SCS ENGINEERS

February 1, 2018 Project No. 27214218.01

Mr. Bill Sadler, P.G. ADEQ – Solid Waste Management Division 5301 Northshore Drive North Little Rock, Arkansas 72118

Subject: NABORS Landfill

Second Half 2017 Groundwater Monitoring and Gas Monitoring Reports

Mr. Sadler,

In accordance with Contract Number 4600033394, SCS Engineers is submitting the Second Half Groundwater Monitoring Report (GWMR) and Second Half Gas Monitoring Report summarizing monitoring activities performed in September 2017 at the NABORS Landfill.

If you have questions or comments regarding these reports, please do not hesitate to contact us at (913) 681-0030.

Sincerely,

Dillon Baird, P.E. Project Engineer

SCS ENGINEERS

Dillon Bains

Floyd Cotter, P.E. Project Manager

SCS ENGINEERS

Enclosure: Second Half 2017 Groundwater Monitoring Report

Second Half 2017 Gas Monitoring Report Second Half 2017 Sanitas Database Flat File

Rec'd Digitally

AFIN: 03-00051

PMT#: 0249-S1-R2

RECEIVED
By Shelby Winthrop at 2:16 pm, Feb 01, 2018

W

DOC ID#: 73113

M

D

TO: BS>File <SW

SCS ENGINEERS

SECOND HALF 2017 NABORS LANDFILL GROUNDWATER MONITORING REPORT

Presented to:
Arkansas Department of Environmental Quality

5301 Northshore Drive North Little Rock, AR 72118-5317 501-682-0744

Presented by:

SCS ENGINEERS

11219 Richardson Drive North Little Rock, AR 72113 (501) 812-4551

January 26, 2018 File No. 27214218.01

Offices Nationwide www.scsengineers.com

SECOND HALF 2017 NABORS LANDFILL GROUNDWATER MONITORING REPORT

Presented to:
Arkansas Department of Environmental Quality

5301 Northshore Drive North Little Rock, AR 72118-5317 501-682-0744

Presented by: SCS ENGINEERS

11219 Richardson Drive North Little Rock, AR 72113 (501) 812-4551

January 26, 2018 File No. 27214218.01

Table of Contents

Secti	ion	Page
1	INTRODUCTION	1
	1.1 SITE DESCRIPTION	1
	1.2 SITE GROUNDWATER MONITORING SYSTEM	1
2	GROUNDWATER SAMPLING	2
	2.1 WATER LEVEL DETERMINATION	2
	2.2 WELL EVACUATION	3
	2.3 EQUIPMENT DECONTAMINATION PROCEDURES	3
	2.4 SAMPLE EXTRACTION	
	2.5 FIELD TESTING	5
	2.6 FIELD QA/QC PROCEDURES	
	2.7 HANDLING/TRANSPORT/CUSTODY	6
	2.8 SAMPLE PRESERVATION	7
3	SECOND HALF 2017 ASSESSMENT MONITORING EVENT	7
	3.1 GROUNDWATER ELEVATION, FLOW DIRECTION & RATE	7
	3.2 STATISTICAL EVALUATION	
	3.2.1 Sen's Slope/Mann-Kendall	
	3.2.2 Results of Assessment Monitoring Statistical Analyses	
	3.3 LABORATORY ANALYTICAL RESULTS	
	3.4 QUALITY ASSURANCE/QUALITY CONTROL RESULTS	
4	CONCLUSION	17

List of Tables

- Table 1 Assessment Monitoring Constituents (AMC)
- Table 2 Second Half 2017 Field Measurements
- Table 3 Groundwater Protection Standards Regulation 22.1205 (h)(I)
- Table 4 Inorganic Groundwater Quality Results
- Table 5 Volatile Organic Groundwater Quality Results

Appendices

APPENDIX A Figures

- Site Location Map
- Site Map and Potentiometric Surface Map

APPENDIX B Groundwater Sampling Records

APPENDIX C Laboratory Analytical Results

APPENDIX D Statistical Database

APPENDIX E Statistical Evaluation

1 INTRODUCTION

This report summarizes the results of the Second Half 2017 Groundwater Assessment Monitoring event at the NABORS Landfill. Field work was conducted by personnel from SCS Engineers (SCS) on September 26-29, 2017. This report was prepared under the provisions of Contract No. 4600033394 between the Arkansas Department of Environmental Quality (ADEQ) and SCS.

The NABORS Landfill originally operated under Solid Waste Disposal Permit number 0249-S, as issued to RLH, Inc. (RLH) by the Arkansas Department of Environmental Quality (ADEQ) on June 14, 1988. The solid waste permit was transferred to NABORS on August 31, 2005. The NABORS Landfill is currently under Solid Waste Disposal Permit 0249-S1-R2 issued by the ADEQ on August 10, 2006. Although the permit is considered "open", the landfill is not receiving waste. The ADEQ is currently managing the closure of the site. On May 8, 2017 ADEQ with DIN: 71757 reduced the groundwater sampling frequency at the NABORS Landfill to semi-annually. This new sampling frequency began with the Second Half 2017 event. The analytical work for this sampling event was conducted by Environmental Science Corporation (ESC) of Nashville, Tennessee and groundwater sampling was conducted by SCS.

1.1 SITE DESCRIPTION

The Northwest Arkansas Regional Solid Waste Management District (District) owns both a Class 1 and Class 4 Landfill at the subject site. The NABORS Landfills (herein referred to as Landfill) are located on approximately 700 acres near Three Brothers (Baxter County), Arkansas. The permitted Class 1 area is located in a portion of the SW1/4 of SE1/4 of Section 26, Township 21 North, Range 14 West, and NW1/4 of NE1/4 of Section 35, Township 21 North, Range 14 West. A general geographic location map is included as **FIGURE 1** in **APPENDIX A**. All report Figures are provided in **APPENDIX A**.

1.2 SITE GROUNDWATER MONITORING SYSTEM

The Landfill groundwater monitoring system has evolved over time into a system of monitoring points including both monitoring wells and local springs. The current Assessment Monitoring Program was triggered by the statistically significant occurrence of certain parameters documented in the original Detection Monitoring System. In turn, the required contingencies for Nature and Extent characterization and other regulatory provisions were addressed through the development of the site.

More specifically, the Second Detection Monitoring System for the site that was intended to comply with the provisions of Reg.22.1202 through Reg.22.1204 was approved by ADEQ in 1998. Following the Second Half 2005 sampling event, the ADEQ was notified under the provisions of 22.1204(c) of a statistically significant increase for volatile organic compounds (VOC) at MW-1. These detections were verified during the Second Half 2006 sampling event and the facility began Assessment Monitoring at wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7 in June of 2006 as required by Regulation 22.1205. At that time these seven wells were the only permitted facility Detection Monitoring wells.

The Assessment Monitoring program was later expanded to include all the wells/springs listed below when the new permit was issued in August of 2006 (0249-S1-R2), and when the Nature and Extent

Characterization was completed. Monitoring was conducted under this program through the Third Quarter 2012.

Assessment Monitoring continued on a quarterly basis as per 22.1205(d) based upon:

- The presence of VOCs at MW-1
- Detected concentrations of arsenic at various wells, some of which were above the Groundwater Protection Standard (GWPS)
- Vinyl chloride detections at CAO-1 which historically exceed the GWPS.

The current groundwater monitoring system for the NABORS Landfill consists of twenty-four (24) monitoring wells, thirteen (13) springs, and a Leachate sample for a total of thirty-eight (38) Assessment Monitoring points. These sampling points are listed below and are located on **FIGURE 2**.

	NAB	ORS GROUNDW	ATER ASSESSMENT M	ONITORING POINTS	
	Wells		:	Springs	Leachate
MW-1	CAO-1	MW-509D	Entrance Seep	Class I Draw	Leachate
MW-1R	CAO-2	MW-577	Spring A**	Class IV Draw**	
MW-2	CAO-3	MW-633D	Spring B**	SP-4*	
MW-3	NAB-1	MW-689D	TSP-1*	SP-5*	
MW-4	NAB-2	NE-2	TSP-2*	SP-7	
MW-5	NAB-3	NE-3	TSP-3**	Spring near NE-3**	
MW-6	NAB-4	NE-4	TSP-4**		
MW-7	NAB-7	NE-6			
	NAB-8				

Notes:

- NAB-1 is damaged at approximately 68 feet below top of casing and is no longer being sampled.
- NE-4 will be sampled in place of NAB-1 at the request of ADEQ (Doc. 71567, April 18, 2017)
- *Covered by landfill construction and no longer exist
- **Dry

2 GROUNDWATER SAMPLING

The Second Half 2017 Assessment Monitoring sampling event was conducted on September 26-29, 2017. A representative of SCS collected samples from twenty- (20) monitoring wells (MW-1, MW-2, MW-4, MW-5, MW-6, MW-7, MW-1R, MW-509D, MW-577, MW-633D, MW-689D, CAO-1, CAO-3, NAB-3, NAB-7, NAB-8, NE-2, NE-3, NE-4 and NE-6) and three (3) springs (Class I Draw Spring, SP-7, and the Landfill Entrance Seep). The current *Groundwater Sampling and Analysis Plan* dated December 2011 (ADEQ document #61474) was utilized for this sampling event. The procedures for obtaining groundwater samples, parameters analyzed, sample preservation and handling are discussed in the following sections.

2.1 WATER LEVEL DETERMINATION

Prior to evacuating each well for sampling, the depth to water was measured using an electronic water level probe. The measurements were taken to the nearest 0.01-foot from the top of the well casing and the information was used to calculate the volume of water in the well. Because non-dedicated equipment was used to obtain water levels, procedures were instituted to insure the samples were not contaminated. The electronic water level probe is constructed of inert materials and was de-contaminated with distilled water prior to use at each well.

2.2 WELL EVACUATION

The water in a well prior to sampling may not be representative of in-situ groundwater quality. Therefore, the groundwater technician used an electric submersible pump with dedicated sampling tubing to purge a minimum of three casing volumes at a rate that did not excessively agitate the recharge water. Since non-dedicated equipment was used to purge the wells, procedures were utilized to insure the samples were not contaminated. Clean, non-powdered, nitrile gloves were worn by the sampling personnel. Measures were taken to prevent surface soils from coming in contact with the purging equipment and lines, which could introduce contaminants to the well.

2.3 EQUIPMENT DECONTAMINATION PROCEDURES

All equipment that was used in the monitoring wells and had contact with the samples was thoroughly cleaned before use. These devices included a water level probe and a submersible pump. The water level probe was washed with potable water and phosphate-free laboratory detergent. Next, the probe was rinsed with potable water and finally, rinsed with distilled water. The water level probe was then placed in a plastic bag to reduce contact with air and transported into the field. After a water level was measured at each well, a paper towel was soaked with distilled water and as the probe was reeled up the tape and probe were wiped clean.

The submersible pump was initially flushed with potable water and phosphate-free detergent. Next, the pump was rinsed with potable water, and finally rinsed and flushed with distilled water in a portable decontamination tub prior to use in each well. The pump was transported in a clean, sealed tub to minimize contact with the air prior to use at each well.

2.4 SAMPLE EXTRACTION

The technique used to withdraw each groundwater sample from the wells was selected based on consideration of the parameters analyzed in the sample. To insure the groundwater sample is representative of the formation, it is important to minimize physically altering or chemically contaminating the sample during the withdrawal process. In order to minimize the possibility of sample contamination the groundwater technicians did the following:

- Made sure clean sampling equipment was not placed directly on the ground or other contaminated surfaces prior to insertion into the well.
- Gently lowered and retrieved sampling equipment in order to prevent undue disturbance of the
 water column. Monitoring wells were purged and samples were collected using a submersible
 pump. Wells that went dry during purging were allowed to recharge for approximately 24 hours
 and samples were collected using a disposable bailer.
- Transferred samples to the appropriate containers in a manner that minimized agitation and aeration.

Samples were collected and containerized in the order of volatilization sensitivity of the parameters. Spring samples are collected where able, by utilizing a grab sample method by holding the sample bottle within the spring water flow path. The list of parameters analyzed is presented in **TABLE 1**.

TABLE 1. ASSESSMENT MONITORING CONSTITUENTS (AMC)

IABLE I. ASSESS	MENT MONITORING CON	SIIIUENIS (AMC)
APPENDIX 1 VOLATILES	INDICATOR PARAMETERS	<u>INORGANICS</u>
ACETONE	CHLORIDE	ANTIMONY
ACRYLONITRILE	рН	ARSENIC
BENZENE	SULFATE	BARIUM
BROMOCHLOROMETHANE	TDS	BERYLLIUM
BROMODICHLOROMETHANE	TOC	CADMIUM
CHROMIUM	SPECIFIC CONDUCTANCE	CHROMIUM
CARBON TETRACHLORIDE		COBALT
CARBON DISULFIDE		COPPER
CHLOROBENZENE		LEAD
CHLOROETHANE		NICKEL
CHLOROFORM		SELENIUM
DIBROMOCHLOROMETHANE		SILVER
1,2, DICHLOROBENZENE		THALLIUM
1,4, DICHLOROBENZENE		VANADIUM
TRANS- 1,4-DICHLORO-2-BUTENE		ZINC
1,1 DICHLOROETHANE		IRON
1,2 DICHLOROETHANE		MANGANESE
CIS-1,2,-DICHLOROETHYLENE		TIN
TRANS-1,2-DICHLOROETHYLENE		
1,2-DICHLOROPROPANE		
CIS-1,3-DICHLOROPROPENE		
TRANS-1,3-DICHLOROPROPENE		
ETHYLBENZENE		
2-HEXANONE		
METHYL BROMIDE		
METHYL CHLORIDE		
METHYLENE BROMIDE		
METHYLENE CHLORIDE		
METHYL ETHYL KETONE		
METHYL IODIDE		
4- METHYL-2-PENTANONE		
STYRENE		
1,1,1,2-TETRACHLOROETHANE		
1,1,2,2,-TETRACHLOROETHANE		
TETRACHLOROETHANE		
TOLUENE		
1,1,1-TRICHLOROETHANE		
1,1,2-TRICHLOROETHANE		
TRICHLOROETHYLENE		
TRICHLOROFLUOROMETHANE		
1,2,3-TRICHLOROPROPANE		
VINYL ACETATE		
VINYL CHLORIDE		
XYLENE		

The collection order for the common groundwater parameters was as follows:

- Volatile Organic Compounds (VOCs)
- Total Organic Carbon (TOC)
- Sulfate, Chloride, and Total Dissolved Solids (TDS)
- Total Metals

2.5 FIELD TESTING

Some of the parameters evaluated are physically or chemically unstable and were measured immediately after collection by the SCS representative using a flow cell. Examples of unstable elements or properties include pH and temperature. Although the turbidity and specific conductance (inverse of electrical resistance) of a substance are relatively stable, these parameters were also measured in the field. This information was recorded on *Groundwater Monitoring Sampling Records* presented in **APPENDIX B.** A summary of the field measurements for the Second Half 2017 Assessment Monitoring sampling event is presented in **TABLE 2**.

TABLE 2. SECOND HALF 2017 FIELD MEASUREMENTS

Well #	Date	Time	TOC Elev. (ft.)	GW Depth (ft.)	GW Elev. (ft.)	pH (SU)	Temp.	Spec. Cond. (uS/cm)	Turbidity (NTU)
MW-1R	9/27/2017	1535	1067.57	69.40	998.17	6.35	17.6	1287	10.4
MW-1	9/27/2017	1452	1067.26	67.40	999.86	6.21	17.7	1375	7.3
MW-2	9/28/2017	0820	1001.21	35.60	965.61	7.42	17.0	499	5.64
MW-3	NS	NS	994.48	NS	NS	NS	NS	NS	NS
MW-4	9/28/2017	0935	1012.11	87.25	924.86	7.22	16.0	539	8.81
MW-5	9/28/2017	101 <i>7</i>	1004.38	77.81	926.57	7.22	15.5	598	7.76
MW-6	9/28/2017	1114	1000.38	56.55	943.83	7.63	14.6	622	6.36
MW-7	9/27/2017	1400	999.66	8.24	991.42	7.01	17.9	484	2.11
CAO-1	9/28/2017	1458	1026.40	26.45	999.95	6.31	17.4	1257	8.38
CAO-2	NS	NS	998.80	NS	NS	NS	NS	NS	NS
CAO-3	9/29/2017	0700	984.20	13.92	970.28	7.33	18.6	523	6.25
NAB-2	NS	NS	993.98	NS	NS	NS	NS	NS	NS
NAB-3	9/27/2017	0853	921.49	25.83	895.66	7.00	15.6	586	7.37
NAB-4	NS	NS	1004.20	NS	NS	NS	NS	NS	NS
NAB-7	9/28/2017	1240	1012.36	22.91	989.45	7.31	16.0	512	6.61
*NAB-8	9/27/2017	0700	1039.21	79.00	960.21	6.43	21.1	653	8.6
MW-509D	9/27/2017	1210	1014.20	22.18	992.02	6.76	17.9	521	15.9
MW-577	9/27/2017	0927	982.60	42.59	940.01	7.18	16.2	566	2.69
MW-633D	9/27/2017	1055	1050.10	63.00	987.10	6.94	17.0	593	7.25
MW-689D	9/27/2017	1000	966.20	26.10	940.10	7.13	16.4	554	7.76
NE-2	9/26/2017	1440	976.98	49.79	927.19	6.88	16.9	1571	14.7
*NE-3	9/27/2017	0745	846.91	8.05	838.86	8.18	19.8	544	3.36
NE-4	9/27/2017	1322	1009.85	74.00	935.85	7.20	23.1	504	14.8
NE-6	9/28/2017	0848	901.42	9.38	892.04	7.58	17.9	490	7.42

*Note: NAB-8 and NE-3 went dry during purging (at approx. 2.5 and 3.5 gallons, respectively)
Note: MW-3, CAO-2, NAB-2 and NAB-4 were not accessible during the Second Half 2017 event to landfill closure activities.

2.6 FIELD QA/QC PROCEDURES

For QA/QC purposes, a duplicate sample of MW-6 was collected and labeled Dupe. Procedures utilized for collecting the duplicate sample were identical to the sampling protocol detailed in Section 2.4 and collected at the same time as the MW-6 samples. The duplicate sample was collected to verify the consistency and precision of the sampling and testing procedures.

A field blank was also collected and labeled FB. The field blank consisted of distilled water poured into a sample container under field conditions and returned for laboratory analysis. The SCS field representative prepared the field blank for all the required monitoring parameters. The field blank was used to verify that the sample collection and handling process or ambient conditions, such as airborne materials or other factors unique to the sampling area did not affect the quality of the samples. A volatile organic analyte (VOA) trip blank was also included as part of the field QA/QC procedures. The trip blank was prepared in the laboratory utilizing de-ionized water, transported to the site, handled as a sample (yet never opened in the field), and returned to the laboratory for analysis. Trip blank results are used to verify that the sample containers were adequately prepared/handled in the laboratory, and that the groundwater samples were protected from contamination during transport.

An equipment blank, labeled EB, was prepared on site by pouring de-ionized water over the water level probe, gloves, and through a disposable bailer. Equipment blank results are used to verify that proper protocols for collection of samples and decontamination of equipment were followed.

2.7 HANDLING/TRANSPORT/CUSTODY

Samples were accompanied by a Chain-of-Custody record that includes the name of the facility, collector's signature, monitoring point identification number, date, time, type of sample, number of containers, and analyses required. Samples collected from the Landfill site were placed in sample containers provided by the Laboratory. Containers were certified clean by the supplier and transported with ice to preserve samples.

Attached to the sample container at the time of collection is the sample label. The following information is recorded on the sample label:

- Project or facility name
- Sample type
- Sample location number (well number)
- Preservation type
- Sampling date and time
- Sample collector's name or initials

Documentation for the sample collection process and other important information was recorded on the chain of custody. The standard format includes the date, time, type of sample, code for sample analysis, unique sample number, and sampling location. The entries were signed by the sample collector.

2.8 SAMPLE PRESERVATION

In accordance with the facility's Sampling and Analysis Plan, the samples were placed in an ice chest for preservation and cooled to approximately 4 degrees Celsius. Custody was retained by a SCS representative from the time of collection until shipment via Federal Express to Environmental Science Corp. (ESC) in Nashville, Tennessee. Laboratory analytical results and a copy of the ESC Chain-of-Custody form are included in **APPENDIX C**.

3 SECOND HALF 2017 ASSESSMENT MONITORING EVENT

The sampling results summarized in this report are for the Second Half 2017 Assessment Monitoring Event. The results for this event, conducted on September 26-29, 2017 are provided in the following sections, tables, and appendices. In addition, all historical groundwater data was evaluated statistically to determine if significant differences exist between compliance and background concentrations at each monitoring point.

3.1 GROUNDWATER ELEVATION, FLOW DIRECTION & RATE

There are currently twenty-four monitoring wells located around the Landfill area. Water level elevations were measured for monitoring wells MW-1R, MW-1, MW-2, MW-4, MW-5, MW-6, MW-7, CAO-1, CAO-3, NAB-3, NAB-7, NAB-8, NE-2, NE-3, NE-4, NE-6, MW-509D, MW-577, MW-689 and MW-633D during the Second Half 2017 event. **TABLE 2** summarizes the results of the water level and field measurements for this event. The highest water level elevation during this event was measured in monitoring well CAO-1, located east of Area 1-2, and the lowest elevation occurred in monitoring well NE-3, located southeast of Area 1-3. A potentiometric surface map was constructed utilizing the water levels measured during the Second Half 2017 Assessment Monitoring Event and is presented as **FIGURE 2**.

As **FIGURE 2** indicates, groundwater within the uppermost aquifer was found to flow to the west/northwest in Area 1-2 and generally to the east-southeast in Area 1-3. Based on this flow pattern, monitoring wells MW-1, MW-1R, MW-7, and NAB-7 are upgradient wells, and wells MW-2, MW-3, MW-4, MW-5, MW-6, NAB-2, NAB-3, NAB-4, NAB-8, MW-509D, MW-633D, MW-577, MW-689, CAO-1, CAO-2, and CAO-3 monitor the groundwater downgradient of the landfill.

Based on the principles of Darcian flow, the average linear velocity (groundwater flow rate) during the Second Half 2017 Assessment Monitoring event was calculated utilizing the following equation:

$$V_x = (K*i) / n_e$$

where,

V_x is the average linear velocity (length/time), K is the hydraulic conductivity (length/time), i is the hydraulic gradient (length/length), and n_e is the effective porosity (decimal). The hydraulic gradient in the Area 1-2 portion of the Landfill was calculated by comparing upgradient well, MW-1R, to the most directly downgradient well, MW-5. The change in head of 71.60 feet between the two wells over a distance of approximately 1,432 feet produces a hydraulic gradient of 0.050 (ft/ft).

The hydraulic gradient in the Area 1-3 portion of the Landfill was calculated by comparing upgradient well, MW-1R, to a downgradient well, NAB-3. The change in head of 102.51 feet between the two wells over a distance of approximately 1811 feet produces a hydraulic gradient of 0.056 (ft/ft).

Grubbs, Garner, & Hoskyn, Inc. reported an average hydraulic conductivity of 1.0×10^{-3} cm/sec in the site's *Hydrogeologic and Geotechnical Report* (1987). This hydraulic conductivity for the uppermost aquifer was used to aid in the flow rate calculations. SCS utilized an estimated porosity for this report of 10 percent for dolomite bedrock (Freeze and Cherry, 1979). An effective porosity was then determined by multiplying the porosity by 0.90 (90 percent). Effective porosity is always equal to or less than the porosity and utilizing 90 percent is a conservative approach since part of the total porosity is occupied by static fluid held to the mineral surface by surface tension. The effective porosity determined was nine percent.

Area 1-2: $V_x = [(1.0 \times 10^{-3} \text{ cm/sec})(0.050)]/(0.09) = 5.56 \times 10^{-4} \text{ cm/sec or } \textbf{1.575 ft/day}$ Area 1-3: $V_x = [(1.0 \times 10^{-3} \text{ cm/sec})(0.056)]/(0.09) = 6.29 \times 10^{-4} \text{ cm/sec or } \textbf{1.783 ft/day}$

3.2 STATISTICAL EVALUATION

The historical statistical database (provided in **APPENDIX D**) was first reviewed for anomalies or outliers using the statistical program SANITASTM for Groundwater. Statistical outliers were calculated at NE-6 for sulfate and chloride during this event.

In addition to outlier analysis, parameter concentrations were plotted versus time for each of the parameters. These graphs are included in **APPENDIX E**. Graphs provide a summary of the historical data that are more easily visualized on graphs than tables. Another important application of these graphs is for detecting possible trends or drifts in the data from a given well. Furthermore, when visually comparing the plots of all the wells for a parameter, it is easy to identify the variability among the wells. This variability may be spatial or due to contamination from an off-site source.

An important consideration in any graphical presentation is whether the data is significantly influenced by seasonal changes. If this is the case, then the data should be adjusted for seasonal influences. In order to make such a determination, there should exist at least eight and preferably sixteen observations for each parameter. However, seasonal influences will likely be first suspected from visual observation of the data graphs discussed above. Based on the data generated thus far and as stated in previous reports, it is suspected that concentration levels are significantly influenced by the amount of precipitation and the timing of individual precipitation events in relation to sampling events.

The methods used to evaluate the groundwater data for the statistically analysis are based on statistical procedures outlined in the Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities (Unified Guidance, March 2009). The SANITASTM for Groundwater program was utilized to statistically evaluate the

data for the Second Half 2017 sampling event. A brief description of the procedures used in the statistical evaluation is provided on each statistical plot (See **APPENDIX E**).

3.2.1 Sen's Slope/Mann-Kendall

When used in conjunction with one another, the Mann-Kendall test for temporal trend and the Sen's slope estimate are two types of Evaluation Monitoring Statistics useful in determining the significance of an apparent trend and to estimate the magnitude of that trend. The Sen's Slope/Mann-Kendall was performed on all detected constituents from each well to determine whether a statistical trend is present in the data. The results of the Sen's Slope/Mann-Kendall plots associated with the Second Half 2017 sampling event are presented in **APPENDIX E**. A number of constituents presented a false trend due to a change in reporting limits. Only constituents with true statistical trends in detected concentrations are presented below:

Well	Cinnificant Decreasing Transfe	Cinnificant Increasing Trends
CAO-1	Significant Decreasing Trends 1,1-dichloroethane , cobalt, manganese, nickel, zinc	arsenic, barium, benzene, chloride, iron, total organic carbon
CAO-3	lead, nickel, sulfate	chloride
MW-1		1,1-dichloroethane, arsenic, barium, chloride, chlorobenzene, cis- 1,2-dichloroethene, cobalt, TDS, iron, manganese, nickel, sulfate, total organic carbon, vinyl chloride, zinc
MW-1R	manganese	arsenic, cis-1,2-dichloroethene
MW-4		chloride, TDS, sulfate, zinc
MW-5		chloride, TDS, sulfate, zinc
MW-6		chloride, sulfate, zinc, TDS
MW-7	barium, chloride	
MW-509D		chloride, sulfate, TDS
MW-577	barium, sulfate, TDS	chloride
MW-633D	sulfate	1,1-dichloroethane, barium, chloride, zinc, TDS
MW-689D		
NAB-3	nickel,	barium, chloride, iron, TDS
NAB-7	nickel	barium, chloride, iron, sulfate, TDS, zinc
NAB-8	barium	chloride
NE-2	chloride, iron, manganese, sulfate, total organic carbon, TDS	
NE-6	sulfate, zinc	

3.2.2 Results of Assessment Monitoring Statistical Analyses

Confidence intervals are the recommended statistical strategy for assessment monitoring. The Groundwater Protection Standards (GWPS) utilized in the statistical evaluation are included in TABLE 3. The statistical evaluation was conducted in accordance with recommended procedures found in the Unified Guidance. Confidence Intervals were constructed, with a minimum of 4 events, for any metal or VOC constituent detected in concentrations greater than the PQL. Confidence Interval statistical analysis was not performed for indicator parameters. The calculation of confidence intervals consisted of the establishment of 95% Lower Confidence Limits (LCLs) and 95% Upper Confidence Limits (UCLs). If one, or more, of the 4 events used for the confidence interval was above the constituent's MCL and the calculated coefficient of variation (CV) for the population was greater than 0.3 then additional evaluations were performed for that well/constituent pair. If after further evaluation a population that complied with the statistical procedures outlined in the Unified Guidance (UG) 22.1.1 & UG Table 22-3, a visual inspection of the data was performed to identify shift points in the data set. From these shift points the most recent population was used in the calculation of confidence limits. If the 95% LCL of one parameter exceeds action levels defined as Maximum Contaminant Levels (MCLs), if applicable, or a health-based alternate Groundwater Protection Standards (GWPS) as stipulated in Section 22.1205(d)(4), the site will conduct an Assessment of Corrective Measures in coordination with ADEQ.

The results of the assessment monitoring statistical evaluations indicated the concentrations of the following parameters at the following wells, statistically exceeded the established Groundwater Protection Standards.

MONITORING POINT CAO-1 1,1-dichloroethane, arsenic, cobalt, vinyl chloride MW-1 1,1-dichloroethane, arsenic, cobalt, vinyl chloride MW-1R 1,1-dichloroethane, arsenic, cobalt, vinyl chloride

SECOND HALF 2017 GWPS EXCEEDANCES

The results of the Second Half 2017 Sampling Event indicate that AMC concentrations statistically exceed the GWPS at sample points CAO-1, MW-1, and MW-1R

The results of the confidence interval evaluation associated with the Second Half 2017 sampling event are presented in **APPENDIX E**. In accordance with Regulation 12.1205(d)(4), an Assessment of Corrective Measures Report (June 2015, Document 67822) was submitted to ADEQ for approval.

TABLE 3. Groundwater Protection Standards (Regulation 22.1205 (h)(l))

Compound	MCL**	RBSL***	Compound	MCL**	RBSL***
Total Arsenic	0.01 mg/l		Chloroethane (Ethyl Chloride)		21,000 ug/l
Total Barium	2 mg/l		Vinyl Chloride	2 ug/l	
Total Cadmium	0.005 mg/l		1,1-Dichloroethane		2.7 ug/l
Total Cobalt		0.011 mg/l	cis-1,2-Dichloroethene (-ethylene)	70 ug/l	
Total Chromium	0.1 mg/l		Tetrachloroethene (-ethylene)	5 ug/l	
Total Nickel		0.39 mg/l	1,4-dichlorobenzene	75 ug/l	
Total Zinc		6 mg/l	Methylene Chloride	5 ug/l	
Total Selenium	0.05 mg/l		Toluene	1,000 ug/l	
Tin		12 mg/l	Trans 1,2-dichloroethylene	100 ug/l	
Silver		0.094 mg/l	Xylene (Total)	10,000 ug/l	
Thallium	0.002 mg/l		Ethyl Benzene	700 ug/l	
Vanadium		0.086 mg/l	Carbon Disulfide		810 ug/l
Antimony	0.006 mg/l		Chlorobenzene	100 ug/l	
Beryllium	0.004 mg/l		Cyanide	200 ug/l	
Copper	1.3 mg/l		Mercury	0.2 mg/l	
Lead	0.015 mg/l		Trichloroethene (-ethylene)	5 ug/l	
Benzene	5 ug/l				

Available MCL's will be used as the Groundwater Protection Standard

^{**}MCL = Maximum Contaminant Levels (current or proposed)

^{***}RBSL = Risk-Based Screen Levels (EPA Region 6 Human Health Medium Specific Screening Level)
Residential Water (Residential Scenario: Ingestion and Inhalation)

3.3 LABORATORY ANALYTICAL RESULTS

The analytical laboratory results for the Second Half 2017 Assessment Monitoring sampling event are summarized in **TABLE 4** and **TABLE 5**. The Tables present a comparison of parameter concentrations from the current sampling event to the applicable Primary Drinking Water Standards-Maximum Contaminant Levels (MCLs) and Secondary Drinking Water Standards (SDWS). The SDWS are set primarily for aesthetic reasons and are generally not considered health-based criteria. Constituents covered by the SDWS are those which may adversely affect the aesthetic qualities of drinking water such as taste, odor, color, and appearance and are not federally enforced.

Primary Drinking Water Standard MCL exceedances noted for well samples consisted of arsenic at MW-1, MW-1R, and CAO-1; cadmium at MW-509D, mercury at MW-633D, and vinyl chloride at MW-1, MW-1R and CAO-1 (see TABLE 4 and TABLE 5) during the Second Half 2017 Assessment Monitoring event.

As shown in **TABLE 5**, Appendix 1 volatile organic compound (VOC) detections in well samples above the PQL consisted of the following:

- MW-1 chlorobenzene, 1,1-dichloroethane, cis-1,2-dichloroethene, and vinyl chloride
- MW-1R chlorobenzene, 1,1-dichloroethane, Trichloroethene, cis-1,2-dichloroethene, and vinyl chloride
- CAO-1 benzene, 1,1-dichloroethane, and vinyl chloride
- MW-633D 1,1-dichloroethane

Because VOCs are not naturally occurring, detected concentrations above the PQL are considered SSIs.

3.4 QUALITY ASSURANCE/QUALITY CONTROL RESULTS

A QA/QC comparison for the Second Half 2017 Assessment Monitoring event is presented in **TABLES 4** and **5**. The duplicate sample was consistent with the representative sample during this event. The field and equipment blanks had "J" value detections of acetone while the trip blank had no VOC detections, during the Second Half 2017 Assessment Monitoring event.

TABLE 4. INORGANIC GROUNDWATER QUALITY RESULTS

WELLID	рН	TDS	Sulfide	Cyanide	CI	SO ₄	TOC	Hg
WELL ID	(SU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CAO-1	6.31	874	< 0.05	< 0.005	112	<5	10.2	<0.0002
CAO-3	7.33	386	< 0.05	< 0.005	13.9	12.5	1.02 B	<0.0002
MW-1	6.21	970	< 0.05	< 0.005	123	19.3	10.2	<0.0002
MW-1R	6.35	894	<0.05	< 0.005	118	21.8	9.34	0.000168 J
MW-2	7.42	365	<0.05	< 0.005	6.49	16.1	0.589 J	<0.0002
MW-4	7.22	405	<0.05	< 0.005	7.46	15.8	0.412 J	<0.0002
MW-5	7.22	444	< 0.05	< 0.005	5.85	8.56	0.650 J	<0.0002
MW-509D	6.76	396	< 0.05	< 0.005	7	10.2	0.309 B J	<0.0002
MW-577	<i>7</i> .18	416	<0.05	< 0.005	3	25.1	0.303 B J	<0.0002
MW-6	7.63	446	< 0.05	< 0.005	26.4	8.25	1.39	0.000160 J
DUPLICATE (MW-6)		457	< 0.05	< 0.005	26	8.12	2.63	0.0000966 J
MW-633D	6.94	430	< 0.05	< 0.005	17.5	11.5	1.31	0.00215
MW-689D	<i>7</i> .13	393	< 0.05	< 0.005	2.9	13. <i>7</i>	0.400 B J	<0.0002
MW-7	7.01	328	<0.05	< 0.005	2.19	5.68	0.730 B J	<0.0002
NAB-3	7.00	418	< 0.05	< 0.005	12	9.89	1.2	0.000112 J
NAB-7	<i>7</i> .31	371	<0.05	< 0.005	2.98	22.9	0.614 B J	<0.0002
NAB-8	6.43	374	< 0.05	< 0.005	3.01	11.6	5.1	<0.0002
NE-2	6.88	1420	< 0.05	< 0.005	24.9	693	12.9	<0.0002
NE-3	8.18	352	< 0.05	< 0.005	6.9	12.3	3.65	<0.0002
NE-4	7.20	355	<0.05	< 0.005	3.96	21.9	2.31	<0.0002
NE-6	7.58	352	< 0.05	< 0.005	2.82	13.4	0.545 B J	<0.0002
SP-7	<i>7</i> .91	228	<0.05	< 0.005	12.1	3.3 J	3.55	<0.0002
LEACHATE	<i>7</i> .11	1690	< 0.05	< 0.005	647	9.18	61.9	<0.0002
LANDFILL ENTRANCE SEEP	8.84	334	<0.05	< 0.005	13.9	3.59 J	3.72	<0.0002
CLASS I DRAW	8.01	285	<0.05	0.00417 J	48.7	13.2	5.51	<0.0002
FIELD BLANK		<10	<0.05	<0.005	0.756 J	<5	0.415 J	<0.0002
EPA Standards	6.5-8.5**	500**			250**	250**		0.002*

^{*}Primary Drinking Water Standard-Maximum Contaminant Level (MCL)

NA = Not analyzed

^{**}Secondary Drinking Water Standard (SDWS)

[&]quot;J" Value = estimated concentration above the MDL but below the PQL

 $[\]label{thm:pold} \mbox{Values in } \textbf{bold} \mbox{ exceed applicable Primary Drinking Water EPA Standards.}$

Values with a "B" suffix denotes the same analyte is found in the associated blank.

TABLE 4 (CONT'D). INORGANIC GROUNDWATER QUALITY RESULTS

	ADLE			+ (COIL D): HIGHORISH ON ON THE MODELL NESOLLS	ווי עפלווי	NE3OLI 3		
	Sb	As	Ba	Be	3	ບ້	3	కి
WELLID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CAO-1	<0.002	0.142	0.255	<0.002	<0.001	<0.002	0.00298 J	0.0249
CAO-3	<0.002	0.000973	0.0456	<0.002	0.00143	0.00103 J	0.00164 J	<0.002
L-WM	<0.002	0.0238	0.19	<0.002	0.000238 J	0.000643 J	0.00407 J	0.0613
MW-1R	<0.002	0.075	0.169	<0.002	<0.001	<0.002	0.00295 J	0.0656
MW-2	<0.002	0.00474	0.0264	<0.002	<0.001	<0.002	0.00178 J	<0.002
MW-4	<0.002	0.000487 J	0.0347	<0.002	0.000796 J	<0.002	0.00105 J	<0.002
MW-5	<0.002	0.000483 J	0.035	<0.002	<0.001	0.000579 J	0.000765 J	<0.002
MW-509D	<0.002	0.00137 J	0.0327	<0.002	0.00614	0.00321	0.00645	0.000445 J
MW-577	<0.002	0.00151 J	0.0231	<0.002	<0.001	<0.002	0.000703	<0.002
WW-6	<0.002	0.000478 J	0.0468	<0.002	0.000397	0.000630 J	0.00136 J	<0.002
DUPLICATE (MW-6)	<0.002	0.000380	0.048	<0.002	0.000476 J	0.00103 J	0.00119 J	<0.002
MW-633D	<0.002	0.000722 J	0.0399	<0.002	0.00182	0.000586 J	0.00288 J	<0.002
MW-689D	<0.002	0.000725 J	0.0268	<0.002	<0.001	0.000552 J	0.000790	<0.002
WW-7	<0.002	0.000339 J	0.0371	<0.002	<0.001	0.000569 J	0.00135 J	<0.002
NAB-3	<0.002	0.000596 J	0.0473	<0.002	0.000684 J	0.00108 J	0.00302 J	<0.002
NAB-7	<0.002	0.00897	0.0217	<0.002	<0.001	<0.002	0.000673	0.000532 J
NAB-8	<0.002	0.00264	0.03	<0.002	<0.001	<0.002	0.000997	<0.002
NE-2	<0.002	0.00108 J	0.0202	<0.002	0.000171	0.000548 J	0.00287 J	0.00180
NE-3	<0.002	0.00143 J	0.167	<0.002	0.000247 J	<0.002	<0.005	0.000863 J
NE4	<0.002	0.00311	0.0314	<0.002	0.000272 J	0.000669 J	0.00105 J	0.000362 J
NE-6	<0.002	0.00192 J	0.0316	<0.002	0.000448 J	0.000911 J	0.00130 J	0.000425 J
SP-7	<0.002	0.00533	0.0654	<0.002	<0.001	0.000834 J	0.000657 J	0.00265
LEACHATE	₹ Z	0.00382	Ϋ́Z	Ϋ́Z	<0.001	0.00203	0.00277	Ϋ́Z
LANDFILL ENTRANCE SEEP	<0.002	0.0141	0.152	0.000141 J	<0.001	0.00235	0.00230 J	0.0131
CLASS I DRAW	<0.002	0.00148 J	0.0689	<0.002	<0.001	0.000829 J	0.00208 J	0.0000550 J
FIELD BLANK	<0.002	<0.002	<0.005	<0.002	<0.001	0.000959 J	<0.005	<0.002
EPA Standards	*900.0	0.01*	2*	0.004*	0.005*	0.1*	1.3*	1
		(**/ \(\) () () ()	: :		0,100			

^{*}Primary Drinking Water Standard-Maximum Contaminant Level (MCL) / **Secondary Drinking Water Standard (SDWS)
"J" Value= estimated concentration above the MDL but below the PQL / Values in **bold** exceed applicable Primary Drinking Water EPA Standards.

Values with a "B" suffix denotes the same analyte is found in the associated blank. NA = Not analyzed

TABLE 4 (CONT'D). INORGANIC GROUNDWATER QUALITY RESULTS

	L	Ph	W	ä	ď	٧	ī	s,	^	7,0
WELL ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CA0-1	35.1	0.000462 J	0.993	0.0508	<0.002	<0.002	<0.002	0.000939 J	0.00112 J	0.0362
CAO-3	69.0	0.00268	0.0102	0.00218	<0.002	<0.002	<0.002	0.000753 J	0.00190	0.0326
L-WM	6.34	0.000663	0.889	0.0836	<0.002	<0.002	0.000848 J	0.000792 J	0.000409 J	0.327
MW-1R	28	0.000974 J	0.279	0.082	<0.002	<0.002	0.00183 J	0.000482 J	0.000351	1.37
MW-2	0.0825 J	<0.002	0.00643	0.00128 J	<0.002	<0.002	<0.002	0.0000515 J	0.00160 J	0.00488 J
MW-4	0.0303 J	0.000030	0.000883	0.000793 J	<0.002	<0.002	<0.002	<0.002	0.000352 J	0.101
MW-5	0.0254 J	<0.002	U.10100.0	0.00101	<0.002	<0.002	<0.002	0.000421 J	0.000384 J	0.0287
MW-509D	0.989	0.00271	0.0165	0.00282	<0.002	<0.002	<0.002	0.00139 J	0.00281	0.518
MW-577	0.171	0.000249 J	0.0058	<0.002	<0.002	<0.002	<0.002	0.000367 J	0.000407 J	<0.025
9-WW	0.0209 J	<0.002	0.00140 J	0.000766 J	<0.002	<0.002	<0.002	0.000320 J	0.000418 J	0.0449
DUPLICATE (MW-6)	0.0294 J	<0.002	0.00147 J	0.000612 J	<0.002	<0.002	<0.002	0.000491 J	0.000227 J	0.0449
MW-633D	0.0197 J	<0.002	0.0063	0.00174 J	<0.002	<0.002	<0.002	0.000420 J	0.000514 J	0.325
MW-689D	0.080.0	0.000598 J	0.00569	0.000936 J	<0.002	<0.002	<0.002	<0.002	0.000512 J	0.00456 J
Z-WW	<0.1	<0.002	0.0229	0.00107 J	<0.002	<0.002	<0.002	0.000357 J	0.000420 J	0.00645 J
NAB-3	0.187	0.000691	0.0497	0.00228	<0.002	<0.002	<0.002	0.000422 J	0.000821 J	0.0603
NAB-7	0.136	0.00478	0.00563	0.00634	<0.002	<0.002	<0.002	<0.002	0.000709	0.0626
NAB-8	0.114	0.000417 J	0.00964	0.000531 J	<0.002	<0.002	<0.002	0.000378 J	0.0000505 J	0.00767 J
NE-2	0.414	0.000317 J	0.0344	0.00786	<0.002	<0.002	<0.002	<0.002	0.000819 J	0.273
NE-3	0.0994 J	<0.002	0.0562	0.00187 J	<0.002	<0.002	<0.002	<0.002	0.000478 J	0.0692
NE.4	0.145	0.000828 J	0.0119	0.00919	<0.002	<0.002	<0.002	0.0000357 J	0.000520 J	0.233
NE-6	0.309	0.000751 J	0.0201	0.00293	<0.002	<0.002	<0.002	0.000401 J	0.000451 J	0.183
SP-7	1.68	0.000496 J	1.22	0.00287	<0.002	<0.002	<0.002	0.000783 J	0.000191	<0.025
LEACHATE	Ϋ́	<0.001	ΑN	0.0343	Ϋ́Ν	ΑN	ΥN	ΥN	Ϋ́	0.0588
LANDFILL ENTRANCE SEEP	12.7	0.00672	5.29	0.00689	<0.002	<0.002	<0.002	0.000567 J	0.00380 J	0.0493
CLASS I DRAW	0.285	0.000805 J	0.0693	0.00475	0.000391	<0.002	<0.002	0.000684 J	0.000070	0.00622 J
FIELD BLANK	<0.1	<0.002	0.000293 J	<0.002	<0.002	<0.002	<0.002	0.000412 J	<0.005	<0.025
EPA Standards	0.3**	0.015*	**50.0		0.05*	0.1**	0.002*			2**
*Primary Drinking Water Standard-Maximum Contaminant Level (MCL) / **Secondary Drinking Water Standard (SDWS)	rd-Maximum	Contaminant Le	vel (MCL) / **S	econdary Drink	ing Water Sta	ndard (SDW	/S)			
1." Value= estimated concentration above the MDL but below the PQL / Values in bold exceed applicable Primary Drinking Water EPA Standards.	on above the	MDL but below	, the PQL / Vali	Jes in bold exce	ed applicable	Primary Dri	inking Water E	PA Standards.		
Values with a "B" suffix denotes the same	he same ana	lyte is found in t	analyte is found in the associated blank.	Jank.						

NA = Not analyzed

Values with a "B" suffix denotes the same analyte is found in the associated blank.

TABLE 5. VOLATILE ORGANIC GROUNDWATER QUALITY RESULTS

	Acetone	Benzene	CS2	ChlBenz	CIEthane	1,1-DCA	1,2-DCA	CisDCEE	TranDCEE	Toluene	2	۷ ۷
	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)
CAO-1	<50	4.12	~	0.957 J	1.41 J	3.83	~	\ \	\ 	\ \	~	2.69
CAO-3	<50	\ 	~	~	<5	-	~	\ 	\ \	\ 	~	\ -
L-WM	<50	0.814 J	~	2.15	1.95 J	14.7	0.655 J	12	0.560 J	~	0.969	4.86
MW-1R	25.6 J	0.847 J	~	1.74	1.79 J	13.8	~	9.76	0.540 J	0.440 J	1.08	3.96
MW-2	<50	<1	\ -	<u>-</u>	<5	\ 	<u>_</u>	\ -	<1	\ \	~	\ -
4-WM	<50	\ 	~		<5	-	~	~	\ \	~	~	~
MW-5	<50	<1	\ -	<u>-</u>	<5	\ 	<u>_</u>	\ -	<1	\ \	~	\ -
MW-509D	<50	\ 	~	-	<5	-	\ \	\ 	\ 	\ \	\ \	\
MW-577	<50	>	\ \	-	<5	-	~	\ 	[V	\ 	\ \	\
9-MW	<50	\ 	~		<5	-	~	\ 	\ 	~	~	\ -
DUPLICATE	<50	\ 	~	-	<5	-	\ \	\ 	\ 	\ \	\ \	\ \
MW-633D	<50	<1	\ -	- -	<5	1.56	\ -	0.748 J	<1	\ 	~	0.329 J
Q689-MW	<50	\ 	~	-	<5	-	\ \	\ 	\ 	\ \	\ \	\ \
Z-MW	<50	\ 	\ \	- -	<5	-	~	\ 	\ \	\ \	\ \	\
NAB-3	<50	<1	\ 	- -	<5	\ 	<u>_</u>	\ 	<1	\ 	~	\
NAB-7	<50	<1	\ -	<u>-</u>	<5	\ 	<u>_</u>	\ -	<1	\ \	~	\ -
NAB-8	<50	\ 	~	-	<5	-	\ \	\ 	\ 	\ \	\ \	\
NE-2	<50	>	\ \	-	<5	-	~	\ 	[V	\ 	\ \	\
NE-3	<50	\ 	~	-	<5	-	\ \	\ 	\ 	\ \	\ \	\
NE4	05>	>	\ 	-\ -	<5	-1	- 	>	<1	\ 	\ 	\
NE-6	05>	\ 	\ 	\ 	<5	-1>	- 	<1	>	\ 	\ 	\
LEACHATE	05>	0.772 J	0.430 J	\ 	<5	-1	- 	\ 	\ 	\ 	\ 	-
Z-dS	05>	l >	\ 	\ 	<5	-1>	\ 					
LANDFILL ENTRANCE SEEP	<50	- 	- -	-	2.13 J	0.567 ا	<u></u>	0.376 J	<1	\ 	\ 	<u> </u>
CLASS I DRAW	<50	<1	<1	<1	<5	<1	<1	<1	<1	<1	<	<1
FIELD BLANK	32.2 J	- 	\ 	-	<>	-1	<u></u>	< 	<1	\ 	\ 	\
TRIP BLANK	<50	\ 	\ 	-	<5	-	\ \	\ 	-\ -	~	\ \	\
EQUIPMENT BLANK	32.6 J	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1
EPA Standards	i	5		100			5	70	100	1000	5	2

EPA standards depicted above are Primary Drinking Water Standard MCLs / "J" Value= estimated concentration above the MDL but below the PQL Values in bold exceed applicable Primary Drinking Water EPA Standards / Values with a "B" suffix denotes the same analyte is found in the associated blank

4 CONCLUSION

Based on the results of the Second Half 2017 Assessment Monitoring and analytical testing, SCS reached the following conclusions:

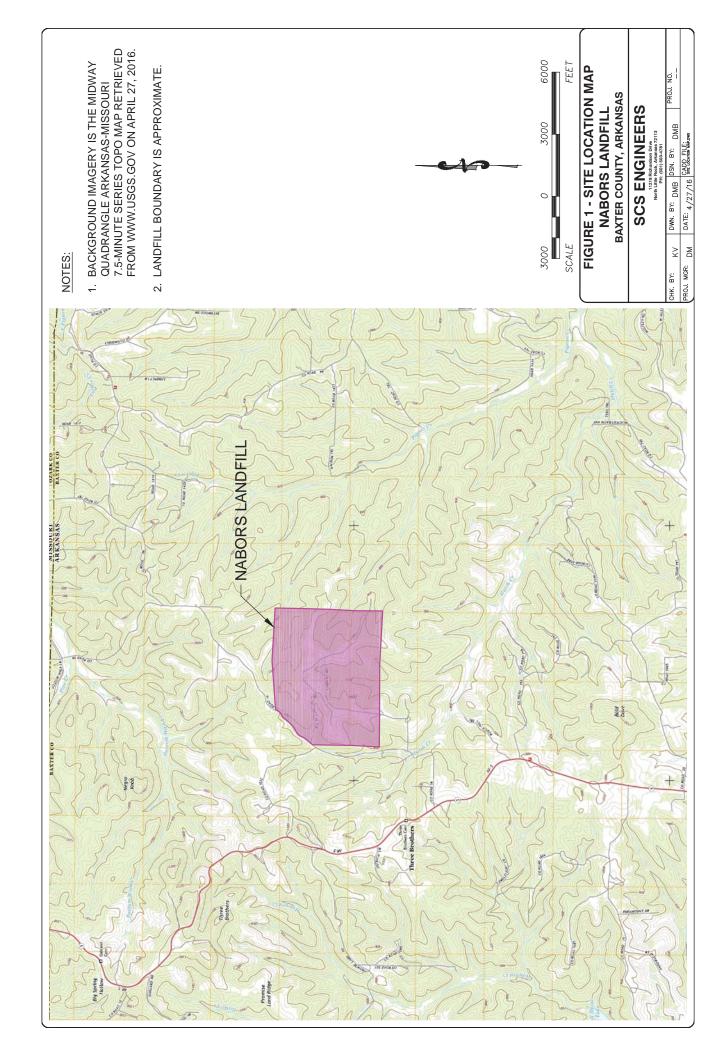
Groundwater Flow:

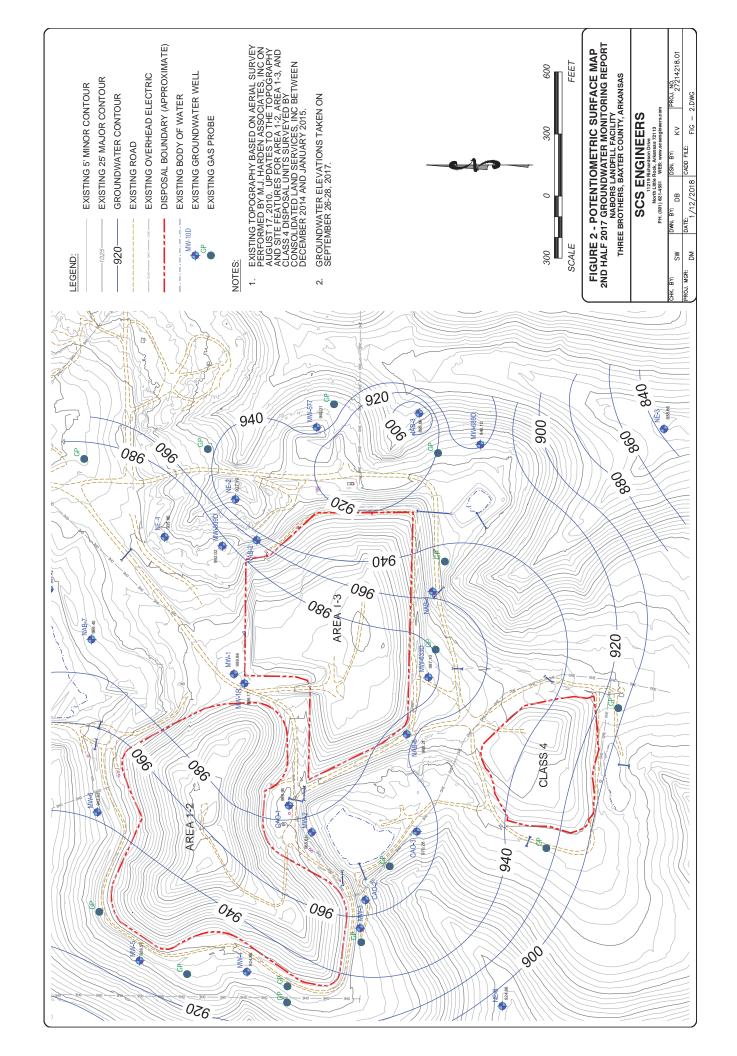
• FIGURE 2 represents a potentiometric surface map constructed from water levels measured during the Second Half 2017 Assessment Monitoring event. As indicated, groundwater within the uppermost aquifer was found to flow in a west-northwesterly direction in the Area 1-2 portion of the site. This flow relationship is consistent with the flow direction indicated by historical water level measurements. The groundwater flow direction in the Area 1-3 portion of the site is to the east-southeast. The average linear velocity in Area 1-2 is estimated at 5.56x10-4 cm/sec or 1.575 ft/day. The average linear velocity in Area 1-3 is estimated at 6.29x10-4 cm/sec or 1.783 ft/day.

Analytical Results:

- A QA/QC comparison for the Second Half 2017 Assessment Monitoring event showed that the
 duplicate sample was consistent with the representative sample during this event. The field and
 equipment blanks had "J" value detections of acetone while the trip blank had no VOC detections
 during the Second Half 2017 Assessment Monitoring event.
- Primary Drinking Water Standard MCL exceedances noted for well samples consisted of arsenic at MW-1, MW-1R, and CAO-1; cadmium at MW-509D, mercury at MW-633D, and vinyl chloride at MW-1, MW-1R and CAO-1 (see TABLE 4 and TABLE 5) during the Second Half 2017 Assessment Monitoring event.
- (VOC) detections in well samples above the PQL consisted of the following:
 - MW-1 chlorobenzene, 1,1-dichloroethane, cis-1,2-dichloroethene, and vinyl chloride
 - MW-1R chlorobenzene, 1,1-dichloroethane, Trichloroethene, cis-1,2-dichloroethene, and vinyl chloride
 - CAO-1 benzene, 1,1-dichloroethane, and vinyl chloride
 - MW-633D 1,1-dichloroethane

Statistical Evaluation:


 The results of the Second Half 2017 Sampling Event indicate that AMC concentrations statistically exceed the GWPS at sample points CAO-1, MW-1, and MW-1R


MONITORING POINT	AMC
CAO-1	1,1-dichloroethane, arsenic, cobalt, vinyl chloride
MW-1	1,1-dichloroethane, arsenic, cobalt
MW-1R	1,1-dichloroethane, arsenic, cobalt, vinyl chloride

- In accordance with Regulation 12.1205(d)(4), an Assessment of Corrective Measures Report (June 2015, Document 67822) was submitted to ADEQ for approval.
- The next semi-annual event is scheduled for March 2018.

APPENDIX A

FIGURES

APPENDIX B

GROUNDWATER SAMPLING RECORDS

Facility NABORS	Date 9/27/2017	V	Well No. MW-1R
Sampling Personnel Darren Motley			
Casing Diameter 2.0"	Condition of well	ok L	ocked? no
Well Depth 78.55	DTW (from TOC)	69.40	/olume H2O in well 1.4
Other Information		_	
Cloudy, 80°			
10 mph wind			
sub-pump			
started purge @ 1518			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (μSm)	Turbidity (NTU)
9/27/2017	1522	1.5	6.32	17.6	0.01	-38.0	1304	167
	1528	3.0	6.34	17.6	0.01	-41.4	1291	14.7
	1535	4.5	6.35	17.6	0.01	-44.4	1287	10.4

Sampling Date & Time	9/27/2017 @ 1535					
Notes						

Facility NABORS	Date 9/27/2017	•	Well No. MW-1
Sampling Personnel Darren Motley			-
Casing Diameter 2.0"	Condition of well	ok	Locked? no
Well Depth 77.20	DTW (from TOC)	67.40	Volume H2O in well 1.5
Other Information			
Cloudy, 83°			
15 mph wind			
sub-pump			
started purge @ 1436			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (μSm)	Turbidity (NTU)
9/27/2017	1440	1.5	6.33	17.3	0.01	66.9	1366	97.4
	1446	3.0	6.24	17.6	0.01	32.1	1372	12.9
	1452	4.5	6.21	17.7	0.01	27.8	1375	7.3

Sampling Date & Time	9/27/2017 @ 1452
Notes	
Lid is broken off.	

Facility NABORS	Date 9/28/2017		Well No. MW-2		
Sampling Personnel Darren Motley					
Casing Diameter 2.0"	Condition of well	ok	Locked? yes		
Well Depth 49.10"	DTW (from TOC)	35.60	Volume H2O in well 2.2		
Other Information	-				
Sunny, 60°					
10 mph wind					
sub-pump					
started purge @ 0808					

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	0812	2.0	7.41	16.8	0.00	38.2	504	36.2
	0816	4.0	7.43	16.9	0.00	33.3	495	12.1
	0820	6.0	7.42	17.0	0.00	29.7	499	5.64

Sampling Date & Time	9/28/2017 @ 0820					
Notes						

Facility NABORS	Date 9/28/2017	,	Well No. MW-4
Sampling Personnel Darren Motley			
Casing Diameter 2.0"	Condition of well	ok	Locked? yes
Well Depth 100.60	DTW (from TOC)	87.25	Volume H2O in well 2.1
Other Information			
Cloudy, 65°			
5 mph wind			
sub-pump			
start purging @ 0907			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	0912	2.0	7.45	15.8	0.01	28.1	547	53.8
	0917	4.0	7.35	15.8	0.00	21.8	550	92.8
	0921	6.0	7.30	15.9	0.02	20.7	545	49.4
	0927	8.0	7.25	16.0	0.03	21.8	542	35.3
	0931	10.0	7.23	16.0	0.02	22.9	545	22.8
	0935	12.0	7.22	16.0	0.00	23.8	539	8.81

Sampling Date & Time	9/28/2017 @ 0935					
Notes						

Facility NABORS	Date 9/28/2017	Well	No. MW-5
Sampling Personnel Darren Motley			
Casing Diameter 2.0"	Condition of well	ok Locke	d? yes
Well Depth 89.75"	DTW (from TOC)	77.81 Volur	me H2O in well 1.9
Other Information			
Sunny, 70°			
5 mph wind			
sub-pump			
start purging @ 1007			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	1011	2.0	7.44	15.5	0.01	46.9	575	33.3
	1014	4.0	7.34	15.5	0.01	43.6	594	19.2
	1017	6.0	7.22	15.5	0.01	42.3	598	7.76

Sampling Date & Time	9/28/2017 @ 1017					
Notes						

Facility NABORS	Date 9/28/2017	Well No. MW-6
Sampling Personnel Darren Motley		•
Casing Diameter 2.0"	Condition of well ok	Locked? yes
Well Depth 68.90	DTW (from TOC) 56.55	Volume H2O in well 2.0
Other Information		·
Sunny, 76°		
5 mph wind		
sub-pump		
start purging @ 1105		

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (μSm)	Turbidity (NTU)
9/28/2017	1108	8.0	7.87	14.6	0.01	95.5	617	20.3
	1111	4.0	7.67	14.6	0.01	81.7	620	9.29
	1114	6.0	7.63	14.6	0.00	81.3	622	6.36

Sampling Date & Time	9/28/2017 @ 1114
Notes	
Dup @ 1120	
F.B @ 1125	
E.B @ 1130	
T.B @ 1135	

Facility NABORS	Date 9/27/2017	Well No. MW-7
Sampling Personnel Darren Motley		
Casing Diameter 2.0"	Condition of well ok	Locked? yes
Well Depth 23.0	DTW (from TOC) 8.24	Volume H2O in well 2.4
Other Information		
Cloudy, 83°		
5 mph wind		
sub-pump		
start purging @ 1338		

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/27/2017	1350	2.5	7.39	18.2	0.01	97.0	478	18.1
	1355	5.0	7.03	17.8	0.06	84.9	483	2.28
	1400	7.5	7.01	17.9	0.01	78.9	484	2.11

Sampling Date & Time		9/27/2017 @ 1400					
Notes							

Facility NABORS	Date 9/28/2017	7	Well No. CAO-1
Sampling Personnel Darren Motley			
Casing Diameter 2.0"	Condition of well	ok	Locked? yes
Well Depth 37.0	DTW (from TOC)	26.45	Volume H2O in well 1.7
Other Information	-		
Sunny, 85°			
10 mph wind			
sub-pump			
start purging @ 1439			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	1449	2.0	6.52	17.2	0.00	-3.0	1238	84.4
	1453	4.0	6.34	17.5	0.01	-31.5	1253	13.2
	1458	6.0	6.31	17.4	0.01	-33.0	1257	8.38

Sampling Date & Time		9/28/2017 @ 1458					
Notes							
-							

Facility NABORS	Date 9/28/2017	•	Well No. CAO-3
Sampling Personnel Darren Motley	,		
Casing Diameter 2.0"	Condition of well	ok	Locked? yes
Well Depth 23.0	DTW (from TOC)	13.92	Volume H2O in well 1.4
Other Information			
Sunny, 60°			
5 mph wind			
sub-pump			
start purging @ 0730			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	0737	1.5	7.57	18.7	0.00	59.4	527	287
	0743	3.0	7.18	18.4	0.00	40.0	511	198
	DRY	4.5						
9/29/2017	0700		7.33	18.6	0.01	58.7	523	6.25

Sampling Date & Time		9/29/2017 @ 0700					
Notes							
_							

Facility NABORS	Date 9/27/2017	W	/ell No. NAB-3
Sampling Personnel Darren Motley			
Casing Diameter 2.0"	Condition of well	ok Lo	ocked? yes
Well Depth 47.0	DTW (from TOC)	25.83 V	olume H2O in well 3.4
Other Information	-		
Cloudy, 75°			
5 mph wind			
sub pump			
start purging @ 0824			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/27/2017	0834	3.5	7.10	15.8	0.01	38.9	611	53.5
	0843	7.0	7.01	15.6	0.01	29.2	579	13.6
	853	10.5	7.00	15.6	0.01	27.3	586	7.37

Sampling Date & Time	9/2//2017 @ 0853					
Notes						

Facility NABORS	Date 9/28/2017	Well No. NAB-7
Sampling Personnel Darren Motley		
Casing Diameter 2.0"	Condition of well ok	Locked? yes
Well Depth 44.0	DTW (from TOC) 22.91	Volume H2O in well 3.4
Other Information		
Sunny 85°		
5 mph wind		
sub-pump		
start purging @ 1225		

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (μSm)	Turbidity (NTU)
9/28/2017	1230	3.5	7.50	16.3	0.01	69.6	513	61.2
	1235	7.0	7.35	16.0	0.01	57.8	513	10.6
	1240	10.5	7.31	16.0	0.01	55.0	512	6.61

Sampling Date & Time	9/28/2017 @ 1240					
Notes						

Facility N	ABORS		Date 9/26/2017		Well No. NAB-8			
Sampling Pe	ersonnel I	Darren Motley				_		
Casing Dian	neter 2.0		Condition	of well ok		Locked?	yes	
Well Depth	95.0		DTW (from	TOC) 79.0		Volume F	120 in well	2.6
Other Inform	nation					_	-	
Sunny, 88°								
5 mph wind								
Bailer								
start purging	g @ 1320							
Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/26/2017	1330	3.0	6.38	21.4	0.01	172.0	657	56.5
Dry @ 2.5 g								
Dry @ 2.3 g	jaiions							
9/27/2017	0700		6.43	21.1	0.03	176.4	653	8.6
Sampling D	ate & Time	9/27/2017	@ 0700					
Notes	4.0 K 1							
	t and lid is of	f center.						

Facility NABORS	Date 9/27/2017	•	Well No. MW-509D		
Sampling Personnel Darren Motle	у				
Casing Diameter 2.0"	Condition of well	ok	Locked? yes		
Well Depth 39.65	DTW (from TOC)	22.18	Volume H2O in well 2.8		
Other Information	_		-		
Cloudy, 85°					
5 mph wind					
sub-pump					
start purging @ 1127					

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/27/2017	1140	3.0	6.93	18.1	0.01	48.2	544	161
	1156	6.0	6.86	17.6	0.05	46.8	535	42.6
	1210	9.0	6.76	17.9	0.01	51.4	521	15.9

Sampling Date & Time Notes		9/27/2017 @ 1210					
-							

0927

6.0

7.18

Field Groundwater Sampling Record

Facility NABORS			Date 9/27/2017			Well No. MW-577			
Sampling Pe	ersonnel [Darren Motley	-			_			
Casing Diar	neter 2.0		Conditi	ion of well	k	Locked?	yes		
Well Depth	55.6		DTW (f	rom TOC) 4	2.59	Volume H	Volume H2O in well 2.1		
Other Inform	nation			_		_	-		
Cloudy, 75°									
10 mph wind	k								
sub-pump									
start purging	g @ 0910								
Date	Time	Volume (gallons)	pł (Sl		•	ORP (mV)	S.C (µSm)	Turbidity (NTU)	
9/27/2017	0919	2.0	7.36	16.2	0.01	23.5	573	12.7	
	0923	4.0	7.21	16.2	0.01	18.5	568	5.46	

16.2

0.12

17.8

566

2.69

Sampling Date & Time	9/27/2017 @ 0927				
Notes					

Facility NABORS	Date 9/27/2017	W	ell No. MW-633D
Sampling Personnel Darren Motley			
Casing Diameter 2.0"	Condition of well	OK Lo	ocked? YES
Well Depth 87.92	DTW (from TOC)	63.00 V	olume H2O in well 4.0
Other Information	-		
Cloudy, 80°			
5 mph wind			
sub-pump			
start purging @ 1015			

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/27/2017	1031	4.0	7.11	16.9	0.01	34.7	593	51.0
	1045	8.0	6.97	17.0	0.01	27.0	593	17.4
	1055	12.0	6.94	17.0	0.00	24.9	593	7.25

Sampling Date & Time Notes		9/27/2017 @ 1055					

Facility NABORS	Date 9/27/2017	Well No. MW-689D
Sampling Personnel Darren M	otley	
Casing Diameter 2.0"	Condition of well ok	Locked? yes
Well Depth 44.45	DTW (from TOC) 26.10	Volume H2O in well 2.9
Other Information		
Cloudy, 75°		
5 mph wind		
sub-pump		
start purging @ 0947		

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/27/2017	0951	3.0	7.36	16.4	0.01	39.7	549	72.7
	0955	6.0	7.23	16.4	0.01	31.2	552	16.9
	1000	9.0	7.13	16.4	0.01	27.3	554	7.76

Sampling	g Date & Time	9/27/2017 @ 1000
Notes		
-		

Facility NABORS			Date 9/26/2017			Well No. NE-2			
Sampling Po	ersonnel	Darren Motley				_			
Casing Diar	meter 2.0"		Condition o	f well ok		Locked?	yes		
Well Depth	64.0		DTW (from	TOC) 49.79)	Volume F	I2O in well	2.3	
Other Inform	mation					_			
Sunny, 90°									
5 mph wind									
bailer									
start purginç	g @ 1430								
Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)	
9/26/2017	14440	1.0	6.88	16.9	0.01	121.6	1571	14.7	
		1	_		1	1			
Sampling D	ate & Time	9/26/2017	@ 1440						
Notes									

Facility NABORS			Date 9/26/2017			Well No. NE-3			
Sampling Po	ersonnel	Darren Motley				_			
Casing Diar	meter 2.0"	ı	Condition of well ok			Locked? yes			
Well Depth	27.7		DTW (from	TOC) 8.05		Volume F	120 in well	3.2	
Other Inform	nation					_	-		
Sunny, 88°									
5 mph wind									
Bailer									
started purg	ing @ 1400)							
Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)	
9/26/2017	1415	3.5	7.31	21.2	4.68	135.1	523	157.0	
Dry @ 3.5 g	gallons								
9/27/2017	0745		8.18	19.8	0.01	107.0	544	3.36	
Sampling D	ate & Time	9/27/2017	@ 0745						
Notes									

Facility NABORS	Date 9/27/2017	•	Well No. NE-4		
Sampling Personnel Darren Motley					
Casing Diameter 2.0"	Condition of well	ok	Locked? yes		
Well Depth 113.80	DTW (from TOC)	74.00	Volume H2O in well 6.4		
Other Information					
Cloudy, 80°					
5 mph wind					
bailer					
start purging @ 1248					

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/27/2017	1258	6.5	7.65	22.8	0.01	79.0	514	183
	1310	13.0	7.31	22.6	0.01	77.6	509	40.4
	1322	18.5	7.20	23.1	0.01	72.3	504	14.8

Sampling Date & Time	9/27/2017 @ 1322
Notes	

Date 9/28/2017		Well No. NE-6
Condition of well	ok	Locked? yes
DTW (from TOC)	9.38	Volume H2O in well 1.4
	_	
,	Condition of well	Condition of well ok

Date	Time	Volume (gallons)	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	0839	1.5	7.73	18.1	0.01	14.0	487	25.1
	0844	3.0	7.61	17.9	0.01	10.2	491	13.3
	0848	4.5	7.58	17.9	0.01	9.8	490	7.42

Sampling	Date & Time	9/28/2017 @ 0848
Notes		
_		

Facility N	IABORS		Date	9/28	/2017		Sample.	Leachate	
Sampling P	ersonnel	Darren Motley					_		
Other Infor	mation								
Sunny, 80°									
5 mph wind									
Date	Time	Volume (gallons)		H (U)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
9/28/2017	1600		7.11		26.3	0.02	109.2	2799	136
Sampling D	ate & Time	9/28/2017	@ 160	0					
Notes									

Field Spring Sampling Record

Facility NABORS	5	Date	9/26-28/2017	
Sampling Personne	el Darren Motley	,		
Other Information				

Sample ID	Sample Date	Time	pH (SU)	Temp (°C)	D.O. (mg/L)	ORP (mV)	S.C (µSm)	Turbidity (NTU)
SP-NE-3	9/26/2017	1420	DRY				,,	, , ,
TSP-3	9/27/2017	0857	DRY					
TSP-4	9/27/2017	1710	DRY					
Spring-A	9/27/2017	1403	DRY					
Class I Draw	9/28/2017	1350	8.01	23.1	0.001	133.0	412	21.6
Class IV Draw	9/28/2017	1400	DRY					
SP-7	9/28/2017	1200	7.91	21.2	0.01	56.3	338	12.9
Spring B	9/27/2017	1700	DRY					
Entrance Sweep	9/29/2017	0900	8.84	18.3	0.01	88.4	505	63.2

Notes			

APPENDIX C

LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

October 16, 2017

myESC
REAL TIME DATA ACCESS

a substition of 7

SCS Engineers - Little Rock, AR

Sample Delivery Group: L940345

Samples Received: 09/30/2017

Project Number:

Description: Nabors Landfill

Report To: Stacie Whitmer

11219 Richardson Drive

North Little Rock, AR 72113

Entire Report Reviewed By:

Mark W. Beasley

Technical Service Representative

Resitis relate only to the items tested or calibrated and are reported as rounded values. This test ropogravial not be reproduced, except in full, without writing approval of the laboratory. Where applicable, sampling conducted by ISCs is performed per guidance provided in laboratory standard operating procedures: 063392, 06303, and 060304.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	10
Sr: Sample Results	11
MW-1 L940345-01	11
MW-2 L940345-02	13
MW-4 L940345-03	15
MW-5 L940345-04	17
MW-6 L940345-05	19
MW-7 L940345-06	21
CAO-1 L940345-07	23
CAO-3 L940345-08	25
NE-4 L940345-09	27
NAB-3 L940345-10	29
NAB-7 L940345-11	31
NAB-8 L940345-12	33
MW-509D L940345-13	35
MW-577 L940345-14	37
MW-689D L940345-15	39
MW-633D L940345-16	41
NE-2 L940345-17	43
NE-3 L940345-18	45
NE-6 L940345-19	47
MW-1R L940345-20	49
SP-7 L940345-21	51
LANDFILL ENTRANCE SEEP L940345-22	53
CLASS I DRAW L940345-23	55
DUPLICATE L940345-24	57
FIELD BLANK L940345-25	59
LEACHATE L940345-26	61
EQUIPMENT BLANK L940345-27	64
TRIP BLANK L940345-28	65
GI: Glossary of Terms	66
Al: Accreditations & Locations	67

Sc: Sample Chain of Custody

68

SAMPLE SUMMARY

ONE	ΙΔΒ	NATIONWIDE

			Collected by	Collected date/time	Received date/time
MW-1 L940345-01 GW			Darren Motley	09/27/17 14:52	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026917	1	10/03/17 17:07	10/03/17 17:43	MMF
Wet Chemistry by Method 4500CN E-2011	WG1027998	1	10/05/17 21:14	10/06/17 11:35	KK
Wet Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:53	10/03/17 21:53	MZ
Wet Chemistry by Method 9056A	WG1028454	1	10/06/17 18:51	10/06/17 18:51	DR
Wet Chemistry by Method 9056A	WG1028454	5	10/06/17 19:05	10/06/17 19:05	DR
Wet Chemistry by Method 9060A	WG1027642	1	10/05/17 00:40	10/05/17 00:40	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:12	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:19	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 00:03	10/05/17 00:03	LRL
			Collected by	Collected date/time	Received date/time
MW-2 L940345-02 GW			Darren Motley	09/28/17 08:20	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027317	1	10/04/17 11:34	10/04/17 12:04	BS

WG1027998

WG1027507

WG1028454

WG1027642

WG1027771

WG1027832

WG1027353

10/05/17 21:14

10/04/17 21:34

10/06/17 19:20

10/05/17 00:55

10/05/17 20:40

10/09/17 11:58

10/05/17 00:23

Collected by

Darren Motley

Collected by

Darren Motley

1

1

1

10/06/17 11:38

10/04/17 21:34

10/06/17 19:20

10/05/17 00:55

10/08/17 10:19

10/14/17 12:23

10/05/17 00:23

Collected date/time

Collected date/time

09/28/17 10:17

09/28/17 09:35

MW-4 L940345-03 GW

Volatile Organic Compounds (GC/MS) by Method 8260B

Wet Chemistry by Method 4500CN E-2011

Wet Chemistry by Method 4500S2 D-2011

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9060A

Metals (ICPMS) by Method 6020

Mercury by Method 7470A

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027317	1	10/04/17 11:34	10/04/17 12:04	BS
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 21:10	10/09/17 12:58	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:34	10/04/17 21:34	MZ
Wet Chemistry by Method 9056A	WG1028454	1	10/06/17 19:34	10/06/17 19:34	DR
Wet Chemistry by Method 9060A	WG1027642	1	10/05/17 01:14	10/05/17 01:14	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:21	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:26	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 00:42	10/05/17 00:42	LRL

⁸ Sc

ΚK

ΜZ

DR

SJM

EL

JPD

LRL

Received date/time

Received date/time

09/30/17 08:45

09/30/17 08:45

MW-5 1940345-04 GW

1V1VV-3 L94U343-U4 GVV					
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027317	1	10/04/17 11:34	10/04/17 12:04	BS
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 12:59	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:34	10/04/17 21:34	MZ
Wet Chemistry by Method 9056A	WG1028454	1	10/06/17 20:17	10/06/17 20:17	DR
Wet Chemistry by Method 9060A	WG1027642	1	10/05/17 01:31	10/05/17 01:31	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:28	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:37	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 01:02	10/05/17 01:02	LRL

KK

ΜZ

KCF

SJM

EL

JPD LRL

Received date/time

SAMPLE SUMMARY

ONE LAB. NATIONW	

			Collected by	Collected date/time	Received date/time
MW-6 L940345-05 GW			Darren Motley	09/28/17 11:14	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:01	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:35	10/04/17 21:35	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 13:23	10/07/17 13:23	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/05/17 18:53	10/05/17 18:53	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:30	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:40	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 01:21	10/05/17 01:21	LRL
			Collected by	Collected date/time	Received date/time
MW-7 L940345-06 GW			Darren Motley	09/27/17 14:00	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF

Volatile Organic Compounds (GC/MS) by Method 8260B

Wet Chemistry by Method 4500CN E-2011

Wet Chemistry by Method 4500S2 D-2011

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9060A

Metals (ICPMS) by Method 6020

Mercury by Method 7470A

CAO-1 L940345-07 GW			Collected by Darren Motley	Collected date/time 09/28/17 14:58	Received date/time 09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst

WG1028433

WG1026981

WG1028455

WG1028089

WG1027771

WG1027832

WG1027353

10/06/17 20:58

10/03/17 21:54

10/07/17 13:38

10/05/17 19:48

10/05/17 20:40

10/09/17 11:58

10/05/17 01:40

Collected by

1

10/09/17 13:02

10/03/17 21:54

10/07/17 13:38

10/05/17 19:48

10/08/17 10:33

10/14/17 12:44

10/05/17 01:40

Collected date/time

Method	Batcn	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:06	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:35	10/04/17 21:35	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 13:53	10/07/17 13:53	KCF
Wet Chemistry by Method 9056A	WG1028455	5	10/07/17 14:08	10/07/17 14:08	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/05/17 20:05	10/05/17 20:05	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:35	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:47	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 01:59	10/05/17 01:59	LRL
	Wet Chemistry by Method 4500CN E-2011 Wet Chemistry by Method 4500S2 D-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Wet Chemistry by Method 9060A Mercury by Method 7470A Metals (ICPMS) by Method 6020	Gravimetric Analysis by Method 2540 C-2011 WG1027616 Wet Chemistry by Method 4500CN E-2011 WG1028433 Wet Chemistry by Method 4500S2 D-2011 WG1027507 Wet Chemistry by Method 9056A WG1028455 Wet Chemistry by Method 9056A WG1028455 Wet Chemistry by Method 9060A WG1028089 Mercury by Method 7470A WG1027771 Metals (ICPMS) by Method 6020 WG1027832	Gravimetric Analysis by Method 2540 C-2011 WG1027616 1 Wet Chemistry by Method 4500CN E-2011 WG1028433 1 Wet Chemistry by Method 4500S2 D-2011 WG1027507 1 Wet Chemistry by Method 9056A WG1028455 1 Wet Chemistry by Method 9056A WG1028455 5 Wet Chemistry by Method 9060A WG1028089 1 Mercury by Method 7470A WG1027771 1 Metals (ICPMS) by Method 6020 WG1027832 1	Gravimetric Analysis by Method 2540 C-2011 WG1027616 1 10/04/17 14:20 Wet Chemistry by Method 4500CN E-2011 WG1028433 1 10/06/17 20:58 Wet Chemistry by Method 4500S2 D-2011 WG1027507 1 10/04/17 21:35 Wet Chemistry by Method 9056A WG1028455 1 10/07/17 13:53 Wet Chemistry by Method 9056A WG1028455 5 10/07/17 14:08 Wet Chemistry by Method 9060A WG1028089 1 10/05/17 20:05 Mercury by Method 7470A WG1027771 1 10/05/17 20:40 Metals (ICPMS) by Method 6020 WG1027832 1 10/09/17 11:58	Gravimetric Analysis by Method 2540 C-2011 WG1027616 1 10/04/17 14:20 10/04/17 14:55 Wet Chemistry by Method 4500CN E-2011 WG1028433 1 10/06/17 20:58 10/09/17 13:06 Wet Chemistry by Method 4500S2 D-2011 WG1027507 1 10/04/17 21:35 10/04/17 21:35 Wet Chemistry by Method 9056A WG1028455 1 10/07/17 13:53 10/07/17 14:08 Wet Chemistry by Method 9056A WG1028455 5 10/07/17 14:08 10/07/17 14:08 Wet Chemistry by Method 9060A WG1028089 1 10/05/17 20:05 10/05/17 20:05 Mercury by Method 7470A WG1027771 1 10/09/17 11:58 10/14/17 12:47

CAO-3	L940345-08	GW

CAO-3 L940345-08 GW			Darren Motley	09/29/17 07:00	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027700	1	10/05/17 16:00	10/05/17 16:30	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:07	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:36	10/04/17 21:36	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 14:23	10/07/17 14:23	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/05/17 21:10	10/05/17 21:10	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:37	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:51	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 02:19	10/05/17 02:19	LRL

SAMPLE SUMMARY

ONE	IΛR	NATIO	NIWIDE
	LAD.		

LRL

Received date/time

Received date/time 09/30/17 08:45

09/30/17 08:45

			Collected by	Collected date/time	Received date/time
NE-4 L940345-09 GW			Darren Motley	09/27/17 13:22	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Net Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:08	KK
Net Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:54	10/03/17 21:54	MZ
Net Chemistry by Method 9056A	WG1028455	1	10/07/17 14:37	10/07/17 14:37	KCF
Net Chemistry by Method 9060A	WG1028089	1	10/05/17 21:27	10/05/17 21:27	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:39	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:54	JPD
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 02:39	10/05/17 02:39	LRL
			Collected by	Collected date/time	Received date/tim
NAB-3 L940345-10 GW			Darren Motley	09/27/17 08:53	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Net Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:09	KK
Net Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:55	10/03/17 21:55	MZ
Net Chemistry by Method 9056A	WG1028455	1	10/07/17 16:07	10/07/17 16:07	KCF
Net Chemistry by Method 9060A	WG1028089	1	10/05/17 22:54	10/05/17 22:54	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:42	EL

Volatile Organic Compounds (GC/MS) by Method 8260B

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:10	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:36	10/04/17 21:36	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 16:22	10/07/17 16:22	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/05/17 23:15	10/05/17 23:15	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:44	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:01	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 03:18	10/05/17 03:18	LRL

WG1027353

NAB-8 L940345-12 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:11	KK
Wet Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:55	10/03/17 21:55	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 16:37	10/07/17 16:37	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/05/17 23:30	10/05/17 23:30	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:46	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:05	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 03:37	10/05/17 03:37	LRL

10/05/17 02:58

Collected by

Darren Motley

Collected by

Darren Motley

10/05/17 02:58

09/28/17 12:40

Collected date/time

Collected date/time

09/27/17 07:00

LRL

Received date/time

09/30/17 08:45

09/30/17 08:45

ONE LAB. NATIONWIDE.

	07 (IVII EE 00	, 1411417 (1			
			Collected by	Collected date/time	Received date/time
MW-509D L940345-13 GW			Darren Motley	09/27/17 12:10	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 20:58	10/09/17 13:14	KK
Wet Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:56	10/03/17 21:56	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 16:52	10/07/17 16:52	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/05/17 23:45	10/05/17 23:45	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:49	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:15	JPD

WG1027353

SAMPLE SUMMARY

	⁴ Cn	
ì	_	

MW-577 L940345-14 GW

Volatile Organic Compounds (GC/MS) by Method 8260B

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 21:10	10/09/17 13:15	KK
Wet Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:56	10/03/17 21:56	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 17:07	10/07/17 17:07	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/06/17 00:16	10/06/17 00:16	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:55	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:19	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 04:15	10/05/17 04:15	LRL

Collected by Collected date/time Received date/time

10/05/17 03:56

Collected by

Darren Motley

Darren Motley

10/05/17 03:56

09/27/17 09:27

09/27/17 10:00

Collected date/time

MW-689D L940345-15 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 21:10	10/09/17 13:18	KK
Wet Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:57	10/03/17 21:57	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 17:21	10/07/17 17:21	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/06/17 00:35	10/06/17 00:35	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 10:58	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:22	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 04:35	10/05/17 04:35	LRL

Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 04:35	10/05/17 04:35	LRL
MW-633D L940345-16 GW			Collected by Darren Motley	Collected date/time 09/27/17 10:55	Received date/time 09/30/17 08:45

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Net Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 21:10	10/09/17 13:19	KK
Net Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:57	10/03/17 21:57	MZ
Net Chemistry by Method 9056A	WG1028455	1	10/07/17 18:36	10/07/17 18:36	KCF
Net Chemistry by Method 9060A	WG1028089	1	10/06/17 00:55	10/06/17 00:55	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 11:00	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:26	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 04:54	10/05/17 04:54	LRL

ONE LAB. NATIONWIDE.

SAMPLE	SUMMARY

Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 21:10	10/09/17 13:22	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:36	10/04/17 21:36	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 19:06	10/07/17 19:06	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/06/17 02:37	10/06/17 02:37	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 11:04	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:33	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 05:33	10/05/17 05:33	LRL

	•	
NE-6 L940345-19 GW	Darren Motley	09/28/17 08:48

14E 0 E3 103 10 13 OW					
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028433	1	10/06/17 21:10	10/09/17 13:23	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:37	10/04/17 21:37	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 19:21	10/07/17 19:21	KCF
Wet Chemistry by Method 9060A	WG1028089	1	10/06/17 02:55	10/06/17 02:55	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 11:07	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 13:36	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 05:53	10/05/17 05:53	LRL

	Collected by	Collected date/time	Received date/time
MW-1R L940345-20 GW	Darren Motley	09/27/17 15:35	09/30/17 08:45

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1026918	1	10/04/17 09:17	10/04/17 09:48	MMF
Net Chemistry by Method 4500CN E-2011	WG1028861	1	10/09/17 21:20	10/10/17 13:45	KK
Net Chemistry by Method 4500S2 D-2011	WG1026981	1	10/03/17 21:58	10/03/17 21:58	MZ
Net Chemistry by Method 9056A	WG1028455	1	10/07/17 19:36	10/07/17 19:36	KCF
Vet Chemistry by Method 9056A	WG1028455	5	10/07/17 19:51	10/07/17 19:51	KCF
Net Chemistry by Method 9060A	WG1028089	1	10/06/17 03:15	10/06/17 03:15	SJM
Mercury by Method 7470A	WG1027771	1	10/05/17 20:40	10/08/17 11:09	EL
Metals (ICPMS) by Method 6020	WG1027832	1	10/09/17 11:58	10/14/17 12:05	JPD
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1027353	1	10/05/17 06:12	10/05/17 06:12	LRL

Collected by

Collected date/time

Received date/time

09/30/17 08:45

ONE LAB. NATIONWIDE.

1ARY		
1ARY		

	SAMPLE SU	JMMAF	ON	ONE LAB. NATIONWIDE.	
SP-7 L940345-21 GW			Collected by Darren Motley	Collected date/time 09/28/17 12:00	Received date/time 09/30/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028861	1	10/09/17 21:20	10/10/17 13:46	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:37	10/04/17 21:37	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 20:05	10/07/17 20:05	KCF
Wet Chemistry by Method 9060A	WG1028518	1	10/06/17 11:16	10/06/17 11:16	SJM
Mercury by Method 7470A	WG1027770	1	10/05/17 10:34	10/05/17 19:37	EL
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/07/17 19:39	LAT
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/10/17 20:36	LAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027352	1	10/05/17 16:28	10/05/17 16:28	LRL
			Collected by	Collected date/time	Received date/time
LANDELL ENTRANCE CEER LOADSAE 33 CL	A (B 14 11	00/00/47 00 00	
LANDFILL ENTRANCE SEEP L940345-22 GV	N		Darren Motley	09/29/17 09:00	09/30/17 08:45
Method	Batch	Dilution	Preparation	09/29/17 09:00 Analysis	09/30/1/ 08:45 ————————————————————————————————————
		Dilution			
		Dilution 1	Preparation	Analysis	
Method	Batch		Preparation date/time	Analysis date/time	Analyst
Method Gravimetric Analysis by Method 2540 C-2011	Batch WG1027700	1	Preparation date/time 10/05/17 16:00	Analysis date/time 10/05/17 16:30	Analyst
Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 4500CN E-2011	Batch WG1027700 WG1028861	1	Preparation date/time 10/05/17 16:00 10/09/17 21:20	Analysis date/time 10/05/17 16:30 10/10/17 13:47	Analyst MMF KK
Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 4500CN E-2011 Wet Chemistry by Method 4500S2 D-2011	Batch WG1027700 WG1028861 WG1027507	1 1 1	Preparation date/time 10/05/17 16:00 10/09/17 21:20 10/04/17 21:38	Analysis date/time 10/05/17 16:30 10/10/17 13:47 10/04/17 21:38	Analyst MMF KK MZ
Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 4500CN E-2011 Wet Chemistry by Method 4500S2 D-2011 Wet Chemistry by Method 9056A	Batch WG1027700 WG1028861 WG1027507 WG1028455	1 1 1 1	Preparation date/time 10/05/17 16:00 10/09/17 21:20 10/04/17 21:38 10/07/17 20:20	Analysis date/time 10/05/17 16:30 10/10/17 13:47 10/04/17 21:38 10/07/17 20:20	Analyst MMF KK MZ KCF
Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 4500CN E-2011 Wet Chemistry by Method 4500S2 D-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9060A	WG1027700 WG1028861 WG1027507 WG1028455 WG1028518	1 1 1 1 1	Preparation date/time 10/05/17 16:00 10/09/17 21:20 10/04/17 21:38 10/07/17 20:20 10/06/17 11:38	Analysis date/time 10/05/17 16:30 10/10/17 13:47 10/04/17 21:38 10/07/17 20:20 10/06/17 11:38	Analyst MMF KK MZ KCF SJM
Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 4500CN E-2011 Wet Chemistry by Method 4500S2 D-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9060A Mercury by Method 7470A	WG1027700 WG1028861 WG1027507 WG1028455 WG1028518 WG1027770	1 1 1 1 1	Preparation date/time 10/05/17 16:00 10/09/17 21:20 10/04/17 21:38 10/07/17 20:20 10/06/17 11:38 10/05/17 10:34	Analysis date/time 10/05/17 16:30 10/10/17 13:47 10/04/17 21:38 10/07/17 20:20 10/06/17 11:38 10/05/17 19:39	Analyst MMF KK MZ KCF SJM EL

CLASS I DRAW L940345-23 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028861	1	10/09/17 21:20	10/10/17 13:48	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:38	10/04/17 21:38	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 20:35	10/07/17 20:35	KCF
Wet Chemistry by Method 9060A	WG1028518	1	10/06/17 11:50	10/06/17 11:50	SJM
Mercury by Method 7470A	WG1027770	1	10/05/17 10:34	10/05/17 19:42	EL
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/07/17 19:53	LAT
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/10/17 20:43	LAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027352	1	10/05/17 17:07	10/05/17 17:07	LRL

וטו וח		1 940345	24 CM
1 11 11 11	IL AIF	1 94(1)4')-	-/ 4 (7//

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028861	1	10/09/17 21:20	10/10/17 13:49	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:39	10/04/17 21:39	MZ
Wet Chemistry by Method 9056A	WG1028455	1	10/07/17 21:20	10/07/17 21:20	KCF
Wet Chemistry by Method 9060A	WG1028518	1	10/06/17 12:03	10/06/17 12:03	SJM
Mercury by Method 7470A	WG1027770	1	10/05/17 10:34	10/05/17 19:44	EL
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/07/17 19:56	LAT
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/10/17 20:54	LAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027352	1	10/05/17 17:27	10/05/17 17:27	LRL

Collected by

Darren Motley

Collected by

Darren Motley

Collected date/time

Collected date/time

09/28/17 11:20

09/28/17 13:50

Received date/time 09/30/17 08:45

Received date/time

09/30/17 08:45

SAMPLE SUMMARY

ΝE	LAB.	NATIONWIDE.	

			Collected by	Collected date/time	Received date/time
FIELD BLANK L940345-25 GW			Darren Motley	09/28/17 11:25	09/30/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 4500CN E-2011	WG1028861	1	10/09/17 21:20	10/10/17 13:50	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:39	10/04/17 21:39	MZ
Wet Chemistry by Method 9056A	WG1028456	1	10/07/17 00:13	10/07/17 00:13	MAJ
Wet Chemistry by Method 9060A	WG1028518	1	10/06/17 12:14	10/06/17 12:14	SJM
Mercury by Method 7470A	WG1027770	1	10/05/17 10:34	10/05/17 19:46	EL
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/07/17 20:00	LAT
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/10/17 20:58	LAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1028396	1	10/09/17 21:16	10/09/17 21:16	JAH
			Collected by	Collected date/time	Received date/time
LEACHATE L940345-26 GW			Darren Motley	09/28/17 16:00	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG1027616	1	10/04/17 14:20	10/04/17 14:55	MMF
Wet Chemistry by Method 1664A	WG1026754	1	10/02/17 10:37	10/02/17 17:03	STM
Wet Chemistry by Method 350.1	WG1028425	20	10/06/17 20:24	10/06/17 20:24	JER
Wet Chemistry by Method 365.4	WG1029423	1	10/06/17 16:29	10/09/17 16:18	KK
Wet Chemistry by Method 4500CN E-2011	WG1028861	1	10/09/17 21:20	10/10/17 13:51	KK
Wet Chemistry by Method 4500S2 D-2011	WG1027507	1	10/04/17 21:39	10/04/17 21:39	MZ
Wet Chemistry by Method 9056A	WG1028456	1	10/07/17 00:54	10/07/17 00:54	MAJ
Wet Chemistry by Method 9056A	WG1028456	10	10/07/17 01:04	10/07/17 01:04	MAJ
Wet Chemistry by Method 9060A	WG1028518	1	10/06/17 12:29	10/06/17 12:29	SJM
Wet Chemistry by Method D93/1010A	WG1028870	1	10/08/17 07:30	10/08/17 07:30	MZ
Mercury by Method 7470A	WG1027770	1	10/05/17 10:34	10/05/17 19:48	EL
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/07/17 20:03	LAT
Metals (ICPMS) by Method 6020	WG1028492	1	10/06/17 11:41	10/10/17 21:01	LAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027352	1	10/05/17 17:46	10/05/17 17:46	LRL
			Collected by	Collected date/time	Received date/time
EQUIPMENT BLANK L940345-27 GW			Darren Motley	09/28/17 11:30	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027352	1	10/05/17 18:05	10/05/17 18:05	LRL
			Collected by	Collected date/time	Received date/time
TRIP BLANK L940345-28 GW			Darren Motley	09/28/17 11:35	09/30/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1027352	1	10/05/17 11:37	10/05/17 11:37	LRL

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mark W. Beasley

Technical Service Representative

Project Narrative

L940345-21 (SP-7): Cyanide pH was 10.04.

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 14:52

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	970000		2820	10000	1	10/03/2017 17:43	WG1026917

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/06/2017 11:35	WG1027998

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:53	WG1026981

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	123000		260	5000	5	10/06/2017 19:05	WG1028454
Sulfate	19300		77.4	5000	1	10/06/2017 18:51	WG1028454

GI.

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	10200		102	1000	1	10/05/2017 00:40	WG1027642

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:12	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	quanner	ug/l	ug/l	Dilation	date / time	Bateli
Antimony	U		0.754	2.00	1	10/14/2017 12:19	WG1027832
Arsenic	23.8		0.250	2.00	1	10/14/2017 12:19	WG1027832
Barium	190		0.360	5.00	1	10/14/2017 12:19	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 12:19	WG1027832
Cadmium	0.238	J	0.160	1.00	1	10/14/2017 12:19	WG1027832
Chromium	0.643	J	0.540	2.00	1	10/14/2017 12:19	WG1027832
Copper	4.07	J	0.520	5.00	1	10/14/2017 12:19	WG1027832
Cobalt	61.3		0.260	2.00	1	10/14/2017 12:19	WG1027832
Iron	6340		15.0	100	1	10/14/2017 12:19	WG1027832
Lead	0.663	J	0.240	2.00	1	10/14/2017 12:19	WG1027832
Manganese	889		0.250	5.00	1	10/14/2017 12:19	WG1027832
Nickel	83.6		0.350	2.00	1	10/14/2017 12:19	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 12:19	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 12:19	WG1027832
Thallium	0.848	J	0.190	2.00	1	10/14/2017 12:19	WG1027832
Tin	0.792	<u>J</u>	0.300	2.00	1	10/14/2017 12:19	WG1027832
Vanadium	0.409	J	0.180	5.00	1	10/14/2017 12:19	WG1027832
Zinc	327		2.56	25.0	1	10/14/2017 12:19	WG1027832

Analyte

Acetone

SAMPLE RE

Dilution

Analysis

date / time

10/05/2017 00:03

RDI

ug/l

50.0

Collected date/time: 09/27/17 14:52

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

MDL

ug/l

10.0

Result

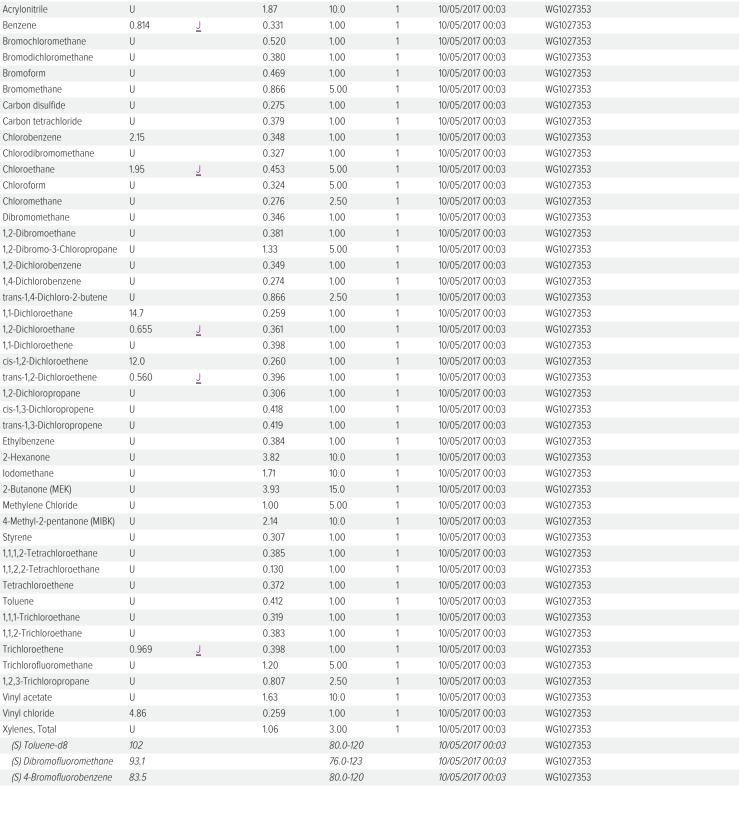
ug/l

U

ESULTS - 01	ONE LAB. NATIONWIE
40045	

Batch

WG1027353



ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 08:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	365000		2820	10000	1	10/04/2017 12:04	WG1027317

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/06/2017 11:38	WG1027998

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:34	WG1027507

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	6490		51.9	1000	1	10/06/2017 19:20	WG1028454
Sulfate	16100		77.4	5000	1	10/06/2017 19:20	WG1028454

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	589	<u>J</u>	102	1000	1	10/05/2017 00:55	WG1027642

Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:19	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 12:23	WG1027832	
Arsenic	4.74		0.250	2.00	1	10/14/2017 12:23	WG1027832	
Barium	26.4		0.360	5.00	1	10/14/2017 12:23	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 12:23	WG1027832	
Cadmium	U		0.160	1.00	1	10/14/2017 12:23	WG1027832	
Chromium	U		0.540	2.00	1	10/14/2017 12:23	WG1027832	
Copper	1.78	<u>J</u>	0.520	5.00	1	10/14/2017 12:23	WG1027832	
Cobalt	U		0.260	2.00	1	10/14/2017 12:23	WG1027832	
ron	82.5	<u>J</u>	15.0	100	1	10/14/2017 12:23	WG1027832	
_ead	U		0.240	2.00	1	10/14/2017 12:23	WG1027832	
Manganese	6.43		0.250	5.00	1	10/14/2017 12:23	WG1027832	
Nickel	1.28	J	0.350	2.00	1	10/14/2017 12:23	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 12:23	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 12:23	WG1027832	
Thallium	U		0.190	2.00	1	10/14/2017 12:23	WG1027832	
Гin	0.515	<u>J</u>	0.300	2.00	1	10/14/2017 12:23	WG1027832	
/anadium	1.60	J	0.180	5.00	1	10/14/2017 12:23	WG1027832	
'inc	4.88	J	2.56	25.0	1	10/14/2017 12:23	WG1027832	

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 08:20

(S) 4-Bromofluorobenzene

84.0

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

	Docult	Ouglifier	MDI	DDI	Dilution	Analysis	Dotoh
Analyta	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l	4	date / time	WodoozoFo
Acetone	U		10.0	50.0	1	10/05/2017 00:23	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 00:23	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 00:23	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 00:23	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 00:23	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 00:23	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 00:23	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 00:23	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 00:23	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 00:23	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 00:23	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 00:23	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 00:23	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 00:23	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 00:23	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 00:23	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 00:23	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 00:23	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 00:23	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 00:23	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 00:23	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 00:23	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 00:23	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 00:23	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 00:23	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 00:23	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 00:23	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 00:23	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 00:23	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 00:23	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 00:23	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 00:23	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 00:23	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 00:23	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 00:23	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 00:23	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 00:23	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 00:23	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 00:23	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 00:23	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 00:23	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 00:23	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 00:23	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 00:23	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 00:23	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 00:23	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 00:23	WG1027353
(S) Toluene-d8	102			80.0-120		10/05/2017 00:23	WG1027353
(S) Dibromofluoromethane	94.9			76.0-123		10/05/2017 00:23	WG1027353
(4) (4)						40 40 = 40 0 4 = 0 0 0 0	1110100000

10/05/2017 00:23

WG1027353

80.0-120

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 09:35

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	405000		2820	10000	1	10/04/2017 12:04	WG1027317

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 12:58	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:34	WG1027507

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	7460		51.9	1000	1	10/06/2017 19:34	WG1028454
Sulfate	15800		77.4	5000	1	10/06/2017 19:34	WG1028454

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	412	<u>J</u>	102	1000	1	10/05/2017 01:14	WG1027642

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:21	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 12:26	WG1027832
Arsenic	0.487	J	0.250	2.00	1	10/14/2017 12:26	WG1027832
Barium	34.7		0.360	5.00	1	10/14/2017 12:26	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 12:26	WG1027832
Cadmium	0.796	<u>J</u>	0.160	1.00	1	10/14/2017 12:26	WG1027832
Chromium	U		0.540	2.00	1	10/14/2017 12:26	WG1027832
Copper	1.05	J	0.520	5.00	1	10/14/2017 12:26	WG1027832
Cobalt	U		0.260	2.00	1	10/14/2017 12:26	WG1027832
ron	30.3	J	15.0	100	1	10/14/2017 12:26	WG1027832
_ead	0.330	J	0.240	2.00	1	10/14/2017 12:26	WG1027832
Manganese	0.883	J	0.250	5.00	1	10/14/2017 12:26	WG1027832
Nickel	0.793	J	0.350	2.00	1	10/14/2017 12:26	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 12:26	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 12:26	WG1027832
[hallium	U		0.190	2.00	1	10/14/2017 12:26	WG1027832
Tin	U		0.300	2.00	1	10/14/2017 12:26	WG1027832
/anadium	0.352	J	0.180	5.00	1	10/14/2017 12:26	WG1027832
linc	101	_	2.56	25.0	1	10/14/2017 12:26	WG1027832

DATE/TIME:

10/16/17 10:47

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 09:35

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Cn

Acetone Acrylonitrile Benzene Bromochloromethane	ug/l U U U	ug/l	ug/l		date / time		L
Acrylonitrile Benzene Bromochloromethane Bromodichloromethane	U	40.0					_
Benzene Bromochloromethane Bromodichloromethane		10.0	50.0	1	10/05/2017 00:42	WG1027353	2
Bromochloromethane Bromodichloromethane	U	1.87	10.0	1	10/05/2017 00:42	WG1027353	
Bromodichloromethane		0.331	1.00	1	10/05/2017 00:42	WG1027353	
	U	0.520	1.00	1	10/05/2017 00:42	WG1027353	
Bromoform	U	0.380	1.00	1	10/05/2017 00:42	WG1027353	L
	U	0.469	1.00	1	10/05/2017 00:42	WG1027353	4
Bromomethane	U	0.866	5.00	1	10/05/2017 00:42	WG1027353	
Carbon disulfide	U	0.275	1.00	1	10/05/2017 00:42	WG1027353	-
Carbon tetrachloride	U	0.379	1.00	1	10/05/2017 00:42	WG1027353	
Chlorobenzene	U	0.348	1.00	1	10/05/2017 00:42	WG1027353	
Chlorodibromomethane	U	0.327	1.00	1	10/05/2017 00:42	WG1027353	6
Chloroethane	U	0.453	5.00	1	10/05/2017 00:42	WG1027353	
Chloroform	U	0.324	5.00	1	10/05/2017 00:42	WG1027353	
Chloromethane	U	0.276	2.50	1	10/05/2017 00:42	WG1027353	ľ
Dibromomethane	U	0.346	1.00	1	10/05/2017 00:42	WG1027353	L
1,2-Dibromoethane	U	0.381	1.00	1	10/05/2017 00:42	WG1027353	8
1,2-Dibromo-3-Chloropropane	U	1.33	5.00	1	10/05/2017 00:42	WG1027353	
1,2-Dichlorobenzene	U	0.349	1.00	1	10/05/2017 00:42	WG1027353	_
	U	0.274	1.00	1	10/05/2017 00:42	WG1027353	
	U	0.866	2.50	1	10/05/2017 00:42	WG1027353	
	U	0.259	1.00	1	10/05/2017 00:42	WG1027353	
1,2-Dichloroethane	U	0.361	1.00	1	10/05/2017 00:42	WG1027353	
	U	0.398	1.00	1	10/05/2017 00:42	WG1027353	
,	U	0.260	1.00	1	10/05/2017 00:42	WG1027353	
,	U	0.396	1.00	1	10/05/2017 00:42	WG1027353	
1,2-Dichloropropane	U	0.306	1.00	1	10/05/2017 00:42	WG1027353	
	U	0.418	1.00	1	10/05/2017 00:42	WG1027353	
	U	0.419	1.00	1	10/05/2017 00:42	WG1027353	
	U	0.384	1.00	1	10/05/2017 00:42	WG1027353	
2-Hexanone	U	3.82	10.0	1	10/05/2017 00:42	WG1027353	
lodomethane	U	1.71	10.0	1	10/05/2017 00:42	WG1027353	
2-Butanone (MEK)	U	3.93	15.0	1	10/05/2017 00:42	WG1027353	
Methylene Chloride	U	1.00	5.00	1	10/05/2017 00:42	WG1027353	
4-Methyl-2-pentanone (MIBK)	U	2.14	10.0	1	10/05/2017 00:42	WG1027353	
Styrene	U	0.307	1.00	1	10/05/2017 00:42	WG1027353	
1,1,1,2-Tetrachloroethane	U	0.385	1.00	1	10/05/2017 00:42	WG1027353	
1,1,2,2-Tetrachloroethane	U	0.130	1.00	1	10/05/2017 00:42	WG1027353	
Tetrachloroethene	U	0.372	1.00	1	10/05/2017 00:42	WG1027353	
Toluene	U	0.412	1.00	1	10/05/2017 00:42	WG1027353	
1,1,1-Trichloroethane	U	0.319	1.00	1	10/05/2017 00:42	WG1027353	
1,1,2-Trichloroethane	U	0.383	1.00	1	10/05/2017 00:42	WG1027353	
Trichloroethene	U	0.398	1.00	1	10/05/2017 00:42	WG1027353	
Trichlorofluoromethane	U	1.20	5.00	1	10/05/2017 00:42	WG1027353	
1,2,3-Trichloropropane	U	0.807	2.50	1	10/05/2017 00:42	WG1027353	
Vinyl acetate	U	1.63	10.0	1	10/05/2017 00:42	WG1027353	
Vinyl chloride	U	0.259	1.00	1	10/05/2017 00:42	WG1027353	
	U	1.06	3.00	1	10/05/2017 00:42	WG1027353	
(S) Toluene-d8	106		80.0-120		10/05/2017 00:42	WG1027353	
(S) Dibromofluoromethane	93.7		76.0-123		10/05/2017 00:42	WG1027353	
(S) 4-Bromofluorobenzene	83.2		80.0-120		10/05/2017 00:42	WG1027353	

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 10:17

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	444000		2820	10000	1	10/04/2017 12:04	WG1027317

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 12:59	WG1028433

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:34	WG1027507

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	5850		51.9	1000	1	10/06/2017 20:17	WG1028454
Sulfate	8560		77.4	5000	1	10/06/2017 20:17	WG1028454

GI.

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	650	J	102	1000	1	10/05/2017 01:31	WG1027642

Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:28	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 12:37	WG1027832	
Arsenic	0.483	J	0.250	2.00	1	10/14/2017 12:37	WG1027832	
Barium	35.0		0.360	5.00	1	10/14/2017 12:37	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 12:37	WG1027832	
Cadmium	U		0.160	1.00	1	10/14/2017 12:37	WG1027832	
Chromium	0.579	<u>J</u>	0.540	2.00	1	10/14/2017 12:37	WG1027832	
Copper	0.765	J	0.520	5.00	1	10/14/2017 12:37	WG1027832	
Cobalt	U		0.260	2.00	1	10/14/2017 12:37	WG1027832	
ron	25.4	<u>J</u>	15.0	100	1	10/14/2017 12:37	WG1027832	
Lead	U		0.240	2.00	1	10/14/2017 12:37	WG1027832	
Manganese	1.01	J	0.250	5.00	1	10/14/2017 12:37	WG1027832	
Nickel	1.01	J	0.350	2.00	1	10/14/2017 12:37	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 12:37	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 12:37	WG1027832	
Γhallium	U		0.190	2.00	1	10/14/2017 12:37	WG1027832	
Гin	0.421	J	0.300	2.00	1	10/14/2017 12:37	WG1027832	
/anadium	0.384	J	0.180	5.00	1	10/14/2017 12:37	WG1027832	
'inc	28.7	_	2.56	25.0	1	10/14/2017 12:37	WG1027832	

17 of 73

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 10:17

(S) 4-Bromofluorobenzene

80.9

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

	Docult	Ouglifier	MDI	DDI	Dilution	Analysis	Dotoh
Analyto	Result	Qualifier	MDL ug/l	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l	1	date / time	WC10272F2
Acetone	U		10.0	50.0	1	10/05/2017 01:02	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 01:02	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 01:02	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 01:02	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 01:02	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 01:02	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 01:02	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 01:02	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 01:02	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 01:02	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 01:02	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 01:02	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 01:02	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 01:02	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 01:02	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 01:02	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 01:02	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 01:02	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 01:02	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 01:02	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 01:02	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 01:02	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 01:02	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 01:02	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 01:02	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 01:02	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 01:02	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 01:02	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 01:02	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 01:02	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 01:02	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 01:02	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 01:02	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 01:02	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 01:02	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 01:02	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 01:02	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 01:02	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 01:02	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 01:02	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 01:02	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 01:02	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 01:02	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 01:02	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 01:02	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 01:02	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 01:02	WG1027353
(S) Toluene-d8	106			80.0-120		10/05/2017 01:02	WG1027353
(S) Dibromofluoromethane	92.6			76.0-123		10/05/2017 01:02	WG1027353

10/05/2017 01:02

WG1027353

80.0-120

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 11:14

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	446000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:01	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:35	WG1027507

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	26400		51.9	1000	1	10/07/2017 13:23	WG1028455
Sulfate	8250		77.4	5000	1	10/07/2017 13:23	WG1028455

GI.

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
TOC (Total Organic Carbon)	1390		102	1000	1	10/05/2017 18:53	WG1028089	

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.160	J	0.0490	0.200	1	10/08/2017 10:30	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 12:40	WG1027832
Arsenic	0.478	<u>J</u>	0.250	2.00	1	10/14/2017 12:40	WG1027832
Barium	46.8		0.360	5.00	1	10/14/2017 12:40	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 12:40	WG1027832
Cadmium	0.397	<u>J</u>	0.160	1.00	1	10/14/2017 12:40	WG1027832
Chromium	0.630	J	0.540	2.00	1	10/14/2017 12:40	WG1027832
Copper	1.36	<u>J</u>	0.520	5.00	1	10/14/2017 12:40	WG1027832
Cobalt	U		0.260	2.00	1	10/14/2017 12:40	WG1027832
Iron	20.9	<u>J</u>	15.0	100	1	10/14/2017 12:40	WG1027832
Lead	U		0.240	2.00	1	10/14/2017 12:40	WG1027832
Manganese	1.40	<u>J</u>	0.250	5.00	1	10/14/2017 12:40	WG1027832
Nickel	0.766	J	0.350	2.00	1	10/14/2017 12:40	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 12:40	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 12:40	WG1027832
Thallium	U		0.190	2.00	1	10/14/2017 12:40	WG1027832
Tin	0.320	<u>J</u>	0.300	2.00	1	10/14/2017 12:40	WG1027832
Vanadium	0.418	J	0.180	5.00	1	10/14/2017 12:40	WG1027832
Zinc	44.9	_	2.56	25.0	1	10/14/2017 12:40	WG1027832

Toluene

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

U

U

U

U

U

U

U

U

U

103

93.4

79.9

J2

0.412

0.319

0.383

0.398

1.20

0.807

1.63

0.259

1.06

1.00

1.00

1.00

1.00

5.00

2.50

10.0

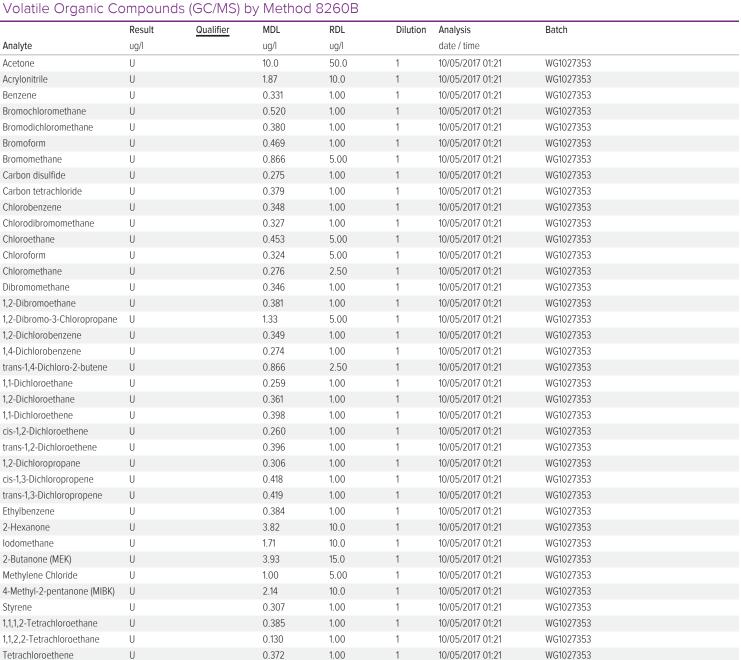
1.00

3.00

80.0-120

76.0-123

80.0-120


1

1

SAMPLE

Collected date/time: 09/28/17 11:14

E RESULTS - 05	ONE LAB. NATIONWID
L940345	

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

10/05/2017 01:21

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 14:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	328000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:02	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:54	WG1026981

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2190		51.9	1000	1	10/07/2017 13:38	WG1028455
Sulfate	5680		77.4	5000	1	10/07/2017 13:38	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	730	ВЈ	102	1000	1	10/05/2017 19:48	WG1028089

Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:33	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 12:44	WG1027832
Arsenic	0.339	J	0.250	2.00	1	10/14/2017 12:44	WG1027832
Barium	37.1		0.360	5.00	1	10/14/2017 12:44	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 12:44	WG1027832
Cadmium	U		0.160	1.00	1	10/14/2017 12:44	WG1027832
Chromium	0.569	J	0.540	2.00	1	10/14/2017 12:44	WG1027832
Copper	1.35	<u>J</u>	0.520	5.00	1	10/14/2017 12:44	WG1027832
Cobalt	U		0.260	2.00	1	10/14/2017 12:44	WG1027832
ron	U		15.0	100	1	10/14/2017 12:44	WG1027832
_ead	U		0.240	2.00	1	10/14/2017 12:44	WG1027832
Manganese	22.9		0.250	5.00	1	10/14/2017 12:44	WG1027832
Nickel	1.07	J	0.350	2.00	1	10/14/2017 12:44	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 12:44	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 12:44	WG1027832
[hallium	U		0.190	2.00	1	10/14/2017 12:44	WG1027832
in	0.357	<u>J</u>	0.300	2.00	1	10/14/2017 12:44	WG1027832
/anadium	0.420	J	0.180	5.00	1	10/14/2017 12:44	WG1027832
'inc	6.45	<u>J</u>	2.56	25.0	1	10/14/2017 12:44	WG1027832

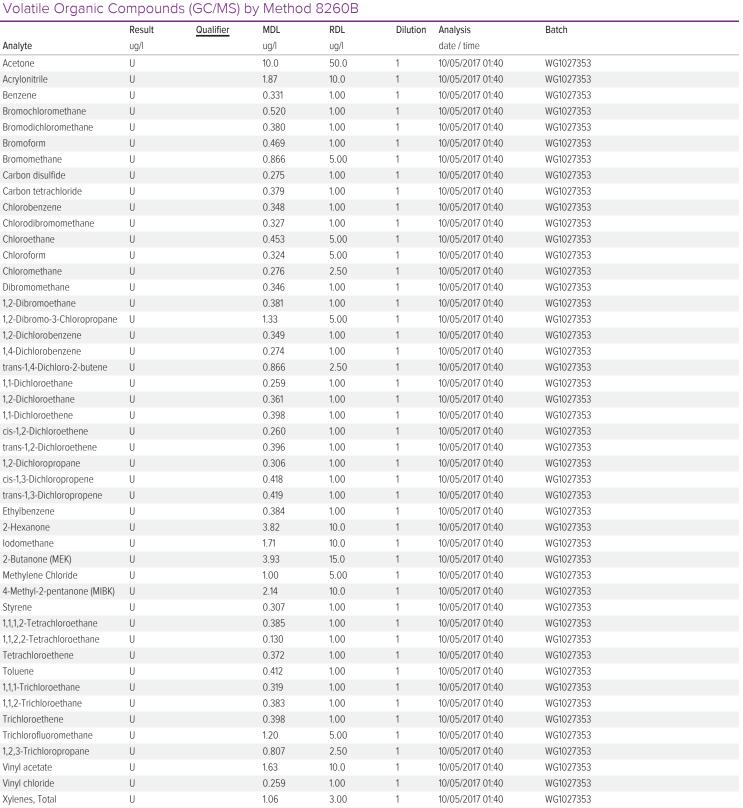
SDG:

ONE LAR NATIONWIDE

Collected date/time: 09/27/17 14:00

104

90.3


82.5

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

RESULIS - U6	ONE LAB. NATION
L940345	

10/05/2017 01:40

10/05/2017 01:40

10/05/2017 01:40

WG1027353

WG1027353

WG1027353

80.0-120

76.0-123

80.0-120

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 14:58

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	874000		2820	10000	1	10/04/2017 14:55	WG1027616

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:06	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:35	WG1027507

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	112000		260	5000	5	10/07/2017 14:08	WG1028455
Sulfate	U		77.4	5000	1	10/07/2017 13:53	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	10200		102	1000	1	10/05/2017 20:05	WG1028089

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:35	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 12:47	WG1027832
Arsenic	142		0.250	2.00	1	10/14/2017 12:47	WG1027832
Barium	255		0.360	5.00	1	10/14/2017 12:47	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 12:47	WG1027832
Cadmium	U		0.160	1.00	1	10/14/2017 12:47	WG1027832
Chromium	U		0.540	2.00	1	10/14/2017 12:47	WG1027832
Copper	2.98	<u>J</u>	0.520	5.00	1	10/14/2017 12:47	WG1027832
Cobalt	24.9		0.260	2.00	1	10/14/2017 12:47	WG1027832
Iron	35100		15.0	100	1	10/14/2017 12:47	WG1027832
Lead	0.462	J	0.240	2.00	1	10/14/2017 12:47	WG1027832
Manganese	993		0.250	5.00	1	10/14/2017 12:47	WG1027832
Nickel	50.8		0.350	2.00	1	10/14/2017 12:47	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 12:47	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 12:47	WG1027832
Thallium	U		0.190	2.00	1	10/14/2017 12:47	WG1027832
Tin	0.939	J	0.300	2.00	1	10/14/2017 12:47	WG1027832
Vanadium	1.12	J	0.180	5.00	1	10/14/2017 12:47	WG1027832
Zinc	36.2		2.56	25.0	1	10/14/2017 12:47	WG1027832

Collected date/time: 09/28/17 14:58 L940345

(S) 4-Bromofluorobenzene 85.5

S - 07	ONE LAB. NATIONWIE

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time					
Acetone	U		10.0	50.0	1	10/05/2017 01:59	WG1027353				
Acrylonitrile	U		1.87	10.0	1	10/05/2017 01:59	WG1027353				
Benzene	4.12		0.331	1.00	1	10/05/2017 01:59	WG1027353				
Bromochloromethane	U		0.520	1.00	1	10/05/2017 01:59	WG1027353				
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 01:59	WG1027353				
Bromoform	U		0.469	1.00	1	10/05/2017 01:59	WG1027353				
Bromomethane	U		0.866	5.00	1	10/05/2017 01:59	WG1027353				
Carbon disulfide	U		0.275	1.00	1	10/05/2017 01:59	WG1027353				
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 01:59	WG1027353				
Chlorobenzene	0.957	J	0.348	1.00	1	10/05/2017 01:59	WG1027353				
Chlorodibromomethane	U	_	0.327	1.00	1	10/05/2017 01:59	WG1027353				
Chloroethane	1.41	J	0.453	5.00	1	10/05/2017 01:59	WG1027353				
Chloroform	U	_	0.324	5.00	1	10/05/2017 01:59	WG1027353				
Chloromethane	U		0.276	2.50	1	10/05/2017 01:59	WG1027353				
Dibromomethane	U		0.346	1.00	1	10/05/2017 01:59	WG1027353				
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 01:59	WG1027353				
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 01:59	WG1027353				
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 01:59	WG1027353				
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 01:59	WG1027353				
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 01:59	WG1027353				
1,1-Dichloroethane	3.83		0.259	1.00	1	10/05/2017 01:59	WG1027353				
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 01:59	WG1027353				
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 01:59	WG1027353				
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 01:59	WG1027353				
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 01:59	WG1027353				
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 01:59	WG1027353				
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 01:59	WG1027353				
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 01:59	WG1027353				
Ethylbenzene	U		0.384	1.00	1	10/05/2017 01:59	WG1027353				
2-Hexanone	U		3.82	10.0	1	10/05/2017 01:59	WG1027353				
lodomethane	U		1.71	10.0	1	10/05/2017 01:59	WG1027353				
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 01:59	WG1027353				
Methylene Chloride	U		1.00	5.00	1	10/05/2017 01:59	WG1027353				
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 01:59	WG1027353				
Styrene	U		0.307	1.00	1	10/05/2017 01:59	WG1027353				
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 01:59	WG1027353				
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 01:59	WG1027353				
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 01:59	WG1027353				
Toluene	U		0.412	1.00	1	10/05/2017 01:59	WG1027353				
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 01:59	WG1027353				
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 01:59	WG1027353				
Trichloroethene	U		0.398	1.00	1	10/05/2017 01:59	WG1027353				
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 01:59	WG1027353				
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 01:59	WG1027353				
Vinyl acetate	U		1.63	10.0	1	10/05/2017 01:59	WG1027353				
Vinyl chloride	2.69		0.259	1.00	1	10/05/2017 01:59	WG1027353				
Xylenes, Total	U		1.06	3.00	1	10/05/2017 01:59	WG1027353				
(S) Toluene-d8	104			80.0-120		10/05/2017 01:59	WG1027353				
(S) Dibromofluoromethane	92.7			76.0-123		10/05/2017 01:59	WG1027353				
(6) 4 B	OF F			00 0 120		10/05/2017 01:50	WC10272F2				

10/05/2017 01:59

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/29/17 07:00

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	386000		2820	10000	1	10/05/2017 16:30	WG1027700

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:07	WG1028433

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:36	WG1027507

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	13900		51.9	1000	1	10/07/2017 14:23	WG1028455
Sulfate	12500		77.4	5000	1	10/07/2017 14:23	WG1028455

Sc

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	1020	В	102	1000	1	10/05/2017 21:10	WG1028089

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:37	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 12:51	WG1027832
Arsenic	0.973	<u>J</u>	0.250	2.00	1	10/14/2017 12:51	WG1027832
Barium	45.6		0.360	5.00	1	10/14/2017 12:51	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 12:51	WG1027832
Cadmium	1.43		0.160	1.00	1	10/14/2017 12:51	WG1027832
Chromium	1.03	<u>J</u>	0.540	2.00	1	10/14/2017 12:51	WG1027832
Copper	1.64	<u>J</u>	0.520	5.00	1	10/14/2017 12:51	WG1027832
Cobalt	U		0.260	2.00	1	10/14/2017 12:51	WG1027832
Iron	690		15.0	100	1	10/14/2017 12:51	WG1027832
Lead	2.68		0.240	2.00	1	10/14/2017 12:51	WG1027832
Manganese	10.2		0.250	5.00	1	10/14/2017 12:51	WG1027832
Nickel	2.18		0.350	2.00	1	10/14/2017 12:51	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 12:51	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 12:51	WG1027832
Thallium	U		0.190	2.00	1	10/14/2017 12:51	WG1027832
Tin	0.753	<u>J</u>	0.300	2.00	1	10/14/2017 12:51	WG1027832
Vanadium	1.90	<u>J</u>	0.180	5.00	1	10/14/2017 12:51	WG1027832
Zinc	32.6		2.56	25.0	1	10/14/2017 12:51	WG1027832

ONE LAB. NATIONWIDE.

Collected date/time: 09/29/17 07:00

L94

L940345

Cn

Ğl

Sc

- Totalie Organie Oc	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	Qualifier	ug/l	ug/l	Dilution	date / time	Batch
Acetone	U		10.0	50.0	1	10/05/2017 02:19	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 02:19	WG1027353 WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Bromodichloromethane	U		0.320	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 02:19	WG1027353 WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Carbon tetrachloride	U		0.275	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 02:19	WG1027353
Chlorodibromomethane	U		0.340	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 02:19	WG1027353 WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 02:19	WG1027353
Chloromethane	U		0.324	2.50	1	10/05/2017 02:19	WG1027353 WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,2-Dibromoethane	U		0.340	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 02:19	WG1027353 WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,2-Dichloroethane	U		0.259	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
cis-1,2-Dichloroethene	U		0.398	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,2-Dichloropropane	U		0.396	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
cis-1,3-Dichloropropene	U		0.300	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
trans-1,3-Dichloropropene	U		0.410	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Ethylbenzene	U		0.419	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 02:19	WG1027353 WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 02:19	WG1027353 WG1027353
	U		3.93	15.0	1	10/05/2017 02:19	WG1027353 WG1027353
2-Butanone (MEK) Methylene Chloride	U		1.00	5.00	1	10/05/2017 02:19	WG1027353 WG1027353
	U		2.14	10.0	1	10/05/2017 02:19	WG1027353 WG1027353
4-Methyl-2-pentanone (MIBK)	U				1		
Styrene	U		0.307 0.385	1.00	1	10/05/2017 02:19 10/05/2017 02:19	WG1027353 WG1027353
1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	U		0.383	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Tetrachloroethene	U		0.130	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Toluene	U		0.372	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,1,1-Trichloroethane	U		0.412	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
1,1,2-Trichloroethane	U		0.319	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 02:19	WG1027353 WG1027353
Trichlorofluoromethane	U					10/05/2017 02:19	WG1027353 WG1027353
1,2,3-Trichloropropane	U		1.20 0.807	5.00 2.50	1	10/05/2017 02:19	WG1027353 WG1027353
					1		
Vinyl acetate	U		1.63	10.0	1	10/05/2017 02:19	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 02:19	WG1027353
Xylenes, Total	U 105		1.06	3.00	1	10/05/2017 02:19	WG1027353
(S) Toluene-d8	105			80.0-120		10/05/2017 02:19	WG1027353
(S) A Promofluoromethane	93.5 82.2			76.0-123 80.0-120		10/05/2017 02:19 10/05/2017 02:19	WG1027353 WG1027353
(S) 4-Bromofluorobenzene	02.2			00.0-120		10/03/201/ 02.19	WUI027333

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 13:22

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	355000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:08	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:54	WG1026981

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	3960		51.9	1000	1	10/07/2017 14:37	WG1028455
Sulfate	21900		77.4	5000	1	10/07/2017 14:37	WG1028455

Sc

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	2310		102	1000	1	10/05/2017 21:27	WG1028089

TOC (Total Organic Carbon) 2310 102 1000 1 10/05/2017 21:27 WG1028089

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:39	WG1027771

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 12:54	WG1027832	
Arsenic	3.11		0.250	2.00	1	10/14/2017 12:54	WG1027832	
Barium	31.4		0.360	5.00	1	10/14/2017 12:54	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 12:54	WG1027832	
Cadmium	0.272	<u>J</u>	0.160	1.00	1	10/14/2017 12:54	WG1027832	
Chromium	0.669	<u>J</u>	0.540	2.00	1	10/14/2017 12:54	WG1027832	
Copper	1.05	<u>J</u>	0.520	5.00	1	10/14/2017 12:54	WG1027832	
Cobalt	0.362	J	0.260	2.00	1	10/14/2017 12:54	WG1027832	
Iron	145		15.0	100	1	10/14/2017 12:54	WG1027832	
Lead	0.828	J	0.240	2.00	1	10/14/2017 12:54	WG1027832	
Manganese	11.9		0.250	5.00	1	10/14/2017 12:54	WG1027832	
Nickel	9.19		0.350	2.00	1	10/14/2017 12:54	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 12:54	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 12:54	WG1027832	
Γhallium	U		0.190	2.00	1	10/14/2017 12:54	WG1027832	
Γin	0.357	<u>J</u>	0.300	2.00	1	10/14/2017 12:54	WG1027832	
Vanadium	0.520	J	0.180	5.00	1	10/14/2017 12:54	WG1027832	
Zinc	233		2.56	25.0	1	10/14/2017 12:54	WG1027832	

DATE/TIME:

10/16/17 10:47

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 13:22

93.6

81.9

(S) Dibromofluoromethane
(S) 4-Bromofluorobenzene

Volatile Organic Compounds (GC/MS) by Method 8260B

L940345

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 02:39	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 02:39	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 02:39	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 02:39	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 02:39	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 02:39	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 02:39	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 02:39	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 02:39	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 02:39	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 02:39	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 02:39	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 02:39	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 02:39	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 02:39	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 02:39	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 02:39	WG1027353
l,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 02:39	WG1027353
l.4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 02:39	WG1027353
rans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 02:39	WG1027353
,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 02:39	WG1027353
,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 02:39	WG1027353
,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 02:39	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 02:39	WG1027353
rans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 02:39	WG1027353
,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 02:39	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 02:39	WG1027353
rans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 02:39	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 02:39	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 02:39	WG1027353
odomethane	U		1.71	10.0	1	10/05/2017 02:39	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 02:39	WG1027353 WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 02:39	WG1027353 WG1027353
1-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 02:39	WG1027353 WG1027353
	U			1.00	1	10/05/2017 02:39	WG1027353 WG1027353
Styrene			0.307		1		
,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	U		0.385 0.130	1.00	•	10/05/2017 02:39 10/05/2017 02:39	WG1027353 WG1027353
	U			1.00	1		
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 02:39	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 02:39	WG1027353
,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 02:39	WG1027353
,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 02:39	WG1027353
Frichloroethene	U		0.398	1.00	1	10/05/2017 02:39	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 02:39	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 02:39	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 02:39	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 02:39	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 02:39	WG1027353
(S) Toluene-d8	107			80.0-120		10/05/2017 02:39	WG1027353
15:1 Dib rama of	02.0						14/C40070E0

10/05/2017 02:39

10/05/2017 02:39

WG1027353

WG1027353

76.0-123

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 08:53

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	418000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:09	WG1028433

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:55	WG1026981

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	12000		51.9	1000	1	10/07/2017 16:07	WG1028455
Sulfate	9890		77.4	5000	1	10/07/2017 16:07	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	1200		102	1000	1	10/05/2017 22:54	WG1028089

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.112	J	0.0490	0.200	1	10/08/2017 10:42	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l	<u>uuumu</u>	ug/l	ug/l	2	date / time	2445	
Antimony	U		0.754	2.00	1	10/14/2017 12:58	WG1027832	
Arsenic	0.596	<u>J</u>	0.250	2.00	1	10/14/2017 12:58	WG1027832	
Barium	47.3	_	0.360	5.00	1	10/14/2017 12:58	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 12:58	WG1027832	
Cadmium	0.684	<u>J</u>	0.160	1.00	1	10/14/2017 12:58	WG1027832	
Chromium	1.08	Ī	0.540	2.00	1	10/14/2017 12:58	WG1027832	
Copper	3.02	J	0.520	5.00	1	10/14/2017 12:58	WG1027832	
Cobalt	U		0.260	2.00	1	10/14/2017 12:58	WG1027832	
ron	187		15.0	100	1	10/14/2017 12:58	WG1027832	
_ead	0.691	<u>J</u>	0.240	2.00	1	10/14/2017 12:58	WG1027832	
Manganese	49.7	_	0.250	5.00	1	10/14/2017 12:58	WG1027832	
Nickel	2.28		0.350	2.00	1	10/14/2017 12:58	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 12:58	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 12:58	WG1027832	
Γhallium	U		0.190	2.00	1	10/14/2017 12:58	WG1027832	
Гin	0.422	J	0.300	2.00	1	10/14/2017 12:58	WG1027832	
/anadium	0.821	J	0.180	5.00	1	10/14/2017 12:58	WG1027832	
Zinc .	60.3		2.56	25.0	1	10/14/2017 12:58	WG1027832	

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 08:53

(S) 4-Bromofluorobenzene

81.1

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

	Docult	Ouglifier	MDI	DDI	Dilution	Analysis	Patch
Analyto	Result	Qualifier	MDL ug/l	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l	1	date / time	WC10272F2
Acetone	U		10.0	50.0	1	10/05/2017 02:58	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 02:58	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 02:58	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 02:58	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 02:58	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 02:58	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 02:58	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 02:58	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 02:58	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 02:58	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 02:58	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 02:58	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 02:58	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 02:58	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 02:58	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 02:58	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 02:58	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 02:58	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 02:58	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 02:58	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 02:58	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 02:58	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 02:58	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 02:58	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 02:58	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 02:58	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 02:58	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 02:58	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 02:58	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 02:58	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 02:58	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 02:58	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 02:58	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 02:58	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 02:58	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 02:58	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 02:58	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 02:58	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 02:58	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 02:58	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 02:58	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 02:58	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 02:58	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 02:58	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 02:58	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 02:58	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 02:58	WG1027353
(S) Toluene-d8	104			80.0-120		10/05/2017 02:58	WG1027353
(S) Dibromofluoromethane	92.6			76.0-123		10/05/2017 02:58	WG1027353
(-)							

10/05/2017 02:58

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 12:40

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	371000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:10	WG1028433

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:36	WG1027507

GI.

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2980		51.9	1000	1	10/07/2017 16:22	WG1028455
Sulfate	22900		77.4	5000	1	10/07/2017 16:22	WG1028455

Sc

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
TOC (Total Organic Carbon)	614	ВЈ	102	1000	1	10/05/2017 23:15	WG1028089	

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:44	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l	Qualifier	ug/l	ug/l	Dilation	date / time	Batch	
Antimony	U		0.754	2.00	1	10/14/2017 13:01	WG1027832	
Arsenic	8.97		0.250	2.00	1	10/14/2017 13:01	WG1027832	
Barium	21.7		0.360	5.00	1	10/14/2017 13:01	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 13:01	WG1027832	
Cadmium	U		0.160	1.00	1	10/14/2017 13:01	WG1027832	
Chromium	U		0.540	2.00	1	10/14/2017 13:01	WG1027832	
Copper	0.673	<u>J</u>	0.520	5.00	1	10/14/2017 13:01	WG1027832	
Cobalt	0.532	J	0.260	2.00	1	10/14/2017 13:01	WG1027832	
Iron	136		15.0	100	1	10/14/2017 13:01	WG1027832	
Lead	4.78		0.240	2.00	1	10/14/2017 13:01	WG1027832	
Manganese	5.63		0.250	5.00	1	10/14/2017 13:01	WG1027832	
Nickel	6.34		0.350	2.00	1	10/14/2017 13:01	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 13:01	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 13:01	WG1027832	
Thallium	U		0.190	2.00	1	10/14/2017 13:01	WG1027832	
Tin	U		0.300	2.00	1	10/14/2017 13:01	WG1027832	
Vanadium	0.709	<u>J</u>	0.180	5.00	1	10/14/2017 13:01	WG1027832	
Zinc	62.6		2.56	25.0	1	10/14/2017 13:01	WG1027832	

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 12:40

(S) 4-Bromofluorobenzene 82.5

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

	Pocul+	Ouglifion	MDI	וחם	Dilu#:	Analysis	Patch
Analyto	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l	4	date / time	WC40272F2
Acetone	U		10.0	50.0	1	10/05/2017 03:18	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 03:18	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 03:18	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 03:18	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 03:18	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 03:18	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 03:18	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 03:18	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 03:18	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 03:18	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 03:18	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 03:18	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 03:18	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 03:18	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 03:18	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 03:18	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 03:18	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 03:18	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 03:18	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 03:18	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 03:18	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 03:18	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 03:18	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 03:18	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 03:18	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 03:18	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 03:18	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 03:18	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 03:18	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 03:18	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 03:18	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 03:18	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 03:18	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 03:18	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 03:18	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 03:18	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 03:18	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 03:18	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 03:18	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 03:18	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 03:18	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 03:18	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 03:18	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 03:18	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 03:18	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 03:18	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 03:18	WG1027353
(S) Toluene-d8	106			80.0-120		10/05/2017 03:18	WG1027353
(S) Dibromofluoromethane	95.7			76.0-123		10/05/2017 03:18	WG1027353

10/05/2017 03:18

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 07:00

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	374000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:11	WG1028433

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:55	WG1026981

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	3010		51.9	1000	1	10/07/2017 16:37	WG1028455
Sulfate	11600		77.4	5000	1	10/07/2017 16:37	WG1028455

GI.

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	5100		102	1000	1	10/05/2017 23:30	WG1028089

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:46	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 13:05	WG1027832	
Arsenic	2.64		0.250	2.00	1	10/14/2017 13:05	WG1027832	
Barium	30.0		0.360	5.00	1	10/14/2017 13:05	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 13:05	WG1027832	
Cadmium	U		0.160	1.00	1	10/14/2017 13:05	WG1027832	
Chromium	U		0.540	2.00	1	10/14/2017 13:05	WG1027832	
Copper	0.997	<u>J</u>	0.520	5.00	1	10/14/2017 13:05	WG1027832	
Cobalt	U		0.260	2.00	1	10/14/2017 13:05	WG1027832	
ron	114		15.0	100	1	10/14/2017 13:05	WG1027832	
_ead	0.417	<u>J</u>	0.240	2.00	1	10/14/2017 13:05	WG1027832	
Manganese	9.64		0.250	5.00	1	10/14/2017 13:05	WG1027832	
Nickel	0.531	<u>J</u>	0.350	2.00	1	10/14/2017 13:05	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 13:05	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 13:05	WG1027832	
[hallium	U		0.190	2.00	1	10/14/2017 13:05	WG1027832	
Tin	0.378	<u>J</u>	0.300	2.00	1	10/14/2017 13:05	WG1027832	
/anadium	0.505	J	0.180	5.00	1	10/14/2017 13:05	WG1027832	
'inc	7.67	<u>J</u>	2.56	25.0	1	10/14/2017 13:05	WG1027832	
		_						

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

U

U

102

92.8

83.6

SAMPLE RESULTS - 12

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 07:00

Volatile Organic Co								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		10.0	50.0	1	10/05/2017 03:37	WG1027353	
Acrylonitrile	U		1.87	10.0	1	10/05/2017 03:37	WG1027353	
Benzene	U		0.331	1.00	1	10/05/2017 03:37	WG1027353	
Bromochloromethane	U		0.520	1.00	1	10/05/2017 03:37	WG1027353	
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 03:37	WG1027353	
Bromoform	U		0.469	1.00	1	10/05/2017 03:37	WG1027353	
Bromomethane	U		0.866	5.00	1	10/05/2017 03:37	WG1027353	
Carbon disulfide	U		0.275	1.00	1	10/05/2017 03:37	WG1027353	
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 03:37	WG1027353	
Chlorobenzene	U		0.348	1.00	1	10/05/2017 03:37	WG1027353	
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 03:37	WG1027353	
Chloroethane	U		0.453	5.00	1	10/05/2017 03:37	WG1027353	
Chloroform	U		0.324	5.00	1	10/05/2017 03:37	WG1027353	
Chloromethane	U		0.276	2.50	1	10/05/2017 03:37	WG1027353	
Dibromomethane	U		0.346	1.00	1	10/05/2017 03:37	WG1027353	
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 03:37	WG1027353	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 03:37	WG1027353	
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 03:37	WG1027353	
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 03:37	WG1027353	
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 03:37	WG1027353	
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 03:37	WG1027353	
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 03:37	WG1027353	
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 03:37	WG1027353	
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 03:37	WG1027353	
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 03:37	WG1027353	
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 03:37	WG1027353	
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 03:37	WG1027353	
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 03:37	WG1027353	
Ethylbenzene	U		0.384	1.00	1	10/05/2017 03:37	WG1027353	
2-Hexanone	U		3.82	10.0	1	10/05/2017 03:37	WG1027353	
lodomethane	U		1.71	10.0	1	10/05/2017 03:37	WG1027353	
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 03:37	WG1027353	
Methylene Chloride	U		1.00	5.00	1	10/05/2017 03:37	WG1027353	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 03:37	WG1027353	
Styrene	U		0.307	1.00	1	10/05/2017 03:37	WG1027353	
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 03:37	WG1027353	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 03:37	WG1027353	
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 03:37	WG1027353	
Toluene	U		0.412	1.00	1	10/05/2017 03:37	WG1027353	
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 03:37	WG1027353	
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 03:37	WG1027353	
Trichloroethene	U		0.398	1.00	1	10/05/2017 03:37	WG1027353	
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 03:37	WG1027353 WG1027353	
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 03:37	WG1027353	
Vinyl acetate	U		1.63	10.0	1	10/05/2017 03:37	WG1027353 WG1027353	
Vinyl chlorida	0		0.350	10.0	1	10/05/2017 05.57	WG1027353	

WG1027353

WG1027353

WG1027353

WG1027353

WG1027353

10/05/2017 03:37

10/05/2017 03:37

10/05/2017 03:37

10/05/2017 03:37

10/05/2017 03:37

0.259

1.06

1.00

3.00

80.0-120

76.0-123

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 12:10

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	396000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:14	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:56	WG1026981

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	7000		51.9	1000	1	10/07/2017 16:52	WG1028455
Sulfate	10200		77.4	5000	1	10/07/2017 16:52	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	309	ВЈ	102	1000	1	10/05/2017 23:45	WG1028089

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:49	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 13:15	WG1027832
Arsenic	1.37	<u>J</u>	0.250	2.00	1	10/14/2017 13:15	WG1027832
Barium	32.7		0.360	5.00	1	10/14/2017 13:15	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 13:15	WG1027832
Cadmium	6.14		0.160	1.00	1	10/14/2017 13:15	WG1027832
Chromium	3.21		0.540	2.00	1	10/14/2017 13:15	WG1027832
Copper	6.45		0.520	5.00	1	10/14/2017 13:15	WG1027832
Cobalt	0.445	J	0.260	2.00	1	10/14/2017 13:15	WG1027832
Iron	989		15.0	100	1	10/14/2017 13:15	WG1027832
Lead	2.71		0.240	2.00	1	10/14/2017 13:15	WG1027832
Manganese	16.5		0.250	5.00	1	10/14/2017 13:15	WG1027832
Nickel	2.82		0.350	2.00	1	10/14/2017 13:15	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 13:15	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 13:15	WG1027832
Thallium	U		0.190	2.00	1	10/14/2017 13:15	WG1027832
Tin	1.39	<u>J</u>	0.300	2.00	1	10/14/2017 13:15	WG1027832
Vanadium	2.81	J	0.180	5.00	1	10/14/2017 13:15	WG1027832
Zinc	518		2.56	25.0	1	10/14/2017 13:15	WG1027832

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 12:10

Volatile Organic Compounds (GC/MS) by Method 8260B

L940345

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 03:56	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 03:56	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 03:56	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 03:56	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 03:56	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 03:56	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 03:56	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 03:56	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 03:56	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 03:56	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 03:56	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 03:56	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 03:56	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 03:56	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 03:56	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 03:56	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 03:56	WG1027353
1.2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 03:56	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 03:56	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 03:56	WG1027353
1.1-Dichloroethane	U		0.259	1.00	1	10/05/2017 03:56	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 03:56	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 03:56	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 03:56	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 03:56	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 03:56	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 03:56	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 03:56	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 03:56	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 03:56	WG1027353
Iodomethane	U		1.71	10.0	1	10/05/2017 03:56	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 03:56	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 03:56	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 03:56	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 03:56	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 03:56	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 03:56	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 03:56	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 03:56	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 03:56	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 03:56	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 03:56	WG1027353 WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 03:56	WG1027353 WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 03:56	WG1027353 WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 03:56	WG1027353 WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 03:56	WG1027353 WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 03:56	WG1027353 WG1027353
(S) Toluene-d8	107		1.00	80.0-120	I		WG1027353 WG1027353
• •						10/05/2017 03:56	
(S) Dibromofluoromethane	91.5			76.0-123		10/05/2017 03:56	WG1027353

Ss

Cn

Ğl

Sc

84.2

(S) 4-Bromofluorobenzene

80.0-120

10/05/2017 03:56

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 09:27

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	416000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:15	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:56	WG1026981

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	3000		51.9	1000	1	10/07/2017 17:07	WG1028455
Sulfate	25100		77.4	5000	1	10/07/2017 17:07	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	303	ВЈ	102	1000	1	10/06/2017 00:16	WG1028089

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:55	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 13:19	WG1027832
Arsenic	1.51	<u>J</u>	0.250	2.00	1	10/14/2017 13:19	WG1027832
Barium	23.1		0.360	5.00	1	10/14/2017 13:19	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 13:19	WG1027832
Cadmium	U		0.160	1.00	1	10/14/2017 13:19	WG1027832
Chromium	U		0.540	2.00	1	10/14/2017 13:19	WG1027832
Copper	0.703	<u>J</u>	0.520	5.00	1	10/14/2017 13:19	WG1027832
Cobalt	U		0.260	2.00	1	10/14/2017 13:19	WG1027832
Iron	171		15.0	100	1	10/14/2017 13:19	WG1027832
Lead	0.249	<u>J</u>	0.240	2.00	1	10/14/2017 13:19	WG1027832
Manganese	5.80		0.250	5.00	1	10/14/2017 13:19	WG1027832
Nickel	U		0.350	2.00	1	10/14/2017 13:19	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 13:19	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 13:19	WG1027832
Thallium	U		0.190	2.00	1	10/14/2017 13:19	WG1027832
Tin	0.367	<u>J</u>	0.300	2.00	1	10/14/2017 13:19	WG1027832
Vanadium	0.407	<u>J</u>	0.180	5.00	1	10/14/2017 13:19	WG1027832
Zinc	U		2.56	25.0	1	10/14/2017 13:19	WG1027832

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 09:27

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

81.6

(S) 4-Bromofluorobenzene

	. ,					
	_	ualifier MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	ug/l	ug/l		date / time	
Acetone	U	10.0	50.0	1	10/05/2017 04:15	WG1027353
Acrylonitrile	U	1.87	10.0	1	10/05/2017 04:15	WG1027353
Benzene	U	0.331	1.00	1	10/05/2017 04:15	WG1027353
Bromochloromethane	U	0.520	1.00	1	10/05/2017 04:15	WG1027353
Bromodichloromethane	U	0.380	1.00	1	10/05/2017 04:15	WG1027353
Bromoform	U	0.469	1.00	1	10/05/2017 04:15	WG1027353
Bromomethane	U	0.866	5.00	1	10/05/2017 04:15	WG1027353
Carbon disulfide	U	0.275	1.00	1	10/05/2017 04:15	WG1027353
Carbon tetrachloride	U	0.379	1.00	1	10/05/2017 04:15	WG1027353
Chlorobenzene	U	0.348	1.00	1	10/05/2017 04:15	WG1027353
Chlorodibromomethane	U	0.327	1.00	1	10/05/2017 04:15	WG1027353
Chloroethane	U	0.453	5.00	1	10/05/2017 04:15	WG1027353
Chloroform	U	0.324	5.00	1	10/05/2017 04:15	WG1027353
Chloromethane	U	0.276	2.50	1	10/05/2017 04:15	WG1027353
Dibromomethane	U	0.346	1.00	1	10/05/2017 04:15	WG1027353
1,2-Dibromoethane	U	0.381	1.00	1	10/05/2017 04:15	WG1027353
1,2-Dibromo-3-Chloropropane	U	1.33	5.00	1	10/05/2017 04:15	WG1027353
1,2-Dichlorobenzene	U	0.349	1.00	1	10/05/2017 04:15	WG1027353
1,4-Dichlorobenzene	U	0.274	1.00	1	10/05/2017 04:15	WG1027353
trans-1,4-Dichloro-2-butene	U	0.866	2.50	1	10/05/2017 04:15	WG1027353
1,1-Dichloroethane	U	0.259	1.00	1	10/05/2017 04:15	WG1027353
1,2-Dichloroethane	U	0.361	1.00	1	10/05/2017 04:15	WG1027353
1,1-Dichloroethene	U	0.398	1.00	1	10/05/2017 04:15	WG1027353
cis-1,2-Dichloroethene	U	0.260	1.00	1	10/05/2017 04:15	WG1027353
trans-1,2-Dichloroethene	U	0.396	1.00	1	10/05/2017 04:15	WG1027353
1,2-Dichloropropane	U	0.306	1.00	1	10/05/2017 04:15	WG1027353
cis-1,3-Dichloropropene	U	0.418	1.00	1	10/05/2017 04:15	WG1027353
trans-1,3-Dichloropropene	U	0.419	1.00	1	10/05/2017 04:15	WG1027353
Ethylbenzene	U	0.384	1.00	1	10/05/2017 04:15	WG1027353
2-Hexanone	U	3.82	10.0	1	10/05/2017 04:15	WG1027353
lodomethane	U	1.71	10.0	1	10/05/2017 04:15	WG1027353
2-Butanone (MEK)	U	3.93	15.0	1	10/05/2017 04:15	WG1027353
Methylene Chloride	U	1.00	5.00	1	10/05/2017 04:15	WG1027353
4-Methyl-2-pentanone (MIBK)	U	2.14	10.0	1	10/05/2017 04:15	WG1027353
Styrene	U	0.307	1.00	1	10/05/2017 04:15	WG1027353
1,1,1,2-Tetrachloroethane	U	0.385	1.00	1	10/05/2017 04:15	WG1027353
1,1,2,2-Tetrachloroethane	U	0.130	1.00	1	10/05/2017 04:15	WG1027353
Tetrachloroethene	U	0.372	1.00	1	10/05/2017 04:15	WG1027353
Toluene	U	0.412	1.00	1	10/05/2017 04:15	WG1027353
1,1,1-Trichloroethane	U	0.319	1.00	1	10/05/2017 04:15	WG1027353
1,1,2-Trichloroethane	U	0.383	1.00	1	10/05/2017 04:15	WG1027353
Trichloroethene	U	0.398	1.00	1	10/05/2017 04:15	WG1027353
Trichlorofluoromethane	U	1.20	5.00	1	10/05/2017 04:15	WG1027353
1,2,3-Trichloropropane	U	0.807	2.50	1	10/05/2017 04:15	WG1027353
Vinyl acetate	U	1.63	10.0	1	10/05/2017 04:15	WG1027353
Vinyl chloride	U	0.259	1.00	1	10/05/2017 04:15	WG1027353
Xylenes, Total	U	1.06	3.00	1	10/05/2017 04:15	WG1027353
(S) Toluene-d8	105		80.0-120		10/05/2017 04:15	WG1027353
(S) Dibromofluoromethane	93.0		76.0-123		10/05/2017 04:15	WG1027353
(5) Distribution of the tribution	33.0		, 0.0 120		.5,05,25,7 01.15	

10/05/2017 04:15

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 10:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	393000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:18	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:57	WG1026981

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2910	<u>P1</u>	51.9	1000	1	10/07/2017 17:21	WG1028455
Sulfate	13700		77.4	5000	1	10/07/2017 17:21	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	400	ВЈ	102	1000	1	10/06/2017 00:35	WG1028089

Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 10:58	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 13:22	WG1027832	
Arsenic	0.725	<u>J</u>	0.250	2.00	1	10/14/2017 13:22	WG1027832	
Barium	26.8		0.360	5.00	1	10/14/2017 13:22	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 13:22	WG1027832	
Cadmium	U		0.160	1.00	1	10/14/2017 13:22	WG1027832	
Chromium	0.552	<u>J</u>	0.540	2.00	1	10/14/2017 13:22	WG1027832	
Copper	0.790	J	0.520	5.00	1	10/14/2017 13:22	WG1027832	
Cobalt	U		0.260	2.00	1	10/14/2017 13:22	WG1027832	
Iron	80.0	<u>J</u>	15.0	100	1	10/14/2017 13:22	WG1027832	
Lead	0.598	J	0.240	2.00	1	10/14/2017 13:22	WG1027832	
Manganese	5.69		0.250	5.00	1	10/14/2017 13:22	WG1027832	
Nickel	0.936	J	0.350	2.00	1	10/14/2017 13:22	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 13:22	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 13:22	WG1027832	
Thallium	U		0.190	2.00	1	10/14/2017 13:22	WG1027832	
Tin	U		0.300	2.00	1	10/14/2017 13:22	WG1027832	
Vanadium	0.512	J	0.180	5.00	1	10/14/2017 13:22	WG1027832	
Zinc	4.56	<u>J</u>	2.56	25.0	1	10/14/2017 13:22	WG1027832	

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 10:00

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

93.8

81.4

Volatile Organic Compounds (GC/MS) by Method 8260B

ULIS - 15	ONE LAB. NATIONW

Volatile Organic Co	ompoun	ds (GC/MS) b	by Method	d 8260B			
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 04:35	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 04:35	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 04:35	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 04:35	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 04:35	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 04:35	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 04:35	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 04:35	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 04:35	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 04:35	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 04:35	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 04:35	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 04:35	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 04:35	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 04:35	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 04:35	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 04:35	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 04:35	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 04:35	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 04:35	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 04:35	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 04:35	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 04:35	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 04:35	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 04:35	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 04:35	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 04:35	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 04:35	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 04:35	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 04:35	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 04:35	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 04:35	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 04:35	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 04:35	WG1027353
Styrene Styrene	U		0.307	1.00	1	10/05/2017 04:35	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 04:35	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 04:35	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 04:35	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 04:35	WG1027353
1,1,1-Trichloroethane	U		0.412	1.00	1	10/05/2017 04:35	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 04:35	WG1027353 WG1027353
Trichloroethene	U		0.363	1.00	1	10/05/2017 04:35	WG1027353 WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 04:35	WG1027353 WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 04:35	WG1027353 WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 04:35	WG1027353 WG1027353
•	U		0.259	1.00	1		WG1027353 WG1027353
Vilones Total	U		1.06	3.00		10/05/2017 04:35 10/05/2017 04:35	WG1027353 WG1027353
Xylenes, Total			1.00		1		
(S) Toluene-d8	105			80.0-120		10/05/2017 04:35	WG1027353

10/05/2017 04:35

10/05/2017 04:35

WG1027353

WG1027353

76.0-123

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 10:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	430000		2820	10000	1	10/04/2017 09:48	WG1026918

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:19	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:57	WG1026981

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17500		51.9	1000	1	10/07/2017 18:36	WG1028455
Sulfate	11500		77.4	5000	1	10/07/2017 18:36	WG1028455

Sc

PAGE:

41 of 73

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	1310		102	1000	1	10/06/2017 00:55	WG1028089

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	2.15		0.0490	0.200	1	10/08/2017 11:00	WG1027771

Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
ug/l		ug/l	ug/l		date / time	
U		0.754	2.00	1	10/14/2017 13:26	WG1027832
0.722	<u>J</u>	0.250	2.00	1	10/14/2017 13:26	WG1027832
39.9		0.360	5.00	1	10/14/2017 13:26	WG1027832
U		0.120	2.00	1	10/14/2017 13:26	WG1027832
1.82		0.160	1.00	1	10/14/2017 13:26	WG1027832
0.586	<u>J</u>	0.540	2.00	1	10/14/2017 13:26	WG1027832
2.88	<u>J</u>	0.520	5.00	1	10/14/2017 13:26	WG1027832
U		0.260	2.00	1	10/14/2017 13:26	WG1027832
19.7	<u>J</u>	15.0	100	1	10/14/2017 13:26	WG1027832
U		0.240	2.00	1	10/14/2017 13:26	WG1027832
6.30		0.250	5.00	1	10/14/2017 13:26	WG1027832
1.74	<u>J</u>	0.350	2.00	1	10/14/2017 13:26	WG1027832
U		0.380	2.00	1	10/14/2017 13:26	WG1027832
U		0.310	2.00	1	10/14/2017 13:26	WG1027832
U		0.190	2.00	1	10/14/2017 13:26	WG1027832
0.420	<u>J</u>	0.300	2.00	1	10/14/2017 13:26	WG1027832
0.514	<u>J</u>	0.180	5.00	1	10/14/2017 13:26	WG1027832
325		2.56	25.0	1	10/14/2017 13:26	WG1027832
	Ug/l U 0.722 39.9 U 1.82 0.586 2.88 U 19.7 U 6.30 1.74 U U U 0.420 0.514	Ug/I U 0.722	ug/l ug/l U 0.754 0.722 J 0.250 39.9 0.360 U 0.120 1.82 0.160 0.586 J 0.540 2.88 J 0.520 U 0.260 19.7 J 15.0 U 0.240 6.30 0.250 1.74 J 0.350 U 0.380 U 0.310 U 0.190 0.420 J 0.300 0.514 J 0.180	ug/l ug/l ug/l U 0.754 2.00 0.722 J 0.250 2.00 39.9 0.360 5.00 U 0.120 2.00 1.82 0.160 1.00 0.586 J 0.540 2.00 2.88 J 0.520 5.00 U 0.260 2.00 19.7 J 15.0 100 U 0.240 2.00 6.30 0.250 5.00 1.74 J 0.350 2.00 U 0.380 2.00 U 0.310 2.00 U 0.190 2.00 0.420 J 0.300 2.00 0.514 J 0.180 5.00	ug/l ug/l ug/l U 0.754 2.00 1 0.722 J 0.250 2.00 1 39.9 0.360 5.00 1 U 0.120 2.00 1 1.82 0.160 1.00 1 0.586 J 0.540 2.00 1 2.88 J 0.520 5.00 1 U 0.260 2.00 1 19.7 J 15.0 100 1 U 0.240 2.00 1 0.30 0.250 5.00 1 1.74 J 0.350 2.00 1 U 0.380 2.00 1 U 0.310 2.00 1 U 0.190 2.00 1 0.420 J 0.300 2.00 1 0.514 J 0.180 5.00 1	ug/l ug/l ug/l date / time U 0.754 2.00 1 10/14/2017 13:26 0.722 J 0.250 2.00 1 10/14/2017 13:26 39.9 0.360 5.00 1 10/14/2017 13:26 U 0.120 2.00 1 10/14/2017 13:26 1.82 0.160 1.00 1 10/14/2017 13:26 0.586 J 0.540 2.00 1 10/14/2017 13:26 2.88 J 0.520 5.00 1 10/14/2017 13:26 U 0.260 2.00 1 10/14/2017 13:26 19.7 J 15.0 100 1 10/14/2017 13:26 U 0.240 2.00 1 10/14/2017 13:26 U 0.350 2.00 1 10/14/2017 13:26 U 0.380 2.00 1 10/14/2017 13:26 U 0.310 2.00 1 10/14/2017 13:26 U 0.190 2.00<

Vinyl acetate

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

U

U

105

93.7

81.9

0.329

1.63

0.259

1.06

10.0

1.00

3.00

80.0-120

76.0-123

80.0-120

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 10:55

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	·	ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 04:54	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 04:54	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 04:54	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 04:54	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 04:54	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 04:54	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 04:54	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 04:54	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 04:54	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 04:54	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 04:54	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 04:54	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 04:54	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 04:54	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 04:54	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 04:54	WG1027353
,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 04:54	WG1027353
,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 04:54	WG1027353
,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 04:54	WG1027353
rans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 04:54	WG1027353
,1-Dichloroethane	1.56		0.259	1.00	1	10/05/2017 04:54	WG1027353
,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 04:54	WG1027353
,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 04:54	WG1027353
cis-1,2-Dichloroethene	0.748	<u>J</u>	0.260	1.00	1	10/05/2017 04:54	WG1027353
rans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 04:54	WG1027353
l,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 04:54	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 04:54	WG1027353
rans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 04:54	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 04:54	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 04:54	WG1027353
odomethane	U		1.71	10.0	1	10/05/2017 04:54	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 04:54	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 04:54	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 04:54	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 04:54	WG1027353
,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 04:54	WG1027353
,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 04:54	WG1027353
「etrachloroethene	U		0.372	1.00	1	10/05/2017 04:54	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 04:54	WG1027353
,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 04:54	WG1027353
,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 04:54	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 04:54	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 04:54	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 04:54	WG1027353
Vinue a actata	11		1.00	10.0	1	10/05/2017 04.54	WC10272F2

10/05/2017 04:54

10/05/2017 04:54

10/05/2017 04:54

10/05/2017 04:54

10/05/2017 04:54

10/05/2017 04:54

WG1027353

WG1027353

WG1027353

WG1027353

WG1027353

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/26/17 14:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	1420000		2820	10000	1	10/03/2017 17:02	WG1026862

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:21	WG1028433

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:57	WG1026981

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	24900		51.9	1000	1	10/07/2017 18:51	WG1028455
Sulfate	693000		1550	100000	20	10/09/2017 15:47	WG1029416

Sc

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
TOC (Total Organic Carbon)	12900		102	1000	1	10/06/2017 01:13	WG1028089	

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 11:02	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 13:29	WG1027832	
Arsenic	1.08	<u>J</u>	0.250	2.00	1	10/14/2017 13:29	WG1027832	
Barium	20.2		0.360	5.00	1	10/14/2017 13:29	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 13:29	WG1027832	
Cadmium	0.171	<u>J</u>	0.160	1.00	1	10/14/2017 13:29	WG1027832	
Chromium	0.548	<u>J</u>	0.540	2.00	1	10/14/2017 13:29	WG1027832	
Copper	2.87	<u>J</u>	0.520	5.00	1	10/14/2017 13:29	WG1027832	
Cobalt	1.80	<u>J</u>	0.260	2.00	1	10/14/2017 13:29	WG1027832	
ron	414		15.0	100	1	10/14/2017 13:29	WG1027832	
Lead	0.317	J	0.240	2.00	1	10/14/2017 13:29	WG1027832	
Manganese	34.4		0.250	5.00	1	10/14/2017 13:29	WG1027832	
Nickel	7.86		0.350	2.00	1	10/14/2017 13:29	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 13:29	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 13:29	WG1027832	
Γhallium	U		0.190	2.00	1	10/14/2017 13:29	WG1027832	
Tin	U		0.300	2.00	1	10/14/2017 13:29	WG1027832	
/anadium	0.819	J	0.180	5.00	1	10/14/2017 13:29	WG1027832	
Zinc	273		2.56	25.0	1	10/14/2017 13:29	WG1027832	

ONE LAB. NATIONWIDE.

Collected date/time: 09/26/17 14:40

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

94.2

80.8

Volatile Organic Compounds (GC/MS) by Method 8260B

		. ,					
Amelia	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 05:14	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 05:14	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 05:14	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 05:14	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 05:14	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 05:14	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 05:14	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 05:14	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 05:14	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 05:14	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 05:14	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 05:14	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 05:14	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 05:14	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 05:14	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 05:14	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 05:14	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 05:14	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 05:14	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 05:14	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 05:14	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 05:14	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 05:14	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 05:14	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 05:14	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 05:14	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 05:14	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 05:14	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 05:14	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 05:14	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 05:14	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 05:14	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 05:14	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 05:14	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 05:14	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 05:14	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 05:14	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 05:14	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 05:14	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 05:14	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 05:14	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 05:14	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 05:14	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 05:14	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 05:14	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 05:14	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 05:14	WG1027353
(S) Toluene-d8	102			80.0-120		10/05/2017 05:14	WG1027353
(C) Dibramafluaramathana	042			70 0 122		10/05/2017 05:14	WC10272F2

10/05/2017 05:14

10/05/2017 05:14

WG1027353

WG1027353

76.0-123

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 07:45

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	352000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:22	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:36	WG1027507

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	6900		51.9	1000	1	10/07/2017 19:06	WG1028455
Sulfate	12300		77.4	5000	1	10/07/2017 19:06	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	3650		102	1000	1	10/06/2017 02:37	WG1028089

[°]Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 11:04	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/14/2017 13:33	WG1027832
Arsenic	1.43	J	0.250	2.00	1	10/14/2017 13:33	WG1027832
Barium	167		0.360	5.00	1	10/14/2017 13:33	WG1027832
Beryllium	U		0.120	2.00	1	10/14/2017 13:33	WG1027832
Cadmium	0.247	<u>J</u>	0.160	1.00	1	10/14/2017 13:33	WG1027832
Chromium	U		0.540	2.00	1	10/14/2017 13:33	WG1027832
Copper	U		0.520	5.00	1	10/14/2017 13:33	WG1027832
Cobalt	0.863	J	0.260	2.00	1	10/14/2017 13:33	WG1027832
ron	99.4	J	15.0	100	1	10/14/2017 13:33	WG1027832
_ead	U		0.240	2.00	1	10/14/2017 13:33	WG1027832
Manganese	56.2		0.250	5.00	1	10/14/2017 13:33	WG1027832
Nickel	1.87	J	0.350	2.00	1	10/14/2017 13:33	WG1027832
Selenium	U		0.380	2.00	1	10/14/2017 13:33	WG1027832
Silver	U		0.310	2.00	1	10/14/2017 13:33	WG1027832
[hallium	U		0.190	2.00	1	10/14/2017 13:33	WG1027832
-in	U		0.300	2.00	1	10/14/2017 13:33	WG1027832
anadium/	0.478	J	0.180	5.00	1	10/14/2017 13:33	WG1027832
linc	69.2		2.56	25.0	1	10/14/2017 13:33	WG1027832

Collected date/time: 09/27/17 07:45

Volatile Organic Compounds (GC/MS) by Method 8260B

IPLE	RESULTS - 18	ONE LAB. NAT
3260B		

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
cetone	U		10.0	50.0	1	10/05/2017 05:33	WG1027353	
crylonitrile	U		1.87	10.0	1	10/05/2017 05:33	WG1027353	
enzene	U		0.331	1.00	1	10/05/2017 05:33	WG1027353	
romochloromethane	U		0.520	1.00	1	10/05/2017 05:33	WG1027353	
romodichloromethane	U		0.380	1.00	1	10/05/2017 05:33	WG1027353	
romoform	U		0.469	1.00	1	10/05/2017 05:33	WG1027353	
romomethane	U		0.866	5.00	1	10/05/2017 05:33	WG1027353	
arbon disulfide	U		0.275	1.00	1	10/05/2017 05:33	WG1027353	
arbon tetrachloride	U		0.379	1.00	1	10/05/2017 05:33	WG1027353	
hlorobenzene	U		0.348	1.00	1	10/05/2017 05:33	WG1027353	
hlorodibromomethane	U		0.327	1.00	1	10/05/2017 05:33	WG1027353	
hloroethane	U		0.453	5.00	1	10/05/2017 05:33	WG1027353	
nloroform	U		0.324	5.00	1	10/05/2017 05:33	WG1027353	
nloromethane	U		0.276	2.50	1	10/05/2017 05:33	WG1027353	
bromomethane	U		0.346	1.00	1	10/05/2017 05:33	WG1027353	
2-Dibromoethane	U		0.381	1.00	1	10/05/2017 05:33	WG1027353	
2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 05:33	WG1027353	
2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 05:33	WG1027353	
I-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 05:33	WG1027353	
ans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 05:33	WG1027353	
l-Dichloroethane	U		0.259	1.00	1	10/05/2017 05:33	WG1027353	
2-Dichloroethane	U		0.255	1.00	1	10/05/2017 05:33	WG1027353	
-Dichloroethene	U		0.398	1.00	1	10/05/2017 05:33	WG1027353	
s-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 05:33	WG1027353 WG1027353	
ans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 05:33	WG1027353 WG1027353	
			0.306	1.00	1	10/05/2017 05:33	WG1027353 WG1027353	
2-Dichloropropane	U							
s-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 05:33	WG1027353	
ans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 05:33	WG1027353	
hylbenzene	U		0.384	1.00	1	10/05/2017 05:33	WG1027353	
Hexanone	U		3.82	10.0	1	10/05/2017 05:33	WG1027353	
domethane	U		1.71	10.0	1	10/05/2017 05:33	WG1027353	
Butanone (MEK)	U		3.93	15.0	1	10/05/2017 05:33	WG1027353	
ethylene Chloride	U		1.00	5.00	1	10/05/2017 05:33	WG1027353	
Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 05:33	WG1027353	
yrene	U		0.307	1.00	1	10/05/2017 05:33	WG1027353	
,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 05:33	WG1027353	
,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 05:33	WG1027353	
etrachloroethene	U		0.372	1.00	1	10/05/2017 05:33	WG1027353	
luene	U		0.412	1.00	1	10/05/2017 05:33	WG1027353	
,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 05:33	WG1027353	
,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 05:33	WG1027353	
ichloroethene	U		0.398	1.00	1	10/05/2017 05:33	WG1027353	
ichlorofluoromethane	U		1.20	5.00	1	10/05/2017 05:33	WG1027353	
2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 05:33	WG1027353	
nyl acetate	U		1.63	10.0	1	10/05/2017 05:33	WG1027353	
nyl chloride	U		0.259	1.00	1	10/05/2017 05:33	WG1027353	
lenes, Total	U		1.06	3.00	1	10/05/2017 05:33	WG1027353	
(S) Toluene-d8	105			80.0-120		10/05/2017 05:33	WG1027353	
(S) Dibromofluoromethane	92.2			76.0-123		10/05/2017 05:33	WG1027353	
(S) 4-Bromofluorobenzene	81.0			80.0-120		10/05/2017 05:33	WG1027353	

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 08:48

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	352000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U	<u>J4</u>	1.80	5.00	1	10/09/2017 13:23	WG1028433

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:37	WG1027507

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2820		51.9	1000	1	10/07/2017 19:21	WG1028455
Sulfate	13400		77.4	5000	1	10/07/2017 19:21	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	545	ВЈ	102	1000	1	10/06/2017 02:55	WG1028089

*Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/08/2017 11:07	WG1027771

•	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 13:36	WG1027832	
Arsenic	1.92	<u>J</u>	0.250	2.00	1	10/14/2017 13:36	WG1027832	
Barium	31.6		0.360	5.00	1	10/14/2017 13:36	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 13:36	WG1027832	
Cadmium	0.448	J	0.160	1.00	1	10/14/2017 13:36	WG1027832	
Chromium	0.911	<u>J</u>	0.540	2.00	1	10/14/2017 13:36	WG1027832	
Copper	1.30	J	0.520	5.00	1	10/14/2017 13:36	WG1027832	
Cobalt	0.425	J	0.260	2.00	1	10/14/2017 13:36	WG1027832	
Iron	309		15.0	100	1	10/14/2017 13:36	WG1027832	
Lead	0.751	J	0.240	2.00	1	10/14/2017 13:36	WG1027832	
Manganese	20.1		0.250	5.00	1	10/14/2017 13:36	WG1027832	
Nickel	2.93		0.350	2.00	1	10/14/2017 13:36	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 13:36	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 13:36	WG1027832	
Thallium	U		0.190	2.00	1	10/14/2017 13:36	WG1027832	
Tin	0.401	<u>J</u>	0.300	2.00	1	10/14/2017 13:36	WG1027832	
Vanadium	0.451	<u>J</u>	0.180	5.00	1	10/14/2017 13:36	WG1027832	
Zinc	183		2.56	25.0	1	10/14/2017 13:36	WG1027832	

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

102

93.4

81.5

SAMPLE RESULTS - 19

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 08:48

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Co	-	s (GC/MS) b	-				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 05:53	WG1027353
Acrylonitrile	U		1.87	10.0	1	10/05/2017 05:53	WG1027353
Benzene	U		0.331	1.00	1	10/05/2017 05:53	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 05:53	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 05:53	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 05:53	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 05:53	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 05:53	WG1027353
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 05:53	WG1027353
Chlorobenzene	U		0.348	1.00	1	10/05/2017 05:53	WG1027353
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 05:53	WG1027353
Chloroethane	U		0.453	5.00	1	10/05/2017 05:53	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 05:53	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 05:53	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 05:53	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 05:53	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 05:53	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 05:53	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 05:53	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 05:53	WG1027353
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 05:53	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 05:53	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 05:53	WG1027353
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 05:53	WG1027353
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 05:53	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 05:53	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 05:53	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 05:53	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 05:53	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 05:53	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 05:53	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 05:53	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 05:53	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 05:53	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 05:53	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 05:53	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 05:53	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 05:53	WG1027353
Toluene	U		0.412	1.00	1	10/05/2017 05:53	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 05:53	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 05:53	WG1027353
Trichloroethene	U		0.398	1.00	1	10/05/2017 05:53	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 05:53	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 05:53	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 05:53	WG1027353
Vinyl chloride	U		0.259	1.00	1	10/05/2017 05:53	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 05:53	WG1027353
• •							

10/05/2017 05:53

10/05/2017 05:53

10/05/2017 05:53

WG1027353

WG1027353

WG1027353

80.0-120

76.0-123

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 15:35

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	894000		2820	10000	1	10/04/2017 09:48	WG1026918

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/10/2017 13:45	WG1028861

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/03/2017 21:58	WG1026981

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	118000		260	5000	5	10/07/2017 19:51	WG1028455
Sulfate	21800		77.4	5000	1	10/07/2017 19:36	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
TOC (Total Organic Carbon)	9340		102	1000	1	10/06/2017 03:15	WG1028089	

°Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.168	J	0.0490	0.200	1	10/08/2017 11:09	WG1027771

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/14/2017 12:05	WG1027832	
Arsenic	75.0		0.250	2.00	1	10/14/2017 12:05	WG1027832	
Barium	169		0.360	5.00	1	10/14/2017 12:05	WG1027832	
Beryllium	U		0.120	2.00	1	10/14/2017 12:05	WG1027832	
Cadmium	U		0.160	1.00	1	10/14/2017 12:05	WG1027832	
Chromium	U		0.540	2.00	1	10/14/2017 12:05	WG1027832	
Copper	2.95	J	0.520	5.00	1	10/14/2017 12:05	WG1027832	
Cobalt	65.6		0.260	2.00	1	10/14/2017 12:05	WG1027832	
ron	28000		15.0	100	1	10/14/2017 12:05	WG1027832	
_ead	0.974	J	0.240	2.00	1	10/14/2017 12:05	WG1027832	
Manganese	279		0.250	5.00	1	10/14/2017 12:05	WG1027832	
Nickel	82.0		0.350	2.00	1	10/14/2017 12:05	WG1027832	
Selenium	U		0.380	2.00	1	10/14/2017 12:05	WG1027832	
Silver	U		0.310	2.00	1	10/14/2017 12:05	WG1027832	
[hallium	1.83	J	0.190	2.00	1	10/14/2017 12:05	WG1027832	
Tin	0.482	J	0.300	2.00	1	10/14/2017 12:05	WG1027832	
/anadium	0.351	J	0.180	5.00	1	10/14/2017 12:05	WG1027832	
Zinc .	1370	O1 V	2.56	25.0	1	10/14/2017 12:05	WG1027832	
		_						

ONE LAB. NATIONWIDE.

Collected date/time: 09/27/17 15:35

(S) 4-Bromofluorobenzene

84.0

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

	Decult	Oveliti	MDI	DDI	Dilostino	Analysis	Detel
Analyta	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l	1	date / time	WC40273F2
Acetone	25.6	<u>J</u>	10.0	50.0	1	10/05/2017 06:12	WG1027353
Acrylonitrile	U 0.047		1.87	10.0	1	10/05/2017 06:12	WG1027353
Benzene	0.847	<u>J</u>	0.331	1.00	1	10/05/2017 06:12	WG1027353
Bromochloromethane	U		0.520	1.00	1	10/05/2017 06:12	WG1027353
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 06:12	WG1027353
Bromoform	U		0.469	1.00	1	10/05/2017 06:12	WG1027353
Bromomethane	U		0.866	5.00	1	10/05/2017 06:12	WG1027353
Carbon disulfide	U		0.275	1.00	1	10/05/2017 06:12	WG1027353
Carbon tetrachloride	U 174		0.379	1.00	1	10/05/2017 06:12	WG1027353
Chlorobenzene	1.74		0.348	1.00	1	10/05/2017 06:12	WG1027353
Chlorodibromomethane	U 170	1	0.327	1.00	1	10/05/2017 06:12	WG1027353
Chloroethane	1.79	<u>J</u>	0.453	5.00	1	10/05/2017 06:12	WG1027353
Chloroform	U		0.324	5.00	1	10/05/2017 06:12	WG1027353
Chloromethane	U		0.276	2.50	1	10/05/2017 06:12	WG1027353
Dibromomethane	U		0.346	1.00	1	10/05/2017 06:12	WG1027353
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 06:12	WG1027353
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 06:12	WG1027353
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 06:12	WG1027353
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 06:12	WG1027353
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 06:12	WG1027353
1,1-Dichloroethane	13.8		0.259	1.00	1	10/05/2017 06:12	WG1027353
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 06:12	WG1027353
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 06:12	WG1027353
cis-1,2-Dichloroethene	9.76		0.260	1.00	1	10/05/2017 06:12	WG1027353
trans-1,2-Dichloroethene	0.540	<u>J</u>	0.396	1.00	1	10/05/2017 06:12	WG1027353
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 06:12	WG1027353
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 06:12	WG1027353
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 06:12	WG1027353
Ethylbenzene	U		0.384	1.00	1	10/05/2017 06:12	WG1027353
2-Hexanone	U		3.82	10.0	1	10/05/2017 06:12	WG1027353
lodomethane	U		1.71	10.0	1	10/05/2017 06:12	WG1027353
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 06:12	WG1027353
Methylene Chloride	U		1.00	5.00	1	10/05/2017 06:12	WG1027353
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 06:12	WG1027353
Styrene	U		0.307	1.00	1	10/05/2017 06:12	WG1027353
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 06:12	WG1027353
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 06:12	WG1027353
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 06:12	WG1027353
Toluene	0.440	<u>J</u>	0.412	1.00	1	10/05/2017 06:12	WG1027353
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 06:12	WG1027353
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 06:12	WG1027353
Trichloroethene	1.08		0.398	1.00	1	10/05/2017 06:12	WG1027353
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 06:12	WG1027353
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 06:12	WG1027353
Vinyl acetate	U		1.63	10.0	1	10/05/2017 06:12	WG1027353
Vinyl chloride	3.96		0.259	1.00	1	10/05/2017 06:12	WG1027353
Xylenes, Total	U		1.06	3.00	1	10/05/2017 06:12	WG1027353
(S) Toluene-d8	105			80.0-120		10/05/2017 06:12	WG1027353
(S) Dibromofluoromethane	96.1			76.0-123		10/05/2017 06:12	WG1027353

10/05/2017 06:12

WG1027353

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 12:00

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	228000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/10/2017 13:46	WG1028861

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:37	WG1027507

Ğl

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	12100		51.9	1000	1	10/07/2017 20:05	WG1028455
Sulfate	3300	<u>J</u>	77.4	5000	1	10/07/2017 20:05	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
TOC (Total Organic Carbon)	3550		102	1000	1	10/06/2017 11:16	WG1028518	

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/05/2017 19:37	WG1027770

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/07/2017 19:39	WG1028492
Arsenic	5.33		0.250	2.00	1	10/07/2017 19:39	WG1028492
Barium	65.4		0.360	5.00	1	10/07/2017 19:39	WG1028492
Beryllium	U		0.120	2.00	1	10/10/2017 20:36	WG1028492
Cadmium	U		0.160	1.00	1	10/07/2017 19:39	WG1028492
Chromium	0.834	J	0.540	2.00	1	10/07/2017 19:39	WG1028492
Copper	0.657	<u>J</u>	0.520	5.00	1	10/07/2017 19:39	WG1028492
Cobalt	2.65		0.260	2.00	1	10/07/2017 19:39	WG1028492
Iron	1680		15.0	100	1	10/07/2017 19:39	WG1028492
Lead	0.496	J	0.240	2.00	1	10/07/2017 19:39	WG1028492
Manganese	1220		0.250	5.00	1	10/07/2017 19:39	WG1028492
Nickel	2.87		0.350	2.00	1	10/07/2017 19:39	WG1028492
Selenium	U		0.380	2.00	1	10/07/2017 19:39	WG1028492
Silver	U		0.310	2.00	1	10/07/2017 19:39	WG1028492
Thallium	U		0.190	2.00	1	10/07/2017 19:39	WG1028492
Γin	0.783	<u>J</u>	0.300	2.00	1	10/07/2017 19:39	WG1028492
Vanadium	0.191	J	0.180	5.00	1	10/07/2017 19:39	WG1028492
Zinc	U		2.56	25.0	1	10/07/2017 19:39	WG1028492

DATE/TIME:

10/16/17 10:47

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 12:00

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

94.2

80.7

Volatile Organic Compounds (GC/MS) by Method 8260B

	D- 11	0 115	MDI		N.	Dit ii	A. a. b. a.:	Detal
Amelida	Result	Qualifier	MDL	RI		Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug			date / time	
Acetone	U		10.0		0.0	1	10/05/2017 16:28	WG1027352
Acrylonitrile	U		1.87	10		1	10/05/2017 16:28	WG1027352
Benzene	U		0.331	1.0		1	10/05/2017 16:28	WG1027352
Bromochloromethane	U		0.520	1.0		1	10/05/2017 16:28	WG1027352
Bromodichloromethane	U		0.380	1.0		1	10/05/2017 16:28	WG1027352
Bromoform	U		0.469	1.0		1	10/05/2017 16:28	WG1027352
Bromomethane	U		0.866		00	1	10/05/2017 16:28	WG1027352
Carbon disulfide	U		0.275	1.0	00	1	10/05/2017 16:28	WG1027352
Carbon tetrachloride	U		0.379	1.0		1	10/05/2017 16:28	WG1027352
Chlorobenzene	U		0.348	1.0	00	1	10/05/2017 16:28	WG1027352
Chlorodibromomethane	U		0.327	1.0	00	1	10/05/2017 16:28	WG1027352
Chloroethane	U		0.453	5.	00	1	10/05/2017 16:28	WG1027352
Chloroform	U		0.324	5.	00	1	10/05/2017 16:28	WG1027352
Chloromethane	U		0.276	2.	50	1	10/05/2017 16:28	WG1027352
Dibromomethane	U		0.346	1.0	00	1	10/05/2017 16:28	WG1027352
1,2-Dibromoethane	U		0.381	1.0	00	1	10/05/2017 16:28	WG1027352
1,2-Dibromo-3-Chloropropane	U		1.33	5.	00	1	10/05/2017 16:28	WG1027352
1,2-Dichlorobenzene	U		0.349	1.0	00	1	10/05/2017 16:28	WG1027352
1,4-Dichlorobenzene	U		0.274	1.0	00	1	10/05/2017 16:28	WG1027352
trans-1,4-Dichloro-2-butene	U		0.866	2.	50	1	10/05/2017 16:28	WG1027352
1,1-Dichloroethane	U		0.259	1.0	00	1	10/05/2017 16:28	WG1027352
1,2-Dichloroethane	U		0.361	1.0	00	1	10/05/2017 16:28	WG1027352
1,1-Dichloroethene	U		0.398	1.0	00	1	10/05/2017 16:28	WG1027352
cis-1,2-Dichloroethene	U		0.260	1.0	00	1	10/05/2017 16:28	WG1027352
trans-1,2-Dichloroethene	U		0.396	1.0	00	1	10/05/2017 16:28	WG1027352
1,2-Dichloropropane	U		0.306	1.0	00	1	10/05/2017 16:28	WG1027352
cis-1,3-Dichloropropene	U		0.418	1.0	00	1	10/05/2017 16:28	WG1027352
trans-1,3-Dichloropropene	U		0.419	1.0	00	1	10/05/2017 16:28	WG1027352
Ethylbenzene	U		0.384	1.0	00	1	10/05/2017 16:28	WG1027352
2-Hexanone	U		3.82	10	.0	1	10/05/2017 16:28	WG1027352
lodomethane	U		1.71	10	.0	1	10/05/2017 16:28	WG1027352
2-Butanone (MEK)	U		3.93	15	.0	1	10/05/2017 16:28	WG1027352
Methylene Chloride	U		1.00	5.	00	1	10/05/2017 16:28	WG1027352
4-Methyl-2-pentanone (MIBK)	U		2.14	10	.0	1	10/05/2017 16:28	WG1027352
Styrene	U		0.307	1.0	00	1	10/05/2017 16:28	WG1027352
1,1,1,2-Tetrachloroethane	U		0.385	1.0	00	1	10/05/2017 16:28	WG1027352
1,1,2,2-Tetrachloroethane	U		0.130	1.0	00	1	10/05/2017 16:28	WG1027352
Tetrachloroethene	U		0.372	1.0	00	1	10/05/2017 16:28	WG1027352
Toluene	U		0.412	1.0	00	1	10/05/2017 16:28	WG1027352
1,1,1-Trichloroethane	U		0.319	1.0	00	1	10/05/2017 16:28	WG1027352
1,1,2-Trichloroethane	U		0.383	1.0	00	1	10/05/2017 16:28	WG1027352
Trichloroethene	U		0.398	1.0	00	1	10/05/2017 16:28	WG1027352
Trichlorofluoromethane	U		1.20	5.	00	1	10/05/2017 16:28	WG1027352
1,2,3-Trichloropropane	U		0.807		50	1	10/05/2017 16:28	WG1027352
Vinyl acetate	U		1.63	10		1	10/05/2017 16:28	WG1027352
Vinyl chloride	U		0.259	1.0	00	1	10/05/2017 16:28	WG1027352
Xylenes, Total	U		1.06		00	1	10/05/2017 16:28	WG1027352
(S) Toluene-d8	102			80	0.0-120		10/05/2017 16:28	WG1027352

Ss

10/05/2017 16:28

10/05/2017 16:28

WG1027352

WG1027352

76.0-123

Collected date/time: 09/29/17 09:00

SAMPLE RESULTS - 22

ONE LAB. NATIONWIDE.

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	334000		2820	10000	1	10/05/2017 16:30	WG1027700

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/10/2017 13:47	WG1028861

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:38	WG1027507

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	13900		51.9	1000	1	10/07/2017 20:20	WG1028455
Sulfate	3590	<u>J</u>	77.4	5000	1	10/07/2017 20:20	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	3720		102	1000	1	10/06/2017 11:38	WG1028518

⁸Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/05/2017 19:39	WG1027770

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/07/2017 19:49	WG1028492
Arsenic	14.1		0.250	2.00	1	10/07/2017 19:49	WG1028492
Barium	152		0.360	5.00	1	10/07/2017 19:49	WG1028492
Beryllium	0.141	<u>J</u>	0.120	2.00	1	10/10/2017 20:40	WG1028492
Cadmium	U		0.160	1.00	1	10/07/2017 19:49	WG1028492
Chromium	2.35		0.540	2.00	1	10/07/2017 19:49	WG1028492
Copper	2.30	<u>J</u>	0.520	5.00	1	10/07/2017 19:49	WG1028492
Cobalt	13.1		0.260	2.00	1	10/07/2017 19:49	WG1028492
Iron	12700		15.0	100	1	10/07/2017 19:49	WG1028492
Lead	6.72		0.240	2.00	1	10/07/2017 19:49	WG1028492
Manganese	5290		0.250	5.00	1	10/07/2017 19:49	WG1028492
Nickel	6.89		0.350	2.00	1	10/07/2017 19:49	WG1028492
Selenium	U		0.380	2.00	1	10/07/2017 19:49	WG1028492
Silver	U		0.310	2.00	1	10/07/2017 19:49	WG1028492
Thallium	U		0.190	2.00	1	10/07/2017 19:49	WG1028492
Tin	0.567	<u>J</u>	0.300	2.00	1	10/07/2017 19:49	WG1028492
Vanadium	3.80	<u>J</u>	0.180	5.00	1	10/07/2017 19:49	WG1028492
Zinc	49.3		2.56	25.0	1	10/07/2017 19:49	WG1028492

Collected date/time: 09/29/17 09:00

(S) 4-Bromofluorobenzene 82.3

SAMPLE RESULTS - 22

ONE LAB. NATIONWIDE.

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	qualifici	ug/l	ug/l	Dilation	date / time	20001
Acetone	U		10.0	50.0	1	10/05/2017 16:48	WG1027352
Acrylonitrile	U		1.87	10.0	1	10/05/2017 16:48	WG1027352
Benzene	U		0.331	1.00	1	10/05/2017 16:48	WG1027352
Bromochloromethane	U		0.520	1.00	1	10/05/2017 16:48	WG1027352
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 16:48	WG1027352
Bromoform	U		0.469	1.00	1	10/05/2017 16:48	WG1027352
Bromomethane	U		0.866	5.00	1	10/05/2017 16:48	WG1027352
Carbon disulfide	U		0.275	1.00	1	10/05/2017 16:48	WG1027352
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 16:48	WG1027352
Chlorobenzene	U		0.348	1.00	1	10/05/2017 16:48	WG1027352
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 16:48	WG1027352
Chloroethane	2.13	J	0.453	5.00	1	10/05/2017 16:48	WG1027352
Chloroform	U	_	0.324	5.00	1	10/05/2017 16:48	WG1027352
Chloromethane	U		0.276	2.50	1	10/05/2017 16:48	WG1027352
Dibromomethane	U		0.346	1.00	1	10/05/2017 16:48	WG1027352
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 16:48	WG1027352
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 16:48	WG1027352
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 16:48	WG1027352
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 16:48	WG1027352
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 16:48	WG1027352
1,1-Dichloroethane	0.567	<u>J</u>	0.259	1.00	1	10/05/2017 16:48	WG1027352
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 16:48	WG1027352
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 16:48	WG1027352
cis-1,2-Dichloroethene	0.376	<u>J</u>	0.260	1.00	1	10/05/2017 16:48	WG1027352
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 16:48	WG1027352
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 16:48	WG1027352
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 16:48	WG1027352
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 16:48	WG1027352
Ethylbenzene	U		0.384	1.00	1	10/05/2017 16:48	WG1027352
2-Hexanone	U		3.82	10.0	1	10/05/2017 16:48	WG1027352
lodomethane	U		1.71	10.0	1	10/05/2017 16:48	WG1027352
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 16:48	WG1027352
Methylene Chloride	U		1.00	5.00	1	10/05/2017 16:48	WG1027352
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 16:48	WG1027352
Styrene	U		0.307	1.00	1	10/05/2017 16:48	WG1027352
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 16:48	WG1027352
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 16:48	WG1027352
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 16:48	WG1027352
Toluene	U		0.412	1.00	1	10/05/2017 16:48	WG1027352
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 16:48	WG1027352
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 16:48	WG1027352
Trichloroethene	U		0.398	1.00	1	10/05/2017 16:48	WG1027352
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 16:48	WG1027352
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 16:48	WG1027352
Vinyl acetate	U		1.63	10.0	1	10/05/2017 16:48	WG1027352
Vinyl chloride	U		0.259	1.00	1	10/05/2017 16:48	WG1027352
Xylenes, Total	U		1.06	3.00	1	10/05/2017 16:48	WG1027352
(S) Toluene-d8	103			80.0-120		10/05/2017 16:48	WG1027352
(S) Dibromofluoromethane	94.6			76.0-123		10/05/2017 16:48	WG1027352

10/05/2017 16:48

WG1027352

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 13:50

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	285000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	4.17	<u>J</u>	1.80	5.00	1	10/10/2017 13:48	WG1028861

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:38	WG1027507

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	48700		51.9	1000	1	10/07/2017 20:35	WG1028455
Sulfate	13200		77.4	5000	1	10/07/2017 20:35	WG1028455

Ğl

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	5510		102	1000	1	10/06/2017 11:50	WG1028518

⁸Sc

PAGE:

55 of 73

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/05/2017 19:42	WG1027770

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/07/2017 19:53	WG1028492
Arsenic	1.48	<u>J</u>	0.250	2.00	1	10/07/2017 19:53	WG1028492
Barium	68.9		0.360	5.00	1	10/07/2017 19:53	WG1028492
Beryllium	U		0.120	2.00	1	10/10/2017 20:43	WG1028492
Cadmium	U		0.160	1.00	1	10/07/2017 19:53	WG1028492
Chromium	0.829	<u>J</u>	0.540	2.00	1	10/07/2017 19:53	WG1028492
Copper	2.08	<u>J</u>	0.520	5.00	1	10/07/2017 19:53	WG1028492
Cobalt	0.550	<u>J</u>	0.260	2.00	1	10/07/2017 19:53	WG1028492
Iron	285		15.0	100	1	10/07/2017 19:53	WG1028492
Lead	0.805	<u>J</u>	0.240	2.00	1	10/07/2017 19:53	WG1028492
Manganese	69.3		0.250	5.00	1	10/07/2017 19:53	WG1028492
Nickel	4.75		0.350	2.00	1	10/07/2017 19:53	WG1028492
Selenium	0.391	<u>J</u>	0.380	2.00	1	10/07/2017 19:53	WG1028492
Silver	U		0.310	2.00	1	10/07/2017 19:53	WG1028492
Thallium	U		0.190	2.00	1	10/07/2017 19:53	WG1028492
Tin	0.684	<u>J</u>	0.300	2.00	1	10/07/2017 19:53	WG1028492
/anadium	0.760	J	0.180	5.00	1	10/07/2017 19:53	WG1028492
Zinc	6.22	<u>J</u>	2.56	25.0	1	10/07/2017 19:53	WG1028492

(S) 4-Bromofluorobenzene

83.5

SAMPLE RESULTS - 23

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 13:50

L940345 Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	<u>quao.</u>	ug/l	ug/l	2	date / time	246
Acetone	U		10.0	50.0	1	10/05/2017 17:07	WG1027352
Acrylonitrile	U		1.87	10.0	1	10/05/2017 17:07	WG1027352
Benzene	U		0.331	1.00	1	10/05/2017 17:07	WG1027352
Bromochloromethane	U		0.520	1.00	1	10/05/2017 17:07	WG1027352
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 17:07	WG1027352
Bromoform	U		0.469	1.00	1	10/05/2017 17:07	WG1027352
Bromomethane	U		0.866	5.00	1	10/05/2017 17:07	WG1027352
Carbon disulfide	U		0.275	1.00	1	10/05/2017 17:07	WG1027352
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 17:07	WG1027352
Chlorobenzene	U		0.348	1.00	1	10/05/2017 17:07	WG1027352
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 17:07	WG1027352
Chloroethane	U		0.453	5.00	1	10/05/2017 17:07	WG1027352
Chloroform	U		0.324	5.00	1	10/05/2017 17:07	WG1027352
Chloromethane	U		0.276	2.50	1	10/05/2017 17:07	WG1027352
Dibromomethane	U		0.346	1.00	1	10/05/2017 17:07	WG1027352
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 17:07	WG1027352
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 17:07	WG1027352
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 17:07	WG1027352
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 17:07	WG1027352
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 17:07	WG1027352
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 17:07	WG1027352
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 17:07	WG1027352
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 17:07	WG1027352
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 17:07	WG1027352
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 17:07	WG1027352
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 17:07	WG1027352
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 17:07	WG1027352
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 17:07	WG1027352
Ethylbenzene	U		0.384	1.00	1	10/05/2017 17:07	WG1027352
2-Hexanone	U		3.82	10.0	1	10/05/2017 17:07	WG1027352
lodomethane	U		1.71	10.0	1	10/05/2017 17:07	WG1027352
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 17:07	WG1027352
Methylene Chloride	U		1.00	5.00	1	10/05/2017 17:07	WG1027352
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 17:07	WG1027352
Styrene	U		0.307	1.00	1	10/05/2017 17:07	WG1027352
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 17:07	WG1027352
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 17:07	WG1027352
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 17:07	WG1027352
Toluene	U		0.412	1.00	1	10/05/2017 17:07	WG1027352
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 17:07	WG1027352
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 17:07	WG1027352
Trichloroethene	U		0.398	1.00	1	10/05/2017 17:07	WG1027352
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 17:07	WG1027352
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 17:07	WG1027352
Vinyl acetate	U		1.63	10.0	1	10/05/2017 17:07	WG1027352
Vinyl chloride	U		0.259	1.00	1	10/05/2017 17:07	WG1027352
Xylenes, Total	U		1.06	3.00	1	10/05/2017 17:07	WG1027352
(S) Toluene-d8	103			80.0-120		10/05/2017 17:07	WG1027352
(S) Dibromofluoromethane	94.0			76.0-123		10/05/2017 17:07	WG1027352
(C) 4 D (I)	00 5			00 0 400		40/05/2047 47 07	WC40272E2

Ss

Cn

Ğl

Sc

10/05/2017 17:07

WG1027352

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 11:20

L940345

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	457000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/10/2017 13:49	WG1028861

Cn

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:39	WG1027507

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	26000		51.9	1000	1	10/07/2017 21:20	WG1028455
Sulfate	8120		77.4	5000	1	10/07/2017 21:20	WG1028455

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	2630		102	1000	1	10/06/2017 12:03	WG1028518

. ____

Sc

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.0966	J	0.0490	0.200	1	10/05/2017 19:44	WG1027770

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/07/2017 19:56	WG1028492
Arsenic	0.380	J	0.250	2.00	1	10/07/2017 19:56	WG1028492
Barium	48.0		0.360	5.00	1	10/07/2017 19:56	WG1028492
Beryllium	U		0.120	2.00	1	10/10/2017 20:54	WG1028492
Cadmium	0.476	J	0.160	1.00	1	10/07/2017 19:56	WG1028492
Chromium	1.03	J	0.540	2.00	1	10/07/2017 19:56	WG1028492
Copper	1.19	J	0.520	5.00	1	10/07/2017 19:56	WG1028492
Cobalt	U		0.260	2.00	1	10/07/2017 19:56	WG1028492
Iron	29.4	<u>J</u>	15.0	100	1	10/07/2017 19:56	WG1028492
Lead	U		0.240	2.00	1	10/07/2017 19:56	WG1028492
Manganese	1.47	J	0.250	5.00	1	10/07/2017 19:56	WG1028492
Nickel	0.612	J	0.350	2.00	1	10/07/2017 19:56	WG1028492
Selenium	U		0.380	2.00	1	10/07/2017 19:56	WG1028492
Silver	U		0.310	2.00	1	10/07/2017 19:56	WG1028492
Thallium	U		0.190	2.00	1	10/07/2017 19:56	WG1028492
Tin	0.491	<u>J</u>	0.300	2.00	1	10/07/2017 19:56	WG1028492
Vanadium	0.227	J	0.180	5.00	1	10/07/2017 19:56	WG1028492
Zinc	44.9		2.56	25.0	1	10/07/2017 19:56	WG1028492

Dilution

Analysis

RDI

Collected date/time: 09/28/17 11:20

Volatile Organic Compounds (GC/MS) by Method 8260B

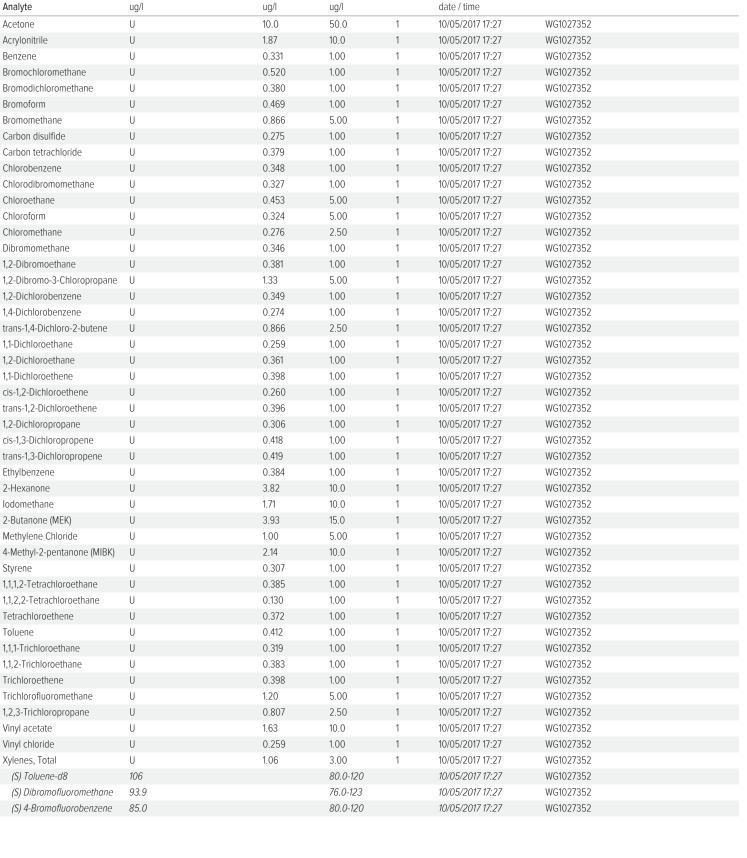
Qualifier

MDL

Result

AMPLE RESULTS - 24	ONE LAB. NATIONWIDE.
L940345	

Batch



ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 11:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	U		2820	10000	1	10/04/2017 14:55	WG1027616

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/10/2017 13:50	WG1028861

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfide	U		6.50	50.0	1	10/04/2017 21:39	WG1027507

GI.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	756	<u>J P1</u>	51.9	1000	1	10/07/2017 00:13	WG1028456
Sulfate	U		77.4	5000	1	10/07/2017 00:13	WG1028456

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	415	J	102	1000	1	10/06/2017 12:14	WG1028518

Sc

PAGE:

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/05/2017 19:46	WG1027770

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Antimony	U		0.754	2.00	1	10/07/2017 20:00	WG1028492	
Arsenic	U		0.250	2.00	1	10/07/2017 20:00	WG1028492	
Barium	U		0.360	5.00	1	10/07/2017 20:00	WG1028492	
Beryllium	U		0.120	2.00	1	10/10/2017 20:58	WG1028492	
Cadmium	U		0.160	1.00	1	10/07/2017 20:00	WG1028492	
Chromium	0.959	<u>J</u>	0.540	2.00	1	10/07/2017 20:00	WG1028492	
Copper	U		0.520	5.00	1	10/07/2017 20:00	WG1028492	
Cobalt	U		0.260	2.00	1	10/07/2017 20:00	WG1028492	
Iron	U		15.0	100	1	10/07/2017 20:00	WG1028492	
Lead	U		0.240	2.00	1	10/07/2017 20:00	WG1028492	
Manganese	0.293	<u>J</u>	0.250	5.00	1	10/07/2017 20:00	WG1028492	
Nickel	U		0.350	2.00	1	10/07/2017 20:00	WG1028492	
Selenium	U		0.380	2.00	1	10/07/2017 20:00	WG1028492	
Silver	U		0.310	2.00	1	10/07/2017 20:00	WG1028492	
Thallium	U		0.190	2.00	1	10/07/2017 20:00	WG1028492	
Tin	0.412	<u>J</u>	0.300	2.00	1	10/07/2017 20:00	WG1028492	
Vanadium	U		0.180	5.00	1	10/07/2017 20:00	WG1028492	
Zinc	U		2.56	25.0	1	10/07/2017 20:00	WG1028492	

(S) 4-Bromofluorobenzene

91.0

Collected date/time: 09/28/17 11:25

SAMPLE RESULTS - 25

ONE LAB. NATIONWIDE.

L940

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	32.2	<u>J</u>	10.0	50.0	1	10/09/2017 21:16	WG1028396
Acrylonitrile	U		1.87	10.0	1	10/09/2017 21:16	WG1028396
Benzene	U		0.331	1.00	1	10/09/2017 21:16	WG1028396
Bromochloromethane	U		0.520	1.00	1	10/09/2017 21:16	WG1028396
Bromodichloromethane	U		0.380	1.00	1	10/09/2017 21:16	WG1028396
Bromoform	U		0.469	1.00	1	10/09/2017 21:16	WG1028396
Bromomethane	U		0.866	5.00	1	10/09/2017 21:16	WG1028396
Carbon disulfide	U		0.275	1.00	1	10/09/2017 21:16	WG1028396
Carbon tetrachloride	U		0.379	1.00	1	10/09/2017 21:16	WG1028396
Chlorobenzene	U		0.348	1.00	1	10/09/2017 21:16	WG1028396
Chlorodibromomethane	U		0.327	1.00	1	10/09/2017 21:16	WG1028396
Chloroethane	U		0.453	5.00	1	10/09/2017 21:16	WG1028396
Chloroform	U		0.324	5.00	1	10/09/2017 21:16	WG1028396
Chloromethane	U		0.276	2.50	1	10/09/2017 21:16	WG1028396
Dibromomethane	U		0.346	1.00	1	10/09/2017 21:16	WG1028396
1,2-Dibromoethane	U		0.381	1.00	1	10/09/2017 21:16	WG1028396
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/09/2017 21:16	WG1028396
1,2-Dichlorobenzene	U		0.349	1.00	1	10/09/2017 21:16	WG1028396
1,4-Dichlorobenzene	U		0.274	1.00	1	10/09/2017 21:16	WG1028396
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/09/2017 21:16	WG1028396
1,1-Dichloroethane	U		0.259	1.00	1	10/09/2017 21:16	WG1028396
1,2-Dichloroethane	U		0.361	1.00	1	10/09/2017 21:16	WG1028396
1,1-Dichloroethene	U		0.398	1.00	1	10/09/2017 21:16	WG1028396
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/09/2017 21:16	WG1028396
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/09/2017 21:16	WG1028396
1,2-Dichloropropane	U		0.306	1.00	1	10/09/2017 21:16	WG1028396
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/09/2017 21:16	WG1028396
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/09/2017 21:16	WG1028396
Ethylbenzene	U		0.384	1.00	1	10/09/2017 21:16	WG1028396
2-Hexanone	U		3.82	10.0	1	10/09/2017 21:16	WG1028396
lodomethane	U		1.71	10.0	1	10/09/2017 21:16	WG1028396
2-Butanone (MEK)	U		3.93	15.0	1	10/09/2017 21:16	WG1028396
Methylene Chloride	U		1.00	5.00	1	10/09/2017 21:16	WG1028396
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/09/2017 21:16	WG1028396
Styrene	U		0.307	1.00	1	10/09/2017 21:16	WG1028396
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/09/2017 21:16	WG1028396
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/09/2017 21:16	WG1028396
Tetrachloroethene	U		0.372	1.00	1	10/09/2017 21:16	WG1028396
Toluene	U		0.412	1.00	1	10/09/2017 21:16	WG1028396
1,1,1-Trichloroethane	U		0.319	1.00	1	10/09/2017 21:16	WG1028396
1,1,2-Trichloroethane	U		0.383	1.00	1	10/09/2017 21:16	WG1028396
Trichloroethene	U		0.398	1.00	1	10/09/2017 21:16	WG1028396
Trichlorofluoromethane	U		1.20	5.00	1	10/09/2017 21:16	WG1028396
1,2,3-Trichloropropane	U		0.807	2.50	1	10/09/2017 21:16	WG1028396
Vinyl acetate	U		1.63	10.0	1	10/09/2017 21:16	WG1028396
Vinyl chloride	U		0.259	1.00	1	10/09/2017 21:16	WG1028396
Xylenes, Total	U		1.06	3.00	1	10/09/2017 21:16	WG1028396
(S) Toluene-d8	104			80.0-120		10/09/2017 21:16	WG1028396
(S) Dibromofluoromethane	84.7			76.0-123		10/09/2017 21:16	WG1028396
1-, 5.5.55	J			. 5.0 120		,,,	2.02000

10/09/2017 21:16

WG1028396

80.0-120

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 16:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Dissolved Solids	1690000		2820	10000	1	10/04/2017 14:55	WG1027616

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Oil & Grease (Hexane Extr)	U		1160	5880	1	10/02/2017 17:03	WG1026754

Ss

Wet Chemistry by Method 350.1

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ammonia Nitrogen	72200		634	2000	20	10/06/2017 20:24	WG1028425

Wet Chemistry by Method 365.4

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Phosphorus, Total	96.5	J	35.0	100	1	10/09/2017 16:18	WG1029423

Wet Chemistry by Method 4500CN E-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Cyanide	U		1.80	5.00	1	10/10/2017 13:51	WG1028861	

Sc

Wet Chemistry by Method 4500S2 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Sulfide	U		6.50	50.0	1	10/04/2017 21:39	WG1027507	

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	647000		519	10000	10	10/07/2017 01:04	WG1028456
Sulfate	9180		77.4	5000	1	10/07/2017 00:54	WG1028456

Wet Chemistry by Method 9060A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TOC (Total Organic Carbon)	61900		102	1000	1	10/06/2017 12:29	WG1028518

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			date / time	
Flashpoint	DNF at 170		1	10/08/2017 07:30	WG1028870

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/05/2017 19:48	WG1027770

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 16:00

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	10/07/2017 20:03	WG1028492
Arsenic	4.07		0.250	2.00	1	10/07/2017 20:03	WG1028492
Barium	2650		0.360	5.00	1	10/07/2017 20:03	WG1028492
Beryllium	U		0.120	2.00	1	10/10/2017 21:01	WG1028492
Cadmium	U		0.160	1.00	1	10/07/2017 20:03	WG1028492
Chromium	2.90		0.540	2.00	1	10/07/2017 20:03	WG1028492
Copper	4.24	<u>J</u>	0.520	5.00	1	10/07/2017 20:03	WG1028492
Cobalt	4.69		0.260	2.00	1	10/07/2017 20:03	WG1028492
Iron	2080		15.0	100	1	10/07/2017 20:03	WG1028492
Lead	U		0.240	2.00	1	10/07/2017 20:03	WG1028492
Manganese	1030		0.250	5.00	1	10/07/2017 20:03	WG1028492
Nickel	39.1		0.350	2.00	1	10/07/2017 20:03	WG1028492
Selenium	0.447	<u>J</u>	0.380	2.00	1	10/07/2017 20:03	WG1028492
Silver	U		0.310	2.00	1	10/07/2017 20:03	WG1028492
Thallium	U		0.190	2.00	1	10/07/2017 20:03	WG1028492
Tin	3.94		0.300	2.00	1	10/07/2017 20:03	WG1028492
Vanadium	0.651	<u>J</u>	0.180	5.00	1	10/07/2017 20:03	WG1028492
Zinc	65.6		2.56	25.0	1	10/07/2017 20:03	WG1028492

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	10/05/2017 17:46	WG1027352
Acrylonitrile	U		1.87	10.0	1	10/05/2017 17:46	WG1027352
Benzene	0.772	<u>J</u>	0.331	1.00	1	10/05/2017 17:46	WG1027352
Bromochloromethane	U		0.520	1.00	1	10/05/2017 17:46	WG1027352
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 17:46	WG1027352
Bromoform	U		0.469	1.00	1	10/05/2017 17:46	WG1027352
Bromomethane	U		0.866	5.00	1	10/05/2017 17:46	WG1027352
Carbon disulfide	0.430	<u>J</u>	0.275	1.00	1	10/05/2017 17:46	WG1027352
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 17:46	WG1027352
Chlorobenzene	U		0.348	1.00	1	10/05/2017 17:46	WG1027352
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 17:46	WG1027352
Chloroethane	U		0.453	5.00	1	10/05/2017 17:46	WG1027352
Chloroform	U		0.324	5.00	1	10/05/2017 17:46	WG1027352
Chloromethane	U		0.276	2.50	1	10/05/2017 17:46	WG1027352
Dibromomethane	U		0.346	1.00	1	10/05/2017 17:46	WG1027352
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 17:46	WG1027352
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 17:46	WG1027352
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 17:46	WG1027352
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 17:46	WG1027352
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 17:46	WG1027352
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 17:46	WG1027352
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 17:46	WG1027352
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 17:46	WG1027352
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 17:46	WG1027352
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 17:46	WG1027352
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 17:46	WG1027352
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 17:46	WG1027352
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 17:46	WG1027352
Ethylbenzene	U		0.384	1.00	1	10/05/2017 17:46	WG1027352
2-Hexanone	U		3.82	10.0	1	10/05/2017 17:46	WG1027352
lodomethane	U		1.71	10.0	1	10/05/2017 17:46	WG1027352
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 17:46	WG1027352
Methylene Chloride	U		1.00	5.00	1	10/05/2017 17:46	WG1027352
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 17:46	WG1027352

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 16:00

ACCOUNT:

SCS Engineers - Little Rock, AR

L940345

Volatile Organic Compounds (GC/MS) by Method 8260B

1,1,2-Tetrachloroethane U 0.385 1.00 1 10/05/2017 17:46 WG1027352 1,1,2,2-Tetrachloroethane U 0.130 1.00 1 10/05/2017 17:46 WG1027352 Tetrachloroethane U 0.372 1.00 1 10/05/2017 17:46 WG1027352 Toluene U 0.412 1.00 1 10/05/2017 17:46 WG1027352 1,1,1-Trichloroethane U 0.319 1.00 1 10/05/2017 17:46 WG1027352 1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethane U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
1,1,1,2-Tetrachloroethane U 0.385 1.00 1 10/05/2017 17:46 WG1027352 1,1,2,2-Tetrachloroethane U 0.130 1.00 1 10/05/2017 17:46 WG1027352 Tetrachloroethene U 0.372 1.00 1 10/05/2017 17:46 WG1027352 Toluene U 0.412 1.00 1 10/05/2017 17:46 WG1027352 1,1,1-Trichloroethane U 0.319 1.00 1 10/05/2017 17:46 WG1027352 1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethene U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 0.259 1.00 1 10/05/2017 17:46 WG1027352	Analyte	ug/l		ug/l	ug/l		date / time		
1,1,2,2-Tetrachloroethane U 0.130 1.00 1 10/05/2017 17:46 WG1027352 Tetrachloroethane U 0.372 1.00 1 10/05/2017 17:46 WG1027352 Toluene U 0.412 1.00 1 10/05/2017 17:46 WG1027352 1,1,1-Trichloroethane U 0.319 1.00 1 10/05/2017 17:46 WG1027352 1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethene U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane	Styrene	U		0.307	1.00	1	10/05/2017 17:46	WG1027352	
Tetrachloroethene U 0.372 1.00 1 10/05/2017 17:46 WG1027352 Toluene U 0.412 1.00 1 10/05/2017 17:46 WG1027352 1,1,1-Trichloroethane U 0.319 1.00 1 10/05/2017 17:46 WG1027352 1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethene U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vylenes, Total U 0.259 1.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/	1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 17:46	WG1027352	
Toluene U 0.412 1.00 1 10/05/2017 17:46 WG1027352 1,1,1-Trichloroethane U 0.319 1.00 1 10/05/2017 17:46 WG1027352 1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethene U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 1.06 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 17:46	WG1027352	
1,1,1-Trichloroethane U 0.319 1.00 1 10/05/2017 17:46 WG1027352 1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethane U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 1,2,3-Trichloropropane U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Tetrachloroethene	U		0.372	1.00	1	10/05/2017 17:46	WG1027352	
1,1,2-Trichloroethane U 0.383 1.00 1 10/05/2017 17:46 WG1027352 Trichloroethene U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 1,2,3-Trichloropropane U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Toluene	U		0.412	1.00	1	10/05/2017 17:46	WG1027352	
Trichloroethene U 0.398 1.00 1 10/05/2017 17:46 WG1027352 Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 1,2,3-Trichloropropane U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 17:46	WG1027352	
Trichlorofluoromethane U 1.20 5.00 1 10/05/2017 17:46 WG1027352 1,2,3-Trichloropropane U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 17:46	WG1027352	
1,2,3-Trichloropropane U 0.807 2.50 1 10/05/2017 17:46 WG1027352 Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Trichloroethene	U		0.398	1.00	1	10/05/2017 17:46	WG1027352	
Vinyl acetate U 1.63 10.0 1 10/05/2017 17:46 WG1027352 Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 17:46	WG1027352	
Vinyl chloride U 0.259 1.00 1 10/05/2017 17:46 WG1027352 Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 17:46	WG1027352	
Xylenes, Total U 1.06 3.00 1 10/05/2017 17:46 WG1027352 (S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Vinyl acetate	U		1.63	10.0	1	10/05/2017 17:46	WG1027352	
(S) Toluene-d8 103 80.0-120 10/05/2017 17:46 WG1027352 (S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Vinyl chloride	U		0.259	1.00	1	10/05/2017 17:46	WG1027352	
(S) Dibromofluoromethane 93.1 76.0-123 10/05/2017 17:46 WG1027352	Xylenes, Total	U		1.06	3.00	1	10/05/2017 17:46	WG1027352	
	(S) Toluene-d8	103			80.0-120		10/05/2017 17:46	WG1027352	
(S) 4-Bromofluorobenzene 85.1 80.0-120 10/05/2017 17:46 WG1027352	(S) Dibromofluoromethane	93.1			76.0-123		10/05/2017 17:46	WG1027352	
	(S) 4-Bromofluorobenzene	85.1			80.0-120		10/05/2017 17:46	WG1027352	

SDG:

L940345

DATE/TIME:

10/16/17 10:47

PAGE:

63 of 73

PROJECT:

ONE LAB. NATIONWIDE.

13 - 27 ONL LAB. NATION

Volatile Organic Compounds (GC/MS) by Method 8260B

		0 110		201	B.II		B !
	Result	Qualifier	MDL	RDL "	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	32.6	7	10.0	50.0	1	10/05/2017 18:05	WG1027352
Acrylonitrile	U		1.87	10.0	1	10/05/2017 18:05	WG1027352
Benzene	U		0.331	1.00	1	10/05/2017 18:05	WG1027352
Bromochloromethane	U		0.520	1.00	1	10/05/2017 18:05	WG1027352
Bromodichloromethane	U		0.380	1.00	1	10/05/2017 18:05	WG1027352
Bromoform	U		0.469	1.00	1	10/05/2017 18:05	WG1027352
Bromomethane	U		0.866	5.00	1	10/05/2017 18:05	WG1027352
Carbon disulfide	U		0.275	1.00	1	10/05/2017 18:05	WG1027352
Carbon tetrachloride	U		0.379	1.00	1	10/05/2017 18:05	WG1027352
Chlorobenzene	U		0.348	1.00	1	10/05/2017 18:05	WG1027352
Chlorodibromomethane	U		0.327	1.00	1	10/05/2017 18:05	WG1027352
Chloroethane	U		0.453	5.00	1	10/05/2017 18:05	WG1027352
Chloroform	U		0.324	5.00	1	10/05/2017 18:05	WG1027352
Chloromethane	U		0.276	2.50	1	10/05/2017 18:05	WG1027352
Dibromomethane	U		0.346	1.00	1	10/05/2017 18:05	WG1027352
1,2-Dibromoethane	U		0.381	1.00	1	10/05/2017 18:05	WG1027352
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 18:05	WG1027352
1,2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 18:05	WG1027352
1,4-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 18:05	WG1027352
trans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 18:05	WG1027352
1,1-Dichloroethane	U		0.259	1.00	1	10/05/2017 18:05	WG1027352
1,2-Dichloroethane	U		0.361	1.00	1	10/05/2017 18:05	WG1027352
1,1-Dichloroethene	U		0.398	1.00	1	10/05/2017 18:05	WG1027352
cis-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 18:05	WG1027352
trans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 18:05	WG1027352
1,2-Dichloropropane	U		0.306	1.00	1	10/05/2017 18:05	WG1027352
cis-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 18:05	WG1027352
trans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 18:05	WG1027352
Ethylbenzene	U		0.384	1.00	1	10/05/2017 18:05	WG1027352
2-Hexanone	U		3.82	10.0	1	10/05/2017 18:05	WG1027352
lodomethane	U		1.71	10.0	1	10/05/2017 18:05	WG1027352
2-Butanone (MEK)	U		3.93	15.0	1	10/05/2017 18:05	WG1027352
Methylene Chloride	U		1.00	5.00	1	10/05/2017 18:05	WG1027352
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	10/05/2017 18:05	WG1027352
Styrene	U		0.307	1.00	1	10/05/2017 18:05	WG1027352
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 18:05	WG1027352
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 18:05	WG1027352
Tetrachloroethene	U		0.372	1.00	1	10/05/2017 18:05	WG1027352
Toluene	U		0.412	1.00	1	10/05/2017 18:05	WG1027352
1,1,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 18:05	WG1027352
1,1,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 18:05	WG1027352
Trichloroethene	U		0.398	1.00	1	10/05/2017 18:05	WG1027352
Trichlorofluoromethane	U		1.20	5.00	1	10/05/2017 18:05	WG1027352
1,2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 18:05	WG1027352
Vinyl acetate	U		1.63	10.0	1	10/05/2017 18:05	WG1027352
Vinyl chloride	U		0.259	1.00	1	10/05/2017 18:05	WG1027352
Xylenes, Total	U		1.06	3.00	1	10/05/2017 18:05	WG1027352
(S) Toluene-d8	104			80.0-120		10/05/2017 18:05	WG1027352
(S) Dibromofluoromethane	92.3			76.0-123		10/05/2017 18:05	WG1027352

(S) 4-Bromofluorobenzene 85.0

80.0-120

10/05/2017 18:05

WG1027352

¹Cp

SAMPLE RESULTS - 28 L940345

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 11:35

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
cetone	U		10.0	50.0	1	10/05/2017 11:37	WG1027352	
crylonitrile	U		1.87	10.0	1	10/05/2017 11:37	WG1027352	
enzene	U		0.331	1.00	1	10/05/2017 11:37	WG1027352	
romochloromethane	U		0.520	1.00	1	10/05/2017 11:37	WG1027352	
romodichloromethane	U		0.380	1.00	1	10/05/2017 11:37	WG1027352	
romoform	U		0.469	1.00	1	10/05/2017 11:37	WG1027352	
romomethane	U		0.866	5.00	1	10/05/2017 11:37	WG1027352	
arbon disulfide	U		0.275	1.00	1	10/05/2017 11:37	WG1027352	
arbon tetrachloride	U		0.379	1.00	1	10/05/2017 11:37	WG1027352	
nlorobenzene	U		0.348	1.00	1	10/05/2017 11:37	WG1027352	
nlorodibromomethane	U		0.327	1.00	1	10/05/2017 11:37	WG1027352	
nloroethane	U		0.453	5.00	1	10/05/2017 11:37	WG1027352	
nloroform	U		0.324	5.00	1	10/05/2017 11:37	WG1027352	
nloromethane	U		0.276	2.50	1	10/05/2017 11:37	WG1027352	
bromomethane	U		0.346	1.00	1	10/05/2017 11:37	WG1027352	
2-Dibromoethane	U		0.381	1.00	1	10/05/2017 11:37	WG1027352	
2-Dibromo-3-Chloropropane	U		1.33	5.00	1	10/05/2017 11:37	WG1027352	
2-Dichlorobenzene	U		0.349	1.00	1	10/05/2017 11:37	WG1027352	
I-Dichlorobenzene	U		0.274	1.00	1	10/05/2017 11:37	WG1027352	
ans-1,4-Dichloro-2-butene	U		0.866	2.50	1	10/05/2017 11:37	WG1027352	
-Dichloroethane	U		0.259	1.00	1	10/05/2017 11:37	WG1027352	
2-Dichloroethane	U		0.361	1.00	1	10/05/2017 11:37	WG1027352	
-Dichloroethene	U		0.398	1.00	1	10/05/2017 11:37	WG1027352	
s-1,2-Dichloroethene	U		0.260	1.00	1	10/05/2017 11:37	WG1027352	
ans-1,2-Dichloroethene	U		0.396	1.00	1	10/05/2017 11:37	WG1027352	
?-Dichloropropane	U		0.306	1.00	1	10/05/2017 11:37	WG1027352	
s-1,3-Dichloropropene	U		0.418	1.00	1	10/05/2017 11:37	WG1027352	
ans-1,3-Dichloropropene	U		0.419	1.00	1	10/05/2017 11:37	WG1027352	
hylbenzene	U		0.384	1.00	1	10/05/2017 11:37	WG1027352	
Hexanone	U		3.82	10.0	1	10/05/2017 11:37	WG1027352	
domethane	U		1.71	10.0	1	10/05/2017 11:37	WG1027352 WG1027352	
Butanone (MEK)	U		3.93	15.0	1	10/05/2017 11:37	WG1027352 WG1027352	
, ,	U		1.00	5.00	1	10/05/2017 11:37	WG1027352 WG1027352	
ethylene Chloride					1			
Methyl-2-pentanone (MIBK)	U		2.14	10.0		10/05/2017 11:37	WG1027352	
yrene	U		0.307	1.00	1	10/05/2017 11:37	WG1027352	
,1,2-Tetrachloroethane	U		0.385	1.00	1	10/05/2017 11:37	WG1027352	
,2,2-Tetrachloroethane	U		0.130	1.00	1	10/05/2017 11:37	WG1027352	
etrachloroethene	U		0.372	1.00	1	10/05/2017 11:37	WG1027352	
1 Triable as a three as	U		0.412	1.00	1	10/05/2017 11:37	WG1027352	
,1-Trichloroethane	U		0.319	1.00	1	10/05/2017 11:37	WG1027352	
l,2-Trichloroethane	U		0.383	1.00	1	10/05/2017 11:37	WG1027352	
ichloroethene	U		0.398	1.00	1	10/05/2017 11:37	WG1027352	
ichlorofluoromethane	U		1.20	5.00	1	10/05/2017 11:37	WG1027352	
2,3-Trichloropropane	U		0.807	2.50	1	10/05/2017 11:37	WG1027352	
nyl acetate	U		1.63	10.0	1	10/05/2017 11:37	WG1027352	
nyl chloride	U		0.259	1.00	1	10/05/2017 11:37	WG1027352	
vlenes, Total	U		1.06	3.00	1	10/05/2017 11:37	WG1027352	
(S) Toluene-d8	102			80.0-120		10/05/2017 11:37	WG1027352	
(S) Dibromofluoromethane	97.5			76.0-123		10/05/2017 11:37	WG1027352	
(S) 4-Bromofluorobenzene	82.2			80.0-120		10/05/2017 11:37	WG1027352	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Ss

Cn

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

⁶ Gl

Sr

PAGE:

66 of 73

Description


Sample Summary (Ss)

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J4	The associated batch QC was outside the established quality control range for accuracy.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

ACCREDITATIONS & LOCATIONS

State Accreditations

40660	Nevada	TN-03-2002-34
UST-080	New Hampshire	2975
AZ0612	New Jersey-NELAP	TN002
88-0469	New Mexico	TN00003
01157CA	New York	11742
TN00003	North Carolina	Env375
PH-0197	North Carolina ¹	DW21704
E87487	North Carolina ²	41
NELAP	North Dakota	R-140
923	Ohio-VAP	CL0069
TN00003	Oklahoma	9915
200008	Oregon	TN200002
C-TN-01	Pennsylvania	68-02979
364	Rhode Island	221
E-10277	South Carolina	84004
90010	South Dakota	n/a
16	Tennessee 14	2006
AI30792	Texas	T 104704245-07-TX
TN0002	Texas ⁵	LAB0152
324	Utah	6157585858
M-TN003	Vermont	VT2006
9958	Virginia	109
047-999-395	Washington	C1915
TN00003	West Virginia	233
340	Wisconsin	9980939910
CERT0086	Wyoming	A2LA
NE-OS-15-05		
	UST-080 AZ0612 88-0469 01157CA TN00003 PH-0197 E87487 NELAP 923 TN00003 200008 C-TN-01 364 E-10277 90010 16 AI30792 TN0002 324 M-TN003 9958 047-999-395 TN00003 340 CERT0086	UST-080 New Hampshire AZ0612 New Jersey-NELAP 88-0469 New Mexico 01157CA New York TN00003 North Carolina PH-0197 North Carolina ¹ E87487 North Carolina ² NELAP North Dakota 923 Ohio-VAP TN00003 Oklahoma 200008 Oregon C-TN-01 Pennsylvania 364 Rhode Island E-10277 South Carolina 90010 South Dakota 16 Tennessee ¹⁴ Al30792 Texas TN0002 Texas ⁵ 324 Utah M-TN003 Vermont 9958 Virginia 047-999-395 Washington TN00003 West Virginia 340 Wisconsin CERT0086 Wyoming

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

		8	Billing Information:	mation:		i.			Analysis	Analysis / Container / Preservative	er / Pres	ervative	Chain of Custody Page of
SCS Engineers - Little Rock, AR	Rock, AR	4 H	ccounts 1219 Ri	Accounts Payable 11219 Richardson Drive	e,	Pres Q. A.	EL	67	CIL	9			US'LAND
11219 Richardson Drive North Little Rock, AR 72113		Z	. Little	N. Little Rock, AR 72113	13			Name of					4 subshipery of Accessions
Report to: Stacie Whitmer		a a	mail To: sv	Email To: swhitmer@scsengineers.com	gineers.com			EONH					12065 Lebanon Rd Mount Julier, TN 97222 Walter Phone 615-798-858
Project Description: Nabors Landfill				City/State Mt, 140	. HOME JA	in the	160					ІЭН	
Phone: 501-812-4551 Fax:	Client Project #			Lab Project # CHIROCKAR-NAB	-NABORS		No.	S-Nopr	Z+HOEN	Mary Control	כו	-dmAln	E165
Collected by (print):	Site/Facility ID #	=		#.O.ª		an e		200110	550750	ICI	H-dm	IK 404	Actinum: CHIROCKAR
ta T	Rush? (Lab	Rush? (Lab MUST Be Notified)	tified)	Quote #		6.50			No second	H-dm/	Alm0	8 qinT	Template: T98870 Prelogin: P619567
imediately icked on Ice N	Next Day Two Day Three Day		5 Day (Rad Only) 10 Day (Rad Only)	Date Re	Date Results Needed	No.	JHIm02			Almos2	P I d V O	-IdVO	158, 134 - Mark W. Beasley
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cutrs				OO1	978/	9281	Shipped Via: FedeX Ground Remarks Sample# (bb coly)
MW-1	3	GW		9-27-6	1452	7				×	×		10-
MW-2	S	GW		7-86-6	200	7	×	×	×	×	×		003
MW-3		GW				7	×	×	×	×	×		
MW-4	(2	GW		6-28-17	935	7	×	×	×	×	×		03
MW-5	9	GW		11-85-3	1017	7	×	×	×	×	×		no
MW-6	(2	GW		9-28-1	4111	7	×	×	×	×	×		00
MW-7	5	GW		9-27-1	1400	7	×	×	×	×	×		90
CAO-1	(>	GW		9-28-17	1458	7	×	×	×	×	×		10
CAO-2	1	GW				7	×	×	×	×	×		
CAO-3	2	M9		7-65-6	00:6	7	×	×	×	×	×		69
* Matrix: SS-Soil AIR-Air F-Filter GW Generologies R-Bioscau	Remarks:		17	1		A. I			۵	Ha	Temp		COC Seal Present/Intact: COC Signed/Accurate:
									T.	Flow	Other		tles used:
DW - Drinking Water OT - Other	Samples returned via: UPS FedEx	turned via: FedEx Courier	-		Tracking #							(2 4
Relinquished by : (Signature)	70	9-29-	12	Time: ///oo	Received by: (Signature)	(ture)			Trip	Trip Blank Received:	ived:	TBR TBR	Preservation Correct/Checked: //
Refinquished by : (Signature)	,	Date:	-	ime:	Received by: (Signature)	trure)			in Ci	7.2 cmp:	C Bott	Bottles Regelved:	If preservation required by Login: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab by	: (Signature)	(eur		Date	Date	Tim	Time	Hold: Condition:

		Billin	Billing Information:	ou:			2	1	/sis/eu	Containe	Analysis / Container / Preservative		Chain of Custody Page	5
SCS Engineers - Little Rock, AR	lock, AR	Acci 112	Accounts Payable 11219 Richardson	Accounts Payable 11219 Richardson Drive		Pres Chk	12	27	2/	67			アート	
11219 Richardson Drive North Little Rock, AR 72113		Ž.	ittle Roc	N. Little Rock, AR 72113				8					L.A.B S.C.I.E.N.S) S. J.
Report to: Stacie Whitmer		Еша	To: swhit	Email To: swhitmer@scsengineers.com	eers.com		N/A	ONH		100			O.	
Project Description: Nabors Landfill			53	City/State.MT, /	HOWEJAL	200	29	BLU	2An2	AL E	нсі		Pience: 800-767-5839 Fax: 615-758-3659	
Phone: 501-812-4551 Fax:	Client Project #	10-	5 2	Lab Project # CHIROCKAR-NABORS	ABORS	he diffe	Name of Street		Z+HOEN		10 (8)		L# Table#	
Collected by (print):	Site/Facility ID #	**	P.C	P.O.#		3 Ug			1-5-qu	ICI	200.9		Acctnum: CHIROCKAR	
Collected by (signature):	Rush? (Lat	Rush? (Lab MUST Be Notified)		Quote #			w641100		nAlma	4-qw/			Template:198870 Prelogin: P619567	Y.
	Next Day Two Day Three Day	Ш.	Only)	Date Results Needed	ts Needed	o No	SOT, 4C	IOADI	IDE 15	ZIM022	-I4A08		PB/ Tar. 134 - Mark W. Beasley	No.
Sample ID	Comp/Grab	Matrix * D	Depth	Date	Time	Cutrs	To Carlo		SULF	70C			Remarks Sample # (lab only)	(Jab cerly)
11-71 Bases	(2)	M9	9	9-27-17	1322	7	1200		×	×				60
NAB-2)	M9				7	×	×	×	×	×			
NAB-3	(3	M9	3	9-27-17	883	7	×	×	×	×	×			10
NAB-4	1	GW				7	×	×	×	×	×			
NAB-7	(3)	M9	9	6-28-17	1240	7	×	×	×	×	×			=
NAB-8	2	GW	5	0.12.	200	7	×	×	×	×	×			13
MW-509D	5	ΜĐ	6	17.10	1310	7	×	×	×	×	×			13
MW-577	(2	M9	6	11.60	927	7	×	×	×	×	×			7
MW-689D	2	GW	9	4-3717	1000	7	×	×	×	×	×			2
MW-633D	-	GW	6	6-27-17	5501	7	×	×	×	×	×			10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:	7.3		N					H.		Temp	364	ned ar	1 1 1 1 1 1 1 1 1 1
WW - WasteWater DW - Drinking Water	Samples returned via:	rned via:							NO!4		Other	Suff	Sufficient volume sent:	
OT - Other	_ UPS _ Fe	FedEx Courier		Tr.	Tracking #						2.5	VOA	Zero Head	* " " " " " " " " " " " " " " " " " " "
Relinquished by : (Signature)	D	9-29-1	Time:	00	Received by: (Signature)	ture)			Trip Bl	frip Blank Received:	ved: Yes / No HCL / MeoH TBR	-	Treservation Correct/Unecked:	
nauished t		Date:	Time:		Received by: (Signature	ture)			7.7	70	C Bottles Received		If preservation required by Login: Date/Time	Тіте
Relinquished by : (Signature)	ľ	Date:	Time:		Received for lab by	for lab by: (Signature)	(e)		Out of	70%	1 Time: 08	DB45 Hold:		Condition:

0 0 1441 1 2000 210 21 300	dv Vac	en ·	Billing Information:	mation:		2000		180	Analysi	Come	DEL / FIE	Analysis / Container / Presitivative	LTC
SCS Engineers - Little Kock, AR 11219 Richardson Drive North Little Rock, AR 72113	ock, An	4 4 2	ccounts 1219 Rid 4. Little	Accounts Payable 11219 Richardson Drive N. Little Rock, AR 72113		£ š							CA-B S-C-I-E-N-C-E-S
Report to: Stacie Whitmer		w.	mail To: sa	Email To: swhitmer@scsengineers.com	ineers.com	1		ONH	- Series	13			12065 Lebanon Rd Mount Jules, TN 37122 Physics 621-758-5858 Physics 617-758-5859 Physics 6107-757-5899 Physics 6107-757-75899 Physics 6107-757-75899 Physics 6107-757-75899 Physics 6107-757-75899 Physics 6107-757-7589 Phy
Project Description: Nabors Landfill				City/State M1 Collected:	City/State Mt, Ifom e, A.	2	30.		25000			-HCI	
	Client Project #			Lab Project # CHIROCKAR-NABORS	-NABORS	alleges			no la sula		ICI	dmAlm	Table#
Collected by (print):	Site/Facility ID #			P.O.#		1			PORTUGA I		H-dm/	BIK 40	Acctnum: CHIROCKAR
ected by (signature)	Rush? (La	MUS	otified)	Quote #					25 1		/Im0t	qinT	Prelogin: P619567
	Next Day Two Day Three Day		5 Day (Rad Only) 10 Day (Rad Only)	Date Results Ne	sults Needed	No.	3HIm02	SQT, 40	EIDE IS	/Imosz	14A09	-I4A03	TSR: 134 - Mark W. Beasley
Sample 1D	Comp/Grab	Matrix *	Depth	Date	Time	Cutrs					787	787	Remarks Sample # (Jab only)
NE-2	(2	QW.		9-26-1	04416	7			10000	×	×		
NE-3	2	GW		9-27-17	345	7	×	×	×	×	×		188
NE-6	5	M9		7-86-6	848 6	7	×	×	×	×	×		2 6
MW-1R	5	M9		1-12-6	1535	7	×	×	×	×	×		90
TSP-1		M9				7	×	×	×	×	×		
TSP-2		GW				7	×	×	×	×	×		
TSP-3		GW				7	×	×	×	×	×		
TSP-4		GW				7	×	×	×	×	×		
SP-4		GW				7	×				×		
SP-5		MS				7	×	×	×	×	×		
I AIR - Air F - Filter roundwater 8 - Bioassay	Remarks:									pH Flow	Temp	Temp	CI H W H
DW - Drinking Water OT - Other	Samples returned via: UPS FedEx	turned via: FedEx Courier	ier		Tracking #								VOA Zero Headspace No. No. No. Zero Headspace No. No. Zero Headspace No. No. Zero Headspace No.
Relinquished by : (Signature)	72	9 - 29	11	Time:	Received by: (Signature)	ture)			Ë	Trip Blank Received:	ceived:	TBR TBR	
Relinquished by : (Signature)		Date:		Time:	Received by: (Signature	ture)			200	2. City	8 J.,	Bottles Received:	If preservation required by Login: I
Relinquished by : (Signature)		Date:		Time:	Received for lab	K: (Signature)	(anne)		PO PO	1-20	F	S-80	Hold: NOF (OR

		88	Billing Information:	vation:				Ana	lysis / co	ramer / r	Analysis / Container / Freseivers	()	r
SCS Engineers - Little Rock, AR 11219 Richardson Drive North Little Rock, AR 72113	ck, AR	Q H Z	Accounts Payable 11219 Richardson N. Little Rock, AR	Accounts Payable 11219 Richardson Drive N. Little Rock, AR 72113		Chk		8				S C LE N C L S C L E N C L S C	7010
Report to:		-	mail To: sw	Email To: swhitmer@scsengineers.com	neers.com			ONH				Mount Juliet, TN 37122 Phane: 615-726-5858 phone: 800-747-5859	590%
Stacie Whitmer				Pin John M. MOP	HOMUS	T		-30	0	20	1		100
Project Description: Nabors Landfill				Collected:	Ar		San	инов	AnZ+		р-нс	1 946345	
	Client Project #	100		Lab Project # CHIROCKAR-NABORS	NABORS	HOB		m0sz r	HO6N-	HCI		Table#	
ected by (print):	Site/Facility ID #			P.O.#	1	M-dm.		ı2,nM	-S-dm	150000		Acctnum: CHIROCKAR Template: 198870	
Collected by (signature)	Rush? (La	S MUS	lotified)	Quote #		A34C		+ Fe,	Alm2	- Salaria		prelogini P619567	
Immediately Y	Same Day Next Day Two Day Three Day		Five Day 5 Day (Rad Only) 10 Day (Rad Only)	Date Results Ne	papa	HIMO29	201, 40	IAAOIO	FIDE 12	14409	-I4A0a	Shipped Via: FedEX Ground	Z 2
In olive	Comp/Grab	Matrix *	Depth	Date	Time	Cottrs		9W	ากร	T. Carlo		Remarks Sample # (lab only)	(Aluo
or sudupo	,	WS		6.38.17	1200	7 ×		×	×	SSUR	7	6	7
SP-7	0	W.O.		,		7 X	×	×	×	×	×		T
SPRING-A		No.				7 X	×	×	×	×	×		
SPRING-B		W5						×	×	×	×		
SP-NE-3		No.		0 29 11	GENA			×	×	×	×	on	3
LANDFILL ENTRANCE SEEP	2	a c		12121	100			×	×	×	×		
CLASS IV DRAW		QW.		0	13			×	×		×	6	23
CLASS I DRAW	0	8W		1.52.1	220			×	×		×		
LEACHATE		QW.			0				,		×	66	34
DUPLICATE	(2	QW		4.787	07/1				< >	< >	(×	100	34
FIELD BLANK	9	GW		1-32-6	18	1	×	<	<	c		172	12
SS_Soli AIR-Air F-Filter GW-Groundwater B-Bioassay	Remarks:					e Piblico			PH Flow		Temp Other	tact: ct: di: ent:	
DW - Drinking Water	Samples returned via: UPS FedEx		Courier		Tracking #						9	VOA Zero Readspace:	× ×
OI - Other	Ш	Date:		Time:	Received by: (Signature	ture)			Trip Bla	Trip Blank Received:	d: Res/No	Tessilvacion constant	
Keilnduisned ov (Signatural Signatural Signatura Signatural Signatura Si	A	9.39	5	11,00						- 10	TBR Bottles Receive	d: If preservation required by Login: Date/Time	ime
Relinquished by : (Signature)	1	Date:		Time:	Received by: (Signature	ture)			Temp:	337	689	Condition	tion:
Relinquished by : (Signature)		Date:		Time:	Receive for labor	A. (Signature)	re)		a de	200	1 08 P	S Hold:	/ ok

Die Co

SCS Engineers - Little Rock, AR	ock, AR		Billing Information: Accounts Payat	Accounts Payable		S X						17:N	T T	
11219 Richardson Drive North Little Rock, AR 72113			11219 Ri N. Little	11219 Richardson Drive N. Little Rock, AR 72113	13			1				1 since	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N. C. E. S
Report to: Stacie Whitmer			Email To: sa	Email To: swhitmer@scsengineers.com	gineers.com	1		EONH				Log .	Mount Julet, TN 37122 Phone: 615-758-5858	
Project Description: Nabors Landfill		à		City/State Collected:		i de la				1		(T.)	Fax: 615-758-5859	
	Client Project #			Lab Project # CHIROCKAR-NABORS	-NABORS	Thrase		SE-Nopr	+HO ₆ V		CI	110-	14 C46347	2
Collected by (print): Moles	Site/Facility ID#	11:	8	P.O. #		-	2.7-2			ICI	H-dm	WJH JAC H		AR
by (signature):	Rush? (Lai	Rush? (Lab MUST Be Notified)	Votified)	Quote #		5.00	G-0-0-0			4-dm/	Alm01	m 55	Template:198870 Prelogin: P619567	
Immediately School of the Control of	Next Day Two Day Three Day		S Day (Rad Only) 10 Day (Rad Only)	Date Results N	sults Needed	9 5	3HIm0			Almoz	p IdAC	TWO!	35.	easley
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	S de la constant de l			MILE	LOC 2	978/	7-1 7-1 30-1	Shipped Vla: Fed	EX Ground Sample # (lab only)
Sp-7		M9				7	200			×	×			
SPRING-A		M9				7	×	×	×	×	×			
SPRING-B		GW				7	×	×	×	×	×			
SP-NE-3		GW				7	×	×	×	×	×		* CAN *	Hond
LANDFILL ENTRANCE SEEP		GW				7	×	×	×	×	×		DENCOME.	とう
CLASS IV DRAW		GW				7	×	×	×	×	×		704	ROCLAR K
CLASS I DRAW		GW				7	×	×	×	×	×	-	See Mark	d Bash
LEACHATE	(5118-b	GW		9128	0001	1	×	×	×	×	×	1444	ACON!	Shans -
DUPLICATE		GW		0.00		7	×	×	×	×	×			1
FIELD BLANK		GW	4			7	×	×	×	×	×			
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WWW - Waste Water	Remarks:					-				pH Flow	Temp	COC Ser	Sample Receipt Check, Seal Fresent/Intsoti	" " " " 722 7/ 222 7/
DW - Drinking Water OT - Other	Samples returned via: UPS FedEx		Courier		Tracking #								> 6	
Relinquished by : (Signature)	1	Date:	0.60	S. OO	Received by: (Signature)	(atrice)			Trip	Trip Blank Received:	1580	Tan Preservation	ition Correct/Checke	N
Relinquished by: (Signature)	1	Date:		Time:	Received by: (Signature)	hature)	Take		o de	22.	(1)	100	preservation required by Login: Date/Time	ate/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab by	W (Signature	(aura)		Date:	2 40	Time	TERES Hold:		Condition: NCF / OK

		8	Billing Information:	ation:			-	Analy	isis / cont	Analysis / Container / Preservative	SELVAUN	してして
SCS Engineers - Little Rock, AR 11219 Richardson Drive North Little Rock, AR 72113	ock, AR	, <u> </u>	Accounts Payable 11219 Richardson N. Little Rock, AR	Accounts Payable 11219 Richardson Drive N. Little Rock, AR 72113	74.7	Pres		8				
Report to:			mail To: sw	Email To: swhitmer@scsengineers.com		100		ONH	th.	721-20		Mount Julier, TN 37122 Phone: 615-758-5659 Phone: 800-767-589
Stacie Whitmer				City/State				_) YC		E	
Project Description: Nabors Landfill				Collected:			2919		/uZ+l	200)н-ді	5 n80767 #11
	Client Project #			Lab Project # CHIROCKAR-NABORS	VABORS	HOSI	The state of		HOEN-	HCI	mAlm0	Table#
ected by (print):	Site/Facility ID #	=		P.O. #		M-dm				and box	BIK 4	Acctnum: CHIROCKAR Template:T98870
Collected by (signature):	Rush? (La	MUS	(otified)	Quote #		A390					qinT -	Prelogin: P619567
Immediately v	Same Day Next Day Two Day Three Day	111	Five Day S Day (Rad Only) 10 Day (Rad Only)	Date Results N	pepee	5 P	O4, TDS	TAVOTO	FIDE 12	TdV097	-14A092	Shipped Via: FedEX Ground
mple If	Comp/Grab	Matrix *	Depth	Date	Time	CM	South		-		287	Remarks Sample # (lab only)
		W.S				7 X	×	×	×	×		
NE-4		MIS				7 X	×	×	×	×		
		200				7 X	×	×	×	×		
		MS WS		0.38-0	1130	2				×		000
EQUIPMENT BLANK				0.00.0	1130	N		W			×	0
TRIP BLANK		AS CA		11-071	273							
1												
100 m 100 m												
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:					1			Flow		Temp Other	
WW - Wastewater DW - Drinking Water	Samples returned via: UPS FedEx	turned via: FedEx Co	Courier		Tracking #						- 1	VOA Zero Headspace:
Pelinguished by : (Signature)	91	Date:		Time:	Received by: (Signature)	ture)			Trip Blan	Trip Blank Received:	2	
					Company (Stansture)	(tire)			Temp:	0	Bottles Rapelved	if preservation required by Login: Date/Time
Relinquished by : (Signature)		Date:		Time:	vecence of the				2.0	CE.	8	Condition
Relinquished by : (Signature)		Date:		Time:	Received for lab by (Signature)	Asignatu	(2		Dater	1-02	1 084	()

ANALYTICAL REPORT

October 23, 2017

SCS Engineers - Little Rock, AR

Sample Delivery Group: L943632

Samples Received: 09/30/2017

Project Number:

Description: Nabors Landfill

Report To: Stacie Whitmer

11219 Richardson Drive

North Little Rock, AR 72113

Entire Report Reviewed By:

Mark W. Beasley

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
LEACHATE L943632-01	5
GI: Glossary of Terms	6
Al: Accreditations & Locations	7
Sc: Sample Chain of Custody	8

			Collected by	Collected date/time	Received date/time
LEACHATE L943632-01 WW			Darren Motley	09/28/17 16:00	09/30/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 335.4	WG1032144	1	10/16/17 21:00	10/17/17 15:47	KK
Mercury by Method 245.1	WG1031098	1	10/17/17 02:28	10/17/17 12:56	ABL
Metals (ICPMS) by Method 200.8	WG1032029	1	10/18/17 11:44	10/23/17 14:57	LAT

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mark W. Beasley

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 09/28/17 16:00

L943632

Wet Chemistry by Method 335.4

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Cyanide	U		1.80	5.00	1	10/17/2017 15:47	WG1032144

Mercury by Method 245.1

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U		0.0490	0.200	1	10/17/2017 12:56	WG1031098

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic	3.82		0.170	1.00	1	10/23/2017 14:57	WG1032029	
Cadmium	U		0.220	1.00	1	10/23/2017 14:57	WG1032029	
Chromium	2.03		0.320	1.00	1	10/23/2017 14:57	WG1032029	
Copper	2.77		0.270	1.00	1	10/23/2017 14:57	WG1032029	
Lead	U		0.260	1.00	1	10/23/2017 14:57	WG1032029	
Nickel	34.3		0.320	1.00	1	10/23/2017 14:57	WG1032029	
7inc	58.8		1 91	10.0	1	10/23/2017 14:57	WG1032029	

Cn

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

¹Cp

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

^{1.} Drinking Water ^{2.} Underground Storage Tanks ^{3.} Aquatic Toxicity ^{4.} Chemical/Microbiological ^{5.} Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

		Billing It	Billing Informations	10		Page 1	-	-					17		プロ製	
SCS Engineers - Little Rock, AR	ck, AR	Accou 11219 N. Litt	Accounts Payable 11219 Richardson N. Little Rock, AR	Accounts Payable 11219 Richardson Drive N. Little Rock, AR 72113	the contract of	S to Control		E				A CCC	1 SH . 45 W	2 drachy2	A B S C C C C C C C C C C C C C C C C C C	
Report to:		Email	(a) swhite	Email To:swithmer@scsengineers	s.com			JNH"				34	N. Was	Ma)	111	•
Stacle Whitmer	-	-	Ch	City/State								НСІ	1)	ho		2
Project Description: Nabors Landfill		7	Co	Cohected	1	+						1-dm	Col	SZH	5	10/13/11
	Client Project #		3 0	CHIROCKAR-NABORS	BORS								14/61-	/m 25	Table # 1995652	
and by formit II wife.	Site/Facility ID #		b.	P.O. B		4						-	्राम्ह्या विकास	1 A 1 A 1	-	
Collected by (signature):	Rush? (Lab Same Dev	Rush? (Lab MUST Be Notified) Same Day From Day		Quote #	Standard	-						100	t-pul	8		
immediately S	Nest Day Two Day Three Day	S Day (Rad Only) 10 Day (Rad Only)	Solvi	Onte herusa		d P P	Juiosz	T, AOR	AOTO6	OC 320	1A0058	A0928	71- 15e- 157-	Mark Street	1507	
Di aldu	Comp/Grab	Matrix * Di	Depth	Date	Time	-	к си									
7-dS		GW				1	< ×	200	1		100	-				
SPRING-A	Section 1	GW	1			1	×	×			×	×			NA STATE OF THE ST	
SPRING-8		GW	1			-	+	×	100		×	×			T HADAMONE	T
SP-NE-3		GW				2	1	×	×	×	×	×			100 100 100 100 100 100 100 100 100 100	K
LANDFILL ENTRANCE SEEP	N. N.	MS	-			1	×	×	×	×	×	×			NO.	
CLASS IV DRAW		GW		-		1	-	×	×	×	×	×	19.0	The c	Spo Down Tag	C. C.
CLASSIDRAW		QW.		Otto	051	F	-	×	×	×	×	×	并	4	N HC OUK MIND	1
LEACHATE	21670	MS		21 120	100	Ť	7 X	×	×	×	×	×				
DUPLICATE		MS				E	-	×	×	×	×	×		1	The late of the Character	
FIELD BLANK		GW				9	4			100		Temp		000	OCC Peal Present (Intect)	Nº I
• Marrisc 55 - Soil AlR - Air F - Felter GW - Groundwater B - Bloatsay	Remarks:									Flow		Other	1	Correct Dufficial	The follow sends	
WWV - Waste Water DW - Orloking Water OT - Other	Samples returned via: UPS FedEx	returned via: FedEx Courier	1		Tracking #	To all the second				Trip Bran	Trip Bank Received	- 13	(es) No	Present Present	To Headingon Correct/Checons: Z	¥.
Religioushed by : (Signature)	THE STATE OF THE S	Date O	3	8.00	Received by continued	1						- Bott	THE THEORY	If press	if preservation required by Login, Date/Time	mile
Rotinquished by : (Signature)	1	Date		Time:	Received by: (Signature)	Signatu	9		3	10	22.20	Tie	80 190 190 190 190 190 190 190 190 190 19	Hold:	Cond	Condition: NCF / OK
Relinquished by : (Signature)		Date:		Time	Received 19	3	1			9	Day.		56			

Andy Vann

Mark Beasley

Friday, October 13, 2017 1:50 PM

F040345 *CHIROCKAR* relog

Sent: To:

From:

Subject:

Relog L940345-26 for matrix WW ASG, CDG, CRG, CUG, PBG, HG, NIG, ZNG and matrix 2 CN.

⇒ Mark Beasley

National Account Manager

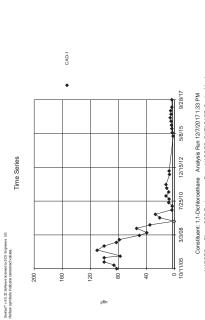
ESC Lab Sciences-a subsidiary of Pace Analytical

12065 Lebanon Road | Mt. Juliet, TN 37122

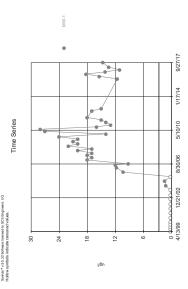
615,773,9672 | Cell 615,330,1602

mbeasley@esclabsciences.com | www.esclabsciences.com

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.


APPENDIX D

STATISTICAL DATABASE


AN ELECTRONIC D	FILE IS INC	H THIS

APPENDIX E

STATISTICAL EVALUATION

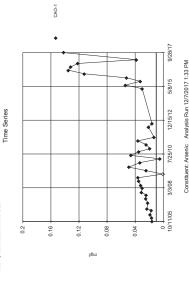
MW-1R

Time Series

20

9

12


y6n

Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 1:33 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 1:33 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

8/19/15 9/7/16 9/27/17

6/21/12 7/10/13 7/30/14

Constituent: Arsenic Analysis Run 12/7/2017 1:33 PM NABORS Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix

Constituent: 1,1-Dichloroethane Analysis Run 1277/2017 1:33 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

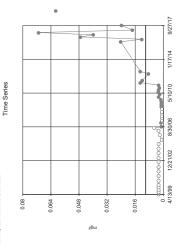
7/3/15 9/27/17

4/8/13

1/12/11

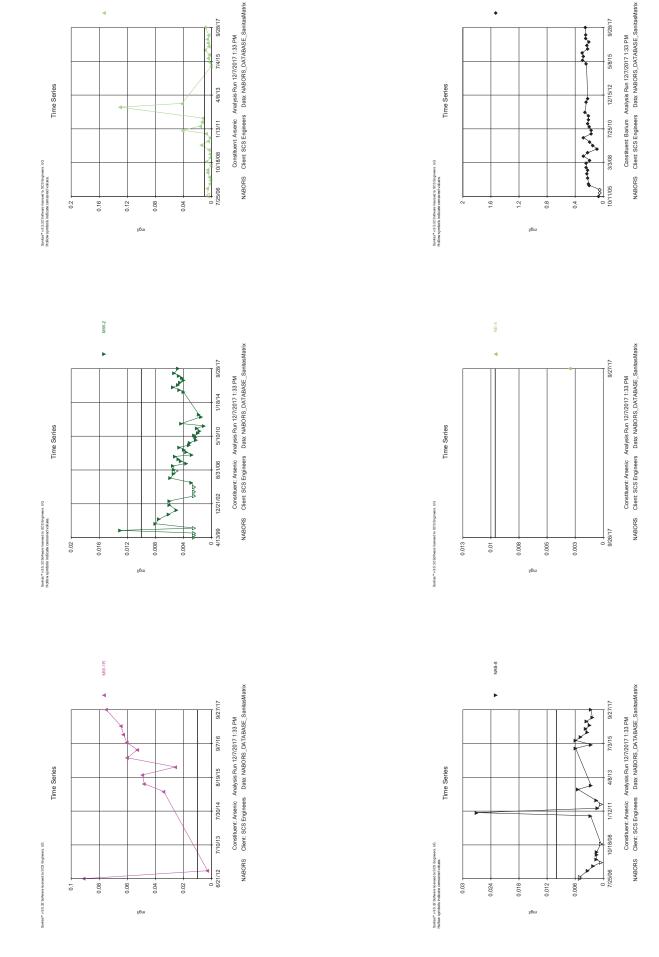
Saritas" v.95.32 Software Iomaed to SCS Engineer. UG Hollow symbols indicate censored values.

Time Series

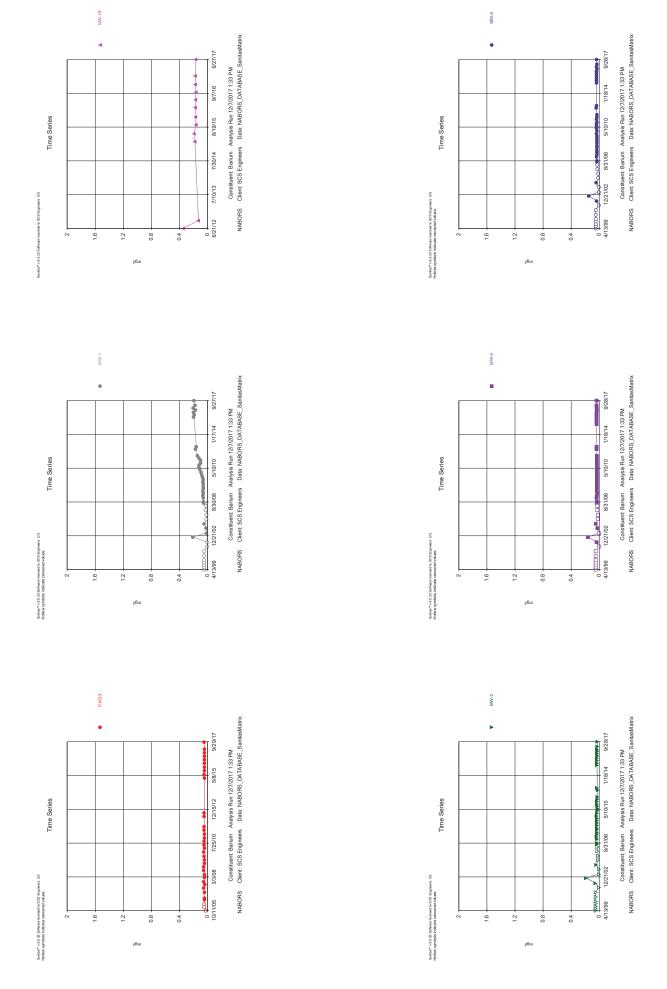

Saritas* v.85.22 Software licensed to SCS Engineers. US Hollow symbols indicate censored values.

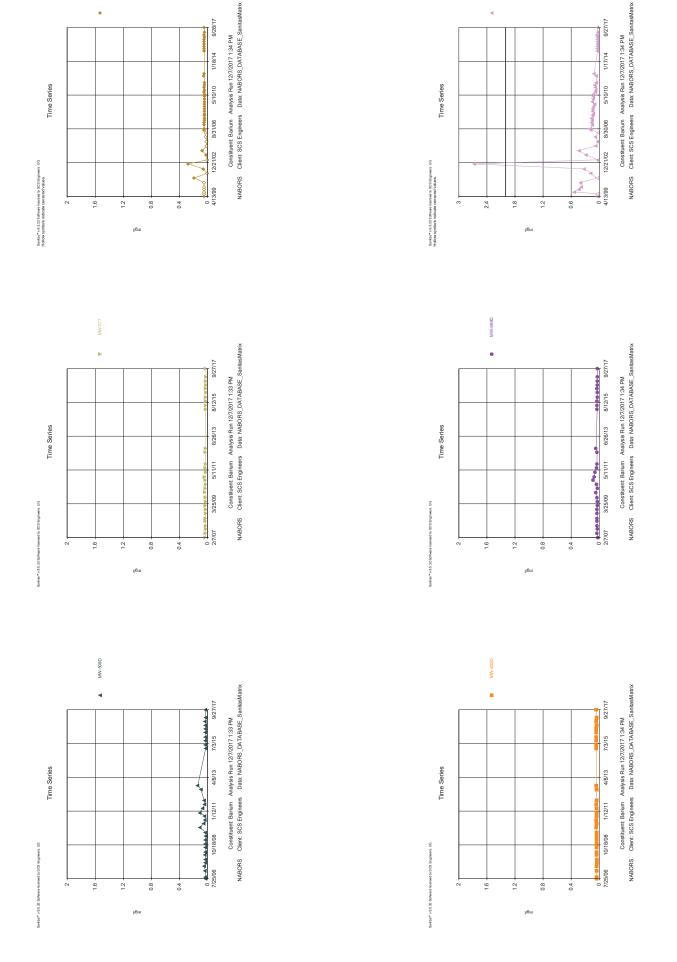
2.4

1.2

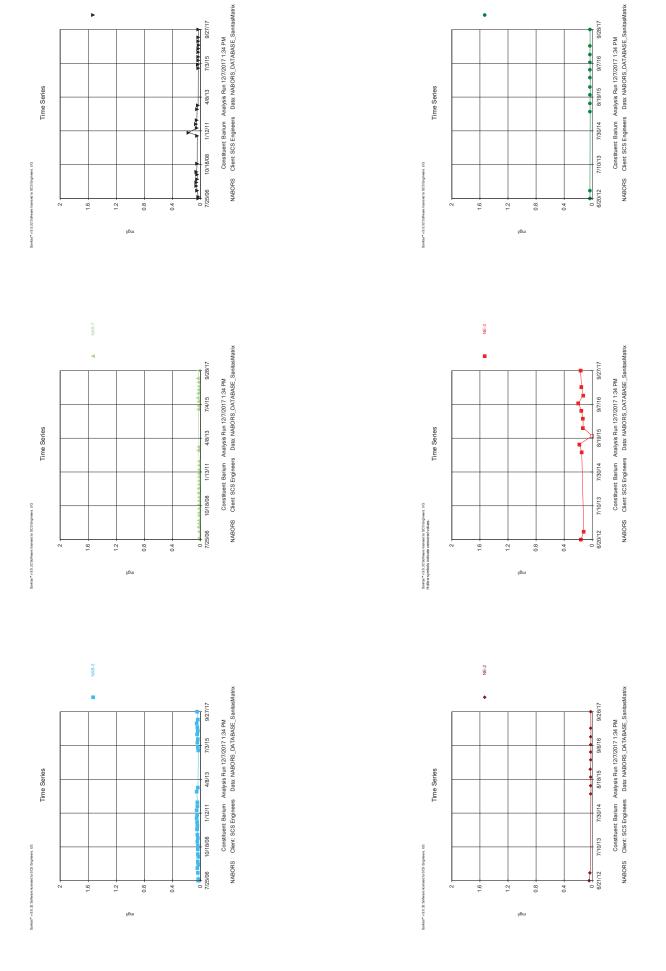

[/6n

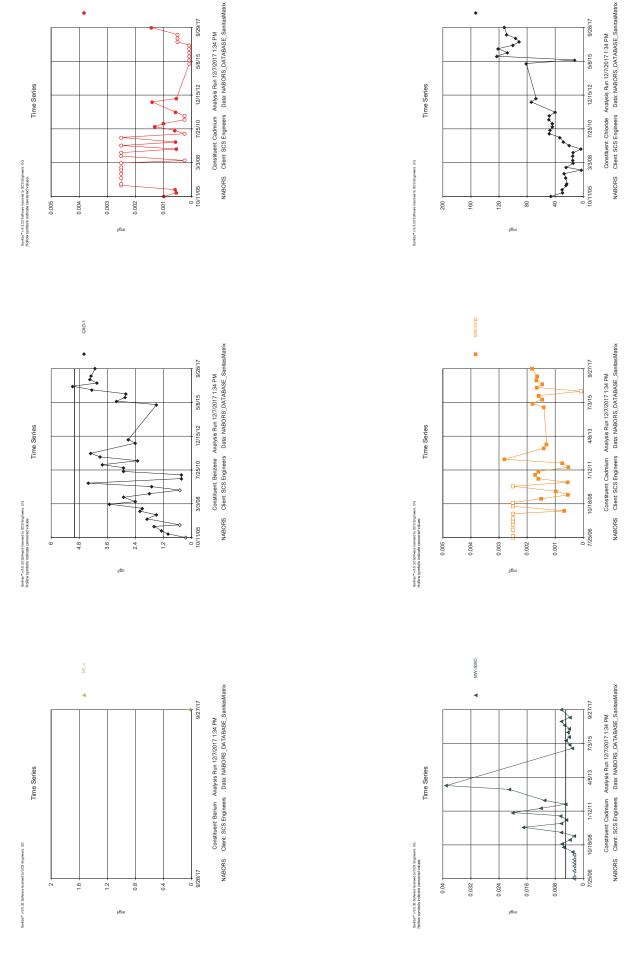
8.


MW-1


Constituent: Arsenic Analysis Run 1277/2017 1:33 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

NAB-7

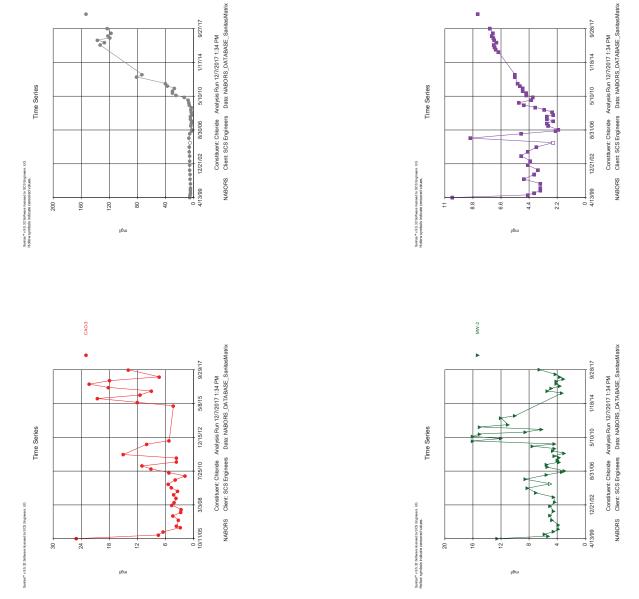

CAO-1

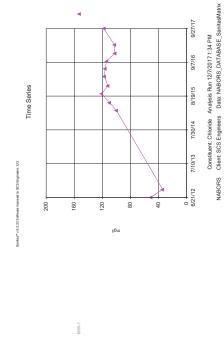

MW-7

MW-6

NE-6

NAB-8

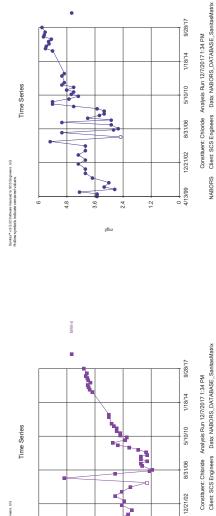

CAO-1


Time Series

12/15/12 5/8/15 9/28/17

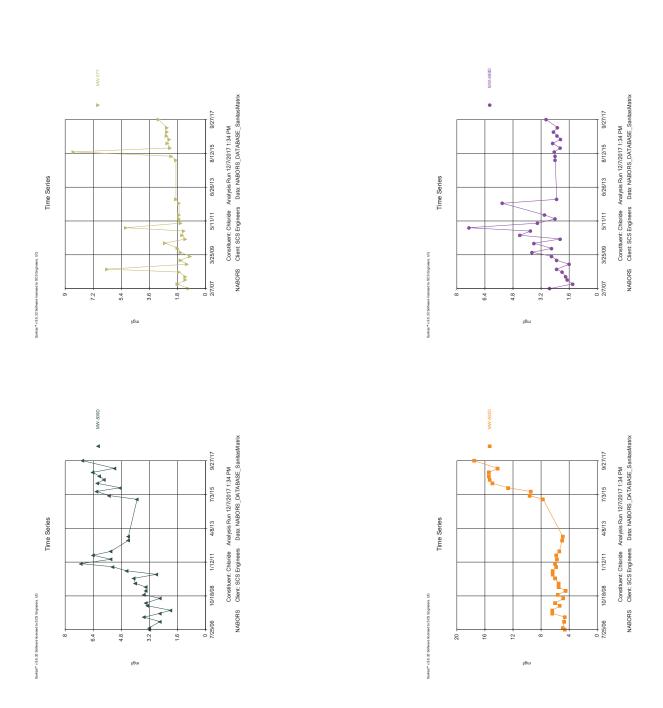
CAO-3

Time Series



2

Time Series


1/17/14 9/27/17

MW-1R

Time Series

MW-5

MW-7

7.2

5.4

3.6

լ/6w

8.

Time Series

Constituent: Chloride Analysis Run 1277/2017 1:34 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

5/10/10 1/17/14 9/27/17

12/21/02 8/30/06

0 4/13/99

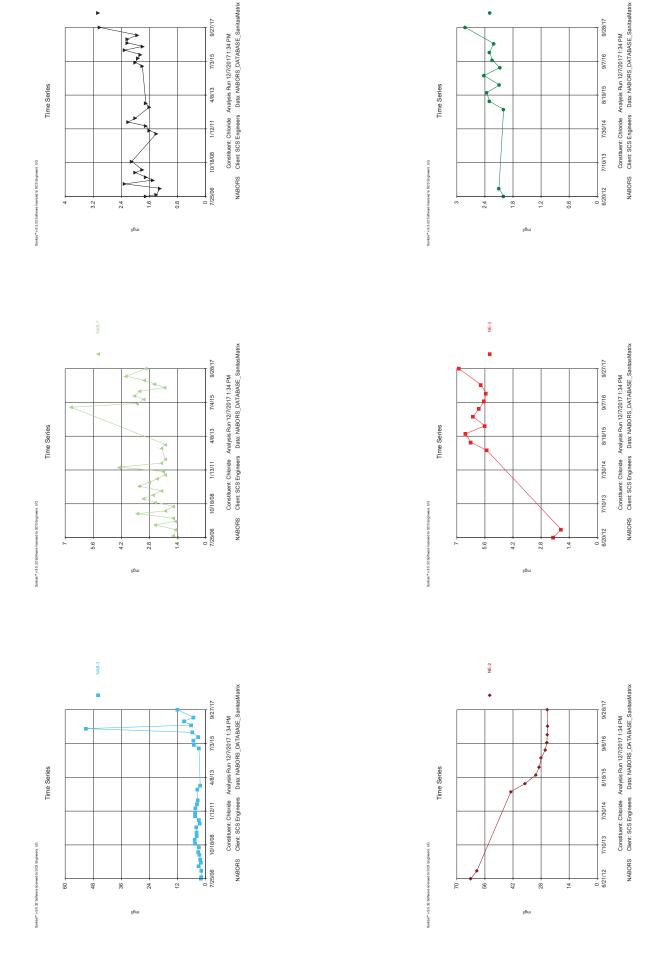
MW-6

Time Series

30

24

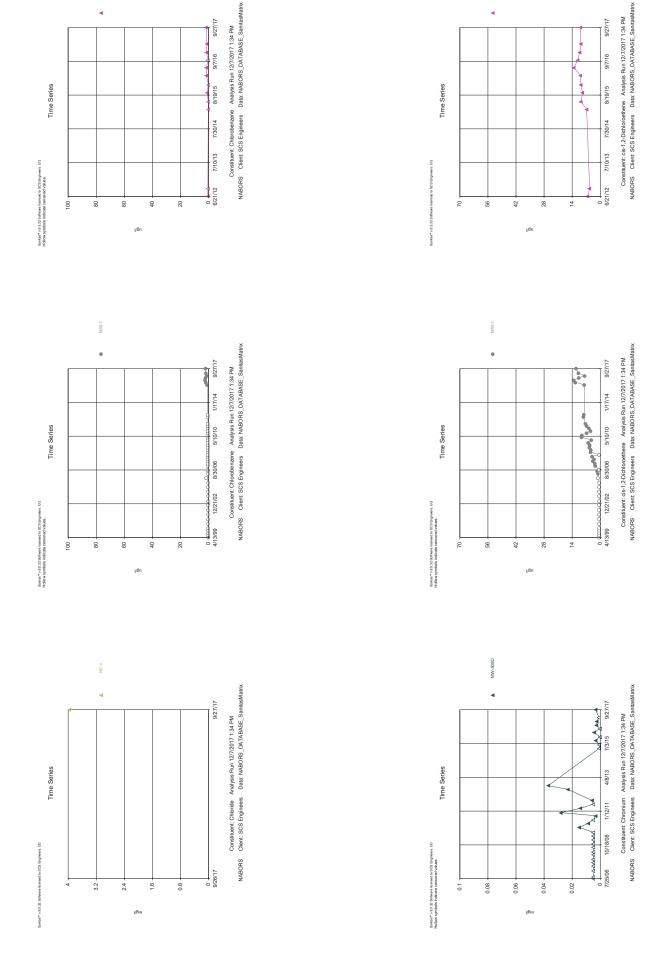
8


μ6w

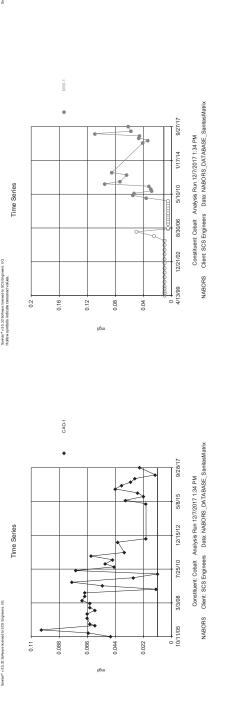
12

Consituent: Chloride Analysis Run 12/7/2017 1:34 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

5/10/10 1/18/14 9/28/17


12/21/02 8/31/06

NE-6


NAB-8

7/3/15 9/27/17

MW-1R

MW-1R

MW-1R

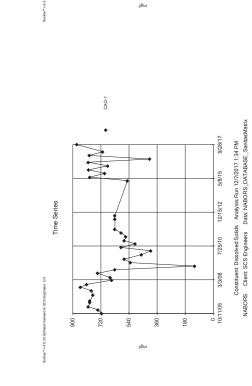
Time Series

0.2

0.16

0.12

µ6w


90.0

0.04

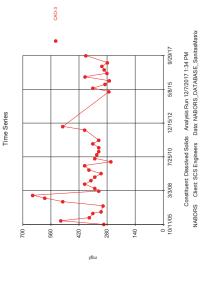
Constituent: Cobalt Analysis Run 12/7/2017 1:34 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

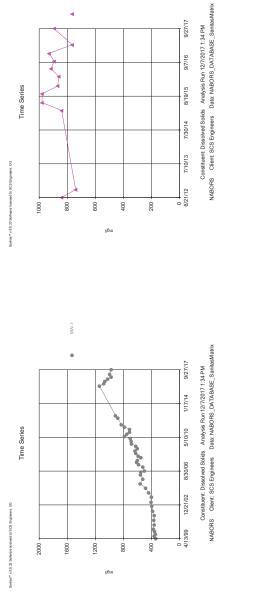
7/30/14

7/10/13

Q605-WW

9.1


1.2


8.0

Į/6w

Time Series

Saritas* v.95.22 Sofware licensed to SCS Engineers. US Hollow symbols indicate censored values. Constituent: Copper Analysis Run 12/7/2017 1:34 PM NABORS Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix

MW-2

Time Series

500

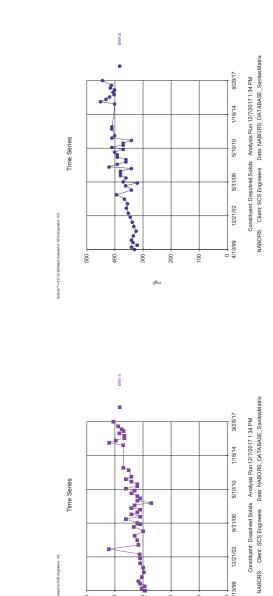
400

MW-1R

300

μ6w

200


100

Constituent: Dissolved Solids Analysis Run 127/2017 1:34 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

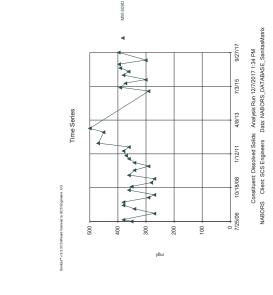
5/10/10 1/18/14 9/28/17

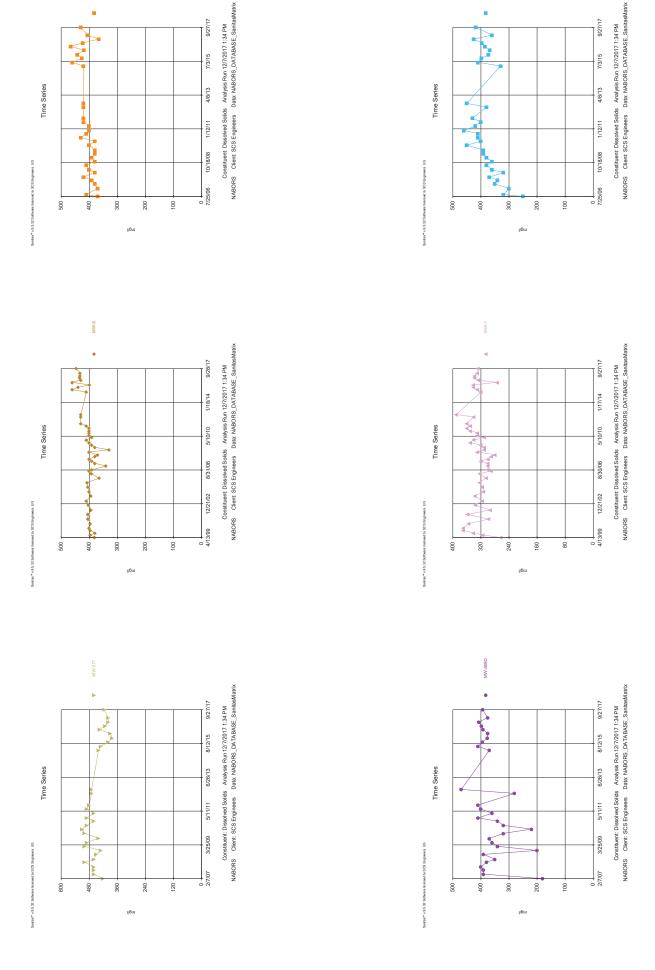
12/21/02 8/31/06

0 4/13/99

300

400


200


լ/6w

100

Time Series

4/13/99 12/21/02 8/31/06 5/10/10

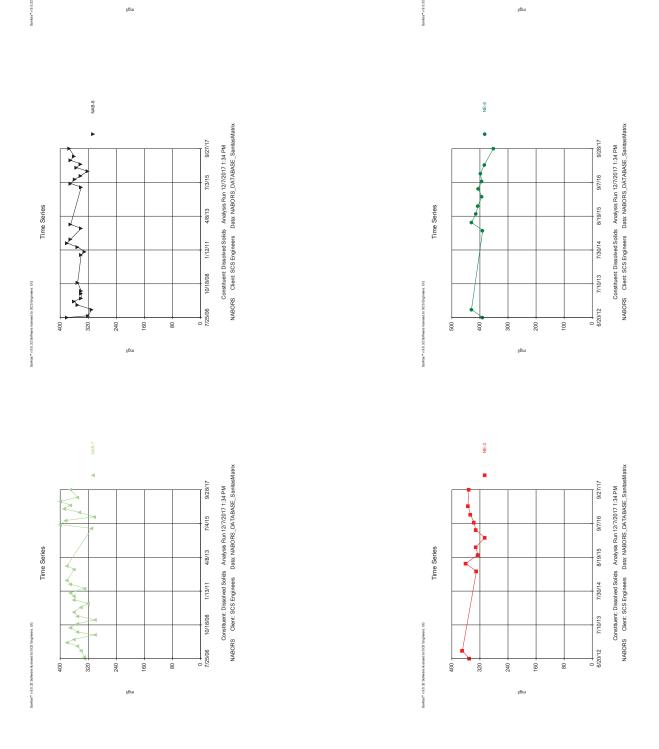
NAB-3

Time Series

7/3/15 9/27/17

4/8/13

10/18/08 1/12/11


MW-633D

Time Series

7/3/15 9/27/17

4/8/13

10/18/08 1/12/11

NE-4

Time Series

400

320

240

160

80

Constituent: Dissolved Solids Analysis Run 12/7/2017 1:34 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

NE-2

Time Series

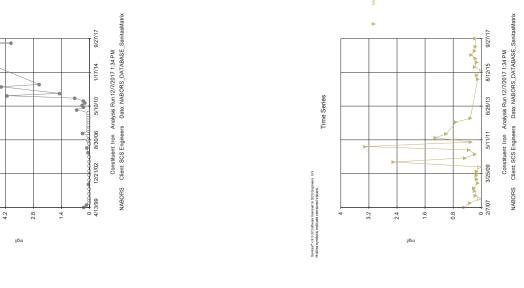
4000

3200

2400

1600

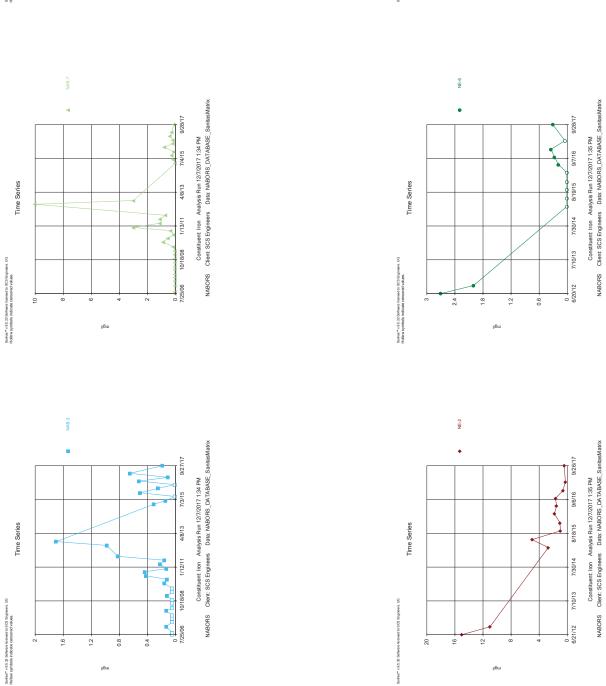
800


Constituent: Dissolved Solids Analysis Run 12/7/2017 1:34 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMartix

9/6/16 9/26/17

8/18/15

6/21/12 7/10/13 7/30/14



MW-1

5.6

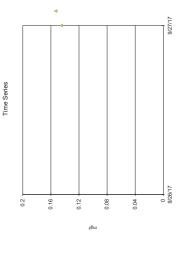
Time Series

NAB-8

40

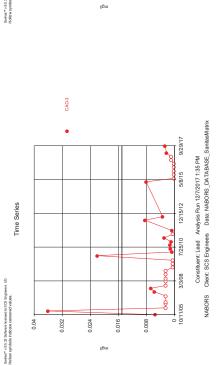
30

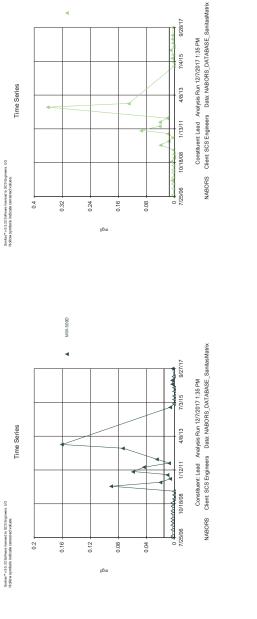
20


∥6w

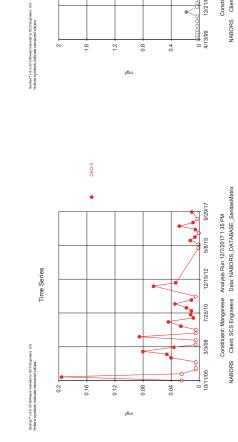
6

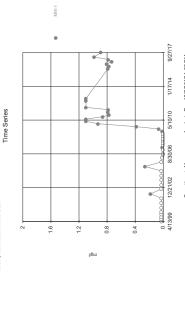
Time Series


Constituent: Iron Analysis Run 12/7/2017 1:34 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMartix


7/25/06 10/18/08 1/12/11

NE-4


Constituent: Iron Analysis Run 12/7/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


NAB-7

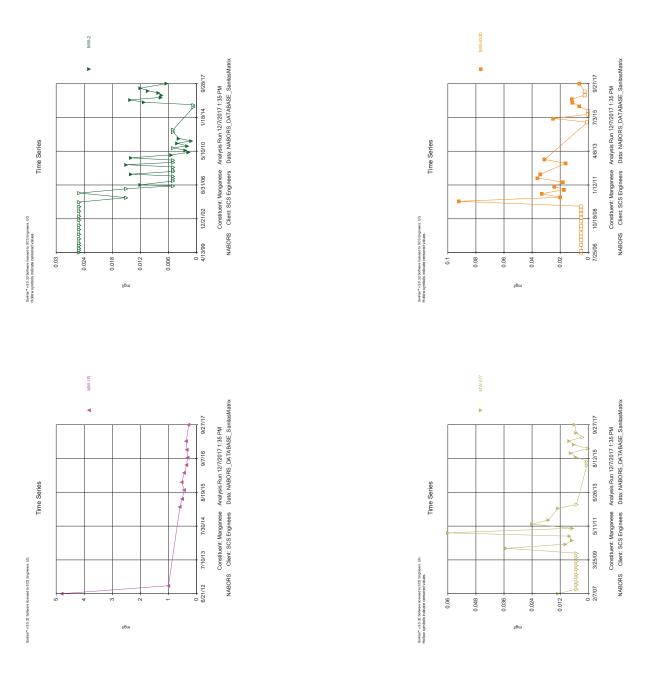
Time Series

CAO-1

Time Series

Constituent: Manganese Analysis Run 127/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Manganese Analysis Run 12/7/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DaTABASE_SanitasMatrix


5/8/15 9/28/17

7/25/10 12/15/12

3/3/08

10/11/05

լ/6w

MW-509D

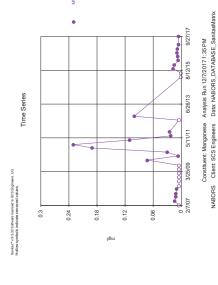
9.1

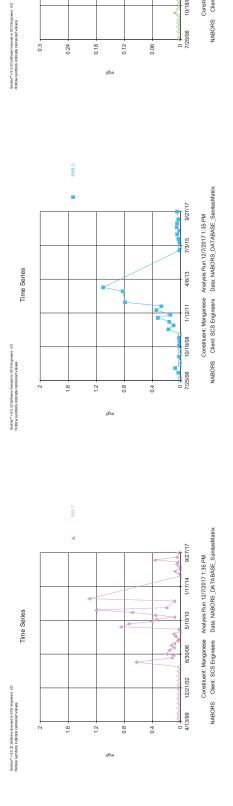
1.2

0.8

∥6w

0.4

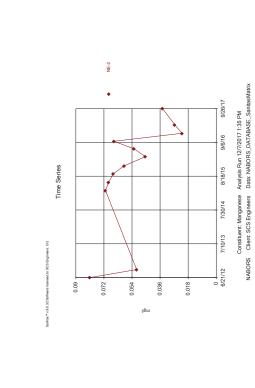

Time Series


Santas*v.9.532 Software formed to SCS Engineers. UG Hollow symbols indicate censored values. Constituent: Manganese Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMartix

4/8/13

1/12/11

10/18/08

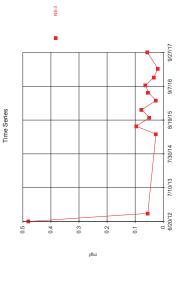

NAB-7

Time Series

Constituent: Manganese Analysis Run 1277/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

4/8/13

10/18/08 1/13/11



NAB-8

0.64

Time Series

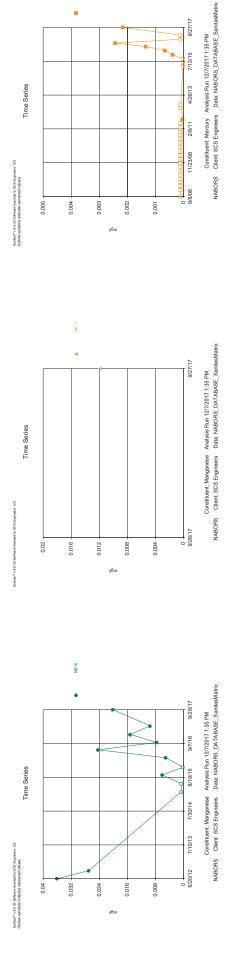
Sarius" v.95.22 Software licensed to SCS Engineer. US Hollow symbols indicate censored values.

Constituent: Manganese Analysis Run 12/7/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Manganese Analysis Run 12/7/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DaTABASE_SanitasMatrix

7/3/15 9/27/17

1/12/11 4/8/13

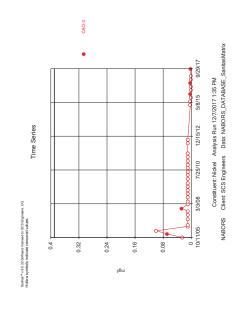

0 4444

0.32

0.48

լ/6w

0.16



MW-633D

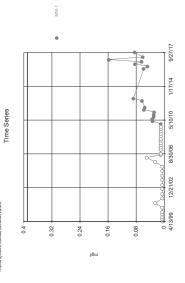
2/8/11

11/23/08

Time Series

CAO-1

0.32

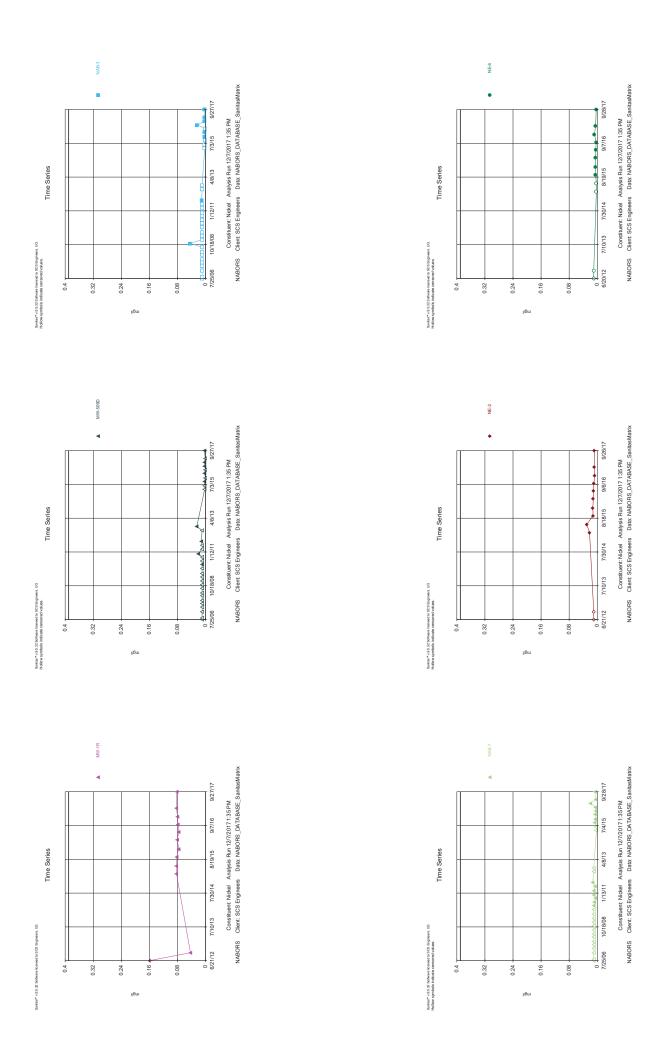

0.24

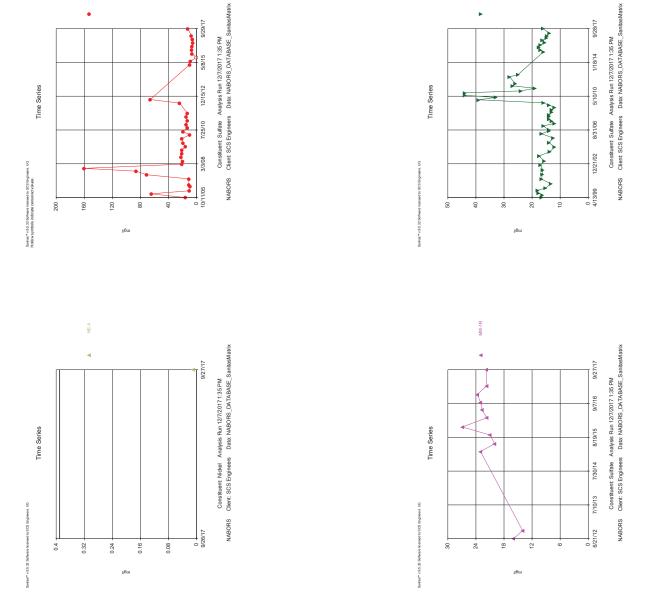
լ/6w

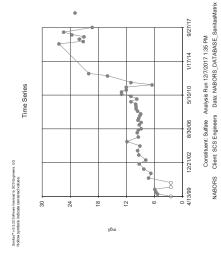
0.16

Time Series

Saritas* v.95.22 Sofware licensed to SCS Engineers. US Hollow symbols indicate censored values.

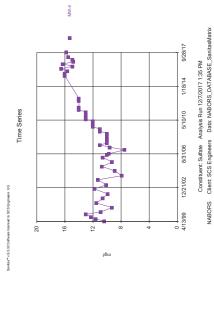


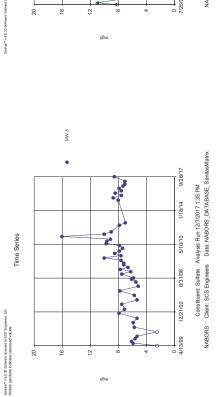

Santas" v.9.5.32 Software foreset to 9CS Engineers, UG Hollow symbols indicate censored values.


Constituent: Nickel Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix

Constituent: Nickel Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix 7/25/10 12/15/12

10/11/05

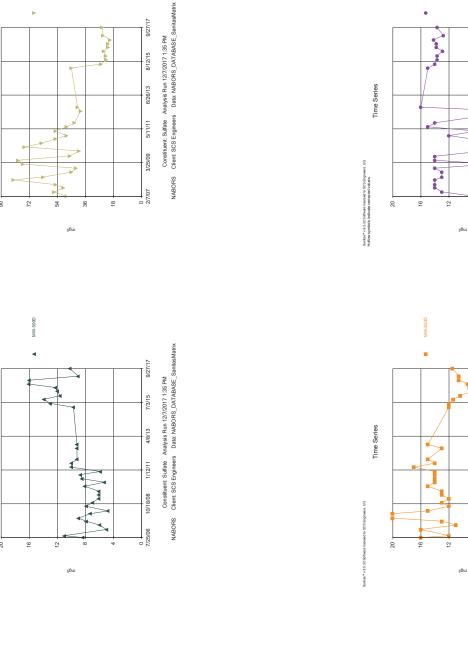


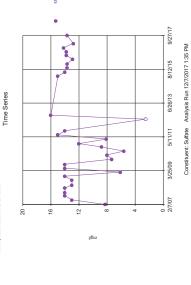


MW-1

CAO-3

MW-2




MW-577

Time Series

Time Series

6/26/13 8/12/15 9/27/17

Constituent: Sulfate Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix

Oonsituent: Sulfate Analysis Run 12/7/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Sulfate Analysis Run 12/7/2017 1:35 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

1/18/14 9/28/17

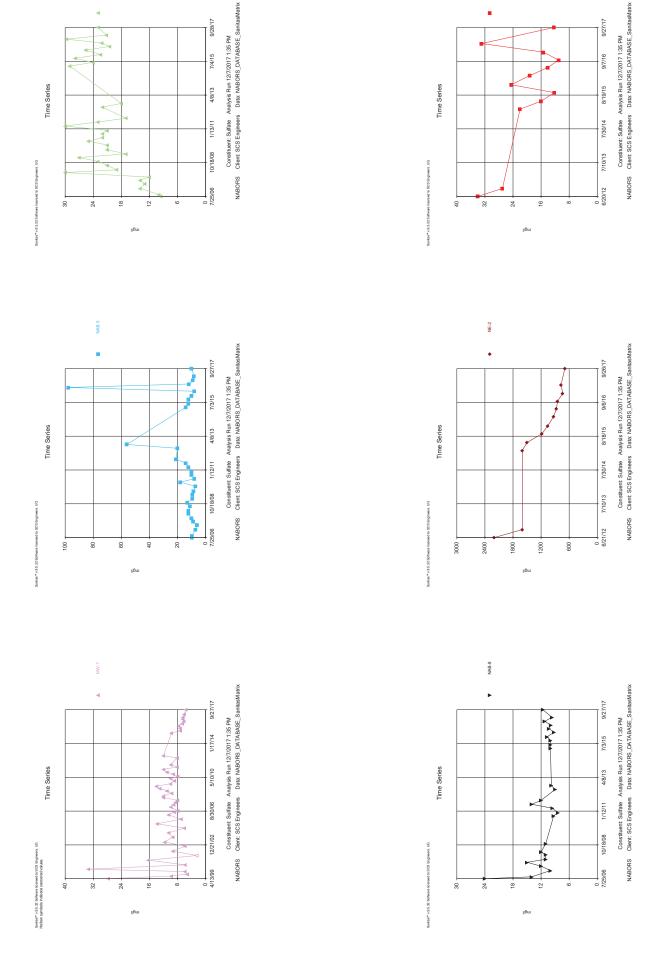
12/21/02 8/31/06 5/10/10

0 4/13/99

7/3/15 9/27/17

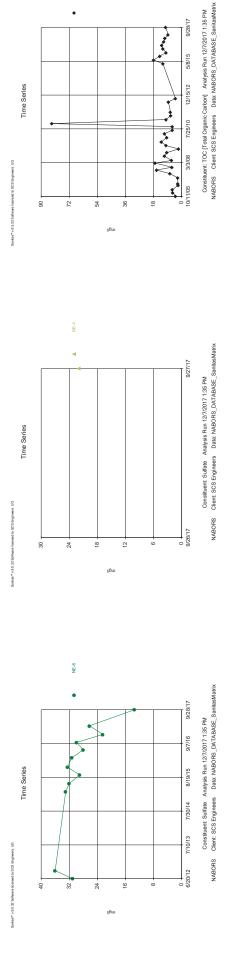
10/18/08 1/12/11 4/8/13

7/25/06

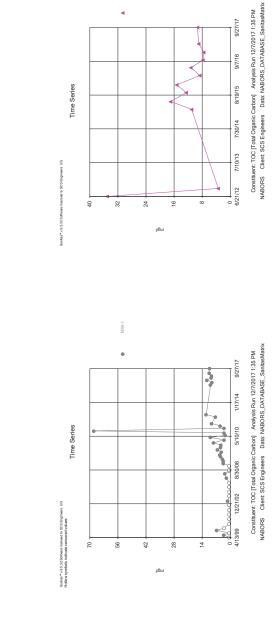

MW-6

7.2

5.4


Time Series

Saritas* v.95.22 Sofware licensed to SCS Engineers. US Hollow symbols indicate censored values.



NE-3

NAB-7

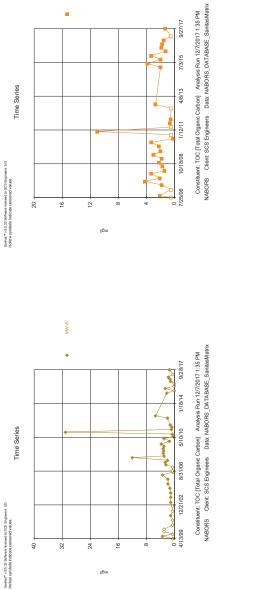
CAO-1

CAO-3

12

Į/6w

Time Series


Saritas* v.95.22 Sofware licensed to SCS Engineers. US Hollow symbols indicate censored values.

Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

10/11/05

MW-1R

Time Series

NAB-3

Time Series

Santas*"v.9.5.32 Software froms of to SCS Engineers. UG Hollow symbols indicate censored values.

Time Series

901

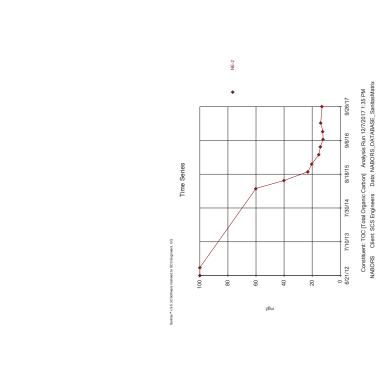
80

MW-633D

- 09

μ6w

40


20

Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMarrix

10/18/08 1/12/11

7/3/15 9/27/17

4/8/13

Time Series

Sarius" v.95.22 Software licensed to SCS Engineer. US Hollow symbols indicate censored values.

NAB-8

24 -

NE-3

- 91

12

Į/6w

Time Series

Santas" v.9.5.32 Software foreset to 9CS Engineers, UG Hollow symbols indicate censored values.

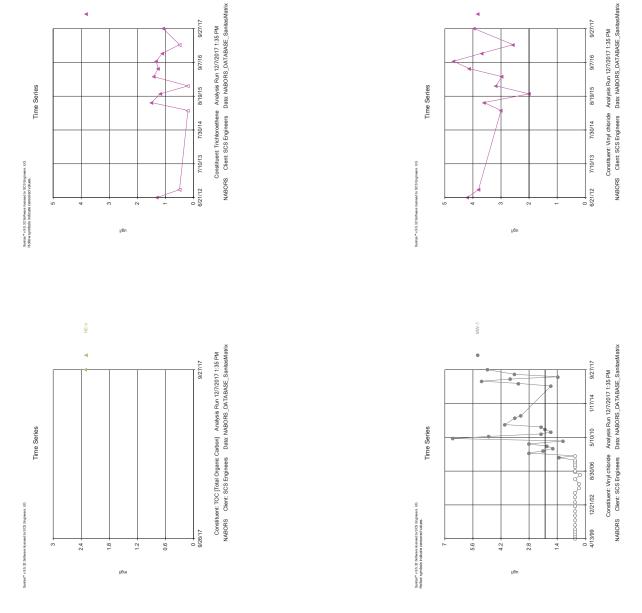
Constituent: TOC [Total Organic Carbon] Analysis Run 1277/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

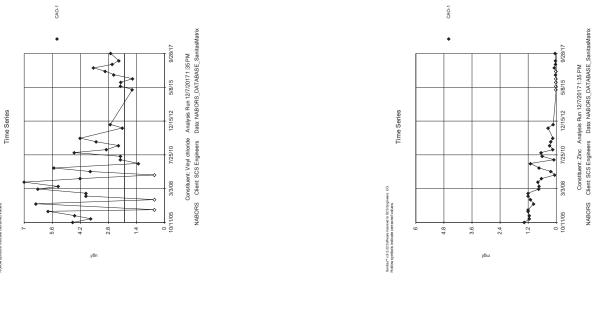
Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 1:35 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

7/3/15

4/8/13

7/25/06 10/18/08 1/12/11

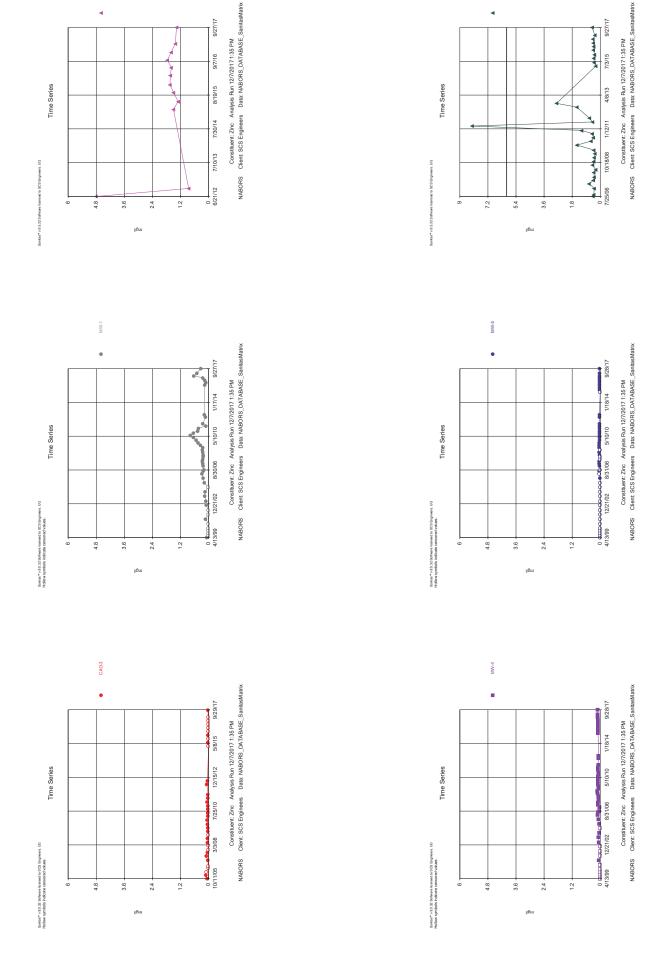

12


լ/6w

8

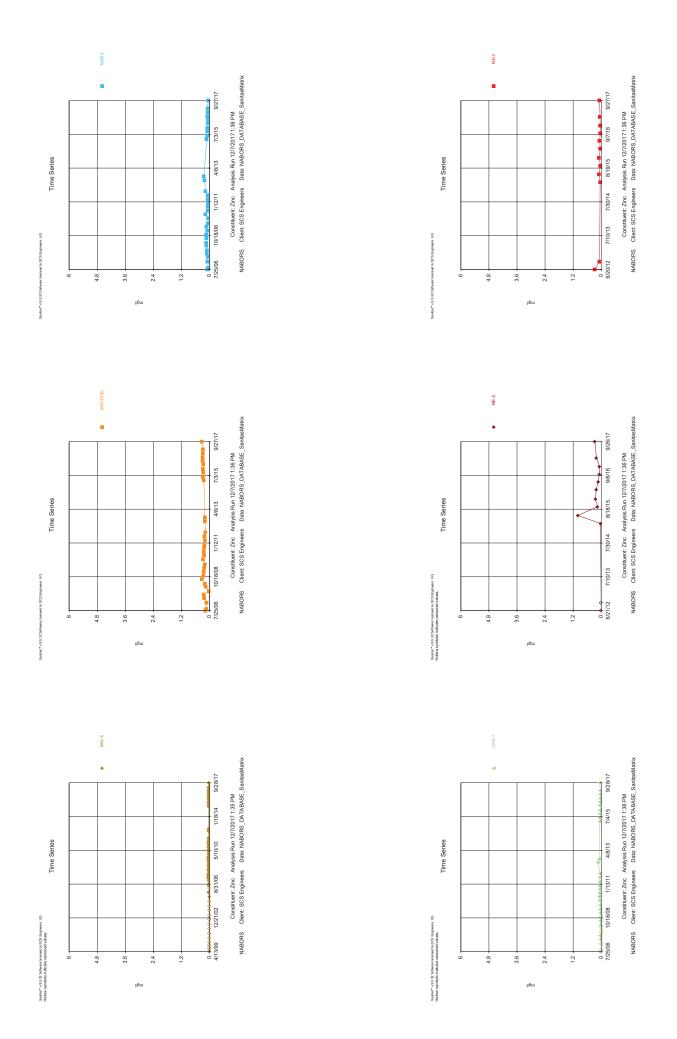
9/7/16 9/27/17

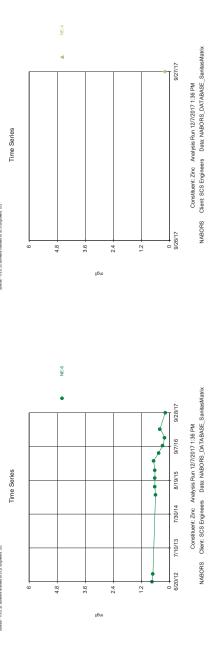
7/10/13 7/30/14 8/19/15



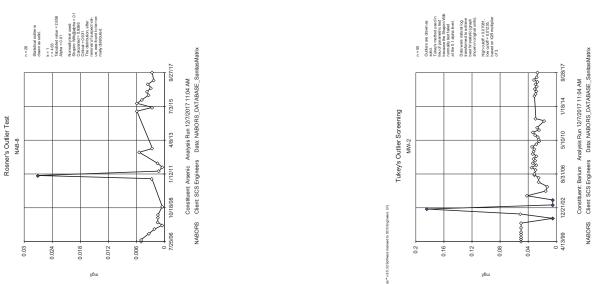
MW-1R

MW-1R


9/7/16 9/27/17




MW-1R


MW-509D

A4444444

n = 36 demonstrates are demonstrated orders are demonstrated orders are 2.02 are 2.02 April 2.02 April 2.02 April 2.03 Ap

Rosner's Outlier Test CAO-1

0.3

0.24

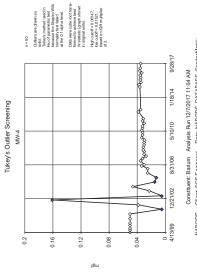
0.18

0.12

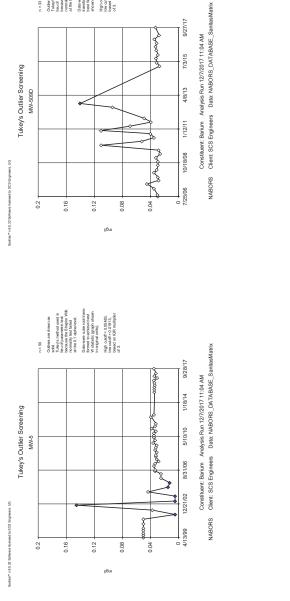
увш

0.06

Constituent: Barium Analysis Run 12/7/2017 11:04 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


5/8/15 9/28/17

12/15/12


7/25/10

3/3/08

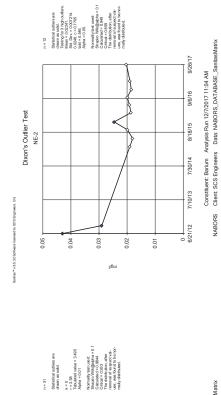
10/11/05

Constituent: Barium Analysis Run 12/7/2017 11:04 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

7/3/15 9/27/17

4/8/13

1/12/11


Tukey's Outlier Screening

0.3

Tukey's Outlier Screening MW-509D

0.24

n = 33 The factor is clean as sold: They's mayor used in They's mayor used in Decause the Sixpiro (Mar Because the Sixpiro (Mar at the O. I again their at the O. I again their they was related by a chine they was sixpirod or a chine they may or a chine they called in CO 2022. I con cube in CO 2022. I con cube in CO 2022. I con cube in CO 2022.

Rosner's Outlier Test MW-689D

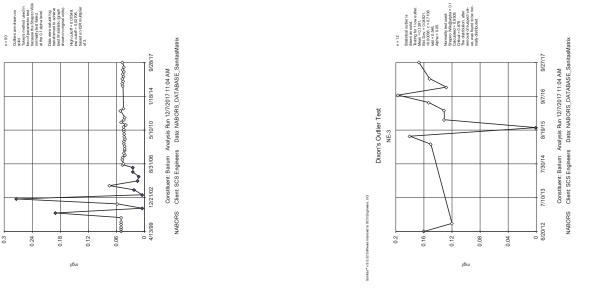
0.072 -

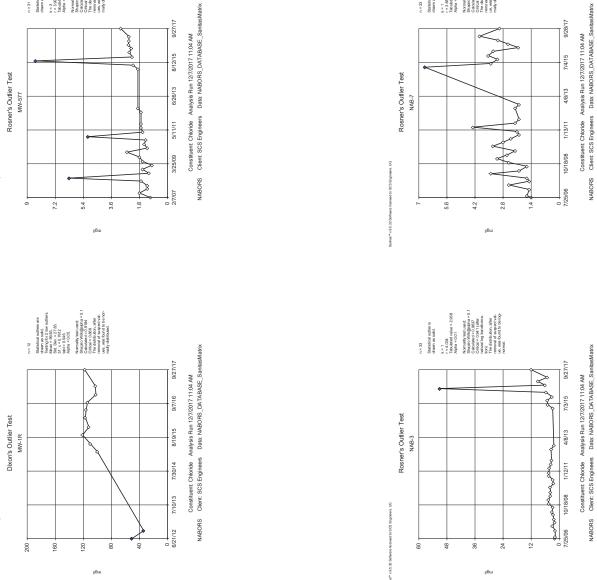
0.09

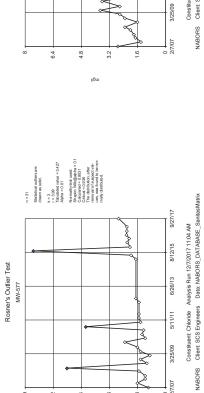
0.036

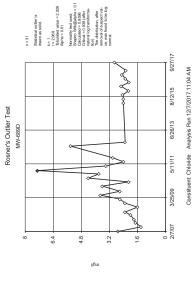
0.018

0.054

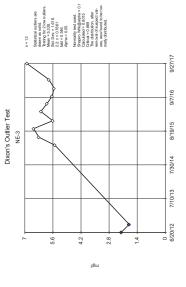

Constituent: Barium Analysis Run 12/7/2017 11:04 AM Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


NABORS


5/11/11 6/26/13 8/12/15 9/27/17


3/25/09

2/7/07



n = 33

Gramma seciel.

First Signature as seciel.

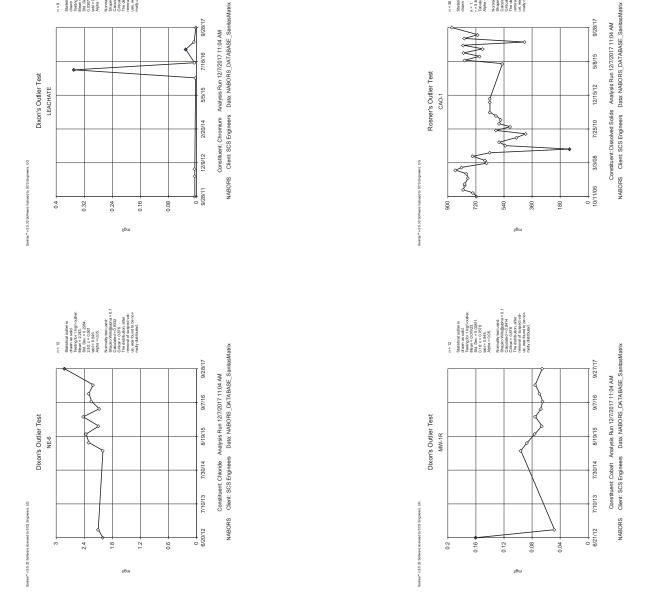
First Signature as 2338

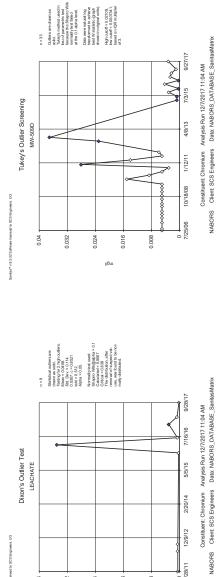
Alpha of Old Signature as 2338

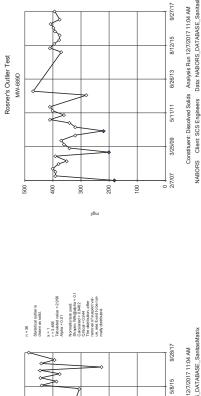
Normally New at most.

Continued or 100015

Con

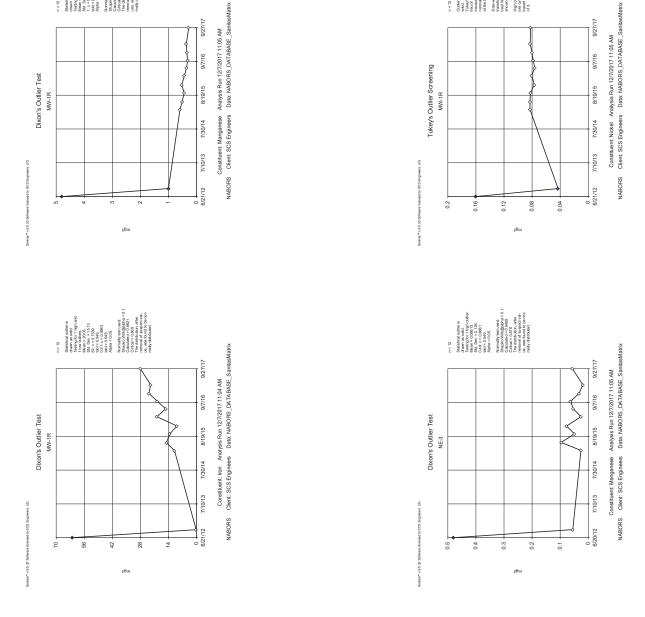

Rosner's Outlier Test NAB-7

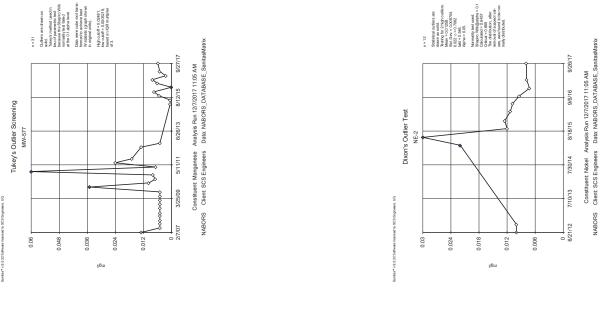

Constituent: Chloride Analysis Run 12/7/2017 11:04 AM NABORS Clent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


7/4/15 9/28/17

1/13/11 4/8/13

10/18/08





n = 31

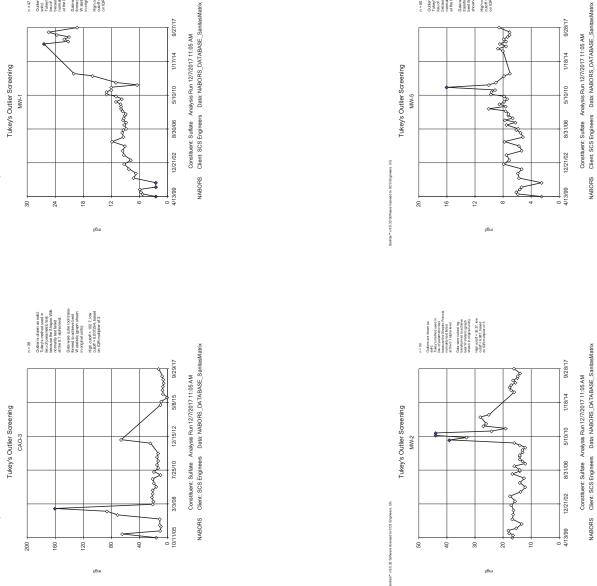
description of the second of the sec

Constituent: Dissolved Solids Analysis Run 12/7/2017 11:04 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

on a 12.

Outlete are drawn as solid.

Outlete are drawn as solid.


December are broad used in the presence are Steppic VMR.

December are of a steppic VMR.

December are of a steppic VMR.

The of a steppic

n = 15. Belliot Collect are diment as sold. Harby 102 Mps collect. Both 102 Mps collect

nn = 15.2

Saisséan cultiers aven
dawn as saide.

dawn as saide.

Ann as saide.

Mean = 21.25

Ann as saide.

Calculated = 0.56

Merransity assurant

Ann assurant defaurant or ann assurant

Merransity assurant defaurant defaur

Dixon's Outlier Test MW-1R

Tukey's Outlier Screening

MW-1

24

n = 47.

Coulties are drawn as solid.

Solid.

Coulties are drawn as solid.

S

9

12

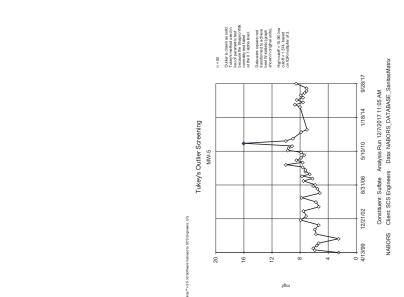
увш

Constituent: Sulfate Analysis Run 12/7/2017 11:05 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

9/7/16 9/27/17

8/19/15

7/30/14


7/10/13

6/21/12

1/17/14 9/27/17

5/10/10

90/06/8

Rosner's Outlier Test MW-7

n = 50 demon as edid. demon as edid. - 4 gr 5 demon as edid. - 4 gr 5 demon as edid. Aphr 0.01 Normality lest used: Normality lest used: Normality lest used: Orderal et 0,00 st 10 demon as demon as es 15 demon as edit post order entrol of support values and support values.

24

Į/6w

Constituent: Sulfate Analysis Run 12/7/2017 11:05 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

12/21/02 8/30/06 5/10/10 1/17/14 9/27/17

n = 12

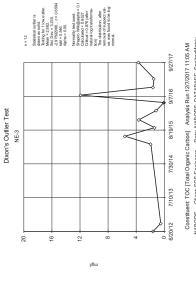
denomination of the property of the pr

24

- 91

Dixon's Outlier Test NE-6

Constituent: Sulfate Analysis Run 12/7/2017 11:05 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


9/7/16 9/28/17

8/19/15

7/30/14

7/10/13

6/20/12

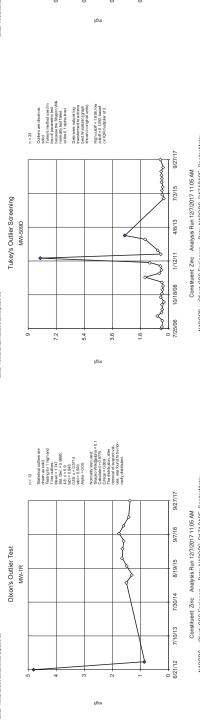
Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 11:05 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

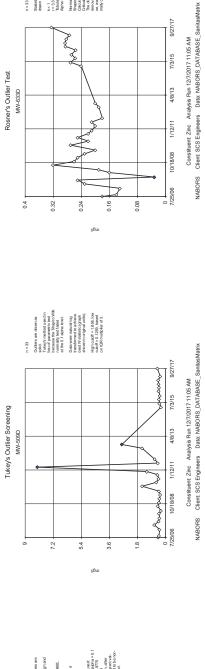
Constituent: TOC [Total Organic Carbon] Analysis Run 127/2017 11:05 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 11:05 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

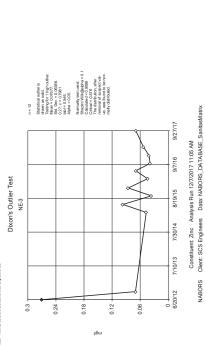
5/8/15 9/28/17

7/25/10 12/15/12

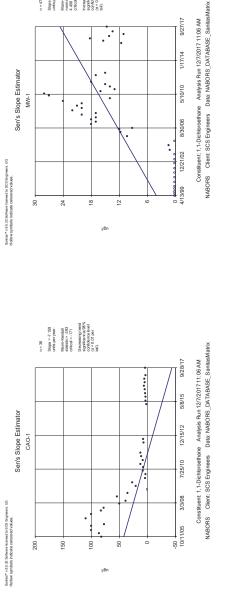

10/11/05


7/16/16 9/28/17

5/5/15


12/9/12 2/20/14

80



n = 33 September of the first september of t

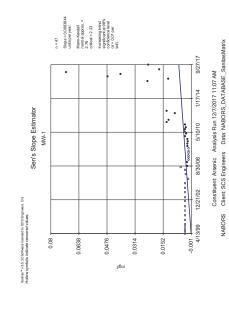
n = 33 Stope = 0.1221 units per year. Mann-Kend all sab side = 296 critical = 151 increasing tend significant at 99% on indence level (o = 0.01 per tal).

2.4

n = 47
Stope = 1,115
units per year.
Mann-Kendal
montal approc. = 4,456
In cratical = 2,33
In crassing end
significant at 85% confidence level
(a = 0.01 per
tal).

8.

1.2


9.0

Sen's Slope Estimator MW-633D

Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 11:06 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

4/8/13

10/18/08 1/12/11

n = 36 Stope = 0.004153 units per year. Mann-fendall statistica 305 citical = 17.1 increasing tend confidence its 95, confidence its 91, confidence its 91, confidence its 91, confidence its 91, confidence its 91,

0.16

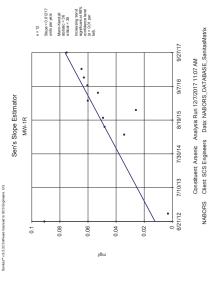
0.12

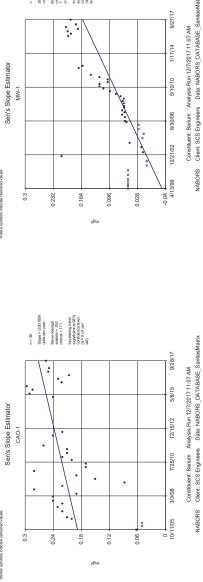
0.08

0.04

Sen's Slope Estimator CAO-1

Sartus" v.95.22 Software licensed to SCS Engineers. US Hoflow symbols indicate censored values.


•


NABORS

Constituent: Arsenic Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

7/25/10 12/15/12

10/11/05

n = 50
Stope = -0.0006305
units per year.
Intervential procession of the procession

Sen's Slope Estimator

Santas** v.9.5.32 Software formed to SCS Engineers. UG Hollow symbols indicate censored values.

0.2

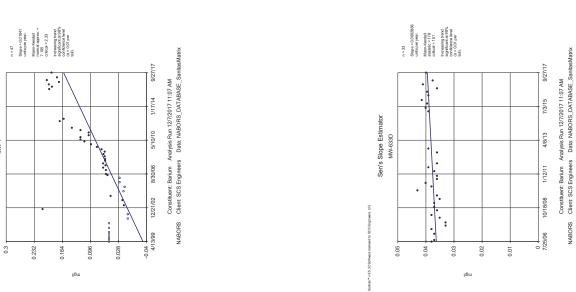
0.16

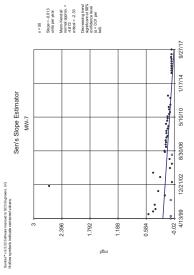
0.12

<u>l</u>/6ω

90.0

0.04


Constituent: Banum Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


5/10/10 1/18/14 9/28/17

12/21/02 8/31/06

°

.....

n=31 Stope = -0.0005988 units per year. Amer-fectalist statistica = 212 catical = -138 Decreasing trend confidence at 98% confidence at 98

0.032 -

0.024 -

0.016

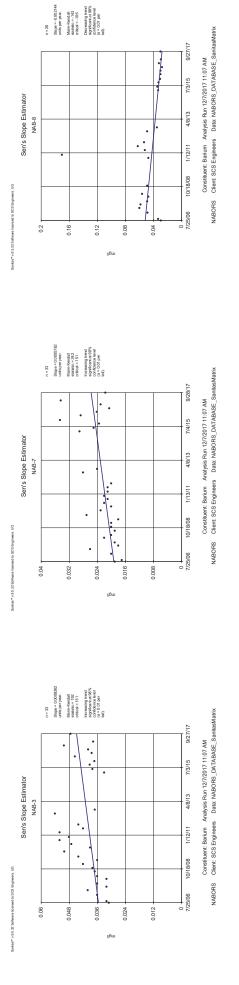
0.008

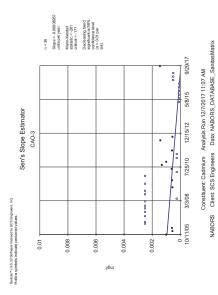
Sen's Slope Estimator MW-577

Constituent: Barium Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

NABORS

Constituent: Barium Analysis Run 12/7/2017 11:07 AM Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

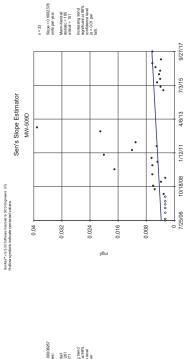

NABORS


6/26/13 8/12/15 9/27/17

5/11/11

3/25/09

2/7/07


n = 36
Stope = 0.252
units per year.
units per year.
ann-fecralist assistic = 330
critical = 177
bircosaling tend significant at 88% confidence is 88% confidence is 98% in 0.01 per 181).

4.8

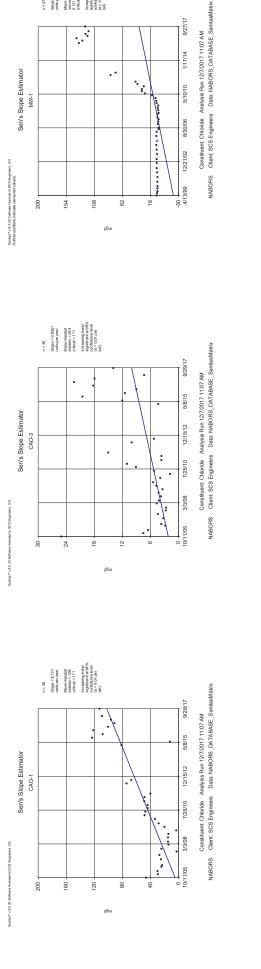
3.6

Sen's Slope Estimator CAO-1

Sartus" v.95.22 Software licensed to SCS Engineers. US Hoflow symbols indicate censored values.

Constituent: Cadmium Analysis Run 127/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

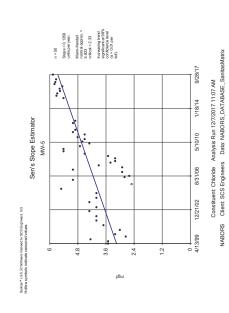
Constituent: Benzene Analysis Run 12/7/2017 11:07 AM NABORS Clent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


5/8/15 9/28/17

7/25/10 12/15/12

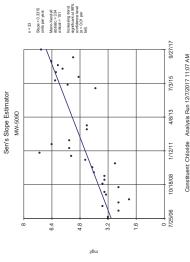
3/3/08

10/11/05


:

Stope = 3.044
units per year.
Mann-Kand all
mornis approc. = 5.131
architect = 2.33
increasing wind
agorificant at 99% or onfidence level
(or = 0.01) per
tel).

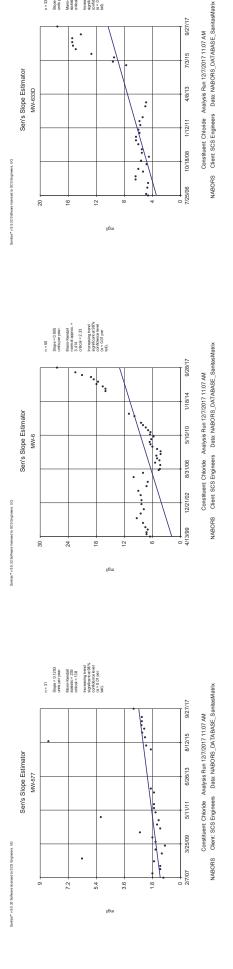
Sen's Slope Estimator MW-1


•••

n = 50 Stope = 0.2122 units per year. A foot critical = 2.33 increasing tend significan at 89% confidence level (a = 0.01 per tall).

Sen's Slope Estimator MW4

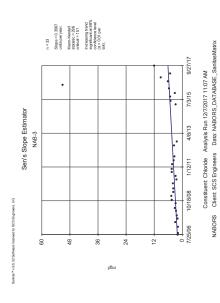
Saritas" v.95.22 Software licensed to SCS Engineers. US Hollow symbols indicate censored values.


Constituent: Chloride Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Chloride Analysis Run 12/7/2017 11:07 AM Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

NABORS 0 + 4/13/99

12/21/02 8/31/06 5/10/10


:

n = 33 Stope = 0.6149 units per year. Mann-femalal sessissics = 292 oritical = 151 increasing tend sprintcart at 98% ountdates level to 0.01 per

.

4/8/13

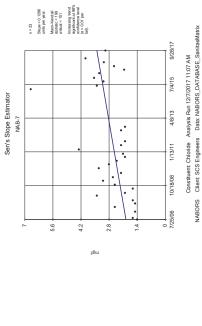
n= 50 Stope = 42.2788 When peryear. When peryear. The peryear. The peryear of the per

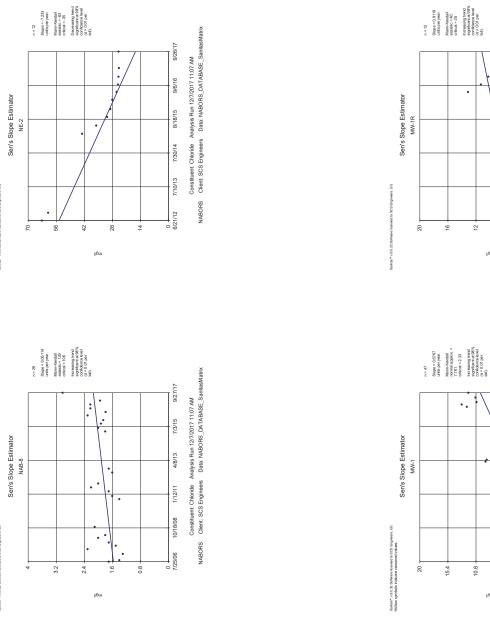
Sen's Slope Estimator MW-7

Saritas" v.95.22 Software licensed to SCS Engineers. US Hollow symbols indicate censored values.

:

Constituent: Chloride Analysis Run 12/7/2017 11:07 AM Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


NABORS


5/10/10

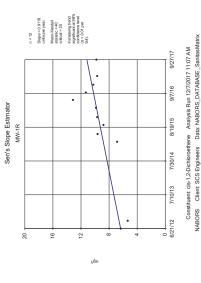
12/21/02 8/30/06

0 + 4/13/99

:

Constituent: Chlorobenzene Analysis Run 12/7/2017 11:07 AM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

4/13/99 12/21/02 8/30/06

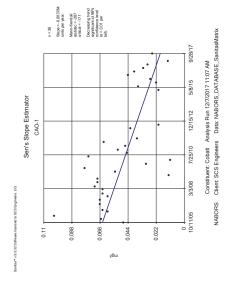

Sepse - 0.0448
units per year.
Mann-Kend all
moral approc. = 6.402
drilcula = 2.33
increasing wand
againfoart at 98% on didence level
(a = 0.01) per
tel).

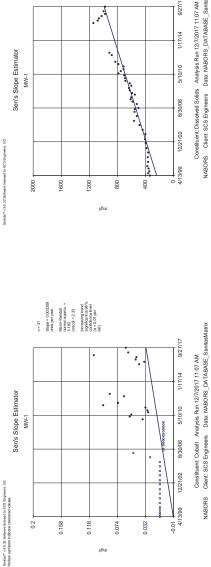
2.4

8.

1.2

Sen's Slope Estimator MW-1





Constituent: cis-1,2-Dichlorcethene Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

4/13/99 12/21/02 8/30/06 5/10/10

10.8

n = 50 Stope = 4.611 units per year. Marn-Kand all morals agrecu. = 6.374 orincal = 2.33 increasing vand agrificant at 99% confidence level (ca = 0.01) per tail).

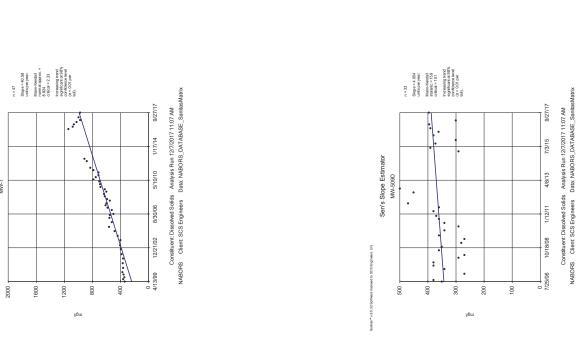
300

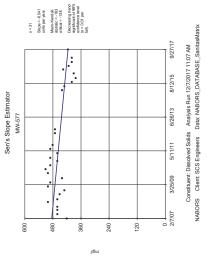
200

μ6w

100

Sen's Slope Estimator MW-4


200


400

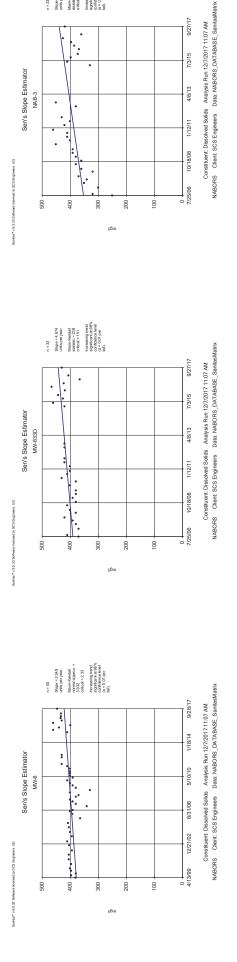
Constituent: Dissolved Solids Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

5/10/10

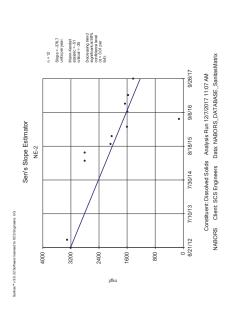
12/21/02 8/31/06

n = 50 Stope = 5.514 units per year. Marn-Kendell normal approx = 6.762 cnitcal = 2.33 increasing tend significant at 89% confidence level (a = 0.01 per tall).

300


200

լ/6w

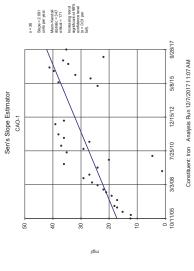

400

Sen's Slope Estimator MW-5 Constituent: Dissolved Solids Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

0 | 1 4/13/99 12/21/02 8/31/06 5/10/10

n = 33
Stope = 7,728
units per year.
units per year.
man-fordall
sabsiste = 205
oritical = 151
oritical = 152
oritical = 158
o

n = 33 Stope = 3.399 units per year. Mann-fendali statistica | 164 critical = 151 increasing tend significant at 89% confidence at 89% confidence at 89% confidence at 89%

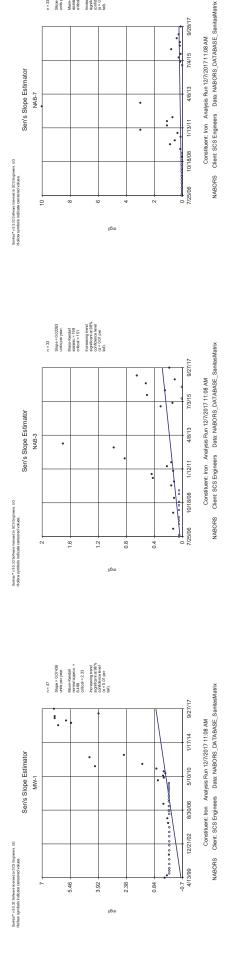

320

240 -

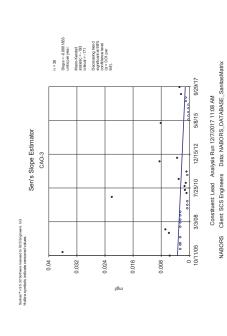
160

լ/6w

Sen's Slope Estimator NAB-7


Constituent: Iron Analysis Run 12/7/2017 11:07 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Discolved Solids Analysis Run 12/7/2017 11:07 AM NABORS Clent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

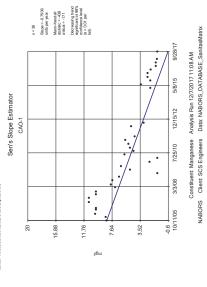

7/4/15 9/28/17

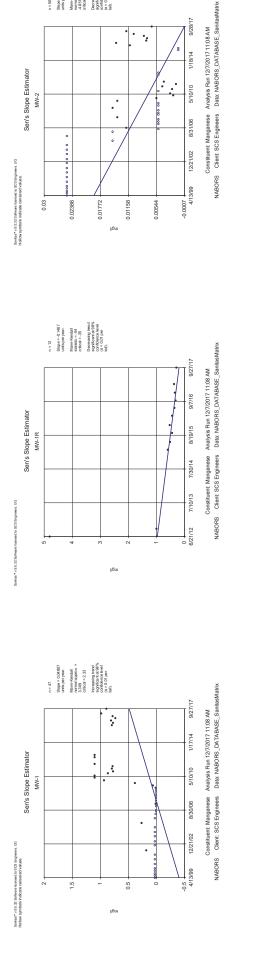
4/8/13

1/13/11

n = 33
Stope = 0.01674
units per year.
Mann-fordall sebissic = 188
oritical = 151
oritical = 151
significant at 188
confidence investigation at 188
confidence investigation at 189
confidence

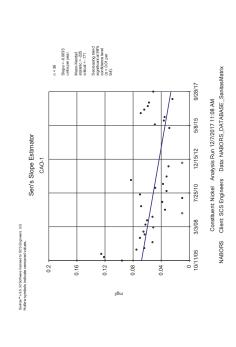
n = 12 Stope = -1,955 units per year. Mann-foodbill statistics = -46 critical = -35 Decreasing tend Decreasing tend confidence is 98% confidence is 98% confidence is 98%


15.6


11.2

Sen's Slope Estimator

Constituent: Iron Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

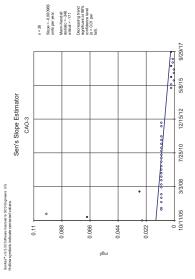

6/21/12 7/10/13

n = 50 Sappe = -0.00 1071 units per year. Mann-Kend all recret approx. = -4.851 ordical = 2.33 Decreasing trend significant as 1984, confidence level (or = 0.01 per tel).

•:

n = 12
Stope = -0.01157
units per year.
Ambri-Kordáll
astadiscie = -40
crifical = -35
Cornasing tend
significan at 88%
confidence is 98%
confidence is 98%

0.08

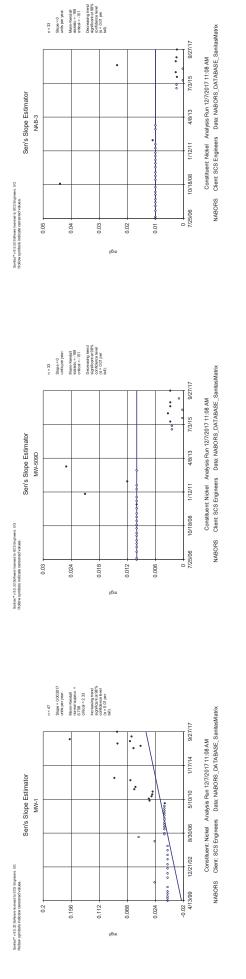

0.06

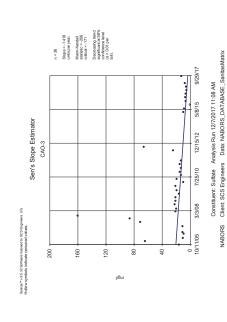
0.04

Į/6w

0.02

Sen's Slope Estimator NE-2


Constituent: Nickel Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Constituent: Manganese Analysis Run 1277/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

7/30/14 8/18/15

7/10/13

0 6/21/12

n = 33 Stope = -0.0002881 units per year. Mann-Kerdall statistica = 219 catecal = -151 Decreasing trend confidence in 95% confidence in 91% confidence in 91

Sen's Slope Estimator NAB-7

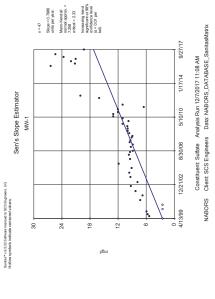
Saritas" v.95.22 Software licensed to SCS Engineers. US Hollow symbols indicate censored values.

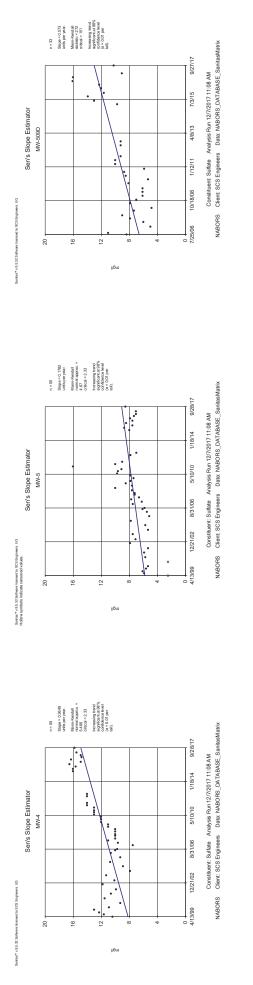
0.02

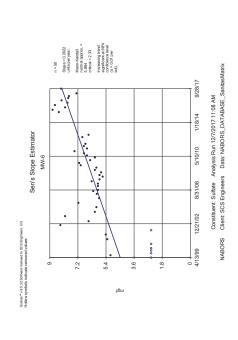
0.016

0.012

0.008


0.004


Constituent: Nickel Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

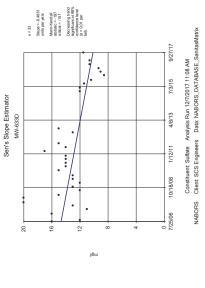

4/8/13

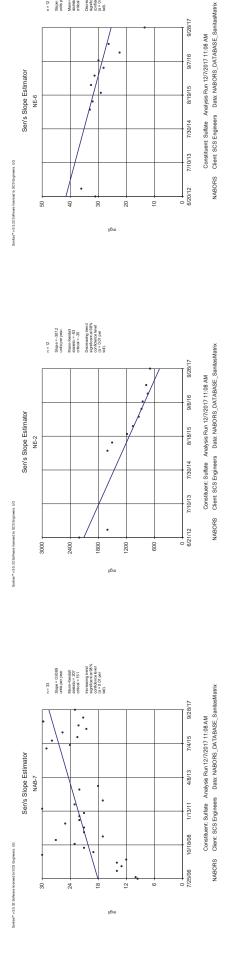
1/13/11

10/18/08

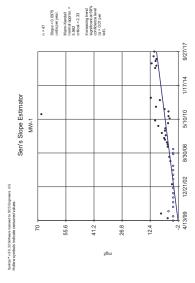
n = 31 Stope = 3,707 units per year. Amm-Kendall stabilistic = 2,71 citicul = -1,38 Decreasing trend sprifficant as 95% confidence level (e = 0.01 per 1991).

Sen's Slope Estimator MW-577


Constituent: Sulfate Analysis Run 12/7/2017 11:08 AM Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix 5/11/11 6/26/13 8/12/15 9/27/17


NABORS

3/25/09

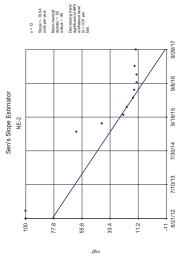

0 2/7/07

լ/6w

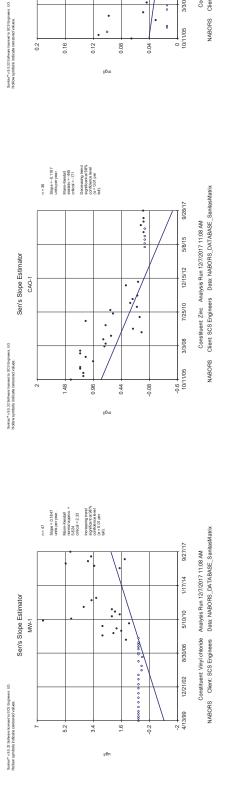
n = 12 Sope = -3.05 8 units per year. Menn-Kendall Sabistic = -44 critical = -35 Decreasing viewd significant at 95% confidence level (a = 0.01 per tal).

n = 36 Stope = 0.5118 units per year. Mann-fordall statistica 208 critical = 17.1 increasing tend significant at 8% confidence is 9% confidence is 9%.

72


լ/6w

Sen's Slope Estimator CAO-1



Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

5/8/15 9/28/17

Constituent: TOC [Total Organic Carbon] Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

n = 36 Soppe = -0.002856 units per ye ar. March-Kerdall stablece = 215 oritical = -171 Ober cessing frend applicant at 18% on indexes level and on the per series

Sen's Slope Estimator CAO-3

Constituent: Zinc Analysis Run 12/7/2017 11:08 AM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

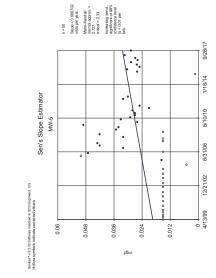
3/3/08

n = 47 Stope = 0.00428 units per year. Marn-Kendali morali approx = 4.821 citical = 2.33 increasing tend significant at 89% confidence level (a = 0.01 per tall).

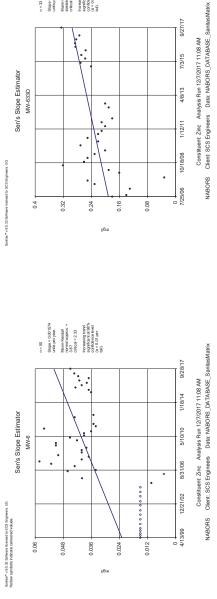
0.64

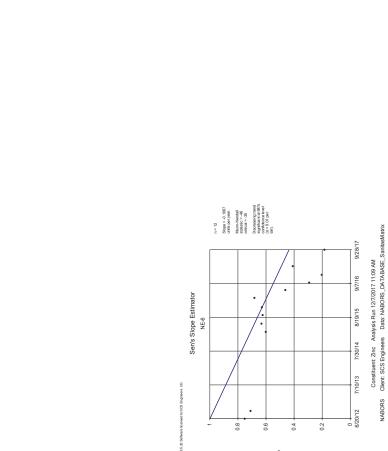
0.48

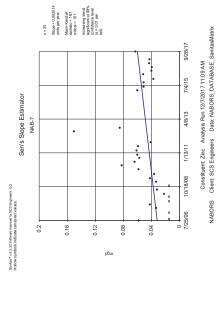
0.32


Sen's Slope Estimator

Saritas" v.95.22 Software licensed to SCS Engineers. US Hollow symbols indicate censored values.




Constituent: Zinc Analysis Run 12/7/2017 11:08 AM NABORS Clent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


8/30/06 5/10/10 1/17/14 9/27/17

Constituent: Zinc Analysis Run 12/7/2017 11:08 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

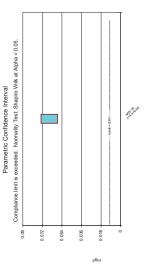
n = 33 Stope = 0.000263 units per year. March-Sergal statistics = 22.4 critical = 1.51 hronesing trend conflictore at 8% conflictore at 8%

Compliance limit is exceeded. Normally Test: Shaptro Wilk at Alpha = 0.05.

Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 11:18 AM NABORS Glient: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Saritas "v.95.32 Software Toansed to SCS Engineers. UG

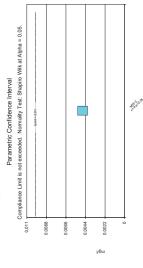
Compilance limit is exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.


Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 11:18 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

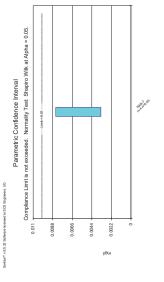
as" v.95.32 Software licensed to SCS Engineers. UG

Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 11:18 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

as "v.95.32 Software Ioensed to SCS Engineers. UG


Constituent: Areanic Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

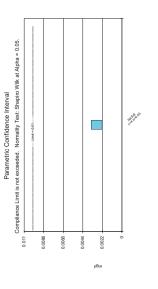
Parametric Confidence Interval


Compliance limit is exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

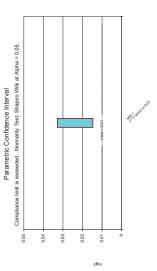
Constituent: 1,1-Dichloroethane Analysis Run 12/7/2017 11:18 AM NABORS Clent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

State of the State

Constituent: Arsenic Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix



Constituent: Arsenic Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Non-Parametric Confidence Interval Compliance limit is exceeded.

0.24 0.18 0.12 0.06

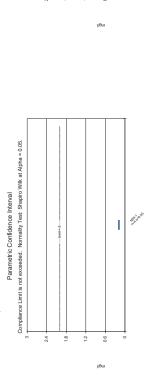
Constituent: Arsenic Analysis Run 12/7/2017 11:19 AM NABORS Cilent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

to SCS Engineers. UG

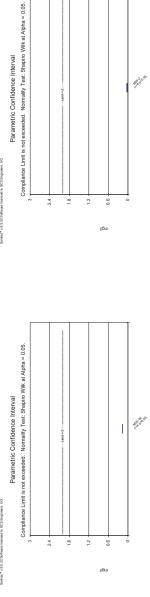
Constituent: Arsenic Analysis Run 12/7/2017 12:00 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

0

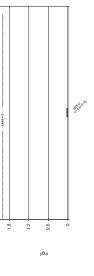

լ/6w

Constituent: Arsenic Analysis Run 12/7/2017 11:58 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

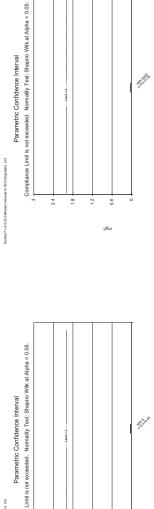

itas" v.9.532 Software Toersed to 905 Engineer

Constituent: Barlum Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

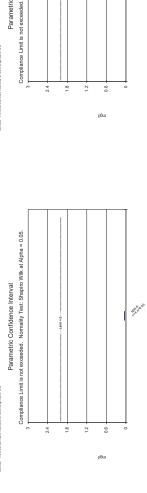

Parametric Confidence Interval
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

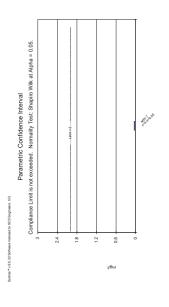
Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Maga Co

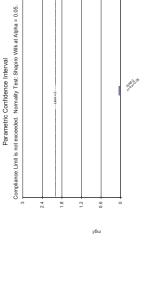
ı/6w


Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

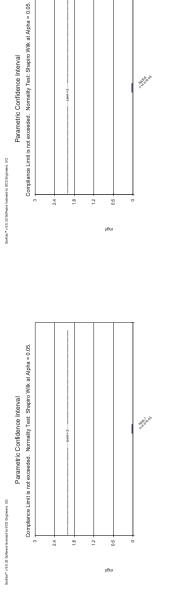


Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Parametric Confidence Interval
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.


ı/6w

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

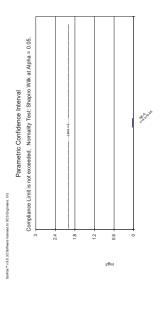
Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

HE200

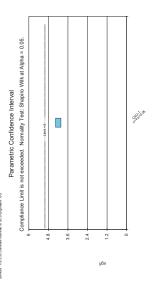

Hara do

Parametric Confidence Interval Compliance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

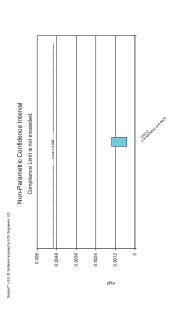
2.4 1.8 1.2 9.0

լ/6w

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

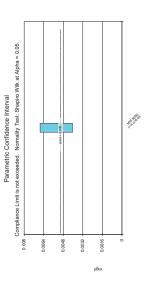

Parametric Confidence Interval
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Constituent: Barium Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

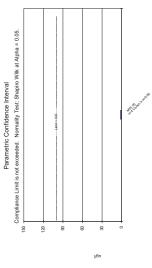
W. Soot

ı/6w



Constituent: Benzene Analysis Run 12/7/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Cadmium Analysis Run 1277/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix



Constituent: Cadmium Analysis Run 12/1/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMartix

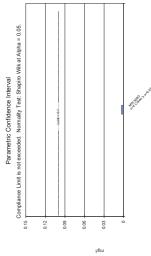
Parametric Confidence Interval Compilance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

120 -

Į/6n

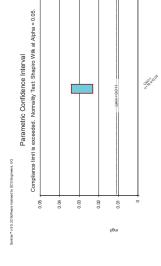
Constituent: Chlorobenzene Analysis Run 127/2017 11:20 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

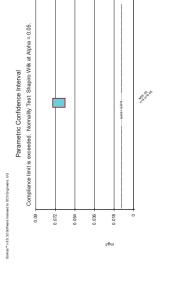
Constituent: Chlorobenzene Analysis Run 12/7/2017 11:20 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Maria de

Dankan Tu 0 5 32 0 oftenson possessed to 070 Eac

Onstituent: Cadmium Analysis Run 1277/2017 11:19 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

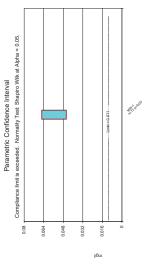

Sankas" v.9.5.32 Software Toersed to S


Constituent: Chromium Analysis Run 12/7/2017 11:20 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

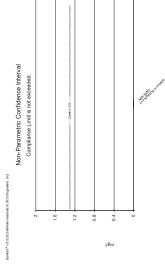
Constituent: cis-1,2-Dichloroethene Analysis Run 12/7/2017 11:20 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Cobalt Analysis Run 12/7/2017 12:13 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Parametric Confidence Interval Compilance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

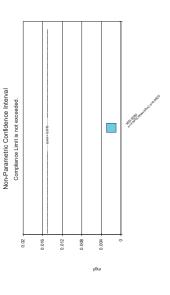

Constituent: Cobalt Analysis Run 12/7/2017 11:20 AM NABORS Cifent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: cis-1,2-Dichlorcethene Analysis Run 12/7/2017 11:20 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


EN TOO

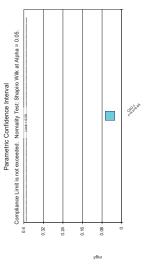
Į/6n

Constituent: Cobalt Analysis Run 12/7/2017 1:15 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix



Constituent: Copper Analysis Run 1277/2017 11:20 AM NABORS Cifent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Lead Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

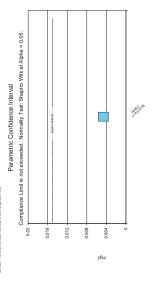


Consituent: Lead Analysis Run 12772017 11:21 AM NABORS Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix

5.32 Software Iomsed to SCS Engineers. UG

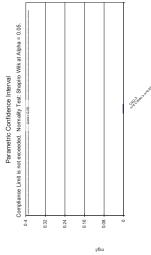
Parametric Confidence Interval Compliance Linit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

0.003

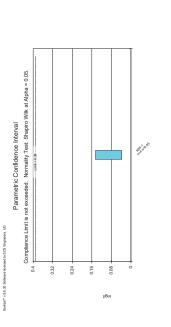

-0.0002

-0.001

Constituent: Nickel Analysis Run 127/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SenitasMatrix

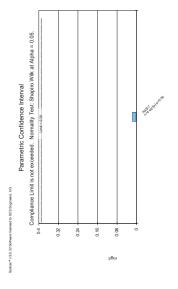

Constituent: Mercury Analysis Run 12/7/2017 1:25 PM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

broked to 6.32 Software Forested to 97.0 En-



Constituent: Lead Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Santas" v.9.5.32 Software foersed to


Constituent: Nickel Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Date: NABORS_DATABASE_SanitasMatrix

Constituent: Nickel Analysis Run 12/7/2017 11:21 AM Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix NABORS

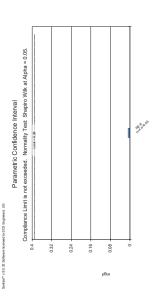
Constituent: Nickel Analysis Run 12/1/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Non-Parametric Confidence Interval
Compliance Limit is not exceeded.

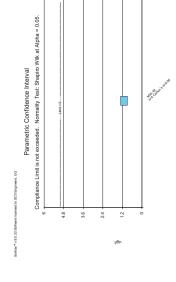
0.32 0.24 0.16 0.08

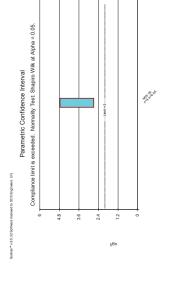
Consituent: Nickel Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Consituent: Nickel Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix



Constituent: Nickel Analysis Run 127/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

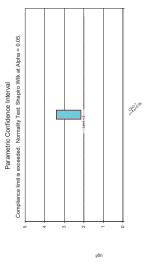



Constituent: Nickel Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Nickel Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Trichloroethene Analysis Run 12/7/2017 11:21 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

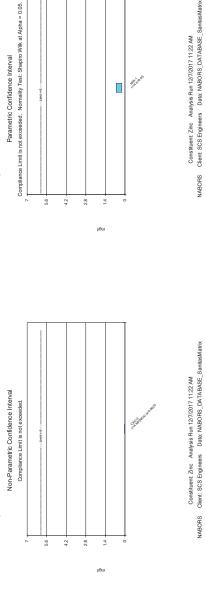
Parametric Confidence Interval Compliance limit is exceeded. Nomality Test: Shapiro Wilk at Alpha = 0.05.

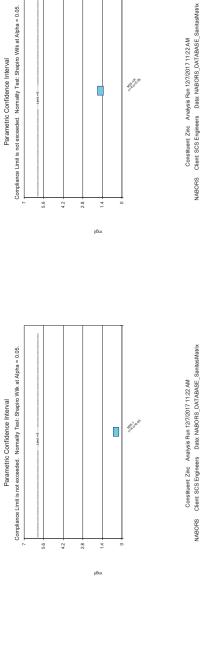

Constituent: Vinyl choride Analysis Run 12/72017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SantasMatrix

Constituent: Vinyl chloride Analysis Run 12/7/2017 1:29 PM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

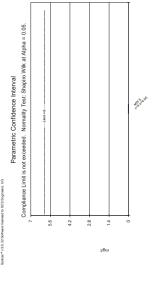
Mark de a to

Į/6n

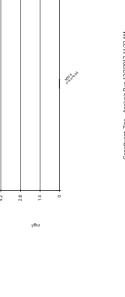



Constituent: Vinyl chloride Analysis Run 12/7/2017 11:22 AM NABORS Clent: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

ntas" v.9.5.32 Software formed to 9CS Engineers. UG



Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

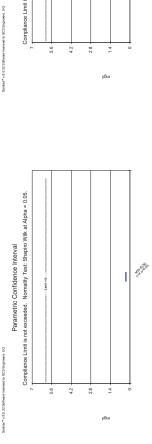


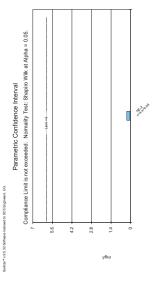
WHITE C

Parametric Confidence Interval Compilance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

5.6 42


Mary de of


Constituent; Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

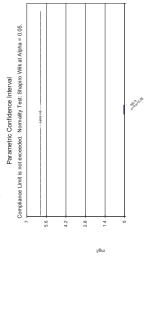
Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

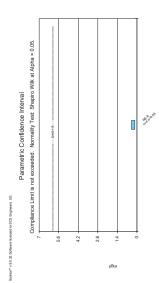
Parametric Confidence Interval Compilance Limit is not exceeded. Normality Test: Shapiro Wilk at Alpha = 0.05.

5.6

ı/6w


Constituent: Zinc Analysis Run 12/7/2017 11:22 AM
NABORS Client: SCS Engineers Data: NABORS_DATABASE_Santas&Matrix

Constituent; Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix


HE POOD

Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

Constituent: Zinc Analysis Run 12/7/2017 11:22 AM NABORS Client: SCS Engineers Data: NABORS_DATABASE_SanitasMatrix

SCS ENGINEERS

January 12, 2018 File No. 272114218

Mr. Bill Sadler, P.G.
Solid Waste Division
Arkansas Department of Environmental Quality
5301 Northshore Drive
North Little Rock, AR 72118-5317

Subject: Fourth Quarter 2017 Explosive Gas Monitoring

NABORS - Class I Landfill

AFIN: 03-0051 Permit No. 0249-S1-R2, 0249-S4

Dear Mr. Sadler:

Stearns, Conrad, and Schmidt, Consulting Engineers, Inc. (dba SCS Engineers) is pleased to present you with the results of the Fourth Quarter 2017 Explosive Gas Monitoring at the NABORS – Class I Landfill (Landfill). The Fourth Quarter Explosive Gas Monitoring Event was conducted on December 27, 2017 and consisted of monitoring the site perimeter Explosive Gas Monitoring probes GP-1 through GP-18, GP-14R, GP-16R and GP-18R. In addition to these perimeter probes, the landfill office and scale house were monitored for Explosive Gas.

Probe readings indicated methane was above 100% LEL at two (2) interior gas probes (GP-16 and GP-18) which are not point of compliance probes but were monitored for informational purposes.

The next required Quarterly Explosive Gas monitoring event for the Landfill is scheduled for March 2018. Please contact us if we can be of further service or if you have any questions concerning this report.

Sincerely,

Kiefer Vaughn Project Geologist

16/LV)

SCS ENGINEERS

Dan McCullough, PG Project Director

Can muller

SCS ENGINEERS

Attachments: Third Quarter Gas Monitoring Form

Explosive Gas Probe Location Map

NABORS Landfill

QUARTERLY GAS MONITORING FORM

EVENT: 4th Quarter 2017 **DATE:** 12/27/2017

WEATHER CONDITIONS: Cloudy, 10 mph Wind TEMP: 35° F

PRESSURE 29.37

SAMPLE POINT	TIME	% CH4	METHANE (%LEL)	% O2
GP-1	1230	0.0	0	15.3
GP-2	1245	0.0	0	20.1
GP-3	1253	0.0	0	21.1
GP-4	1300	0.0	0	17.3
GP-5	1305	1.0	20	0.0
GP-6	1310	0.0	0	19.4
GP-7	1320	0.0	0	18.9
GP-8	1325	0.0	0	13.1
GP-9	1330	0.0	0	15.6
GP-10	1334	0.0	0	12.1
GP-11	1339	0.0	0	16.5
GP-12	1344	0.0	0	13.2
GP-13	1348	0.0	0	18.4
GP-14	1353	0.0	0	14.6
GP-15	1400	0.0	0	15.3
GP-16	1405	6.48	>100	0.0
GP-17	1412	0.0	0	13.3
GP-18	1408	10.8	>100	7.9
GP-14R	1420	0.0	0	14.8
GP-16R	1425	0.0	0	19.6
GP-18R	1430	0.0	0	11.4
Scale House	1445	0.0	0	21.1
Office	1450	0.0	0	21.0
Office 2 nd Room	1500	0.0	0	21.1
Office Closet	1515	0.0	0	21.1
GP-16 (2 nd)	1540	62.7	>100	0.0
GP-18 (2 nd)	1545	11.4	>100	6.6

Notes: