions of this subpart. The units for MACT model point values are kilograms of organic HAP per megagram of resin or gel coat applied.

Manufacturer's certification means documentation furnished by a material supplier that shows the organic HAP content of a material and includes a HDS.

Mold means the cavity or surface into or on which gel coat, resin, and fibers are placed and from which finished fiberglass parts take their form.

Mold sealing and release agents means materials applied to a mold to seal, polish, and lubricate the mold to prevent parts from sticking to the mold. Mold sealers, waxes, and glazing and buffing compounds are considered mold sealing and release agents for the purposes of this subpart.

Mold stripping and cleaning solvents means materials used to remove mold sealing and release agents from a mold before the mold surface is repaired, polished, or lubricated during normal mold maintenance.

Month means a calendar month.

Neat resin means a resin to which no filler has been added.

Nonatomized resin application means any application technology in which the resin is not broken into droplets or an aerosol as it travels from the application equipment to the surface of the part. Nonatomized resin application technology includes, but is not limited to, flowcoaters, chopper flowcoaters, pressure fed resin rollers, resin impregnators, and hand application (for example, paint brush or paint roller).

Open molding resin and gel coat operation means any process in which the reinforcing fibers and resin are placed in the mold and are open to the surrounding air while the reinforcing fibers are saturated with resin. For the purposes of this subpart, open molding includes operations in which a vacuum bag or similar cover is used to compress an uncured laminate to remove air bubbles or excess resin, or to achieve a bond between a core material and a laminate.

Pigmented gel coat means opaque gel coats used to manufacture parts for sale. Pigmented gel coats do not include tooling gel coats used to build or repair molds.

Production resin means any resin used to manufacture parts for sale. Production resins do not include tooling resins used to build or repair molds, or assembly adhesives as defined in this section.

Recycled resin and gel coat application equipment cleaning solvent means cleaning solvents recycled on-site or returned to the supplier or another party to remove resin or gel coat residues so that the solvent can be reused.

Research and development activities means:

- (1) Activities conducted at a laboratory to analyze air, soil, water, waste, or product samples for contaminants, environmental impact, or quality control;
- (2) Activities conducted to test more efficient production processes or methods for preventing or reducing adverse environmental impacts, provided that the activities do not include the production of an intermediate or final product for sale or exchange for commercial profit, except in a *de minimis* manner; and
- (3) Activities conducted at a research or laboratory facility that is operated under the close supervision of technically trained personnel, the primary purpose of which is to conduct research and development into new processes and products and that is not engaged in the manufacture of products for sale or exchange for commercial profit, except in a *de minimis* manner.

Resin means any thermosetting resin with or without pigment containing styrene (CAS No. 100-42-5) or methyl methacrylate (CAS No. 80-62-6) and used to encapsulate and bind together reinforcement fibers in the construction of fiberglass parts.

Resin and gel coat application equipment cleaning means the process of flushing or removing resins and gel coats from the interior or exterior of equipment that is used to apply resin or gel coat in the manufacture of fiberglass parts.

Resin and gel coat mixing operation means any operation in which resin or gel coat, including the mixing of putties or polyputties, is combined with additives that include, but are not limited to, fillers, promoters, or catalysts.

Roll-out means the process of using rollers, squeegees, or similar tools to compact reinforcing materials saturated with resin to remove trapped air or excess resin.

Skin coat is a layer of resin and fibers applied over the gel coat to protect the gel coat from being deformed by the next laminate layers.

Tooling resin means the resin used to build or repair molds (also known as tools) or prototypes (also known as plugs) from which molds will be made.

Tooling gel coat means the gel coat used to build or repair molds (also known as tools) or prototypes (also known as plugs) from which molds will be made.

Vacuum bagging means any molding technique in which the reinforcing fabric is saturated with resin and then covered with a flexible sheet that is sealed to the edge of the mold and where a vacuum is applied under the sheet to compress the laminate, remove excess resin, or remove trapped air from the laminate during curing. Vacuum bagging does not include processes that meet the definition of closed molding.

Vinylester resin means a thermosetting resin containing esters of acrylic or methacrylic acids and having double-bond and ester linkage sites only at the ends of the resin molecules.

Volume fraction of coating solids means the ratio of the volume of coating solids (also known as volume of nonvolatiles) to the volume of coating; liters of coating solids per liter of coating.

Wood coatings means coatings applied to wooden parts and surfaces of boats, such as paneling, cabinets, railings, and trim. Wood coatings include, but are not limited to, primers, stains, sealers, varnishes, and enamels. Polyester and vinylester resins or gel coats applied to wooden parts to encapsulate them or bond them to other parts are not wood coatings.

Table 1 to Subpart VVVV of Part 63—Compliance Dates for New and Existing Boat Manufacturing Facilities

As specified in §63.5695, you must comply by the dates in the following table:

If your facility is—	And—	Then you must comply by this date—	
1. An existing source	Is a major source on or before August 22, 2001 ¹	August 23, 2004.	
2. An existing or new area source		1 year after becoming a major source or August 22, 2002, whichever is later.	
3. A new source	Is a major source at startup ¹	Upon startup or August 22, 2001, whichever is later.	

¹Your facility is a major source if it is a stationary source or group of stationary sources located within a contiguous area and under common control that emits or can potentially emit, considering controls, in the aggregate, 9.1 megagrams or more per year of a single hazardous air pollutant or 22.7 megagrams or more per year of a combination of hazardous air pollutants.

Table 2 to Subpart VVVV of Part 63—Alternative Organic HAP Content Requirements for Open Molding Resin and Gel Coat Operations

As specified in §§63.5701(b), 63.5704(b)(2), and 63.5713(a), (b), and (d), you must comply with the requirements in the following table:

For this operation—	And this application method—	You must not exceed this weighted-average organic HAP content (weight percent) requirement—
1. Production resin operations	Atomized (spray)	28 percent.

2. Production resin operations	Nonatomized (nonspray)	35 percent.
3. Pigmented gel coat operations	Any method	33 percent.
4. Clear gel coat operations	Any method	48 percent
5. Tooling resin operations	Atomized (spray)	30 percent.
6. Tooling resin operations	Nonatomized (nonspray)	39 percent.
7. Tooling gel coat operations	Any method	40 percent.

Table 3 to Subpart VVVV of Part 63—MACT Model Point Value Formulas for Open Molding Operations1

As specified in §§63.5710(d) and 63.5714(a), you must calculate point values using the formulas in the following table:

For this operation—	And this application method—	Use this formula to calculate the MACT model plant value for each resin and gel coat—
1. Production resin, tooling resin	a. Atomized	$0.014 \times (\text{Resin HAP\%})^{2.425}$
	b. Atomized, plus vacuum bagging with roll-out	$0.01185 \times (\text{Resin HAP\%})^{2.425}$
	c. Atomized, plus vacuum bagging without roll-out	$0.00945 \times (\text{Resin HAP\%})^{2.425}$
	d. Nonatomized	$0.014 \times (\text{Resin HAP\%})^{2.275}$
	e. Nonatomized, plus vaccum bagging with roll-out	$0.0110 \times (\text{Resin HAP\%})^{2.275}$
	f. Nonatomized, plus vacuum bagging without roll-out	$0.0076 \times (\text{Resin HAP\%})^{2.275}$
2. Pigmented gel coat, clear gel coat, tooling gel coat	All methods	$0.445 \times (\text{Gel coat HAP\%})^{1.675}$

¹Equations calculate MACT model point value in kilograms of organic HAP per megagrams of resin or gel coat applied. The equations for vacuum bagging with roll-out are applicable when a facility rolls out the applied resin and fabric prior to applying the vacuum bagging materials. The equations for vacuum bagging without roll-out are applicable when a facility applies the vacuum bagging materials immediately after resin application without rolling out the resin and fabric. HAP% = organic HAP content as supplied, expressed as a weight-percent value between 0 and 100 percent.

[66 FR 44232, Aug. 22, 2001; 66 FR 50504, Oct. 3, 2001]

Table 4 to Subpart VVVV of Part 63—Operating Limits if Using an Add-on Control Device for Open Molding Operations

As specified in §§63.5715(a) and 63.5725(f)(5), you must meet the operating limits in the following table:

For the You must meet the following operating	And you must demonstrate continuous
---	-------------------------------------

following device—	limit—	compliance with the operating limit by—
1. Thermal oxidizer	The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to \$63.5725(d)	a. Collecting the combustion temperature data according to §63.5725(d); b. reducing the data to 3-hour block averages; and c. maintaining the 3-hour average combustion temperature at or above the temperature limit.
2. Other control devices	An operating limit approved by the Administrator according to §63.8(f)	a. Collecting parameter monitoring as approved by the Administrator according to §63.8(f); and b. maintaining the parameters within the operating limits approved according to §63.8(f).
3. Emission capture system that is a PTE according to §63.5719(b)	a. The direction of the air flow at all times must be into the enclosure; and b. in any 3-hour period, either the average facial velocity of air through all natural draft openings in the enclosure must be at least 200 feet per minute; or c. the pressure drop across the enclosure must be at least 0.007 inch $\rm H_2O$, as established in Method 204 of appendix M to 40 CFR part 51	i. Collecting the direction of air flow, and either the facial velocity of air through all natural draft openings according to \$63.5725(f)(3) or the pressure drop across the enclosure according to \$63.5725(f)(4); and ii. reducing the data for facial velocity or pressure drop to 3-hour block averages; and iii. maintaining the 3-hour average facial velocity of air flow through all natural draft openings or the pressure drop at or above the facial velocity limit or pressure drop limit, and maintaining the direction of air flow into the enclosure at all times.
4. Emission capture system that is not a PTE according to §63.5719(b)	a. The average gas volumetric flow rate or duct static pressure in each duct between a capture device and add-on control device inlet in any 3-hour period must not fall below the average volumetric flow rate or duct static pressure limit established for that capture device according to §63.5725(f)(5); and b. the average pressure drop across an opening in each enclosure in any 3-hour period must not fall below the average pressure drop limit established for that capture device according to §63.5725(f)(5)	i. Collecting the gas volumetric flow rate or duct static pressure for each capture device according to §63.5725(f)(1) and (3); ii. reducing the data to 3-hour block averages; iii. maintaining the 3-hour average gas volumetric flow rate or duct static pressure for each capture device at or above the gas volumetric flow rate or duct static pressure limit; iv. collecting data for the pressure drop across an opening in each enclosure according to §63.5725(f)(2) and (4); v. reducing the data to 3-hour block averages; and vi. maintaining the 3-hour average pressure drop across the opening for each enclosure at or above the gas volumetric flow rate or duct static pressure limit.

Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends

As specified in §63.5758(a)(6), when detailed organic HAP content data for solvent blends are not available, you may use the values in the following table:

Solvent/solvent blend	CAS No.	Average organic HAP content, percent by mass	Typical organic HAP, percent by mass
1. Toluene	108-88-3	100	Toluene.
2. Xylene(s)	1330-20-7	100	Xylenes, ethylbenzene.
3. Hexane	110-54-3	50	n-hexane.
4. n-hexane	110-54-3	100	n-hexane.
5. Ethylbenzene	100-41-4	100	Ethylbenzene.

6. Aliphatic 140		0	None.
7. Aromatic 100		2	1% xylene, 1% cumene.
8. Aromatic 150		9	Naphthalene.
9. Aromatic naptha	64742-95- 6	2	1% xylene, 1% cumene.
10. Aromatic solvent	64742-94-	10	Naphthalene.
11. Exempt mineral spirits	8032-32-4	0	None.
12. Ligroines (VM & P)	8032-32-4	0	None.
13. Lactol spirits	64742-89-	15	Toluene.
14. Low aromatic white spirit	64742-82- 1	0	None.
15. Mineral spirits	64742-88-	1	Xylenes.
16. Hydrotreated naphtha	64742-48-9	0	None.
17. Hydrotreated light distillate	64742-47- 8	0.1	Toluene.
18. Stoddard solvent	8052-41-3	1	Xylenes.
19. Super high-flash naphtha	64742-95-	5	Xylenes.
20. Varol [®] solvent	8052-49-3	1	0.5% xylenes, 0.5% ethyl benzene.
21. VM & P naphtha	64742-89- 8	6	3% toluene, 3% xylene.
22. Petroleum distillate mixture	68477-31- 6	8	4% naphthalene, 4% biphenyl.

Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups

As specified in §63.5758(a)(6), when detailed organic HAP content data for solvent blends are not available, you may use the values in the following table:

Solvent type	Average organic HAP content, percent by mass	Typical organic HAP, percent by mass
Aliphatic (Mineral Spirits 135, Mineral Spirits 150 EC, Naphtha, Mixed Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naphtha, Naphthol Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.)	3	1% Xylene, 1% Toluene, and 1% Ethylbenzene.
Aromatic (Medium-flash Naphtha, High-flash Naphtha, Aromatic Naphtha, Light Aromatic Naphtha, Light Aromatic Hydrocarbons, Aromatic Hydrocarbons, Light Aromatic Solvent.)		4% Xylene, 1% Toluene, and 1% Ethylbenzene.

Table 7 to Subpart VVVV of Part 63—Applicability and Timing of Notifications

As specified in §63.5761(a), you must submit notifications according to the following table:

If your facility—	You must submit—	By this date—
1. Is an existing source subject to this subpart	An initial notification containing the information specified in §63.9(b)(2)	No later than the dates specified in §63.9(b)(2).
2. Is a new source subject to this subpart	The notifications specified in §63.9(b) (3) to (5)	No later than the dates specified §63.9(b)(4) and (5).
3. Qualifies for a compliance extension as specified in §63.9(c)	A request for a compliance extension as specified in §63.9(c)	No later than the dates specified in §63.6(i).
4. Is complying with organic HAP content limits, application equipment requirements; or MACT model point value averaging provisions	A notification of compliance status as specified in §63.9(h)	No later than 30 calendar days after the end of the first 12-month averaging period after your facility's compliance date.
5. Is complying by using an add-on control device	a. notification of intent to conduct a performance test as specified in §63.9(e)	No later than the date specified in §63.9(e).
	b. A notification of the date for the continuous monitoring system performance evaluation as specified in §63.9(g)	With the notification of intent to conduct a performance test.
	c. A notification of compliance status as specified in §63.9(h)	No later than 60 calendar days after the completion of the add-on control device performance test and continuous monitoring system performance evaluation.

$Table~8~to~Subpart~VVVV~of~Part~63\\ --Applicability~of~General~Provisions~(40~CFR~Part~63,~Subpart~A)~to~Subpart~VVVV\\$

As specified in §63.5773, you must comply with the applicable requirements of the General Provisions according to the following table:

Citation	Requirement	Applies to subpart VVVV	Explanation
§63.1(a)	General Applicability	Yes.	
§63.1(b)	Initial Applicability Determination	Yes.	
§63.1(c)(1)	Applicability After Standard Established	Yes.	
§63.1(c)(2)		Yes	Area sources are not regulated by subpart VVVV.
§63.1(c)(3)		No	[Reserved]
§63.1(c)(4)-(5)		Yes.	
§63.1(d)		No	[Reserved]
§63.1(e)	Applicability of Permit Program	Yes.	
§63.2	Definitions	Yes	Additional definitions are found in §63.5779.
§63.3	Units and Abbreviations	Yes.	

§63.4(a)	Prohibited Activities	Yes.	
§63.4(b)-(c)	Circumvention/Severability	Yes.	
§63.5(a)	Construction/Reconstruction	Yes.	
§63.5(b)	Requirements for Existing, Newly Constructed, and Reconstructed Sources	Yes.	
§63.5(c)		No	[Reserved]
§63.5(d)	Application for Approval of Construction/Reconstruction	Yes.	
§63.5(e)	Approval of Construction/Reconstruction	Yes.	
§63.5(f)	Approval of Construction/Reconstruction Based on prior State Review	Yes.	
§63.6(a)	Compliance with Standards and Maintenance Requirements— Applicability	Yes.	
§63.6(b)	Compliance Dates for New and Reconstructed Sources	Yes	§63.695 specifies compliance dates, including the compliance date for new area sources that become major sources after the effective date of the rule.
§63.6(c)	Compliance Dates for Existing Sources	Yes	§63.5695 specifies compliance dates, including the compliance date for existing area sources that become major sources after the effective date of the rule.
§63.6(d)		No	[Reserved]
§63.6(e)(1)-(2)	Operation and Maintenance Requirements	No	Operating requirements for open molding operations with add-on controls are specified in §63.5725.
§63.6(e)(3)	Startup, Shut Down, and Malfunction Plans	Yes	Only sources with add-on controls must complete startup, shutdown, and malfunction plans.
§63.6(f)	Compliance with Nonopacity Emission Standards	Yes.	
§63.6(g)	Use of an Alternative Nonopacity Emission Standard	Yes.	
§63.6(h)	Compliance with Opacity/Visible Emissions Standards	No	Subpart VVVV does not specify opacity or visible emission standards.
§63.6(i)	Extension of Compliance with Emission Standards	Yes.	
§63.6(j)	Exemption from Compliance with Emission Standards	Yes.	
§63.7(a)(1)	Performance Test Requirements	Yes.	
§63.7(a)(2)	Dates for performance tests	No	§63.5716 specifies performance test dates.
§63.7(a)(3)	Performance testing at other times	Yes.	
§63.7(b)-(h)	Other performance testing requirements	Yes.	
§63.8(a)(1)-(2)	Monitoring Requirements—	Yes	All of §63.8 applies only to sources with

	Applicability		add-on controls. Additional monitoring requirements for sources with add-on controls are found in §63.5725.
§63.8(a)(3)		No	[Reserved]
§63.8(a)(4)		No	Subpart VVVV does not refer directly or indirectly to §63.11.
§63.8(b)(1)	Conduct of Monitoring	Yes.	
§63.8(b)(2)-(3)	Multiple Effluents and Multiple Continuous Monitoring Systems (CMS)	Yes	Applies to sources that use a CMS on the control device stack.
§63.8(c)(1)-(4)	Continuous Monitoring System Operation and Maintenance	Yes.	
§63.8(c)(5)	Continuous Opacity Monitoring Systems (COMS)	No	Subpart VVVV does not have opacity or visible emission standards.
§63.8(c)(6)-(8)	Continuous Monitoring System Calibration Checks and Out-of-Control Periods	Yes.	
§63.8(d)	Quality Control Program	Yes.	
§63.8(e)	CMS Performance Evaluation	Yes.	
§63.8(f)(1)-(5)	Use of an Alternative Monitoring Method	Yes.	
§63.8(f)(6)	Alternative to Relative Accuracy Test	Yes	Applies only to sources that use continuous emission monitoring systems (CEMS).
§63.8(g)	Data Reduction	Yes	
§63.9(a)	Notification Requirements— Applicability	Yes.	
§63.9(b)	Initial Notifications	Yes	
§63.9(c)	Request for Compliance Extension	Yes.	
§63.9(d)	Notification That a New Source Is Subject to Special Compliance Requirements	Yes.	
§63.9(e)	Notification of Performance Test	Yes	Applies only to sources with add-on controls.
§63.9(f)	Notification of Visible Emissions/Opacity Test	No	Subpart VVVV does not have opacity or visible emission standards.
§63.9(g)(1)	Additional CMS Notifications—Date of CMS Performance Evaluation	Yes	Applies only to sources with add-on controls.
§63.9(g)(2)	Use of COMS Data	No	Subpart VVVV does not require the use of COMS.
§63.9(g)(3)	Alternative to Relative Accuracy Testing	Yes	Applies only to sources with CEMS.
§63.9(h)	Notification of Compliance Status	Yes.	
§63.9(i)	Adjustment of Deadlines	Yes.	
§63.9(j)	Change in Previous Information	Yes.	
§63.10(a)	Recordkeeping/Reporting— Applicability	Yes.	

§63.10(b)(1)	General Recordkeeping Requirements	Yes	§§63.567 and 63.5770 specify additional recordkeeping requirements.
§63.10(b)(2)(i)- (xi)	Recordkeeping Relevant to Startup, Shutdown, and Malfunction Periods and CMS	Yes	Applies only to sources with add-on controls.
\$63.10(b)(2)(xii)- (xiv)	General Recordkeeping Requirements	Yes.	
§63.10(b)(3)	Recordkeeping Requirements for Applicability Determinations	Yes	§63.5686 specifies applicability determinations for non-major sources.
§63.10(c)	Additional Recordkeeping for Sources with CMS	Yes	Applies only to sources with add-on controls.
§63.10(d)(1)	General Reporting Requirements	Yes	§63.5764 specifies additional reporting requirements.
§63.10(d)(2)	Performance Test Results	Yes	§63.5764 specifies additional requirements for reporting performance test results.
§63.10(d)(3)	Opacity or Visible Emissions Observations	No	Subpart VVVV does not specify opacity or visible emission standards.
§63.10(d)(4)	Progress Reports for Sources with Compliance Extensions	Yes.	
§63.10(d)(5)	Startup, Shutdown, and Malfunction Reports	Yes	Applies only to sources with add-on controls.
§63.10(e)(1)	Additional CMS Reports—General	Yes	Applies only to sources with add-on controls.
§63.10(e)(2)	Reporting Results of CMS Performance Evaluations	Yes	Applies only to sources with add-on controls.
§63.10(e)(3)	Excess Emissions/CMS Performance Reports	Yes	Applies only to sources with add-on controls.
§63.10(e)(4)	COMS Data Reports	No	Subpart VVVV does not specify opacity or visible emission standards.
§63.10(f)	Recordkeeping/Reporting Waiver	Yes.	
§63.11	Control Device Requirements— Applicability	No	Facilities subject to subpart VVVV do not use flares as control devices.
§63.12	State Authority and Delegations	Yes	§63.5776 lists those sections of subpart A that are not delegated.
§63.13	Addresses	Yes.	
§63.14	Incorporation by Reference	Yes.	
§63.15	Availability of Information/Confidentiality	Yes.	