AUTHORIZATION TO DISCHARGE WASTEWATER UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM AND THE ARKANSAS WATER AND AIR POLLUTION CONTROL ACT

In accordance with the provisions of the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. 8-4-101 et seq.), and the Clean Water Act (33 U.S.C. § 1251 et seq.),

City of Bryant

Wastewater Treatment Plant

is authorized to discharge treated municipal wastewater from a facility located as follows: 1019 Southwest Second Street, Bryant, AR 72022 in Saline County. From I-30 take Exit 123, south on Hwy 183, west on Southwest Third Street, North on South Spruce Street, West on Southwest Second Street to the wastewater treatment plant.

Facility Coordinates:	Latitude: 34° 35' 33" N;	Longitude: 92° 30' 15" W
Receiving stream:	an unnamed tributary, thence to Ouachita River in Segment 2C o	b Hurricane Creek, thence to the Saline River, thence to the of the Ouachita River Basin.

The permitted outfall is located at the following coordinates:

Outfall 001: Latitude: 34° 35' 12.85" N; Longitude: 92° 30' 18.45" W

Discharge shall be in accordance with effluent limitations, monitoring requirements, and other conditions set forth in this permit. Per Part III.D.10, the permittee must re-apply 180 days prior to the expiration date below for permit coverage to continue beyond the expiration date.

Effective Date:March 1, 2021Expiration Date:February 28, 2026

<u>02/04/2021</u> Issue Date

Robert E. Blanz, Ph.D., P.E. Associate Director, Office of Water Quality Arkansas Department of Energy and Environment Division of Environmental Quality

PART I PERMIT REQUIREMENTS

SECTION A1. INTERIM EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS: OUTFALL 001 - treated municipal wastewater.

During the period beginning on the effective date and lasting until three years after the effective date, the permittee is authorized to discharge from Outfall 001. Such discharges shall be limited and monitored by the permittee as specified below as well as Parts II and III. See Part IV for all definitions.

	Discharge Limitations		Monitoring Requirements		
Effluent Characteristics	Mass (lbs/day, else specified) Monthly Avg.	Concentration (mg/l, else specified) Monthly Avg. 7-Day Avg.		Frequency	Sample Type
Flow	N/A	Report, MGD	Report, MGD (Daily Max.)	once/day	totalizing meter
Overflows	monthly total	l SSOs (occurrent	ces/month)	see comments ¹	
Overflow Volume	monthly total vo	olume of SSOs (g	allons/month)	see c	omments ¹
Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	250.2	10	15	three/week	composite
Total Suspended Solids (TSS)	375.3	15.0	22.5	three/week	composite
Ammonia Nitrogen (NH ₃ -N)		•	•		
(April – October)	60.0	2.4	6.1	three/week	composite
(November – March)	150.1	6.0	9.0	three/week	composite
Dissolved Oxygen (DO)					
(May-October)	N/A	5.0 (Ins	st. Min.)	three/week	grab
(November – April)	N/A	6.0 (Ins	st. Min.)	three/week	grab
		(colonies/100ml)			
Fecal Coliform Bacteria (FCB)	N/A	1000	2000	three/week	grab
Total Residual Chlorine (TRC) ²	N/A	0.011 (Inst. Max.) ³		three/week	grab
Total Phosphorus (TP)	N/A	Report	Report	once/year	grab
Nitrate+Nitrite-Nitrogen (NO ₃ +NO ₂ -N)	N/A	Report	Report	once/year	grab
Copper, Total Recoverable (Cu) ⁴	0.31	12.2 μg/l	24.5 μg/l	once/month	composite
Zinc, Total Recoverable (Zn) ⁴	2.89	115.6 μg/l	232.0 μg/l	once/month	composite
Mercury, Total Recoverable (Hg) ⁴	Report	Report	Report	once/year	composite
pН	N/A	Minimum 6.0 s.u.	<u>Maximum</u> 9.0 s.u.	three/week	grab

	Discharge Limitations		Monitoring Requirements	
Effluent Characteristics	Mass (lbs/day, else specified) Monthly Avg.	Concentration (mg/l, else specified) Monthly Avg. 7-Day Avg.	Frequency	Sample Type
Chronic WET Testing ⁵	, , , , , , , , , , , , , , , , , , , ,		L L	
Pimephales promelas (Chronic) ⁵		Value		
Pass/Fail Lethality (7-day NOEC) TLP6C		Report (Pass=0/Fail=1)	once/quarter	composite
Pass/Fail Growth (7-day NOEC) TGP6C		Report (Pass=0/Fail=1)	once/quarter	composite
Survival (7-day NOEC) TOP6C		Report %	once/quarter	composite
Coefficient of Variation (Growth) TQP6C		Report %	once/quarter	composite
Growth (7-day NOEC) TPP6C		Report %	once/quarter	composite
Pass/Fail Retest 1 (7-day NOEC) 22418		Report (Pass=0/Fail=1)	once/month ⁶	composite
Pass/Fail Retest 2 (7-day NOEC) 22419			once/month ⁶	composite
Pass/Fail Retest 3 (7-day NOEC) 51444	Report (Pass=0/Fail=1)		once/month ⁶	composite
<u>Ceriodaphnia dubia (Chronic)</u> ⁵		Value		
Pass/Fail Lethality (7-day NOEC) TLP3B		Report (Pass=0/Fail=1)	once/quarter	composite
Pass/Fail Reproduction (7-day NOEC)			once/quarter	composite
TGP3B			-	-
Survival (7-day NOEC) TOP3B		Report %	once/quarter	composite
Coefficient of Variation (Reproduction)		Report %	once/quarter	composite
TQP3B		_	-	-
Reproduction (7-day NOEC) TPP3B		Report %	once/quarter	composite
Pass/Fail Retest 1 (7-day NOEC) 22415		Report (Pass=0/Fail=1)	once/month ⁶	composite
Pass/Fail Retest 2 (7-day NOEC) 22416		Report (Pass=0/Fail=1)	once/month ⁶	composite
Pass/Fail Retest 3 (7-day NOEC) 51443	Report (Pass=0/Fail=1)		once/month ⁶	composite

¹ See Part II.5 (SSO Condition). If there are no overflows during the entire month, report "zero" (0).

² TRC must be measured using any approved test method established in 40 C.F.R. § 136 capable of meeting a minimum quantification level (MQL) of 0.033 mg/l or lower. If TRC is not reportable at the required MQL (i.e., lab result is "ND"), report "0" on the Discharge Monitoring Report (DMR). Report the concentration if TRC is quantifiable and measured in the sample at or above this or an alternatively approved MQL.

- ³ The effluent limitation for TRC is the instantaneous maximum and cannot be averaged for reporting purposes. TRC shall be measured within fifteen (15) minutes of sampling.
- ⁴ See Part II.13 (Metals Condition).
- ⁵ See Part II.14 (WET Testing Condition).

⁶ CONDITIONAL REPORTING: Use only if conducting retests due to a test failure (demonstration of significant toxic effects at or below the critical dilution). If testing on a quarterly basis, the permittee may substitute one of the retests in lieu of one routine toxicity test. If retests are not required, Report NODI=9 (Conditional Monitoring - Not Required This Period) under retest parameters (reported on a quarterly DMR). This condition applies to *P. promelas* and *C. dubia*.

Oil, grease, or petrochemical substances shall not be present in receiving waters to the extent that they produce globules or other residue or any visible, colored film on the surface or coat the banks and/or bottoms of the waterbody or adversely affect any of the associated biota. There shall be no visible sheen as defined in Part IV.35 of this permit.

Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge during the entire monitoring period. Samples shall be taken after the final treatment unit and prior to entering the receiving stream.

SECTION A2. FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS: OUTFALL 001 - treated municipal wastewater.

During the period beginning three years after the effective date, and lasting until the date of expiration, the permittee is authorized to discharge from Outfall 001. Such discharges shall be limited and monitored by the permittee as specified below as well as Parts II and III. See Part IV for all definitions.

	Discharge Limitations		Monitoring Requirements		
Effluent Characteristics	Mass (lbs/day, else specified) Monthly Avg.		ntration e specified) 7-Day Avg.	Frequency	Sample Type
Flow	N/A	Report, MGD	Report, MGD (Daily Max.)	once/day	totalizing meter
Overflows	monthly tota	l SSOs (occurrent	ces/month)	see comments ¹	
Overflow Volume	monthly total vo	olume of SSOs (g	allons/month)	see comments ¹	
Carbonaceous Biochemical Oxygen Demand (CBOD ₅)	250.2	10	15	three/week	composite
Total Suspended Solids (TSS)	375.3	15.0	22.5	three/week	composite
Ammonia Nitrogen (NH ₃ -N)		•		•	
(April – October)	60.0	2.4	6.1	three/week	composite
(November – March)	150.1	6.0	9.0	three/week	composite
Dissolved Oxygen (DO)		•		1	
(May – October)	N/A	5.0 (Ins	st. Min.)	three/week	grab
(November – April)	N/A	6.0 (Ins	st. Min.)	three/week	grab
		(colonies/100ml)			
Fecal Coliform Bacteria (FCB)	N/A	1000	2000	three/week	grab
Total Residual Chlorine (TRC) ²	N/A	0.011 (In	st. Max.) ³	three/week	grab
Total Phosphorus (TP)	N/A	Report	Report	once/year	grab
Nitrate+Nitrite-Nitrogen (NO ₃ +NO ₂ -N)	N/A	Report	Report	once/year	grab
Copper, Total Recoverable (Cu) ⁴	0.31	12.2 μg/l	24.5 μg/l	once/month	composite
Zinc, Total Recoverable (Zn) ⁴	2.89	115.6 µg/l	232.0 µg/l	once/month	composite
Mercury, Total Recoverable (Hg) ⁴	Report	Report	Report	once/year	composite
pH	N/A	Minimum 6.0 s.u.	<u>Maximum</u> 9.0 s.u.	three/week	grab
Chronic WET Testing ⁵					
Ceriodaphnia dubia (Chronic) ⁵ Pass/Fail Lethality (7-day NOEC) TLP3B Pass/Fail Reproduction (7-day NOEC) TGP3B		ValueReport (Pass=0/Fail=1)Report (Pass=0/Fail=1)		once/quarter once/quarter	composite composite
Survival (7-day NOEC) TOP3B Coefficient of Variation (Reproduction) TQP3B	N/A	Rep	ort % ort %	once/quarter once/quarter	composite composite
Reproduction (7-day NOEC) TPP3B Pass/Fail Retest 1 (7-day NOEC) 22415 Pass/Fail Retest 2 (7-day NOEC) 22416 Pass/Fail Retest 3 (7-day NOEC) 51443		Report (Pas Report (Pas	ort % ss=0/Fail=1) ss=0/Fail=1) ss=0/Fail=1)	once/quarter once/month ⁶ once/month ⁶ once/month ⁶	composite composite composite composite

	Discharge Limitations		Monitoring Requirements	
Effluent Characteristics	Mass (lbs/day, else specified)	Concentration (mg/l, else specified)	Frequency	Sample Type
	Monthly Avg.	Monthly Avg. 7-Day Avg.		
Chronic WET Limit ⁷				
Pimephales promelas (Chronic) ^{7,8} (7-day NOEC) 51710	N/A	Value Lethality: Not < 100% Sub-Lethality: Not < 80%	once/quarter,5	composite
Pimephales promelas (Chronic) Pass/Fail Lethality (7-day NOEC) TLP6C Pass/Fail Growth (7-day NOEC) TGP6C Survival (7-day NOEC) TOP6C Coefficient of Variation (Growth) TQP6C Growth (7-day NOEC) TPP6C	N/A	<u>Value</u> Report (Pass=0/Fail=1) Report (Pass=0/Fail=1) Report % Report % Report %	once/quarter once/quarter once/quarter once/quarter once/quarter	composite composite composite composite composite

¹ See Part II.5 (SSO Condition). If there are no overflows during the entire month, report "zero" (0).

- ² TRC must be measured using any approved test method established in 40 C.F.R. § 136 capable of meeting a minimum quantification level (MQL) of 0.033 mg/l or lower. If TRC is not reportable at the required MQL (i.e., lab result is "ND"), report "0" on the Discharge Monitoring Report (DMR). Report the concentration if TRC is quantifiable and measured in the sample at or above this or an alternatively approved MQL.
- ³ The effluent limitation for TRC is the instantaneous maximum and cannot be averaged for reporting purposes. TRC shall be measured within fifteen (15) minutes of sampling.
- ⁴ See Part II.13 (Metals Requirements).
- ⁵ See Part II.14 (WET Testing Requirements).
- ⁶ CONDITIONAL REPORTING: Use only if conducting retests due to a test failure (demonstration of significant toxic effects at or below the critical dilution). If testing on a quarterly basis, the permittee may substitute one of the retests in lieu of one routine toxicity test. If retests are not required, Report NODI=9 (Conditional Monitoring Not Required This Period) under retest parameters (reported on a quarterly DMR). This condition applies to *C. dubia*.
- ⁷ See Part II.15 (WET Limit Requirements).
- ⁸ As per Part II.15 (WET Limit Condition), the permittee shall submit the results of the valid monthly increased frequency toxicity tests on the Unscheduled DMRs (51714, TLP6C, TOP6C, TGP6C, TGP6C, TQP6C). This condition applies to *P. promelas*.

Oil, grease, or petrochemical substances shall not be present in receiving waters to the extent that they produce globules or other residue or any visible, colored film on the surface or coat the banks and/or bottoms of the waterbody or adversely affect any of the associated biota. There shall be no visible sheen as defined in Part IV.35 of this permit.

Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge during the entire monitoring period. Samples shall be taken after the final treatment unit and prior to entering the receiving stream.

SECTION B. PERMIT COMPLIANCE SCHEDULE

Compliance with the Final Effluent Limitations for the Chronic WET Limit for *Pimephales promelas* (Fathead minnow) at Outfall 001 is required three years after the effective date of the permit. The permittee shall submit progress reports addressing the progress towards attaining the Final Effluent Limitations for the aforementioned parameters according to the following schedule:

ACTIVITY

DUE DATE

Progress Report ^{1, 2}	One (1) year from effective date
Progress Report ^{1, 3}	Two (2) years from effective date
Achieve Final Compliance ^{1, 4}	Three (3) years from effective date

All progress reports must be submitted to the Division at the following address:

Enforcement Branch Office of Water Quality Division of Environmental Quality 5301 Northshore Drive North Little Rock, AR 72118-5317

Information can also be submitted electronically via email at <u>water-enforcement-report@adeq.state.ar.us</u>.

- ¹ If the permittee is already in compliance with a final permit limit, only documentation demonstrating compliance with the final limit will be required for the progress report.
- ² If the permittee is not in compliance with the Final Limitations following one (1) year of sampling, the initial Progress Report must detail how the permittee plans to come into compliance with the final limits within the remaining 2 years of the interim period. Options must be provided that were considered along with which option* was selected. Any Best Management Practices (BMPs) that have been instituted to reduce the concentration in the influent must also be discussed. If a study will be performed, a milestone schedule for the study must be provided.
 - * The permittee has the option to undertake any study deemed necessary to meet the final limitations during the interim period. Any additional treatment (including chemical addition) must be approved, and construction approval granted, prior to final installation.
- ³ The second Progress Report must contain an update on the status of the chosen option from the initial Progress Report. If the facility is not meeting any of the milestones provided in the initial Progress Report, the facility must update the milestone schedule to show how the final limits will be met by the deadline.
- ⁴ A final Progress Report must be submitted no later than 30 days following the final compliance date and include a certification that the final effluent limits were met on the effective date and that the limits are still being met.

PART II OTHER CONDITIONS

- 1. The operator of this wastewater treatment facility shall be licensed as at least Class IV by the State of Arkansas in accordance with APC&EC Rule 3.
- 2. For publicly owned treatment works, the 30-day average percent removal for Carbonaceous Biochemical Oxygen Demand (CBOD₅) and Total Suspended Solids (TSS) shall not be less than 85 percent unless otherwise authorized by the permitting authority in accordance with 40 C.F.R. § 133.102, as adopted by reference in APC&EC Rule 6.
- 3. In accordance with 40 C.F.R. §§ 122.62(a)(2) and 124.5, this permit may be reopened for modification or revocation and/or reissuance to require additional monitoring and/or effluent limitations when new information is received that actual or potential exceedance of State water quality criteria and/or narrative criteria are determined to be the result of the permittee's discharge(s) to a relevant water body or a Total Maximum Daily Load (TMDL) is established or revised for the water body that was not available at the time of the permit issuance that would have justified the application of different permit conditions at the time of permit issuance.
- 4. Other Specified Monitoring Requirements

The permittee may use alternative appropriate monitoring methods and analytical instruments other than as specified in Part I.A of the permit without a major permit modification under the following conditions:

- The monitoring and analytical instruments are consistent with accepted scientific practices.
- The requests shall be submitted in writing to the Permits Branch of the Office of Water Quality of the DEQ for use of the alternate method or instrument.
- The method and/or instrument is in compliance with 40 C.F.R. § 136 or approved in accordance with 40 C.F.R. § 136.5.
- All associated devices are installed, calibrated, and maintained to ensure the accuracy of the measurements and are consistent with the accepted capability of that type of device. The calibration and maintenance shall be performed as part of the permittee's laboratory Quality Assurance/Quality Control (QA/QC) program.

Upon written approval of the alternative monitoring method and/or analytical instruments, these methods or instruments must be consistently utilized throughout the monitoring period. DEQ must be notified in writing and the permittee must receive written approval from DEQ if the permittee decides to return to the original permit monitoring requirements.

- 5. Sanitary Sewer Overflow (SSO) Reporting Requirements:
 - A. A sanitary sewer overflow is any spill, release or diversion of wastewater from a sanitary sewer collection system including:
 - 1. Any overflow, whether it discharges to the waters of the state or not.

- 2. An overflow of wastewater, including a wastewater backup into a building (other than a backup caused solely by a blockage or other malfunction in a privately owned sewer or building lateral), even if that overflow does not reach waters of the state.
- B. 24-Hour Reporting:

When an SSO is detected – no matter how small – it must be reported within 24 hours of its discovery to DEQ's Water Quality Enforcement by using the online form in paragraph C below (the preferred method), by phone at (501) 682-0638, or by email at <u>ssoadeq@adeq.state.ar.us</u>.

This initial 24-hour report should include the following information:

- 1. Permit Number
- 2. Location of overflow (manhole number or street address)
- 3. The receiving water (if applicable)
- 4. Cause of overflow (if known)
- 5. Estimated volume of overflow so far
- 6. Total duration of the overflow
- C. 5-Day Follow-Up Written Web Reporting:

A written report of overflows shall be provided to DEQ within 5 days of the 24-hour oral report. A follow-up written report (5-day report) can be filled-in and submitted on the DEQ Office of Water Quality/Enforcement Branch Web page at:

https://www.adeq.state.ar.us/water/enforcement/sso/submit.aspx?type=s

D. 24-Hour and 5-Day Reporting:

If the 24-hour report submitted includes all of the information requested in the 5-day report described in Paragraph C above, then a follow-up 5-day report is not required.

E. Reporting for All SSOs on DMR:

At the end of the month, total the daily <u>occurrences</u> and <u>volumes</u> from all locations on your system and report this number on the DMR. For counting occurrences, each location on the sanitary sewer system where there is an overflow, spill, release, or diversion of wastewater on a given day is counted as one occurrence. For example, if on a given day overflows occur from a manhole at one location and from a damaged pipe at another location then you should record two occurrences for that day.

6. Best Management Practices (BMPs), as defined in Part IV.7, must be implemented for the facility along with the collection system to prevent or reduce the pollution of waters of the State from stormwater runoff, spills or leaks, sludge or waste disposal, or drainage from raw sewage. The permittee must amend the BMPs whenever there is a change in the facility or a change in the operation of the facility.

- 7. Contributing Industries and Pretreatment Requirements
 - A. The following pollutants may not be introduced into the treatment facility:
 - (1) Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, wastestreams with a closed cup flashpoint of less than 140 degrees Fahrenheit (°F) or 60 degrees Centigrade (°C) using the test methods specified in 40 C.F.R. § 261.21;
 - (2) Pollutants which will cause corrosive structural damage to the POTW, but in no case discharges with pH lower than 5.0 s.u., unless the works is specifically designed to accommodate such discharges;
 - (3) Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference* or Pass Through**;
 - (4) Any pollutant, including oxygen demanding pollutants (BOD, etc.), released in a discharge at a flow rate and/or pollutant concentration which will cause Pass Through or Interference with the POTW;
 - (5) Heat in amounts which will inhibit biological activity in the POTW resulting in Interference, but in no case heat in such quantities that the temperature at the POTW treatment plant exceeds 40 °C (104 °F) unless the Approval Authority, upon request of the POTW, approves alternate temperature limits;
 - (6) Petroleum oil, non-biodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - (7) Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - (8) Any trucked or hauled pollutants, except at discharge points designated by the POTW.
 - B. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act (CWA), including any requirements established under 40 C.F.R. § 403.
 - C. The permittee shall provide adequate notice to the Division of the following:
 - (1) Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 or 306 of the CWA if it were directly discharging those pollutants; and
 - (2) Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Any notice shall include information on (i) the quality and quantity of effluent to be introduced into the treatment works, and (ii) any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

- * According to 40 C.F.R. § 403.3(k), the term *Interference* means a Discharge which, alone or in conjunction with a discharge or discharges from other sources, both:
 - (1) Inhibits or disrupts the POTW, its treatment processes or operations, or its sludge processes, use or disposal; and
 - (2) Therefore is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation) or of the prevention of sewage sludge use or disposal in compliance with the following statutory provisions and regulations or permits issued thereunder (or more stringent State or local regulations): Section 405 of the CWA, the Solid Waste Disposal Act (SWDA) (including title II, more commonly referred to as the Resource Conservation and Recovery Act (RCRA), and including State regulations contained in any State sludge management plan prepared pursuant to subtitle D of the SWDA), the Clean Air Act, the Toxic Substances Control Act, and the Marine Protection, Research and Sanctuaries Act.
- ** According to 40 C.F.R. § 403.3(p), the term *Pass Through* means a Discharge which exits the POTW into waters of the United States in quantities or concentrations which, alone or in conjunction with a discharge or discharges from other sources, is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation).
- 8. [Reserved]
- 9. The permittee is required to maintain adequate stormwater storage capacity for a storm event up to a 2 year, 24-hour storm event. This capacity must <u>exclude</u> 2.0 feet of freeboard which must exist above the total volume required for normal operation plus the required storm surge capacity. (The term "2-year, 24-hour precipitation event" means the maximum 24-hour precipitation event with a probable reoccurrence interval of once in two years as defined by the National Weather Service and Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.," May 1961, or equivalent regional or rainfall probability information developed therefrom.)
- 10. The permittee shall not construct or use any new outlet for the discharge of any waste into the waters of this state and shall not discharge any untreated wastewater into waters of the state without written approval from DEQ in accordance with Arkansas Code Annotated § 8-4-217 (b)(1).
- 11. Monitoring Frequency Reduction

With the exception of whole effluent toxicity testing (WET) requirements, the permittee may request a one-time monitoring frequency reduction for pollutants listed in Part I, Section A1, Interim Effluent Limitations and Monitoring Requirements, and Part I, Section A2, Final Effluent Limitations and Monitoring Requirements. Any request for a monitoring frequency reduction must be submitted in writing to DEQ, and signed by the Responsible Official, in accordance with Part III.D.11.A of the permit.

The following requirements must be met before a review of the monitoring frequency reduction request will be performed:

- A. Compliance with the permit limits for at least the last two (2) years for the pollutants for which a request has been made for a monitoring frequency reduction;
- B. No operational or design changes have been made to the facility for at least the last two (2) years (or during period of review, if greater than two (2) years), and are not anticipated for the remaining term of this permit.

If the above conditions are met, a detailed review of the DMR data will be performed for the pollutants for which a monitoring frequency reduction has been requested. Compliance with the limits does not guarantee a monitoring frequency reduction will be granted. Data must show that the average concentration of the pollutants in the discharge is less than 75% of the permit limit for a monitoring frequency reduction to be granted.

If a monitoring frequency reduction is granted, the frequency can be reduced by no more than half the rate of the corresponding frequency listed in Part I, Section A1, Interim Effluent Limitations and Monitoring Requirements, and Part I, Section A2, Final Effluent Limitations and Monitoring Requirements. For example, a monitoring frequency of 4 per month will not be reduced to less than 2 per month. Additionally, the frequency will be no less frequent than monthly.

- 12. [Reserved]
- 13. The permittee may use any EPA approved method based on 40 C.F.R. § 136 provided the minimum quantification level (MQL) for the chosen method is equal to or less than what has been specified in chart below:

Pollutant	MQL (µg/l)
Total Recoverable Copper	0.5
Total Recoverable Zinc	0.5
Total Recoverable Mercury	0.005

The permittee may develop a matrix specific method detection limit (MDL) in accordance with Appendix B of 40 C.F.R. § 136. For any pollutant for which the permittee determines a site specific MDL, the permittee shall send to DEQ, NPDES Permits Branch, a report containing QA/QC documentation, analytical results, and calculations necessary to demonstrate that a site specific MDL was correctly calculated. A site specific MQL shall be determined in accordance with the following calculation:

$$MQL = 3.3 \times MDL$$

Upon written approval by Permits Branch, the site specific MQL may be utilized by the permittee for all future Discharge Monitoring Report (DMR) calculations and reporting requirements.

14. WHOLE EFFLUENT TOXICITY TESTING (7-DAY CHRONIC NOEC FRESHWATER)

This section applies to *Pimephales promelas* for the first three years of the permit cycle.

A. <u>SCOPE AND METHODOLOGY</u>

i. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

APPLICABLE TO FINAL OUTFALL:	001
REPORTED ON DMR AS FINAL OUTFALL:	OUTFALL 001
CRITICAL DILUTION (%):	100
EFFLUENT DILUTION SERIES (%):	32, 42, 56, 80, 100
TESTING FREQUENCY:	once/quarter
COMPOSITE SAMPLE TYPE:	Defined in Paragraph C.iv.a
TEST SPECIES/METHODS:	40 C.F.R. § 136

Ceriodaphnia dubia chronic static renewal survival and reproduction test, Method 1002.0, EPA-821-R-02-013, or the most recent update thereof. This test should be terminated when 60% of the surviving females in the control produce three broods or at the end of eight days, whichever comes first.

Pimephales promelas (Fathead minnow) chronic static renewal 7-day larval survival and growth test, Method 1000.0, EPA-821-R-02-013, or the most recent update thereof. A minimum of five (5) replicates with eight (8) organisms per replicate must be used in the control and in each effluent dilution of this test.

- ii. The NOEC (No Observed Effect Concentration) is herein defined as the greatest effluent dilution at and below which toxicity (lethal or sub-lethal) that is statistically different from the control (0% effluent) at the 95% confidence level does not occur. Chronic lethal test failure is defined as a demonstration of a statistically significant lethal effect at test completion to a test species at or below the critical dilution. Chronic sub-lethal test failure is defined as a demonstration of a statistically significant sub-lethal effect (i.e., growth or reproduction) at test completion to a test species at or below the critical dilution.
- iii. This permit may be reopened to require whole effluent toxicity limits, chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity.

B. <u>PERSISTENT LETHAL and/or SUB-LETHAL EFFECTS</u>

The requirements of this subsection apply only when a toxicity test demonstrates significant lethal and/or sub-lethal effects at or below the critical dilution. The purpose

of retests is to determine the duration of a toxic event. A test that meets all test acceptability criteria and demonstrates significant toxic effects does not need additional confirmation. Such testing cannot confirm or disprove a previous test result.

If a frequency reduction, as specified in Item F, has been granted and any valid test demonstrates significant lethal or sub-lethal effects to a test species at or below the critical dilution, the frequency of testing for that species is automatically increased to once per quarter for the life of the permit. In addition:

i. Part I Testing Frequency Other Than Monthly

- a. The permittee shall conduct a total of three (3) retests for any species that demonstrates significant toxic effects at or below the critical dilution. The retests shall be conducted monthly during the next three consecutive months. If testing on a quarterly basis, the permittee may substitute one of the retests in lieu of one scheduled toxicity test. A full report shall be prepared for each test required by this section in accordance with procedures outlined in Item D of this section and submitted with the period discharge monitoring report (DMR) to the permitting authority for review.
- b. IF LETHAL EFFECTS HAVE BEEN DEMONSTRATED If any of the retests demonstrates significant lethal effects at or below the critical dilution, the permittee shall initiate Toxicity Reduction Evaluation (TRE) requirements as specified in Item E of this section. The permittee shall notify DEQ in writing within 5 days of the failure of any retest, and the TRE initiation date will be the test completion date of the first failed retest. A TRE may also be required due to a demonstration of intermittent lethal effects at or below the critical dilution, or for failure to perform the required retests. A TRE required based on lethal effects should consider any sub-lethal effects as well.
- c. IF SUB-LETHAL EFFECTS ONLY HAVE BEEN DEMONSTRATED If any two of the three retests demonstrates significant sub-lethal effects at or below the critical dilution, the permittee shall initiate the Sub-Lethal Toxicity Reduction Evaluation (TRE_{SL}) requirements as specified in Item E of this section. The permittee shall notify DEQ in writing within 5 days of the failure of any retest, and the Sub-Lethal Effects TRE initiation date will be the test completion date of the first failed retest. A TRE may also be required for failure to perform the required retests.
- d. The provisions of Item B.i.a are suspended upon submittal of the TRE Action Plan.

C. <u>REQUIRED TOXICITY TESTING CONDITIONS</u>

i. <u>Test Acceptance</u>

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- a. The toxicity test control (0% effluent) must have survival equal to or greater than 80%.
- b. The mean number of *Ceriodaphnia dubia* neonates produced per surviving female in the control (0% effluent) must be 15 or more.
- c. 60% of the surviving control females must produce three broods.
- d. The mean dry weight of surviving Fathead minnow larvae at the end of the 7 days in the control (0% effluent) must be 0.25 mg per larva or greater.
- e. The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for: the young of surviving females in the *Ceriodaphnia dubia* reproduction test; the growth and survival endpoints of the Fathead minnow test.
- f. The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, <u>unless</u> significant lethal or sub-lethal effects are exhibited for: the young of surviving females in the *Ceriodaphnia dubia* reproduction test; the growth and survival endpoints of the Fathead minnow test.
- g. If a test passes, yet the percent coefficient of variation between replicates is greater than 40% in the control (0% effluent) and/or in the critical dilution for: the young of surviving females in the *Ceriodaphnia dubia* reproduction test; the growth and survival endpoints of the Fathead minnow test, the test is determined to be invalid. A repeat test shall be conducted within the required reporting period of any test determined to be invalid.
- h. If a test fails, test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40%.
- i. A Percent Minimum Significant Difference (PMSD) range of 13 47 for *Ceriodaphnia dubia* reproduction;
- j. A PMSD range of 12 30 for Fathead minnow growth.
- ii. Statistical Interpretation
 - a. For the *Ceriodaphnia dubia* survival test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be Fisher's Exact Test as described in EPA/821/R-02-013 or the most recent update thereof.
 - b. For the *Ceriodaphnia dubia* reproduction test and the Fathead minnow larval survival and growth test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA/821/R-02-013 or the most recent update thereof.

- c. If the conditions of Test Acceptability are met in Item C.i above and the percent survival of the test organism is equal to or greater than 80% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report a survival NOEC of not less than the critical dilution for the DMR reporting requirements found in Item D below.
- iii. Dilution Water
 - a. Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness, and alkalinity to the closest downstream perennial water for;
 - (1) toxicity tests conducted on effluent discharges to receiving water classified as intermittent streams; and
 - (2) toxicity tests conducted on effluent discharges where no receiving water is available due to zero flow conditions.
 - b. If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of Item C.i), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - (1) a synthetic dilution water control which fulfills the test acceptance requirements of Item C.i was run concurrently with the receiving water control;
 - (2) the test indicating receiving water toxicity has been carried out to completion (i.e., 7 days);
 - (3) the permittee includes all test results indicating receiving water toxicity with the full report and information required by Item D below; and
 - (4) the synthetic dilution water shall have a pH, hardness, and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.
- iv. Samples and Composites
 - a. The permittee shall collect a minimum of three flow-weighted composite samples from the outfall(s) listed at Item A.i above. Unless otherwise stated in this section, a composite sample for WET shall consist of a minimum of 12 subsamples gathered at equal time intervals during a 24-hour period.
 - b. The permittee shall collect second and third composite samples for use during 24hour renewals of each dilution concentration for each test. The permittee must collect the composite samples such that the effluent samples, on use, are

representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on a regular or intermittent basis.

- c. The permittee must collect all three flow-weighted composite samples within the monitoring period. Second and/or third composite samples shall not be collected into the next monitoring period; such tests will be determined to not meet either reporting period requirements. Monitoring period definitions are listed in Part IV.
- d. The permittee must collect the composite samples so that the maximum holding time for any effluent sample shall not exceed 72 hours. The permittee must have initiated the toxicity test within 36 hours after the collection of the last portion of the first composite sample. Samples shall be chilled to between 0 and 6 degrees Centigrade during collection, shipping, and/or storage.
- e. If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection must be documented in the full report required in Item D of this section.
- f. <u>MULTIPLE OUTFALLS</u>: If the provisions of this section are applicable to multiple outfalls, the permittee shall combine the composite effluent samples in proportion to the average flow from the outfalls listed in Item A.i. above for the day the sample was collected. The permittee shall perform the toxicity test on the flow-weighted composite of the outfall samples.
- g. If chlorination is part of the treatment process, the permittee shall not allow the sample to be dechlorinated at the laboratory. At the time of sample collection the permittee shall measure the TRC of the effluent. The measured concentration of TRC for each sample shall be included in the lab report submitted by the permittee.

D. <u>REPORTING</u>

i. The permittee shall prepare a full report of the results of all tests conducted pursuant to this section in accordance with the Report Preparation Section of EPA/821/R-02-013, or the most current publication, for every valid or invalid toxicity test initiated whether carried to completion or not. The permittee shall retain each full report pursuant to the provisions of PART III.C.7 of this permit. The permittee shall submit full reports. For any test or retest which fails, is considered invalid or which is terminated early for any reason, the full report must be submitted for agency review.

- ii. A valid test for each species must be reported on the DMR during each reporting period specified in PART I of this permit. The full reports for all valid tests, invalid tests, repeat tests (for invalid tests), and retests (for tests previously failed) performed during the reporting period must be attached to the DMR for Agency review.
- iii. The permittee shall submit the results of each valid toxicity test and retest on the subsequent DMR for that reporting period in accordance with PART III.D.4 of this permit, as follows below. Only results of valid tests are to be reported on the DMR.
 - a. Pimephales promelas (Fathead minnow)
 - (1) If the No Observed Effect Concentration (NOEC) for survival is less than the critical dilution, enter a '1'; otherwise, enter a '0' for Parameter No. TLP6C
 - (2) Report the NOEC value for survival, Parameter No. TOP6C
 - (3) Report the NOEC value for growth, Parameter No. TPP6C
 - (4) If the NOEC for growth is less than the critical dilution, enter a '1'; otherwise, enter a '0' for Parameter No. TGP6C
 - (5) Report the highest (critical dilution or control) Coefficient of Variation for growth, Parameter No. TQP6C
 - (6) If conducting retests due to a test failure (demonstration of significant toxic effects at or below the critical dilution):
 - (A) Consecutive Monthly Retest 1: If the NOEC (lowest lethal or sub-lethal) for *P. promelas* is less than the critical dilution, enter a '1'; otherwise, enter a '0' under Parameter No. 22418 (reported on quarterly DMR);
 - (B) Consecutive Monthly Retest 2: If the NOEC (lowest lethal or sub-lethal) for *P. promelas* is less than the critical dilution, enter a '1'; otherwise, enter a '0' under Parameter No. 22419 (reported on quarterly DMR);
 - (C) Consecutive Monthly Retest 3: If the NOEC (lowest lethal or sub-lethal) for *P. promelas* is less than the critical dilution, enter a '1'; otherwise, enter a '0' under Parameter No. 51444 (reported on quarterly DMR);
 - (D) If testing on a quarterly basis, the permittee may substitute one of the retests in lieu of one scheduled toxicity test;
 - (E) If retests are not required, Report NODI=9 (Conditional Monitoring Not Required This Period) under Parameter Nos. 22418, 22419, 51444 (reported on quarterly DMR)
 - b. *Ceriodaphnia dubia*
 - (1) If the NOEC for survival is less than the critical dilution, enter a '1'; otherwise, enter a '0' for Parameter No. TLP3B

- (2) Report the NOEC value for survival, Parameter No. TOP3B
- (3) Report the NOEC value for reproduction, Parameter No. TPP3B
- (4) If the NOEC for reproduction is less than the critical dilution, enter a '1'; otherwise, enter a '0' for Parameter No. TGP3B
- (5) Report the higher (critical dilution or control) Coefficient of Variation for reproduction, Parameter No. TQP3B
- (6) If conducting retests due to a test failure (demonstration of significant toxic effects at or below the critical dilution):
 - (A) Consecutive Monthly Retest 1: If the NOEC (lowest lethal or sub-lethal) for *C. dubia* is less than the critical dilution, enter a '1'; otherwise, enter a '0' under Parameter No. 22415 (reported on quarterly DMR);
 - (B) Consecutive Monthly Retest 2: If the NOEC (lowest lethal or sub-lethal) for *C. dubia* is less than the critical dilution, enter a '1'; otherwise, enter a '0' under Parameter No. 22416 (reported on quarterly DMR);
 - (C) Consecutive Monthly Retest 3: If the NOEC (lowest lethal or sub-lethal) for *C. dubia* is less than the critical dilution, enter a '1'; otherwise, enter a '0' under Parameter No. 51443 (reported on quarterly DMR);
 - (D) If testing on a quarterly basis, the permittee may substitute one of the retests in lieu of one scheduled toxicity test;
 - (E) If retests are not required, Report NODI=9 (Conditional Monitoring Not Required This Period) under Parameter Nos. 22415, 22416, and 51443 (reported on quarterly DMR)

E. TOXICITY REDUCTION EVALUATIONS (TREs)

TREs for lethal and sub-lethal effects are performed in a very similar manner. EPA Region 6 is currently addressing TREs as follows: a sub-lethal TRE (TRE_{SL}) is triggered based on three sub-lethal test failures while a lethal effects TRE (TRE_L) is triggered based on only two test failures for lethality. In addition, EPA Region 6 will consider the magnitude of toxicity and use flexibility when considering a TRE_{SL} where there are no effects at effluent dilutions of 75% or lower.

i. Within ninety (90) days of confirming toxicity, as outlined above, the permittee shall submit a Toxicity Reduction Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to

identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The goal of the TRE is to maximally reduce the toxic effects of effluent at the critical dilution and includes the following:

Specific Activities. The plan shall detail the specific approach the permittee a. intends to utilize in conducting the TRE. The approach may include toxicity characterizations, identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents 'Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures' (EPA-600/6-91/003) and 'Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I' (EPA-600/6-91/005F), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and Confirmations, the permittee shall perform multiple identifications and follow the methods specified in the documents 'Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity' (EPA/600/R-92/080) and 'Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity' (EPA/600/R-92/081), as appropriate.

The documents referenced above may be obtained through the <u>National Technical</u> <u>Information Service</u> (NTIS) by phone at (703) 487-4650, or by writing:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

- b. Sampling Plan (e.g., locations, methods, holding times, chain of custody, preservation, etc.). The effluent sample volume collected for all tests shall be adequate to perform the toxicity test, toxicity characterization, identification and confirmation procedures, and conduct chemical specific analyses when a probable toxicant has been identified;
- c. Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical specific analyses for the identified and/or suspected pollutant(s) and/or source(s) of effluent toxicity. Where lethality was demonstrated within 48 hours of test initiation, each composite sample shall be analyzed independently. Otherwise the permittee may substitute a composite sample, comprised of equal portions of the individual composite samples, for the chemical specific analysis;
- d. Quality Assurance Plan (e.g., QA/QC implementation, corrective actions, etc.); and
- e. Project Organization (e.g., project staff, project manager, consulting services, etc.).

- ii. The permittee shall initiate the TRE Action Plan within thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achieve the required toxicity reduction.
- iii. The permittee shall submit a quarterly TRE Activities Report, with the Discharge Monitoring Report in the months of January, April, July and October, containing information on toxicity reduction evaluation activities including:
 - a. any data and/or substantiating documentation which identifies the pollutant(s) and/or source(s) of effluent toxicity;
 - b. any studies/evaluations and results on the treatability of the facility's effluent toxicity; and
 - c. any data which identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant toxicity at the critical dilution.
- iv. The permittee shall submit a Final Report on Toxicity Reduction Evaluation Activities no later than twenty-eight (28) months from confirming toxicity in the retests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in reduction of effluent toxicity to no significant toxicity at the critical dilution. The report will also provide a specific corrective action schedule for implementing the selected control mechanism.
- v. Quarterly testing during the TRE is a minimum monitoring requirement. EPA recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional screening tests be performed to capture toxic samples for identification of toxicants. Failure to identify the specific chemical compound causing toxicity test failure will normally result in a permit limit for whole effluent toxicity limits per federal regulations at 40 C.F.R. 122.44(d)(1)(v).

F. MONITORING FREQUENCY REDUCTION

This condition does not apply to Pimephales promelas.

- i. The permittee may apply for a testing frequency reduction upon the successful completion of the first four consecutive quarters or first twelve consecutive months (in accordance with Item A.i.) of the current permit term of testing for one or both test species, with no lethal or sub-lethal effects demonstrated at or below the critical dilution. If granted, the monitoring frequency for that test species may be reduced to not less than twice per year for the *Ceriodaphnia dubia*.
- ii. CERTIFICATION The permittee must certify in writing that no test failures have occurred and that all tests meet all test acceptability criteria in Item C.i. above. In addition the permittee must provide a list with each test performed including test initiation date, species, NOECs for lethal and sub-lethal effects and the maximum

coefficient of variation for the controls. Upon review and acceptance of this information the agency will issue a letter of confirmation of the monitoring frequency reduction. A copy of the letter will be forwarded to the agency's Permit Compliance System section to update the permit reporting requirements.

- iii. SUB-LETHAL OR SURVIVAL FAILURES If any test fails the lethal or sub-lethal endpoint at any time during the life of this permit, three consecutive monthly retests are required and the monitoring frequency for the affected test species may be increased to once per quarter until the permit is re-issued. Monthly retesting is not required if the permittee is performing a TRE.
- iv. Any monitoring frequency reduction granted applies only until the expiration date of this permit, at which time the monitoring frequency for both test species reverts to once per quarter until the permit is re-issued.

15. WHOLE EFFLUENT TOXICITY LIMITS (7-DAY CHRONIC NOEC FRESHWATER)

This condition applies to *Pimephales promelas* after the compliance schedule.

A. <u>SCOPE AND METHODOLOGY</u>

i. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

APPLICABLE TO FINAL OUTFALL(S):	001
REPORTED ON DMR AS FINAL OUTFALL:	OUTFALL 001
CRITICAL DILUTION (%):	100
EFFLUENT DILUTION SERIES (%):	32, 42, 56, 80, 100
CHRONIC LIMIT - LETHALITY:	not < 100%
CHRONIC LIMIT - SUB-LETHAL:	not < 80%
SCHEDULE OF COMPLIANCE:	YES
TESTING FREQUENCY:	once/quarter
COMPOSITE SAMPLE TYPE:	Defined in Paragraph B.iv.a
TEST SPECIES/METHODS:	40 C.F.R. § 136

Pimephales promelas (Fathead minnow) chronic static renewal 7-day larval survival and growth test, Method 1000.0, EPA-821-R-02-013, or the most recent update thereof. A minimum of five (5) replicates with eight (8) organisms per replicate must be used in the control and in each effluent dilution of this test.

ii. The NOEC (No Observed Effect Concentration) is herein defined as the greatest effluent dilution at and below which toxicity (lethal or sub-lethal) that is statistically

different from the control (0% effluent) at the 95% confidence level does not occur. Chronic lethal test failure is defined as a demonstration of a statistically significant lethal effect at test completion to a test species at or below the critical dilution. Chronic sub-lethal test failure is defined as a demonstration of a statistically significant sub-lethal effect (i.e., growth) at test completion to a test species at or below the critical dilution.

- iii. The conditions of this item are effective beginning with the effective date of the WET limit. When the effluent fails the chronic endpoint below the required limit specified in Item A.i., the permittee shall be considered in violation of this permit limit and the frequency for the affected species will increase to monthly until such time compliance with the No Observed Effect Concentration (NOEC) effluent limitation is demonstrated for a period of three consecutive months, at which time the permittee may return to the testing frequency stated in PART I of this permit. The purpose of the increased frequency WET testing is to determine the duration of a toxic event. A test that meets all test acceptability criteria and demonstrates significant toxic effects does not need additional confirmation. Such testing cannot confirm or disprove a previous test result.
- iv. If under a TRE, the permittee may conduct quarterly testing as a minimum monitoring requirement for the organism(s) under investigation for the duration of the TRE. Upon completion of the TRE, monitoring will revert back to the conditions specified in Item A.iii.
- v. This permit may be reopened to require chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity.

B. <u>REQUIRED TOXICITY TESTING CONDITIONS</u>

i. <u>Test Acceptance</u>

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- a. The toxicity test control (0% effluent) must have survival equal to or greater than 80%.
- b. The mean dry weight of surviving Fathead minnow larvae at the end of the 7 days in the control (0% effluent) must be 0.25 mg per larva or greater.
- c. The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for the growth and survival of the Fathead minnow test.
- d. The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, unless significant lethal or sub-lethal effects are exhibited for the growth and survival endpoints in the Fathead minnow test.
- e. If a test passes, yet the percent coefficient of variation between replicates is

greater than 40% in the control (0% effluent) and/or in the critical dilution for the growth and survival endpoints of the Fathead minnow test, the test is determined to be invalid. A repeat test shall be conducted within the required reporting period of any test determined to be invalid.

- f. If a test fails, test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40%.
- g. A PMSD range of 12 30 for Fathead minnow growth.

ii. Statistical Interpretation

- a. For the Fathead minnow larval survival and growth test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA-821-R-02-013, or the most recent update thereof.
- b. If the conditions of Test Acceptability are met in Item B.i above and the percent survival of the test organism is equal to or greater than 80% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report a survival NOEC of not less than the critical dilution for the DMR reporting requirements found in Item C below.

iii. Dilution Water

- a. Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness, and alkalinity to the closest downstream perennial water where the receiving stream is classified as intermittent or where the receiving stream has no flow due to zero flow conditions.
- b. If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of Item B.i), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - (1) a synthetic dilution water control which fulfills the test acceptance requirements of Item B.i was run concurrently with the receiving water control;
 - (2) the test indicating receiving water toxicity has been carried out to completion (i.e., 7 days);
 - (3) the permittee includes all test results indicating receiving water toxicity with the full report and information required by Item C.i below; and
 - (4) the synthetic dilution water shall have a pH, hardness, and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these

parameters will not cause toxicity in the synthetic dilution water.

iv. Samples and Composites

- a. The permittee shall collect a minimum of three flow-weighted composite samples from the outfall(s) listed at Item A.i above. Unless otherwise stated in this section, a composite sample for WET shall consist of a minimum of 12 subsamples gathered at equal time intervals during a 24-hour period.
- b. The permittee must collect all three flow-weighted composite samples within the monitoring period. The permittee shall collect second and third composite samples for use during 24-hour renewals of each dilution concentration for each test. The permittee must collect the composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on a regular or intermittent basis.
- c. The permittee must collect all three flow-weighted composite samples within the monitoring period. Second and/or third composite samples shall not be collected into the next monitoring period; such tests will be determined to not meet either reporting period requirements. Monitoring period definitions are listed in Part IV.
- d. The permittee must collect the composite samples so that the maximum holding time for any effluent sample shall not exceed 72 hours. The permittee must have initiated the toxicity test within 36 hours after the collection of the last portion of the first composite sample. Samples shall be chilled to between 0 and 6 degrees Centigrade during collection, shipping, and/or storage.
- e. If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection must be documented in the full report required in Item C of this section
- f. <u>MULTIPLE OUTFALLS</u>: If the provisions of this section are applicable to multiple outfalls, the permittee shall combine the composite effluent samples in proportion to the average flow from the outfalls listed in Item A.i above for the day the sample was collected. The permittee shall perform the toxicity test on the flow-weighted composite of the outfall samples.
- g. If chlorination is part of the treatment process, the permittee shall not allow the sample to be dechlorinated at the laboratory. At the time of sample collection the permittee shall measure the TRC of the effluent. The measured concentration of

TRC for each sample shall be included in the lab report submitted by the permittee.

C. <u>REPORTING</u>

- i. The permittee shall prepare a full report of the results of all tests conducted pursuant to this section in accordance with the Report Preparation Section of EPA-821-R-02-013, or the most current publication, for every valid or invalid toxicity test initiated whether carried to completion or not. The permittee shall retain each full report pursuant to the provisions of PART III.C.7 of this permit. The permittee shall submit full reports. For any test which fails, is considered invalid or which is terminated early for any reason, the full report must be submitted for agency review.
- ii. The permittee shall report the Whole Effluent Toxicity NOECs under Parameter No. 51714 for *P. promelas*, on the Scheduled DMR for that reporting period in accordance with PART III.D.4 of this permit.
- iii. A valid test must be reported on the Scheduled DMR during each reporting period specified in PART I of this permit. The full reports for all valid tests, invalid tests, repeat tests (for invalid tests), and increased frequency tests (for tests previously failed) performed during the reporting period must be attached to the DMR for Agency review.
- iv. The permittee shall submit the results of the valid toxicity test on the Scheduled DMR for that reporting period in accordance with PART III.D.4 of this permit, as follows below. The permittee shall submit the results of the valid monthly increased frequency toxicity tests on the Unscheduled DMRs. If testing on a quarterly basis, the permittee may substitute one of the monthly increased frequency toxicity tests in lieu of one Scheduled toxicity test on the Scheduled DMR. Only results of valid tests are to be reported on a DMR.
 - a. *Pimephales promelas* (Fathead minnow)
 - (1) If the No Observed Effect Concentration (NOEC) for survival is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TLP6C
 - (2) Report the NOEC value for survival, Parameter No. TOP6C
 - (3) Report the NOEC value for growth, Parameter No. TPP6C
 - (4) If the NOEC for growth is less than the critical dilution, enter a "1"; otherwise, enter a "0" for Parameter No. TGP6C
 - (5) Report the highest (critical dilution or control) Coefficient of Variation for growth, Parameter No. TQP6C
 - (6) Report the lowest NOEC value for survival or growth, Limit Parameter No. 51714

(7) The permittee shall submit the results of the monthly increased frequency toxicity tests on the Unscheduled DMRs.

D. TOXICITY REDUCTION EVALUATIONS (TREs)

TREs for lethal and sub-lethal effects are performed in a very similar manner. EPA Region 6 is currently addressing TREs as follows: a sub-lethal TRE (TRE_{SL}) is triggered based on three sub-lethal test failures while a lethal effects TRE (TRE_L) is triggered based on only two test failures for lethality. In addition, EPA Region 6 will consider the magnitude of toxicity and use flexibility when considering a TRE_{SL} where there are no effects at effluent dilutions of 80% or lower.

- i. Within ninety (90) days of confirming toxicity, as outlined above, the permittee shall submit a Toxicity Reduction Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The goal of the TRE is to maximally reduce the toxic effects of effluent at the critical dilution and includes the following:
 - a. Specific Activities. The plan shall detail the specific approach the permittee intends to utilize in conducting the TRE. The approach may include toxicity characterizations, identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents 'Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures' (EPA-600/6-91/003) and 'Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I' (EPA-600/6-91/005F), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and Confirmations, the permittee shall perform multiple identifications and follow the methods specified in the documents 'Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity' (EPA/600/R-92/080) and 'Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity' (EPA/600/R-92/081), as appropriate.

The documents referenced above may be obtained through the <u>National Technical</u> <u>Information Service</u> (NTIS) by phone at (703) 487-4650, or by writing:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road

Springfield, VA 22161

- b. Sampling Plan (e.g., locations, methods, holding times, chain of custody, preservation, etc.). The effluent sample volume collected for all tests shall be adequate to perform the toxicity test, toxicity characterization, identification and confirmation procedures, and conduct chemical specific analyses when a probable toxicant has been identified;
- c. Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical specific analyses for the identified and/or suspected pollutant(s) and/or source(s) of effluent toxicity. Where lethality was demonstrated within 48 hours of test initiation, each composite sample shall be analyzed independently. Otherwise the permittee may substitute a composite sample, comprised of equal portions of the individual composite samples, for the chemical specific analysis;
- d. Quality Assurance Plan (e.g., QA/QC implementation, corrective actions, etc.); and
- e. Project Organization (e.g., project staff, project manager, consulting services, etc.).
- ii. The permittee shall initiate the TRE Action Plan within thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achieve the required toxicity reduction.
- iii. The permittee shall submit a quarterly TRE Activities Report, with the Discharge Monitoring Report in the months of January, April, July and October, containing information on toxicity reduction evaluation activities including:
 - a. any data and/or substantiating documentation which identifies the pollutant(s) and/or source(s) of effluent toxicity;
 - b. any studies/evaluations and results on the treatability of the facility's effluent toxicity; and
 - c. any data which identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant toxicity at the critical dilution.
- iv. The permittee shall submit a Final Report on Toxicity Reduction Evaluation Activities no later than twenty-eight (28) months from confirming toxicity in the monthly increased frequency tests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in reduction of effluent toxicity to no significant toxicity at the critical dilution. The report will also provide a specific corrective action schedule for implementing the selected control mechanism.

v. Quarterly testing during the TRE is a minimum monitoring requirement. EPA recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional screening tests be performed to capture toxic samples for identification of toxicants. Failure to identify the specific chemical compound causing toxicity test failure will normally result in a permit limit for whole effluent toxicity limits per federal regulations at 40 C.F.R. 122.44(d)(1)(v).

E. <u>TOXICITY RE-OPENER</u>

- i. If the TRE has identified the source of toxicity and led to the successful elimination of effluent toxicity at the critical dilution, the WET final effluent limits may be replaced by monitoring and reporting only requirement thru a major permit modification. Otherwise, the permittee must comply with the final WET effluent limits.
- ii. If the TRE has not led to the successful elimination of effluent toxicity at the critical dilution, but has identified a causal parameter, the WET final effluent limit may be replaced by monitoring and reporting only requirement thru a major permit modification, with the addition of a limit for the causal parameter.

(Note: A modified permit must be effective prior to the effective date of the WET limits.)

PART III STANDARD CONDITIONS

SECTION A – GENERAL CONDITIONS

1. Duty to Comply

The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the federal Clean Water Act and the Arkansas Water and Air Pollution Control Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; and/or for denial of a permit renewal application. Any values reported in the required Discharge Monitoring Report (DMR) which are in excess of an effluent limitation specified in Part I shall constitute evidence of violation of such effluent limitation and of this permit.

2. Penalties for Violations of Permit Conditions

The Arkansas Water and Air Pollution Control Act provides that any person who violates any provisions of a permit issued under the Act shall be guilty of a misdemeanor and upon conviction thereof shall be subject to imprisonment for not more than one (1) year, or a fine of not more than twenty-five thousand dollars (\$25,000) or by both such fine and imprisonment for each day of such violation. Any person who violates any provision of a permit issued under the Act may also be subject to civil penalty in such amount as the court shall find appropriate, not to exceed ten thousand dollars (\$10,000) for each day of such violation. The fact that any such violation may constitute a misdemeanor shall not be a bar to the maintenance of such civil action.

3. Permit Actions

This permit may be modified, revoked and reissued, or terminated for cause including, but not limited to the following:

- A. Violation of any terms or conditions of this permit.
- B. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts.
- C. A change in any conditions that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- D. A determination that the permitted activity endangers human health or the environment and can only be regulated to acceptable levels by permit modification or termination.
- E. Failure of the permittee to comply with the provisions of APC&EC Rule 9 (Permit fees) as required by Part III.A.11 herein.

The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

4. Toxic Pollutants

Notwithstanding Part III.A.3, if any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under APC&EC Rule 2, as amended, or Section 307(a) of the Clean Water Act for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitations on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standards or prohibition and the permittee so notified.

The permittee shall comply with effluent standards, narrative criteria, or prohibitions established under APC&EC Rule 2, as amended, or Section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Civil and Criminal Liability

Except as provided in permit conditions for "Bypass of Treatment Facilities" (Part III.B.4), and "Upset" (Part III.B.5), nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance. Any false or materially misleading representation or concealment of information required to be reported by the provisions of this permit or applicable state and federal statues or regulations which defeats the regulatory purposes of the permit may subject the permittee to criminal enforcement pursuant to the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 et seq.).

6. Oil and Hazardous Substance Liability

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject to under Section 311 of the Clean Water Act.

7. State Laws

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable State law or regulation under authority preserved by Section 510 of the Clean Water Act.

8. Property Rights

The issuance of this permit does not convey any property rights of any sort, or any exclusive privileges, nor does it authorize any exclusive privileges, nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of Federal, State, or local laws or regulations.

9. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provisions of this permit to any circumstance is held invalid, the

application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Applicable Federal, State or Local Requirements

Permittees are responsible for compliance with all applicable terms and conditions of this permit. Receipt of this permit does not relieve any operator of the responsibility to comply with any other applicable federal requirements such as endangered species, state or local statute, ordinance or regulation.

11. Permit Fees

The permittee shall comply with all applicable permit fee requirements (i.e., including annual permit fees following the initial permit fee that will be invoiced every year the permit is active) for wastewater discharge permits as described in APC&EC Rule 9 (Rule for the Fee System for Environmental Permits). Failure to promptly remit all required fees shall be grounds for the Director to initiate action to terminate this permit under the provisions of 40 C.F.R. §§ 122.64 and 124.5(d), as adopted in APC&EC Rule 6 and the provisions of APC&EC Rule 8.

SECTION B – OPERATION AND MAINTENANCE OF POLLUTION CONTROLS

1. Proper Operation and Maintenance

- A. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.
- B. The permittee shall provide an adequate operating staff which is duly qualified to carryout operation, maintenance, and testing functions required to ensure compliance with the conditions of this permit.

2. <u>Need to Halt or Reduce not a Defense</u>

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. Upon reduction, loss, or failure of the treatment facility, the permittee shall, to the extent necessary to maintain compliance with its permit, control production or discharges or both until the facility is restored or an alternative method of treatment is provided. This requirement applies, for example, when the primary source of power for the treatment facility is reduced, is lost, or alternate power supply fails.

3. Duty to Mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment or the water receiving the discharge.

4. **Bypass of Treatment Facilities**

"Bypass" means the intentional diversion of waste streams from any portion of a treatment facility, as defined at 40 C.F.R. 122.41(m)(1)(i).

A. Bypass not exceeding limitation

The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of Parts III.B.4.B and 4.C.

- B. Notice
 - 1. Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass.
 - 2. Unanticipated bypass. The permittee shall submit notice of an unanticipated bypass as required in Part III.D.6 (24-hour notice).
- C. Prohibition of bypass
 - 1. Bypass is prohibited and the Director may take enforcement action against a permittee for bypass, unless:
 - (a) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - (b) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if the permittee could have installed adequate backup equipment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
 - (c) The permittee submitted notices as required by Part III.B.4.B.
 - 2. The Director may approve an anticipated bypass, after considering its adverse effects, if the Director determines that it will meet the three conditions listed above in Part III.B.4.C(1).

5. Upset Conditions

A. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of Part III.B.5.B of this section are met. No determination made during administrative

review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.

- B. Conditions necessary for demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - 1. An upset occurred and that the permittee can identify the specific cause(s) of the upset.
 - 2. The permitted facility was at the time being properly operated.
 - 3. The permittee submitted notice of the upset as required by Part III.D.6.
 - 4. The permittee complied with any remedial measures required by Part III.B.3.
- C. Burden of proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

6. <u>Removed Substances</u>

- A. Solids, sludges, filter backwash, or other pollutants removed in the course of treatment or control of wastewaters shall be disposed of in a manner such as to prevent any pollutant from such materials from entering waters of the State. The Permittee must comply with all applicable state and Federal regulations governing the disposal of sludge, including but not limited to 40 C.F.R. § 503, 40 C.F.R. § 257, and 40 C.F.R. § 258.
- B. Any changes to the permittee's disposal practices described in the Fact Sheet, as derived from the permit application, will require at least 180 days prior notice to the Director to allow time for additional permitting. Please note that the 180 day notification requirement may be waived if additional permitting is not required for the change.

7. Power Failure

The permittee is responsible for maintaining adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failure either by means of alternate power sources, standby generators, or retention of inadequately treated effluent.

SECTION C – MONITORING AND RECORDS

1. <u>Representative Sampling</u>

Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge during the entire monitoring period. All samples shall be taken at the monitoring points specified in this permit and, unless otherwise specified, before the effluent joins or is diluted by any other waste stream, body of water, or substance. Monitoring points shall not be changed without notification to and the approval of the Director. Intermittent discharge shall be monitored.

2. Flow Measurement

Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of

the volume of monitored discharges. The devices shall be installed, calibrated, and maintained to ensure the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than +/-10% from true discharge rates throughout the range of expected discharge volumes and shall be installed at the monitoring point of the discharge.

Calculated Flow Measurement

For calculated flow measurements that are performed in accordance with either the permit requirements or a Division approved method (i.e., as allowed in the *Other Specified Monitoring Requirements* condition under Part II), the +/- 10% accuracy requirement described above is waived. This waiver is only applicable when the method used for calculation of the flow has been reviewed and approved by the Division.

3. Monitoring Procedures

Monitoring must be conducted according to test procedures approved under 40 C.F.R. § 136, unless other test procedures have been specified in this permit. The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instrumentation at intervals frequent enough to ensure accuracy of measurements and shall ensure that both calibration and maintenance activities will be conducted. An adequate analytical quality control program, including the analysis of sufficient standards, spikes, and duplicate samples to ensure the accuracy of all required analytical results shall be maintained by the permittee or designated commercial laboratory. At a minimum, spikes and duplicate samples are to be analyzed on 10% of the samples.

4. <u>Penalties for Tampering</u>

The Arkansas Water and Air Pollution Control Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate, any monitoring device or method required to be maintained under the Act shall be guilty of a misdemeanor and upon conviction thereof shall be subject to imprisonment for not more than one (1) year or a fine of not more than ten thousand dollars (\$10,000) or by both such fine and imprisonment.

5. <u>Reporting of Monitoring Results</u>

40 C.F.R. § 127.11(a)(1) and 40 C.F.R. § 127.16(a) require that monitoring reports must be reported on a Discharge Monitoring Reports (DMR) and filed electronically. Signatory Authorities must initially request access for a NetDMR account. Once a NetDMR account is established, access to electronic filing should use the following link <u>https://cdx.epa.gov</u>. Permittees who are unable to file electronically may request a waiver from the Director in accordance with 40 C.F.R. § 127.15. Monitoring results obtained during the previous monitoring period shall be summarized and reported on a DMR dated and submitted no later than the 25th day of the month, following the completed reporting period beginning on the effective date of the permit.

6. Additional Monitoring by the Permittee

If the permittee monitors any pollutant more frequently than required by this permit, using test procedures approved under 40 C.F.R. § 136 or as specified in this permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR. Such increased frequency shall also be indicated on the DMR.

7. <u>Retention of Records</u>

The permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit for a period of at least 3 years from the date of the sample, measurement, report, or application. This period may be extended by request of the Director at any time.

8. <u>Record Contents</u>

Records and monitoring information shall include:

- A. The date, exact place, time and methods of sampling or measurements, and preservatives used, if any.
- B. The individual(s) who performed the sampling or measurements.
- C. The date(s) and time analyses were performed.
- D. The individual(s) who performed the analyses.
- E. The analytical techniques or methods used.
- F. The measurements and results of such analyses.

9. Inspection and Entry

The permittee shall allow the Director, or an authorized representative, upon the presentation of credentials and other documents as may be required by law, to:

- A. Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit.
- B. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit.
- C. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit.
- D. Sample, inspect, or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act, any substances or parameters at any location.

SECTION D – REPORTING REQUIREMENTS

1. Planned Changes

The Permittee shall give notice to the Director as soon as possible but no later than 180 days prior to any planned physical alterations or additions to the permitted facility [40 C.F.R. § 122.41(1)]. Notice is required only when:

- A. The alteration or addition to a permitted facility may meet one of the criteria for new sources at 40 C.F.R. § 122.29(b).
- B. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants subject to effluent limitations in the permit, or to the notification requirements under 40 C.F.R. § 122.42(b).

2. Anticipated Noncompliance

The permittee shall give advance notice to the Director of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

3. Transfers

The permit is nontransferable to any person except after notice to the Director. The Director may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the Act.

4. Monitoring Reports

Monitoring results shall be reported at the intervals and in the form specified in Part III.C.5. Discharge Monitoring Reports must be submitted <u>even</u> when <u>no</u> discharge occurs during the reporting period.

5. <u>Compliance Schedule</u>

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date. Any reports of noncompliance shall include the cause of noncompliance, any remedial actions taken, and the probability of meeting the next scheduled requirement.

6. <u>Twenty-four Hour Report</u>

Please be aware that the notifications can be sent by email to <u>water-enforcement-report@adeq.state.ar.us</u> or at 501-682-0624 for immediate reporting:

A. The permittee shall report any noncompliance which may endanger health or the environment within 24 hours from the time the permittee becomes aware of the circumstances to the Enforcement Branch of the Office of Water Quality of DEQ. A written submission shall also be provided within 5 days of the time the permittee

becomes aware of the circumstances. The written submission shall contain the following information:

- 1. A description of the noncompliance and its cause.
- 2. The period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue.
- 3. Steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
- B. The following must be reported within 24 hours:
 - 1. Any unanticipated bypass which exceeds any effluent limitation in the permit.
 - 2. Any upset which exceeds any effluent limitation in the permit.
 - 3. Violation of a maximum daily discharge limitation for any of the pollutants listed by the Director in Part I of the permit.
- C. The Director may waive the written report on a case-by-case basis if the notification has been received within 24 hours to the Enforcement Branch of the Office of Water Quality of the DEQ.

7. Other Noncompliance

The permittee shall report all instances of noncompliance not reported under Parts III.D.4, 5, and 6, at the time monitoring reports are submitted. The reports shall contain the information listed at Part III.D.6.

8. <u>Changes in Discharge of Toxic Substances for all Industrial Dischargers including</u> <u>Existing Manufacturing, Commercial, Mining, and Silvicultural Dischargers</u>

The Director shall be notified as soon as the permittee knows or has reason to believe:

- A. That any activity has occurred or will occur which would result in the discharge on a routine or frequent basis of any toxic pollutant including those listed in 40 CFR 401.15 which is not limited in the permit, if that discharge will exceed the highest of the "notification levels" described in 40 C.F.R. § 122.42(a)(1).
- B. That any activity has occurred or will occur which would result in any discharge on a non-routine or infrequent basis of a toxic pollutant including those listed in 40 CFR 401.15 which is not limited in the permit, if that discharge will exceed the highest of the "notification levels" described in 40 C.F.R. § 122.42(a)(2).

9. Duty to Provide Information

The permittee shall furnish to the Director, within a reasonable time, any information which the Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the Director, upon request, copies of records required to be kept by this permit. Information shall be submitted in the form, manner and time frame requested by the Director.

10. Duty to Reapply

If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. The complete application shall be submitted at least 180 days before the expiration date of this permit. The Director may grant permission to submit an application less than 180 days in advance but no later than the permit expiration date. Continuation of expiring permits shall be implemented through procedures outlined by APC&EC Rule 6.

11. Signatory Requirements

All applications, reports, or information submitted to the Director shall be signed and certified as follows:

- A. All **permit applications** shall be signed as follows:
 - 1. For a corporation: by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - (a) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation.
 - (b) The manager of one or more manufacturing, production, or operation facilities, provided: the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
 - 2. For a partnership or sole proprietorship: by a general partner or proprietor, respectively.
 - 3. For a municipality, State, Federal, or other public agency, by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - (a) The chief executive officer of the agency.
 - (b) A senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency.
- B. All **reports** required by the permit and **other information** requested by the Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:

- 1. The authorization is made in writing by a person described above.
- 2. The authorization specified either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field, superintendent, or position of equivalent responsibility. (A duly authorized representative may thus be either a named individual or any individual occupying a named position).
- 3. The written authorization is submitted to the Director.
- C. Certification. Any person signing a document under this section shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

12. Availability of Reports

Except for data determined to be confidential under 40 C.F.R. § 2 and APC&EC Rule 6, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Division of Environmental Quality. As required by the Regulations, the name and address of any permit applicant or permittee, permit applications, permits, and effluent data shall not be considered confidential.

13. Penalties for Falsification of Reports

The Arkansas Air and Water Pollution Control Act provides that any person who knowingly makes any false statement, representation, or certification in any application, record, report, plan, or other document filed or required to be maintained under this permit shall be subject to civil penalties specified in Part III.A.2 and/or criminal penalties under the authority of the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 et seq.).

14. Other Information

Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Director, it shall promptly submit such facts or information.

PART IV DEFINITIONS

All definitions contained in Section 502 of the Clean Water Act and 40 C.F.R. § 122.2 shall apply to this permit and are incorporated herein by reference. Additional definitions of words or phrases used in this permit are as follows:

- 1. **"7-Day Average"** also known as "average weekly," means the highest allowable average of "daily discharges" over a calendar week, calculated as the sum of all "daily discharges" measured during a calendar week divided by the number of "daily discharges" measured during that week. The 7-Day Average for Fecal Coliform Bacteria (FCB) or E-Coli is the geometric mean of the "daily discharges" of all effluent samples collected during a calendar week in colonies per 100 ml.
- 2. "Act" means the Clean Water Act, Public Law 95-217 (33.U.S.C. 1251 et seq.) as amended.
- 3. "Administrator" means the Administrator of the U.S. Environmental Protection Agency.
- 4. "APC&EC" means the Arkansas Pollution Control and Ecology Commission.
- 5. **"Applicable effluent standards and limitations"** means all State and Federal effluent standards and limitations to which a discharge is subject under the Act, including, but not limited to, effluent limitations, standards of performance, toxic effluent standards and prohibitions, and pretreatment standards.
- 6. **"Applicable water quality standards"** means all water quality standards to which a discharge is subject under the federal Clean Water Act and which has been (a) approved or permitted to remain in effect by the Administrator following submission to the Administrator pursuant to Section 303(a) of the Act, or (b) promulgated by the Director pursuant to Section 303(c) of the Act, and standards promulgated under (APC&EC) Rule 2, as amended.
- 7. "Best Management Practices (BMPs)" are activities, practices, maintenance procedures, and other management practices designed to prevent or reduce the pollution of waters of the State. BMPs also include treatment technologies, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw sewage. BMPs may include structural devices or nonstructural practices.
- 8. **"Bypass"** means the intentional diversion of waste streams from any portion of a treatment facility, as defined at 40 C.F.R. § 122.41(m)(1)(i).
- 9. "Composite sample" is a mixture of grab samples collected at the same sampling point at different times, formed either by continuous sampling or by mixing a minimum of 4 effluent portions collected at equal time intervals (but not closer than one hour apart) during operational hours, within the 24-hour period, and combined proportional to flow or a sample collected at more frequent intervals proportional to flow over the 24-hour period.
- 10. "CV" means coefficient of variation.
- 11. **"Daily Discharge"** means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling.
 - A. **Mass Calculations:** For pollutants with limitations expressed in terms of mass, the "daily discharge" is calculated as the total mass of pollutant discharged over the sampling day.
 - B. Concentration Calculations: For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the average measurement of the pollutant over the day.
- 12. **"Daily Maximum"** discharge limitation means the highest allowable "daily discharge" during the calendar month.

- 13. "Director" means the Director of the Division of Environmental Quality.
- 14. "Dissolved oxygen limit" shall be defined as follows:
 - A. When limited in the permit as a minimum monthly average, shall mean the lowest acceptable monthly average value, determined by averaging all samples taken during the calendar month.
 - B. When limited in the permit as an instantaneous minimum value, shall mean that no value measured during the reporting period may fall below the stated value.
- 15. "Division" means the Division of Environmental Quality (DEQ).
- 16. "*E. coli*" a sample consists of one effluent grab portion collected during a 24-hour period at peak loads. For *E. coli*, report the Daily Maximum as the highest "daily discharge" during the calendar month and the Monthly Average as the geometric mean of all "daily discharges" within a calendar month, in colonies per 100 ml.
- 17. **"Fecal Coliform Bacteria (FCB)"** a sample consists of one effluent grab portion collected during a 24-hour period at peak loads. For FCB, report the Daily Maximum as the highest "daily discharge" during the calendar month and the Monthly Average as the geometric mean of all "daily discharges" within a calendar month, in colonies per 100 ml.
- 18. "Grab sample" means an individual sample collected in less than 15 minutes in conjunction with an instantaneous flow measurement.
- 19. **"Industrial User"** means a nondomestic discharger, as identified in 40 C.F.R. § 403, introducing pollutants to a publicly owned treatment works (POTW).
- 20. **"Instantaneous flow measurement"** means the flow measured during the minimum time required for the flow-measuring device or method to produce a result in that instance. To the extent practical, instantaneous flow measurements coincide with the collection of any grab samples required for the same sampling period so that together the samples and flow are representative of the discharge during that sampling period.
- 21. **"Instantaneous Maximum"** when limited in the permit as an instantaneous maximum value, shall mean that no value measured during the reporting period may fall above the stated value.
- 22. **"Instantaneous Minimum"** an instantaneous minimum value, shall mean that no value measured during the reporting period may fall below the stated value.

23. "Monitoring and Reporting"

When a permit becomes effective, monitoring requirements are of the immediate period of the permit effective date. Where the monitoring requirement for an effluent characteristic is monthly or more frequently, the Discharge Monitoring Report (DMR) shall be submitted by the 25th of the month following the sampling. Where the monitoring requirement for an effluent characteristic is Quarterly, Semi-Annual, Annual, or Yearly, the DMR shall be submitted by the 25th of the month following the monitoring period end date.

A. MONTHLY:

is defined as a calendar month or any portion of a calendar month for monitoring requirement frequency of once/month or more frequently.

B. **BI-MONTHLY:**

is defined as two (2) calendar months or any portion of 2 calendar months for monitoring requirement frequency of once/2 months or more frequently.

C. QUARTERLY:

1. is defined as a **fixed calendar quarter** or any part of the fixed calendar quarter for a non-seasonal effluent characteristic with a measurement frequency of once/quarter. Fixed calendar quarters are: January through March, April through June, July through September, and October through December.

2. is defined as a **fixed three month period** (or any part of the fixed three month period) of or dependent upon the seasons specified in the permit for a seasonal effluent characteristic with a monitoring requirement frequency of once/quarter that does not coincide with the fixed calendar quarter. Seasonal calendar quarters are: May through July, August through October, November through January, and February through April.

D. SEMI-ANNUAL:

is defined as the fixed time periods January through June, and July through December (or any portion thereof) for an effluent characteristic with a measurement frequency of once/6 months or twice/year.

E. ANNUAL or YEARLY:

is defined as a fixed calendar year or any portion of the fixed calendar year for an effluent characteristic or parameter with a measurement frequency of once/year. A calendar year is January through December, or any portion thereof.

- 24. **"Monthly Average"** means the highest allowable average of "daily discharges" over a calendar month, calculated as the sum of all "daily discharges" measured during a calendar month divided by the number of "daily discharges" measured during that month. For Fecal Coliform Bacteria (FCB) or *E. coli*, report the Monthly Average as the geometric mean of all "daily discharges" within a calendar month.
- 25. "National Pollutant Discharge Elimination System (NPDES)" means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements under Sections 307, 402, 318, and 405 of the Clean Water Act.
- 26. "NOEC" means No Observed Effect Concentration.
- 27. "PMSD" means Percent Minimum Significant Difference.
- 28. "POTW" means Publicly Owned Treatment Works;
- 29. "Reduction of CBOD₅/BOD₅ and TSS in mg/l Formula" [(Influent – Effluent) / Influent] × 100
- 30. **"Severe property damage"** means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in products.
- 31. **"Sewage sludge"** means the solids, residues, and precipitate separated from or created in sewage by the unit processes at a POTW. Sewage as used in this definition means any wastes, including wastes from humans, households, commercial establishments, industries, and stormwater runoff that are discharged to or otherwise enter a POTW.
- 32. **"Treatment works"** means any devices and systems used in storage, treatment, recycling, and reclamation of municipal sewage and industrial wastes, of a liquid nature to implement section 201 of the Act, or necessary to recycle reuse water at the most economic cost over the estimated life of the works, including intercepting sewers, sewage collection systems, pumping, power and other equipment, and alterations thereof; elements essential to provide a reliable recycled supply such as standby treatment units and clear well facilities, and any works, including site acquisition of the land that will be an integral part of the treatment process or is used for ultimate disposal of residues resulting from such treatment.

33. Units of Measure:

"MGD" shall mean million gallons per day.

"mg/l" shall mean milligrams per liter or parts per million (ppm).

"µg/l" shall mean micrograms per liter or parts per billion (ppb).

"cfs" shall mean cubic feet per second.

"ppm" shall mean parts per million.

"s.u." shall mean standard units.

- 34. "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the permittee. Any upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, lack of preventive maintenance, or careless or improper operations.
- 35. **"Visible sheen"** means the presence of a film or sheen upon or a discoloration of the surface of the discharge. A sheen can also be from a thin glistening layer of oil on the surface of the discharge.
- 36. "Weekday" means Monday Friday.

Final Fact Sheet

This Fact Sheet is for information and justification of the permit requirements only. Please note that it is not enforceable. This permitting decision is for the renewal of discharge Permit Number AR0034002 with Arkansas Department of Energy and Environment – Division of Environmental Quality (DEQ) Arkansas Facility Identification Number (AFIN) 63-00065 to discharge to Waters of the State.

1. PERMITTING AUTHORITY

The issuing office is:

Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317

2. APPLICANT

The applicant's mailing address is:

City of Bryant Wastewater Treatment Plant 1017 Southwest Second Street Bryant, AR 72022

The facility address is:

City of Bryant Wastewater Treatment Plant 1019 Southwest Second Street Bryant, AR 72022

3. PREPARED BY

The permit was prepared by:

Guy Lester, P.E. Staff Engineer NPDES Discharge Permits Section Office of Water Quality (501) 519-0304 E-mail: <u>lester@adeq.state.ar.us</u> Jessica Sears, P.E. Engineer Supervisor NPDES Discharge Permits Section Office of Water Quality (501) 682-0621 E-mail: jessica.sears@adeq.state.ar.us

4. PERMIT ACTIVITY

Previous Permit Effective Date:	December 1, 2014
Previous Permit Expiration Date:	November 30, 2019

The permittee submitted a permit renewal application on June 3, 2019, with all additional information received by May 27, 2020. The current discharge permit is reissued for a 5-year term in accordance with regulations promulgated at 40 C.F.R. § 122.46(a).

DOCUMENT ABBREVIATIONS

In the document that follows, various abbreviations are used. They are as follows:

APC&EC - Arkansas Pollution Control and Ecology Commission BAT - best available technology economically achievable BCT - best conventional pollutant control technology BMP - best management practice BOD₅ - five-day biochemical oxygen demand BPJ - best professional judgment BPT - best practicable control technology currently available CBOD₅ - carbonaceous biochemical oxygen demand CD - critical dilution CFR - Code of Federal Regulations cfs - cubic feet per second COD - chemical oxygen demand COE - United States Corp of Engineers CPP - continuing planning process CWA - Clean Water Act DMR - discharge monitoring report DO - dissolved oxygen ELG - effluent limitation guidelines EPA - United States Environmental Protection Agency ESA - Endangered Species Act FCB - fecal coliform bacteria gpm - gallons per minute MGD - million gallons per day MQL - minimum quantification level NAICS - North American Industry Classification System NH₃-N - ammonia nitrogen $NO_3 + NO_2 - N$ - nitrate + nitrite nitrogen NPDES - National Pollutant Discharge Elimination System O&G - oil and grease Rule 2 - APC&EC Rule 2 Rule 6 - APC&EC Rule 6 Rule 8 - APC&EC Rule 8 Rule 9 - APC&EC Rule 9 RP - reasonable potential SIC - standard industrial classification SSO - sanitary sewer overflow TDS - total dissolved solids TMDL - total maximum daily load TP - total phosphorus TRC - total residual chlorine TSS - total suspended solids UAA - use attainability analysis USF&WS - United States Fish and Wildlife Service

USGS - United States Geological Survey WET - whole effluent toxicity WQMP - water quality management plan WQS - Water Quality standards WWTP - wastewater treatment plant

Compliance and Enforcement History:

The compliance and enforcement history for this facility can be reviewed by using the following web link:

http://www.adeq.state.ar.us/downloads/WebDatabases/PermitsOnline/NPDES/PermitInforma tion/AR0034002_Full%20Compliance%20Review_20200601.pdf

5. SIGNIFICANT CHANGES FROM THE PREVIOUSLY ISSUED PERMIT

The permittee is responsible for carefully reading the permit in detail and becoming familiar with all of the changes therein:

- 1. The applicant's mailing address has been removed from the permit cover page.
- 2. Due to a change in rounding procedures, the CBOD₅ concentration limits have been rounded to whole numbers.
- 3. The TRC limit has been changed from "NO MEASUREABLE TRC", to 0.011 mg/l for clarity. See the footnote to the table in Section 12.A below for details.
- 4. The monitoring frequency for TP and NO₃+NO₂-N has been reduced to once/year. See Section 12.F below for details.
- 5. Monitoring and reporting requirements for Mercury have been included in the permit. See Section 7.B below for details.
- 6. The requirement to monitor the influent once per year for CBOD₅ and TSS has been removed from Part II.2 of the permit.
- 7. The SSO reporting requirements in Parts II.5.B and C have been revised.
- 8. The dilution series for Chronic Whole Effluent Toxicity (WET) testing has been revised.
- 9. Chronic WET Limits and a schedule of compliance for *P. promelas* have been included in the permit.
- 10. Part II.8, the sludge disposal condition, was removed from the permit. Sludge disposal is addressed in Part III.B.6 of the permit.
- 11. The monitoring frequency reduction conditions in Part II.11 have been revised.
- 12. The TRC condition in Part II.12 of the previous permit has been removed. Equivalent conditions for the monitoring and reporting TRC have been included in footnotes 2 and 3 to the table in Part IA of the permit.
- 13. Part II.15, Nutrient BMP plan requirements, have been removed from the permit because the facility submitted the plan in accordance with the requirements. See Section 12.F below for details.
- 14. Part II.16, a condition that allowed for removal from the permit of the limitations for Copper and Zinc (prior to their becoming effective) through a major modification, has been removed from the permit because the limits have become effective.
- 15. Part III.C.5 of the permit now requires that DMRs be submitted electronically via NetDMR.

6. RECEIVING STREAM SEGMENT AND DISCHARGE LOCATION

The outfall is located at the following coordinates based on Google Earth using WGS84:

Latitude: 34° 35' 12.85" N; Longitude: 92° 30' 18.45" W

The receiving waters named:

an unnamed tributary, thence to Hurricane Creek, thence to the Saline River, thence to the Ouachita River in Segment 2C of the Ouachita River Basin. The receiving stream with USGS Hydrologic Unit Code (H.U.C.) of 08040203 and Reach #006 is a Water of the State classified for secondary contact recreation, raw water source for domestic (public and private), industrial, and agricultural water supplies; propagation of desirable species of fish and other aquatic life; and other compatible uses.

7. 303(d) LIST, TOTAL MAXIMUM DAILY LOADS, ENDANGERED SPECIES, AND ANTI-DEGRADATION CONSIDERATIONS

A. 303(d) List

The receiving stream is not on the 2018 303(d) list.

B. Applicable Total Maximum Daily Loads (TMDLs)

This facility is assigned a wasteload allocation in the TMDL report entitled "TMDLs for Segments Listed for Mercury in Fish Tissue for the Ouachita River Basin, and Bayou Bartholomew, Arkansas and Louisiana to Columbia", approved by EPA on December 18, 2002.

Consistent with the TMDL, the permit includes once per year monitoring and reporting for Mercury. EPA Method 1631E is now available which has a detection limit of 0.005 μ g/L. Effluent sampling for Mercury should follow procedures as outlined in EPA Method 1631E. The data will be reviewed at next permit renewal to determine if compliance with the TMDL is being demonstrated (effluent values not exceeding 0.012 ug/L). If the data shows that the facility is discharging greater than 0.012 ug/L, the facility will need to choose another TMDL implementation requirement at next renewal.

C. Endangered Species

No comments on the application were received from the USF&WS. The draft permit and Fact Sheet were sent to the USF&WS for their review.

D. Anti-Degradation

The limitations and requirements set forth in this permit for discharge into waters of the State are consistent with the Anti-degradation Policy and all other applicable water quality standards found in APC&EC Rule 2.

8. OUTFALL, TREATMENT PROCESS DESCRIPTION, AND FACILITY CONSTRUCTION

The following is a description of the facility described in the application:

- A. Design Flow: 3.0 MGD
- B. Type of Treatment: bar screen, equalization basin, grit chamber, activated sludge, clarification, chlorine disinfection, dechlorination, sludge storage lagoon, aerated sludge tanks, and mechanical sludge dewatering
- C. Discharge Description: treated municipal wastewater
- D. Facility Status: This facility is classified as a major municipal since the design flow of the facility listed above is greater than 1.0 MGD.
- E. Facility Construction: This permit does not authorize or approve the construction or modification of any part of the treatment system or facilities. Approval for such construction must be by permit issued under Rule 6.202.

9. ACTIVITY

Under the Standard Industrial Classification (SIC) code of 4952 or North American Industry Classification System (NAICS) code of 221320, the applicant's activities are the operation of a sewage treatment plant.

10. INDUSTRIAL WASTEWATER CONTRIBUTIONS

Currently, it does not appear the facility receives process wastewater from any significant industrial users as defined by 40 C.F.R. 403.5(a)(1) and (b), General and Specific Pretreatment Prohibitions and reporting requirements are deemed appropriate at this time.

11. SEWAGE SLUDGE PRACTICES

Sludge is stored in aerated tanks, mechanically dewatered (by centrifuge), and disposed of in a permitted landfill. Sludge may also be stored in the on-site lagoon during periods when the dewatering equipment is out-of-service.

12. DEVELOPMENT AND BASIS FOR PERMIT CONDITIONS

The Division of Environmental Quality has determined to issue a permit for the discharge described in the application. Permit requirements are based on federal regulations (40 C.F.R. §§ 122, 124, and Subchapter N), the National Pretreatment Regulation in 40 C.F.R. § 403 and regulations promulgated pursuant to the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. 8-4-101 et seq.). All of the information contained in the application, including all of the submitted effluent testing data, was reviewed to determine the need for effluent limits and other permit requirements.

The following is an explanation of the derivation of the conditions of the permit and the reasons for them or, in the case of notices of intent to deny or terminate, reasons suggesting the decisions as required under 40 C.F.R. § 124.7.

Technology-Based Versus Water Quality-Based Effluent Limitations and Conditions

Following regulations promulgated at 40 C.F.R. § 122.44, the permit limits are based on either technology-based effluent limits pursuant to 40 C.F.R. § 122.44(a) or on State water quality standards and requirements pursuant to 40 C.F.R. § 122.44(d), whichever are more stringent as follows:

	Water Q Bas	~ •	Technology- Based/BPJ		Previous Permit		Permit Limit	
Parameter	Monthly	7-Day	Monthly	7-Day	Monthly	7-Day	Monthly	7-Day
	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
CBOD ₅	10	15	25	40	10.0	15.0	10	15
TSS	15.0	22.5	30	45	15.0	22.5	15.0	22.5
NH ₃ -N								
(April – October)	2.4	6.1	N/A	N/A	2.4	6.1	2.4	6.1
(November – March)	6.0	9.0	N/A	N/A	6.0	9.0	6.0	9.0
DO			·					
(May-October)	5.0 (Inst. Min.)		N/A		5.0 (Inst. Min.)		5.0 (Inst. Min.)	
(November – April)	6.0 (Inst	t. Min.)	N/A		6.0 (Inst. Min.)		6.0 (Inst. Min.)	
FCB (col/100 ml)	1000	2000	N/A	N/A	1000	2000	1000	2000
TRC (Inst. Max)	0.011	mg/l	N/A		N/A NO MEASUREABLE TRC		0.011 mg/l	
TP	N/A	N/A	Report	Report	Report	Report	Report	Report
NO ₃ +NO ₂ -N	N/A	N/A	Report	Report	Report	Report	Report	Report
Total Recoverable	12.2	24.5	N/A	N/A	12.2	24.5	12.2	24.5
Copper	µg/l	µg/l	1N/A	1N/A	μg/l	µg/l	µg/l	μg/1
Total Recoverable	115.6	232.0	N/A	N/A	115.6	232.0	115.6	232.0
Zinc	µg/l	µg/l	11//7	1 N/ / A	μg/1	μg/1	µg/l	µg/l
Total Recoverable Mercury	Report	Report	N/A	N/A	N/A	N/A	Report	Report
pН	6.0-9.	0 s.u.	6.0-9.	0 s.u.	6.0-9.	0 s.u.	6.0-9.	0 s.u.

Water Quality or Technology	Justification	
Water Quality	Water Quality Model dated July 30, 2020,	
water Quality	CWA § 402(o), and previous permit	
Weter Ovelitz	Water Quality Model dated July 30, 2020,	
water Quality	CWA § 402(o), and previous permit	
Weter Ovelity	Rule 2.512, Water Quality Model dated July 30, 2020,	
water Quanty	CWA § 402(o), and previous permit	
Weter Onelity	Rule 2.505, Water Quality Model dated July 30, 2020,	
water Quality	CWA § 402(o), and previous permit	
Water Quality	Rule 2.507, CWA § 402(o), and previous permit	
Water Quality	Rule 2.409, CWA § 402(o), and previous permit	
Technology	Nutrient Control Implementation Plan in Appendix D of the	
	CPP, best engineering judgment of the permit writer,	
	40 C.F.R. § 122.44(1), and previous permit	
	Nutrient Control Implementation Plan in Appendix D of the	
Technology	CPP, best engineering judgment of the permit writer,	
	40 C.F.R. § 122.44(1), and previous permit	
Water Quality	Pula 2 508 CWA \$ 402(a) and provide normit	
water Quality	Rule 2.508, CWA § 402(o), and previous permit	
Water Quality	CWA § 402(o), and previous permit	
water Quality	C WA § 402(0), and previous permit	
	"TMDLs for Segments Listed for Mercury in Fish Tissue for	
Water Quality	the Ouachita River Basin, and Bayou Bartholomew, Arkansas	
	and Louisiana to Columbia", December 18, 2002	
Water Quality	Rule 2.504, CWA § 402(o), and previous permit	
	Water Quality Water Quality Water Quality Water Quality Water Quality Water Quality Technology Water Quality Water Quality Water Quality	

A. Justification for Limitations and Conditions of the Final Permit

The TRC Chronic Toxicity value of 0.011 mg/l is below the Minimum Quantification Level (MQL) of the approved analytical methods in 40 CFR § 136, which is 0.033 mg/l. "NO MEASUREABLE TRC" was included as the TRC limit, and an explanation was included as Part II.12 in the previous permit. For the purpose of clarification, the actual numeric limit has been included in the table in Part IA, and the explanation has been moved to Footnotes 2 and 3 of the table. There is no substantive change in the TRC limit.

No new information, was received to warrant adding, removing, or revising any limitations in the permit. Therefore, the limitations in the permit are consistent with the limitations in the previous permit.

B. Anti-backsliding

The permit is consistent with the requirements to meet Anti-backsliding provisions of the Clean Water Act (CWA), Section 402(o) [40 C.F.R. § 122.44(1)]. The final effluent limitations for reissuance permits must be as stringent as those in the previous permit, unless the less stringent limitations can be justified using exceptions listed in CWA 402(o)(2), CWA 303(d)(4), or 40 C.F.R. § 122.44(1)(2)(i).

The permit meets or exceeds the requirements of the previous permit.

C. Limits Calculations

1. Mass Limits:

In accordance with 40 C.F.R. § 122.45(f)(1), all pollutants limited in permits shall have limitations expressed in terms of mass if feasible. 40 C.F.R. § 122.45(f)(2) allows for pollutants which are limited in terms of mass to also be limited in terms of other units of measurement.

The calculation of the loadings (lbs per day) uses a design flow of 3.0 MGD and the following equation:

Mass (lbs/day) = Concentration (mg/l) \times Flow (MGD) \times 8.34

2. 7-Day Average Limits:

The 7-day average limits for NH₃-N (November through March), CBOD₅ and TSS are based on Section 5.4.2 of the Technical Support Document for Water Quality-based Toxics Control:

7-day average limits = monthly average limits \times 1.5

The 7-day average NH_3 -N limits for the months of April through October are based on the requirements of Rule 2.512.

The 7-Day average limit for FCB is based on Rule 2.507.

D. 208 Plan (Water Quality Management Plan)

The 208 Plan, developed by the DEQ under provisions of Section 208 of the federal Clean Water Act, is a comprehensive program to work toward achieving federal water goals in Arkansas. The initial 208 Plan, adopted in 1979, provides for annual updates, but can be revised more often if necessary. The 208 Plan has been updated to add a year-round instantaneous maximum TRC limit of 0.011 mg/L to the existing water quality limitations. These changes have also been incorporated into the discharge permit.

E. Priority Pollutant Scan (PPS)

DEQ has reviewed and evaluated the effluent in accordance with the potential toxicity of each analyzed pollutant using the procedures outlined in the Continuing Planning Process (CPP).

The concentration of each pollutant after mixing with the receiving stream was compared to the applicable water quality standards as established in the Arkansas Water Quality Standards (AWQS), Rule 2 (Rule 2.508) and criteria obtained from the "Quality Criteria for Water, 1986 (Gold Book)."

Under Federal Regulation 40 C.F.R. § 122.44(d), as adopted by Rule 6, if a discharge poses the reasonable potential to cause or contribute to an exceedance above a water quality standard, the permit must contain an effluent limitation for that pollutant. Effluent limitations for the toxicants listed below have been derived in a manner consistent with the Technical Support Document (TSD) for Water Quality-based Toxics Control (EPA, March 1991), the CPP, and 40 C.F.R. § 122.45(c).

Parameter	Value	Source
Discharge Flow = Q	3.0 MGD = 4.6 cfs	Application
Critical Flow, 7Q10	0 cfs	USGS
LTA Background Flow	0 cfs	Calculated
TSS	5.5 mg/l	CPP, Attachment V
Hardness as CaCO ₃	31.0 mg/l	CPP, Attachment VI
рН	7.0 s.u.	Neutral

The following items were used in calculations:

The following pollutants were reported above detection levels:

Pollutant	Concentration Reported, µg/l	MQL, µg/l
Arsenic	0.492^{1}	0.5
Copper	11.8^{2}	0.5
Mercury	0.00272^{1}	0.005
Nickel	1.75^{1}	0.5
Zinc	108 ²	20
Phenols	3.75 ¹	5

¹ Geometric Mean of 3 sampling results from the renewal application.

² Maximum value reported on monthly DMRs from June 2016 through March 2020.

Instream Waste Concentrations (IWCs) were calculated in the manner described in Appendix D of the CPP and compared to the applicable Criteria. The following tables summarize the results of the analysis. The complete evaluation can be viewed on the Division's website at the following address:

http://www.adeq.state.ar.us/downloads/WebDatabases/PermitsOnline/NPDES/PermitInfo rmation/AR0034002_Toxicity%20Calculations_20200522.pdf

1. Aquatic Toxicity Evaluation

Pollutant	Concentration Reported (C_e)	$C_e \times 2.13^1$	Instream Waste Concentration (IWC)	Criteria ²	Reasonable Potential
	μg/1		Acute, µg/l	Acute, µg/l	(Yes/No)
Copper	11.8	-	11.8	14.79	No
Mercury	0.00272	0.00579	0.00579	6.70	No
Nickel	1.75	3.73	3.73	1061.45	No
Zinc	108	-	108	130.87	No
Phenols	3.75	7.99	7.99	-	No

a. Acute Criteria Evaluation

¹ Statistical ratio used to estimate the 95th percentile using a single effluent concentration or the geometric mean of a dataset.

² Criteria are from Rule 2.508.

b. Chronic Criteria Evaluation

Pollutant	Concentration Reported (C _e)	$C_e \times 2.13^1$	Instream Waste Concentration (IWC)	Criteria ²	Reasonable Potential
	μg/1		Chronic, µg/l	Chronic, µg/l	(Yes/No)
Copper	11.8	-	11.8	10.93	Yes
Mercury	0.00272	0.00579	0.00579	0.012	No
Nickel	1.75	3.73	3.73	117.88	No
Zinc	108	-	108	119.50	No
Phenols	3.75	7.99	7.99	-	No

¹ Statistical ratio used to estimate the 95th percentile using a single effluent concentration or the geometric mean of a dataset. ² Criteria are from Rule 2.508.

2. Human Health (Bioaccumulation) Evaluation

Pollutant	Concentration Reported (C _e) µg/l	$C_e \times 2.13^1$	Instream Waste Concentration (IWC)	Criteria ²	Reasonable Potential (Yes/No)
Arsenic	0.492	1.05	1.05	1.4	No
Copper	11.8	-	11.8	13,000	No
Mercury	0.00272	0.00579	0.00579	2^{3}	No
Nickel	1.75	3.73	3.73	46,000	No
Zinc	108	-	108	260,000	No
Phenols	3.75	7.99	7.99	-	No

Statistical ratio used to estimate the 95th percentile using a single effluent concentration or the geometric mean of a dataset. 1

2 unless otherwise specified, Criteria are adapted from "National Recommended Water Quality Criteria: 2002 - Human Health Criteria Calculation Matrix", EPA. The respective WQC from the noted reference are Consumption of Organism Only values. The values from the reference are for a lifetime risk factor of 10⁻⁶. These values have been multiplied by 10 to correspond to human health criteria lifetime risk factor of 10^{-5} as stated in Rule 2.508.

³ Primary Drinkwater Standard.

Other than for Copper, DEQ has determined from the submitted information that the discharge does not pose the reasonable potential to cause or contribute to an exceedance above a listed Criteria. The discharge shows reasonable potential for Copper, but limitations for Copper were included in the previous permit, and are continued in the renewal permit. Although the discharge does not pose the reasonable potential to cause or contribute to an exceedance above the Criteria for Zinc, Zinc limitations have been continued from the previous permit due to anti-backsliding considerations.

F. Total Phosphorus (TP) and Nitrate+Nitrite-Nitrogen (NO₃+NO₂-N)

Monitoring and reporting of TP and NO_3+NO_2-N was included in the permit renewal effective February 1, 2009, based on the Nutrient Control Implementation Plan in Appendix D of the CPP. The stated purpose of the Nutrient Control Implementation Plan is "to establish a data base of point source loadings of nutrients to waters of the state". Over 11 years of TP and NO3+NO2-N data have been reported on the monthly DMRs. It is the best engineering judgment of the permit writer that sufficient data has been collected to characterize the TP and NO₃+NO₂-N in the discharge from the facility. Therefore, the monitoring frequency of TP and NO₃+NO₂-N has been reduced to once/year.

13. WHOLE EFFLUENT TOXICITY

Section 101(a)(3) of the Clean Water Act states that ".....it is the national policy that the discharge of toxic pollutants in toxic amounts be prohibited......" To ensure that the CWA's prohibitions for toxics are met, EPA has issued a "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants (49 <u>FR</u> 9016-9019, 3/9/84)." In support of the national policy, Region 6 adopted the "Policy for Post Third Round NPDES Permitting" and the "Post Third Round NPDES Permit Implementation Strategy" on October 1, 1992. In addition, DEQ is required under 40 C.F.R. § 122.44(d)(1), adopted by reference in Rule 6, to include conditions as necessary to achieve water quality standards as established under Section 303 of the Clean Water Act.

The Regional policy and strategy are designed to ensure that no source will be allowed to discharge any wastewater which (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical State Water Quality Standard (WQS) resulting in non-conformance with the provisions of 40 <u>C.F.R.</u> § 122.44(d); (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation which threatens human health.

Whole effluent toxicity (WET) testing has been established for assessing and protecting against impacts upon water quality and designated uses caused by the aggregate toxic effect of the discharge of pollutants. The stipulated test species, which are appropriate to measure whole effluent toxicity, are consistent with the requirements of the State Water Quality Standards. The WET testing frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge, in accordance with the regulations promulgated at 40 C.F.R. § 122.48.

Implementation

Arkansas has established a narrative water quality standard under the authority of Section 303 of the CWA which states "toxic materials shall not be present in receiving waters in such quantities as to be toxic to human, animal, plant or aquatic life or to interfere with the normal propagation, growth and survival of aquatic biota."

Whole effluent toxicity testing conducted by the permittee has shown potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body, at the appropriate instream critical dilution. Pursuant to 40 <u>C.F.R.</u> § 122.44(d)(1)(v), DEQ has determined from the permittee's self-reporting that the discharge from this facility does have the reasonable potential to cause, or contribute to an instream excursion above the narrative standard within the applicable State Water Quality Standards, in violation of Section 101(a)(3) of the Clean Water Act. Therefore, the permit must establish effluent limitations for lethality and sub-lethality for the Fathead minnow (*Pimephales promelas*) following Regulations promulgated by 40 <u>C.F.R.</u> § 122.44(d)(1)(v). These effluent limitations for lethality and sub-lethality (7-day NOEC) are applied at Outfall 001 effective three years from the effective date of the permit. Prior to three years from the effective date of the permit, the permit requires monitoring and reporting only for lethality and sub-lethality with no limitations being established. For Outfall 001, Fathead minnow, the 7-day NOEC value for lethality shall not be less than **100%** (Critical Dilution) and the 7-day NOEC value shall not be less than **80%** for sub-lethality.

TOXICITY TESTS FREQUENCY

Chronic WET

once/quarter

Requirements for measurement frequency are based on the CPP.

Since the 7Q10 is less than 100 cfs (ft^3 /sec), chronic WET testing requirements will be included in the permit.

The calculations for dilution used for chronic WET testing are as follows:

Critical dilution (CD) = $(Q_d/(Q_d + Q_b)) \times 100$

 Q_d = Design flow = 3.0 MGD = 4.6 cfs 7Q10 = 0 cfs Q_b = Background flow = (0.67) × 7Q10 = 0 cfs CD = (3.0) / (3.0 + 0) × 100 = 100%

Toxicity tests shall be performed in accordance with protocols described in "Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms", EPA/600/4-91/002, July 1994. A minimum of five effluent dilutions in addition to an appropriate control (0%) are to be used in the toxicity tests. These additional effluent concentrations are **32%**, **42%**, **56%**, **80%**, **and 100%** (See the CPP). The low-flow effluent concentration (critical dilution) is defined as **100%** effluent. The requirement for chronic WET tests is based on the magnitude of the facility's discharge with respect to

receiving stream flow. The stipulated test species, *Ceriodaphnia dubia* and the Fathead minnow (*Pimephales promelas*) are representative of organisms indigenous to the geographic area of the facility; the use of these is consistent with the requirements of the State water quality standards. The WET testing frequency has been established to provide data representative of the toxic potential of the facility's discharge, in accordance with the regulations promulgated at 40 C.F.R. § 122.48.

Results of all dilutions as well as the associated chemical monitoring of pH, temperature, hardness, dissolved oxygen conductivity, and alkalinity shall be reported according to EPA-821-R-02-013, October 2002 and shall be submitted as an attachment to the Discharge Monitoring Report (DMR).

This permit may be reopened to require further WET testing studies, Toxicity Reduction Evaluation (TRE) and/or effluent limits if WET testing data submitted to the Division shows toxicity in the permittee's discharge. Modification or revocation of this permit is subject to the provisions of 40 C.F.R. § 122.62, as adopted by reference in APC&EC Rule 6. Increased or intensified toxicity testing may also be required in accordance with Section 308 of the Clean Water Act and Section 8-4-201 of the Arkansas Water and Air Pollution Control Act (Act 472 of 1949, as amended).

Administrative Records

R0034002 5/28/2020 ity of Bryant 2, 42, 56, 75, 100 00 by species id minnow):	AFIN: Reviewer: Proposed Dilution Series: Proposed Critical Dilution:	M. Barnett 32, 42, 56, 80, 100	Outfall Number:	001
ity of Bryant 2, 42, 56, 75, 100 00 by species	Proposed Dilution Series:	32, 42, 56, 80, 100		
2, 42, 56, 75, 100 00 by species	•			
00 by species	•			
by species	Proposed Critical Dilution:			
• •		100		
• •				
• •				
	once per quarter			
	once per quarter			
, ,				
Vertebrate (Pin	nephales promelas)			
100	100	100	100	
100	100	100	100	
		100	100	
100	100	56	0	retest 1
_000	200			retest 2
				retest 3
400	400			retest 3
		100	100	
100	100			retest 1
100	100			retest 2
100	100	100	100	retest 3
100	100	100	100	
100	100	100	100	
100	100	100	100	
100	100	100	100	
100	100	100	100	
100	100	100	100	
		100	100	
				retest 1
100	100			retest 2
				I
100	75	56	31	
-				
				{
-				
				{
				1
				ĺ
No	Yes	Yes	Yes	
1714 - lethal not less	than 100%, sub-lethal not 1	ess than 80% - 3 year com	pliance schedule	
	Lethal NOEC 100 100 100 100 100 100 100 100 100 10	NOEC NOEC 100 100 100 133 23 23 0 2 1.000 1.029 0.000 0.096 0 1.1 0.000 1.000 1.00	Lethal Sub-Lethal Lethal NOEC NOEC NOEC NOEC NOEC NOEC NOEC 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <t< td=""><td>Lethal Sub-Lethal NOEC NOEC NOEC 100 NOEC NOEC NOEC 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 133 179 3.23 23 23</td></t<>	Lethal Sub-Lethal NOEC NOEC NOEC 100 NOEC NOEC NOEC 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 133 179 3.23 23 23

<u>P. promelas</u>

Reasonable potential exists for *P. promelas* lethality and sub-lethality. The permit will include a 3-year compliance schedule for the *P. promelas* WET limits. The permittee shall submit progress reports addressing the progress towards attaining the final effluent limits for *P. promelas* according to the following schedule:

ACTIVITY	DUE DATE
Progress Report	One (1) year from effective date
Progress Report	Two (2) years from effective date
Achieve Final Limits	Three (3) years from effective date

Compliance with final limits for *P. promelas* is required three (3) years from the effective date of the permit.

The permittee has the option to undertake any study deemed necessary to meet the final limitations during the interim period. Any additional treatment must be approved and construction approval granted prior to final installation.

Due to the potential difficulty of resolving toxicity related, in some cases, to identifying toxicants responsible for sub-lethal effects, EPA Region 6 will take a graduated approach to TREs and implementation of WET limits where significant sub-lethal effects are demonstrated only in effluent concentrations greater than 75% effluent. Where significant effects are demonstrated at effluent concentrations of 75% or less, aggressive TREs have demonstrated a high degree of success. While TREs may still be required, Region 6 will implement limits for sub-lethal limits at the 80% effluent level at this time. A TRE for sub-lethal effects is triggered by failure in a scheduled test followed by sub-lethal failures in two or more tests performed during the following period of increased frequency.

14. STORMWATER REQUIREMENTS

The federal regulations at 40 C.F.R. § 122.26(b)(14)(ix) require major municipal dischargers to have NPDES permit coverage for stormwater discharges from the facility. These requirements include the development and implementation of a Stormwater Pollution Prevention Plan (SWPPP) to control the quality of stormwater discharges from the facility. In lieu of the development of a SWPPP, the facility may obtain a "No Exposure" Exclusion in accordance with 40 C.F.R. § 122.26(g) if several conditions can be certified. This facility was issued a "No Exposure" Exclusion or stormwater permit coverage under NPDES Tracking number ARR00C408.

15. SAMPLE TYPE AND FREQUENCY

Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity [40 C.F.R. § 122.48(b)] and to ensure compliance with permit limitations [40 C.F.R. § 122.44(i)(l)].

Requirements for sample type and sampling frequency have been based on the previous discharge permit, except for the sampling frequency for TP and NO_3+NO_2-N , which has been changed to once/year, based on the best engineering judgment of the permit writer as adequate to monitor the concentration of TP and NO_3+NO_2-N in the discharge.

The sampling type for Mercury is based on the standard use of composite sampling for metals. The sampling frequency for Mercury is based on the Mercury TMDL Implementation Plan.

	Previou	s Permit	Final Permit		
Parameter	Frequency of Sample	Sample Type	Frequency of Sample	Sample Type	
Flow	once/day	totalizing meter	once/day	totalizing meter	
CBOD ₅	three/week	composite	three/week	composite	
TSS	three/week	composite	three/week	composite	
NH ₃ -N	three/week	composite	three/week	composite	
DO	three/week	grab	three/week	grab	
FCB	three/week	grab	three/week	grab	
TRC	three/week	grab	three/week	grab	
ТР	once/month	grab	once/year	grab	
NO ₃ +NO ₂ -N	once/month	grab	once/year	grab	
Total Recoverable Copper	once/month	composite	once/month	composite	
Total Recoverable Zinc	once/month	composite	once/month	composite	
Total Recoverable Mercury	N/A	N/A	once/year	composite	
рН	three/week	grab	three/week	grab	
Chronic WET	once/quarter	composite	once/quarter	composite	

16. PERMIT COMPLIANCE SCHEDULE

A Schedule of Compliance has been included in the permit. Compliance with all permit requirements is required in accordance with the schedule provided in Part IB of the permit. The Division has chosen to exercise its discretion provided for in Rule 2 to allow a 3-year Schedule of Compliance for the new WET lethal and sub-lethal limits for *P. promelas*.

17. MONITORING AND REPORTING

The applicant is at all times required to monitor the discharge on a regular basis and report the results monthly. The monitoring results will be available to the public.

18. SOURCES

The following sources were used to draft the permit:

- A. Application No. AR0034002 received June 3, 2019, with all additional information received by May 27, 2020.
- B. Arkansas Water Quality Management Plan (WQMP).
- C. APC&EC Rule 2.
- D. APC&EC Rule 3.
- E. APC&EC Rule 6, which incorporates by reference certain federal regulations included in Title 40 of the Code of Federal Regulations at Rule 6.104.
- F. 40 C.F.R. §§ 122, 125, 133, and 403.
- G. Discharge permit file AR0034002.
- H. Discharge Monitoring Reports (DMRs).
- I. "2018 Integrated Water Quality Monitoring and Assessment Report," DEQ.
- J. "2018 List of Impaired Waterbodies (303(d) List)," DEQ, May 2020.
- K. USGS StreamStats GIS program at <u>https://streamstats.usgs.gov/ss/</u>.
- L. <u>"TMDLs for Segments Listed for Mercury in Fish Tissue for the Ouachita River Basin, and Bayou Bartholomew, Arkansas and Louisiana to Columbia", December 18, 2002.</u>
- M. Continuing Planning Process (CPP).
- N. Technical Support Document for Water Quality-based Toxic Control.
- O. Inspection Report dated February 28, 2019.
- P. CAO LIS-16-057.
- Q. CAO LIS-20-128.
- R. Operator License Class IV.
- S. <u>Metals Data Evaluation</u>.
- T. Toxicity Calculations.
- U. Compliance Review Memo, dated June 1, 2020.
- V. Water Quality Model dated July 30, 2020.
- W. EPA letter, dated November 17, 2020.
- X. Arkansas Department of Health "No Comment" letter, dated January 4, 2021.

19. PUBLIC NOTICE

The public notice of the draft permit was published for public comment on December 17, 2020. The last day of the comment period was January 18, 2021. No public comments were received on the draft permit.

Copies of the draft permit and public notice were sent via email to the Corps of Engineers, the Regional Director of the U.S. Fish and Wildlife Service, the Department of Parks, Heritage, and Tourism, the EPA, and the Arkansas Department of Health.

20. PERMIT FEE

In accordance with Rule 9.403(B), the annual fee for the permit is calculated from the Design Flow (Q, in MGD) as follows:

Fee = $(900 \times (Q-1)) = (900 \times (3.0-1)) = (6,800)$

Permit Number: AR0034002 AFIN: 63-00065 Page 18 of Fact Sheet

21. POINT OF CONTACT

For additional information, contact:

Guy Lester, P.E. Permits Branch, Office of Water Quality Division of Environmental Quality 5301 Northshore Drive North Little Rock, Arkansas 72118-5317 Telephone: (501) 519-0304