Karen Blue (adpce.ad)

From: Melissa Vaught <mmv@ftn-assoc.com>
Sent: Tuesday, September 26, 2023 3:51 PM

To: gwreports

Cc: Conrad, David; Reynolds, Jodi; Caldwell, Mike; Dana Derrington

Subject: Revised Sampling and Analysis Plan, Eco-Vista Class 1 and Class 4 Landfills, Solid Waste

Permit Nos. 0290-S1-R4 and 0290-S4-R2

Good afternoon. On behalf of Eco-Vista, LLC, please access the link below to download the revised Sampling and Analysis Plan, as required by the recently issued class 1 permit.

https://owncloud.ftn-assoc.com/owncloud/index.php/s/EzmubckAB194IZk

Please contact me or WM if you have any questions.

Thank you,

Melissa Vaught, P.E.* FTN Associates Environmental Engineer 124 W. Sunbridge Drive, Suite #3 Fayetteville, Arkansas 72703 Cell: (210) 219-2335

Office: (479) 571-3334 *Arkansas and Oklahoma AFIN: 72-00144

PMT#: 0290-S1-R4

Received

By Karen Blue at 11:49 pm, Sep 30, 2023

DOC ID#: 84691

TO: BS>FILE <KMB

SAMPLING & ANALYSIS PLAN ECO-VISTA, LLC, CLASS 1 AND CLASS 4 LANDFILLS SPRINGDALE, ARKANSAS

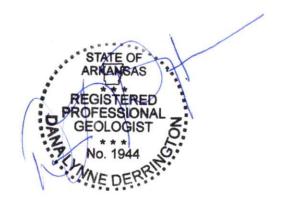
PERMIT NOS. 0290-S1-R4 AND 0290-S4-R2 AFIN: 72-00144

SAMPLING & ANALYSIS PLAN ECO-VISTA, LLC, CLASS 1 AND CLASS 4 LANDFILLS SPRINGDALE, ARKANSAS

PERMIT NOS. 0290-S1-R4 AND 0290-S4-R2 AFIN: 72-00144

Prepared for

Eco-Vista, LLC 2210 Waste Management Drive Springdale, AR 72762


Prepared by

FTN Associates, Ltd.
3 Innwood Circle, Suite 220
Little Rock, AR 72211

FTN No. R06820-0100-008

PROFESSIONAL GEOLOGIST'S CERTIFICATION

With this certification, I certify that I, as a registered professional geologist in the state of Arkansas, am a qualified groundwater scientist as defined in chapter 12 of Arkansas Pollution Control & Ecology Commission Rule No. 22, that this document was prepared under my direction and supervision, and that this document, to the best of my knowledge, meets the applicable requirements of Rule No. 22, §22.1203(j).

Dana L. Derrington, Arkansas PG #1944

19/26/2023

Date

TABLE OF CONTENTS

PROFI	SSIONA	IL GEOL	OGIST'S CERTIFICATION	
1.0	INTRO	DUCTIO	ON	1-1
2.0	BACK	GROUNI	D	2-1
	2.1	Sampl	ing Area	2-1
	2.2	Region	nal Hydrogeology	2-3
	2.3	Site H	ydrogeology	2-3
3.0	GROU	NDWAT	FER MONITORING SYSTEM	3-1
4.0	SAMPI	LING FR	REQUENCY AND ANALYSIS	4-1
	4.1	Indica	tor Monitoring	4-1
	4.2	Detect	tion Monitoring	4-1
	4.3	Assess	sment Monitoring	4-2
	4.4	Nature	e and Extent/Corrective Action Monitoring	4-2
	4.5	New V	Vells	4-2
5.0	LABOR	RATORY	ANALYTICAL METHODS	5-1
6.0	FIELD	МЕТНО	DDS AND PROCEDURES	6-1
	6.1	Field E	Equipment	6-1
		6.1.1	Purging and Sampling Devices	6-1
		6.1.2	Water Level Measurement Device	6-1
		6.1.3	Calibration	6-2
	6.2	Well I	nspection	6-2
	6.3	Groun	dwater Level Measurements	6-3
	6.4	Well P	Purging and Sample Extraction	6-3
		6.4.1	Low-Flow (Minimal Drawdown) Purging	6-3
		6.4.2	Purging with Bailers	6-5
		6.4.3	Traditional Purging	6-5
		6.4.4	Wells That Purge Dry	6-6
	6.5	Sampl	ing Records	6-7

TABLE OF CONTENTS (CONTINUED)

	6.6	Equip	ment Decontamination Procedures	6-9
	6.7	Sampl	e Labeling, Preservation, and Shipment	6-10
	6.8	Chain-	of-Custody Documentation	6-11
	6.9	Dispos	sal of Residual Material	6-12
7.0	QUAL	ITY CON	ITROL	7-1
	7.1	Field (Quality Control Samples	7-1
		7.1.1	Duplicates	7-1
		7.1.2	Trip Blanks	7-1
		7.1.3	Equipment Blanks	7-2
		7.1.4	Field Blanks	7-2
	7.2	Labora	atory Quality Control Samples	7-2
8.0	DATA	REVIEW	<i>I</i>	8-1
	8.1	Reviev	w of Field Documentation	8-1
	8.2	Reviev	w of Laboratory Data	8-1
	8.3	Reviev	w of Field Quality Control Samples	8-1
9.0	STATI	STICAL A	APPROACH	9-1
	9.1	Initial	Data Screening	9-1
	9.2	Indica	tor Monitoring Program	9-1
	9.3	Detect	tion Monitoring Program	9-2
		9.3.1	Retesting Program	9-3
		9.3.2	Shewhart-CUSUM Control Charts with Retesting	9-3
		9.3.3	Prediction Limits with Retesting	9-3
		9.3.4	Double Quantification Rule	9-4
		9.3.5	Establishing and Updating Background Data Sets	9-4
	9.4	Assess	sment Monitoring/Corrective Action Program	9-4
	9.5	Handli	ing of Non-Detect Data	9-5
10.0	REPO	RTING A	ND NOTIFICATION PROCEDURES	10-1

TABLE OF CONTENTS (CONTINUED)

	10.1	Groundwater Analytical Data Submittal	10-1
	10.2	Indicator Monitoring Report Submittal	10-1
	10.3	Detection/Assessment Monitoring Report Submittal	10-2
	10.4	Notification and Contingency Plan for Statistically Significant Increases (or Decreases)	10-2
	10.5	Notification and Contingency Plan for Statistically Significant Levels Above a GWPS	10-2
	10.6	Return to Detection Monitoring	10-3
11 0	SELEC	TED REFERENCES	11_1

LIST OF APPENDICES

APPENDIX A: Well Logs, Construction Diagrams, and Survey Reports

APPENDIX B: Rule No. 22 Analytical Lists for Groundwater

APPENDIX C: Groundwater Sampling Forms

LIST OF TABLES

Table 3.1	Well construction data, groundwater monitoring wells	3-4
Table 3.2	Well construction data, NEI wells	3-5
Table 4.1	Sampling frequency and analysis	4-4
Table 5.1	Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits	5-2
Table 9.1	Date ranges for historical baseline chloride data sets	9-2
	LIST OF FIGURES	
Figure 1.1	Cita la cation man	1.2
Figure 1.1	Site location map	1-2
Figure 2.1	Eco-Vista vicinity map	2-2
Figure 3.1	Groundwater monitoring system	3-2
Figure 3.2	Surface Water Monitoring	3-3

1.0 INTRODUCTION

Eco-Vista, LLC (herein referred to as Eco-Vista), owns and operates a class 1 landfill and a class 4 landfill located in Washington County, Arkansas, as shown on Figure 1.1. The class 1 landfill is permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0290-S1-R4, issued July 31, 2023, and the class 4 landfill is permitted by DEQ under permit no. 0290-S4-R2 issued March 17, 2023.

FTN Associates, Ltd. (FTN) was contracted by Eco-Vista to update the existing sampling and analysis plan (SAP) in accordance with the requirements of §22.1203(j) following issuance of the class 1 and class 4 permit modifications. The purpose of this SAP is to provide guidelines for sample collection, preservation, shipment, analytical procedures, chain-of-custody (COC) control, and quality control to ensure that monitoring results are an accurate representation of groundwater quality. This SAP also includes procedures for the statistical treatment of groundwater quality data and the associated reporting, recordkeeping, and notification requirements.

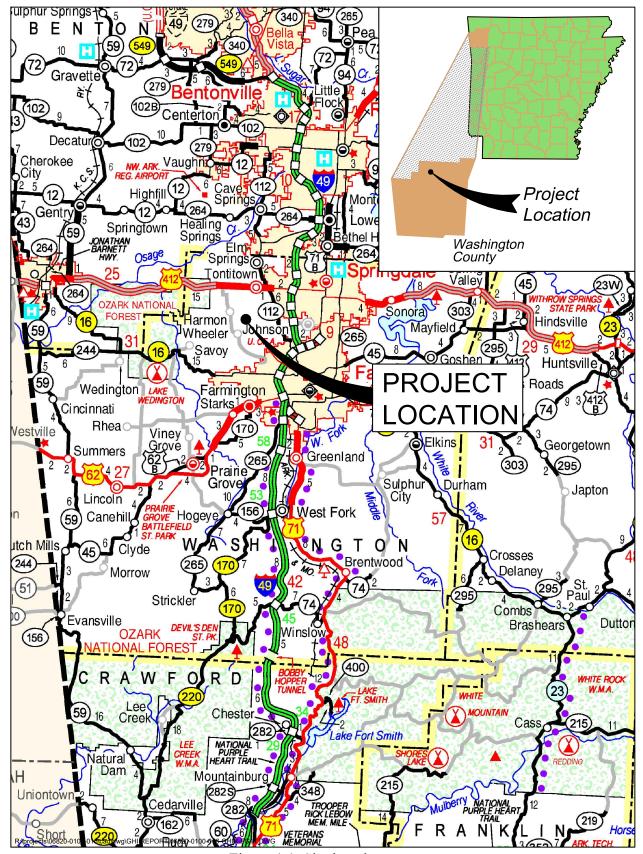


Figure 1.1. Site location map.

2.0 BACKGROUND

This section includes a brief description of the sampling area and summary of the site-specific hydrogeological setting at Eco-Vista. A more in-depth description of the hydrogeological setting can be found in previously submitted site investigations reports for the class 1 landfill (Geraghty & Miller 1986, Genesis Environmental Consulting [GEC] 1997, Chimney Rock Consulting [CRC] 2013a, CRC 2013b, and FTN 2020).

2.1 Sampling Area

As shown on the vicinity map included as Figure 2.1, Eco-Vista is located within the city limits of Tontitown, Arkansas. The more populous cities of Springdale and Fayetteville are located approximately 3 miles to the northeast and southeast of Eco-Vista, respectively. Interstate Highway 49 is located approximately 3.5 miles to the east and US Highway 412 is located approximately 2.3 miles to the north. Topography is gently to steeply sloping at Eco-Vista and in the surrounding area. Eco-Vista is in a rural to exurban area and is bordered by agricultural fields and numerous large residential plots.

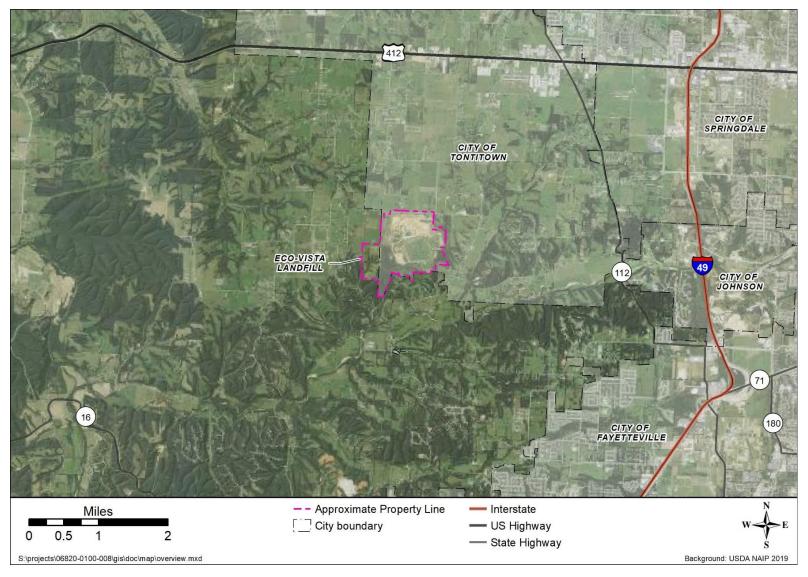


Figure 2.1. Eco-Vista vicinity map.

2.2 Regional Hydrogeology

The uppermost aquifer beneath Eco-Vista is the Springfield Plateau aquifer (hereafter referred to as the aquifer), which is primarily comprised of the limestone and cherty limestones of the Boone formation. In Washington County, the aquifer is 200 to 400 ft thick, is bounded below by the Ozark confining unit, and outcrops in the far northern part of the county (Imes and Emmett 1994). The regional direction of flow in the aquifer is variable and controlled by topography (Gillip, Czarnecki, & Mugel 2008). Generalized potentiometric surface maps based on limited water level data show the regional direction of flow toward the west (Adamski et al. 1995). Natural recharge to the aquifer occurs primarily from infiltration of rainfall where the Boone formation is exposed to the surface. Discharge from the aquifer occurs primarily through springs, wells, and flow to the underlying Ozark aquifer, particularly in areas where the Ozark confining unit is leaky or absent (Kresse et al. 2014, Imes and Emmett 1994).

Groundwater from the aquifer is used for domestic, public, and commercial purposes (Kresse et al. 2014). Published documents indicate that the aquifer yields 20 to 400 gallons per minute (gpm) (Gillip, Czarnecki, & Mugel 2008). The total use of groundwater from this aquifer is not known (Kresse et al. 2014).

2.3 Site Hydrogeology

Groundwater is present in three stratigraphic units beneath Eco-Vista which include (in descending order) regolith, epikarst, and limestone and chert bedrock. Groundwater conditions are variable and discontinuous in the regolith and epikarst units. With few exceptions, groundwater is present within the upper 20 ft of the limestone and chert bedrock based on evidence presented in past site investigation reports (Geraghty & Miller 1986, GEC 1997, CRC 2013a, CRC 2013b, and FTN 2020).

3.0 MONITORING SYSTEM

This section describes the required sampling locations for Eco-Vista's monitoring program.

3.1 Monitoring Well Network

The groundwater monitoring system is shown on Figure 3.1 and consists of 27 monitoring wells, four of which are pending installation (DINs 83983 and 84043). Also shown on Figure 3.1 are the 20 nature and extent (NE) wells. Each well varies with respect to the stratigraphic unit monitored, with screen/filter pack materials located in the regolith, epikarst, and/or bedrock units. Each existing well is constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) pipe, with screen lengths ranging from 9.2 ft to 25 ft. Tables 3.1 and 3.2 summarize the surveyed measuring point (MP) elevation located on the top of well casing, the total depth, and screened interval for each well. These data are based on well installation records and available survey reports. Available boring logs, well construction details, and survey reports are provided in Appendix A.

3.2 Surface Water

In accordance with permit condition 40 of the class 1 permit, sampling will be conducted at the Wildcat Creek location just north of the intersection of County Road 31 (Harmon Road) and County Road 863 (Clear Water Road). The surface water monitoring location is shown on Figure 3.2.

S:\PROJECTS\06820-0100-008\CAD\DWG\GWSAP\06820-0100-008-FG31 Rev.DWG

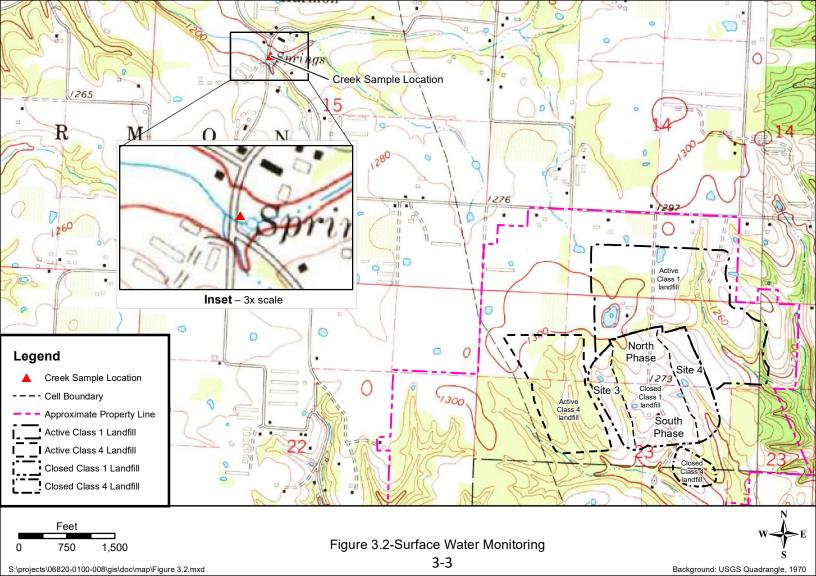


Table 3.1. Well construction data, groundwater monitoring wells.

		Ground	840	Total	Solid	C	Comment
	D-1-	Surface	MP	Depth	Casing	Screen	Screened
MACHIDI	Date	Elevation	Elevation	(ft below	Length	Length	Elevation
Well ID ¹	Installed	(ft SRE ²)	(ft SRE)	MP)	(ft)	(ft)	(ft SRE)
MW-1N	9/5/1997	1296.3	1298.57	117.5	97.5	20.0	1201.1-1181.1
MW-2N	9/10/1997	1286.8	1289.59	119.5	99.5	20.0	1190.0-1170.0
MW-3N	9/11/1997	1219.3	1222.09	71.5	61.5	10.0	1160.5-1150.5
MW-7N	9/17/1997	1244.5	1247.31	108.0	98.0	10.0	1152.8-1142.8
MW-8N	9/18/1997	1189.2	1191.74	73.0	53.0	20.0	1138.8-1118.8
MW-10N	9/18/1997	1191.1	1193.74	109.0	89.0	20.0	1104.6-1084.6
MW-11N	9/16/1997	1281.7	1284.50	129.5	109.5	20.0	1175.0-1155.0
MW-15	5/6/2015	1288.6	1291.51	94.1	53.1	20.0	1238.4-1218.4
MW-16	5/7/2015	1286.3	1289.75	118.8	93.8	25.0	1195.9-1170.9
MW-17	5/7/2015	1285.6	1288.99	79.6	59.6	15.0	1229.3-1214.3
MW-19	5/7/2015	1291.2	1293.89	82.9	62.9	20.0	1231.0-1211.0
MW-20	5/7/2015	1286.3	1289.55	83.4	68.4	15.0	1221.1-1206.1
MW-21	4/20/2015	1186.1	1188.90	43.0	33.0	10.0	1155.8-1145.8
LGW-2	9/26/2005	1299.1	1302.23	88.3	73.3	15.0	1228.8-1213.8
LGW-3R	6/16/2015	1286.1	1289.24	74.3	59.3	15.0	1229.9-1214.9
LGW-4	9/26/2005	1265.8	1267.93	82.8	67.8	15.0	1200.0-1185.0
LGW-5	9/21/2005	1269.9	1271.91	86.8	71.8	15.0	1200.1-1185.1
LGW-6	9/27/2005	1242.1	1244.78	73.3	58.3	15.0	1186.5-1171.5
LGW-7	9/27/2005	1219.3	1220.69	63.6	48.6	15.0	1172.0-1157.0
LGW-8R	8/19/2008	1184.7	1186.33	33.2	17.8	15.0	1168.4-1153.4
LGW-9	9/22/2005	1235.4	1237.56	78.9	63.9	15.0	1173.6-1158.6
LGW-10	9/23/2005	1238.7	1240.66	73.7	58.7	15.0	1182.0-1167.0
LGW-14R	8/13/2008	1247.9	1250.83	79.4	64.0	15.0	1186.9-1171.9

Notes:

MW-22 through MW-25 are pending installation.
 Site-referenced elevation.

Table 3.2. Well construction data, NE wells.

	Date	Ground Surface Elevation	MP Elevation	Total Depth (ft below	Solid Casing Length	Screen Length	Screened Elevation
Well ID	Installed	(ft SRE)	(ft SRE)	MP)	(ft)	(ft)	(ft SRE)
NE-1	4/20/2001	1199.1	1201.55	56.8 ^(a)	47.3	9.5	1154.2-1144.7
NE-2	4/24/2001	1174.1	1176.89	33.5	24.0	9.5	1152.6-1143.1
NE-3 ^(b)	4/26/2001	1228.5	(b)	87.8 ^(a)	78.2	9.6	1153.3-1143.7
NE-4	5/3/2001	1290.6	1293.26	71.1 ^(a)	61.5	9.6	1231.6-1222.0
NE-5	8/7/2001	1224.2	1227.13	84.4 ^(a)	75.2	9.2	1151.8-1142.6
NE-5E	7/29/2019	1221.3	1224.34	86.6	76.4	10.0	1147.9-1137.9
NE-5W	7/29/2019	1225.7	1228.63	93.7	83.5	10.0	1145.1-1135.1
NE-6	12/15/2016	1189.3	1192.33	58.7 ^(a,c)	48.7 ^(c)	10.0	1144.0-1134.0 ^(c)
NE-6D	7/29/2019	1189.9	1192.94	76.3	66.1	10.0	1126.8-1116.8
NE-7	12/8/2016	1215.0	1217.89	71.4 ^(a)	61.4	10.0	1156.5-1146.5
NE-8	12/20/2016	1171.7	1174.51	32.8 ^(a)	22.8	10.0	1151.7-1141.7
NE-9	12/7/2016	1179.0	1182.02	37.7 ^(a)	27.7	10.0	1154.3-1144.3
NE-10D	7/29/2019	1258.2	1261.07	121.4	111.2	10.0	1149.9-1139.9
NE-11	12/6/2016	1202.2	1203.96	57.0	47.0	10.0	1157.0-1147.0
NE-12	12/13/2016	1211.2	1213.83	77.8 ^(a)	57.8	20.0	1156.1-1136.1
NE-13	12/29/2016	1217.4	1220.18	43.2 ^(a)	33.2	10.0	1187.0-1177.0
NE-14S	7/29/2019	1196.2	1199.24	22.7	12.5	10.0	1186.8-1176.8
NE-14D	7/29/2019	1196.0	1198.81	42.0	31.8	10.0	1167.0-1157.0
NE-15S	7/29/2019	1212.7	1215.36	45.3	35.1	10.0	1180.2-1170.2
NE-15D	7/29/2019	1212.9	1215.67	60.6	50.4	10.0	1165.3-1155.3

Notes:

- a. Total depth (in ft bgs) listed on title block of field borehole log does not match total depth indicated on the construction diagram of the field borehole log; total depth listed in table has been adjusted accordingly and also includes solid casing stickup length.
- b. Top of casing at NE-3 is damaged and well NE-3 is not required to be sampled under any of the monitoring programs.
- c. Solid riser length listed on well log was off by more than 2 ft; total depth was field-confirmed by FTN and solid casing length and screened elevations are consistent with the well construction diagram.

4.0 SAMPLING FREQUENCY AND ANALYSIS

Groundwater must be monitored at Eco-Vista throughout the active life and post-closure period, as required by §22.1201(d). The sampling frequency and analysis for indicator monitoring, detection monitoring, assessment monitoring, nature and extent monitoring/corrective action and Wildcat Creek are shown in Table 4.1. Sampling frequency and analysis for each monitoring program are discussed below. The sampling and analysis approach for new well installations is also discussed.

4.1 Indicator Monitoring

Eco-Vista must collect monthly groundwater samples from the list of wells shown in Table 4.1. Groundwater samples must be analyzed for the following list of indicator parameters: chloride, ammonia (as nitrogen), pH, and specific conductance.

4.2 **Detection Monitoring**

While in detection monitoring, Eco-Vista must collect groundwater samples at the frequency required by §22.1204(b) for the list of wells shown in Table 4.1. Groundwater samples collected during each detection monitoring period must be analyzed for the list of parameters included in appendix 1 of Rule No. 22 plus chloride, total dissolved solids (TDS), sulfate, total organic carbon (TOC), pH, specific conductance, iron, and manganese. This list is included in Appendix B. Consistent with the historical sampling schedule at Eco-Vista, semiannual samples must be collected during the first and third quarters with resampling performed in the second and fourth quarters, unless extenuating circumstances arise.

4.3 Assessment Monitoring

While in assessment monitoring, Eco-Vista must collect groundwater samples at the frequencies required by §22.1205(b) through (d) at the list of wells shown in Table 4.1. Analysis of groundwater samples must be performed as follows:

- Annually for the list of parameters included in appendix 2 of Rule No. 22 plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese at any well that had confirmed measured detections above the GWPS during the prior calendar year. This list is included in Appendix B.
- Triennially for the list of parameters included in appendix 2 of Rule No. 22 plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese (Appendix B) at all wells.
- Semiannually for the assessment monitoring constituent (AMC) list, which is comprised of any newly detected appendix 2 parameters (from the triennial analysis) plus the parameters from appendix 1 of Rule No. 22 and TOC, iron, and manganese.

4.4 Nature and Extent/Corrective Action Monitoring

While Eco-Vista is in assessment monitoring or corrective action, the list of NE-series wells shown in Table 4.1 must be monitored for, at a minimum, the same list of parameters and at the same frequency as required by assessment monitoring (Section 4.3).

4.5 Monitor and Report

Wildcat Creek must be sampled semiannually for iron, manganese, TOC, hardness and the AMC list, while Eco-Vista is in assessment monitoring. If Eco-Vista moves into detection monitoring, the sampling parameters will consist of, at a minimum, iron, manganese, TOC, hardness and Rule 22 appendix 1 parameters.

4.6 New Wells

For new wells, the sampling frequency should be performed in accordance with §22.1203(e) or most recent US Environmental Protection Agency (EPA) guidance for the purpose of background data collection. Groundwater samples should be analyzed for the same list of parameters as required by detection or assessment monitoring, as applicable. Sampling for background data sets must continue until a minimum of 8 to 10 independent values have been collected, in accordance with EPA guidance.

Table 4.1. Sampling frequency and analysis.

Program:	Indicator Monitoring	Detection Monitoring	Assessment Monitoring	Nature and Extent/Corrective Action	Monitor and Report
Frequency and Parameters:	Monthly analysis of chloride, ammonia, pH, and specific conductance	Semiannual ⁽¹⁾ analysis of appendix 1 plus TOC, iron, and manganese	 Semiannual analysis of AMC list plus iron, manganese and TOC⁽²⁾; Annual or triennial⁽³⁾ analysis of appendix 2 plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese 	Follow assessment monitoring schedule	Semiannual analysis of iron, manganese, TOC, hardness and AMC list (while site is in assessment monitoring) or Appendix 1 (while site is in detection monitoring)
		MW-1N	MW-1N	NE-1	
		MW-2N	MW-2N	NE-2	
		MW-3N	MW-3N	NE-4	
	MW-7N	MW-7N	MW-7N	NE-5	
		MW-8N	MW-8N	NE-5E	
		MW-10N	MW-10N	NE-5W	
		MW-11N	MW-11N	NE-6	
	MW-15	MW-15	MW-15	NE-6D	
	MW-16	MW-16	MW-16	NE-7	
	MW-17	MW-17	MW-17	NE-8	
	MW-19	MW-19	MW-19	NE-9	
		MW-20	MW-20	NE-10D	
		MW-21	MW-21	NE-11	
Sample Locations:		MW-22 ⁽⁴⁾		NE-12	
Sample Locations.		MW-23 ⁽⁴⁾		NE-13	
		MW-24 ⁽⁴⁾		NE-14D	
		MW-25 ⁽⁴⁾		NE-14S	
	LGW-2	LGW-2	LGW-2	NE-15D	
	LGW-3R	LGW-3R	LGW-3R	NE-15S	
	LGW-4	LGW-4	LGW-4		
	LGW-5	LGW-5	LGW-5		
	LGW-6	LGW-6	LGW-6		
	LGW-7	LGW-7	LGW-7		
	LGW-8R	LGW-8R	LGW-8R		
	LGW-9	LGW-9	LGW-9		
	LGW-10	LGW-10	LGW-10		
	LGW-14R	LGW-14R	LGW-14R		
					Wildcat Creek ⁽⁵⁾

⁽¹⁾ As needed, retesting for detection monitoring will be conducted in accordance with Section 9.3.1.

⁽²⁾ In accordance with permit condition 38(b), semiannual events must be performed during the first and third quarters, with resample events performed during the second and fourth quarters as needed and unless extenuating circumstances arise.

⁽³⁾ Annual analysis of appendix 2 parameters must be collected at wells that had an exceedance above the GWPS during the prior calendar year. Triennial analysis of appendix 2 parameters is required at all 27 wells.

⁽⁴⁾ MW-22 through MW-25 are pending installation. In accordance with Section 4.6 and permit condition 38(b), the newly installed wells will be sampled quarterly until sufficient data has been collected to establish background, then sampled quarterly for the AMC list, plus iron, manganese, and total organic carbon, as outlined in permit condition 38(b) and triennially for the Appendix 2 parameters, plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese.

⁽⁵⁾ Refer to permit condition 40 for the sample collection location.

5.0 LABORATORY ANALYTICAL METHODS

Samples must be analyzed using methods that are appropriate for groundwater in accordance with §22.1204(d). Analytical methods must adhere to procedures and guidance provided in the currently available edition of EPA's in *Test Methods for Evaluating Solid Waste—Physical/Chemical Methods* (SW-846) (EPA 1986b). Suggested methods and associated bottle types, volumes, preservatives, and holding times are provided in Table 5.1 and are based on EPA SW-846 or EPA Clean Water Act analytical method guidelines. These may be adjusted based on the analyte tested and laboratory requirements. The laboratory reports should include all verifiable, positive detections above the constituent practical quantitation limit (PQL) and estimated values (J-flagged) between the method detection limit (MDL) and the PQL. In accordance with §22.1203(h)(5), the PQL or MDL shall be the lowest concentration level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions using current laboratory standards. The PQLs and MDLs are determined by the analytical laboratory and are subject to change without notice.

Table 5.1. Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits.

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Appendix I Parameters	IVIELIIOU	voidine & container	Fieseivative	Holding Time (days)	IVIDE
Chloride	9056A	125 mL high-density polyethylene (HDPE)	cool to 4° C	28	0.0519 mg/l
Sulfate	9056A	125 mL HDPE	cool to 4° C	28	0.0774 mg/l
Ammonia	350.1	250 mL HDPE	cool to 4° C, NaThio $\rm H_2SO_4$ to pH < 2	28	0.0317 mg/l
Antimony	6020	250 mL HDPE	HNO₃ to pH < 2	180	0.000754 mg/l
Arsenic	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000250 mg/l
Barium	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0017 mg/l
Beryllium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000120 mg/l
Cadmium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000160 mg/l
Chromium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000540 mg/l
Cobalt	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000260 mg/l
Copper	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000520 mg/l
Iron	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0141 mg/l
Lead	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0019 mg/l
	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0013 mg/l
Manganese Nickel	6020	250 mL HDPE	HNO ₃ to pH < 2	180	_
					0.000350 mg/l
Selenium	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0074 mg/l
Silver	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0028 mg/l
Thallium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000190 mg/l
Vanadium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000180 mg/l
Zinc	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.002560 mg/l
TDS	2540 C-2011	250 mL HDPE	cool to 4° C cool to 4° C, HCl to pH < 2	7	2.82 mg/l
TOC VOCs	9060A	250 mL HDPE	cool to 4 C, HCI to pH < 2	28	0.1020 mg/l
Acetone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001050 mg/l
Acrylonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001030 Hig/I
Benzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00008960 mg/l
Bromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000145 mg/l
Bromodichloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000080 mg/l
Bromofrom	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
Carbon disulfide Carbon tetrachloride	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14 14	0.000101 mg/l 0.000159 mg/l
Chlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000133 Hig/I
Chloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000141 mg/l
Chloroform	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000086 mg/l
Dibromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000128 mg/l
1,2-dibromo-3-chloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000325 mg/l
1,2-Dibromoethane 1,2 Dichlorobenzene	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14	0.000193 mg/l 0.000101 mg/l
1,4 Dichlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000101 mg/l
trans-1,4-Dichloro-2-butene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000257 mg/l
1,1-Dichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000114 mg/l
1,2-Dichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000108 mg/l
1,1-Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000188 mg/l
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14 14	0.00009330 mg/l 0.000152 mg/l
1,2-Dichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000192 mg/l
cis-1,3-Dichloropropene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00009760 mg/l
trans-1,3-Dichloropropene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000222 mg/l
Ethylbenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000158 mg/l
2-Hexanone Methyl bromide	8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14	0.000757 mg/l 0.000157 mg/l
Methyl chloride	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2	14 14	0.000157 mg/l 0.000153 mg/l
Methylene bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000133 Hig/I
Methylene chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001070 mg/l
Methyl ethyl ketone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001280 mg/l
Methyl iodide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000377 mg/l
14 Mathyl 2 nontanona			cool to 4° C, HCl to pH < 2	14	0.000823 mg/l
4-Methyl-2-pentanone	8260B	40 mL amber (3)			
Styrene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l
Styrene 1,1,1,2-Tetrachloroethane	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14 14	0.000117 mg/l 0.000120 mg/l
Styrene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l

Table 5.1. Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits. (Continued)

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
1,1,1-Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000094 mg/l
1,1,2-Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
Trichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000153 mg/l
Trichlorofluoromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
1,2,3-Trichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000247 mg/l
Vinyl acetate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000645 mg/l
Vinyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000118 mg/l
Xylenes	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000316 mg/l

				1	1
Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Appendix 2 Parameters				1	<u> </u>
Chloride	9056A	125 mL HDPE	cool to 4° C	28	0.0519 mg/l
Sulfate	9056A	125 mL HDPE	cool to 4° C	28	0.0774 mg/l
Ammonia	350.1	250 mL HDPE	cool to 4° C, NaThioH ₂ SO ₄ to pH < 2	28	0.0317 mg/l
TDS	2540 C-2011	250 mL HDPE	cool to 4° C	7	2.82 mg/l
тос	9060A	250 mL HDPE	cool to 4° C, HCl to pH < 2	28	0.1020 mg/l
Iron	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0141 mg/l
Manganese	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0012 mg/l
Acenaphthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000316 mg/l
Acenaphthylene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000309 mg/l
Acetone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001050 mg/l
Acetonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0150 mg/l
Acetophenone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002710 mg/l
2-Acetylaminofluorene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000253 mg/l
Acrolein	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.008870 mg/l
Acrylonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000873 mg/l
Aldrin	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00000813 mg/l
Allyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0017 mg/l
4-Aminobiphenyl	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000461 mg/l
Anthracene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000291 mg/l
Antimony	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000754 mg/l
Arsenic	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000250 mg/l
Barium	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0017 mg/l
Benzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00008960 mg/l
Benzo[a]anthracene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.00009750 mg/l
Benzo[b]fluoranthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.00008960 mg/l
Benzo[k]fluoranthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000355 mg/l
Benzo[ghi]perylene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000161 mg/l
Benzo[a]pyrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000340 mg/l
Benzyl alcohol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000393 mg/l
Beryllium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000120 mg/l
alpha-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001660 mg/l
beta-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001840 mg/l
delta-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000015 mg/l
gamma-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001760 mg/l
Bis-(2-chloroethoxy)methane	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000329 mg/l
Bis(2-chloroethyl) ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001620 mg/l
Bis-(2-chloro-1 -methylethyl) ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000445 mg/l
Bis(2-ethylhexyl) phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000709 mg/l
Bromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000145 mg/l
Bromodichloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000080 mg/l
Bromoform	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
4-Bromophenyl phenyl ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000335 mg/l
Butyl benzyl phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000275 mg/l
Cadmium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000160 mg/l
Carbon disulfide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000101 mg/l
Carbon tetrachloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000159 mg/l
Chlordane	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001980 mg/l
p-Chloroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000382 mg/l
Chlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000140 mg/l
Chlorobenzilate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001330 mg/l
p-Chloro-m- cresol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000263 mg/l
Chloroform	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000086 mg/l

Table 5.1. Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits. (Continued)

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
2- Chloronaphthalene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000330 mg/l
2- Chlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000283 mg/l
4- Chlorophenyl phenyl ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000303 mg/l
Chloroprene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0017 mg/l
Chromium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000540 mg/l
Chrysene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000332 mg/l
Cobalt	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000260 mg/l
Copper	6020	250 mL HDPE	HNO₃ to pH < 2	180	0.000520 mg/l
m-Cresol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000266 mg/l
o-Cresol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000312 mg/l
p-Cresol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000266 mg/l
Cyanide	9012B	250 mL HDPE	cool to 4° C, NaOH to pH > 12	14	0.0018 mg/l
2,4-D	8151	1 L amber glass	cool to 4° C	7	0.000744 mg/l
4,4^1-DDD	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000017 mg/l
4,4^1-DDE	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001540 mg/l
4,4^1-DDT	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001770 mg/l
Diallate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000524 mg/l
Dibenz[a,h]anthracene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000279 mg/l
Dibenzofuran	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000338 mg/l
Dibromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000128 mg/l
1,2-Dibromo-3- chloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000325 mg/l
1,2- Dibromoethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000193 mg/l
Di-n-butyl phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000266 mg/l
o- Dichlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000101 mg/l
m- Dichlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
p- Dichlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000121 mg/l
3,3^1- Dichlorobenzidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002020 mg/l
trans-1,4- Dichloro-2- butene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000257 mg/l
Dichlorodifluoro methane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000127 mg/l
1,1-Dichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000114 mg/l
1,2 - Dichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000108 mg/l
1,1- Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000188 mg/l
cis-1,2- Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00009330 mg/l
trans-1,2- Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000152 mg/l
2,4- Dichlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000284 mg/l
2,6- Dichlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002770 mg/l
1,2- Dichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000190 mg/l
1,3- Dichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000147 mg/l
2,2- Dichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00009290 mg/l
1,1- Dichloropropene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000128 mg/l
cis-1,3- Dichloropropene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00009760 mg/l
trans-1,3- Dichloropropene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000222 mg/l
Dieldrin	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00000751 mg/l
Diethyl phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000282 mg/l
Thionazin	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000204 mg/l
Dimethoate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001440 mg/l
p- (Dimethylamino) azobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000208 mg/l
7,12- Dimethylbenz[a] anthracene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001710 mg/l
3,3^1- Dimethylbenzidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.003390 mg/l
2,4- Dimethylphenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000624 mg/l
Dimethyl phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000283 mg/l
m-Dinitrobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000359 mg/l
4,6-Dinitro-o- cresol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002620 mg/l
2,4- Dinitrophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.003250 mg/l
2,4- Dinitrotoluene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001650 mg/l
2,6- Dinitrotoluene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000279 mg/l
Dinoseb	8270C	100 mL amber glass (2)	cool to 4° C	7	0.0179 mg/l
Di-n-octyl phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000278 mg/l
Diphenylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001190 mg/l
Disulfoton	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000267 mg/l
Endosulfan I	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000016 mg/l
Endosulfan II	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001640 mg/l
Endosulfan sulfate	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001960 mg/l
Endrin	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001610 mg/l

Table 5.1. Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits. (Continued)

method det			Punnamuntii	Holding Time (day)	MDL ⁽²⁾
Analyte Endrin aldehyde	Method ⁽¹⁾ 8081/8082	Volume & Container 100 mL amber glass (2)	Preservative	Holding Time (days)	0.00001420 mg/l
Endrin aldehyde	8081/8082 8260B	40 mL amber glass (2)	cool to 4° C, pH 5-9	14	0.0001420 mg/l
Ethylbenzene Ethyl methacrylate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14	0.000138 Hig/I
Ethyl methanesulfonate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.0014 Hig/I
Famphur	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001060 mg/l
Fluoranthene	8270C 8270C	100 mL amber glass (2)	cool to 4° C	7	0.001000 Hig/I
Fluorene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000310 mg/l
Heptachlor	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001080 mg/l
Heptachlor epoxide	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001750 mg/l
Hexachlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000341 mg/l
Hexachlorobutadiene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000329 mg/l
Hexachlorocyclopentadiene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002330 mg/l
Hexachloroethane	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000365 mg/l
Hexachloropropene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000149 mg/l
2-Hexanone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000757 mg/l
Indeno(1,2,3- cd)pyrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000279 mg/l
Isobutanol	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0390 mg/l
Isodrin	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000293 mg/l
Isophorone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000272 mg/l
Isosafrole	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000409 mg/l
Kepone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001880 mg/l
Lead	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0019 mg/l
Mercury	7470A	250 mL HDPE	HNO ₃ to pH < 2	180	0.000049 mg/l
Methacrylonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0130 mg/l
Methapyrilene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.004250 mg/l
Methoxychlor	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.0004230 mg/l
Methyl bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000157 mg/l
Methyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000157 mg/l
3- Methylcholanthrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000155 mg/l
Methyl ethyl ketone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001280 mg/l
Methyl iodide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000377 mg/l
Methyl methacrylate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0012 mg/l
Methyl methanesulfonate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000647 mg/l
2- Methylnaphthalene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000311 mg/l
Methyl parathion	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000213 mg/l
4-Methyl-2- pentanone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000823 mg/l
Methylene bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l
Methylene chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001070 mg/l
Naphthalene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000372 mg/l
1,4- Naphthoquinone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.005560 mg/l
1-Naphthylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000289 mg/l
2-Naphthylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000195 mg/l
Nickel	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000350 mg/l
o-Nitroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.0019 mg/l
m-Nitroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000308 mg/l
p-Nitroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000349 mg/l
Nitrobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000367 mg/l
o-Nitrophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000320 mg/l
p-Nitrophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002010 mg/l
N-Nitrosodi-n- butylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000331 mg/l
N- Nitrosodiethylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000497 mg/l
N- Nitrosodimethylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001260 mg/l
N- Nitrosodiphenylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001190 mg/l
N- Nitrosodipropylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000403 mg/l
N- Nitrosomethylethalamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001710 mg/l
N- Nitrosopiperidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000268 mg/l
N- Nitrosopyrrolidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002550 mg/l
5-Nitro-o- toluidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001990 mg/l
Parathion	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000379 mg/l
Pentachlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000369 mg/l
Pentachloronitro benzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000327 mg/l
Pentachlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000313 mg/l
Phenacetin	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000262 mg/l
Phenanthrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000366 mg/l

Table 5.1. Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits. (Continued)

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Phenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000334 mg/l
p- Phenylenediamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.3870 mg/l
Phorate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000382 mg/l
PCB 1016	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.0001 mg/l
PCB 1221	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000073 mg/l
PCB 1232	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000042 mg/l
PCB 1242	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000047 mg/l
PCB 1248	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000086 mg/l
PCB 1254	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000047 mg/l
PCB 1260	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000120 mg/l
Pronamide	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000265 mg/l
Propionitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0130 mg/l
Pyrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000330 mg/l
Safrole	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000259 mg/l
Selenium	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0074 mg/l
Silver	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0028 mg/l
Silvex	8151	1 L amber glass	cool to 4° C	7	0.000845 mg/l
Styrene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l
, Sulfide	1500S2 D-201	250 mL amber glass	cool to 4° C, NaOH + ZnAc to pH > 9	7	0.0065 mg/l
2,4,5-T	8151	1 L amber glass	cool to 4° C	7	0.000843 mg/l
1,2,4,5- Tetrachlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002410 mg/l
1,1,1,2- Tetrachloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000120 mg/l
1,1,2,2- Tetrachloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
Tetrachloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000199 mg/l
2,3,4,6- Tetrachlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.0020 mg/l
Thallium	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000190 mg/l
Tin	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0044 mg/l
Toluene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000412 mg/l
o-Toluidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000362 mg/l
Toxaphene	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000168 mg/l
1,2,4- Trichlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000355 mg/l
1,1,1- Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000094 mg/l
1,1,2- Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
Trichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000153 mg/l
Trichlorofluoromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
2,4,5- Trichlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000236 mg/l
2,4,6- Trichlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000297 mg/l
1,2,3- Trichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000247 mg/l
0,0,0- Triethyl phosphorothioate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000537 mg/l
1,3,5- trinitrobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001320 mg/l
Vanadium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000180 mg/l
Vinyl acetate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000645 mg/l
Vinyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000118 mg/l
Xylene (total)	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000316 mg/l
Zinc	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.002560 mg/l

Notes: 1. Analytical methods listed may be substituted, as necessary, provided that the alternate methods provide adequate analytical data to fulfill monitoring requirements and meet regulatory standards.

^{2.} Listed MDLs are based on currently achievable levels by the third-party laboratory and are subject to change. As required by §22.1204(d), MDLs will be less than or equal to the values reported in EPA Report SW-846 unless written approval from the Division is granted.

6.0 FIELD METHODS AND PROCEDURES

This section describes procedures that should be used to collect representative groundwater samples in accordance with §22.1203(j). A field sampling logbook that includes this SAP and WM's environmental media sampling standard (WM Groundwater Protection Program [GPP] 2012) should be provided to the sampling team prior to each sampling event.

6.1 Field Equipment

6.1.1 Purging and Sampling Devices

WM requires the use of QED bladder pumps for groundwater sampling. The use of other equipment should be approved by the WM GPP Director. The GPP director may approve the following types of equipment:

- Dedicated bailers, or
- Disposable bailers.

Recommended options for purging include positive-displacement pumps (bladder pumps), or peristaltic pumps with adjustable flow control. Sampling devices and associated tubing are to be made of inert materials to reduce the possibility of these materials altering sample chemistry.

6.1.2 Water Level Measurement Device

An electric water level meter is to be used to gauge static water levels in the monitoring wells. The tape circuitry is to be checked prior to use by lowering the electrode probe into potable water to determine if the indicators are functioning properly.

6.1.3 Calibration

Field devices used to measure water quality parameters are to be calibrated prior to use each day using commercial standards. If at any time instrument readings seem inaccurate based on historical data or professional judgment, calibration is to be checked and the instrument recalibrated if necessary. All field calibration data are to be recorded on a calibration form similar to the one provided in Appendix C.

Periodic calibration of the electric tape is to be performed to account for tape stretch over time.

6.2 Well Inspection

A well condition summary form and well condition inspection form should be filled out prior to sampling activities. These records should be submitted to a WM representative to communicate well maintenance needs. These forms can be found in Appendix C. If samplers encounter unusual conditions at a sampling location during the inspection that could result in collection of a non-representative sample, the sampler should notify the WM representative before collecting the sample. With input from the sampling personnel, the WM representative should decide whether to delay sampling or collect a sample. Examples of unusual conditions that could affect sample integrity include the following:

- A damaged well or sample point,
- Evidence of tampering,
- Gas emanating from well,
- Strong or unusual odors,
- Significant soil staining or other evidence that a spill may have occurred near the well, or
- Excessive turbidity.

6.3 Groundwater Level Measurements

Static water levels in all monitoring wells are to be gauged using an electric tape prior to any purging, sampling, or other activities that may change the water level. All readings are to be taken using the same deflection point on the indicator to ensure that water levels should be consistent among measurements. Water level data for each sampling event should be collected within a one-day period or less.

The tape is to be lowered slowly into each well until the indicator shows that contact with the water surface has been made. The depth to water should be recorded at the MP to the nearest 0.01 ft. The MP elevations are identified in Table 3.1. The date and time measured should also be recorded for each measurement. Verification measurements are to be taken until repeat measurements are within 0.02 ft of the original, or until the reason for lack of agreement is determined. If more than two measurements are required, best judgment is to be used to select the measurement most representative of field conditions. Additionally, any outside influences on water levels such as barometric changes or nearby pumping are to be noted. An example water level measurement form is included in Appendix C. The electric tape probe should be decontaminated prior to its use in each well.

Measuring to the bottom of the well may cause re-suspension of settled solids and cause protracted purging times for turbidity stabilization. If necessary, well depths should be measured after sampling is completed.

6.4 Well Purging and Sample Extraction

This section describes allowable well purging and sample extraction methods for the groundwater monitoring program. These methods are based on EPA guidance documents (Puls and Barcelona 1996) and the WM environmental media sampling standard (WM GPP 2012).

6.4.1 Low-Flow (Minimal Drawdown) Purging

Purging should be conducted at low-flow rates (<0.1 to 0.5 L/min) and continue until three successive readings are within ± 0.2 su for pH, $\pm 5\%$ for conductivity, and $\pm 10\%$ or 0.2 mg/L

for dissolved oxygen, and until turbidity readings are 10 Nephelometric turbidity units (NTUs) or less, if reasonably possible. While stabilizing turbidity values below 10 NTUs and maintaining a minimal drawdown of (<0.33 ft) during purging is desirable, these protocols are not mandatory for sample collection. In accordance with the WM environmental media sampling standard (WM GPP 2012), should sample turbidity fall between 50 NTUs and 500 NTUs, the sampler should attempt to lower the turbidity by performing additional purging for a reasonable period of time or by lowering the flow rate. If NTU values exceed 500 and no attempt has been successful in lowering the turbidity below 500 NTUs, then the sampler should contact a WM representative and only collect a sample when authorized.

Water quality parameters are to be measured and recorded every 3 to 5 minutes during low-flow purging, as applicable. If parameters do not stabilize, at least three well water column volumes should be removed. The water level is to be checked periodically (every 3 to 5 minutes, or as appropriate) to monitor drawdown in the well as a guide to flow rate adjustment. Field personnel should avoid allowing recharge water to cascade in the well and should make proper adjustments to stabilize the flow rate as soon as possible. Purge rates and total volume of water purged are to be documented on the field information form in Appendix C. Formulas and methods to calculate the total volume of water in a well and volume of water removed during purging are provided in Appendix C.

Sampling should be performed as soon as possible after the well is purged and field measurements are performed. The same device used for purging the well is to be used to sample to reduce disturbance to the water column. The sampling flow rate should generally remain at the established purge rate (<0.1 to 0.5 L/min) unless minimal adjustments need to be made to minimize turbulence during the filling of sample bottles. Equipment and procedures that minimize sample agitation and reduce/eliminate contact with the atmosphere during sample transfer are to be utilized.

Non-dedicated sampling equipment should be decontaminated between wells as described in Section 6.6.

Groundwater samples should not be field-filtered prior to laboratory analysis in accordance with §22.1203(b). The exception to this is if sample turbidity of 10 NTUs or less cannot be achieved. Under this circumstance, a field-filtered split sample may be taken for comparative analysis using an in-line 0.45-micron filter. However, non-filtered samples should be collected for all required analyses.

6.4.2 Purging with Bailers

Bailers may only be used when approved by the GPP director, and using only disposable bailers and cordage is preferred. When bailers are approved for use, samplers should take the following steps:

- Attach new unused nylon line to the bailer each time it is used, regardless of whether the bailer is dedicated or disposable;
- Thoroughly rinse the bailer and line with distilled or deionized water prior to use;
- Lower the bailer to the midpoint of the well screen when performing traditional purging or to the bottom of the well screen if sampling with the complete evacuation method;
- Minimize splashing and bubbling as the bailer fills by slowly lowering the bailer below the water level; and
- Prevent the bailer or bailer line from touching the ground.

If a dedicated bailer is used, the bailer should be hung within the well above the water level between sampling events and the bailer line should be discarded.

6.4.3 Traditional Purging

When low-flow purging is not utilized, monitoring wells should be pumped prior to sample collection according to site-specific requirements, typically until three to five well volumes are removed. Other criteria for this method are listed as follows:

- Parameters should be stabilized with as little drawdown as possible;
- The pump inlet screen should never be exposed; and
- The same parameter stabilization criteria mentioned above in Section 6.4.1 should be met.

6.4.4 Wells That Purge Dry

When a well purges dry, recharge is very slow, drawdown is excessive, and the well is almost completely evacuated when pumping at low flow rates (0.5 L/min) and field parameters do not stabilize; therefore, field parameters are only recorded when samples are collected. When the above criteria are met, WM generally uses either the complete evacuation method or the minimal purge method to sample wells.

6.4.4.1 Complete Evacuation Method

When using the complete evacuation method, wells are purged dry and then allowed to recover before collecting the samples. When using this method, the following protocols should be followed:

- Document the date and time for both well evacuation and sample collection.
- Evacuate the well until it yields little or no water.
- Record the total volume of water removed.
- Allow the well to recover as specified in the site's controlling documents. If recovery criteria are not specified, collect samples as follows:
 - After the water level has recovered to 50% of the original water level,
 - When there is sufficient water to fill all sample bottles, or
 - At least 24 hours after evacuation.
- Record field parameters after collecting the samples for laboratory analysis.

6.4.4.2 Minimal Purge Method

This method is not approved for use in all states; therefore, it should only be used when specified in the controlling documents or authorized by the WM GPP director. When using this method, dedicated sampling pumps are required; bailers or non-dedicated pumps may not be used. To perform this method, the following protocols should be followed:

- 1. Calculate the volume of the water within the dedicated sample pump and tubing;
- Purge one to three times that volume;
- 3. Record the total volume of water removed; and
- 4. Record field parameters after samples for laboratory analysis are collected.

The pumping rate used for minimal purge sampling is generally 100 mL per minute or less.

6.5 Wildcat Creek Sampling

This section describes the methods for collecting a surface water sample from Wildcat Creek. A surface water sample can be collected either utilizing a peristaltic pump or by taking a grab sample with a transfer device such as a polyethylene or stainless-steel dipper. Water quality parameters should be recorded prior to sample collection. To perform surface water sampling with a peristaltic pump, the following protocols should be followed:

- 1. Use new polyethylene and silicone peristaltic pump tubing.
- 2. Place the intake end of the tubing into the creek to a depth of 6 to 12 inches below the water surface, where possible, and turn the pump on.
- 3. Pump several tubing volumes through the system to flush the tubing prior to sample collection.
- 4. Fill the sample bottles, being careful not to remove the inlet tubing from the water.

To perform surface water sampling using the grab method, the following protocols should be followed:

- 1. Rinse the dipper with ample amounts of stream water prior to collecting the first sample. Discard the rinsate downstream from the sampling location.
- After rinsing, fill the dipper with sample water from within the top 12 inches of the water column and avoid skimming the surface of the water during collection.
 Minimize agitation of the sample.
- 3. Fill sample containers directly from the dipper. Minimize agitation during bottle filling. Do not touch the sample bottle with the dipper.

6.6 Sampling Records

Field observations and information pertinent to sampling should be recorded in the field logbook. All entries are to be legible and made in indelible ink. Entry errors are to be crossed out with a single line, dated, and initialed by the person making the correction. Documentation is to be sufficient to reconstruct each sampling event without relying on field personnel memory. A form similar to the field information form included in Appendix C is to be used to record sampling data and information, including the following:

- 1. Sample location, including facility name and sample number or well number;
- Date and time of sampling;
- 3. Identification of field personnel;
- Weather conditions;
- 5. Sampling method;
- 6. Well evacuation method, rates, and volume of groundwater purged;
- 7. Depth to groundwater surface;
- 8. Field observations of sample appearance, color, turbidity, etc.;

- 9. Field measurements (pH, specific conductance, temperature, dissolved oxygen, oxidation reduction potential, and turbidity); and
- 10. Other pertinent information.

Samplers should identify inconsistent measurements by comparing current data to results from the prior sampling event. Inconsistent data are results between two sampling events that vary more than the following:

- pH: ±1 standard unit,
- Specific conductance: ±25%, or
- Turbidity: significant change in clarity.

In the event where inconsistent data are observed, samplers should verify the calibration of the meters and make an attempt to resolve the issue by performing additional purging. Where meter calibration and additional purging do not resolve the issue, samplers should report the information to the WM representative before collecting a sample.

6.7 Equipment Decontamination Procedures

Non-dedicated sampling equipment and test equipment that enter the well or contact the sample should be thoroughly decontaminated before use at each well location. Disposable items such as rope or low-grade tubing shall not be re-used between wells and shall be properly disposed of in an appropriate trash receptacle. The procedures for equipment cleaning are as follows, unless otherwise specified by the manufacturer:

- 1. Clean with potable water and phosphate-free laboratory detergent;
- 2. Rinse thoroughly with potable water;
- 3. Rinse thoroughly with distilled/deionized water, and
- 4. Air dry.

Non-sample-contacting equipment that should be decontaminated includes field instrument probes. Probes are triple-rinsed with type I distilled water before use and between wells, as applicable. If needed, probes should be washed using a detergent solution. These procedures follow ASTM D5088-15a, *Standard Practice for Decontamination of Field Equipment Used at Waste Sites* (ASTM International 2015), and are consistent with EPA protocol. Decontamination procedures are to be documented in the field sampling logbook, as needed.

6.8 Sample Labeling, Preservation, and Shipment

Sample containers are to be labeled with the following information:

- 1. Site name;
- 2. Sample location name;
- 3. Analytes to be measured;
- 4. Date and time sampled;
- 5. Sample collector's initials; and
- 6. Remarks (preservatives, storage temperature, or special considerations in collection).

Sample containers should be filled and stored as follows:

- 1. Sample containers should be filled completely full to minimize headspace;
- 2. Sample containers should be tightly sealed and placed in re-sealable bags;
- 3. All sample containers should be placed in a cooler that is double-bagged to prevent liquid from leaking from the cooler during shipment or direct transport to the laboratory;
- 4. Pack leachate or other highly impacted samples in separate coolers;
- 5. If required, coolers are to be ice-filled to maintain the required sample temperature (see Table 5.1);

- 6. Prior to transport or shipment, the sampling team should inspect the condition of the samples and the COC documentation to verify that containers were correctly labeled; and
- 7. Affix a custody seal over the lid and secure the cooler by taping over the seal when shipping samples.

If shipped by commercial carrier, the following protocols should be followed:

- 1. Each ice chest should be labeled with the names, addresses, and telephone numbers of field personnel and laboratory personnel;
- 2. The original COC and field information forms should be double-sealed in plastic bags and taped to the inside of the cooler lid. The sampler should also retain a copy of these forms; and
- 3. Following federal and state regulations, samples should be marked as environmental samples and shipped (overnight).

6.9 Chain-of-Custody Documentation

COC procedures should be followed to establish a written record concerning sample transport from the sampling site to the laboratory. The sampling team leader should be responsible for the completion of the COC form and for the care and custody of the samples collected until they are transferred or dispatched properly. COC documentation should include the following information:

- 1. Site/project name and number;
- 2. Sample identification;
- 3. Date and time of sample collection;
- Sample type;
- 5. Sample location;
- Preservatives added (if appropriate);
- Analysis requested;
- 8. Signatures, dates, and times involved in the chain of possession; and

9. Remarks relaying other information to the laboratory.

COC forms should be completed in duplicate. One copy of the COC should be retained by the sampling team and the other copy should be shipped/transported to the laboratory with the samples. Upon arrival at the laboratory, the laboratory sample custodian should sign for custody and return a copy of the COC form with the analytical data. Custody of the samples should then proceed according to the policies of the laboratory.

6.10 Disposal of Residual Material

In the process of collecting environmental samples, the sampling team should generate different types of wastes, including used personal protective equipment (PPE), disposable sampling equipment, and purged groundwater. Decontamination fluids should also be generated during each sampling event and should consist of deionized water, residual contaminants, and water with non-phosphate detergent. The volume and concentration of the decontamination fluid should be sufficiently low to allow disposal at the site or sampling area. Listed below are the procedures that are to be followed for handling the materials from each sampling event:

- Used PPE and disposable equipment should be double-bagged and placed in a municipal refuse dumpster, and
- Purge water should be discharged to the ground at least 20 ft from the wellhead and draining away from the well unless controlling documents specify handling purge water differently.

7.0 QUALITY CONTROL

This section describes field and laboratory quality assurance/quality control (QA/QC) and procedures.

7.1 Field Quality Control Samples

All field QC samples should be prepared in the same manner as groundwater samples with regard to analytical method and sample volume, container, and preservation. COC procedures for the QC samples should be the same as those used for groundwater samples.

7.1.1 Duplicates

Field duplicates are two samples taken concurrently from the same well and as close to each other in time as practical. Data from the duplicate pair are compared to evaluate the level of precision associated with the sampling and analytical methods. The duplicate sample should be collected by alternating filling between the regular sample and duplicate sample bottles while following the designated sampling order for the sampling bottle sets. The duplicate should then be sealed and shipped in the same manner as the groundwater sample. Unless specified otherwise in the controlling documents or by the WM representative, a minimum of one duplicate sample per sampling event should be collected, or one per 20 groundwater samples, whichever is greater.

7.1.2 Trip Blanks

Trip blanks are used to determine error introduced to organic samples by shipping or analytical procedures. Trip blanks are prepared by the laboratory and shipped with the other sample bottles. Trip blanks should remain sealed and should be identified on the COC form. Unless specified otherwise in the controlling documents or by the WM representative, a minimum of one trip blank should be provided per cooler containing volatile organic samples.

7.1.3 Equipment Blanks

Equipment blanks are required for all sampling events where non-dedicated sampling equipment is used. Equipment blank results are used to verify that proper protocols for collection of samples and decontamination of equipment were followed in the field. Equipment blanks are prepared by pouring laboratory-supplied deionized water into or over the sampling device after it has been properly decontaminated, and then pouring the water into the equipment blank sample bottles with the appropriate preservative. Equipment blanks are identified on the COC form using the designation EB-(#) and are sealed and shipped in the same manner as the groundwater samples. A minimum of one equipment blank should be taken each day that non-dedicated equipment is used.

7.1.4 Field Blanks

Field blank results are used to assess contamination from field conditions during sampling and should be prepared at a sampling location that is likely to be affected by field environmental conditions (e.g., near a gas well). Field blanks are prepared in the field at the sampling site by pouring laboratory-supplied deionized water into clean, empty sample containers provided by the laboratory. The blank should be unfiltered and observations that may explain anomalous results should be noted on the field information form. Field blanks are identified on the COC form using the designation FB-(#) and are sealed and shipped in the same manner as the groundwater samples. If not specified in the controlling documents or by the WM representative, a minimum of one field blank should be collected per sampling event, or one per 20 groundwater samples, whichever is greater.

7.2 Laboratory Quality Control Samples

Laboratory QC samples should include method blanks, matrix spikes, and surrogate recoveries equivalent to those described in EPA's SW-846 or its equivalent. Results from the QC samples should be used to verify laboratory accuracy and precision. The analytical laboratory should use standard procedures to monitor and document performance and to implement an effective program.

8.0 DATA REVIEW

Laboratory and field documentation records are to be reviewed as soon as practicable following each sampling event. The following sections describe the review of field documentation, laboratory data, and field QC data.

8.1 Review of Field Documentation

At a minimum, field records should be reviewed to evaluate consistency and QC information and to summarize the samples collected. The reviewer should utilize the groundwater data review and evaluation form supplied by WM to summarize any deviations from sampling protocols and the potential impact on data quality.

8.2 Review of Laboratory Data

Upon receipt of the analytical data from the laboratory, laboratory report(s) should be reviewed to determine compliance with method, procedural, and required QC protocols using the groundwater data review and evaluation form supplied by WM. Reported sample results should be collectively reviewed, including laboratory qualifiers, and summarized on the review form with respect to any QC deficiencies that have the potential to impact overall data quality.

8.3 Review of Field Quality Control Samples

Analytical results from field duplicates, equipment blanks, field blanks, and trip blanks should be reviewed and summarized using the groundwater data review and evaluation form supplied by WM. Results from duplicate pairs should be compared to determine whether sampling methods produce an acceptable level of reproducibility. Equipment blanks should be reviewed for detections above the laboratory reporting limit (RL) to determine if field decontamination procedures are adequate such that cross-contamination between sampling points is minimized and sample results are representative of groundwater quality. Field blanks

and trip blanks should be reviewed for detections above the laboratory RL to determine if ambient field conditions or laboratory/shipping conditions, respectively, are affecting groundwater sampling results.

9.0 STATISTICAL APPROACH

This section describes the statistical approach for the indicator monitoring program, the detection monitoring program, and the assessment monitoring/corrective action programs. In accordance with permit condition 40 of permit no. 0290-S1-R4 and permit condition 15 of permit no. 0290-S4-R2, the sampling results for the Wildcat Creek sampling are not subject to the groundwater monitoring regulations within Chapter 12 of Rule 22 and will not be statistically evaluated.

9.1 Initial Data Screening

Groundwater data should be screened prior to statistical analysis to identify statistical outliers or excursions from normal. Suggested methods to identify outliers are described in EPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance (EPA 2009). If suspect data are evident in the current monitoring period's data set, results should be verified with the analytical laboratory, and calculation and/or transcription errors should be checked. If any errors are found, they should be corrected in the database.

Data that are identified as outliers with independent evidence of an error should not be used in statistical computations and should be documented in the groundwater monitoring reports. Some low- or high-magnitude outliers may be flagged and excluded from statistical analysis even though evidence of error cannot be identified, in order to improve environmental protection. However, the decision to include or exclude potential outliers in background should be based on technical information and the professional judgment of the certifying professional.

9.2 Indicator Monitoring Program

Indicator monitoring data should be evaluated as follows:

 Chloride results should be compared to a well-specific limit calculated from baseline concentrations, as described below;

- Ammonia data should be compared to a fixed limit of 1 mg/L; and
- Trend tests should be applied to period-of-record data sets for each parameter on the indicator parameter list in Table 4.1.

Intrawell chloride limits are calculated using the average of historical chloride concentrations compiled prior to waste placement (i.e., "baseline" concentrations). Table 9.1 summarizes the data set date ranges for the indicator monitoring wells.

Table 9.1. Date ranges for historical baseline chloride data sets.

Wells	Date Range
LGW-8R, LGW-14R	August 2008 through February 2016
LGW-3R, MW-15 through MW-17, MW-19	June 2015 through February 2016
LGW-2, LGW-4 through LGW-7, LGW-9, LGW-10, MW-7N	July 2006 through May 2008

A "significant finding" must be declared if a well-parameter pair contains a statistically significant increasing trend at a 99% confidence level and a reported concentration of chloride greater than 10 times baseline or a reported concentration of ammonia greater than 1 mg/L.

9.3 Detection Monitoring Program

This section describes the statistical program design as required by §22.1203(f) through (i) of Rule No. 22. The statistical program design is based on Rule No. 22 requirements and EPA's Unified Guidance (EPA 2009). The sections below describe the formal retesting program and selected statistical methods for evaluating groundwater data for statistically significant increases (SSIs) (or statistically significant decreases [SSDs] in the case of pH). The selected statistical methods include the combined Shewhart-CUSUM control chart, prediction limits, or Double Quantification Rule. These tests, or their equivalent, should be used to statistically evaluate all constituents reported at verifiable, positive detections above the laboratory PQL in accordance with §22.1203(h)(5).

9.3.1 Retesting Program

The formal retesting program should follow a "1 of 2" retesting scheme. That is, when an initial value exceeds a background limit by a statistical test, the "1 of 2" strategy requires collection of up to two resamples prior to the next regularly scheduled monitoring event (Gibbons 1994). If retesting disconfirms the initial exceedance, then a declaration of an SSI/SSD is not required, as recommended by the Unified Guidance. Unless the initial (disconfirmed) exceedance can be documented as an outlier, error, or other anomaly, it should be retained in the database as a valid measurement in addition to the resample result. If retesting confirms the initial exceedance, the facility is required to declare a confirmed SSI/SSD.

9.3.2 Shewhart-CUSUM Control Charts with Retesting

Intrawell Shewhart-CUSUM control charts should be used to evaluate detected inorganic constituents with normally distributed background data sets (i.e., parametric). If an SSI/SSD is indicated by an initial statistical result, either by the observation or CUSUM, retesting should be performed in accordance with the facility's "1 of 2" retesting strategy. If the resample observation and CUSUM is within the limit, the SSI/SSD is disconfirmed. If the resample observation and/or CUSUM remain outside the control limit, then the SSI/SSD is considered confirmed and the notification procedures discussed in Section 10.4 must be followed.

9.3.3 Prediction Limits with Retesting

Intrawell prediction limits should be used to evaluate detected inorganic constituents with background data sets that are not normally distributed, or cannot be mathematically normalized (i.e., non-parametric). If an SSI/SSD is indicated by the initial statistical results, retesting should be performed in accordance with the facility's "1 of 2" resampling strategy. If the resample is within the limit, the SSI/SSD is disconfirmed. If the result remains outside the prediction limit, the SSI/SSD is considered confirmed and the notification procedures discussed in Section 10.4 must be followed.

9.3.4 Double Quantification Rule

VOC data will be evaluated using the Double Quantification Rule (DQR), where a confirmed SSI is declared if any VOC is detected at or above the laboratory RL in two consecutive sample and resample events.

9.3.5 Establishing and Updating Background Data Sets

Section 22.1203(e) of Rule No. 22 requires that background water quality be established for each constituent consisting of a minimum of four independent samples from each monitoring well. However, the Unified Guidance recommends 8 to 10 independent values for most statistical tests. Unless otherwise approved by DEQ, samples should be collected quarterly to account for seasonal and temporal variations and to ensure statistically independent values.

The Unified Guidance recommends updating initial background data sets to add more recent observations, when appropriate, since long-term fluctuation in background concentrations is possible even when a given well has not been impacted by a landfill. As a general rule, background should be evaluated for updating when there are at least 4 to 8 new compliance data. Methods used to update background should follow those described in Chapter 5 of the Unified Guidance.

9.4 Assessment Monitoring/Corrective Action Program

The selected statistical method for assessment monitoring and corrective action monitoring is the confidence interval, constructed with lower and upper confidence limits (i.e., LCLs and UCLs) around the mean, median, or upper percentile of a data set. The Unified Guidance and ASTM D7048 recommend using a minimum of eight values per compliance well to construct the confidence interval. The LCL and UCL are compared to an approved groundwater protection standard (GWPS) for assessment or corrective active, respectively. The currently approved GWPSs for Eco-Vista were established in 2014 and 2019 (DINs 65838, 65893, and 77318).

For assessment monitoring, a statistically significant level (SSL) must be declared if the LCL exceeds the GWPS and the notification procedures discussed in Section 10.5 must be followed. For corrective action, a SSL must be declared if the UCL exceeds the GWPS.

9.5 Handling of Non-Detect Data

In accordance with §22.1203(h)(5), each statistical test should account for non-detect data. For detection monitoring tests, non-detect data should be replaced with the median PQL. For assessment/corrective action tests, non-detect data should be replaced with ½ the median PQL value. Other methods may be used if appropriate.

10.0 REPORTING AND NOTIFICATION PROCEDURES

This section presents a schedule for submitting groundwater analytical data and groundwater monitoring reports and describes the DEQ notification procedures in the event that statistically significant results are identified.

10.1 Groundwater Analytical Data Submittal

Analytical data from each sampling event must be submitted directly to DEQ by the independent third-party laboratory as required by §22.1203(j)(4).

10.2 Indicator Monitoring Report Submittal

The indicator monitoring report must be submitted to DEQ on a monthly basis due at the end of each month following the month to which the report pertains.

Each report must include groundwater elevations, groundwater analytical data, a summary of statistically significant trends and associated graphical results, chloride and ammonia baseline comparisons, a discussion of the results, and the historical groundwater database.

In addition to the above deliverables, analytical and flow rate data collected from the leachate collection system (LCS) and leak detection system (LDS) as part of the Action Leakage Rate Contingency Plan (FTN 2021) must be included as an attachment to the report. The indicator monitoring reports must also include a list and figure of active and passive landfill gas well locations at the site and the operational status in accordance with DEQ correspondence dated May 5, 2016 (DIN 69516).

For monitoring periods where sampling is performed concurrently with the detection/assessment monitoring programs, then the list of deliverables in this section may be included in the same report presenting the results of detection/assessment monitoring.

10.3 Detection/Assessment Monitoring Report Submittal

Detection/assessment monitoring reports must be submitted to DEQ within 90 days from the date of the last recorded sampling event. The report must be certified by a qualified groundwater scientist and include the reporting requirements of §22.1203(k). Each report must also include a summary discussion of results collected since the last groundwater monitoring report submittal for corrective action monitoring. Additionally, reports will include laboratory results and graphs of detected parameters for the Wildcat Creek samples obtained during the sampling period.

10.4 Notification and Contingency Plan for Statistically Significant Increases (or Decreases)

In accordance with §22.1204(c)(1), if an SSI (or SSD, in the case of pH) is identified, Eco-Vista must, within 14 days, place a notice in the facility operating record identifying the SSIs/SSDs and notify the director of DEQ that the notice has been placed.

If in detection monitoring, then Eco-Vista must also:

- 1. Establish an assessment monitoring program meeting the requirements of §22.1205 within ninety (90) days, or
- 2. In accordance with §22.1204(c)(3), demonstrate that a source other than a landfill caused the contamination or that the statistically significant result was due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The alternate source demonstration must be certified by a qualified groundwater scientist, placed in the facility operating record, and submitted to DEQ within 90 days of the finding.

10.5 Notification and Contingency Plan for Statistically Significant Levels Above a GWPS

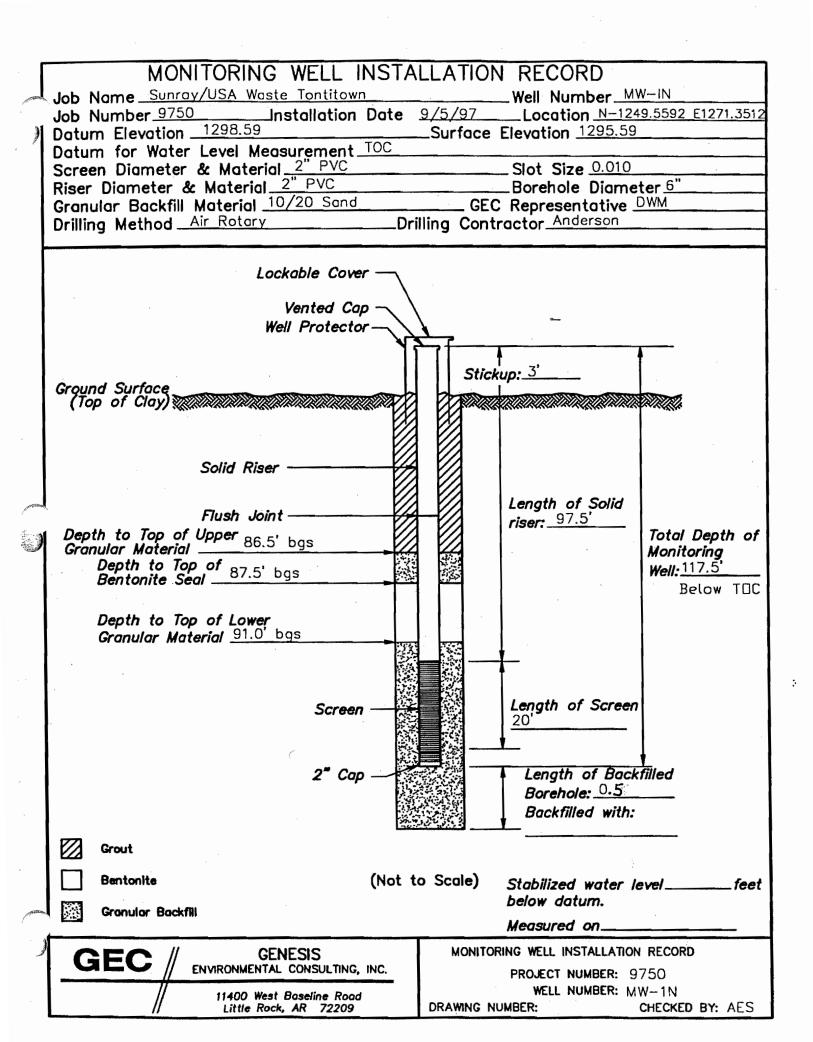
In accordance with §22.1205(g), if one or more assessment monitoring constituents is detected at an SSL above a GWPS, Eco-Vista must, within 14 days, place a notice in the facility operating record identifying the constituents that have exceeded the GWPS at an SSL and notify the director of DEQ and all appropriate local government officials that the notice has been placed in the operating record.

1. Eco-Vista must also:

- Characterize the nature and extent of the release by installing additional monitoring wells as necessary;
- ii. Install at least one additional monitoring well at the facility boundary in the direction of contaminant migration and sample this well in accordance with §22.1205(d)(2);
- iii. Notify all persons who own the land or reside on the land that directly overlies any part of the contaminant migration if contaminants have migrated off-site if indicated by sampling of wells in accordance with §22.1205(g)(1); and
- iv. Initiate an assessment of corrective measures as required by §22.1206 within ninety (90) days, and will be based on the findings of a completed nature and extent investigation; or
- 2. In accordance with §22.1205(g)(2), following the identification of a confirmed SSL above a GWPS, the facility may demonstrate that a source other than a landfill caused the contamination or that the statistically significant result was due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The alternate source demonstration must be certified by a qualified groundwater scientist, placed in the facility operating record, and submitted to DEQ within 90 days of the finding.

10.6 Return to Detection Monitoring

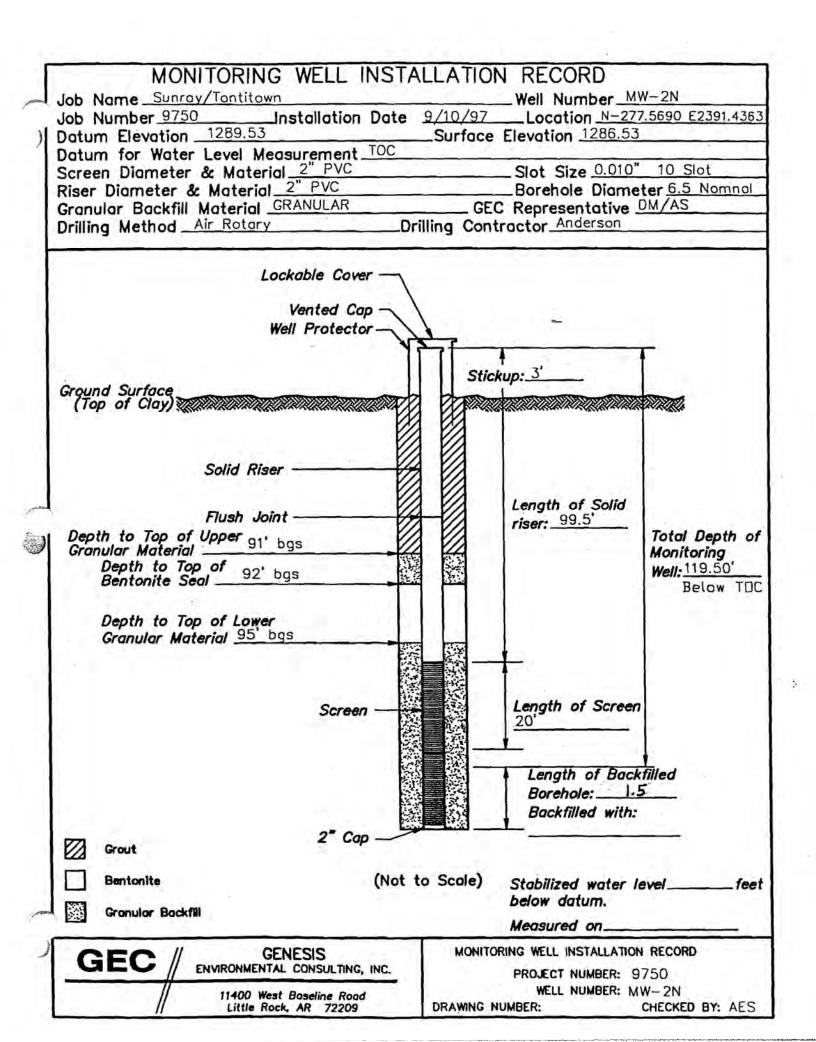

If groundwater results for the AMC list are determined to be at or below background values for two consecutive monitoring events, Eco-Vista must notify DEQ of this finding and may return to detection monitoring in accordance with §22.1205(e).


11.0 SELECTED REFERENCES

- Adamski, J.C., J.C. Petersen, D.A. Freiwald, and J.V. Davis. 1995. *Environmental and Hydrologic Setting of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma* [US Geological Survey Water Investigations Report 94-4022]. Little Rock, AR: US Geological Survey, National Water-Quality Assessment Program.
- APC&EC [Arkansas Pollution Control & Ecology Commission]. 2008. *Rule No. 22, Solid Waste Management Rules*. Little Rock, AR: Arkansas Pollution Control and Ecology Commission.
- ASTM International. 2004. D7048-04: Standard Guide for Applying Statistical Methods for Assessment and Corrective Action Environmental Monitoring Programs. West Conshohocken, PA: ASTM International. ASTM International. 2015. D5088-15a: Standard Practice for Decontamination of Field Equipment Used at Waste Sites. West Conshohocken, PA: ASTM International.
- CRC [Chimney Rock Consulting]. 2013a. *Hydrogeologic and Geotechnical Investigation Report, Major Permit Modification, Lateral Expansion Area, Eco-Vista Landfill.* Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 63689]. Little Rock, AR: Chimney Rock Consulting. First published January 2013; revised October 2013.
- ——. 2013b. Volume 3, Supplemental Hydrogeologic and Geotechnical Investigation Report, Major Permit Modification, Lateral Expansion Area, Eco-Vista Landfill. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 64882]. Little Rock, AR: Chimney Rock Consulting. August 2013.
- Cunningham, W.L., and C.W. Schalk, comps. 2011. *Groundwater Technical Procedures of the US Geological Survey* [USGS Techniques and Methods 1–A1]. 151 pp. https://pubs.usgs.gov/tm/1a1/.
- EPA [United States Environmental Protection Agency]. 1986a. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document [EC-G-2002-130, EPA/530/SW-86/055]. Washington, DC: US Environmental Protection Agency, Office of Waste Programs Enforcement, Office of Solid Waste and Emergency Response. [Also published in EPA/NWWA series by National Water Well Association, Dublin, OH.] 328 pp.
- ———. 1986b. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd ed.* [EPA Publication SW-846]. https://www.epa.gov/hw-sw846/sw-846-compendium.
- ——. 1993. Solid Waste Disposal Facility Criteria, Technical Manual [EPA 530-R-93/017]. Washington, DC. US Environmental Protection Agency, Office of Solid Waste and Emergency Response. November 1993.

- ———. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance [EPA 530-R-09-007]. Washington, DC: US Environmental Protection Agency, Office of Resource Conservation and Recovery, Program Implementation and Information Division, March 2009.
- FTN [FTN Associates, Ltd.]. 2020. Geotechnical and Hydrogeological Investigation Summary Report, Eco-Vista, LLC, Class 1 Landfill, Springdale, Arkansas. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality on July 20, 2020 [DEQ DIN 78620]. Little Rock, AR: FTN Associates, Ltd.
- ———. 2021. Action Leakage Rate Contingency Plan for Cells 1 13 and LCS / LDS Monitoring and Characterization Plan. Little Rock, AR: FTN Associates, Ltd.
- GEC [Genesis Environmental Consulting, Inc.]. 1997. Hydrogeological and Geotechnical Report, Volume 3 of 3, Permit Modification, Solid Waste Class 1 Landfill, Tontitown, Arkansas. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 4581]. Little Rock, AR: Genesis Environmental Consulting, Inc.
- Geraghty & Miller, Inc. 1986. *Hydrogeologic Assessment of the Sunray Landfill.* Prepared for Kawneer Company, Inc. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 29957]. Baton Rouge, LA: Geraghty & Miller, Inc.
- Gibbons, R.D. 1994. *Statistical Methods for Groundwater Monitoring*. New York: John Wiley & Sons, Inc.
- Gillip, J.A., J.B. Czarnecki, and D.N. Mugel. 2008. Potentiometric Surfaces in the Springfield Plateau and Ozark Aquifers of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006 [Scientific Investigations Report 2007-5253]. Reston, VA: US Geological Survey. Prepared in cooperation with the Kansas Water Office.
- Helsel, D.R., and R.M. Hirsch. 2002. *Statistical Methods in Water Resources* [USGS Techniques of Water-Resources Investigations Book 4, Chapter A3]. Reston, VA: US Geological Survey. 524 pp. https://pubs.usgs.gov/twri/twri4a3/html/toc.html.
- Imes, J.L., and L.F. Emmett. 1994. *Geohydrology of the Ozark Plateaus Aquifer System in Parts of Missouri, Arkansas, Oklahoma, and Kansas (Regional Aquifer-System Analysis—Central Midwest)* [US Geological Survey Professional Paper 1414-D]. Washington, DC: United States Government Printing Office.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. *Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas* [USGS Scientific Investigations Report 2014–5149]. Prepared in

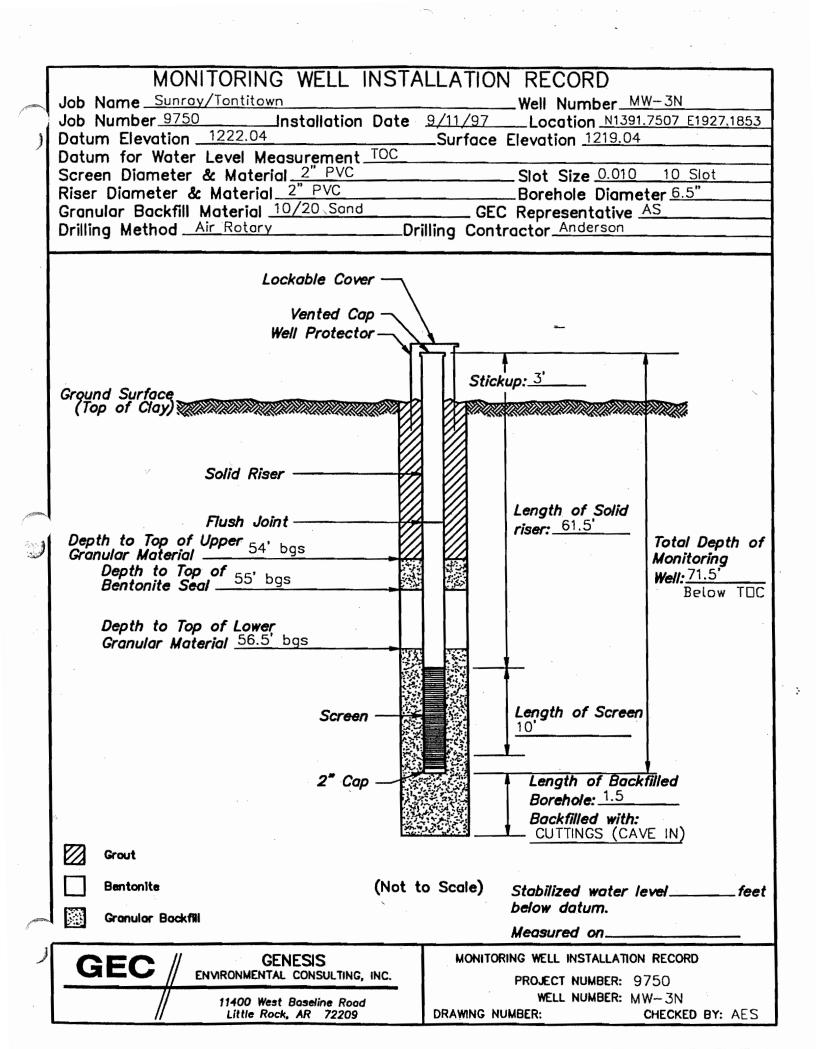
- cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp. http://dx.doi.org/10.3133/sir20145149.
- Puls, R.W., and M.J. Barcelona. 1996. Groundwater Issue Paper: Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures [EPA/540/S-95/504]. Washington, DC: US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response.
- WM GPP [Waste Management Groundwater Protection Program]. 2012. Environmental Media Sampling Standard, Appendix 1, Groundwater Sampling. March 2012.



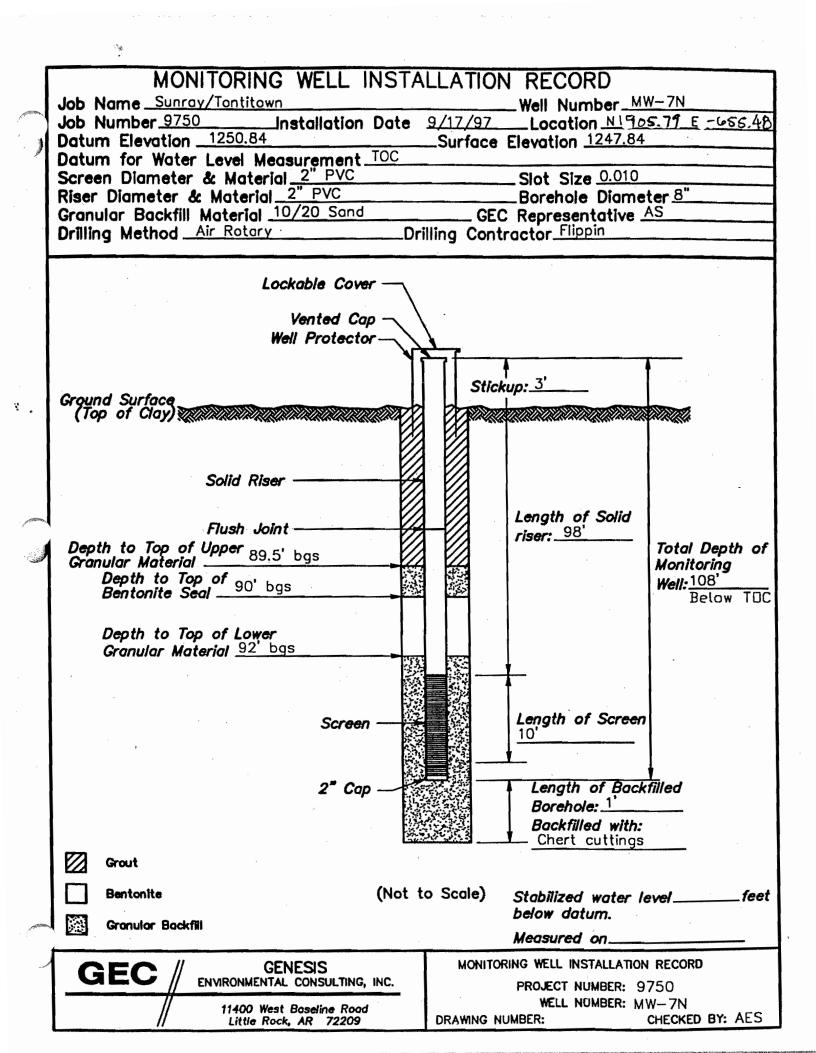
5 . "		<u> </u>		٠.	
Boring #: MW-	-	GEC / GENESIS ENVIRONMENTAL CONSULTING, INC.			592 E 1271.3512
Date: 9/2/97		Drilling Method: AIR ROTARY			
levation: 129		// 11400 West Baseline Rood Little Rock, AR 72209	Driller: AN	DERSON	
Job No.: 9750	0		Logged B	y. DM	(pg.1)
Elev. Dep	pth	Classification	Lithology	Sample or Box No.	Remarks
	-10 -20 -30 -40 -50 -80	CHERT LENS RED SILTY CLAY W/CHERT WEATHERED CHERT WEATHERED CHERT WITH RED CLAY, EASY DRILLING HARDER DRILLING CHERT LOOSE, CAN NOT KEEP OPEN LIMESTONE W/CHERT DRY 63'			WENT TO 6" ROLLER CONE BIT PROBLEMS KEEPING HOLE OPEN

፦

	Boring #	#: MW-1N	the state of the s	Loca	ation:	N -1249 5	592 E 1271.3512
	Date: 9/		GEC # GENESIS ENVIRONMENTAL CONSULTING, INC			ethod: AIR	
jara 1988		: 1295.59	// 11400 West Boseline Road			IDERSON	NOTAKT
,4	Job No.:		// Little Rock, AR 72209			By: DM	(n = 2)
		1				T	(pq.2)
	Elev.	Depth	Classification	_	ology	Sample or Box No.	Remarks
			LIMESTONE W/CHERT HARD DRY LIMESTONE W/CHERT HARD SOME MOISTURE LIMESTONE W/CHERT HARD WATER INCREASING GOOD WATER 107—115' TD 115'			BOX NO.	WATER @ 80' 9/5/97 ON RODS
A CALLON							
		_			,		



Boring #: MW-	2N	Location: N -277.5	5690 E 2391.4363	
Date: 9/15/9	GEC # GENESIS ENVIRONMENTAL CONSULTING, INC.	Drilling Method: AIR ROTARY		
:levation: 1286		Driller: ANDERSON		
Job No.: 9750	// Little Mook, MY 72209	Logged By: DM	(pq.1)	
Elev. Dep	th Classification	Lithology Sample of Box No.	or	
	RED SILTY CLAY W/CHERT O O O O O O O O O O O O O		AIR ROTARY TRI CONE BIT	


.

Boring #: MW-2N	GEC SENVIRONMENTAL CONSULTING, INC.	Location:	N -277.56	90 E 2391.4363
Date: 9/15/97		Drilling Method: AIR ROTARY		
Levation: 1286.53	11400 West Bossine Rood Little Rock, AR 72209	The second secon		EAN/GRAY
lob No.: 9750	77 Exit Ness, 77, 7225	Logged B		(pq.2)
Elev. Depth	Classification	Lithology	Somple or Box No.	
	HARD LIMESTONE CHERT INCREASE DRY 102'-108' SMALL FRACTURE SOME WATER TD 118'			NEW BIT REAM HOLE TO 6 1/2"

:

Date: 9/10/97	CEC // GENESIS		N 1391.7307	7 <u>E</u> 1927.1853
-1	GEC // GENESIS ENVIRONMENTAL CONSULTING, INC.		ethod: AIR F	
:levation: 1219.04	11400 West Baseline Road	Driller: AN		
Job No.: 9750	// Little Rock, AR 72209	Logged B		(pq.1)
Elev. Depth	Classification	Lithology	Sample or Box No.	Remarks
	RED SILTY CLAY W/CHERT MED PLASTIC MORE LIMESTONE (15'-18') WEATHERED, SOME CHERT DRY 26' CLAY BALLS, SOME CHERT, CLAY SILTY MED PLASTIC, MOIST 37' RED SILTY CLAY W/CHERT AND LS VERY MOIST 55' 1 FT LS/CHERTY 58' BACK ONTO ROCK 61' HIT H20, SOME PRODUCTION SMALL FRACTURES 65' INCREASED CHERT, SLOWER DRILLING GOOD H20 68' CHERT STILL CAUSING SLOW DRILLING 68.5' VERY HARD CHERT TD 70'			

				<i>)</i> •		•	
	Boring #: MW-7N		OFO // CENERIC	Location:	Location: N 1905.79 E -655.48		
	Date: 9/		GEC / GENESIS ENVIRONMENTAL CONSULTING, INC.	Drilling Method: AIR ROTARY			
ph/1985	:levation	tion: 1247,84 11400 West Beestine Road	Driller: Flippin				
	Job No.: 9750		// Silve Hous, Nr. 72200	Logged B		(pq.1)	
	Elev.	Depth	Classification	Lithology		Remarks	
				A A A A A A A A A A A A		STARTED WITH 8" BIT	
		10	RED SILTY CLAY SOME CHERT DRY	A A A A A			
		20 	23'-27' YELLOW RED, WEATHERED LIMESTONE, ZONE	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
			RED SILTY CLAY SOME CHERT DRY				
		40					
	,	50 	RED CLAY MOD PLASTIC SOME CHERT				
		60					
			66' SOFT ROCK, LIMESTONE, WEATHERED SOME CHERT			ADDING H20 TO	
			CLAY, RED, INTERBEDDED SOME CHERT			CLEAR HOLE	

		#: MW-7N	OFO // OFUE	Location:	N 1905.79	E -655.48
_e rpsileo	Date: 9/		GEC DENVIRONMENTAL CONSULTING, INC.	Drilling Method: AIR ROTARY		
	Elevation: 1247.84		// 11400 West Boseline Road Little Rock, AR 72200	Driller: Flip		
	Job No.:	9750		Logged B	Y AS	(pq.2)
	Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks
			CLAY, RED INTERBEDDED CHERT BEDROCK, CHERTY LIMESTONE H20 98'-100' 105' TD		Bedrock Groundwater	GETTING ~ 2GPM WILL OVER DRILL ~ 5 FT HAD ~ 1FT CAVING

Note: Depths to bedrock and groundwater were added

_	
I	MONITORING WELL INSTALLATION RECORD
	Job Name Sunray/Tontitown Well Number MW-8N
1	Job Number 9750 Installation Date 9/18/97 Location N2334.7197 E26.5031
١	Datum Elevation 1191.76 Surface Elevation 1188.76
ı	Datum for Water Level Measurement TOC
	Screen Diameter & Material 2" PVC Slot Size 0.010
ı	Riser Diameter & Material 2" PVC Borehole Diameter 8" Cranular Registil Material 10/20 Sond CEC Representative DM
1	Granular Backfill Material 10/20 Sand GEC Representative DM Drilling Method Air Rotary Drilling Contractor Flippin
ı	Drining Metrod
ſ	Locketta Cours
ı	Lockable Cover —
1	Vented Cap —
ı	Well Protector—
١	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ļ	Stickup: 3'
١	Ground Surface
١	(Top of Clay)
ı	
١	
ı	Solid Riser ————————————————————————————————————
1	
	Flush Joint Length of Solid
. 1	
)	Granular Material Monitoring
١	Depth to Top of 38' bgs Well: 73' Relow TO
1	Below TO
١	Depth to Top of Lower
ı	Granular Material 41' bgs
١	
ı	
ı	
١	Screen Length of Screen
١	
١	2" Cap Length of Backfilled
	Borehole: 0
	Backfilled with:
	Grout
1	Bentonite (Not to Scale) Stabilized water levelfee
	below datum.
200	Granular Backfill Measured on
1	GENESIS MONITORING WELL INSTALLATION RECORD
	GEC GENESIS ENVIRONMENTAL CONSULTING, INC. MONITORING WELL INSTALLATION RECORD PROJECT NUMBER: 9750
	11400 West Baseline Road Little Rock, AR 72209 DRAWING NUMBER: MW-8N CHECKED BY: AES

;

Boring #: MW-8N		Location: N 2334.7197	E 26.5031
Date: 9/18/97	GEC / GENESIS ENVIRONMENTAL CONSULTING, INC.	Drilling Method: AIR RC	
Elevation: 1188.76	11400 West Baseline Road Little Rock, AR 72209	Driller: FLIPPIN	
Job No.: 9750	7 2130 1000 71 7220	Logged By: DM	(pg.1)
Elev. Depth	Classification	Lithology Sample or Box No.	Remarks
	RED, SILTY CLAY W/WEATHERED CHERT AND LIMESTONE 41' BEDROCK LIMESTONE, CHERTY AND FOSSILIFEROUS 50-55' H20 FILLED FRACTURE		

:

ſ	MONITORING WELL INSTA	ALLATION RECORD
J	Job Name Sunray/Tontitown	Well Number MW-10N
(STATE)	Job Number 9750 Installation Date	
ı ſ	Datum Elevation 1193.60	Surface Elevation 1190.60
4	Datum for Water Level Measurement TOC	Surface Elevation
١	Screen Diameter & Material 2" PVC	Slot Size 0.010
ı	Riser Diameter & Material 2" PVC	Borehole Diameter 6.5-6" Nomno
١	Granular Backfill Material 10/20 Sand	GEC Representative AS
١	Drilling Method Air Rotory D	Orilling Contractor Anderson
١	brining mounds	willing contractor
Ī		
١	Lockable Cover —	
١	Vented Con	
١	Vented Cap	-
	Well Protector	_
1		
1		Stickup: 3'
١	Ground Surface	
١	(Top of Clay)	
1		
١		
١	Solid Riser	
•		
		Length of Solid
icasan	Flush Joint	riser: 89'
.)1	Depth to Top of Upper 80' bgs	Total Depth of
4		Monitoring
	Depth to Top of 81' bgs	Well: 109'
		Below TDC
	Denth to Ton of Lower	
	Depth to Top of Lower Granular Material 83' bgs	
	r en	
	Screen —	Length of Screen
		20'
	2" Cap —	Length of Backfilled
		Borehole: 0
		Backfilled with:
	7 7	
	Grout	
	Bentonite (Not	to Scale) Stabilized water levelfeet
	Citot	below datum.
	Gronular Backfill	,
,		Measured on
1	GEC // GENESIS	MONITORING WELL INSTALLATION RECORD
	GEC GENESIS ENVIRONMENTAL CONSULTING, INC.	PROJECT NUMBER: 9750
	11400 West Baseline Road	WELL NUMBER: MW-10N
	Little Rock, AR 72209	DRAWING NUMBER: CHECKED BY: AES

...**.....**

Date: 9/15/97 Elevation: 1190.60 Job No.: 9750 Elev. Depth Classification RED, BROWN, SILTY CLAY, SOME CHERT AND LIMESTONE DRY DRY AS ABOVE, WEATHERED LIMESTONE AND CHERT 15' SOME WEATHERED LIMESTONE CHERTY 23' INCREASED CLAY DRY AAAA RED CLAY MOD PLASTIC, SOME CHERT MOIST AS ABOVE 40' RED CLAY, MOIST AS ABOVE 40' RED CLAY, MOIST AS ABOVE 40' RED CLAY, MOIST AS ABOVE 40' RED CLAY, MOIST AS ABOVE 48' SAME AS 40 50'-51' DRILLING HARDER BEDROCK 53' SWITCH TO HAMMER 6" DRY CHERTY LIMESTONE 60' 62' DRY, CHERTY LIMESTONE 62' DRY, CHERTY LIMESTONE 60' 62' DRY, CHERTY LIMESTONE 11400 West Bosenies Rood DRY Drilling Method: AIR ROTARY Drilling Method: AIR ROTAR	Boring ;	#: MW-10N		Location:	N 2210.593	39 E 1139.0099
Interpretation: 1190.60 Interpretation:	Date: 9/	/15/97	GEC # ENVIRONMENTAL CONSULTING, INC.			
Logged By: AS Lithology Sample or Box No. Remark			// 11400 West Boseline Rood			NO IAN I
Elev. Depth Classification Box No. Remark RED, BROWN, SILTY CLAY, SOME CHERT AND LIMESTONE DRY DRY AS ABOVE, WEATHERED LIMESTONE AND CHERT 15' SOME WEATHERED LIMESTONE CHERTY 18' SOME WEATHERED LIMESTONE CHERTY 23' INCREASED CLAY DRY AAAA CHERT MOIST 35' CHERTY, CLAY, MOIST AS ABOVE AO'RED CLAY, MOIST SOME CHERT VERY PLASTIC 48' SAME AS 40 50'-51' DRILLING HARDER BEDROCK 53' SWITCH TO HAMMER 6" 60 62' DRY, CHERTY LIMESTONE 60 62' DRY, CHERTY LIMESTONE 60 62' DRY, CHERTY LIMESTONE AAAA AAAA CHERT ON CHERT VERY AAAAA AAAAA AAAAA AAAAA AAAAA AAAA	Job No.:	9750				(pg.1)
RED, BROWN, SILTY CLAY, SOME CHERT AND LIMESTONE DRY DRY AS ABOVE, WEATHERED LIMESTONE AND CHERT 15' SOME WEATHERED LIMESTONE CHERTY 18' SOME WEATHERED LIMESTONE CHERTY 23' INCREASED CLAY DRY AAAA CHERT MOIST 35' CHERTY, CLAY, MOIST AS ABOVE HOUR RED CLAY, MOIST AS ABOVE 40' RED CLAY, MOIST SOME CHERT VERY PLASTIC 48' SAME AS 40 50'-51' DRILLING HARDER BEDROCK 53' SWITCH TO HAMMER 6" 60' 62' DRY, CHERTY LIMESTONE 62' DRY, CHERTY LIMESTONE AAAA CHERT MOIST AAAA AAAA AAAA AAAA AAAA AAAA AAAA A	Elev.	Depth	Classification	Lithology		Remarks
70 71' LITTLE, SMALL FRACTURE CHERTY LIMESTONE 80 82' NO ADDITIONAL H20 82' NO ADDITIONAL H20			SOME CHERT AND LIMESTONE DRY DRY AS ABOVE, WEATHERED LIMESTONE AND CHERT 15' SOME WEATHERED LIMESTONE CHERTY 18' SOME WEATHERED LIMESTONE CHERTY 23' INCREASED CLAY DRY RED CLAY MOD PLASTIC, SOME CHERT MOIST 35' CHERTY, CLAY, MOIST AS ABOVE 40' RED CLAY, MOIST SOME CHERT VERY PLASTIC 48' SAME AS 40 50'-51' DRILLING HARDER BEDROCK 53' SWITCH TO HAMMER 6" 62' DRY, CHERTY LIMESTONE 71' LITTLE, SMALL FRACTURE CHERTY LIMESTONE	A A A A A A A A A A A A A A A A A A A	-	≥ 1 FT THICK 38' DRY 52' ADDED H20/BIO MUD TO CLEAN OUT HOLE DOES NOT APPEAR TO BE VERY FRACTURED

Boring #: MW-10N Date: 9/15/97 levation: 1190.60 Job No.: 9750		GEC SENESIS ENVIRONMENTAL CONSULTING, INC.		Location: N 2210.5939 E 1139.0099 Drilling Method: AIR ROTARY Driller: ANDERSON Logged By: AS (pq.2)		
	90 90 100	TD 106' END OF	DRILLING		-	H20 COMING TO HOLE FROM 71' ZONE AT RATE OF <u>~</u> .1 GAL/MIN
	110	FROM 91' TO 106 PRIOR TO WELL I	OVER DRILLED			
	=	· · · · · · · · · · · · · · · · · · ·				
•					·	
	_					
and the same of th	_					·
)	_					

MONITORING WELL INSTA Job Name Sunray/Tontitown Job Number 9750 Installation Date Datum Elevation 1284.52 Datum for Water Level Measurement TOC Screen Diameter & Material 2" PVC Riser Diameter & Material 2" PVC Granular Backfill Material 10/20 Sand Drilling Method Air Rotary Dr	Well Number MW-11N 9/16/97 Location N-1385.9411 E-1166.3449 Surface Elevation 1281.52 Slot Size 0.010 Borehole Diameter 8" to 6" GEC Representative AS
Lockable Cover Vented Cap Well Protector Ground Surface (Top of Clay)	Stickup: 3'
Solid Riser Flush Joint Depth to Top of Upper 98' bgs Granular Material Depth to Top of 99' bgs Bentonite Seal	Length of Solid riser: 109.5' Total Depth of Monitoring Well: 129.5' Below TOC
Depth to Top of Lower Granular Material 102' bgs Screen	Length of Screen
	Length of Backfilled Borehole: 0 Backfilled with: to Scale) Stabilized water levelfeet below datum.
GEC GENESIS ENVIRONMENTAL CONSULTING, INC. 11400 West Baseline Road Little Rock, AR 72209	Measured on MONITORING WELL INSTALLATION RECORD PROJECT NUMBER: 9750 WELL NUMBER: MW-11N DRAWING NUMBER: CHECKED BY: AES

;

Co

				r			
					<u>.</u>		
		#: MW-11N	GEC // GENESIS	Location:	N -1385.94	411 E -1166.3449]
NITTON.	Date: 9		GEC GENESIS ENVIRONMENTAL CONSULTING, INC.		ethod: AIR		
and the same		n: 1281.52	// 11400 West Boseline Rood Little Rock, AR 72209		PPIN-BROS		1
- 1	Job No.:	9750_		Logged B	Y. AS	(pq.1)	
	Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks	
	Elev.	Depth	RED, CLAY, SOME CHERT DRY SOME SILT RED CLAY, CHERTY RED CLAY, CHERTY 66'-BEDROCK, CHERTY LIMESTONE		Box No.	Remarks 8 INCH BIT STARTED USING H20 TO CLEAN OUT HOLE 66' SWITCHING TO 6" HAMMER	
		_					,

					r	
		#: MW-11N	CEO // CENERS	Location:	N -1385.94	411 E -1166.3449
-797	Date: 9/		GEC / GENESIS ENVIRONMENTAL CONSULTING, INC.	Drilling Me	ethod: AIR	ROTARY
gerer.	Elevation: 1281.52		11400 West Boseline Road Little Rock, AR 72200		PPIN-BROS	
,	Job No.:	9750		Logged B	y: AS	(pq.2)
]		Lithology	Sample or	
	Elev.	Depth	Classification		Box No.	Remarks
		90 90 100	103-CHERTY, LIMESTONE		<u>-</u>	
		110 	H20 ≈ 110-116 VERY LITTLE H20 123 YIELDING ≈ 1/4 GAL/MIN 126.5 TD			HOLDING TO TRY TO GET CHANGE IN TRANSDUCER IN OLD MONITOR WALL

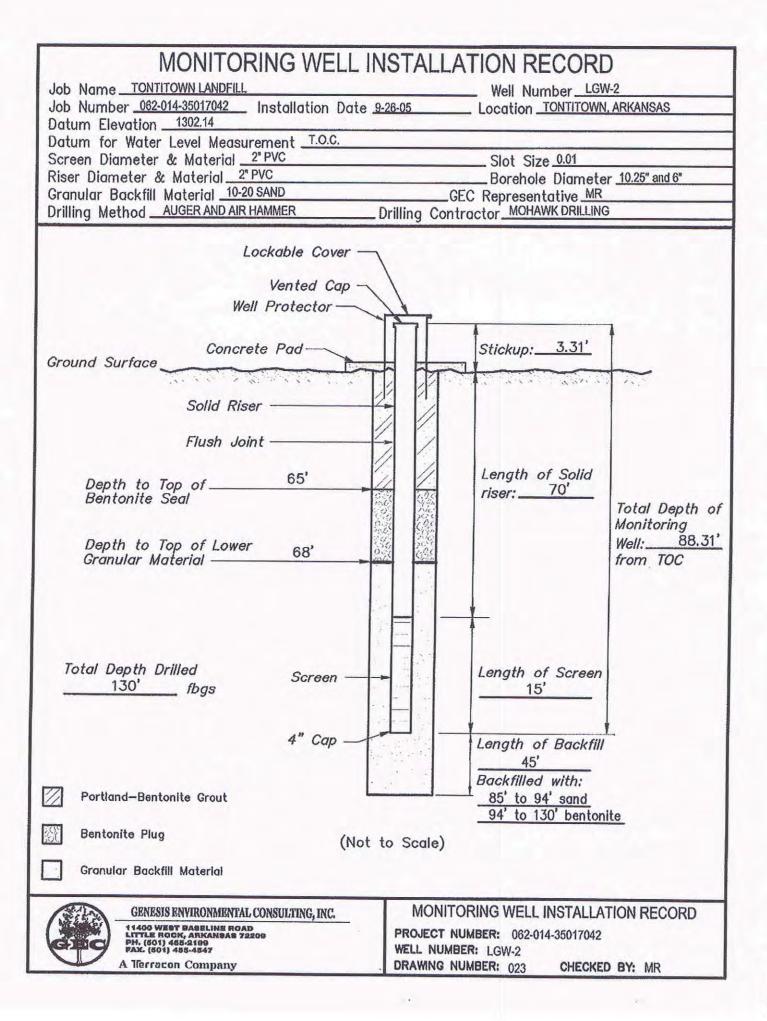
ý

Boring No.: MW-15 **Field Boring Log** Date Drilled: 5/6/2015 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Mark Witherspoon 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Phone (501) 812-4551 " www.chimrockconsulting.com Total Depth: 91 ft below ground surface (bgs) Drilling Method: 6" Air Rotary Drilling Co.: Anderson Engineering Sampling Method: cuttings **Driller: Jacob Summers** Location: Tontitown, AR Rig Type: Truck Mounted CME 55 Page: 1 Northing: 666696.25 Easting: 645547.24 Elevation: 1288.36 (ground surface) Lithologic Description **COMMENTS** Litho. Symbol WELL CONSTRUCTION DETAILS Top of Casing 0.00 Elevation 1291.46 Ground surface elevation 1288.36 Silty Clay Topsoil; organics 5 5.00 6" diamater borehole 10.00 10 2" diameter Schedule 15.00 15 40 PVC casing Bentonite chip seal 20.00 20 25.00 25 Cherty Clay; red, clay to chert content varies 30.00 30 35.00 35 40.00 40 45.00 45 50.00 50 #20/40 silica sand Stable water level 24 hrs filter pack after drilling, 56' bgs 55.00 55 Gravelly Clay; gray with some Competent Bedrock at 57' bgs 2" diameter, 0.010" tan clay, chert and limestone slot, Schedule 40 PVC gravels 60.00 60 screen 65.00 65 67' bgs, stopped to allow 70.00 70 2" diameter Schedule Groundwater infiltration it was 40 PVC end cap noted that the cuttings were moist, Dry after 20 min 75.00 75 Limestone, Gray 80.00 80 81' bgs, stopped for 20 min to allow Groundwater infiltration, Dry 85.00 90.00 90 91' bgs, stopped for 20 min to Total Depth = 91 ft bgs allow Groundwater infiltration. 95

show of water

Boring No.: MW-16 **Field Boring Log** Date Drilled: 5/7/15 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Mark Witherspoon 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Total Depth: 115 ft below ground surface (bgs) Phone (501) 812-4551 " www.chimrockconsulting.com Drilling Co.: Anderson Engineering Drilling Method: 6" Air Rotary **Driller: Jacob Summers** Sampling Method: cuttings Location: Tontitown, AR Rig Type: Ingersol Rand T3W Page: 1 Northing: 666692.67 Easting: 645038.59 Elevation: 1285.92 (ground surface) Lithologic Description **COMMENTS** WELL CONSTRUCTION DETAILS Litho. Symbol Top of Casing 0.00 Silty Clay Topsoil; organics Elevation Ground surface elevation 1285.92 1289.70 5.00 6" diamater 10 10.00 borehole 2" diameter 15.00 15 Schedule 40 PVC casing 20.00 20 Bentonite chip 25.00 25 seal 30.00 Cherty Clay; red, clay to 30 chert content varies 35.00 35 40.00 40 45 45.00 50.00 50 55.00 55 Competent Bedrock at 59' bgs 60.00 60 No epikarst present Intially hung screen 59' to 74', no 65.00 65 water present in the borehole after 24 hours. 70.00 70 75.00 Extended the boring in 5' intervals, waiting 30 min between 80.00 80 intervals to check for 85.00 groundwater infiltration 85 Limestone, Gray 90.00 Stable Water Level 90' bgs 90 #20/40 silica after 24 hrs sand filter pack 95.00 95 100.00 100 2" diameter, 0.010" slot, 105.00 105 Schedule 40 PVC [▽] 110.00 Water observed at 110' bgs 110 screen during drilling 115.00 115 2" diameter Total Depth = 115 ft bgs Schedule 40 PVC

end cap


Boring No.: MW-17 **Field Boring Log** Date Drilled: 5/7/2015 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Mark Witherspoon 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Total Depth: 76 ft below ground surface (bgs) Phone (501) 812-4551 " www.chimrockconsulting.com Drilling Method: 6" Air Rotary Drilling Co.: Anderson Engineering Sampling Method: cuttings **Driller: Jacob Summers** Location: Tontitown, AR Rig Type: Ingersol Rand T3W Page: 1 Northing: 666159.64 Easting: 644919.12 Elevation: 1285.34 (ground surface) WELL CONSTRUCTION DETAILS Lithologic Description **COMMENTS** Litho. Symbol Top of Casing Elevation 0.00 Ground surface elevation 1288.93 1285.34 5.00 6" diamater borehole 10.00 10 2" diameter Schedule 40 PVC 15.00 15 casing Bentonite chip 20.00 20 seal 25.00 25 Cherty Clay; red, clay to chert 30.00 content varies 30 35.00 35 40.00 40 45.00 45 50.00 50 No epikarst present 55.00 55 #20/40 silica Competent Bedrock @ 58' bgs sand filter pack Stable water 24 hrs after drilling, 60' bgs 60.00 Extended the boring in 5' intervals, waiting 30 min between intervals to check for 65.00 65 groundwater infiltration 2" diameter, Limestone, Gray 0.010" slot, Schedule 40 PVC 70.00 screen 2" diameter 75.00 75 Schedule 40 PVC Total Depth = 76 ft bgs end cap

Boring No.: MW-19 **Field Boring Log** Date Drilled: 5/7/2015 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Mark Witherspoon 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Total Depth: 80 ft below ground surface (bgs) Phone (501) 812-4551 " www.chimrockconsulting.com Drilling Method: 6" Air Rotary Drilling Co.: Anderson Engineering Sampling Method: cuttings Driller: Jacob Summers Rig Type: Ingersol Rand T3W Location: Tontitown, AR Page: 1 Northing: 664866.93 Easting: 645156.17 Elevation: 1291.01 (ground surface) **COMMENTS** Lithologic Description Litho. Symbol WELL CONSTRUCTION DETAILS Top of Casing Elevation 0.00 1293.90 Silty Clay Topsoil; organics Ground surface elevation 1291.01 5.00 6" diamater borehole 10.00 10 2" diameter Schedule 15.00 15 40 PVC casing Bentonite chip seal 20.00 20 25.00 25 30 30.00 Cherty Clay; red, clay to chert content varies 35.00 35 40.00 40 45 45.00 50.00 50 55.00 55 Competent Bedrock at 61' 60 60.00 #20/40 silica sand filter pack 2" diameter, 0.010" 65.00 65 Stable Water at 68' bgs slot, Schedule 40 PVC after 24 hrs screen 70.00 Limestone, Gray 75.00 75 80.00 2" diameter Schedule Total Depth = 80ft bgs 40 PVC end cap

Boring No.: MW-20 **Field Boring Log** Date Drilled: 5/7/2015 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Mark Witherspoon 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Total Depth: 80 ft below ground surface (bgs) Phone (501) 812-4551 " www.chimrockconsulting.com Drilling Method: 6" Air Rotary Drilling Co.: Anderson Engineering Sampling Method: cuttings Driller: Jacob Summers Location: Tontitown, AR Rig Type: Ingersol Rand T3W Page: 1 Northing: 664200.97 Easting: 644267.35 Elevation: 1286.13 (ground surface) Litho. Symbol COMMENTS WELL CONSTRUCTION DETAILS Lithologic Description Top of Casing 0.00 Elevation 1289.48 0 Ground surface elevation Silty Clay Topsoil; organics 1286.13 5.00 6" diamater borehole 10.00 10 2" diameter 15.00 15 Schedule 40 PVC casing Bentonite chip seal 20.00 20 25.00 25 30.00 30 Cherty Clay; red, clay to chert content 35.00 35 varies 40.00 40 45.00 45 50.00 50 55.00 55 60.00 60 #20/40 silica sand 65.00 65 Stable water at 69' bgs filter pack Competent Bedrock at 69' after 24 hrs 2" diameter, 0.010" 70.00 slot, Schedule 40 PVC screen Limestone, Gray 75.00 75 80.00 80 2" diameter Total Depth = 80 bgs Schedule 40 PVC

end cap

Boring No.: MW-21 **Field Boring Log** Date Drilled: 4/20/2015 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Robert Fowler 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Total Depth: 40 ft below ground surface (bgs) Phone (501) 812-4551 " www.chimrockconsulting.com Drilling Method: 8.25" Hollow Stem Augers Drilling Co.: Anderson Engineering Sampling Method: Cuttings Driller: Gary Moyers Rig Type: Truck Mounted CME 55 Location: Tontitown, AR Page: 1 Northing: 662562.59 Easting: 646406.01 Elevation: 1185.83 (ground surface) Litho. Symbol WELL CONSTRUCTION DETAILS Lithologic Description COMMENTS Top of Casing Elevation 1188.83 0.00 Ground surface elevation Topsoil; brown 1185.83 5.00 8.25" diamater borehole Cherty Clay; red with chert gravels 10.00 2" diameter Schedule 40 PVC casing 15.00 15 Bentonite chip seal Chert; hard white 20.00 20 Water at 25.50' bgs 25.00 after 1 hr in borehole 25 Observed water at 27' during drilling #20/40 silica sand Cherty Clay; red with chert gravels filter pack 30.00 30 35.00 35 2" diameter, 0.010" slot, Schedule 40 PVC screen 2" diameter 40.00 Schedule 40 PVC Total Depth = 40 ft bgs end cap

FIELD BORING LOG

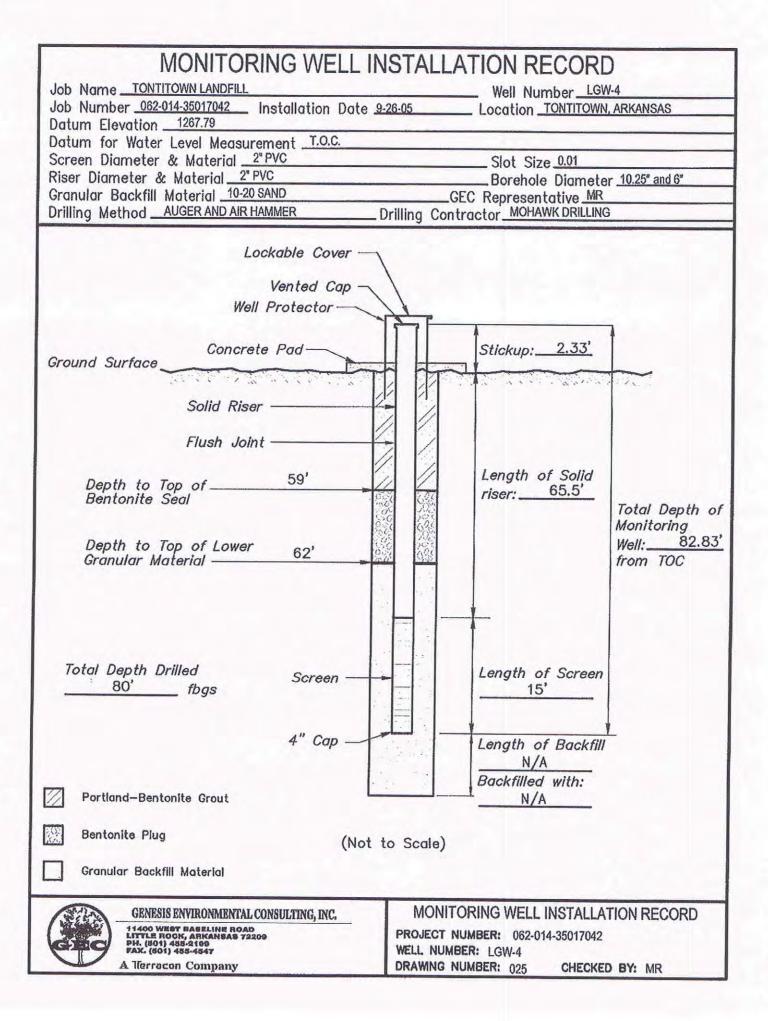
BORING NO.: LGW-2

PAGE: 1 of 2

TOTAL DEPTH: 130

FEET BELOW GROUND SURFACE (BGS)

PROJECT: TONTITOWN LANDFILL CLIENT: WASTE MANAGEMENT DRILLING CO .: MOHAWK DRILLING JOB NO.: 062-014-35017042-009 DRILLER: KEVIN LOGGED BY: MERRICK ROTENBERRY RIG TYPE: FAILING SS-25 AND INGERSOL T3W DATE DRILLED: 9-26-05


DRILLING METHOD: AUGER 10.25" OD (0-41.5'); AIR HAMMER 6" OD (41.5-130')

epth Sampl	IG METHOD: N/A	E: 646396.76 DESCRIPTI	GROUND ELEV: 1298.84	Litho. Symbol	Comments	Constr	
GS Interv	al	DESCRIPTI	011			3.3' Stickup	
0	0' - 41.5' Clay :	and chert mixture.		A A A A A A A A A A A A A A A A A A A			
50 -							

Boring No.: LGW-3R **Field Boring Log** Date Drilled: 6/16/2015 Proj. No.: 14-045 Client: Waste Management-EcoVista Logged By: Robert Fowler 7529 Counts Massie Road "North Little Rock, Arkansas 72113 Total Depth: 71 ft below ground surface (bgs) Phone (501) 812-4551 " www.chimrockconsulting.com Drilling Method: 8.25" Hollow Stem Augers 8.25" Hollow Stem Augers Drilling Co.: Anderson Engineering Sampling Method: cuttings Driller: Gary Moyers Location: Tontitown, AR Rig Type: Truck Mounted CME 55 Page: 1 Northing: 666590.86 Easting: 647168.00 Elevation: 1285.88 (ground surface) Depth Litho. Symbol WELL CONSTRUCTION DETAILS Lithologic Description COMMENTS Top of Casing Elevation 1289.20 0.00 Ground surface elevation Cherty Clay; red with chert gravels 1285.88 5.00 Chert; very hard 8.25" diamater borehole 10.00 2" diameter Schedule 40 PVC 15.00 casing Bentonite chip seal 20.00 20 25.00 25 30.00 30 35.00 35 Cherty Clay; red with chert gravels 40.00 40 45.00 45 50.00 50 #20/40 silica sand 55.00 55 filter pack 2" diameter, 60.00 60 Stable water at 60.12' bgs 0.010" slot, after 24 hrs Schedule 40 PVC Competent Bedrock at 65' screen 65.00 2" diameter Limestone; gray, with some chert Schedule 40 PVC interbedded near the contact end cap 70.00 70 6" diameter

borehole

Total Depth = 71 ft bgs

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

A lerracon Company

FIELD BORING LOG

BORING NO .:

LGW-4

PAGE: 1 of 2

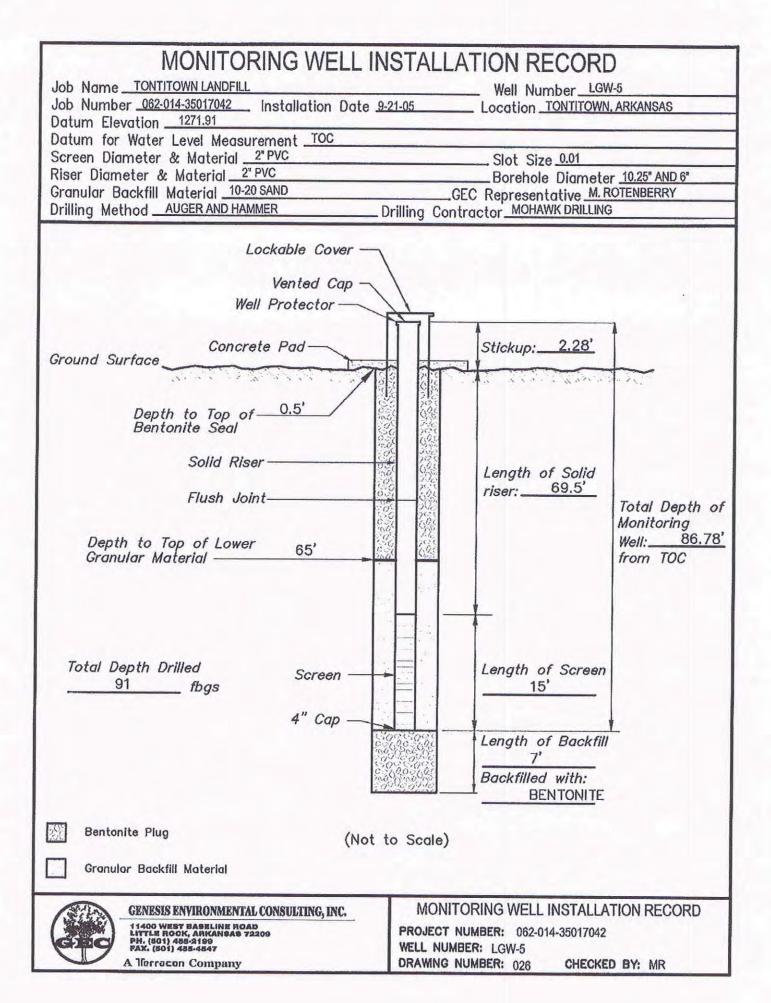
TOTAL DEPTH: 80

FEET BELOW GROUND SURFACE (BGS)

A	erracon Company	TOTAL DE	PIH: 80	FEET BELOW	GROUND SUI	RFACE (BGS
CLIENT: WAST	E MANAGEMENT		PROJECT	T: TONTITOWN LAND	FILL	
JOB NO.: 062-0	014-35017042-011		DRILLING	CO.: MOHAWK DR	ILLING	
LOGGED BY:	MERRICK ROTENBERRY		DRILLER	KEVIN		
DATE DRILLE			RIG TYPE	: FAILING SS 25 ANI	INGERSOL T3W	
	THOD: AUGER 10.25" OD (0-	65'). AIR HAMMER				
SAMPLING M		oo j, rai et buille.	00 (00 00)			
	longue	ELEV: 1264.89	Litho.		1A	/ell
Depth N: 665924.	DESCRIPTION		Symbol Symbol	Comments		ruction
	Description of the second				2.9' Stickup	7
0 0' - 65' C	lay and chert mixture.		A-A-A-A - A-A-A - A-A-A - A-A-A-A	Logged by cuttings.		
5 -			. A A A A A A A A A A A A A A A A A			
10 -			A A A A A A A A A A A A A A A A A A A A			
15 -			A-A-A-A A-A-A-A A-A-A-A-A A-A-A-A-A A-A-A-A-			
20 -			△ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ○ ◇ ◇ ◇ ◇ ○ ◇ ◇ ◇ ◇ ◇			
25 –	9		AAAA AAAAA AAAAA			
30 -			A A A A A A A A A A A A A A A A A A A A			

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

A Terracon Company


FIELD BORING LOG

BORING NO.: LGW-4

PAGE: 2 of 2

TOTAL DEPTH: 80 FEET BELOW GROUND SURFACE (BGS)

Depth BGS	DESCRIPTION	Litho. Symbol	Comments	Well Construction
15 15 15 15 15 15 15 15	Water at 62'.	A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	Bentonite Chips at 59' - 62' Sand pack at 62' - 80'	✓ Static Level 9-30-05
55	65' - 80' Limestone rock.			
75	Total Depth = 80'		Screen 65' - 80'	

FIELD BORING LOG

BORING NO .: LGW-5

PAGE: 1 of 2

TOTAL DEPTH: 91

FEET BELOW GROUND SURFACE (BGS)

CLIENT: WASTE MANAGEMENT PROJECT: TONTITOWN LANDFILL

JOB NO.: 062-014-35017042-012 DRILLING CO.: MOHAWK DRILLING

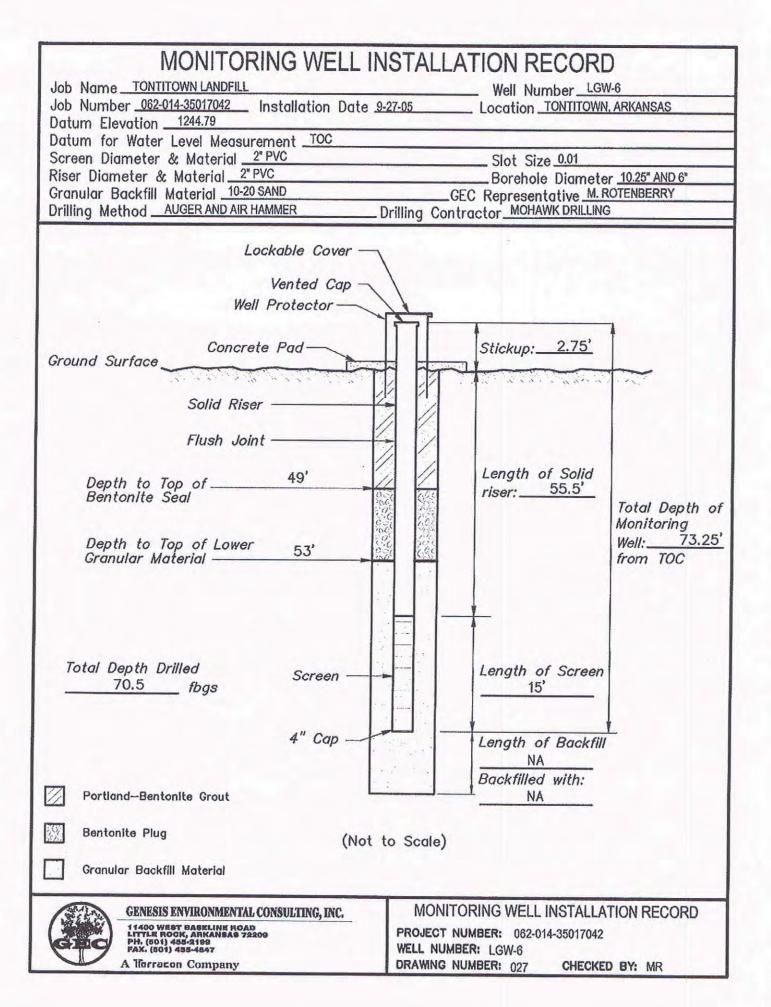
LOGGED BY: MERRICK ROTENBERRY DRILLER: KEVIN

DATE DRILLED: 9-21-05 RIG TYPE: FAILING SS-25 AND INGERSOL T3W

DRILLING METHOD: AUGER 10.25" OD (0-70"); AIR HAMMER 6" OD (70-91")

SAMPLING METHOD: N/A

Depth BGS	Sample Interval	N: 665325.53	E: 647602.83	RFACE ELEV: 1268.71	Litho. Symbol	Comments	Constr	
							3.2' Stickup	
0		0' - 70' Clay an				Logged by cuttings.	\$\$\text{\$\	SIZSIZSIZSIZSIZSIZSIZSIZSIZSIZSIZSIZSIZS
-	111	Cuttings moist a	t 52'.		4-4-4-4		800 800 800 800	5000


FIELD BORING LOG

BORING NO.: LGW-5

PAGE: 2 of 2

TOTAL DEPTH: 91 FEET BELOW GROUND SURFACE (BGS)

Depth	Sample Interval	DESCRIPTION	Litho. Symbol	Comments	Well Construction
55 - - - 50 -		No show of water during drilling.	▽-▽-▽-▽- ▽-▽-▽-▽- ▽-▽-▽-▽- ▽-▽-▽-▽- ▽-▽-▽-▽-	surface	500 000 000 000 000 000 000 000 000 000
1.1.1.1		NO Show of water during drawing.	\$-\$-\$-\$-\$ \$-\$-\$-\$-\$ -\$-\$-\$-\$ \$-\$-\$-\$-\$	Sand pack at 65' - 84'	Z
0 -		70' - 91' Limestone rock.			Static Level 9-30-05
50 —				Bentonite at 84' - 91'	03000
0 -		Total Depth = 91'			
0-					
0-					2
0-					
0-					
-					

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547 A Terracon Company

BORING NO.:

LGW-6

FIELD BORING LOG

PAGE: 1 of 2

TOTAL DEPTH: 70.5

FEET BELOW GROUND SURFACE (BGS)

	(B00)
CLIENT: WASTE MANAGEMENT	PROJECT: TONTITOWN LANDFILL
JOB NO.: 062-014-35017042-013	DRILLING CO.: MOHAWK DRILLING
LOGGED BY: MERRICK ROTENBERRY	DRILLER: KEVIN
DATE DRILLED: 9-27-05	RIG TYPE: FAILING SS 25 AND INGERSOL T3W

DRILLING METHOD: AUGER 10.25" OD (0-54'); AIR HAMMER 6" OD (54-70.5')

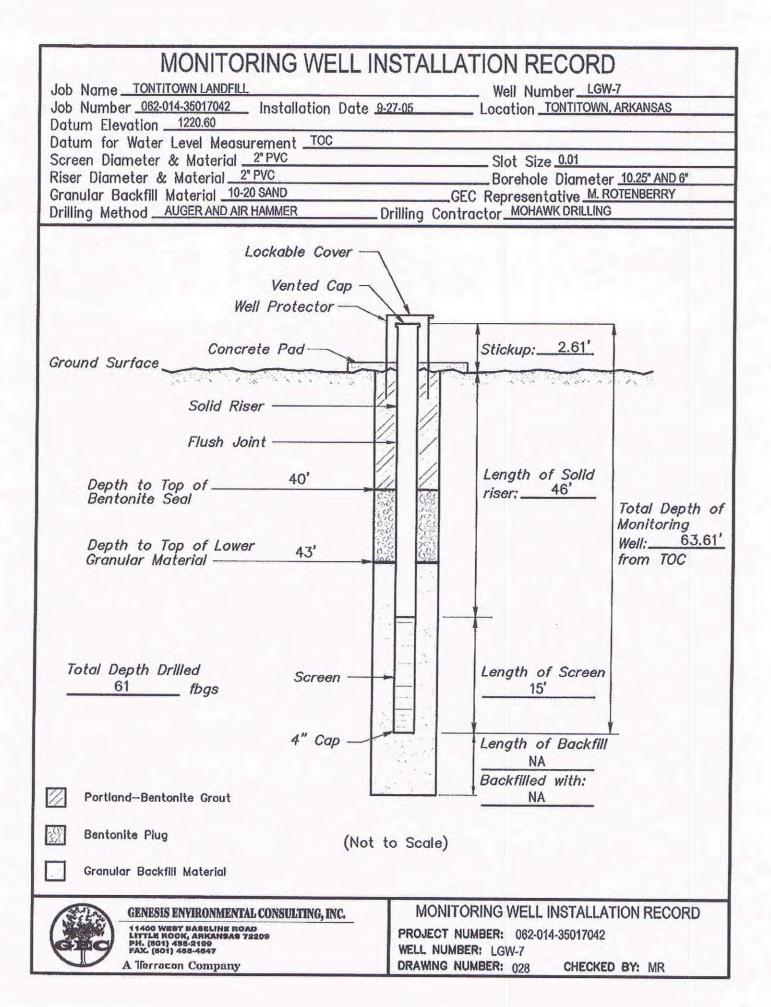
SAMPLING METHOD: N/A

Depth	N: 664913.38	E: 648173.35	ELEV: 1242.04	Litho.	Co	Well
BĠS		DESCRIPTI	ON	Symbol	Comments	Construction
					,	
0 -	0' - 54.0' Clay ar	nd chert mixture.		- \(\sigma\)-\(\sigma\)-\(\sigma\)-\(\sigma\)-\(\sigma\)-\(\sigma\)	Logged by cuttings.	
-				A-A-A-A - A-A-A-A - A-A-A-A	Logged by Cataligs.	
5 -						
				-A-A-A-A A-A-A-A-		
10 -				A-A-A-A - A-A-A-A - A-A-A-A		
- - - -						
15 —				Δ-Δ-Δ-Δ- -Δ-Δ-Δ-Δ -Δ-Δ-Δ-Δ-Δ-		
- - 20 -						
-				∇-∇-∇-∇- ∇-∇-∇-∇-∇-	,	
25 –				<u> </u>		
				<u>A-A-A-A</u> A-A-A-A		
30 —				<u>-</u> A-A-∆-∆ -∆-∆-∆-∆-		
				∇ <u></u> ∇_∇_∇_∇_		
				A-A-A-A		

GENESIS ENVIRONMENTAL CONSULTING, INC. 11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

A Terracon Company

FIELD BORING LOG


BORING NO.: LGW-6

PAGE: 2 of 2

TOTAL DEPTH: 70.5

FEET BELOW GROUND SURFACE (BGS)

	22 herrocon company	TOTAL DEPTH: 70.8	TEE I BELL	DW GROUND SURFACE (BGS)
Depth BGS	DESCRIPTION	Litho. Symbol	Comments	Well Construction
40		∇-∇-∇-∇- ∇-∇-∇-∇-∇- ∇-∇-∇-∇-∇- ∇-∇-∇-∇-		
45 —		<u>A-A-A-A-</u> -A-A-A-A - <u>A-A-A-A</u> A-A-A-A-A		
50 -		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Bentonite Chips at 49' - 53' Sand pack at 53' - 70.5'	▼ Static Level 9-30-05
55 —	54' - 70' Limestone rock. Wet at 55'.		33 - 10.3	
60 —			Screen 55.5' - 70.5'	
70				
75 —	Total Depth = 70.5			<u> </u>

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547 **FIELD BORING LOG**

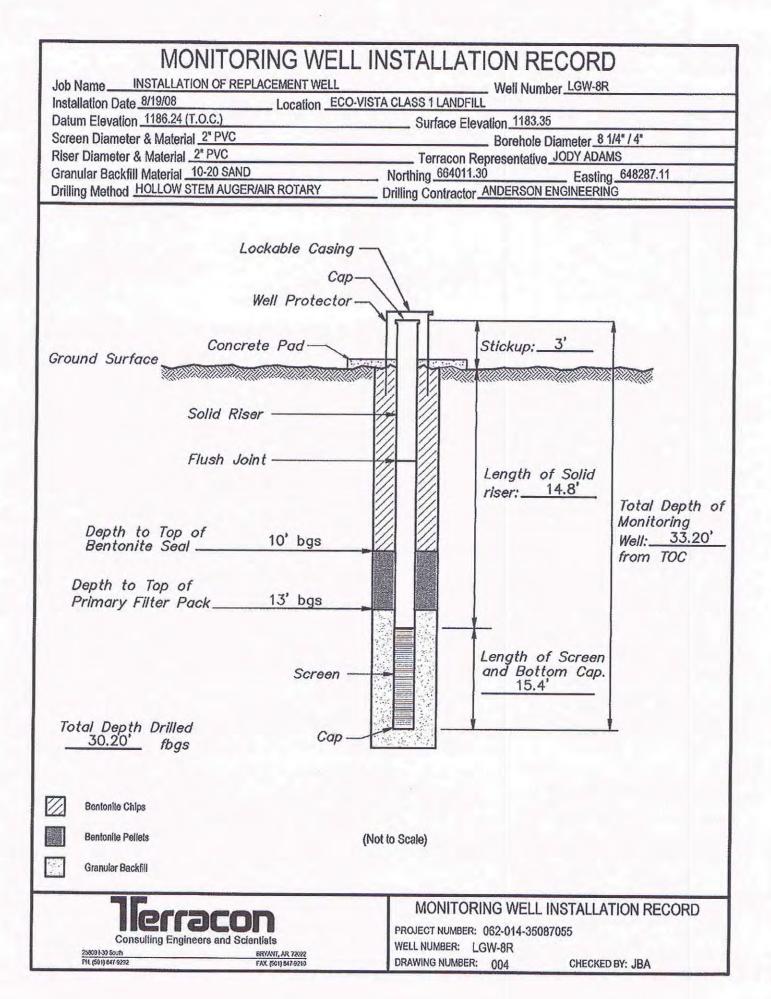
BORING NO.: L

LGW-7

PAGE: 1 of 2

FAX. (501) 455-4547	BUNING	.,	GVV-1	1 AGE, 1012		
A lerracon Company	TOTAL D	EPTH: 61	FEET BELOW	GROUND SURFACE (BGS		
CLIENT: WASTE MANAGEMENT		PROJECT	T: TONTITOWN LAND	FILL		
JOB NO.: 062-014-35017042-014		DRILLING CO.: MOHAWK DRILLING				
LOGGED BY: MERRICK ROTENBERRY		DRILLER	: KEVIN			
DATE DRILLED: 9-27-05		RIG TYPE	: FAILING SS 25 AN	D INGERSOL T3W		
DRILLING METHOD: AUGER 10.25" OD (0-	44'); AIR HAMMER	6" OD (44-61")				
SAMPLING METHOD: N/A						
Depth N: 664257.00 E: 648161.05 GROUN BGS DESCRIPTION	ELEV: 1216.90	Litho. Symbol	Comments	Well Construction		
0		A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	Logged by cutfings.	3.7' Stickup		

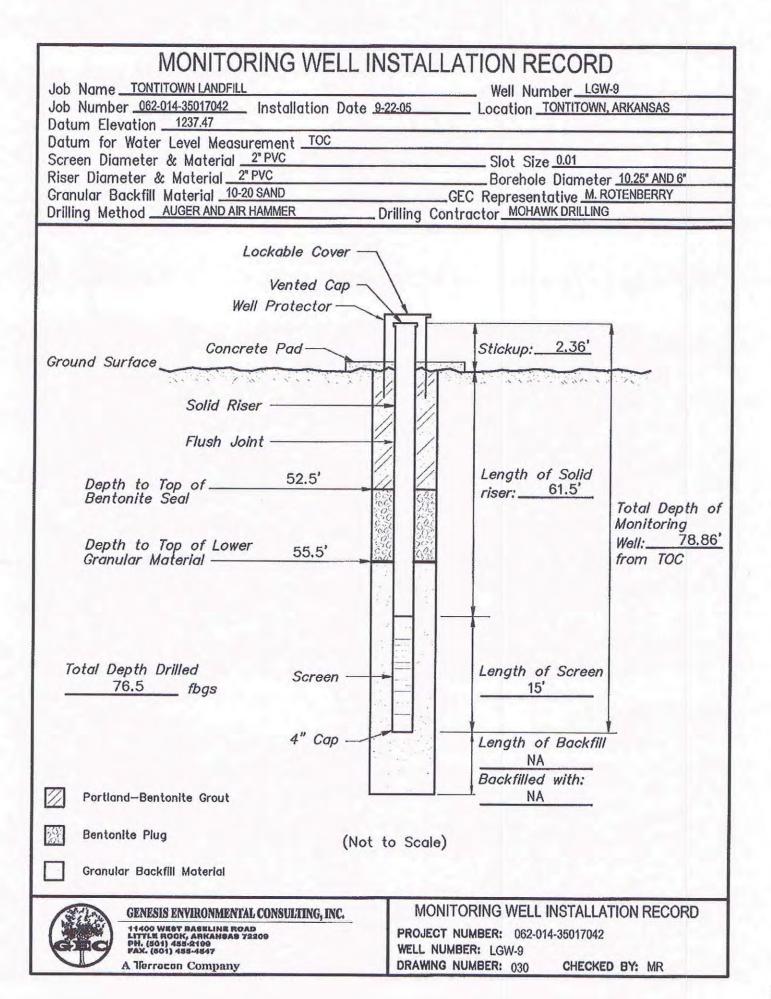
11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547


A Terracon Company

FIELD BORING LOG

BORING NO.: LGW-7 PAGE: 2 of 2

TOTAL DEPTH: 61 FEET BELOW GROUND SURFACE (BGS)


Depth BGS	DESCRIPTION	Litho. Symbol	Comments	Well Construction
		<u> </u>		
40 -	39' - 44' Chert, hard drilling.	$\begin{array}{c} \triangle \ \triangle $	Bentonite Chips at 40' - 43'	
45 -	Cuttings, wet. 44' - 61' Limestone rock. Wet at 55'.		Sand pack at 43' - 61'	Static Level 9-30-05
50				
			Screen 46' - 61'	
55 -				
0 -	Total Depth = 61'			
5 -				
1				
-				
5-				
1				

FIELD BORING LOG

Consulting Engineers and Scientists BORING NO .: LGW-8R PAGE: 1 of 1 BRYANT, AR. 72022 FAX. (501) 847-9210 TOTAL DEPTH: FEET BELOW GROUND SURFACE (BGS) CLIENT: ECO-VISTA CLASS 1 LANDFILL PROJECT: INSTALLATION OF REPLACEMENT WELLS JOB NO.: 062-014-35087055-007 DRILLING CO.: ANDERSON ENGINEERING LOGGED BY: JBA DRILLER: GM DATE DRILLED: 8/19/08 RIG TYPE: CME-55 DRILLING METHOD: 8 1/4" HOLLOW STEM AUGER / AIR ROTARY SAMPLING METHOD: CUTTINGS Depth Sample N: 664011.30 E: 648287.11 G.S. ELEV.: 1183.35 Litho. PID BGS Interval DESCRIPTION Symbol (ppm) Comments 0 0'-8' GRAVELLY CLAY dark brown, gravel is chert and weathered limestone 5 8'-19' GRAVELLY CLAY reddish brown, gravel is chert and weathered limestone 10 15 19'-30' LIMESTONE Changed to air rotary at 20' bgs 20 gray with intermittent chert beds 25 30 Total Depth = 30' bgs.

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

A Terracon Company

FIELD BORING LOG

BORING NO .:

LGW-9

PAGE: 1 of 2

TOTAL DEPTH: 76.5 FEET BELOW GROUND SURFACE (BGS)

CLIENT: WASTE MANAGEMENT	PROJECT: TONTITOWN LANDFILL	
JOB NO.: 062-014-35017042-016	DRILLING CO.: MOHAWK DRILLING	
LOGGED BY: MERRICK ROTENBERRY	DRILLER: KEVIN	
DATE DRILLED: 9-22-05	RIG TYPE: FAILING SS 25 AND INGERSOL T3W	

DRILLING METHOD: AUGER 10.25" OD (0-57.5'); AIR HAMMER 6" OD (57.5-76.5')

SAMPLING METHOD:	. N/A
------------------	-------

epth	N: 663904.19	E: 647801.14 GROUND ELEV: 1234.		Comments	Well
BĠS		DESCRIPTION	Symbol	Commence	Construction
					3.4' Stickup
0-	0' - 57.5' Clay ar	d chert mixture.	Δ-Δ-Δ-Δ- Δ-Δ-Δ-Δ-Δ- Δ-Δ-Δ-Δ-Δ-	Logged by cuttings.	
-			A-A-A-A		
5-			₫-₫-₫-₫-		
-			<u> </u>		99
-			<u> </u>		ИИ
-			A-A-A-A -A-A-A-A		ИИ
-			<u> </u>		N N
7			<u> </u>		99
-			∇-∇-∇-∇- ∇-∇-∇-∇-		
7			A-A-A-A - A-A-A-A		AA
-			<u> </u>		99
=			<u> </u>		
1			∇-∇-∇-∇ ∇-∇-∇-∇-		N N
-			A-A-A-A A-A-A-A		A A
7			-D-D-E		99
-			- <u>^ _ ^ </u>		N A
1			-A-A-A-A		a a
-			∇-∇-∇-∇- ∇-∇-∇-∇-∇-		A A
-			A-A-A-A		AA

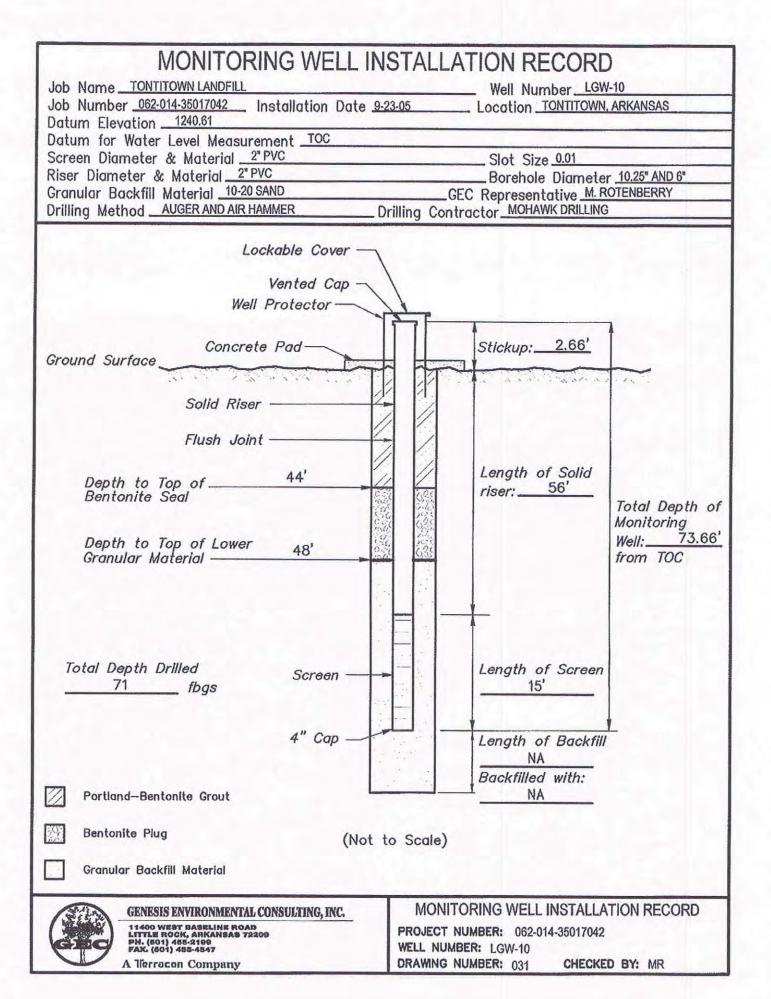
C C

GENESIS ENVIRONMENTAL CONSULTING, INC.

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

A Terracon Company

FIELD BORING LOG


BORING NO .: LGW-9

PAGE: 2 of 2

TOTAL DEPTH: 76.5

FEET BELOW GROUND SURFACE (BGS)

Depth BGS	DESCRIPTION	Litho. Symbol	Comments	Well Construction
40	Clay and chert mixture. Wet at 56'. 57.5' - 76.5' Limestone rock.		Bentonite Chips at 52.5' - 55.5' Sand pack at 55.5' - 76.5'	Static Level 9-30-05

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

FIELD BORING LOG

BORING NO.:

LGW-10

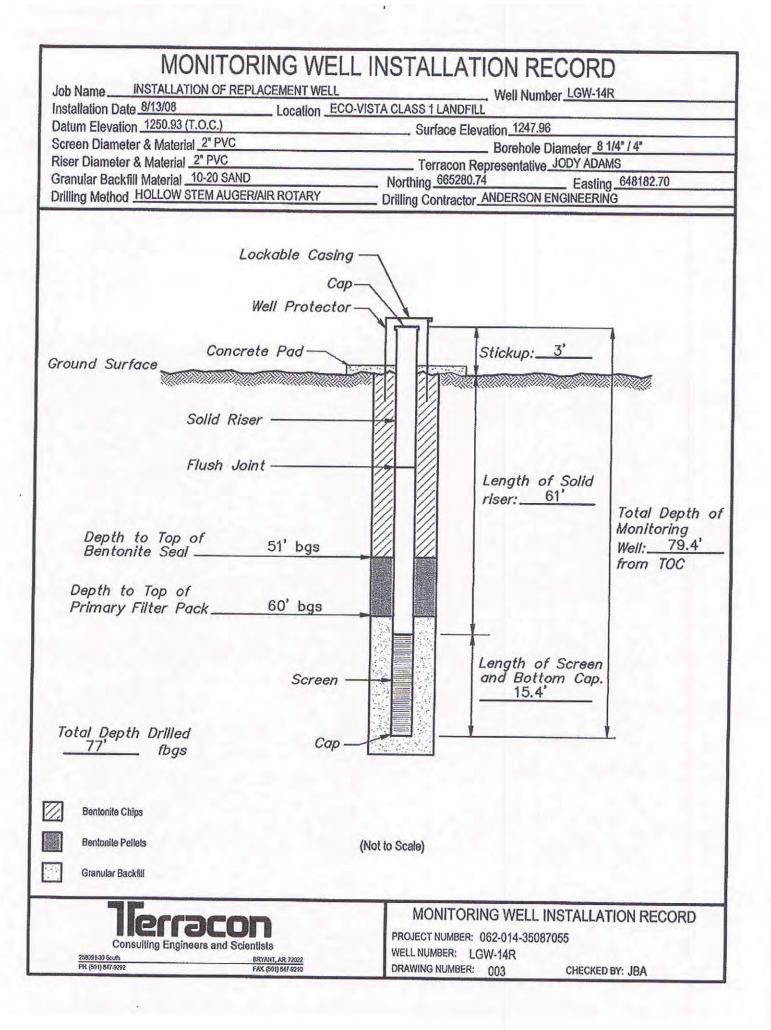
PAGE: 1 of 2

A llerr	acon Company	TOTAL DEPTH:	71 FEET BELO	W GROUND SURFACE (BGS)
CLIENT: WASTE N	MANAGEMENT	PROJ	ECT: TONTITOWN LAN	
JOB NO.: 062-014	-35017042-017	DRILL	ING CO.: MOHAWK D	RILLING
LOGGED BY: ME	RRICK ROTENBERRY	The second secon	ER: KEVIN	
DATE DRILLED:	9-23-05	RIG T	YPE: FAILING SS 25 A	ND INGERSOL T3W
DRILLING METH	OD: AUGER 10.25" OD (0-50			
SAMPLING METI	HOD: N/A			
Depth N: 663943.21 BGS	E: 647347.78 SURFACE E	LEV: 1237.41 Litho. Symbol	Comments	Well Construction
				3.2' Stickup
0 - 0' - 50' Clay a	and chert mixture.	A-A-A-A 	Logged by cuttings.	

11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547

A Terracon Company

FIELD BORING LOG


BORING NO.: LGW-10

PAGE: 2 of 2

TOTAL DEPTH: 71

FEET BELOW GROUND SURFACE (BGS):

- "	A lightacon Company	Litho.		Well Well
Depth BGS	DESCRIPTION	Symbol	Comments	Construction
40 -	Clay and chert mixture.	A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-		
45 —			Bentonite Chips at 44' - 48'	\$3000000000000000000000000000000000000
50	50' - 71' Limestone rock.	V-V-V-V-		
			Sand pack at 48' - 71'	
55 -				
60 -				☑ Static Level
65 —			Screen 56' - 71'	9-30-05
70 —				
-	Total Depth = 71'		*	
75 –				

25809 I-30 South

FIELD BORING LOG

DRILLING CO.: ANDERSON ENGINEERING

BORING NO.: LGW-14R PAGE: 1 of 1

TOTAL DEPTH: FEET BELOW GROUND SURFACE (BGS)

CLIENT: ECO-VISTA CLASS 1 LANDFILL PROJECT: INSTALLATION OF REPLACEMENT WELLS

LOGGED BY: JBA DRILLER: GM

DATE DRILLED: 8/13/08 RIG TYPE: CME-55

DRILLING METHOD: 8 1/4" HOLLOW STEM AUGER / 4" AIR ROTARY

JOB NO.: 062-014-35087055-008

_N:6	665280.74 E: 648182.70 G.S. ELEV. 1247.96 DESCRIPTION	Litho. Symbol	% Recovery	RQD	Remarks
Depth BGS					
0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0'-51' CLAY red with chert and weathered limestone gravel, moist at 46' 51'-77' LIMESTONE gray with intermittent chert beds				Changed to air rotary (4") at 52' bo
70 -					
80 -	Total Depth = 77' bgs.				

GEC

GENESIS ENVIRONMENTAL CONSULTING, INC.

11400 West Baseline Road Phone: (501) 455-2199 Little Rock, AR 72209 Fax (501) 455-4547

FIELD BOREHOLE LOG

Well NO.: NE-1 Total Depth: 54.3 ft bgs

COORDINATES: N662064 E647308

TOC ELEVATION: 1201.43

PROJECT INFORMATION

PROJECT: TONTITOWN LANDFILL

CLIENT: WASTE MANAGEMENT

JOB NO.: 01042

LOGGED BY: BILL SADLER

DATE INSTALLED: APRIL 20, 2001

DRILLING INFORMATION

DRILLING CO.: HORIZON DRILLING

DRILLER: ALLEN BRANTLEY/RYAN THOMSON

BOART LONGYEAR BK-66

DRILLING METHOD: 6.5 in. HOLLOW STEM AUGER (0-44')

6.25 in. AIR HAMMER (44-55.5')

GRAVEL PACK: 10-20 Sand		SEAL: BENTONITE	GROUT: PORTLAND/BENTONITE
CASING TYPE: PVC, SCH. 40, FLUSH THREADS D	DIAMETER: 2 in.	LENGTH: 44.25 ft bgs	WATER LEVEL: 45.25 ft bgs 😎
SCREEN TYPE: 0.010 in. FACTORY SLOT	IAMETER: 2 in.	LENGTH: 9.5 ft	DATE OF WATER LEVEL: 4/20/01

RIG TYPE:

SCREEN T	YPE: 0.010 in. FA	CTORY SLOT DIAMETER: 2 in.	LENGTH:	9.5 ft	DATE OF W	ATER LEVEL: 4/20/01
DEPTH	SOIL SYMBOLS	SOIL DESCRIPTION	SAMPLE Type & No.	Blows/ 6 in.	WELL COMPLETION	WELL DESCRIPTION
						PVC Stickup, 3.0 ft
0 -		• · · · · · · · · · · · · · · · · · · ·	CUTTINGS			Grout, 0 to 2.2 ft bgs
-5		freshly broken by auger. Clay - orangish-red, slightly moist, CL.	. '			
-10			,			
						PVC Casing, 3 ft ags to 44.25 ft bgs
-15						Centralizer, 15 ft
-20 -						Bentonite, 2.2 to 34 ft
-25 -						bgs
-30 -		higher percentage of chert with depth and cuttings gradually becoming lighter - light pink. Lighter color due to mixing of				
-35 -		chert.				Centralizer, 35 ft
-40						Grout, 34 to 39.6 ft bgs
		LIMESTONE: 42 ft bgs, Competent Limestone with Chert, Limestone -	_ - -			Bentonite, 39.6 to 43.9 ft bgs
-45		gray, fizzes with HCL, Chert - white.				Gloundwater Level
-50 -						Sand Pack, 43.9 to 54.5 ft bgs
						PVC Screen, 44.25 to 53.75 ft bgs

GEC

GENESIS ENVIRONMENTAL CONSULTING, INC.

11400 West Baseline Road Phone: (501) 455-2199 Little Rock, AR 72209 Fax (501) 455-4547

FIELD BOREHOLE LOG

Well NO.: NE-2 Total Depth: 31.15 ft bgs

COORDINATES: N662259 E647577 TOC ELEVATION: 1176.55

PROJECT INFORMATION

PROJECT: TONTITOWN LANDFILL

CLIENT: WAST

WASTE MANAGEMENT

JOB NO.: 01042

LOGGED BY: BILL SADLER

DATE INSTALLED: APRIL 24, 2001

DRILLING INFORMATION

DRILLING CO .:

HORIZON DRILLING

DRILLER:

ALLEN BRANTLEY/RYAN THOMSON

RIG TYPE:

BOART LONGYEAR BK-66

DRILLING METHOD: 6.5 in. HOLLOW STEM AUGER (0-23')

6.25 in. AIR HAMMER (23-35.5')

GRAVEL PACK: 10-20 Sand	SEAL: BENTO	ONITE GROUT: PORTLAND/BENTONITE
CASING TYPE: PVC, SCH. 40, FLUSH THREADS DIAMET	TER: 2 in. LENGTH: 21.0 f	t bgs WATER LEVEL: 21.50 ft bgs 💆
SCREEN TYPE: 0.010 in. FACTORY SLOT DIAMET	ER: 2 in. LENGTH: 9.54	ft DATE OF WATER LEVEL: 4/24/01

SCREEN	YPE: 0.010 in. FA	CTORY SLOT	DIAMETER: 2 m.	LENGTH:	9.54 π	DATE OF W	ATER LEVEL: 4/24/01
DEPTH	SOIL SYMBOLS	SOIL DESC	CRIPTION	SAMPLE Type & No.	Blows/ 6 in.	WELL COMPLETION	WELL DESCRIPTION
]							PVC Stickup, 3.0 ft
0 -			rt - white, hard,	CUTTINGS			Grout, 0 to 2.5 ft bgs
-5 -							PVC Casing, 3 ft ags to 21.0 ft bgs
-10 -							Bentonite, 2.5 to 20.38 ft bgs
-15							
-20 -							Groundwater Level
-25 -		LIMESTONE: 22.5 ft Limestone & Chert, ~ Limestone - gray, fizz - white.	-50/50 mixture,				Sand Pack, 20.38 to 32.5 ft bgs
-30							PVC Screen, 21.0 to 30.54 ft bgs
-35 -		^.				[222200000]	Cuttings/Slough, 32.5 to 35.5 ft bgs

GEC

GENESIS ENVIRONMENTAL CONSULTING, INC.

11400 West Baseline Road Phone: (501) 455-2199 Little Rock, AR 72209 Fax (501) 455-4547

FIELD BOREHOLE LOG

WELL NO.: NE-3 Total Depth: 85.4 ft bgs

COORDINATES: N662866 E648098

TOC ELEVATION: 1231.53

PRO	JECT	INFORM	OITAN	Ν

PROJECT: TONTITOWN LANDFILL

CLIENT:

WASTE MANAGEMENT

JOB NO.: 01042

LOGGED BY: DAN McCULLOUGH/BILL SADLER

DRILLING INFORMATION

DRILLING CO .:

HORIZON DRILLING

DRILLER:

RYAN THOMPSON

RIG TYPE:

BOART LONGYEAR BK-66

DATE DRILLED/CONSTRUCTED: APRIL 26, 2001 DRILLING METHOD: 10 in. HOLLOW STEM AUGER 6.25 in. AIR ROLLER CONE (5-8)									
	ACK: 10-20 Sand	<u>.</u>			SEAL:	BENTONITI	E GROUT: F	PORTLAND/BENTONITE	
CASING TY	PE: PVC, SCH. 4	0, FLUSH THREADS	DIAMETER: 2	in.	LENGTH:	75.2 ft bgs	WATER LEV	/EL: 75.7 ft bgs 🗓	
SCREEN T	YPE: 0.010 in. FA	CTORY SLOT	DIAMETER: 2	in.	LENGTH:	9.55 ft	DATE OF W	ATER LEVEL: 4/26/01	
DEPTH	SOIL SYMBOLS	SOIL DES	CRIPTION		SAMPLE Type & No.	Blows/ 6 in.	WELL COMPLETION	WELL DESCRIPTION	
0 -5		CHERTY CLAY: Alter Chert and Clay. More cuttings. Chert - whi	Clay than Chert	in C	CUTTINGS			PVC Stickup, 3.0 ft	
-10		broken by auger. Cla	y - orangish-red,					Grout, 0 to 69.7 ft bgs	
-15					,			PVC Casing, 3 ft ags	
-25		Same as above exce color, probably from r up weathered chert. chert than clay mixture.	nixing with ground More competent	•				to 75.2 ft bgs	
-30 -									
-35									
-40									
-45									
-50 -		/							
- 55 -									
-60						r			
-65					· ·				
-70		Cuttings same as abo	ove	P	ossible Void			Bentonite, 69.7 to 74.4 ft bgs	
-75		LIMESTONE: 73.5 ft Limestone & Chert,	-50/50 mixture,					Groundwater Level	
-80		Limestone - gray, spa fizzes with HCL, Che	rry, fossiliferous,					PVC Screen, 75.2 to 84.75 ft bgs	
-85		***************************************						Sand Pack, 74.4 to 88 ft bgs	

GEC

GENESIS ENVIRONMENTAL CONSULTING, INC.

11400 West Baseline Road Phone: (501) 455-2199 Little Rock, AR 72209 Fax (501) 455-4547

FIELD BOREHOLE LOG

Well NO.: NE-4 Total Depth: 68.6 ft bgs

COORDINATES: N666189 E644305

TOC ELEVATION: 1293.06

PROJECT INFORMATION	
---------------------	--

PROJECT: TONTITOWN LANDFILL

CLIENT: WASTE MANAGEMENT

JOB NO.: 01042

LOGGED BY: BILL SADLER

DATE INSTALLED: MAY 3, 2001

DRILLING INFORMATION

DRILLING CO.: HORIZON DRILLING

DRILLER:

ALLAN BRANTLEY/RYAN THOMPSON

RIG TYPE:

BOART LONGYEAR BK-66

DRILLING METHOD: 7.5 in. AIR ROLLER CONE (0-62')

6.25 in. AIR HAMMER (62-80.5')

GRAVEL PACK: 10-20 Sand		SEAL: BENTONITE	GROUT: PORTLAND/BENTONITE
CASING TYPE: PVC, SCH. 40, FLUSH THREADS	DIAMETER: 2 in.	LENGTH: 58.49 ft bgs	WATER LEVEL: 59.0 ft bgs 😎
SCREEN TYPE: 0.010 in. FACTORY SLOT	DIAMETER: 2 in.	LENGTH: 9.57 ft	DATE OF WATER LEVEL: 5/3/01

DEPTH	SOIL SYMBOLS	SOIL DESCRIPTION	SAMPLE Type & No.	Blows/ 6 in.	WELL COMPLETION	WELL DESCRIPTION
						PVC Stickup, 3.0 ft
		Chert and Clay. More Clay than Chert in	CUTTINGS			Grout, 0 to 3 ft bgs
-5 -		cuttings. Chert - white, hard, freshly broken by auger. Clay - orangish-red,				
-10 -		moist, CL.				.]
-15						
-12 -						
-20 -		•				PVC Casing, 3 ft ags
-25						to 58.49 ft bgs
		CHERT & CLAY: Same as above except				
-30		more chert than clay, cuttings tan in color, probably from mixing with large				Bentonite, 3 to 58.1 ft
-35		amount of ground up weathered chert.				bgs
						•
-40		CHERT & CLAY: Air flow to surface				
-45-		greatly reduced during remainder of				
-50		CHERT: Weathered chert with very little clay.				
-30 -						
-55		•				
-60						Groundwater Level
		LIMESTONE: 62 ft bgs, Competent				PVC Screen, 58.49 to
-65		Limestone & Chert, ~70% limestone, 30% chert, Limestone - gray, fizzes				68.06 ft bgs
70-		with HCL, Chert - white.				Sand Pack, 58.1 to 78.5 ft bgs
						76.5 It bys
-75						
-80-					[.*************	

GEC //

GENESIS ENVIRONMENTAL CONSULTING, INC.

11400 West Baseline Road Phone: (501) 455-2199

Little Rock, AR 72209 Fax (501) 455-4547

FIELD BOREHOLE LOG

Well NO.: NE-5 Total Depth: 82 ft bgs

COORDINATES: N662676 E648173

TOC ELEVATION: 1227.03

		TIAL
PROJEC1	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	

PROJECT: TONTITOWN LANDFILL

CLIENT:

WASTE MANAGEMENT

JOB NO.: 01042

LOGGED BY: BILL SADLER

DATE INSTALLED: AUG. 7, 2001

DRILLING INFORMATION

DRILLING CO .: MOHAWK DRILLING

DRILLER:

MATT JOHNSON

RIG TYPE:

BOART LONGYEAR BK-66

DRILLING METHOD: 11 in. HOLLOW STEM AUGER (0-9')

6.5 in. AIR ROLLER CONE (9-82')

GRAVEL PACK: 10-20 Sand		SEAL: BENTONITE	GROUT: NONE
CASING TYPE: PVC, SCH. 40, FLUSH THREADS	DIAMETER: 2 in.	LENGTH: 72.2 ft bgs	WATER LEVEL: 73.39 ft bgs 😓
SCREEN TYPE: 0.020 in. FACTORY SLOT	DIAMETER: 2 in.	LENGTH: 9.24 ft	DATE OF WATER LEVEL: 9/21/01

SCREEN T	YPE: 0.020 in. FA	CTORY SLOT	DIAMETER: 2 in.	LENGTH:	9.24 ft		OE W	ATER LEVEL: 9/21/01
DEPTH	SOIL SYMBOLS		CRIPTION	SAMPLE Type & No.	Blows/ 6 in.	WELL		WELL DESCRIPTION
0 -				<u> </u>				PVC Stickup, 3.0 ft
-5 -		TOPSOIL: Brown, cla CHERTY CLAY: Alter Chert and Clay. More	rnating Layers of Clay than Chert in	CUTTINGS				
-10-		cuttings. Chert - whi broken. Clay - orang	ish-red, moist, CL.	Alternating hard & soft drilling.				Concrete, 0 to 21.0 ft
-15 -								bgs
-20 -		· / ·						
-25 -								Bentonite, 21.9 to
-30 -					-			71.5 ft bgs
-35					-			
-40								PVC Casing, 3 ft ags
-45				,	-			to 82 ft bgs
-50 -								
-55 -		CHERT: with small ar Chert in various stage some soft enough to	es of weathering,					
-60		fingernail, some very reddish orange as ab	competent. Clay -	Possible voids ~60 - 60.5 ft,				
-65				63 - 63.5 ft, 66.5 - 67.5 ft, 68 - 68.5 ft				
-70				bgs.			The state of the s	
-75		LIMESTONE: 71 ft bg Limestone & Chert, - Limestone - gray, spa fizzes with HCL, Cher	-50/50 mixture, arry, fossiliferous,	Very slow drilling			∇	Groundwater Level PVC Screen, 72.2 to 81.4 ft bgs Sand Pack, 71.5 to
-80								82 ft bgs

				₽₽∩	JECT:	BORING II	<u> </u>		WELL ID:
					-Vista, LLC Class 1 Landfill NEI Well Installation				NE-5E
					ATION:		0 FT 000		
=	<u> </u>			Eco-Vista, LLC Landfill, Tontitown, AR			G, FT SRC: 3 .1		EASTING, FT SRC: 648201.9
		2			LING CONTRACTOR:	GROUND S	SURFACE,	FT SRE:	TOC MP, FT SRE:
		Ę T		Wal	ker-Hill Environmental, Inc.	1221.1			1224.32
=				DRILI	LING EQUIPMENT:	WELL DEF	TH, FT BE	LOW MP:	INSTALLATION DATES:
water rec	ources / envi	SSOCIO	TES LTO.	Ver	sa-Drill VersaSonic	86.6			7/14-7/29/2019
Water res	ources / envi	TOTITIETILAT	JOHSUILAHIS	DRILI	LING METHOD:				
				Sor	nic with 4x6 in dia. core and case in soils an	d air rota	ry in bed	lrock	
LOGG	ED BY	:			PLING METHOD:				
AJP) 			Con	tinuous with 10 ft, 4 in dia. core barrel in soi	and 10 f	t HQ core	e barrel	in bedrock
Depth (feet)	ပ္ပ	S		<u>≥</u>				We	ااح
th (i	REC	nscs	2	Log	Description		(uction
Dep	%	ر	ď	ן בֿפֿ	•		_	JUHSH	uction
						F	-		
									ound completion including 2.5x2.5 te pad, four pipe bollards, and
									uter aluminum casing
0 -	1		_________________	7	CLAYEY GRAVEL, reddish orange to reddish brown,	,,, <u>)</u>	8///		
		GC	6/	6/	some silt, gravel (<3" dia), medium dense to dense,	\otimes	\otimes		
	100	00	/0/	/0/	moist.	※	\otimes		
	1 1	SM SW];[:]:]	SILTY SAND, tan to orange with a lenses of brown fat	- ⊗	\otimes	70.45	0 0.1. 40.5040
		CH			\clay, medium dense, moist. WELL GRADED SAND with silt and gravel, gravel (<1"	- 🛞	\otimes		2 in dia., Sch. 40 PVC solid riser, 3.2 ft of stickup
	-	011			∖ \dia), loose, moist.	₩	⊗		,
	100				FAT CLAY, dark reddish brown, stiff to very stiff, moist.	- ×	\otimes		
-					CHERT, white, 6-7 ft bgs. FAT CLAY with gravel, dark reddish brown, stiff to very	- 💥	\otimes		
10 -		СН			stiff, moist.	─	\otimes		
10 -						\approx	\otimes		
	-	00			CLAYEY GRAVEL, reddish brown, gravel (<2" dia),	- 🛞	⊗		
	100	GC GM		411	∖loose, moist.	\times	\otimes		
	100	ML	$\Psi \downarrow \Psi \downarrow$	ΥЦ	SILTY GRAVEL, orange, loose, moist. SILT with gravel, tan with lenses of reddish brown fat	- 💥	\otimes		
		GM	$\phi \downarrow \phi \downarrow$	4 4	\clay, stiff, moist.	\sim	\otimes		pentonite grout from 0 ft bgs to
			1	/	SILTY GRAVEL, orange, loose, moist. CLAYEY GRAVEL, reddish brown, gravel (<1" dia),	$+$ \otimes	\otimes	21.0 ft bg	js -
		GC	(%)	0/0	loose, moist.	\otimes	⊗		
			4		CHERT, white, 19-19.5 ft bgs.	**	\otimes		
20 –		CH			GRAVELLY FAT CLAY, reddish brown, with black and	\otimes	\otimes		
					\red staining along weathered gravel, soft, moist. \CHERT, white, 20-20.5 ft bgs.		2		
·	80				GRAVELLY FAT CLAY, reddish brown, with black and				
	1				red staining along weathered gravel, gravel (<4" dia), soft. moist.		//		
					•	/ /			
	-	СН							
						//			
	1					//			
30 -]				(C) 20 24 ft have respect (c0!! die)				
-					@ 30-31 ft bgs gravel (<8" dia).	/		Bentonite ft bgs	e chip seal from 21.0 ft bgs to 60.0
	100				GRAVELLY LEAN CLAY, with lenses of white silt and			1.290	
					red fat clay throughout, gravel (<2" dia), medium stiff to	//			
		CL			soft, moist.	//			
·									
	4				GRAVELLY FAT CLAY, reddish brown, with black and red staining along weathered gravel, soft, moist.				
40 -	1	СН				//			

							I
				JECT:	BORING ID:		WELL ID:
				o-Vista, LLC Class 1 Landfill NEI Well Installation	NE-5E		NE-5E
<u>_</u>	<u> </u>			ATION: o-Vista, LLC Landfill, Tontitown, AR	NORTHING, FT SRC: 662678.1		EASTING, FT SRC: 648201.9
_		DRILLING CONTRACTOR: GROUND SURFACE				T SRF	TOC MP, FT SRE:
				lker-Hill Environmental, Inc.	1221.1	i orte.	1224.32
				LING EQUIPMENT:	WELL DEPTH, FT BEL	OW MD:	-
	Ā	ssociat	00 140	rsa-Drill VersaSonic	86.6	OVV IVII .	7/14-7/29/2019
water res	ources / env	ironmental co	nsultants	LING METHOD:			1714 1720/2010
				nic with 4x6 in dia. core and case in soils an	d air rotary in bedr	ock	
	ED BY			PLING METHOD:	land 10 ft UO aara	horrol	in hadraak
AJP) 		Col	ntinuous with 10 ft, 4 in dia. core barrel in soi	and 10 π HQ core	barrei	in bedrock
Depth (feet)	REC	S	hic			We	ell
bt	% R	nscs	Graphic Log	Description	С	onstr	uction
De	0.		0 1				
	100						
		GC		CLAYEY GRAVEL, tannish orange, loose, moist.			
	-			GRAVELLY LEAN CLAY, with lenses of white silt and			
		CL		red fat clay throughout, gravel (<2" dia), medium stiff to soft, moist.			
	1		开护护.	WEATHERED CHERT/EPIKARST, chert is weathered			
			A A A	into a silty gravel (<2" dia), tan to orange, with orange color along weathered surfaces.			
				@ 48.5-49.5 ft bgs tannish white, loosely cemented			
50 -	-		<u>******</u>	tripoli, very loose, moist. @ 49.5-50 ft bgs white, loose, moist.			
			π	@ 50-68 ft bgs tan to orange, chert is orange along			
	100		###	weathered surfaces.			
			计计算:				
	1			© FF FC ft has white silt laws with little ground wat			
				@ 55-56 ft bgs white silt lens with little gravel, wet.			
			水水水	@ 57-57.5 ft bgs chert layer. @ 57-68 ft bgs with sand.			
	-		X X X	(W 57-66 It bgs with saild.			
			7.4.4.4.	© 60 62 ft has color shanges to tan			
60 –	1		***	@ 60-62 ft bgs color changes to tan. @ 60-60.5 ft bgs chert layer.			
			公共	@ 62-64 ft bgs color changes to white, chert grave			
	7 00		学学学.	(<3" dia).			
	-					Depth to	water: 63.4 ft bgs (7/29/2019)
						Slow-rele	ease bentonite pellet seal from
'							s to 70.0 ft bgs
	100		****	1			
·	1		777	LIMESTONE AND CHERT, interbedded. Limestone is			
70 -]		4 4	competent, white and gray. Chert is competent to less competent, white. Some dissolution and brown clay	0 0		
` `	04		7 7 7	along fractures throughout.			
	94			@68-74.8 ft bgs no loss of air, fractures 9-80° off		Silica eiza	e 20/40 filter pack from 70.0 ft bgs
				horizontal.		to 83.5 ft	
	1		1 7 1	@ 68-70.5 ft bgs limestone weathered and parted along bedding planes.			
			4 4 4	@ 70.5-73 ft bgs white chert breccia with gray			2 in dia., 0.010 in slot, Sch. 40
· ·	100		-	microcrystalline limestone. @ 71.4-74 ft bgs some bedding planes contain		PVC scre	een
			4 7 4	brown clay and white to tan silt.			
			4 1 4	@ 74.8-79 ft bgs no loss of air, fractures 59-70° off			
80 -	-		7 7	horizontal. Chert is white and light gray.		0.19ft 2	in dia., Sch. 40 PVC end cap
	100		7 4 7	@ 79-83 ft bgs no loss of air, fractures 59-70° off		J. 10 11, Z	a.a., con. 101 vo one oup
			7 4 7	horizontal. Weathered limestone and chert, parted		Drilling te	erminated at 83.5 ft bgs
				along bedding planes. Chert is white and light gray.	999	-	-
]						
	•		•	•			

				PRO	JECT:	BORING IE):		WELL ID:
				Eco	-Vista, LLC Class 1 Landfill NEI Well Installation	NE-5W			NE-5W
	<u> </u>				ATION:	NORTHING			EASTING, FT SRC:
=				Ecc	o-Vista, LLC Landfill, Tontitown, AR	662680.3			648146.0
\equiv		2		DRIL	LING CONTRACTOR:	GROUND S	SURFACE,	FT SRE:	TOC MP, FT SRE:
				Wa	lker-Hill Environmental, Inc.	1225.4			1228.62
=				DRIL	LING EQUIPMENT:	WELL DEP	TH, FT BEL	OW MP:	INSTALLATION DATES:
	- A	ssocia:	i <u>es Ltd.</u>	Ver	sa-Drill VersaSonic	93.7			7/15-7/29/2019
water resc	ources / env	ironmental c	onsultants	DRIL	LING METHOD:				1
				Sor	nic with 4x6 in dia. core and case in soils an	d air rota	ry in bed	rock	
LOGG	ED BY	:		SAMI	PLING METHOD:				
AJP				Con	ntinuous with 10 ft, 4 in dia. core barrel in soi	and 10 ft	HQ core	barrel	in bedrock
eet)	0	(0		٥				We	
lh (fe	REC	nscs	2	Log	Description				
Depth (feet)	%	Ď	Ċ	5 3	2000		C	onstr	uction
						F	70		
-	-								round completion including 2.5x2.5 te pad, four pipe bollards, and
						12222			uter aluminum casing
0 –	1	ML	Щ	Щ	SILT, tan to brown, soft, moist to dry.	. ``` ⊗	് (
-	100	GC	/0,	/0/	CLAYEY GRAVEL, reddish orange to reddish brown, with some tan silt, gravel (<3" dia), medium dense,	\approx	\otimes		
	100				moist.	. ×	\otimes		
-	1	SM			SILTY SAND, orange to tan, medium dense, moist.	.	\otimes		2 in dia., Sch. 40 PVC solid riser,
-	-	CL			LEAN CLAY with sand, reddish brown with some dark red fat clay lenses, medium stiff, moist.	│	\otimes	including	3.2 ft of stickup
	100		$\phi \phi $	φ φ	SILTY GRAVEL, reddish brown to orange with some		\otimes		
-	1 1	GM		기 기	lenses of red fat clay, loose, moist.		\otimes		
10 -	- 1		T bY	ol bl			\otimes		
		GC	PTPT	فهانق	@ 11-12 ft bgs color changes to tannish orange. CLAYEY GRAVEL, white with oxide staining on	- X	\otimes		
-	1		ΔΔ	$\langle \hat{\Delta} \rangle$	fractured surfaces and red fat clay lenses, gravel (<4"	⊗	\otimes		
-	100	SW	·^· · ·	· · · · ·	\dia), dense, moist. CHERT, white, 12-13.5 ft bgs.	- 🛞	\otimes		
		011		~	WELL GRADED SAND with graveL reddish grange		\otimes	Cement/l	bentonite grout from 0 ft bgs to
-	1	GC	%%	\ \ '	increasing clay with depth, gravel (<3" dia), loose. CLAYEY GRAVEL, reddish brown, loose to medium	- 🛞	\otimes	20.0 ft bg	
-	4		1/19	<u> </u>	dense, moist. SILT, tan to tannish orange, clayey with some gravel,	- 😸	\otimes		
		ML			soft, moist.	\otimes	\otimes		
20 –	1	CL		////	LEAN CLAY with gravel, gravel (<3" dia), soft, moist.		7		
-	100	ML			SILT, tan to tannish orange, clayey with some gravel, soft, moist. @ 22.5 ft bgs gravel increasing with depth.				
	100		Щ	ЩЩ					
-	1		26/2	ي کے ج	CHERT, white with orange and black staining along fractured surfaces, 23.5-24.5 ft bgs.				
-		GC	/°/	<u>/</u>	CLAYEY GRAVEL, reddish brown, gravel (<2" dia), medium dense, moist.				
					CHERT, white to light grey, 26.5-27 ft bgs.				
-	1	СН			GRAVELLY FAT CLAY, reddish brown, gravel (<2" dia) with red staining along fractures.				
30 —									
		GW	7/7/	7//	WELL GRADED GRAVEL, black staining along				
	100				\fractured gravel, loose, moist. SANDY LEAN CLAY with gravel, reddish orange, gravel				
-		СН			\((<3" dia), soft, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<3" dia)				
		J.,			with red staining along fractures.			Bentonite	e chip seal from 20.0 ft bgs to 65.8
-	1	0144						ft bgs	
-		GW CH	1////	1///	WELL GRADED GRAVEL, black staining along fractured gravel, loose, moist.				
 		5.1			GRAVELLY FAT CLAY, reddish brown, gravel (<2" dia)				
40 —					\with red staining along fractures. GRAVELLY LEAN CLAY, tannish orange with lenses of				
-	_	C!			dark red fat clay, gravel (<1.5" dia), soft, moist.				
	80	CL							
-	1								
			////			//	//		

						T		I	
					JECT:	BORING ID:		WELL ID:	
					-Vista, LLC Class 1 Landfill NEI Well Installation	NE-5W		NE-5W	
	<u> </u>				ATION:	NORTHING, FT	SRC:	EASTING, FT SRC:	
l <u>=</u>					o-Vista, LLC Landfill, Tontitown, AR	662680.3		648146.0	
=		2	_		LING CONTRACTOR:	GROUND SURF	ACE, FT SRE:	TOC MP, FT SRE:	
	Walker-Hill Environmental, Inc.							1228.62	
=			da a I dal	DRIL	LING EQUIPMENT:	WELL DEPTH, F	T BELOW MP:	INSTALLATION DATES:	
motor root	A.	SSOCIO iranmantal	Tes Lta.	Ver	sa-Drill VersaSonic	93.7		7/15-7/29/2019	
Water rest	Juices / env	ironmental (JOHSUILAHIS	DRIL	LING METHOD:				
				Sor	nic with 4x6 in dia. core and case in soils an	d air rotary in	bedrock		
LOGG	ED BY	:			PLING METHOD:				
AJP				Con	ntinuous with 10 ft, 4 in dia. core barrel in soi	and 10 ft HQ	core barrel	in bedrock	
eet)		"		<u>5</u>			We		
h (fe	REC	nscs	2	Grapnic Log	Description				
Depth (feet)	%	Ď	Ċ	5 9	2000		Constr	uction	
		GM	φ φ	6 6	SILTY GRAVEL, with some sand, tannish orange,				
-		ML		++++	gravel (<3" dia), loose, moist. GRAVELLY SILT with clay, tannish orange, gravel (<1"				
_		IVIL	Z	اللا لا	dia). @ 48.5-48.8 ft bgs dark red fat clay.				
50 —	1		<u> </u>	<u>`</u>	WEATHERED CHERT/EPIKARST, chert is weathered into a silty gravel (<2" dia), white with tannish orange				
-				\ <u>\</u>	staining.				
	70		7.4	-	@ 49-50 ft bgs chert, white.				
-	1		#4		@ 53.5-55 ft bgs chert, white				
-				247					
			##	7	@ 57.5 ft bgs saturated.				
-	1		A	\A\					
60 -	1		<u> </u>		@ 59.5-70 ft bgs white with tannish orange staining, gravel (<2" dia), saturated.				
			本分	\Д`	graver (<2 dia), saturated.				
-	1		<u> </u>	\ <u>^</u>					
_	64		$\frac{1}{\sqrt{2}}$	- - - - - - - -					
			74	-					
-	1		#4	<u>`</u>					
-				7 7 7			Depth to	water: 67.7 ft bgs (7/29/2019)	
				7 7 7	0 -0 61				
70 –	1		A	\ <u>\</u>	@ 70-75 ft bgs white to gray, saturated.			ease bentonite pellet seal from	
-			A	7 []			65.8 ft bg	gs to 76.9 ft bgs	
	80		<u>*</u>	` `					
'	1		<u>X</u>	\\\\					
-	-		Ž		LIMESTONE AND CHERT, interbedded. Limestone is competent, white and gray. Chert is competent to less				
	100		À		competent, white and gray.				
-	1			À	@ 75-79 ft bgs no loss of air, fractures 21-56° off horizontal.			e 20/40 filter pack from 76.9 ft bgs	
80 –			4		@ 75.6-77.3 ft bgs parted along bedding planes,		to 90.5 ft	bgs	
			4	1	@ 79-90.2 ft bgs no loss of air, fractures 66-73° off				
-	1				horizontal. Chert is white and light grey, parted along			2 in dia., 0.010 in slot, Sch. 40	
-	_		1	4	bedding planes.	100000000000000000000000000000000000000	PVC scre	een	
	93		À	1 A			0.19 ft. 2	in dia., Sch. 40 PVC end cap	
-	1						, 2	,	
-									
			4						
90 —	1		^			000	Drilling te	erminated at 90.5 ft bgs	
-									

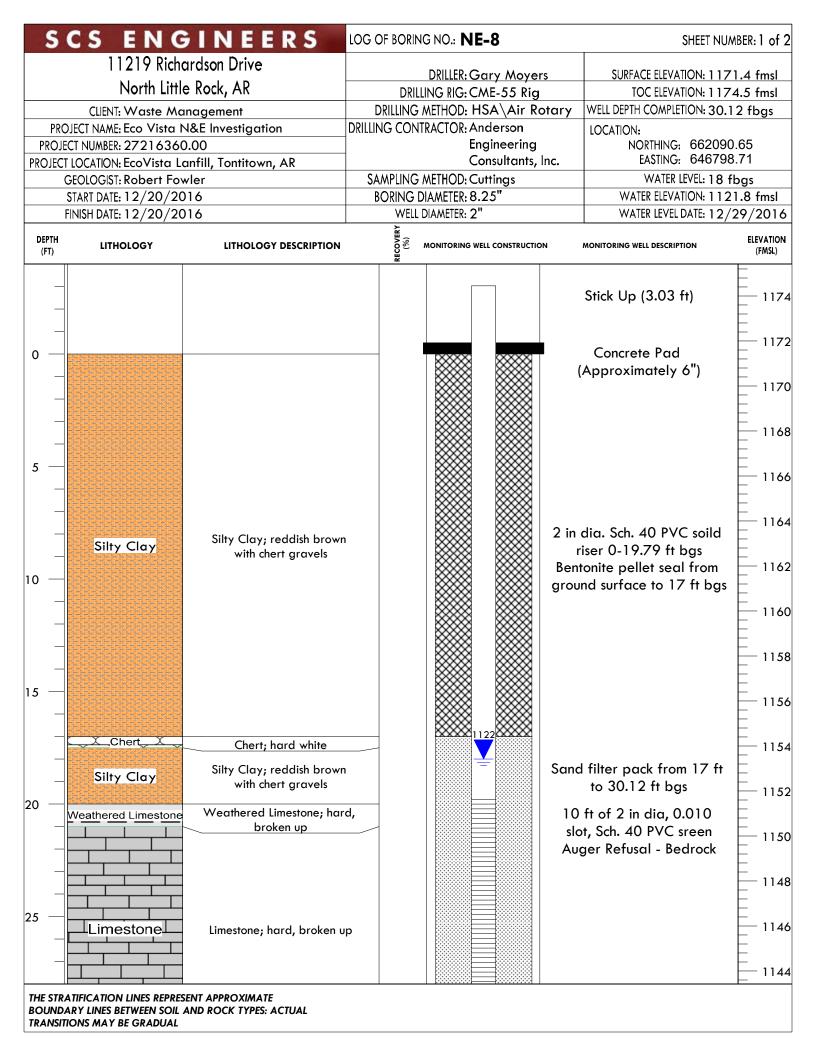
5	CS ENG	FINEERS	LOG OF BOI	RING NO.: NE-6		SHEET NU/	MBER: 1 of
		ardson Drive		DRILLER: Gary	Moyors	SURFACE ELEVATION: 1 1 8	0 3 fmcl
	North Littl	e Rock, AR	DI	RILLING RIG: CME	•	TOC ELEVATION: 1192.3 fmsl	
	CLIENT: Waste Ma	· · · · · · · · · · · · · · · · · · ·	DRILLIN	G METHOD: HSA/	/Air Potary	WELL DEPTH COMPLETION: 55.0	
PR	OJECT NAME: Eco Vista 1		DRILLING CC	NTRACTOR: Ander	son	LOCATION:	
	JECT NUMBER: 27216360			Engine	•	NORTHING: 662656	
ROJE	CT LOCATION: EcoVista L	•	2		Itants, Inc.	EASTING: 647424	
	GEOLOGIST: Robert For			G METHOD: Cutting	gs	WATER LEVEL: 30.3 WATER ELEVATION: 115	
	START DATE: 12/14/20 FINISH DATE: 12/15/20			G DIAMETER: 8.25" ELL DIAMETER: 2"		WATER LEVEL DATE: 12/	
DEPTH (FT)		LITHOLOGY DESCRIPTION	ECOVERY (%)		NSTRUCTION	MONITORING WELL DESCRIPTION	ELEVATI (FMSL
			<u>ā</u>			Stick Up (2.95 ft)	_ 11
. —	Top Soil	Taracil danida baran utah				Concrete Pad	
-	10p 30ll	Topsoil; dark brown with rootlets				Approximately 6")	-
; — - -	Silty Clay	Silty Clay; reddish browr with chert gravels	1				- - 11
- , — - -					~~~	dia. Sch. 40 PVC soild r from 0-43.27 ft bgs	- - - - -
- ; —	X Chert X	Chert; hard white					— 11 —
-					^^^	tonite pellet seal from nd surface to 42 ft bgs	_ 1
_							1
-		Silty Clay; reddish browr			Sand	I filter pack from 42 ft to 56.6 ft bgs	
-	Silty Clay	with chert gravels					1

TRANSITIONS MAY BE GRADUAL

11219 Richa North Little	Rock, AR	DRI	DRILLER: Gar LLING RIG: CA		SURFACE ELEVATION: 1 1 TOC ELEVATION: 1 1	
CLIENT: Waste Mar	· · · · · · · · · · · · · · · · · · ·	DRI	LLING RIG: CA			
CLIENT: Waste Mar	· · · · · · · · · · · · · · · · · · ·		LLII 10 KIO. CI		I ICR FIEVATION• I I	923 fmsl
		I DRILLING	METHOD: HS	A∖Air Rota	ry WELL DEPTH COMPLETION: 55	
I NAME: ECO VISTA N	&E Investigation		TRACTOR: And		LOCATION:	10 110 90
NUMBER: 27216360.	<u>-</u>		Engi	neering	NORTHING: 66265	
CATION: EcoVista La	nfill, Tontitown, AR			· · · · · · · · · · · · · · · · · · ·	EASTING: 64742	
				5"		
SH DATE: 12/15/201	16		L DIAMETER: 2"		WATER LEVEL DATE: 12	/29/201
LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVER (%)	MONITORING WELL	CONSTRUCTION	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
athered Limestone	Weathered Limestone; har broken up	d,	1157		Auger Refusal - Bedrock	- - - - - 11 - - - - 11
Limestone	Limestone; hard				10 ft of 2 in dia, 0.010 slot, Sch. 40 PVC sreen	- - - - - - 11
						11
					End Cap TD - 55.6 ft bgs	
	LOGIST: Robert Fow RT DATE: 12/14/20 HDATE: 12/15/20 LITHOLOGY	Weathered Limestone; har broken up	LITHOLOGY LITHOLOGY Weathered Limestone athered Limestone; hard, broken up Weathered Limestone broken up	LIGGIST: Robert Fowler RT DATE: 12/14/2016 BORING DIAMETER: 8.2.9 H DATE: 12/15/2016 LITHOLOGY LITHOLOGY LITHOLOGY DESCRIPTION Weathered Limestone; hard, broken up Weathered Limestone broken up	LITHOLOGY LITHOLOGY DESCRIPTION SAMPLING METHOD: Cuttings BORING DIAMETER: 8.25" WELL DIAMETER: 2" LITHOLOGY LITHOLOGY DESCRIPTION Weathered Limestone; hard, broken up	SAMPLING METHOD. Cuttings WATER LEVEL 30 RI DATE: 12/14/2016 BORING DIAMETER: 8:25" WATER ELEVATION: 11 HDATE: 12/15/2016 LITHOLOGY LITHOLOGY DESCRIPTION Weathered Limestone; hard, broken up Auger Refusal - Bedrock Limestone Limestone Limestone Limestone; hard Limestone L

				T		T · · · -				I
					JECT:	BORING				WELL ID:
					-Vista, LLC Class 1 Landfill NEI Well Installation					NE-6D
نے					ATION: D-Vista, LLC Landfill, Tontitown, AR	NORTHI 66264		r SRC:		EASTING, FT SRC: 647433.5
					LING CONTRACTOR: Iker-Hill Environmental, Inc.	GROUNE 1189.		FACE,	FT SRE:	TOC MP, FT SRE: 1192.90
=		F	la a la la la	DRILI	LING EQUIPMENT:	WELL DI	EPTH,	FT BE	LOW MP:	INSTALLATION DATES:
water reso	Ources / env	SSOCIO ironmental	TES LTO.		sa-Drill VersaSonic	76.3				7/24-7/29/2019
11000	JUI 000 7 0117		oonoananto		LING METHOD: nic with 4x6 in dia. core and case in soils an	d air rot	tarv iı	n bed	rock	
LOGG	ED BY				PLING METHOD:					
AJP		•		Con	tinuous with 10 ft, 4 in dia. core barrel in soi	l and 10	ft HC	core	barrel	in bedrock
Depth (feet)	ပ္ပ	S	.5	2					We	ell
pth (% REC	USCS	2	Log	Description			(uction
Del	0								-	401011
							-		Above ar	ound completion including 2.5x2.5
-	1								ft concret	te pad, four pipe bollards, and uter aluminum casing
0 -	1					17773	× >	1///	locking o	ater aluminum casing
			****	\sim	FILL SILT, brown, very soft, dry. @ 1.5-2.5 ft bgs with gravel,	- ⊗	1 8			
-	100	ML	Щ	ЩЩ	medium stiff, moist. @ 2-2.5 ft bgs clayey.	- 8	3 8			
_		011			CHERT, white, 2.5-3 ft bgs. GRAVELLY FAT CLAY, dark reddish brown, gravel (<2"		3 8			
		СН			dia) with red and black staining along weathered surfaces, moist.		3 8			2 in dia., Sch. 40 PVC solid riser, 3.0 ft of stickup
-	1		ΔΔ	$\Delta \Delta \lambda$	CHERT, white, 5.5-7 ft bgs.		₹ 🛭			•
	80	011		M	GRAVELLY FAT CLAY, dark reddish brown, gravel (<2"	│ 🎇	3 8			
-	1	СН			dia) with red and black staining along weathered surfaces, moist.		₹ 🛭			
10 -	-				CHERT, white, 9-10 ft bgs. LEAN CLAY, tan to reddish brown, soft, moist.	- 8	3 8			
		CL			ELAN OLAT, tall to reddish brown, sort, moist.		₹ 🖇			
-	1	СН			CHERT, white, 12-12.5 ft bgs.		3 8			
	ļ	ML	Ш	Щ	GRAVELLY FAT CLAY, dark reddish brown, gravel (<2" dia) with red and black staining along weathered		₹ 🖇		C	hamtanita avasut franc 0 ft has to
	100	CL			\surfaces, moist. \LEAN CLAY, tan to white with thin red clay lenses, soft,	- 8	3 8		22.0 ft bg	bentonite grout from 0 ft bgs to
-	1	СН			moist. LEAN CLAY with sand, reddish brown, fine-grained to	- ⊗	₹ 🖇			
]				\medium-grained sand, gravel (<1" dia), soft, moist.	│ ※	3 8			
		01	Δ		FAT CLAY with gravel, reddish brown with black mottles, gravel is heavily weathered with reddish brown	⊗	₹ 🖇			
20 –	1	CL	6/6/	4/4	\and black staining, medium stiff, moist. \CHERT, white, 17.5-19 ft bgs.	8	3 8			
]	GM			GRAVELLY LEAN CLAY, brown, gravel (<2.5" dia),	×	∜			
					\soft, moist. SILTY GRAVEL, tannish white, loose, moist.					
-	100	CL	<u> </u>	<u>Д</u>	GRAVELLY LEAN CLAY, brown, gravel (<2.5" dia), soft, moist.			1		
				<u>Д</u>	WEATHERED CHERT/EPIKARST, chert is weathered					e chip seal from 22.0 ft bgs to 34.0
]	1		<u>*</u>	<u> </u>	into a chert gravel (<2" dia) with sand and silt, white, wet with rapid dilatancy in silt, loose, moist to wet.			1	ft bgs	
	4			<u> </u>	@26-26.2 ft chert lens.				Depth to	water: 27.6 ft bgs (7/29/2019)
				<u> </u>	@28-29 ft bgs color changes from white to tannish	/				
30 –	1			<u></u>	brown.					
]			4	@32 ft bgs lens (1 inch) of dark brown to black clayey					
			X. 4	<u></u>	layer.					
	100		7.4	4	@32.1-34 ft bgs color changes to brown.	/				
			茶茶	\		/				
	1		某条	(4),4	@34-35 ft bgs color changes to white . @35-36 ft bgs color changes to tannish brown.					
			杂菜	(4)						
			(+)	·\\\	@36-41 ft bgs color changes to white.	//	/ //			

				ı		1		
					JECT:	BORING IE):	WELL ID:
				Eco	-Vista, LLC Class 1 Landfill NEI Well Installation	NE-6D		NE-6D
				Ecc	ATION: D-Vista, LLC Landfill, Tontitown, AR	NORTHING 662645	.6	EASTING, FT SRC: 647433.5
=		2			LING CONTRACTOR:	GROUND S	SURFACE, FT SRE:	TOC MP, FT SRE:
		ET L	n	Wa	lker-Hill Environmental, Inc.	1189.9		1192.90
=			La a I dad	DRIL	LING EQUIPMENT:	WELL DEP	TH, FT BELOW MP	: INSTALLATION DATES:
	AS	SSOCIA	ies lia.	Ver	sa-Drill VersaSonic	76.3		7/24-7/29/2019
water reso	ources / envi	ronmental c	onsultants	DRIL	LING METHOD:			
				Sor	nic with 4x6 in dia. core and case in soils an	d air rota	ry in bedrock	
LOGGI AJP	ED BY:	:			PLING METHOD: ntinuous with 10 ft, 4 in dia. core barrel in soi	l and 10 ff	t HQ core barre	in bedrock
					,			
Depth (feet)	% REC	nscs	Side	Log	Description			ell ruction
40 —	100		A					
			Z Z	\(\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\fint}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac}\f	LIMESTONE AND CHERT, interbedded, less			
	100		\$ 7	4	competent. Limestone is white and gray, chert is white. @ 41-44 ft bgs no loss of air, fractures 42-87° off			
_	1		$\frac{1}{2}$	Ž	horizontal.			
				Ī	@ 43.5-44 ft bgs signs of dissolution, fractures and bedding planes filled with brown clay.		Slow rol	assa hantanita pallat saal from
-	-				@ 44-50.5 ft bgs no loss of air, fractures 0-90° off			ease bentonite pellet seal from gs to 60.0 ft bgs
	100		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	horizontal. Some fracture and bedding planes filled with brown clay or with microcrystalline limestone. Dendrites			
-	1		4	4	and stylolites throughout.			
			4	4	@ 49-50.5 ft bgs limestone and chert breccia with gray microcrystalline limestone.			
50 —	1		4	4	@ 50.5-60 ft bgs no loss of air, fractures 0-90° off			
			4	4	horizontal.			
-	1		4	4				
			4	4				
-	1		4	4				
	59		4	4				
	1		\ \frac{\frac{1}{2}}{2}	À				
_	1		4	4				
			\$ 7	\$				
60 —			1 4	Ž	@ 60-68 ft bgs no loss of air, fractures 17-90° off			
			Ž	Ž	horizontal, fracture thickness up to 0.02 ft.		Cilian air	20/40 filton model from 60 0 ft has
-	-			Ž	@ 63-65 ft bgs some orange and yellow staining along chert bedding planes.		to 73.3 f	ze 20/40 filter pack from 60.0 ft bgs
			\ \	Ţ	along chert bedding planes.			9-
-	100		Ţ					
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ā			10.0 ft o	f 2 in dia., 0.010 in slot, Sch. 40
-			4	4			PVC sci	reen
1			4	4				
-			4	4	@ 68-73 ft bgs no loss of air, fractures 53-90° off			
			4	4	horizontal, fracture thickness up to 0.1 ft.			
70 —	100		4	4	@ 70.5-71.9 ft bgs competent gray limestone. @ 72.7-73 ft bgs limestone and chert breccia,		0.19 ft, 2	2 in dia., Sch. 40 PVC end cap
			4	4	fractures contain gray microcrystalline			
]		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	limestone, yellow staining along fractures.		Drilling t	erminated at 73.3 ft bgs
_]					[1]1]1]kgk	79 488	
_								
-								
1								
80 —	-							
<u> </u>								


S	CS ENG	INEERS	LOG OF BO	RING NO.: NE	-7	SHEET N	JMBER: 1 of
	11219 Richo			DDII1ED. C	ary Moyers	SURFACE ELEVATION: 1 2	15 fmal
	North Little	e Rock, AR	D	RILLING RIG: C		TOC ELEVATION: 1.2	
	CLIENT: Waste Ma	·		IG METHOD: H			
PR	OJECT NAME: Eco Vista N		DRILLING CO	NTRACTOR: An	derson	LOCATION:	
	ECT NUMBER: 27216360				gineering	NORTHING: 66272	
	T LOCATION: EcoVista Lo		C + + (D 1)		nsultants, Inc.		
	GEOLOGIST: Robert Fov			IG METHOD: Cu G DIAMETER: 8.2		WATER LEVEL: 61 WATER ELEVATION: 1 1	
	START DATE: 12/7/201 FINISH DATE: 12/8/201			ELL DIAMETER: 8.2		WATER LEVEL DATE: 12	
EPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	ECOVERY		LL CONSTRUCTION	MONITORING WELL DESCRIPTION	ELEVATI (FMSL
			2			Stick Up (2.92 ft)	
_	Top Soil	Topsoil, dayl, brown			****	Concrete Pad	- 12
_	Silty Clay	Topsoil; dark brown Silty Clay; reddish brown with chert gravels				(Approximately 6")	
	Chert	Chert; hard white					- - - 12
						Bentonite pellet seal from round surface to 56 ft bg	-
							- 12 - - - -
							- 1 · · · · · · · · · · · · · · · · · ·
_							- - - 11

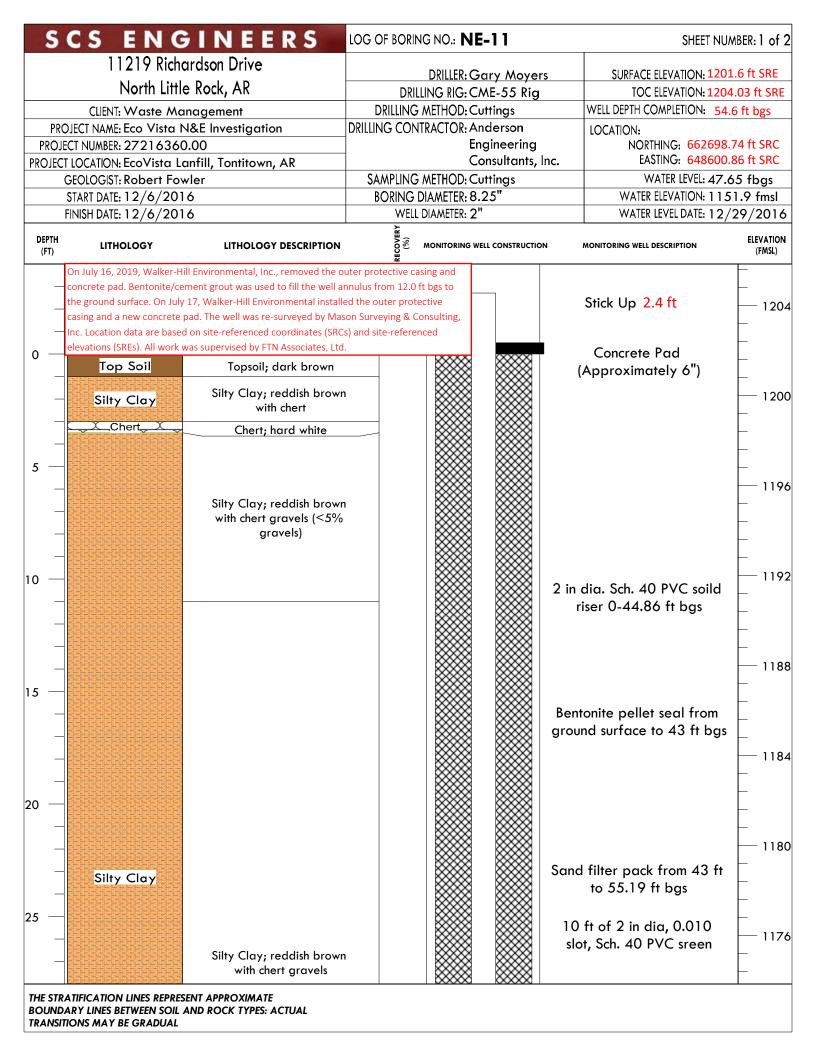
THE STRATIFICATION LINES REPRESENT APPROXIMATE
BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: ACTUAL
TRANSITIONS MAY BE GRADUAL

S	CS ENG	INEERS	LOG OF BORI	NG NO.: NE	-7		SHEET NU	MBER: 2 of 3
	11219 Richo			DOULES C	* *		CLIDE A CE ELEVA TIONAL CONT	<i></i>
	North Little	e Rock, AR	ומח		ary Moyei CME 55	<u>'\$</u>	SURFACE ELEVATION: 121 TOC ELEVATION: 121	
	CLIENT: Waste Ma	·		METHOD: H		tary	WELL DEPTH COMPLETION: 61	
PRO.	JECT NAME: Eco Vista N		DRILLING CON			rui y	LOCATION:	3 10g3
	CT NUMBER: 27216360			En	gineering		NORTHING: 66272	
	LOCATION: EcoVista Lo				onsultants,	lnc.	EASTING: 64773	
	GEOLOGIST: Robert Fow			METHOD: C			WATER LEVEL: 61.	
	START DATE: 12/7/201			DIAMETER: 8.			WATER ELEVATION: 1 1 5	
rı	INISH DATE: 12/8/201	0		L DIAMETER: 2'			WATER LEVEL DATE: 12/	29/2016
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)	MONITORING W	ELL CONSTRUCTIO	DN	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
30 — 30 — 35 — 35 — 40 — 50 — 55 — — — — — — — — — — — — — — — — —	Silty Clay	Silty Clay; reddish brown with chert gravels				rise	dia. Sch. 40 PVC soild er from 0-58.5 ft bgs	
						10	-	1156
60 -				possessed		10	ft of 2 in dia, 0.010	\vdash

THE STRATIFICATION LINES REPRESENT APPROXIMATE
BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: ACTUAL
TRANSITIONS MAY BE GRADUAL

S	CS ENG	INEERS	LOG OF BORIN	G NO.: NE-7		SHEET NU	MBER: 3 of 3
	11219 Richa	rdson Drive		DRILLER: Gary Moye	rc	SURFACE ELEVATION: 121	15 fmsl
	North Little	Rock, AR	DRIL	LING RIG: CME-55 Rig		TOC ELEVATION: 121	
	CLIENT: Waste Man	agement	DRILLING	METHOD: HSA\Air R	otary	WELL DEPTH COMPLETION: 61.	
PR(DJECT NAME: Eco Vista N	<u> </u>		FRACTOR: Anderson		LOCATION:	
-	ECT NUMBER: 27216360.			Engineering		NORTHING: 66272	
PROJEC	T LOCATION: EcoVista Lai	nfill, Tontitown, AR		Consultants,	lnc.	EASTING: 64773	2.29
	GEOLOGIST: Robert Fow			METHOD: Cuttings		WATER LEVEL: 61.	
	START DATE: 12/7/2016			DIAMETER: 8.25"		WATER ELEVATION: 1 1 5	
	FINISH DATE: 12/8/2016	5		DIAMETER: 2"		WATER LEVEL DATE: 12/	/29/2016
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)	MONITORING WELL CONSTRUCTION	ON	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
60	Weathered Limestone Limestone Limestone	Weathered Limestone; har broken up Limestone; hard	d,	H54 V		ger Refusal - Bedrock	
70 —						End Cap TD - 68.83 ft bgs	114

SCS ENGINEERS	LOG OF BORING NO.: NE-8	SHEET NUMBER: 2 of 2
11219 Richardson Drive	DRILLER: Gary Moyers	SURFACE ELEVATION: 1171.4 fmsl
North Little Rock, AR	DRILLING RIG: CME-55 Rig	TOC ELEVATION: 1174.5 fmsl
CLIENT: Waste Management	DRILLING METHOD: HSA\Air Rotary	WELL DEPTH COMPLETION: 30.12 fbgs
PROJECT NAME: Eco Vista N&E Investigation	DRILLING CONTRACTOR: Anderson	LOCATION:
PROJECT NUMBER: 27216360.00	Engineering	NORTHING: 662090.65
PROJECT LOCATION: EcoVista Lanfill, Tontitown, AR	Consultants, Inc.	EASTING: 646798.71
GEOLOGIST: Robert Fowler	SAMPLING METHOD: Cuttings	WATER LEVEL: 18 fbgs
START DATE: 12/20/2016	BORING DIAMETER: 8.25"	WATER ELEVATION: 1121.8 fmsl
FINISH DATE: 12/20/2016	WELL DIAMETER: 2"	WATER LEVEL DATE: 12/29/2016
DEPTH LITHOLOGY LITHOLOGY DESCRIPTION	MONITORING WELL CONSTRUCTION	MONITORING WELL DESCRIPTION (FMSL)
30		End Cap TD - 30.12 ft bgs


11219 Richar North Little CLIENT: Waste Man			DRILLER: Go	ary Moyei	••	SUDEACE ELEVATION 1.17		
	Rock. AR			SURFACE ELEVATION: 1179.1 fms				
CLIENT: Waste Man		DRIL	LING RIG: CA			TOC ELEVATION: 118		
	-		METHOD: H		otary	WELL DEPTH COMPLETION: 35.	15 fbgs	
NAME: Eco Vista N	<u>~</u>	DRILLING CON				LOCATION:		
UMBER: 27216360.				gineering	l	NORTHING: 663996.1 EASTING: 648472.3		
	nfill, Tontitown, AR	CYMPINIC		onsultants,	ır ıc.	WATER LEVEL: 17.0	7.6 fbgs	
OGIST: Robert Fowl			METHOD: Cu					
LITHOLOGY	LITHOLOGY DESCRIPTION	ECOVERY (%)			N	MONITORING WELL DESCRIPTION	ELEVA (FM	
						Stick Up (2.89 ft)	1	
Top Soil	Topsoil: dark brown with		****	****	I ,	Concrete Pad	1	
100 3011	some chert gravels				(Approximately 6")	1	
							1	
Silty Clay	Silty Clay; reddish brown with chert gravels						1	
Y Chart							1	
	Chert; hard white							
Silty Clay	Silty Clay; reddish brown with chert gravels					ud surface to 22.5 ft	1	
						bgs	1	
			11	64			1	
thered Limestone	Weathered Limestone; broken up					ff to 35.15 ff bgs	1	
	·						1	
					Αυς	ger Refusal - Bedrock	1	
							'	
						· ·	'	
	Top Soil Silty Clay Silty Clay	Top Soil Topsoil; dark brown with some chert gravels Silty Clay; reddish brown with chert gravels Chert Chert; hard white Silty Clay; reddish brown with chert gravels Weathered Limestone.	Top Soil Top Soil Topsoil; dark brown with some chert gravels Silty Clay Silty Clay; reddish brown with chert gravels Chert Chert; hard white Silty Clay; reddish brown with chert gravels Weathered Limestone; broken up	LITHOLOGY LITHOLOGY LITHOLOGY DESCRIPTION Top Soil Topsoil; dark brown with some chert gravels Silty Clay Silty Clay; reddish brown with chert gravels Chert: Chert; hard white Silty Clay Silty Clay; reddish brown with chert gravels Weathered Limestone Weathered Limestone;	Top Soil Top Soil Top Soil Topsoil; dark brown with some chert gravels Silty Clay Silty Clay; reddish brown with chert gravels Silty Clay; reddish brown with chert gravels Silty Clay; reddish brown with chert gravels Weathered Limestone;	IDATE: 12/7/2016 WELL DIAMETER: 2" WELL DIAMETER: 2" MONITORING WELL CONSTRUCTION Top Soil Top Soil Topsoil; dark brown with some chert gravels Silty Clay; reddish brown with chert gravels Silty Clay; reddish brown with chert gravels Silty Clay; reddish brown with chert gravels Silty Clay Silty Clay; reddish brown with chert gravels Silty Clay Aug Aug 104	UITHOLOGY LITHOLOGY MONITORING WELL CONSTRUCTION AND CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION AND CONSTRUCTION AND CONSTRUCTION MONITORING WELL CONSTRUCTION AND CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION AND CONSTRUCTION AND CONSTRUCTION CONSTRUCTION AND CONSTRUCTION CONSTRUCTION AND CONSTRUCTION C	

S	CS ENG	INEERS	LOG OF BORII	NG NO.: NE-9	SHEET NU	JMBER: 2 of 2
	11219 Richa			DRILLER: Gary Moyers	SURFACE ELEVATION: 1 1 7	79.1 fmsl
	North Little	Rock, AR	DRI	LLING RIG: CME-55 Rig	TOC ELEVATION: 1 18	82 fmsl
	CLIENT: Waste Mar	nagement	DRILLING	METHOD: HSA\Air Rotary	WELL DEPTH COMPLETION: 35.	15 fbgs
PRC	JECT NAME: Eco Vista N	&E Investigation	DRILLING CON	NTRACTOR: Anderson	LOCATION:	
PROJE	CT NUMBER: 27216360	.00		Engineering	NORTHING: 66399	
	LOCATION: EcoVista La			Consultants, Inc.	EASTING: 64847	
	GEOLOGIST: Robert Fow			METHOD: Cuttings	WATER LEVEL: 17.	
	START DATE: 12/6/201			DIAMETER: 8.25"	WATER ELEVATION: 110	
F	FINISH DATE: 12/7/201	6		L DIAMETER: 2"	WATER LEVEL DATE: 12	/29/2016
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)	MONITORING WELL CONSTRUCTION	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
30 —	Limestone	Limestone; hard			End Cap TD - 35.15 ft bgs	1148

					1507	B0=:::-			l <u>-</u>
					JECT:	BORING II			WELL ID:
					-Vista, LLC Class 1 Landfill NEI Well Installation				NE-10D
	<u> </u>				ATION:		G, FT SRC:		EASTING, FT SRC:
] =		_			o-Vista, LLC Landfill, Tontitown, AR	662187		ET 05-	645410.6
		3			LING CONTRACTOR:		SURFACE,	FT SRE:	TOC MP, FT SRE:
		FIL			Iker-Hill Environmental, Inc.	1258.2			1261.10
_		senciat	as Ita		LING EQUIPMENT:		PTH, FT BEI	OW MP:	INSTALLATION DATES:
water res	ources / en	vironmental co	onsultants		sa-Drill VersaSonic	121.4			7/26-7/29/2019
					LING METHOD: nic with 4x6 in dia. core and case				
LOGG	ED BY	' :			PLING METHOD: Itinuous with 10 ft, 4 in dia. core barrel				
					••••••••••••••••••••••••••••••••••••••				
(fee	REC	nscs	2	Grapriic Log	Description			We	
Depth (feet)	%	S	Ç	Log	Description		C	Constr	uction
						_			
						+	+		ound completion including 2.5x2.5
									te pad, four pipe bollards, and uter aluminum casing
0 -	-			Ш	SILT with gravel, tannish gray with white gravel (<1"	V//99	×////		-
		ML			dia), rootlets, medium stiff, moist.	\otimes	്	Cement/l	bentonite grout from 0 ft bgs to 3.0
1	100	СН			GRAVELLY FAT CLAY, dark reddish brown, gravel	₩	\otimes	ft bgs	-
] ,	4	CL			\(<1.5" dia), stiff, moist. GRAVELLY LEAN CLAY, reddish brown, gravel (<2.5"				
		CH ML		1111	dia), soft, moist. FAT CLAY with gravel, dark reddish brown, gravel (<1"	//			
1	1	ML			\dia), stiff, moist to dry.				
	100	GC			SILT with gravel, reddish brown, gravel (<1" dia), medium stiff, moist.				
			/0,	/%	CHERT, white, reddish orange staining along				
10 -	-	GC	1%	%)	weathered surfaces, 6-7 ft bgs. CLAYEY GRAVEL, reddish brown, reddish brown				
			0/	0/0	staining along weathered surfaces of chert gravel, loose, moist.				
	1	СН			CHERT, white, reddish orange staining along				
	1,00	GC	%%	<u>/</u> %	weathered surfaces, 7.5-8 ft bgs. CLAYEY GRAVEL, reddish brown, reddish brown				
	100	СН	199	1911	staining along weathered surfaces of chert gravel, loose, moist. @ 10-12 ft bgs increasing clay with depth.	//			
	1	CL			FAT CLAY, dark red, stiff, moist.				
	_		ΔΔ	$\Delta \Delta \lambda$	CLAYEY GRAVEL with sand, reddish brown, reddish brown staining along weathered surfaces of chert				
					gravel, loose, moist.				
20 -	-				FAT CLAY, dark red, stiff, moist. LEAN CLAY with gravel, reddish brown, gravel (<1.5"			111.2 ft c	of 2 in dia., Sch. 40 PVC solid
		СН			dia), soft, moist. FAT CLAY, dark red, stiff, moist.				luding 2.9 ft of stickup
1	1				CHERT, white, reddish orange staining along				
	100	SW-SM			weathered surfaces, 17-18 ft bgs. FAT CLAY, dark red, stiff, moist. @19-23.5 ft bgs with				
			1///	7777	\gravel. \WELL GRADED SAND with silt and gravel, tannish		2		
	1				∖orange, loose, moist.	/ /			
[.	1	CL			GRAVELLY LEAN CLAY with sand, gravel (<1" dia). @ 26-26.5 gravel (<2" dia)				
		CI			FAT CLAY, dark red, stiff, moist.	//			
30 -	1	CH			CHERT, white, reddish orange staining along	//			
	100	SP			weathered surfaces, 30-31 ft bgs. WELL GRADED SAND with silt and gravel, tannish				
			7 \$ 7	٤٥٤	\orange, loose, moist.				
	4	GC	1		CHERT, white, reddish orange staining along weathered surfaces, 32-33 ft bgs.				
					CLAYEY GRAVEL, reddish brown, heavily weathered				
'	60				\gravel (<2.5" dia), loose, moist. @33-33.1 lean clay with \gravel, grey, soft, moist.				
	1	СН			GRAVELLY FAT CLAY, reddish brown with dark reddish brown and black staining along fractured chert,				
					gravel (<2" dia), medium stiff, moist.				
40 -	-						2		

				DD0	IFOT.	DODING ID			lueu is
					JECT: -Vista, LLC Class 1 Landfill NEI Well Installation	BORING ID			WELL ID: NE-10D
					ATION:				
					o-Vista, LLC Landfill, Tontitown, AR	662187			EASTING, FT SRC: 645410.6
		34			LING CONTRACTOR: Iker-Hill Environmental, Inc.	GROUND S	SURFACE,	FT SRE:	TOC MP, FT SRE:
		FIL			LING EQUIPMENT:	1258.2			1261.10
		Associa	tes Ltd.		sa-Drill VersaSonic	WELL DEP 121.4	IH, FIBE	LOW MP:	INSTALLATION DATES: 7/26-7/29/2019
water res	sources / er	nvironmental c	onsultants	DRILI	LING METHOD:				1.1.0 1.1.01.0
				Sor	nic with 4x6 in dia. core and case				
LOGG AJF	SED B	Y :			PLING METHOD: Itinuous with 10 ft, 4 in dia. core barrel				
				٥				١٨/.	all
Depth (feet)	% REC	nscs	9	Log	Description		C	We Constr	eii uction
		GM	φφ	φ φ	SILTY GRAVEL, tannish orange, gravel (<1.5" dia), loose, moist.				
]				GRAVELLY FAT CLAY, reddish brown with dark reddish brown and black staining along fractured chert,				
	- 80	СН			gravel (<2" dia), medium stiff, moist.				
					@ 43-47 ft bgs gravelly black streaks in clay.				
					SILT, white, soft, moist				
	1	ML			,,,				
50 -	4				WELL GRADED GRAVEL with silt and sand, white to tannish orange, tripoli, gravel (<2" dia).				
			.) .	• ", "	talliller orange, arpon, graver (-2 did).				
	1								
	90		- 1						
		GW-GN	4						
	1								
	1		• • •		@ 57.5-58 ft bgs lean clay, orange, soft, moist.				
60 -	1		$\frac{1}{2}$	ΔΔ	CHERT, white, 60-61 ft bgs.				e chip seal from 3.0 ft bgs to 90.0
	_	011/01		•••	WELL GRADED GRAVEL with silt and sand, white to tannish orange, tripoli, gravel (<2" dia).			ft bgs	
		GW-GN							
	60			ΔΔ	CHERT, white, 64-65 ft bgs.				
	4			•••	WELL GRADED GRAVEL with silt and sand, white to tannish orange, tripoli, gravel (<2" dia).				
		GW-GN	4.						
	1			• •					
70 -	\perp	GM			SILTY GRAVEL, white, gravel (<1.5" dia), very loose, moist.				
		GW-GN		•.••	WELL GRADED GRAVEL with silt and sand, white to tannish orange, tripoli, gravel (<2" dia).				
			111	• • •	SILT with gravel, white, loose, moist.				
	- 80	ML			• · · · · · · · · · · · · ·				
	4	IVIL			@ 70 77 # has salar shares 4 to town in horse				
				9 . 9 .	@ 76-77 ft bgs color changed to tannish orange.				
	1		1.0		WELL GRADED GRAVEL with silt and sand, tannish orange, tripoli, gravel (<2" dia).				
80 -	4								
	1		:0:0						
	100								
I		1	. 0	9 9			//		

				DE -	1507	B0B****			l==				
					JECT:	BORING ID			WELL ID:				
					-Vista, LLC Class 1 Landfill NEI Well Installation ATION:				NE-10D				
					o-Vista, LLC Landfill, Tontitown, AR	662187			EASTING, FT SRC: 645410.6				
					LING CONTRACTOR: Iker-Hill Environmental, Inc.	GROUND S 1258.2	SURFACE, FT	SRE:	TOC MP, FT SRE: 1261.10				
					LING EQUIPMENT:	WELL DEPTH, FT BELOW M			INSTALLATION DATES:				
water res	ources / en	SSOCIO vironmental c	es Ltd.	Ver	sa-Drill VersaSonic	121.4	7/26-7/29/2019						
				DRILLING METHOD: Sonic with 4x6 in dia. core and case									
	OGGED BY: AJP NSCS NSCS				SAMPLING METHOD: Continuous with 10 ft, 4 in dia. core barrel								
Depth (fee					Description	Well Construction							
		GW-GN	1										
			0.0										
90 -	1		> .										
				. 0 .									
							s	low-rele	ease bentonite pellet seal from				
	100				@94-94.5 ft bgs fat clay lense, medium stiff.				s to 105.0 ft bgs				
		sc			CLAYEY SAND with gravel, brown, gravel (<1" dia), loose, moist to saturated.		D D	epth to	water: 96.1 ft bgs (7/29/2019)				
	-	GW-GC	<u>////</u>	<u>/:/://</u>	WELL GRADED GRAVEL with clay, tannish brown,								
100 –				////	very loose, saturated. CLAYEY SAND with gravel, tannish brown, gravel (<1"								
100 -					dia), very loose, saturated.								
	-	SC											
	70												
	70		0.0	0.00	WELL GRADED GRAVEL with silt and sand, brown,								
	-		.) • .	• • •	tripoli, gravel (<2" dia) saturated.		Q	ilioo ciz	e 20/40 filter pack from 105.0 ft				
				o'D.°					8.5 ft bgs				
	1		-10		@108 ft bgs lenses of brown clay.								
110 –								005 5	0 in dia 0.040 in 1.1.0 1.40				
		GW-GN	1	7.				0.0 ft of VC scre	2 in dia., 0.010 in slot, Sch. 40 een				
	1				@112 ft bgs lenses of reddish brown clay.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	80				@114-115 color change tannish brown.								
			0		@116 ft bgs lenses of reddish brown clay.								
							1010101		in dia., Sch. 40 PVC end cap aterials from 118.5to 119.0 ft bgs				
			ΔΔ	$\Delta \Delta A$	CHERT, competent, bedrock.		D	rilling te	erminated at 119.0 ft bgs				
120 –	-												
]												
	-												
	1												
]											

SENG	INEERS	LOG OF BORI	NG NO.: NE-	11	SHEET	NUMBER: 2 of
11219 Richa	rdson Drive		DDILLED C	11	SUDEACE ELEVATION	1201 6 ft CDE
North Little	Rock, AR	ומח				
	•					
	-			_ ·		3 110 11 053
NUMBER: 27216360.	.00		Eng	ineering	NORTHING: 6626	
				<u> </u>		
				<u>5" </u>		
13H DATE: 12/0/2010	0		DIAMETER: Z		WATER LEVEL DATE: 1	2/29/2010
LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVE	MONITORING WELL	CONSTRUCTION	MONITORING WELL DESCRIPTION	ELEVATIOI (FMSL)
Chert X eathered Limestone	Chert; hard white Weathered Limestone; har broken up Chert; hard white	d,	115			
Silty Clay	Silty Clay; reddish browr with chert gravels	1				_
				= = =		-
	North Little CLIENT: Waste Mar CT NAME: Eco Vista N NUMBER: 27216360. CCATION: EcoVista La DLOGIST: Robert Fow IRT DATE: 12/6/2016 LITHOLOGY Chert Chert Chert	Chert Chert; hard white Weathered Limestone Weathered Limestone; har broken up Chert Chert; hard white Silty Clay:	North Little Rock, AR CLIENT: Waste Management CT NAME: Eco Vista N&E Investigation NUMBER: 27216360.00 CATION: EcoVista Lanfill, Tontitown, AR DRILLING CON NOCATION: EcoVista Lanfill, Tontitown, AR DOLOGIST: Robert Fowler RT DATE: 12/6/2016 BORING SH DATE: 12/6/2016 LITHOLOGY LITHOLOGY LITHOLOGY DESCRIPTION REathered Limestone; hard, broken up Chert: Chert: Ard white Chert: Chert: Chert: Ard white Weathered Limestone; hard, broken up Chert: Ard white Silty Clay; reddish brown	North Little Rock, AR CLIENT: Waste Management CT NAME: Eco Vista N&E Investigation NUMBER: 27216360.00 CATION: EcoVista Lanfill, Tontitown, AR DIRLLING CONTRACTOR: And Eng Cor DIOGIST: Robert Fowler IRT DATE: 12/6/2016 BORING DIAMETER: 8.2 LITHOLOGY LITHOLOGY DESCRIPTION Chert; hard white Weathered Limestone; hard, broken up Chert: Chert; hard white Weathered Limestone; hard, broken up Chert: Chert; hard white	North Little Rock, AR CLIENT: Waste Management CT NAME: Eco Vista N&E Investigation NUMBER: 27216360.00 CATION: EcoVista Lanfill, Tontitown, AR DRILLING CONTRACTOR: Anderson Engineering Consultants, Inc. DRICLING: WEITHOD: Cuttings BORING DIAMETER: 8.25" WELL DIAMETER: 8.25" MONITORING WELL CONSTRUCTION WELL DIAMETER: 2" Chert Chert; hard white Weathered Limestone; hard, broken up Chert Chert; hard white Weathered Limestone; hard, broken up Chert Chert; hard white	North Little Rock, AR DRILLING RIC; CME-55 Rig DRILLING METHOD: Cuttings DRILLING METHOD: Cuttings WELL DEPTH COMPLETION: I NAME: Eco Vista N&E Investigation NORTHING: 6626 CATION: EcoVista Canfill, Tontitown, AR CANDINE CONTRACTOR: Anderson Engineering Consultants, Inc. BORING DIAMETER: 8.25" WATER LEVEL DATE: 12/6/2016 SH DATE: 12/6/2016 WELL DAMETER: 2" WATER LEVEL DATE: 1 WELL DAMETER: 2" MONITORING WELL DESCRIPTION MONITORING WELL DESCRIPTION STEPPING Chert, hard white Weathered Limestone; hard, broken up Chert, hard white Silbs: Clay: Silbs: Clay:

S	CS ENG	SINEERS	LOG OF BORI	NG NO.: NE	-12		SHEET NU	MBER: 1 of 3	
	11219 Riche	ardson Drive		DBII1ED. C	ary Moyer	·c	SURFACE ELEVATION: 121	113 fmcl	
	North Little	e Rock, AR	DRII	LLING RIG: CA	•	\$	TOC ELEVATION: 121		
	CLIENT: Waste Ma	inagement	DRILLING METHOD: HSA\Air Rotary				WELL DEPTH COMPLETION: 75.57 fbgs		
PR	OJECT NAME: Eco Vista 1		DRILLING CONTRACTOR: Anderson			LOCATION:			
	ECT NUMBER: 27216360				gineering		NORTHING: 66244		
	T LOCATION: EcoVista L		CALABITATIO		onsultants, l	lnc.	EASTING: 64772		
	GEOLOGIST: Robert For			METHOD: Cu DIAMETER: 8.1			WATER LEVEL: 65. WATER ELEVATION: 115		
	START DATE: 12/12/20 FINISH DATE: 12/13/20			DIAMETER: 0.			WATER LEVEL DATE: 12		
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	ECOVERY (%)	MONITORING WE		N	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)	
10 — 20 — 220 — 25 —	Top Soil Silty Clay	Topsoil, dark brown with chert gravels Silty Clay; reddish brown with chert gravels				2 in c	Stick Up (2.53 ft) Concrete Pad Approximately 6") dia. Sch. 40 PVC soild iser 0-55.24 ft bgs ronite pellet seal from and surface to 53 ft bgs	1202	
_	Chert	Chert; hard white		****	****			119.	
l		Chert; hard white		- XXXX	*****			1184	

11219 Richardson Drive	SCS E	NGINEERS	LOG OF BORII	NG NO.: NE	-12		SHEET NU!	MBER: 2 of 3
North Little Rock, AR				DDILLED C	* * .		CUDEACE FLEWATION 3 03	106 '
CLBN: Woste Management DRILLING MITHOD. HSA\Air Retary WELDSPIT COMPETION: 75.57 fbgs	Nor	h Little Rock. AR	Dol					
PROJECT NAME Exc Vista N&E Investigation PROJECT NAME 27216360.00 PROJECT NAMES 727216360.00 PR		· · · · · · · · · · · · · · · · · · ·				arv		
PROJECT CATON SECVISTS Laffill, Tonthown, AR GEOLOGIST: Robert Flowler SAMPLING METHOD: Cuttings WATER LEVEL 65.09 fbgs SATIONE 12/13/2016 BOINE DIAMETER 8.25" WATER LEVEL 65.09 fbgs SATIONE 12/13/2016 WATER LEVEL 05.09 fbgs WATER LEVEL 05.00 fb						∽. <i>j</i>		
SAMPLING METHOD: Cuttings	PROJECT NUMBER: 272	16360.00		En	gineering		NORTHING: 662444	
### START DATE: 12/13/2016 #### PRINSH DATE: 12/13/2016 ####################################			_			c.		
### PINSH DATE: 12/13/2016 DEPTH UTHOLOGY UTHOLOGY DESCRIPTION								
DiPPM LITHOLOGY LITHOLOGY DESCRIPTION								
30 — — — — — — — — — — — — — — — — — — —	FINISH DATE: 12/	13/2016		L DIAMETER: Z			WATER LEVEL DATE: 12/	29/2016
35 — Silty Clay Silty Clay; reddish brown with chert gravels — 1166 — 11		Y LITHOLOGY DESCRIPTION	RECOVEI (%)	MONITORING W	ELL CONSTRUCTION	ı	MONITORING WELL DESCRIPTION	
	30 — 335 — 335 — 340 — 351lty Clo					20 slo	75.57 ft bgs ft of 2 in dia, 0.010 t, Sch. 40 PVC sreen	

THE STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY LINES BETWEEN SOIL AND ROCK TYPES: ACTUAL TRANSITIONS MAY BE GRADUAL

SCS ENGINEERS	LOG OF BORING NO.: NE-12	SHEET NUMBER: 3 of 3		
11219 Richardson Drive	DOULED O	SUPEL SE ELEVATION A DATA O S		
North Little Rock, AR	DRILLER: Gary Moyers	SURFACE ELEVATION: 1211.3 fmsl TOC ELEVATION: 1213.9 fmsl		
*	DRILLING RIG: CME-55 Rig DRILLING METHOD: HSA\Air Rotary	WELL DEPTH COMPLETION: 75.57 fbgs		
CLIENT: Waste Management PROJECT NAME: Eco Vista N&E Investigation	DRILLING CONTRACTOR: Anderson	•		
PROJECT NUMBER: 27216360.00	Engineering	LOCATION: NORTHING: 662444.99		
PROJECT LOCATION: EcoVista Lanfill, Tontitown, AR	Consultants, Inc.	EASTING: 647725.88		
GEOLOGIST: Robert Fowler	SAMPLING METHOD: Cuttings	WATER LEVEL: 65.09 fbgs		
START DATE: 12/12/2016	BORING DIAMETER: 8.25"	WATER ELEVATION: 1153.3 fmsl		
FINISH DATE: 12/13/2016	WELL DIAMETER: 2"	WATER LEVEL DATE: 12/29/2016		
DEPTH LITHOLOGY LITHOLOGY DESCR	IPTION 00 % MONITORING WELL CONSTRUCTION	MONITORING WELL DESCRIPTION ELEVATION (FMSL)		
Limestone Limestone; light gr	ay, hard	- - - - - - - - - 1144 - - - - - - - - -		

S	CS ENG	INEERS	LOG OF BORI	NG NO.: NE	-13		SHEET NU	JMBER: 1 of 2		
	11219 Richo	ardson Drive		DRILLER: Go	ary Moyer	c	SURFACE ELEVATION: 12	17 1 fmsl		
	North Little	e Rock, AR	DRI	LLING RIG: CA		<u> </u>	TOC ELEVATION: 12			
	CLIENT: Waste Ma	nagement	DRILLING METHOD: HSA			WELL DEPTH COMPLETION: 40.81 fbgs				
PRO	DJECT NAME: Eco Vista N		DRILLING CONTRACTOR: Anderson				LOCATION:	v		
	ECT NUMBER: 27216360				gineering		NORTHING: 66282			
	T LOCATION: EcoVista Lo		CAMPUNIC		nsultants, l	nc.	EASTING: 64532			
	GEOLOGIST: Robert Fov START DATE: 12/29/20			METHOD: DIAMETER: 8.2	25"		WATER LEVEL: NA WATER ELEVATION: NA			
	FINISH DATE: 12/29/20			DIAMETER: 2"			WATER LEVEL DATE: 12			
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)	MONITORING WEI		N	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)		
- - 0 —						l (Stick Up (2.73 ft) Concrete Pad Approximately 6")	- - 1220 - - -		
5 —	Silty Clay	Silty Clay; reddish brown with chert gravels				grou	ronite pellet seal from nd surface to 28.81 ft bgs d pack from 28.81 to 40.81 ft bgs			
5 —	Chart						dia. Sch. 40 PVC soild iser 0-30.48 ft bgs	1204 		
_	Chert	Chert; hard white		****	****			1200		
	Silty Clay	Silty Clay; reddish brown with chert gravels Chert; hard white								
_	ATIFICATION LINES REPRES	ENT APPROXIMATE						— 1192 — — —		

S	CS ENG	SINEERS	LOG OF BORING NO.: NE-13	SHEET NUMBER: 2 of 2
	11219 Riche	ardson Drive	DRILLER: Gary Moyers	SURFACE ELEVATION: 1217.4 fmsl
	North Little	e Rock, AR	DRILLING RIG: CME-55 Rig	TOC ELEVATION: 1217.4 fmsl
	CLIENT: Waste Mc	anagement	DRILLING METHOD: HSA	WELL DEPTH COMPLETION: 40.81 fbgs
	JECT NAME: Eco Vista 1	<u> </u>	DRILLING CONTRACTOR: Anderson	LOCATION:
	CT NUMBER: 27216360		Engineering	NORTHING: 662826.62
		anfill, Tontitown, AR	Consultants, Inc.	EASTING: 645321.31
	GEOLOGIST: Robert For START DATE: 12/29/20		SAMPLING METHOD: Cuttings BORING DIAMETER: 8.25"	WATER LEVEL: NA fbgs WATER ELEVATION: NA fmsl
	INISH DATE: 12/29/20		WELL DIAMETER: 2"	WATER LEVEL DATE: 12/29/2016
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	MONITORING WELL CONSTRUCTION	MONITORING WELL DESCRIPTION (FMSL)
30 — 35 — 40 —	Silty Clay	Silty Clay; reddish brown with chert gravels	pe	10 ft of 2 in dia, rforated Sch. 40 PVC screen — 1184 — —————————————————————————————————

						ı			
					JECT:	BORING ID			WELL ID:
					-Vista, LLC Class 1 Landfill NEI Well Installation	NE-14S			NE-14S
					ATION: p-Vista, LLC Landfill, Tontitown, AR	NORTHING 664751			EASTING, FT SRC: 648494.6
=		2		DRIL	LING CONTRACTOR:	GROUND SURFACE, FT SRE:			TOC MP, FT SRE:
				Wa	ker-Hill Environmental, Inc.	1196.3			1199.25
=			0.0 1.0	DRIL	LING EQUIPMENT:	WELL DEPTH, FT BELOW MP:			INSTALLATION DATES:
water reser	ircas / anvi	SSOCICII ironmental co	OS LTO.	Ver	sa-Drill VersaSonic	22.7			7/13-7/29/2019
110001	110007 01111		, ino unturno		LING METHOD:				
					nic with 4x6 in dia. core and case				
LOGGE	ED BY:	:			PLING METHOD:				
AJP					tinuous with 10 ft, 4 in dia. core barrel				
(feei	% REC USCS Graphic				.			We	ell
pth	% R W R Grap				Description		(Constr	uction
Ď				_					
							0		
							-		ound completion including 2.5x2.5
-									te pad, four pipe bollards, and uter aluminum casing
0 —			ППП	ПП	GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia),	//////	8////	12.5 ft of	2 in dia., Sch. 40 PVC solid riser,
		ML			increasing gravel with depth, medium stiff, moist.	\otimes	\otimes	including	2.9 ft of stickup
				\prod	SILTY GRAVEL with sand, weathered gravel (<3" dia)	- 🔀	\otimes		
-					with oxidation along fractures. medium stiff, moist.	\otimes	\otimes	Cement/b	pentonite grout from 0 ft bgs to 6.0
	60		φ [φ [$\phi \downarrow \phi$			∺	ft bgs	
-				기비					
		014	T bY b	ďЫ	@5-7 ft bgs with clay.			Bentonite ft bgs	e chip seal from 20.0 ft bgs to 35.0
		GM	$\phi \downarrow \phi \downarrow$		<u> </u>			li bgo	
_			b [b [4 6					
					@7 ft bgs color changes to tan to orangish tan, tripoli chert, moist to somewhat wet.				
	100			oj bi	,				
								Silica size to 89.0 ft	e 20/40 filter pack from 74.1 ft bgs
			$\uparrow \downarrow \uparrow \uparrow \downarrow$	111	SILT, orangish tan to tan, medium stiff, moist.			10 00.011	590
10 —		ML		Щ	, ,				
					SILTY GRAVEL with sand, tan to orangish tan, weathered gravel (<3" dia) with oxidation along				
		C14	 	44	fractures, tripoli chert, moist to somewhat wet.				
		GM						10.0 # - 5	2 in dia 0.010 in alat 01- 40
			[oT þŤ				PVC scre	2 in dia., 0.010 in slot, Sch. 40 een
		CL	////	1//	LEAN CLAY with gravel, orangish brown, very soft,				
-		JL	////	///	saturated. CLAYEY GRAVEL with sand, reddish brown to tan,				
	89		1/2/	/°/	saturated.				
			/0/	/0/		No.	_	Depth to	water: 15.2 ft bgs (7/29/2019)
_			1/6	%	@16-17 ft bgs silty.				
		GC		0/0	W 10-17 IL DYS SIILY.				
			/ -/	0/0				0.19 ft, 2	in dia., Sch. 40 PVC end cap
-			1/2	/°/					
			/0/	%				Drilling te	erminated at 19.7 ft bgs
00							8		
20						12727278888	e detel		

						T =				
					JECT:	BORING II			WELL ID:	
			-		-Vista, LLC Class 1 Landfill NEI Well Installation	NE-140)		NE-14D	
<u>-</u>	<u> </u>				ATION: D-Vista, LLC Landfill, Tontitown, AR	NORTHING 664751			EASTING, FT SRC: 648503.2	
=			-		LING CONTRACTOR:	GROUND :		FT SRE:	TOC MP, FT SRE:	
					lker-Hill Environmental, Inc.	1195.7	,		1198.76	
					LING EQUIPMENT:		TH ET RE	I OW MP:		
_	-A	ssociat	es Ltd.		sa-Drill VersaSonic	· · · · · · · · · · · · · · · · · · ·			7/2-7/29/2019	
water reso	urces / envi	ironmental co	nsultants		LING METHOD:	72.0			112-1123/2013	
					nic with 4x6 in dia. core and case in soils an	d air rota	ry in bed	lrock		
LOGGI AJP		:			PLING METHOD: atinuous with 10 ft, 4 in dia. core barrel in soi	l and 10 f	t HQ cor	e barrel	in bedrock	
			O	ı						
h (fe	REC	nscs	aphi	Log	Description		,	We		
Depth (feet)	%	Š	Ü	Š	Becompact		(Jonstr	uction	
						F	_	Above an	round completion including 2.5x2.5	
-	1							ft concret	te pad, four pipe bollards, and	
0 —			<u> </u>			11177	7777	locking o	uter aluminum casing	
		ML	[]		GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia), increasing gravel with depth, medium stiff, moist.	\otimes	\otimes			
-	80		\$ \$	φ φ	SILTY GRAVEL with sand, weathered gravel (<3" dia)	\otimes	\otimes	31.8 ft of	2 in dia., Sch. 40 PVC solid riser,	
	00			기기	with oxidation along fractures, medium stiff, moist.	₩	\otimes		3.0 ft of stickup	
-						⊗	\otimes			
		GM	φ [φ [φ [φ	@5-7 ft bgs with clay.	\otimes	\otimes			
				1 1	@7 ft bgs color changes to tan to orangish tan, tripoli				bentonite grout from 0 ft bgs to 6.0	
_	100		ľ bľ b	ΪЫΤ	chert, moist to somewhat wet.			ft bgs		
		ML		$\phi \mid \phi$	SILT, orangish tan to tan, medium stiff, moist.					
10 —		IVIL		#	SILTY GRAVEL with sand, tan to orangish tan,		2	Bentonite	e chip seal from 6.0 ft bgs to 13.0	
		GM	ľ þľ þ	ďЫ	weathered gravel (<3" dia) with oxidation along			ft bgs	, , , , , ,	
_			$\phi \downarrow \phi \downarrow$	φͺͿφ	fractures, tripoli chert, moist to somewhat wet.		_/2/			
_		CL	////	///	LEAN CLAY with gravel, orangish brown, very soft, saturated.			Depth to	water: 13.1 ft bgs (7/29/2019)	
	80		/0/	/o/	CLAYEY gravel with sand, reddish brown to tan,		2			
-		00	1%	//	saturated. @16-17 ft bgs silty.		2			
		GC	0/0		@10-17 it bgs siity.					
_			%%	\ \ !	@19-19.2 ft bgs dark brown clay coated gravel.				ease bentonite pellet seal from	
20 —			<u> </u>	/ <u>A</u>	LIMESTONE AND CHERT, interbedded. Limestone is			13.0 ft bg	gs to 23.9 ft bgs	
			<u></u>	4	white and gray, chert is white.					
-			4	4	@ 20-28 ft bgs no loss of air, fractures 0-75° off					
			7 4	Î	horizontal, fractures contain sparry calcite. Stylolites throughout.					
_	100		Ž	$\stackrel{\wedge}{\downarrow}$	@ 20-23.5 ft bgs limestone breccia.					
_				Ì						
				À				Silica size	e 20/40 filter pack from 23.9 ft bgs bgs	
-			4 7	4	@ 28-30 ft bgs no loss of air, fractures 0-75° off horizontal, fractures up to 0.02 ft and filled with sparry			.0.010	- J -	
	100		\ \ \ \ \ \ \	4	calcite.					
30 —			À	4	@ 30-40 ft bgs no loss of air. Fractures 45-81° off		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
_			À À	À	horizontal, up to 0.02 ft thick, and filled with sparry					
			1 4	Ţ	calcite. Bedrock is white microcrystalline limestone, gray sparry limestone, and white chert. Stylolites			10.0 # - 5	2 in dia 0.040 in alat 0-1-40	
-			1 4	1	throughout.			10.0 ft of	2 in dia., 0.010 in slot, Sch. 40 een	
	92		1	Ţ	@ 33 ft bgs water level noted during drilling. @ 36.5-36.7 ft bgs signs of dissolution		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
-			4 7	4	3 5515 5511 1235 5.9115 51 dissolution					
			4	4	@ 40 ft bgs air compressor was shut down for		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.19 ft, 2	in dia., Sch. 40 PVC end cap	
]		<u> </u>	4	approximately 1.25 hours. Water level in borehole			L		
40 —			À Ţ	4	measured at approximately 19 ft bgs.			Drilling te	erminated at 40.0 ft bgs	

					JECT:	BORING ID			WELL ID:	
					-Vista, LLC Class 1 Landfill NEI Well Installation	NE-15S			NE-15S	
<u> </u>					ATION: o-Vista, LLC Landfill, Tontitown, AR	NORTHING 663665 .			EASTING, FT SRC: 648250.4	
=		2		DRIL	LING CONTRACTOR:	GROUND S	URFACE,	FT SRE:	TOC MP, FT SRE:	
				Wa	lker-Hill Environmental, Inc.	1212.5			1215.29	
					LING EQUIPMENT:	WELL DEP	ΓH, FT BE	LOW MP:	INSTALLATION DATES:	
water reso	urces / envi	SSOCICII ironmental co	Onsultants	_	sa-Drill VersaSonic	45.3			7/24-7/29/2019	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		LING METHOD:					
					nic with 4x6 in dia. core and case					
LOGGI	ED BY:	:			PLING METHOD: ntinuous with 10 ft, 4 in dia. core barrel					
AJP ⊋					icinadas with 10 it, 4 in ala. core sairer					
eej)	REC	nscs	id	Log	Description			We		
Depth (feet)	% R	NS	יי יי	Log	Description		C	Constr	uction	
								1		
								Above ar	ound completion including 2.5x2.5	
_								ft concret	te pad, four pipe bollards, and	
								locking of	uter aluminum casing	
_						11111				
0 —		ML	ППП	Ш	GRAVELLY SILT, tannish brown, gravel (<2" dia)	·///	`````			
					weathered with brown and red staining, soft, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<1.5"	- ⊗	\otimes			
_					dia),stiff, moist.	\otimes	\otimes			
	100	СН					\otimes			
						\otimes	❈			
			$\sum_{A} \sum_{A} Z$	$\sum_{\lambda} \Delta_{\lambda}^{\lambda}$	CHERT, white with orange staining along weathered surfaces, 4-5 ft bgs	1 🛞	\otimes		2 in dia., Sch. 40 PVC solid riser, 2.8 ft of stickup	
		GC	2		CLAYEY GRAVEL, dark red fat clay, increasing silt with		\otimes	Inoluding	2.0 it of stiokup	
_		CL	11/1	7/1	depth, gravel (<1.5" dia), loose, moist. LEAN CLAY with sand, reddish brown, soft, moist.	- 🛞	\otimes			
			/0/	/~/	CLAYEY GRAVEL, dark red fat clay, gravel (<1.5" dia), loose, moist.	1 ⊗	\otimes			
_	100	GC	%	%			\otimes			
			0/	0/0	@8-9 ft bgs silt increasing with depth.	\boxtimes	⊗			
		GM	$\phi \downarrow \phi \downarrow$	$\phi \downarrow \phi$	GRAVELLY SILT, tannish orange, loose, moist.		\otimes			
10 —					SILT with gravel and clay, tan to white with orange staining, some lenses of reddish brown clay, gravel (<1"	\otimes	\otimes			
		ML			dia), soft, moist.	\otimes	\otimes		pentonite grout from 0 ft bgs to	
-			Щ	JJ	CLAYEY GRAVEL, reddish brown, gravel (<2" dia)		\otimes	20.0 ft bg	JS	
		GC	%%	/°/	orange and black staining along weathered chert, loose moist.	\otimes	\otimes			
_	100		/	<u> </u>		\otimes	\otimes			
			\sum_{A}	$^{\wedge}$	CHERT, white to reddish orange, 14-15 ft bgs.	\otimes	\otimes			
					GRAVELLY FAT CLAY, reddish brown, gravel (<1.5" dia),stiff, moist.	\bowtie	\otimes			
-					जाव ₁ ,उताा, माठाउत.	\otimes	\otimes			
		CLI			@17-20 ft bgs gravel (<3" dia) with black staining along	\bowtie	\otimes			
_		СН			weathered gravel.	\otimes	\otimes			
						\otimes	\otimes			
20						\approx	\otimes			
20 —					GRAVELLY LEAN CLAY, tannish brown, gravel (<1" dia), soft, moist.		7			
		CL			dia), soit, moist.				e chip seal from 20.0 ft bgs to 24.0	
-	100							ft bgs		
					FAT CLAY with gravel, dark reddish brown, gravel (<4" dia) heavily weathered, soft to medium stiff, moist.					
_		СН			ala) neavily weathered, soft to medium still, moist.	/ /				
							//			

				PRO	JECT:	BORING ID:		WELL ID:			
				Eco	-Vista, LLC Class 1 Landfill NEI Well Installation	NE-15S		NE-15S			
	<u>-</u>			LOCA	ATION:	NORTHING, FT SRC:		EASTING, FT SRC:			
				Eco	-Vista, LLC Landfill, Tontitown, AR	663665.8		648250.4			
=		7		DRIL	LING CONTRACTOR:	GROUND SURFACE, F	T SRE:	TOC MP, FT SRE:			
				Wa	lker-Hill Environmental, Inc.	1212.5		1215.29			
				DRILI	LING EQUIPMENT:	WELL DEPTH, FT BELO	OW MP	INSTALLATION DATES:			
	-A	ssocia:	es Ltd.	Ver	sa-Drill VersaSonic	45.3		7/24-7/29/2019			
water reso	urces / env	ironmental c	onsultants	DRILI	LING METHOD:			1 11 11 11 11 11 11 11 11 11 11 11 11 1			
				Sor	nic with 4x6 in dia, core and case						
1000				SAMI	PLING METHOD:						
	OGGED BY: AJP Ω O O O O O O O O O O O O				itinuous with 10 ft, 4 in dia. core barrel						
(fe	Depth (feet) % REC USCS			Log	Description	_	We				
epth				Log	Description	C	onstr	uction			
					GRAVELLY LEAN CLAY with sand, tannish brown, gravel (<1" dia), soft, moist.			ease bentonite pellet seal from ps to 29.0 ft bgs			
-		CL			graver (>1 dia), sort, moist.		∠ 4 .∪ IL DC	13 to 23.0 It bys			
					FAT CLAY with gravel, dark reddish brown, gravel (<4"						
_]	CH			dia) heavily weathered, soft to medium stiff, moist.						
		GC	/0/	/0/	CLAYEY GRAVEL, dark reddish brown, gravel (<3" dia), loose, moist.						
					FAT CLAY with gravel, dark reddish brown, gravel						
30 —	0 — СН				(<1.5" dia), soft, moist.		Silion ciz	ze 20/40 filter pack from 29.0 ft bgs			
						t	to 42.1 ft	bgs			
				7	WEATHERED CHERT/EPIKARST, chert is weathered to well-graded gravel with silt and sand, tan to white,						
-	60			<u> </u>	loose, moist.						
			Λ	<u>ұ</u> Д.,							
			<u>A</u> A	[A]							
			<u>*</u>	<u>Д</u>	@35-36 ft bgs with some brown clay.						
			***	Α Α.4	(200-30 It bys with some brown day.						
-			$\mathbb{R}^{\mathbb{R}}$	<u> </u>			10 0 ft of	2 in dia., 0.010 in slot, Sch. 40			
			##	<u></u>			PVC scre				
				Z Z. Z. Z	@37-41.5 ft wet, rapid dilatancy.						
-	1			Z ([])							
			A 42	Z.A.							
40 —	100		<u>A</u>	Z. [A.]							
``			A A	位			0.19 ft, 2	in dia., Sch. 40 PVC end cap			
			₩ <u>₩</u>	<u>-</u>	LIMEOTONE AND OUEDT						
-	-		Ž	Ž	LIMESTONE AND CHERT, interbedded.	909	Drillina te	erminated at 42.1 ft bgs			
							Monitorin	ig well dry on 7/29/2019.			
-	1										
_											
-											
50 —	1										
			1								

				PRO		BORING ID			WELL ID:
					-Vista, LLC Class 1 Landfill NEI Well Installation	NE-15D			NE-15D
Ė					ATION: 0-Vista, LLC Landfill, Tontitown, AR	NORTHING 663675		:	EASTING, FT SRC: 648523.4
		2		DRILI	LING CONTRACTOR:	GROUND S	SURFACE,	FT SRE:	TOC MP, FT SRE:
	=			Wal	ker-Hill Environmental, Inc.	1212.8			1215.73
=				DRILI	LING EQUIPMENT:	WELL DEP	TH, FT BE	LOW MP:	INSTALLATION DATES:
	A	ssociat	<u>es Ltd.</u>	Ver	sa-Drill VersaSonic	60.6			7/23-7/29/2019
water reso	urces / envi	ronmental co	onsultants	DRILI	ING METHOD:				'
				Sor	nic with 4x6 in dia. core and case in soils an	d air rotaı	y in bed	Irock	
LOGGE	ED BY:	:		SAME	PLING METHOD:				
AJP				Con	tinuous with 10 ft, 4 in dia. core barrel in soi	l and 10 ft	HQ cor	e barrel	in bedrock
eet)	၂ ၂	m	. <u>c</u>	Coapplic Description				We	الد
th (f	Depth (feet) % REC USCS				Description		(Constr	
Dep	Dep				•		•	JUI 1511	uction
							T"		
									ound completion including 2.5x2.5
_									te pad, four pipe bollards, and uter aluminum casing
						())))	,,,,,,		-
0 —		ML		Ш	GRAVELLY SILT, tannish brown, gravel (<2" dia)	``` ` ``	\bigotimes		
					weathered with brown and red staining, soft, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<1.5"	- ₩	\otimes		
-	80	СН			dia),stiff, moist.		\otimes		
		011					\otimes		
-					CHERT, white with orange staining along weathered	- ⊗	\otimes		
		00	~~~	<i>-</i>	surfaces, 4-5 ft bgs.	- ₩	\otimes		
-		GC CL	////	/ 0/	CLAYEY GRAVEL, dark red fat clay, increasing silt with depth, gravel (<1.5" dia), loose, moist.	⊗	\otimes		
		OL.	1/2	7	LEAN CLAY with sand, reddish brown, soft, moist. CLAYEY GRAVEL, dark red fat clay, gravel (<1.5" dia),		\otimes		
_	100	GC	0/0	0/0	loose, moist.		\otimes	50.4 ft of	2 in dia Sah 40 DVC salid rigar
			22	\\\\	@8-9 ft bgs silt increasing with depth. GRAVELLY SILT. tannish orange, loose, moist.	- 💥	\otimes		2 in dia., Sch. 40 PVC solid riser, 2.9 ft of stickup
10 —		GM	<u> </u>	9 9	, , ,	. ⊗	\otimes		·
		ML			SILT with gravel and clay, tan to white with orange staining, some lenses of reddish brown clay, gravel (<1"	\otimes	\otimes		
_			ЩЩ	Щ	dia), soft, moist.	\otimes	\otimes		
		GC	/0/	~)	CLAYEY GRAVEL, reddish brown, gravel (<2" dia) orange and black staining along weathered chert, loose	\bowtie	\otimes		
_	100	55	%	%	moist.	\otimes	\boxtimes		
			$\Delta \Delta \Delta$	Δ	CHERT, white to reddish orange, 14-15 ft bgs.	\otimes	\otimes		
					GRAVELLY FAT CLAY, reddish brown, gravel (<1.5" dia), stiff, moist.	\otimes	\otimes	Cement/l	pentonite grout from 0 ft bgs to
					,	\otimes	\otimes		,-
		CH			@17-20 ft bgs gravel (<3" dia) with black staining along weathered gravel	\bowtie	\boxtimes		
					-	\otimes	\otimes		
20						\otimes	\otimes		
20 —					GRAVELLY LEAN CLAY, tannish brown, gravel (<1"	\sim			
		CL			dia), soft, moist.				
_	100				EAT CLAV with grovel dark raddish brown grovel / 4"				
		CLI			FAT CLAY with gravel, dark reddish brown, gravel (<4" dia) heavily weathered, soft to medium stiff, moist.				
-		CH							
					GRAVELLY LEAN CLAY with sand, tannish brown,		2		
-		CL			gravel (<1" dia), soft, moist.				
		СН			FAT CLAY with gravel, dark reddish brown, gravel (<4"				
-		GC			dia) heavily weathered, soft to medium stiff, moist. CLAYEY GRAVEL, dark reddish brown, gravel (<3"			Bentonite	e chip seal from 20.0 ft bgs to 35.0
		GC			dia), loose, moist.			ft bgs	
30 —		СН			FAT CLAY with gravel, dark reddish brown, gravel (<1.5" dia), soft, moist.				
					(1.0 dia), ook, mook.	//	//		

					JECT:	BORING ID:		WELL ID:			
<u>ė</u>				Eco	-Vista, LLC Class 1 Landfill NEI Well Installation	NE-15D		NE-15D			
				LOCATION: Eco-Vista, LLC Landfill, Tontitown, AR		NORTHING, FT SRC: 663675.0		EASTING, FT SRC: 648523.4			
=		¬ _			LING CONTRACTOR:	GROUND SURFACE, F	T SRF	TOC MP, FT SRE:			
					Iker-Hill Environmental, Inc.	1212.8 WELL DEPTH, FT BELOW MP:		1215.73			
		F L			LING EQUIPMENT:						
	Ā	ssocia	tes Ltd.		sa-Drill VersaSonic	60.6	JVV IVIF.	7/23-7/29/2019			
water reso	ources / env	ironmental c	onsultants	_	LING METHOD:	33.3	1720-1720/2010				
					Sonic with 4x6 in dia. core and case in soils and air rotary in bedrock						
	ED BY	:			PLING METHOD:						
AJP) 			Cor	ntinuous with 10 ft, 4 in dia. core barrel in soi	and 10 ft HQ core	barrei	in bedrock			
Depth (feet)	REC	ώ		2		Well					
oth (% RE	nscs	2	Description		Construction					
Dep	6			تار			J113t1	dottori			
	70		###		WEATHERED CHERT/EPIKARST, chert weathered to gravel with silt and sand, tan to white, loose, moist.						
1	'			Z XX 7	5						
				Z []							
]		##	\$ <u>}</u>	@25 26 ft has with some brown slov						
			A A	Z (A)	@35-36 ft bgs with some brown clay.						
-	1		A A		@36-40 ft bgs wet, rapid dilatancy.						
			外分	<u>Д</u> ,							
-	100			<u>. A.</u>				ase bentonite pellet seal from			
			7.4	- - - -			35.0 ft bg	s to 43.0 ft bgs			
40 —	1			\	LIMESTONE AND CHERT, interbedded, competent.						
			4	4	Limestone is white and gray, chert is white. Stylolites throughout.						
-	1			7	, and the second						
			Ž	1	@ 40-42 ft bgs sample destroyed by 6-inch override casing.		Depth to	water: 42.8 ft bgs (7/29/2019)			
-	1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
			4	1	@ 42.0-49.5 ft bgs no loss of air, fractures 18-90° off horizontal, up to 0.01 ft thick, fractures are filled with	S	Silica size	e 20/40 filter pack from 43.0 ft bgs			
-	100		4	4	calcite. @ 44 ft bgs staining along fractured surfaces.		o 59.0 ft				
					@ 48-49 ft bgs sparry calcite.						
	4		Š	Ž							
			Ž	Ì	0.40.5.50.81						
50 —	4		Ā	À	@ 49.5-59 ft bgs no loss of air, fractures 0-90° off horizontal, fractures up to 0.01 ft thick and filled with						
			4	2	calcite, stylolites throughout.						
_	1		4		@ 49.5-53 ft bgs thinly bedded and parted along bedding planes.		0.65				
				4	@ 49.8-55.2 ft bgs range of water levels measured during drilling.		0.0 ft of VC scre	2 in dia., 0.010 in slot, Sch. 40 een			
-],		À	À	@ 56 ft bgs fracture filled with brown clay.						
	100		Ž	À	@ 57-58.5 ft bgs dissolution along fractures.						
			4								
·]		4	1	@59 ft bgs air compressor shut off. Water level).19 ft, 2	in dia., Sch. 40 PVC end cap			
				7	measured at 56.3 ft bgs. Downhole camera used to	888					
-	1				confirm water-bearing fractures. Twenty-two minutes lapsed and water level measured at 50.7 ft bgs.		Orilling te	rminated at 59.0 ft bgs			
l					, and the second	1999/87878788888888					
60 —	1										
-											
-											

MSCI Project No.: 21115

Top of Adjacent

Ground Elevation (3)

1199.14

Top of PVC Pipe

Elevation(2)

1201.55

Table 1. Surveyed Locations of Monitoring Wells (MW)

MW ID	Northing (1,4)	Easting (1,4)	Top of PVC Pipe Elevation ₍₂₎	Top of Adjacent Ground Elevation (3)	MW ID	Northing (1,4)	Easting (1,4)	
LGW-2	666,641.20	646,396.28	1302.23	1299.14	NE-1	662,064.30	647,307.43	
LGW-3R	666,590.83	647,167.96	1289.24	1286.13	NE-2	662,259.16	647,576.88	
LGW-4	665,925.07	647,545.10	1267.93	1265.82	NE-4	666,189.30	644,305.25	
LGW-5	665,325.97	647,602.26	1271.91	1269.94	NE-5	662,676.06	648,172.91	
LGW-6	664,913.65	648,172.75	1244.78	1242.13	NE-5E	662,678.21	648,201.83	
LGW-7	664,257.39	648,160.17	1220.69	1219.29	NE-5W	662,680.42	648,145.97	
LGW-8R	664,011.57	648,287.11	1186.33	1184.67	NE-6	662,656.53	647,424.68	
LGW-9	663,904.39	647,800.96	1237.56	1235.41	NE-6D	662,645.64	647,433.40	
LGW-10	663,943.41	647,347.50	1240.66	1238.66	NE-7	662,722.35	647,732.18	Ī
LGW-14R	665,280.95	648,182.74	1250.83	1247.94	NE-8	662,090.56	646,798.68	l
MW-1N	665,516.54	644,923.24	1298.57	1296.32	NE-9	663,996.09	648,472.24	
MW-2N	664,194.55	644,251.38	1289.59	1286.79	NE-10D	662,187.10	645,410.61	
MW-3N	662,823.05	645,309.94	1222.09	1219.29	NE-11	662,698.72	648,600.84	
MW-7N	663,318.62	647,895.76	1247.31	1244.53	NE-12	662,444.94	647,725.83	
MW-8N	662,664.63	647,425.41	1191.74	1189.16	NE-13	662,826.59	645,321.32	
MW-10N	662,360.96	646,348.24	1193.74	1191.05	NE-14D	664,751.77	648,503.05	
MW-11N	666,560.22	647,130.04	1284.50	1281.73	NE-14S	664,751.71	648,494.49	
MW15	666,696.30	645,547.33	1291.51	1288.64	NE-15D	663,674.98	648,253.32	
MW16	666,692.70	645,038.83	1289.75	1286.31	NE-15S	663,665.82	648,250.32	
MW17	666,159.64	644,919.06	1288.99	1285.55				
MW19	664,867.17	645,156.12	1293.89	1291.20	Notes:			
MW20	664,201.03	644,267.33	1289.55	1286.29	1. Northing and Eas	ting Locations were mea	asured on the lock s	ic
		i						

1188.90

1186.06

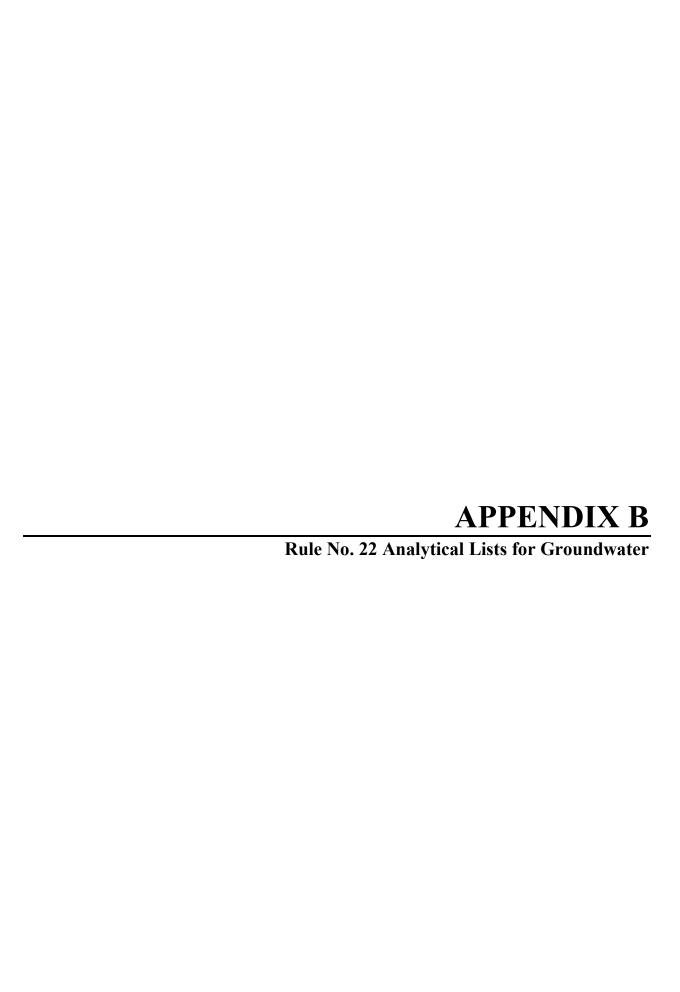
CONSULTING, INC.

NE-2	662,259.16	647,576.88	1176.89	1174.12
NE-4	666,189.30	644,305.25	1293.26	1290.55
NE-5	662,676.06	648,172.91	1227.13	1224.24
NE-5E	662,678.21	648,201.83	1224.34	1221.27
NE-5W	662,680.42	648,145.97	1228.63	1225.66
NE-6	662,656.53	647,424.68	1192.33	1189.27
NE-6D	662,645.64	647,433.40	1192.94	1189.92
NE-7	662,722.35	647,732.18	1217.89	1214.99
NE-8	662,090.56	646,798.68	1174.51	1171.70
NE-9	663,996.09	648,472.24	1182.02	1179.01
NE-10D	662,187.10	645,410.61	1261.07	1258.17
NE-11	662,698.72	648,600.84	1203.96	1202.21
NE-12	662,444.94	647,725.83	1213.83	1211.24
NE-13	662,826.59	645,321.32	1220.18	1217.39
NE-14D	664,751.77	648,503.05	1198.81	1196.02
NE-14S	664,751.71	648,494.49	1199.24	1196.24
NE-15D	663,674.98	648,253.32	1215.67	1212.88
NE-15S	663,665.82	648,250.32	1215.36	1212.65

- red on the lock side at marked location.
- 2. Top of PVC pipe elevation was measured on the lock side at marked location.
- 3. Top of adjacent ground elevation was measured at the lock side of casing just beyond the concrete pad.

4. Field measurements were surveyed by MSCI and completed on 06-29-2021 and are based on site specific control data as provided by WM to MSCI. Site specific control datum is scaled and rotated to State Plane Projection NAD83, Arkansas North and NAVD88 as provided to MSCI. No independent survey has been performed by MSCI to verify the correctness of the site control datum to NAD83 and NAVD88. Table 2 below shows site benchmarks used to control the survey.

Point	Northing	Easting	Elevation
1	665,349.93	645,326.51	1298.10
2	666,639.51	646,397.86	1299.17
21	662,089.30	647,253.71	1195.31


MW21

662,562.61

Digitally signed by Johnny Mason Reason: I have reviewed this document in sufficient depth to accept full responsiblity for its contents.

646,405.86

Date: 2021-07-01 15:41-05:00

Plus chloride, total dissolved solids, sulfate, total organic carbon, pH, specific conductance, iron, and manganese per the requirements of 22.1204(d)

APPENDIX 1							
·	D.44.						
Appendix I to Part 258 - Constituents for	or Detection	n					
Monitoring [1]							
Common name2 CAS RN3							
Common Name	157 CA	X					
	RN						
Inorganic Constituents:							
(1) Antimony	(Total)						
(2) Arsenic	(Total)						
(3) Barium	(Total)						
(4) Beryllium	(Total)						
(5) Cadmium	(Total)						
(6) Chromium	(Total)						
(7) Cobalt	(Total)						
(8) Copper	(Total)						
(9) Lead	(Total)						
(10) Nickel	(Total)						
(11) Selenium	(Total)						
(12) Silver	(Total)						
(13) Thallium	(Total)						
(14) Vanadium (15) Zinc	(Total) (Total)						
	(Total)						
Organic Constituents:							
(16) Acetone	67-64-1						
(17) Acrylonitrile	107-13-1						
(18) Benzene	71-43-2						
(19) Bromochloromethane	74-97-5 75-27-4						
(20) Bromodichloromethane (21) Bromoform; Tribromomethane	75-27-4						
(22) Carbon disulfide	75-25-2 75-15-0						
(22) Carbon distinde (23) Carbon tetrachloride	56-23-5						
(24) Chlorobenzene	108-90-7						
(25) Chloroethane; Ethyl chloride	75-00-3						
(26) Chloroform; Trichloromethane	67-66-3						
(27) Dibromochloromethane;	124-48-1						
Chlorodibromomethane	12: 10 1						
(28) 1,2-Dibromo-3-chloropropane; DBCP	96-12-8						
(29) 1,2-Dibromoethane; Ethylene dibromide;	106-93-4						
EDB							
(30) o-Dichlorobenzene; 1,2 Dichlorobenzene -	95-50-1						
(31) p-Dichlorobenzene; 1,4 Dichlorobenzene -	106-46-7						
(32) trans-1,4-Dichloro-2-butene	110-57-6						
(33) 1,1-Dichloroethane; Ethylidene chloride	75-34-3						
(34) 1,2-Dichloroethane; Ethylene dichloride	107-06-2						
(35) 1,1-Dichloroethylene; 1,1Dichloroethene;	75-35-4						
Vinylidene chloride -							
(36) cis-1,2-Dichloroethylene; cis-1,2-	156-59-2						
Dichloroethene							
(37) trans-1,2-Dichloroethylene; trans-1,2-	156-60-5						
Dichloroethene							
(38) 1,2-Dichloropropane; Propylene dichloride	78-87-5						
(39) cis-1,3-Dichloropropene	10061-01-5						
(40) trans-1,3-Dichloropropene	10061-02-6)					
(41) Ethylbenzene	100-41-4						
(42) 2-Hexanone; Methyl butyl ketone	591-78-6						
(43) Methyl bromide; Bromomethane	74-83-9						

(44) Methyl chloride; Chloromethane	74-87-3
(45) Methylene bromide; Dibromomethane	74-95-3
(46) Methylene chloride; Dichloromethane	75-09-2
(47) Methyl ethyl ketone; MEK; 2-Butanone	78-93-3
(48) Methyl iodide; Iodomethane	74-88-4
(49) 4-Methyl-2-pentanone; Methyl isobutyl	108-10-1
ketone	
(50) Styrene	100-42-5
(51) 1,1,1,2-Tetrachloroethane	630-20-6
(52) 1,1,2,2-Tetrachloroethane	79-34-5
(53) Tetrachloroethylene; Tetrachloroethene;	127-18-4
Perchloroethylene	
(54) Toluene	108-88-3
(55) 1,1,1-Trichloroethane; Methylchloroform	71-55-6
(56) 1,1,2-Trichloroethane	79-00-5
(57) Trichloroethylene; Trichloroethene	79-01-6
(58) Trichlorofluoromethane; CFC-11	75-69-4
(59) 1,2,3-Trichloropropane	96-18-4
(60) Vinyl acetate	108-05-4
(61) Vinyl chloride	75-01-4
(62) Xylenes	1330-20-7
(63) Chloride	
(64) Sulfate	
(65) Total Dissolved Solids	
(66) Specific Conductance (field measurement)	
(67) pH (field measurement)	
(68) Turbidity	

- 1. This list contains 47 volatile organics for which possible analytical procedures provided in EPA Report SW-846, Test Methods for Evaluating Solid Waste, third edition, November 1986, as revised December 1987, includes Method 8260; and 15 metals for which SW-846 provides either Method 6010 or a method from the 7000 series of methods.
- 2. Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.
- 3. Chemical Abstracts Service registry number. Where Total is entered, all species in the ground water that contain this element are included.
- 4. Practical Quantitation Limit values must not be reported as detection limits. All values above the Method Detection Limit must be reported.

Plus chloride, total dissolved solids, sulfate, total organic carbon, pH, specific conductance, iron, and manganese per the requirements of 22.1204(d)

Common Name2 Crip Kris			Suggested Methods;					
Common Name	CAS RN	Chemical abstracts service index name	PQL (τ/L)					
Acenaphthene	83-32-9	Acenaphthylene, 1,2-dihydro-	8100 200; 8270 10					
Acenaphthylene	208-96-8	Acenaphthylene	8100 200; 8270 10					
Acetone	67-64-1	2-Propanone	8260 100					
Acetonitrile; Methyl cyanide	75-05-8	Acetonitrile	8015 100					
Acetophenone	98-86-2	Ethanone1-phenyl-	8270 10					
2-Acetylaminofluorene, 2-AAF	53-96-3	Acetamide N-9H- fluoren-2-yl	8270 20					
Acrolein	107-02-8	2-Propenal	8030 5; 8260 100					
Acrylonitrile	107-13-1	2-Propenenitrile	8030 5; 8260 200					
Aldrin	309-00-2	1,4:5,8- Dimethanonaphthalene, 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-(1,4,4a,5,8,8a)-	8080 0.05; 8270 10					
Allyl chloride	107-05-1	Propene, 3-chloro-	8010 5; 8260 10					
4-Aminobiphenyl	92-67-1	1,1^11-Biphenyl]- 4-amine	8270 20					
Anthracene	120-12-7	Anthracene	8100 200; 8270 10					
Antimony	(Total)	Antimony	6010 300; 7040 2000; 7041 30					
Arsenic	(Total)	Arsenic	6010 500; 7060 10; 7061 20					
Barium	(Total)	Barium	6010 20; 7080 1000					
Benzene	71-43-2	Benzene	8020 2; 8021 0.1; 8260 5					
Benzo[a]anthracene	56-55-3	Benz[a]anthracene	8100 200; 8270 10					
Benzanthracene	-	g grand management	,					
Benzo[b]fluoranthene;	205-99-2	Benz[e]acephenanthrylene	8100 200; 8270 10					
Benzo[k]fluoranthene	207-08-9	Benzo[k]fluoranthene	8100 200; 8270 10					
Benzo[ghi]perylene	191-24-2	Benzo[ghi]perylene	8100 200; 8270 10					
Benzo[a]pyrene	50-32-8	Benzo[a]pyrene	8100 200; 8270 10					
Benzyl alcohol	100-51-6	Benzenemethanol	8270 20					
Beryllium	(Total)	Beryllium	6010 3; 7090 50; 7091 2					
alpha-BHC	319-84-6	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1,2,3,4,5,6)-	8080 0.05; 8270 10					
beta-BHC	319-84-0	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1,2,3,4,5,6)-	8080 0.05; 8270 10					
delta-BHC	319-85-7	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1,2,3,4,5,6)-						
			8080 0.1; 8270 20					
gamma-BHC; Lindane	58-89-9	Cyclohexane, 1,2,3,4,5,6-hexachloro-, (1,2,3,4,5,6)-	8080 0.05; 8270 20					
Bis-(2-chloroethoxy)methane	111-91-1	Ethane, 1,1^1- [methylenebis(oxy)] bis[2-chloro-	8110 5; 8270 10					
Bis(2-chloroethyl)	111-44-4	Ethane, 1,1^1- oxybis[2-chloro-	8110 3 8270 10					
ether; Dichloroethyl ether	100 10 1		044040.00=040					
Bis-(2-chloro-1 -methylethyl) ether; 2,2^1-Dichlorodiisopro pyl ether; DCIP,See note 7	108-60-1	Propane, 2,2^1- 1- oxybis[1-chloro-	8110 10; 8270 10					
	117 01 7	1.2. D	8060.20					
Bis(2-ethylhexyl) phthalate	117-81-7	1,2- Benzenedicarboxylic acid, bis(2-ethylhexyl) ester	8060 20					
Bromochloromethane Chlorobromomethane	74-97-5	Methane, bromochloro-	8021 0.1/ 8260 5					
Bromodichloromethane;	75-27-4	Methane, bromodichloro-	8010 1; 8021 0.2; 8260 5					
Dibromochloromethane								
Bromoform; Tribromomethane	75-25-2	Methane tribromo-	8010 2; 8021 15; 8260 5					
4-Bromophenyl phenyl ether	101-55-3	Benzene, 1-bromo-4-phenoxy-	8110 25; 8270 10					
Butyl benzyl phthalate; Benzyl	85-68-7	1,2- Benzenedicarboxyli c acid, butyl phenylmethyl	8060 5; 8270 10					
butyl phthalate		ester						
Cadmium	(Total)	Cadmium	6010 40; 7130 50; 7131 1					
Carbon disulfide	75-15-0	Carbon disulfide	8260 100					
Carbon tetrachloride	56-23-5	Methane, tetrachloro-	8010 1; 8021 0.1; 8260 10					
Chlordane	See Note 8	4,7-Methano-1H- indene, 1,2,4,5,6,7,8,8-octachloro- 2,3,3a,4,7,7a - hexahydro	8080 0.1; 8270 50;					
p-Chloroaniline	106-47-8	Benzenamine, 4-chloro-	8270 20					
Chlorobenzene	108-90-7	Benzene, chloro-	8010 2; 8020 2; 8021 0.1; 8260					
Chioroccizciic	100-70-7	Benzene, emoro-	5					
Chlorobenzilate	510-15-6	Benzeneacetic acid, 4-chloro—(4-chlorophenyl)— hydroxy-, ethyl ester	8270 10					
p-Chloro-m- cresol; 4-Chloro-3	59-50-7	Phenol, 4-chloro- 3-methyl-	8040 5; 8270 20					

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (τ /L)6

Common Name2 CAS RN3	CASI Sugges	Sieu I QL memous 3 (t /L)0	0 (137.1)					
Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (τ/L)					
methylphenol	75 00 2	Education also and	9010 5, 9031 1, 9370 10					
Chloroethane; Ethyl chloride	75-00-3	Ethane, chloro-	8010 5; 8021 1; 8260 10					
Chloroform; Trichloromethane	67-66-3	Methane, trichloro-	8010 0.5; 8021 0.2; 8260 5					
2- Chloronaphthalene	91-58-7	Naphthalene, 2-chloro-	8120 10; 8270 10					
2- Chlorophenol	95-57-8	Phenol, 2-chloro-	8040 5; 8270 10					
4- Chlorophenyl phenyl ether	7005-72-3	Benzene, 1-chloro-4-phenoxy-	8110 40; 8270 10					
Chloroprene	126-99-8	1,3-Butadiene, 2- chloro-	8010 50; 8260 20					
Chromium	(Total)	Chromium	6010 70; 7190 500; 7191 10					
Chrysene	218-01-9	Chrysene	8100 200; 8270 10					
Cobalt	(Total)	Cobalt	6010 70; 7200 500; 7201 10					
Copper	(Total)	Copper	6010 60; 7210 200;7211 10					
m-Cresol; 3- methylphenol	108-39-4	Phenol, 3-methyl-	8270 10					
o-Cresol; 2- methylphenol	95-48-7	Phenol, 2-methyl-	8270 10					
p-Cresol; 4- methylphenol	106-44-5	Phenol, 4-methyl-	8270 10					
Cyanide	57-12-5	Cyanide	9010 200					
2,4-D; 2,4- Dichlorophenoxya cetic acid	94-75-7	Acetic acid, (2,4- dichlorophenoxy-	8150 10					
4,4^1-DDD	72-54-8	Benzene 1,1 ¹ - (2,2- dichloroethylidene)bis[4-chloro-	8080 0.1; 8270 10					
4,4^1-DDE	72-55-9	Benzene, 1,1 ¹ - (dichloroethyenylidene)bis[4-chloro-	8080 0.05; 8270 10					
4,4^1-DDT	50-29-3	Benzene, 1,1 ¹ -(2,2,2- trichloroethylidene)bis[4-chloro-	8080 0.1; 8270 10					
Diallate	2303-16-4	Carbamothioic acid, bis(1-methylethyl)-,S-(2,3-dichloro-	8270 10					
Dibenz[a,h]anthracene	53-70-3	2-propenyl) ester Dibenz[a,h]anthracene	8100 200; 8270 10					
Dibenzofuran	132-64-9	Dibenzofuran	8270 10					
Dibromochloromethane;	124-48-1	Methane, dibromochloro-	8010 1; 8021 0.3; 8260 5					
Chlorodibromomethane 1,2-Dibromo-3- chloropropane; DBCP	96-12-8	Propane, 1,2- dibrome-3-chloro-	8011 0.1; 8021 30; 8260 25					
1,2- Dibromoethane; Ethylene dribromide; EDB	106-93-4	Ethane, 1,2- dibromo-	8011 0.1; 8021 10; 8260 5					
Di-n-butyl phthalate	84-74-2	1,2- Benzenedicarboxylic acid, dibutyl ester	8060 5; 8270 10					
o- Dichlorobenzene;1,2-	95-50-1	Benzene, 1,2- dichloro1-	8010 2; 8020 5; 8021 0.5; 8120					
Dichlorobenzene m- Dichlorobenzene; 1,3- Dichlorobenzene	541-73-1	Benzene, 1,3- Dichloro-	10; 8260 5; 8270 10 8010 5; 8020 5; 8021 0.2; 8120 10; 8260 5; 8270 10					
p - Dichlorobenzene; 1,4- Dichlorobenzene	106-46-7	Benzene, 1,4- dichloro-	8010 2; 8020 5; 8021 0.1; 8120 15 260 5; 8270 10					
	01 04 1	[1 101 Dinhanul] 4 401 diamina 2 201 di-11						
3,3^1- Dichlorobenzidine	91-94-1	[1,1^1-Biphenyl]- 4,4^1-diamine, 3,3^1-dichloro-	8270 20					
trans-1,4- Dichloro-2- butene	110-57-6	2-Butene, 1,4- dichloro-, (E)-	8260 100					
Dichlorodifluoro methane; CFC 12;	75-71-8	Methane, dichlorodifluoro-	8021 0.5; 8260 5					
1,1-Dichloroethane; Ethyldidene chloride	75-34-3	Ethane, 1,1- dichloro-	8010 1; 8021 0.5; 8260 5					
1,2 - Dichloroethane; Ethylene dichloride	107-06-2	Ethane, 1,1- dichloro-	8010 0.5; 8021 0.3; 8260 5					
1,1- Dichloroethylene; 1,1- Dichloroethene; Vinylidene	75-35-4	Ethene, 1,1- dichloro-	8010 1; 8021 0.5; 8260 5					
chloride cis-1,2- Dichloroethylene; cis-1,2- Dichloroethene	156-59-2	Ethene, 1,2- dichloro-, (Z)-	8021 0.2; 8260 5					
trans-1,2- Dichloroethylene trans- 1,2- Dichloroethene	156-60-5	Ethene, 1,2- dichloro-, (E)-	8010 1; 8021 0.5; 8260 5					
2,4- Dichlorophenol	120-83-2	Phenol, 2,4- dichloro-	8040 5; 8270 10 8270 10					
2,6- Dichlorophenol	87-65-0	Phenol, 2,6- dichloro-						
1,2- Dichloropropane; Propylene	78-87-5	Propane, 1,2- dichloro-	8010 0.5; 8021 0.05; 8260 5					

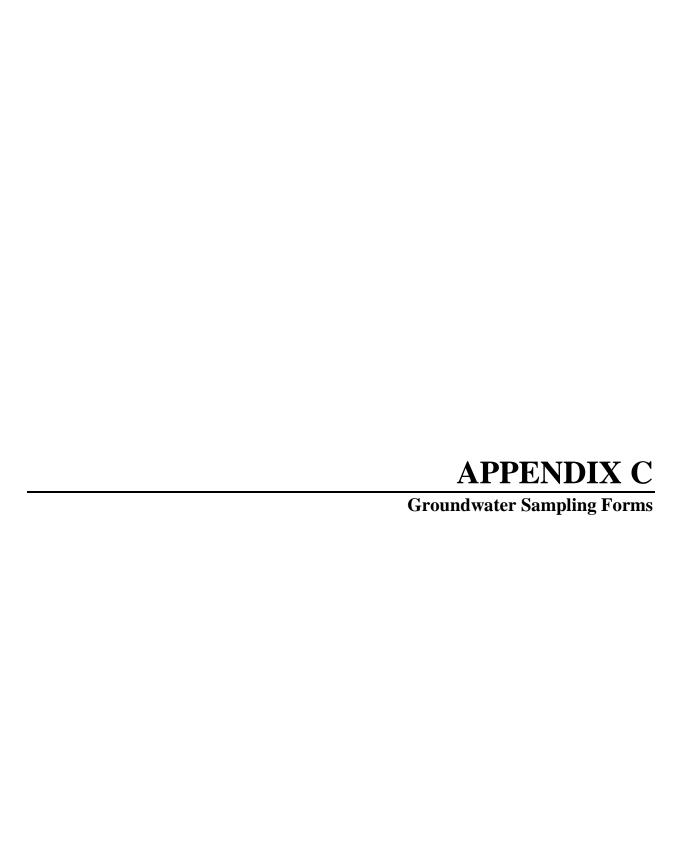
$APPENDIX\ 2\ Appendix\ II\ to\ Part\ 258\ -\ List\ of\ Hazardous\ Inorganic\ and\ Organic\ Constituents\ [1]$ Common Name2 CAS RN3 CASI Suggested PQL methods 3 (τ /L)6

Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (\(\tau/L\))				
dichloride			(, , ,				
1,3- Dichloropropane; Trimethylene dichloride	142-28-9	Propane, 1,3- dichloro-	8021 0.3; 8260 5				
2,2- Dichloropropane; Isopropylidene chloride	594-20-7	Propane, 2,2- dichloro-	8021 0.5; 8260 15				
1,1- Dichloropropene	563-58-6	1-Propene, 1,1- dichloro-	8021 0.2; 8260 5				
cis-1,3- Dichloropropene	10061-01-5	1-Propene, 1,3- dichloro-, (Z)-	8010 20; 8260 10				
trans-1,3- Dichloropropene Dieldrin	10061-02-6 60-57-1	1-Propene, 1,3- dichloro-, (E)-2,7:3,6- Dimethanonaphth[2, 3-b]oxirene, 3,4,5,6,9,9-hexa, chloro-1a,2,2a,3,6,6a,7,7a-octahydro-,	8010 5; 8260 10 8080 0.05; 8270 10				
Diethyl phthalate	84-66-2	(1a,2,2a,3,6,6a,7,7a)- 1,2- Benzenedicarboxylic acid, diethyl ester	8060 5; 8270 10				
0,0-Diethyl 0-2- pyrazinyl phosphorothioate; Thionazin	297-97-2	Phosphorothioic acid, 0,0-diethyl 0-pyrazinyl ester	8141 5; 8270 20				
Dimethoate	60-51-5	Phosphorodithioic acid, 0,0-dimethyl S-[2-(methylamino)-2-oxoethyl] ester	8141 3; 8270 20				
p- (Dimethylamino) azobenzene	60-11-7	Benzenamine, N,N- dimethyl-4- (phenylazo)-	8270 10				
7,12- Dimethylbenz[a] anthracene	57-97-6	Benz[a]anthracene, 7,12-dimethyl-	8270 10				
3,3^1- Dimethylbenzidine	119-93-7	[1,1^1-Biphenyl]- 4,4^1-diamine,3,3^1-dimethyl-	8270 10				
2,4- Dimethylphenol; m-Xylenol	105-67-9	Phenol, 2,4- dimethyl-	8040 5; 8270 10				
Dimethyl phthalate m-Dinitrobenzene	131-11-3 99-65-0	1,2- Benzenedicarboxylic acid, dimethyl ester Benzene, 1,3- dinitro-	8060 5; 8270 10 8270 20				
4,6-Dinitro-o- cresol 4,6- Dinitro- 2- methylphenol	534-52-1	Phenol, 2-methyl-4,6-dinitro	8040 150; 8270 50				
2,4- Dinitrophenol;	51-28-5	Phenol, 2,4- dinitro-	8040 150; 8270 50				
2,4- Dinitrotoluene	121-14-2	Benzene, 1-methyl-2,4-dinitro-	8090 0.2; 8270 10				
2,6- Dinitrotoluene	606-20-2	Benzene, 2-methyl-1,3-dinitro-	8090 0.1; 8270 10				
Dinoseb; DNBP; 2- sec-Butyl-4,6-dinitrophenol	88-85-7	Phenol, 2-(1- methylpropyl)-4,6- dinitro-	8150 1; 8270 20				
Di-n-octyl phthalate	117-84-0	1,2- Benzenedicarboxylic acid, dioctyl ester	8060 30; 8270 10				
Diphenylamine Disulfoton	122-39-4 298-04-4	Benzenamine, N- phenyl- Phosphorodithioic acid, 0,0-diethyl S-[2- (ethylthio)ethyl	8270 10 8140 2; 8141 0.5; 8270 10				
Endosulfan I	959-98-8	ester 6,9-Methano-2,4,3- benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a hexahydro-,3-oxide,	8080 0.1; 8270 20				
Endosulfan II	33213-65-9	6,9-Methano-2,4,3- benzodioxathiepin, 6,7,8,9,10,10- hexachloro- 1,5,5a,6,9,9a hexahydro-, 3-oxide, (3,5a,6,9,9a)-	8080 0.05; 8270 20				
Endosulfan sulfate	1031-07-8	6,9-Methano-2,4,3- benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a hexahydro-,3-3-dioxide	8080 0.5; 8270 10				
Endrin	72-20-8	2,7:3,6- Dimethanonaphth[2, 3-b]oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7 a-octahydro-, (1a, 2,2a,3,6,6a,7,7a)-	8080 0.1; 8270 20				
Endrin aldehyde	7421-93-4	1,2,4- Methenocyclopenta[cd]pentalene-5-carboxaldehyde,2,2a,3,3,4,7-hexachlorodecahydro-,(1,2,2a,4,4a,5,6a,6b,7R*)-	8080 0.2; 8270 10				
Ethylbenzene	100-41-4	Benzene, ethyl-	8020 2; 8221 0.05; 8260 5				
Ethyl methacrylate	97-63-2	2-Propenoic acid, 2-methyl-, ethyl ester	8015 5; 8260 10; 8270 10				
Ethyl methanesulfonate	62-50-0	Methanesulfonic acid, ethyl ester	8270 20				
Famphur	52-85-7	Phosphorothioic acid, 0-[4- [(dimethylamino)sulfonyl]phenyl] 0,0-dimethyl ester	8270 20				
Fluoranthene	206-44-0	Fluoranthene	8100 200; 8270 10				

$APPENDIX\ 2\ Appendix\ II\ to\ Part\ 258\ -\ List\ of\ Hazardous\ Inorganic\ and\ Organic\ Constituents\ [1]$ Common Name2 CAS RN3 CASI Suggested PQL methods 3 (τ /L)6

Fluorene	Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (\(\tau/L\))					
Hepstehlor epoxide	Fluorene	86-73-7	9H-Fluorene						
heptachloro-la, lb, 5,5a,6,6a hexahydro-, (la, lb, 2, 5, 5a, 6,6a)	Heptachlor	76-44-8		8080 0.05; 8270 10					
Hexachlorobenzene	Heptachlor epoxide	1024-57-3	heptachloro-1a,1b,5,5a,6,6a hexahydro-,(1a,1b, 2, 5, 5a,	8080 1; 8270 10					
Hexachlorocyclopentadiene	Hexachlorobenzene	118-74-1		8120 0.5; 8270 10					
Hexachlorocyclopentadiene	Hexachlorobutadiene	87-68-3	1,3-Butadiene, 1,1,2,3,4,4- hexachloro-	· · · · · · · · · · · · · · · · · · ·					
Rexachloropropene 1888-71-7	Hexachlorocyclopentadiene	77-47-4	1,3- Cyclopentadiene, 1,2,3,4,5,5-hexachloro-						
Hexachloropropene 1888-71-7 1-Propene, 1,1,2,3,3,3-hexachloro- 8270 10	Hexachloroethane	67-72-1	Ethane, hexachloro-						
Indeno(1,2,3 - cd)pyrene	Hexachloropropene	1888-71-7	1-Propene, 1,1,2,3,3,3-hexachloro-						
Indeno(1,2.3 - cd)pyrene 193-39-5 Indeno(1,2.3 - cd)pyrene 18-100 200; 8270 10 18-20 200; 8270 200;		591-78-6	2-Hexanone	8260 50					
Isobuty alcohol 78-83-1 1-Propanol, 2- methyl- 8015 50; 8240 100		193-39-5	Indeno(1,2,3- cd)pyrene	8100 200; 8270 10					
Isodrin		78-83-1							
Isophorone 78-59-1 2-Cyclohexen-1- one, 3,5,5- trimethyl- 8090 60; 8270 10		465-73-6	1,4,5,8- Dimethanonaphthalene,1,2,3,4,10,10-						
Kepone 143-50-0 1,3,4-Metheno-2H- cyclobuta[cd]pentalen-2- one,1,1a,3,a,4,5,5,5a,5b,6-decachlorooctahydro-one,1,1a,3,a,4,5,5,5a,5b,6-decachlorooctahydro-ne,1,1a,3,a,4,5,5,5a,5b,6-decachlorooctahydro-ne,1,1a,3,a,4,5,5,5a,5b,6-decachlorooctahydro-ne,1,1a,1a,3,a,4,5,5,5a,5b,6-decachlorooctahydro-ne,1,1a,1a,1a,1a,1a,1a,1a,1a,1a,1a,1a,1a,1	Isophorone	78-59-1		8090 60; 8270 10					
Dead	Isosafrole	120-58-1	1,3-Benzodioxole, 5-(1-propenyl)-	8270 10					
Mercury (Total) Mercury 7421 10 7470 2 Methacrylonitrile 126-98-7 2-Propenenitrile, 2-methyl- 8015 5; 8260 100 Methapyrilene 91-80-5 1,2- Ethanediamine, N.Ndimethyl-N^1-2-pyridinyl- 8270 100 N1/2-thienylmethyl-	Kepone	143-50-0		8270 20					
Methacrylonitrile 126-98-7 2-Propenenitrile, 2-methyl- 8015 5; 8260 100 Methapyrilene 91-80-5 1,2- Ethanediamine, N.Ndimethyl-N^1-2-pyridinyl-N1-2-	Lead	(Total)	Lead	*					
Methapyrilene 91-80-5 N1/2- Ethanediamine, N.Ndimethyl-N^1-2-pyridinyl-N1/2-thienylmethyl)-N1/2-thienylmethyl)-N1/2-thienylmethyl)-N1/2-thienylmethylolor 8270 100 Methoxychlor 72-43-5 Benzene,1,1^1- (2,2,2,trichloroet hylidene)bis[4-methoxy-Methyl chloride; Bromomethane 8080 2; 8270 10 Methyl bromide; Bromomethane 74-83-9 Methane, bromo-Methyl chloride; Chloromethane 8010 1; 8021 0.3 3- Methylcholanthrene 56-49-5 Benz[j]aceanthrylene, 1,2-dihydro-3-methyl-Benzia and properties and		, ,							
Methoxychlor 72-43-5 Benzene, 1,1º1- (2,2,2,trichloroet hylidene)bis[4-methoxy-m									
Methyl bromide; Bromomethane 74-83-9 Methane, bromo- 8010 20; 8021 10 Methyl chloride; Chloromethane 74-87-3 Methane, chloro- 8010 1; 8021 0.3 3- Methylcholanthrene 56-49-5 Benz[j]aceanthrylene, 1,2-dihydro-3-methyl- 8270 10 Methyl tethyl ketone; MEK; 2- 78-93-3 2-Butanone 8015 10; 8260 100 Butanone Wethyl iodide; Iodomethane 74-88-4 Methane, iodo- 8010 40; 8260 10 Methyl methacrylate 80-62-6 2-Propenoic acid, 2-methyl-, methyl ester 8015 2; 8260 30 Methyl methanesulfonate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 02; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.5; 8100 200; 8260 5;			N1/2-thienylmethyl)-						
Methyl chloride; Chloromethane 74-87-3 Methane, chloro- 8010 1; 8021 0.3 3- Methyl cholanthrene 56-49-5 Benz[j]aceanthrylene, 1,2-dihydro-3-methyl- 8270 10 Methyl thyl ketone; MEK; 2- 78-93-3 2-Butanone 8015 10; 8260 100 Methyl iodide; Iodomethane 74-88-4 Methane, iodo- 8010 40; 8260 10 Methyl methacrylate 80-62-6 2-Propenoic acid, 2-methyl-, methyl ester 8015 2; 8260 30 Methyl methanesulfonate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion methyl 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 15; 8021 20; siobutyl ketone Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 0.2; Dichloromethane 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Naphthalene 91-20-3 N	Methoxychlor		methoxy-	8080 2; 8270 10					
3- Methylcholanthrene 56-49-5 Benz[j]aceanthrylene, 1,2-dihydro-3-methyl- 8270 10 Methyl ethyl ketone; MEK; 2- 78-93-3 2-Butanone 8015 10; 8260 100 Butanone Methyl iodide; Iodomethane 74-88-4 Methane, iodo- 8010 40; 8260 10 Methyl methacrylate 80-62-6 2-Propenoic acid, 2-methyl-, methyl ester 8015 2; 8260 30 Methyl methanesulfonate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 Methylene bromide; 74-95-3 Methane, dibromo- 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8260 10 Methylene chloride; 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione 8270 10									
Methyl ethyl ketone; MEK; 2- Butanone 78-93-3 2-Butanone 8015 10; 8260 100 Butanone Methyl iodide; Iodomethane 74-88-4 Methane, iodo- 2-Propenoic acid, 2-methyl-, methyl ester 8015 2; 8260 30 Methyl methanesulfonate 66-26-6 2-Propenoic acid, 2-methyl-, methyl ester 8270 10 Methyl methanesulfonate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; methyl 8270 10 8015 5; 8260 100 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 sobutyl ketone Methane, dibromo- 8010 15; 8021 20; Methylene bromide; 74-95-3 Methane, dichloro- 8010 5; 8021 0.2; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 8021 0.5; 8100 200; 8260 5; 8270 10 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10									
Butanone Methyl iodide; Iodomethane 74-88-4 Methane, iodo- 8010 40; 8260 10 Methyl methacrylate 80-62-6 2-Propenoic acid, 2-methyl-, methyl ester 8015 2; 8260 30 Methyl methacrylate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 4-Methyl-2- pentanone; Methyl isobutyl ketone 8015 5; 8260 100 8015 5; 8260 100 Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 20; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 80260 10 8021 0.5; 8100 200; 8260 5; Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 8270 10									
Methyl methacrylate 80-62-6 2-Propenoic acid, 2-methyl-, methyl ester 8015 2; 8260 30 Methyl methanesulfonate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; methyl 8270 10 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 isobutyl ketone Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 20; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 8021 0.5; 8100 200; 8260 5; Naphthalene 8021 0.5; 8100 200; 8260 5; 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione 8270 10	Butanone								
Methyl methanesulfonate 66-27-3 Methanesulfonic acid, methyl ester 8270 10 2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; methyl 8270 10 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- isobutyl ketone 8015 5; 8260 100 Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 20; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 80260 10 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione									
2- Methylnaphthalene 91-57-6 Naphthalene, 2- methyl- 8270 10 Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; methyl 8270 10 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 isobutyl ketone Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 20; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 8260 10 Naphthalene 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthalenedione 8270 10	•			8015 2; 8260 30					
Methyl parathion; Parathion 298-00-0 Phosphorothioic acid, 0,0-dimethyl 8140 0.5; 8141 1; methyl 8270 10 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 isobutyl ketone 8010 15; 8021 20; 8010 15; 8021 20; Methylene bromide; 74-95-3 Methane, dibromo- 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 8260 10 Naphthalene 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 8270 10	•								
methyl 8270 10 4-Methyl-2- pentanone; Methyl 108-10-1 2-Pentanone, 4- methyl- 8015 5; 8260 100 isobutyl ketone Methylene bromide; 74-95-3 Methane, dibromo- 8010 15; 8021 20; Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 8260 10 Naphthalene 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 8270 10									
isobutyl ketone Methylene bromide; 74-95-3 Methane, dibromo- Methylene chloride; 75-09-2 Methane, dichloro- Methylene chloride; 75-09-2 Methane, dichloro- Methylene chloride; 8260 10 Methylene chloride; 8260 10 Naphthalene 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione 8270 10	methyl			8270 10					
Dibromomethane 8260 10 Methylene chloride; 75-09-2 Methane, dichloro- 8010 5; 8021 0.2; Dichloromethane 8260 10 Naphthalene 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione 8270 10	isobutyl ketone		, , , , , , , , , , , , , , , , , , ,						
Dichloromethane 8260 10 Naphthalene 91-20-3 Naphthalene 8021 0.5; 8100 200; 8260 5; 8270 10 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione 8270 10		74-95-3	Methane, dibromo-	8260 10					
8270 10 1,4- Naphthoquinone 130-15-4 1,4- Naphthalenedione 8270 10		75-09-2	Methane, dichloro-						
	Naphthalene	91-20-3	Naphthalene						
	1,4- Naphthoquinone	130-15-4	1,4- Naphthalenedione	8270 10					
1-raphuryianine 15+52-7 1-raphuraichanne 04/U IU	1-Naphthylamine	134-32-7	1-Naphthalenamine	8270 10					

$APPENDIX\ 2\ Appendix\ II\ to\ Part\ 258\ -\ List\ of\ Hazardous\ Inorganic\ and\ Organic\ Constituents\ [1]$ Common Name2 CAS RN3 CASI Suggested PQL methods 3 (τ /L)6


Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (τ/L)					
2-Naphthylamine	91-59-8	2-Naphthalenamine	8270 10					
Nickel	(Total)	Nickel	6010 150; 7520 400					
o-Nitroaniline; 2-Nitroaniline	88-74-4	Benzenamine, 2- nitro	8270 50					
m-Nitroaniline; 3-Nitroanile	99-09-2	Benzenamine, 3- nitro	8270 50					
p-Nitroaniline; 4-Nitroaniline	100-01-6	Benzenamine, 4- nitro	8270 20					
Nitrobenzene	98-95-3	Benzene, nitro-	8090 40; 8270 10					
o-Nitrophenol; 2- Nitrophenol	88-75-5	Phenol, 2-nitro-	8040 5; 8270 10					
p-Nitrophenol; 4- Nitrophenol	100-02-7	Phenol, 4-nitro-	8040 10; 8270 50					
N-Nitrosodi-n- butylamine	924-16-3	1-Butanamine, N- butyl-N-nitroso-	8270 10					
N- Nitrosodiethylamine	55-18-5	Ethanamine, N- ethyl-N-nitroso-	8270 20					
N- Nitrosodimethylamine	62-75-9	Methanamine, N- methyl-N-nitroso	8070 2					
N- Nitrosodiphenylamine	86-30-6	Benzenamine, N- nitroso-N-phenyl-	8070 5					
N- Nitrosodipropylamine N-	621-64-7	1-Propanamine, N- nitroso-N-propyl;	8070 10					
Nitroso-N-dipropylamine;Di-n-								
propylnitrosamine								
N- Nitrosomethylethalamine	10595-95-6	Ethanamine, N- methyl-N-nitroso	8270 10					
N- Nitrosopiperidine	100-75-4	Piperidine, 1- nitroso-	8270 20					
N- Nitrosopyrrolidine	930-55-2	Pyrrolidine, 1- nitroso-	8270 40					
5-Nitro-o- toluidine	99-55-8	Benzenamine, 2- methyl-5-nitro-	8270 10					
Parathion	56-38-2	Phosphorothioic acid, 0,0-diethyl 0-(4-nitrophenyl) ester	8141 0.5; 8270 10					
Pentachlorobenzene	608-93-5	Benzene, pentachloro-	8270 10					
Pentachloronitro benzene	82-68-8	Benzene, pentachloronitro	8270 20					
Pentachlorophenol	87-86-5	Phenol, pentachloro-	8040 5; 8270 50					
Phenacetin	62-44-2	Acetamide, N-(4- ethoxyphenyl)	8270 20					
Phenanthrene	85-01-8	Phenanthrene	8100 200; 8270 10					
Phenol	108-95-2	Phenol	8040 1					
p- Phenylenediamine	106-50-3	1,4- Benzenediamine	8270 10					
Phorate	298-02-2	Phosphorodithioic acid, 0,0-diethyl S-	8140 2; 8141 0.5;					
		[(ethylthio)methyl] ester	8270 10					
Polychlorinated biphenyls; PCBs; Aroclors	See Note 9	1,1'-Biphenyl, chloro derivatives	8080 50; 8270 200					
Pronamide	23950-58-5	Benzamide, 3,5- dichloro-N-(1,1-dimethyl-2-propynyl)-	8270 10					
Propionitrile; Ethyl cyanide	107-12-0	Propanenitrile	8015 60; 8260 150					
Pyrene	129-00-0	Pyrene	8100 200; 8270 10					
Safrole	94-59-7	1,3-Benzodioxole, 5-(2-propenyl)-	8270 10					
Selenium	(Total)	Selenium	6010 750; 7740 20; 7741 20					
Silver	(Total)	Silver	6010 70; 7760 100; 7761 10					
Silvex; 2,4,5-TP	93-72-1	Propanoic acid, 2- (2,4,5-trichlorophenoxy)-	8150 2					
Styrene	100-42-5	Benzene, ethenyl-	8020 1; 8021 0.1; 8260 10					
Sulfide	18496-25-8	Sulfide	9030 4000					
2,4,5-T; 2,4,5- Trichlorophenoxy acetic acid	93-76-5	Acetic acid, (2,4,5- trichlorophenoxy)-	8150 2					
1,2,4,5- Tetrachlorobenzene	95-94-3	Benzene, 1,2,4,5- tetrachloro-	8270 10					
1,1,1,2- Tetrachloroethane	630-20-6	Ethane, 1,1,1,2- tetrachloro-	8010 5; 8021 0.05; 8260 5					
1,1,2,2- Tetrachloroethne	79-34-5	Ethane, 1,1,2,2- tetrachloro-	8010 0.5; 8021 0.1; 8260 5					
Tetrachloroethylene	127-18-4	Ethene, tetrachloro-	8010 0.5; 8021 0.5; 8260 5					
Tetrachloroethene;								
Perchloroethylene								
2,3,4,6- Tetrachlorophenol	58-90-2	Phenol, 2,3,4,6- tetrachloro-	8270 10					
Thallium	(Total)	Thallium	6010 400; 7840 1000; 7841 10					
Tin	(Total)	Tin	6010 40					
Toluene	108-88-3	Benzene, methyl-	8020 2; 8021 0.1;					
			8260 5					
o-Toluidine	95-53-4	Benzenamine, 2- methyl-	8270 10					
Toxaphene	See Note 10	Toxaphene	8080 2					
1,2,4- Trichlorobenzene	120-82-1	Benzene, 1,2,4- trichloro-	8021 0.3; 8120 0.5; 8260 10; 8270 10					
1,1,1- Trichloroethane;	71-55-6	Ethane, 1,1,1- trichloro-	8010 0.3; 8021 0.3; 8260 5					

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested POL methods 3 (τ/L)6

			Suggested Methods;
Common Name	CAS RN	Chemical abstracts service index name	PQL (τ/L)
Methylchloroform			
1,1,2- Trichloroethane	79-00-5	Ethane, 1,1,2- trichloro-	8010 0.2; 8260 5
Trichloroethylene;	79-01-6	Ethene, trichloro-	8010 1; 8021 0.2; 8260 5
Trichloroethene			
Trichlorofluoromethane; CFC-11	75-69-4	Methane, trichlorofluoro-	8010 10; 8021 0.3; 8260 5
2,4,5- Trichlorophenol	95-95-4	Phenol, 2,4,5- trichloro-	8270 10
2,4,6- Trichlorophenol	88-06-2	Phenol, 2,4,6- trichloro-	8040 5; 8270 10
1,2,3- Trichloropropane	96-18-4	Propane, 1,2,3- trichloro-	8010 10; 8021 5; 8260 15
0,0,0- Triethyl phosphorothioate	126-68-1	Phosphorothioic acid, 0,0,0-triethylester	8270 10
sym- Trinitrobenzene	99-35-4	Benzene, 1,3,5- trinitro-	8270 10
Vanadium	(Total)	Vanadium	6010 80; 7910 2000; 7911 40
Vinyl acetate	108-05-4	Acetic acid, ethenyl ester	8260 50
Vinyl chloride; Chloroethene	75-01-4	Ethene, chloro-	8010 2; 8021 0.4; 8260 10
Xylene(total)	See Note11	Benzene, dimethyl-	8020 5; 8021 0.2; 8260 5
Zinc	(Total)	Zinc	6010 20; 7950 50; 7951 0.5

Notes

- 1. The regulatory requirements pertain only to the list of substances; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnotes 5 and 6.
- 2. Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.
- 3. Chemical Abstracts Service registry number. Where Total is entered, all species in the ground water that contain this element are included.
- 4. CAS index are those used in the 9th Collective Index.
- 5. Suggested Methods refer to analytical procedure numbers used in EPA Report SW-846 Test Methods for Evaluating Solid Waste, third edition, November 1986, as revised, December 1987. Analytical details can be found in SW-846 and in documentation on file at the agency. CAUTION: The methods listed are representative SW-846 procedures and may not always be the most suitable method(s) for monitoring an analyte under the regulations.
- 6. Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in ground waters that can be realiably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 mL samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.
- 7. This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2-oxybis[2-chloro- (CAS RN 39638-32-9).
- 8. Chlordane: This entry includes alpha-chlordane (CAS RN 5103- 71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6). PQL shown is for technical chlordane. PQLs of specific isomers are about 20 (r)g/L by method 8270.
- Polychlorinated biphenyls (CAS RN 1336-36-3); this category contains congener chemicals, including constituents of Aroclor 1016 CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097- 69-1), and Aroclor 1260 (CAS RN 11096-82-5). The PQL shown is an average value for PCB congeners.
- 10. Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.
- 11. Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7). PQLs for method 8021 are 0.2 for o-xylene and 0.1 for m- or p-xylene. The PQL for m-xylene is 2.0 (r)g/L by method 8020 or 8260.

	Site This Waste Management Field Information Form is Required																																																			
Si Nai Si No	ne: te										Sam Poi	-				S	Samp	ole I	D			Thi sub	s for	rm is ed al	to b	be co	ompl h the	nt Fi leted e Cha cool	l, in ain c	addi of Cu	tion istoc	to ar ly Fo	ny S orms	tate s tha	Fori t acc	ns. '	The oany				s	La	abor	atory	Use	Onl	y/Lab	ID:	NA	GEN	IENT	
PURGE/SAMPLE PURGE	EQUIPMENT INFO	P F	ote:	ing ing	an I	d S Oev	oD 'sive	YY Sa plii)	_	_	nt .	I A- S B-P	(2) /ate Dedi Sub eris	2400 r Va icata men	Hr Hedin Hed: Hed:	TIM Clo Cas	ck) ing un	Y ip	Z E		N ailer	(hrs	s:mir ged" mp	n) 'w/ I			F	ilte Fil	er D	Flow evic Typ	ce: pe:	(C ll an	Gallo d Tı	ns) ıbin	g/Flo	ow C L A-In B-Pr A-Te	0.4 -lin essi	Vols 5 μ e D ure n	Pur,	ged.	(Gal Mar e C X	lons k ch -Va -Ot	anges	, rec u (c n	cord circle		P\ data ll in	U R(ı, bel	VO.		-
WELL DATA	WELL DAIR	(; T	Vell at T ota ron	1 W n T	C) Vel ΓΟ	1 D C)	ept	th	oth, S	Stick	t Up	, Ca	asin	g Id	l, etc		(ft/m (ft) re op		(fr	ron ick rom	gro	OC)) i ele	evat	ion)	` <u> </u>	ta, u	nless	s req	quire	d by	Site	/Pei	(ft)	We	(s C II	site Casii D	dat ng	um,	froi	levat m TC) C)	N	Casin Mater	rial	tion	must	be c	urrei	-	msl)	
	Sugg note Stal	100	rmit zati	ranggrangi/Sta	loc	or 3	irei F iel	ner ds	. reacts:	ding	iona	t dd	i.e. o				1 st 2 nd 3 rd 4 th	lliza	tion			25 25 25 25 25 25 25 25 25 25 25 25 25 2	°C)	ram		rs re		red b				, or :	 Stat) 				(mg		ppm	I whee		in the second se						Sta		e e uired tor for	· · · · · · · · · · · · · · · · · · ·
FIELD DATA	Fin			IM	DI	Y	Y)		requ	ire	<u>d</u> (i.	.e. 1		td)	field	d m	eası	(u	mho	os/c	m @	25	°C)		adir		EMI (°C)		san	nple			ntu)		nplii				ppm	n) 	 neter		H/O (mV)		Oth Unit	ts_		te.		
	We	at		·C	on	dit	ior	ıs (requ			•	,						•	,	: ons i	if re	equi	Di		-		eed:						-										Oth Pr	-	pita	tion:	Y	OI	<u> </u>	<u>[</u>	- -
FIELD COMMENTS	I ce	erti	fy t	'	t s	_/	plir	ng	proc	edı	Na									_				-	Si	igna	ture										_			-	Coo	mpa										-

Well Condition Summary Form

Facility:	Well/Piezometer Name:			
Evaluator:	Evaluation Date:			
Is the well's location appropriately shown on	a facility man?	Y	N	N/A
Is the well adequately flagged if hard to find?	• •			
Is the well elevation information inscribed at				
Is the well:				
flush with surface?				
above ground?				
Is the well free of physical damage?				
Is the well labeled on the inside?				
Is the well labeled on the outside?				
Does the well have protective posts, if necess	arv?			
Do above ground wells have weep holes at th				
Does the area around the well appear clean?	1 2			
Is the casing secure (attempt to move along ty	vo perpendicular axes)?			
Is the surface seal void of differential erosion	· · ·			
Is the surface seal free of cracks that might af	fect the integrity of the seal?			
Is the surface seal sloped to prevent ponding a	around the well?			
Is the well free from standing or ponded water	r?			
Is the well locked to prevent unauthorized acc	cess?			
Is the protective casing cap void of large gaps	s which would breach security?			
Is the locking cap free of rust?				
Is there a survey mark on the riser/wellhead a	ssembly cap?			
Is the riser cap vented?				
Is the annular space free of animal/insect nest	s?			
Is the annular space appropriately filled with	filtering material?			
If a pump, can it be lifted a few inches? (do n	ot test prior to sampling)			
Is the well free of kinks or bends?				
COMMENTS:				

WELL CONDITION INSPECTION FORM

WASTE MANAG	SEMENT	Site:				Personnel:		
		Date:				Page	of	<u> </u>
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations *
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	☐ Damaged	☐ Damaged	☐ Inadequate	☐ No		Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	Damaged	Damaged	Inadequate	☐ No		Turbid	Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		☐ Clear	□ ок	
	☐ Damaged	☐ Damaged	Inadequate	☐ No		☐ Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	☐ Damaged	☐ Damaged	Inadequate	☐ No		Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	☐ Damaged	☐ Damaged	☐ Inadequate	☐ No		Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	Damaged	☐ Damaged	☐ Inadequate	☐ No		Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		☐ Clear	□ ок	
	☐ Damaged	☐ Damaged	Inadequate	☐ No		Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		☐ Clear	□ ок	
	☐ Damaged	☐ Damaged	Inadequate	☐ No		☐ Turbid	☐ Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	Damaged	☐ Damaged	Inadequate	☐ No		Turbid	Inadequate	
	□ ок	□ ок	□ ок	☐ Yes		Clear	□ ок	
	☐ Damaged	☐ Damaged	Inadequate	☐ No		☐ Turbid	Inadequate	

^{*} Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items.

Return this form to Site Manager - FOR INTERNAL USE ONLY.

Groundwater Elevation Data Sheet

Project Na Weather C	ame: Conditions:			ject Number:	:	Investigator:		Page	of
Well ID	Date	Tin	ne	Depth to Water (feet below TOC)		Comm			
				-					

Daily Log

Site Location:	_		Date:	
Project Number:		Initials:	Page	of
	-			

FTN Associates Calibration Form

Date/Time:	
Prepared By:	
Location:	
Project #:	

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Comments
		рН	7	su			ΥN		Lot# Exp#
\downarrow	\downarrow	pН	4	su			ΥN		Lot# Exp#
\downarrow	\downarrow	pН	10	su			ΥN		Lot# Exp#
\downarrow	\downarrow	Cond		uS/cm			ΥN		Lot# Exp#
\downarrow	\downarrow	DO		mm/Hg		mg/l	ΥN	mg/l	
\downarrow	\downarrow	Temp		Degrees C			ΥN	N/A	
\downarrow	\downarrow	ORP		mv			ΥN		Lot# Exp#
		Turbidity		NTU	N/A		ΥN		Lot# Exp#
\downarrow	\downarrow	Turbidity		NTU	N/A		ΥN		Lot# Exp#
\downarrow	\downarrow	Turbidity		NTU	N/A		ΥN		Lot# Exp#
\downarrow	\downarrow	Turbidity		NTU	N/A		ΥN		Lot# Exp#
							ΥN		
							Y N		
							ΥN		

Notes:

pH Calibration (pH Method: EPA 150.1)

DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.

Temperature Calibration: No calibration is necessary. Simply record temperature of standard using thermometer while in calibration cup.

Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

CALCULATING THE VOLUME OF WATER IN A WELL

Calculate the total volume of water in the well using the following equation:

$$V = (0.041)d^2 x h$$

Where: V = volume in gallons

d = well diameter in inches

h = height of the water column in feet

The total volume of water in the well may also be determined with the following equation by using a casing volume per foot factor (gallons per foot of water) for the appropriate internal well diameter:

V = [Gallons per Foot of Water] x h

Where: V = volume in gallons

h = height of the water column in feet

Casing Internal Diameter	Approximate Gallons per Foot of Water
0.75"	0.02
1"	0.04
1.25"	0.06
2"	0.16
3"	0.37
4"	0.65
5"	1.02
6"	1.47
12"	5.88

CALCULATING VOLUME-OF-WATER PURGED

Measuring the purge volume —The volume of water that is removed during purging must be recorded. Therefore, you must measure the volume during the purging operation.

Determine the pumping rate by measuring the amount of water using a graduated cylinder (or other container with a known volume) that is pumped for a fixed period of time and constant rate, or use a flow meter.

1. Calculate the discharge rate (D):

$$D = \frac{\text{Volume measured}}{\text{Time}}$$

2. Calculate the time needed to purge one well volume (V):

Time =
$$\frac{V}{D}$$

3. Make new measurements and associated calculations if the pumping rate is changed.