Karen Blue (adpce.ad)

From:	Melissa Vaught <mmv@ftn-assoc.com></mmv@ftn-assoc.com>
Sent:	Tuesday, September 26, 2023 3:51 PM
То:	gwreports
Cc:	Conrad, David; Reynolds, Jodi; Caldwell, Mike; Dana Derrington
Subject:	Revised Sampling and Analysis Plan, Eco-Vista Class 1 and Class 4 Landfills, Solid Waste
	Permit Nos. 0290-S1-R4 and 0290-S4-R2

Good afternoon. On behalf of Eco-Vista, LLC, please access the link below to download the revised Sampling and Analysis Plan, as required by the recently issued class 1 permit.

https://owncloud.ftn-assoc.com/owncloud/index.php/s/EzmubckAB194IZk

Please contact me or WM if you have any questions.

Thank you,

Melissa Vaught, P.E.* FTN Associates Environmental Engineer 124 W. Sunbridge Drive, Suite #3 Fayetteville, Arkansas 72703 Cell: (210) 219-2335 Office: (479) 571-3334 *Arkansas and Oklahoma

AFIN: 72-00144	
PMT#: 0290-S4-R2	
Received By Karen Blue at 0:06 am, Oct 1, 2023	
DOC ID#: 84692	
TO: BS>FILE <kmb< td=""><td></td></kmb<>	

SAMPLING & ANALYSIS PLAN ECO-VISTA, LLC, CLASS 1 AND CLASS 4 LANDFILLS SPRINGDALE, ARKANSAS

PERMIT NOS. 0290-S1-R4 AND 0290-S4-R2 AFIN: 72-00144

SEPTEMBER 26, 2023

SAMPLING & ANALYSIS PLAN ECO-VISTA, LLC, CLASS 1 AND CLASS 4 LANDFILLS SPRINGDALE, ARKANSAS

PERMIT NOS. 0290-S1-R4 AND 0290-S4-R2 AFIN: 72-00144

Prepared for

Eco-Vista, LLC 2210 Waste Management Drive Springdale, AR 72762

Prepared by

FTN Associates, Ltd. 3 Innwood Circle, Suite 220 Little Rock, AR 72211

FTN No. R06820-0100-008

September 26, 2023

PROFESSIONAL GEOLOGIST'S CERTIFICATION

With this certification, I certify that I, as a registered professional geologist in the state of Arkansas, am a qualified groundwater scientist as defined in chapter 12 of Arkansas Pollution Control & Ecology Commission Rule No. 22, that this document was prepared under my direction and supervision, and that this document, to the best of my knowledge, meets the applicable requirements of Rule No. 22, §22.1203(j).

Dana L. Derrington, Arkansas PG #1944

09/20/2023

Date

TABLE OF CONTENTS

PROFE	SSIONA	L GEOL	OGIST'S CERTIFICATIONi
1.0	INTRO	DUCTIO	N
2.0	BACKG	ROUNE	0
	2.1	Sampli	ng Area 2-1
	2.2	Region	al Hydrogeology2-3
	2.3	Site Hy	drogeology2-3
3.0	GROUN	NDWAT	ER MONITORING SYSTEM
4.0	SAMPL	ING FR	EQUENCY AND ANALYSIS
	4.1	Indicat	or Monitoring
	4.2	Detect	ion Monitoring
	4.3	Assess	ment Monitoring
	4.4	Nature	and Extent/Corrective Action Monitoring
	4.5	New W	/ells
5.0	LABOR	ATORY	ANALYTICAL METHODS
6.0	FIELD N	METHO	DS AND PROCEDURES
	6.1	Field E	quipment
		6.1.1	Purging and Sampling Devices
		6.1.2	Water Level Measurement Device
		6.1.3	Calibration
	6.2	Well In	spection
	6.3	Ground	dwater Level Measurements
	6.4	Well P	urging and Sample Extraction
		6.4.1	Low-Flow (Minimal Drawdown) Purging6-3
		6.4.2	Purging with Bailers
		6.4.3	Traditional Purging
		6.4.4	Wells That Purge Dry 6-6
	6.5	Sampli	ng Records

TABLE OF CONTENTS (CONTINUED)

	6.6	Equipr	nent Decontamination Procedures	6-9
	6.7	Sample	e Labeling, Preservation, and Shipment	6-10
	6.8	Chain-	of-Custody Documentation	6-11
	6.9	Dispos	al of Residual Material	6-12
7.0	QUALI	TY CON	TROL	
	7.1	Field C	Quality Control Samples	
		7.1.1	Duplicates	
		7.1.2	Trip Blanks	
		7.1.3	Equipment Blanks	7-2
		7.1.4	Field Blanks	7-2
	7.2	Labora	tory Quality Control Samples	7-2
8.0	DATA I	REVIEW	·	
	8.1	Reviev	v of Field Documentation	
	8.2	Reviev	v of Laboratory Data	8-1
	8.3	Reviev	v of Field Quality Control Samples	8-1
9.0	STATIS	TICAL A	PPROACH	9-1
	9.1	Initial	Data Screening	
	9.2	Indicat	or Monitoring Program	
	9.3	Detect	ion Monitoring Program	
		9.3.1	Retesting Program	
		9.3.2	Shewhart-CUSUM Control Charts with Retesting	
		9.3.3	Prediction Limits with Retesting	
		9.3.4	Double Quantification Rule	
		9.3.5	Establishing and Updating Background Data Sets	
	9.4	Assess	ment Monitoring/Corrective Action Program	
	9.5	Handli	ng of Non-Detect Data	
10.0	REPOR	TING A	ND NOTIFICATION PROCEDURES	

TABLE OF CONTENTS (CONTINUED)

	10.1	Groundwater Analytical Data Submittal	10-1
	10.2	Indicator Monitoring Report Submittal	10-1
	10.3	Detection/Assessment Monitoring Report Submittal	10-2
	10.4	Notification and Contingency Plan for Statistically Significant Increases (or Decreases)	
	10.5	Notification and Contingency Plan for Statistically Significant Levels Above a GWPS	
	10.6	Return to Detection Monitoring	10-3
11.0	SELEC	TED REFERENCES	

LIST OF APPENDICES

- APPENDIX A: Well Logs, Construction Diagrams, and Survey Reports
- APPENDIX B: Rule No. 22 Analytical Lists for Groundwater
- APPENDIX C: Groundwater Sampling Forms

LIST OF TABLES

Table 3.1	Well construction data, groundwater monitoring wells	3-4
Table 3.2	Well construction data, NEI wells	. 3-5
Table 4.1	Sampling frequency and analysis	. 4-4
Table 5.1	Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits	. 5-2
Table 9.1	Date ranges for historical baseline chloride data sets	.9-2

LIST OF FIGURES

Figure 1.1	Site location map	1-2
Figure 2.1	Eco-Vista vicinity map	2-2
Figure 3.1	Groundwater monitoring system	3-2
Figure 3.2	Surface Water Monitoring	3-3

1.0 INTRODUCTION

Eco-Vista, LLC (herein referred to as Eco-Vista), owns and operates a class 1 landfill and a class 4 landfill located in Washington County, Arkansas, as shown on Figure 1.1. The class 1 landfill is permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0290-S1-R4, issued July 31, 2023, and the class 4 landfill is permitted by DEQ under permit no. 0290-S4-R2 issued March 17, 2023.

FTN Associates, Ltd. (FTN) was contracted by Eco-Vista to update the existing sampling and analysis plan (SAP) in accordance with the requirements of §22.1203(j) following issuance of the class 1 and class 4 permit modifications. The purpose of this SAP is to provide guidelines for sample collection, preservation, shipment, analytical procedures, chain-of-custody (COC) control, and quality control to ensure that monitoring results are an accurate representation of groundwater quality. This SAP also includes procedures for the statistical treatment of groundwater quality data and the associated reporting, recordkeeping, and notification requirements.

September 26, 2023

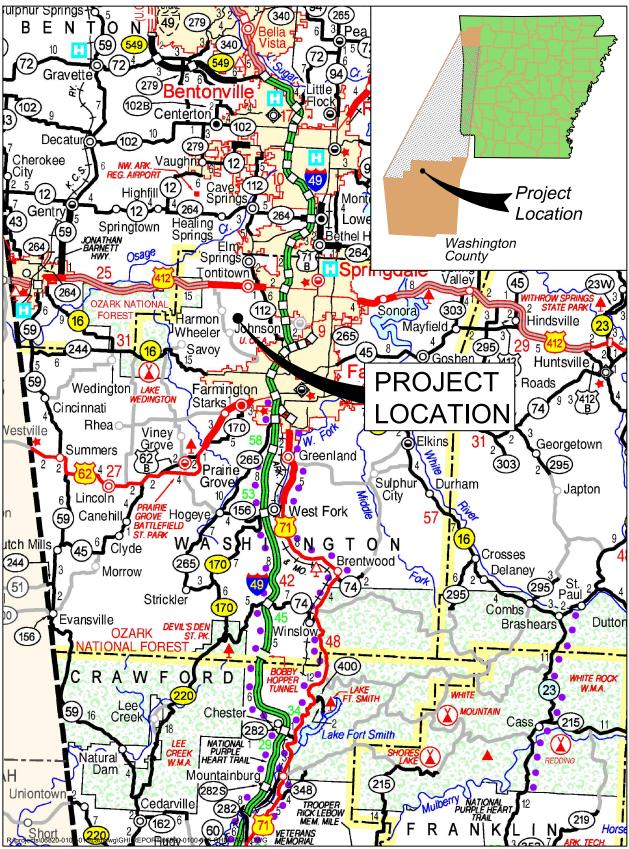


Figure 1.1. Site location map.

2.0 BACKGROUND

This section includes a brief description of the sampling area and summary of the site-specific hydrogeological setting at Eco-Vista. A more in-depth description of the hydrogeological setting can be found in previously submitted site investigations reports for the class 1 landfill (Geraghty & Miller 1986, Genesis Environmental Consulting [GEC] 1997, Chimney Rock Consulting [CRC] 2013a, CRC 2013b, and FTN 2020).

2.1 Sampling Area

As shown on the vicinity map included as Figure 2.1, Eco-Vista is located within the city limits of Tontitown, Arkansas. The more populous cities of Springdale and Fayetteville are located approximately 3 miles to the northeast and southeast of Eco-Vista, respectively. Interstate Highway 49 is located approximately 3.5 miles to the east and US Highway 412 is located approximately 2.3 miles to the north. Topography is gently to steeply sloping at Eco-Vista and in the surrounding area. Eco-Vista is in a rural to exurban area and is bordered by agricultural fields and numerous large residential plots.

September 26, 2023

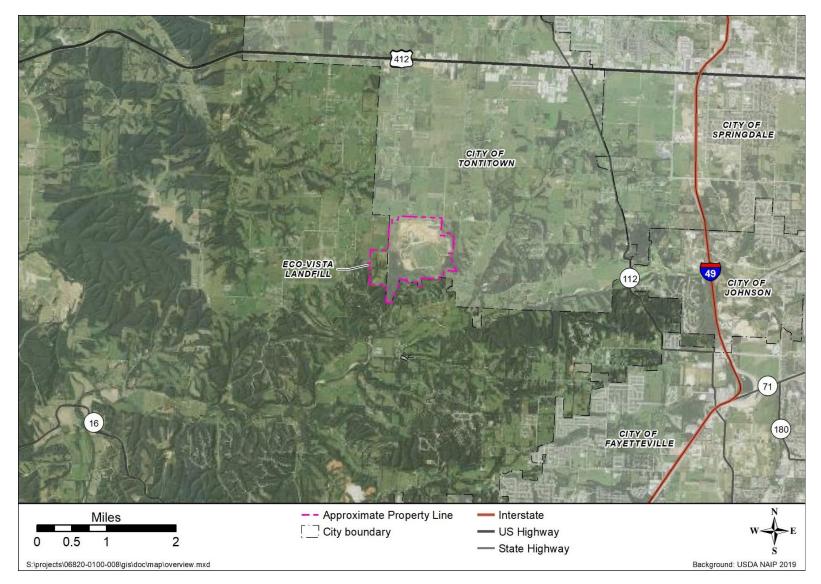


Figure 2.1. Eco-Vista vicinity map.

2.2 Regional Hydrogeology

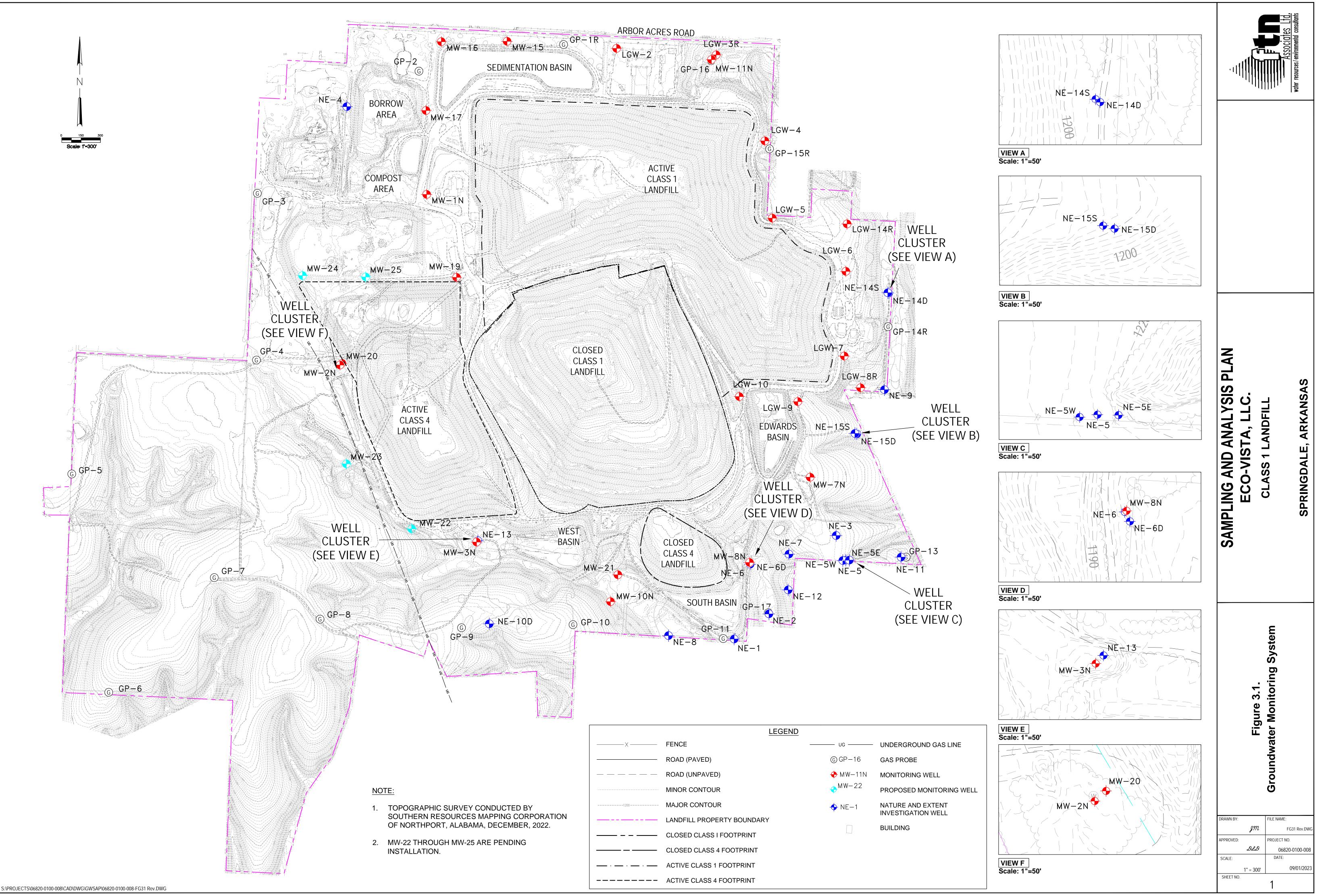
The uppermost aquifer beneath Eco-Vista is the Springfield Plateau aquifer (hereafter referred to as the aquifer), which is primarily comprised of the limestone and cherty limestones of the Boone formation. In Washington County, the aquifer is 200 to 400 ft thick, is bounded below by the Ozark confining unit, and outcrops in the far northern part of the county (Imes and Emmett 1994). The regional direction of flow in the aquifer is variable and controlled by topography (Gillip, Czarnecki, & Mugel 2008). Generalized potentiometric surface maps based on limited water level data show the regional direction of flow toward the west (Adamski et al. 1995). Natural recharge to the aquifer occurs primarily from infiltration of rainfall where the Boone formation is exposed to the surface. Discharge from the aquifer occurs primarily through springs, wells, and flow to the underlying Ozark aquifer, particularly in areas where the Ozark confining unit is leaky or absent (Kresse et al. 2014, Imes and Emmett 1994).

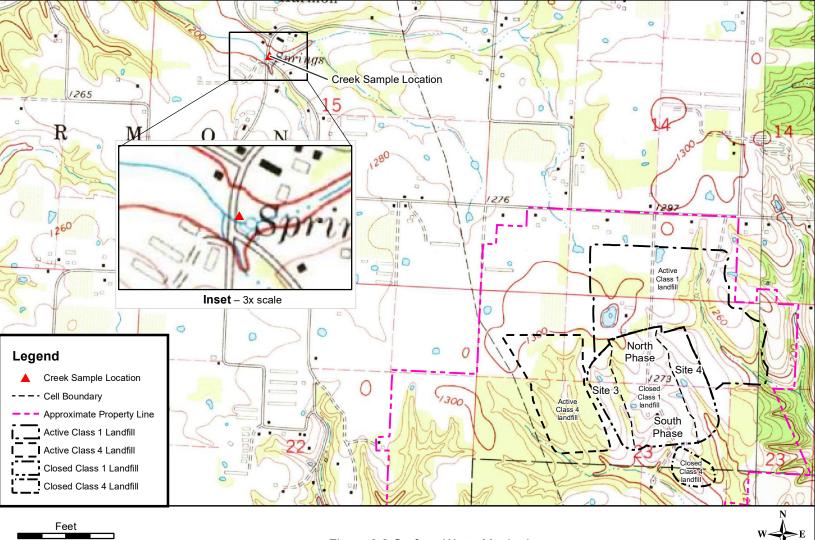
Groundwater from the aquifer is used for domestic, public, and commercial purposes (Kresse et al. 2014). Published documents indicate that the aquifer yields 20 to 400 gallons per minute (gpm) (Gillip, Czarnecki, & Mugel 2008). The total use of groundwater from this aquifer is not known (Kresse et al. 2014).

2.3 Site Hydrogeology

Groundwater is present in three stratigraphic units beneath Eco-Vista which include (in descending order) regolith, epikarst, and limestone and chert bedrock. Groundwater conditions are variable and discontinuous in the regolith and epikarst units. With few exceptions, groundwater is present within the upper 20 ft of the limestone and chert bedrock based on evidence presented in past site investigation reports (Geraghty & Miller 1986, GEC 1997, CRC 2013a, CRC 2013b, and FTN 2020).

3.0 MONITORING SYSTEM


This section describes the required sampling locations for Eco-Vista's monitoring program.


3.1 Monitoring Well Network

The groundwater monitoring system is shown on Figure 3.1 and consists of 27 monitoring wells, four of which are pending installation (DINs 83983 and 84043). Also shown on Figure 3.1 are the 20 nature and extent (NE) wells. Each well varies with respect to the stratigraphic unit monitored, with screen/filter pack materials located in the regolith, epikarst, and/or bedrock units. Each existing well is constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) pipe, with screen lengths ranging from 9.2 ft to 25 ft. Tables 3.1 and 3.2 summarize the surveyed measuring point (MP) elevation located on the top of well casing, the total depth, and screened interval for each well. These data are based on well installation records and available survey reports. Available boring logs, well construction details, and survey reports are provided in Appendix A.

3.2 Surface Water

In accordance with permit condition 40 of the class 1 permit, sampling will be conducted at the Wildcat Creek location just north of the intersection of County Road 31 (Harmon Road) and County Road 863 (Clear Water Road). The surface water monitoring location is shown on Figure 3.2.

S:\projects\06820-0100-008\gis\doc\map\Figure 3.2.mxd

1,500

750

0

Figure 3.2-Surface Water Monitoring

Background: USGS Quadrangle, 1970

3-3

		Ground		Total	Solid	_	
		Surface	MP	Depth	Casing	Screen	Screened
	Date	Elevation	Elevation	(ft below	Length	Length	Elevation
Well ID ¹	Installed	(ft SRE ²)	(ft SRE)	MP)	(ft)	(ft)	(ft SRE)
MW-1N	9/5/1997	1296.3	1298.57	117.5	97.5	20.0	1201.1-1181.1
MW-2N	9/10/1997	1286.8	1289.59	119.5	99.5	20.0	1190.0-1170.0
MW-3N	9/11/1997	1219.3	1222.09	71.5	61.5	10.0	1160.5-1150.5
MW-7N	9/17/1997	1244.5	1247.31	108.0	98.0	10.0	1152.8-1142.8
MW-8N	9/18/1997	1189.2	1191.74	73.0	53.0	20.0	1138.8-1118.8
MW-10N	9/18/1997	1191.1	1193.74	109.0	89.0	20.0	1104.6-1084.6
MW-11N	9/16/1997	1281.7	1284.50	129.5	109.5	20.0	1175.0-1155.0
MW-15	5/6/2015	1288.6	1291.51	94.1	53.1	20.0	1238.4-1218.4
MW-16	5/7/2015	1286.3	1289.75	118.8	93.8	25.0	1195.9-1170.9
MW-17	5/7/2015	1285.6	1288.99	79.6	59.6	15.0	1229.3-1214.3
MW-19	5/7/2015	1291.2	1293.89	82.9	62.9	20.0	1231.0-1211.0
MW-20	5/7/2015	1286.3	1289.55	83.4	68.4	15.0	1221.1-1206.1
MW-21	4/20/2015	1186.1	1188.90	43.0	33.0	10.0	1155.8-1145.8
LGW-2	9/26/2005	1299.1	1302.23	88.3	73.3	15.0	1228.8-1213.8
LGW-3R	6/16/2015	1286.1	1289.24	74.3	59.3	15.0	1229.9-1214.9
LGW-4	9/26/2005	1265.8	1267.93	82.8	67.8	15.0	1200.0-1185.0
LGW-5	9/21/2005	1269.9	1271.91	86.8	71.8	15.0	1200.1-1185.1
LGW-6	9/27/2005	1242.1	1244.78	73.3	58.3	15.0	1186.5-1171.5
LGW-7	9/27/2005	1219.3	1220.69	63.6	48.6	15.0	1172.0-1157.0
LGW-8R	8/19/2008	1184.7	1186.33	33.2	17.8	15.0	1168.4-1153.4
LGW-9	9/22/2005	1235.4	1237.56	78.9	63.9	15.0	1173.6-1158.6
LGW-10	9/23/2005	1238.7	1240.66	73.7	58.7	15.0	1182.0-1167.0
LGW-14R	8/13/2008	1247.9	1250.83	79.4	64.0	15.0	1186.9-1171.9

Table 3.1. Well construction data, groundwater monitoring wells.

Notes: 1. MW-22 through MW-25 are pending installation. 2. Site-referenced elevation.

		Ground		Total	Solid		
		Surface	MP	Depth	Casing	Screen	Screened
	Date	Elevation	Elevation	(ft below	Length	Length	Elevation
Well ID	Installed	(ft SRE)	(ft SRE)	MP)	(ft)	(ft)	(ft SRE)
NE-1	4/20/2001	1199.1	1201.55	56.8 ^(a)	47.3	9.5	1154.2-1144.7
NE-2	4/24/2001	1174.1	1176.89	33.5	24.0	9.5	1152.6-1143.1
NE-3 ^(b)	4/26/2001	1228.5	(b)	87.8 ^(a)	78.2	9.6	1153.3-1143.7
NE-4	5/3/2001	1290.6	1293.26	71.1 ^(a)	61.5	9.6	1231.6-1222.0
NE-5	8/7/2001	1224.2	1227.13	84.4 ^(a)	75.2	9.2	1151.8-1142.6
NE-5E	7/29/2019	1221.3	1224.34	86.6	76.4	10.0	1147.9-1137.9
NE-5W	7/29/2019	1225.7	1228.63	93.7	83.5	10.0	1145.1-1135.1
NE-6	12/15/2016	1189.3	1192.33	58.7 ^(a,c)	48.7 ^(c)	10.0	1144.0-1134.0 ^(c)
NE-6D	7/29/2019	1189.9	1192.94	76.3	66.1	10.0	1126.8-1116.8
NE-7	12/8/2016	1215.0	1217.89	71.4 ^(a)	61.4	10.0	1156.5-1146.5
NE-8	12/20/2016	1171.7	1174.51	32.8 ^(a)	22.8	10.0	1151.7-1141.7
NE-9	12/7/2016	1179.0	1182.02	37.7 ^(a)	27.7	10.0	1154.3-1144.3
NE-10D	7/29/2019	1258.2	1261.07	121.4	111.2	10.0	1149.9-1139.9
NE-11	12/6/2016	1202.2	1203.96	57.0	47.0	10.0	1157.0-1147.0
NE-12	12/13/2016	1211.2	1213.83	77.8 ^(a)	57.8	20.0	1156.1-1136.1
NE-13	12/29/2016	1217.4	1220.18	43.2 ^(a)	33.2	10.0	1187.0-1177.0
NE-14S	7/29/2019	1196.2	1199.24	22.7	12.5	10.0	1186.8-1176.8
NE-14D	7/29/2019	1196.0	1198.81	42.0	31.8	10.0	1167.0-1157.0
NE-15S	7/29/2019	1212.7	1215.36	45.3	35.1	10.0	1180.2-1170.2
NE-15D	7/29/2019	1212.9	1215.67	60.6	50.4	10.0	1165.3-1155.3

Table 3.2. Well construction data, NE wells.

Notes:

a. Total depth (in ft bgs) listed on title block of field borehole log does not match total depth indicated on the construction diagram of the field borehole log; total depth listed in table has been adjusted accordingly and also includes solid casing stickup length.

b. Top of casing at NE-3 is damaged and well NE-3 is not required to be sampled under any of the monitoring programs.

c. Solid riser length listed on well log was off by more than 2 ft; total depth was field-confirmed by FTN and solid casing length and screened elevations are consistent with the well construction diagram.

4.0 SAMPLING FREQUENCY AND ANALYSIS

Groundwater must be monitored at Eco-Vista throughout the active life and post-closure period, as required by §22.1201(d). The sampling frequency and analysis for indicator monitoring, detection monitoring, assessment monitoring, nature and extent monitoring/corrective action and Wildcat Creek are shown in Table 4.1. Sampling frequency and analysis for each monitoring program are discussed below. The sampling and analysis approach for new well installations is also discussed.

4.1 Indicator Monitoring

Eco-Vista must collect monthly groundwater samples from the list of wells shown in Table 4.1. Groundwater samples must be analyzed for the following list of indicator parameters: chloride, ammonia (as nitrogen), pH, and specific conductance.

4.2 Detection Monitoring

While in detection monitoring, Eco-Vista must collect groundwater samples at the frequency required by §22.1204(b) for the list of wells shown in Table 4.1. Groundwater samples collected during each detection monitoring period must be analyzed for the list of parameters included in appendix 1 of Rule No. 22 plus chloride, total dissolved solids (TDS), sulfate, total organic carbon (TOC), pH, specific conductance, iron, and manganese. This list is included in Appendix B. Consistent with the historical sampling schedule at Eco-Vista, semiannual samples must be collected during the first and third quarters with resampling performed in the second and fourth quarters, unless extenuating circumstances arise.

4.3 Assessment Monitoring

While in assessment monitoring, Eco-Vista must collect groundwater samples at the frequencies required by §22.1205(b) through (d) at the list of wells shown in Table 4.1. Analysis of groundwater samples must be performed as follows:

- Annually for the list of parameters included in appendix 2 of Rule No. 22 plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese at any well that had confirmed measured detections above the GWPS during the prior calendar year. This list is included in Appendix B.
- Triennially for the list of parameters included in appendix 2 of Rule No. 22 plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese (Appendix B) at all wells.
- Semiannually for the assessment monitoring constituent (AMC) list, which is comprised of any newly detected appendix 2 parameters (from the triennial analysis) plus the parameters from appendix 1 of Rule No. 22 and TOC, iron, and manganese.

4.4 Nature and Extent/Corrective Action Monitoring

While Eco-Vista is in assessment monitoring or corrective action, the list of NE-series wells shown in Table 4.1 must be monitored for, at a minimum, the same list of parameters and at the same frequency as required by assessment monitoring (Section 4.3).

4.5 Monitor and Report

Wildcat Creek must be sampled semiannually for iron, manganese, TOC, hardness and the AMC list, while Eco-Vista is in assessment monitoring. If Eco-Vista moves into detection monitoring, the sampling parameters will consist of, at a minimum, iron, manganese, TOC, hardness and Rule 22 appendix 1 parameters.

4.6 New Wells

For new wells, the sampling frequency should be performed in accordance with §22.1203(e) or most recent US Environmental Protection Agency (EPA) guidance for the purpose of background data collection. Groundwater samples should be analyzed for the same list of parameters as required by detection or assessment monitoring, as applicable. Sampling for background data sets must continue until a minimum of 8 to 10 independent values have been collected, in accordance with EPA guidance.

Table 4.1. Sampling frequency and analysis.

Program:	Indicator Monitoring	Detection Monitoring	Assessment Monitoring	Nature and Extent/Corrective Action	
Parameters:	Monthly analysis of chloride, ammonia, pH, and specific conductance	Semiannual ⁽¹⁾ analysis of appendix 1 plus TOC, iron, and manganese	 Semiannual analysis of AMC list plus iron, manganese and TOC⁽²⁾; Annual or triennial⁽³⁾ analysis of appendix 2 plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese 	Follow assessment monitoring schedule	Semiai TOC, h assess (while
		MW-1N	MW-1N	NE-1	-
		MW-2N	MW-2N	NE-2	
-		MW-3N	MW-3N	NE-4	
	MW-7N	MW-7N	MW-7N	NE-5	
		MW-8N	MW-8N	NE-5E	
		MW-10N	MW-10N	NE-5W	
		MW-11N	MW-11N	NE-6	
	MW-15	MW-15	MW-15	NE-6D	-
	MW-16	MW-16	MW-16	NE-7	
Sample Locations:	MW-17	MW-17	MW-17	NE-8	
	MW-19	MW-19	MW-19	NE-9	-
		MW-20	MW-20	NE-10D	
		MW-21	MW-21	NE-11	
		MW-22 ⁽⁴⁾		NE-12	
		MW-23 ⁽⁴⁾		NE-13	
		MW-24 ⁽⁴⁾		NE-14D	
		MW-25 ⁽⁴⁾		NE-14S	
	LGW-2	LGW-2	LGW-2	NE-15D	
	LGW-3R	LGW-3R	LGW-3R	NE-15S	
	LGW-4	LGW-4	LGW-4		
	LGW-5	LGW-5	LGW-5		
	LGW-6	LGW-6	LGW-6		
	LGW-7	LGW-7	LGW-7		
	LGW-8R	LGW-8R	LGW-8R		-
	LGW-9	LGW-9	LGW-9		
	LGW-10	LGW-10	LGW-10		
	LGW-14R	LGW-14R	LGW-14R		

(1) As needed, retesting for detection monitoring will be conducted in accordance with Section 9.3.1.

(2) In accordance with permit condition 38(b), semiannual events must be performed during the first and third quarters, with resample events performed during the second and fourth quarters as needed and unless extenuating circumstances arise.

(3) Annual analysis of appendix 2 parameters must be collected at wells that had an exceedance above the GWPS during the prior calendar year. Triennial analysis of appendix 2 parameters is required at all 27 wells.

MW-22 through MW-25 are pending installation. In accordance with Section 4.6 and permit condition 38(b), the newly installed wells will be sampled quarterly until sufficient data has been collected to establish background, then sampled quarterly for the AMC list, plus iron, manganese, (4) and total organic carbon, as outlined in permit condition 38(b) and triennially for the Appendix 2 parameters, plus chloride, TDS, sulfate, TOC, pH, specific conductance, iron, and manganese.

Refer to permit condition 40 for the sample collection location. (5)

September 26, 2023

Monitor and Report
annual analysis of iron, manganese, hardness and AMC list (while site is in sment monitoring) or Appendix 1 e site is in detection monitoring)
Wildcat Creek ⁽⁵⁾

5.0 LABORATORY ANALYTICAL METHODS

Samples must be analyzed using methods that are appropriate for groundwater in accordance with §22.1204(d). Analytical methods must adhere to procedures and guidance provided in the currently available edition of EPA's in *Test Methods for Evaluating Solid Waste*—*Physical/Chemical Methods* (SW-846) (EPA 1986b). Suggested methods and associated bottle types, volumes, preservatives, and holding times are provided in Table 5.1 and are based on EPA SW-846 or EPA Clean Water Act analytical method guidelines. These may be adjusted based on the analyte tested and laboratory requirements. The laboratory reports should include all verifiable, positive detections above the constituent practical quantitation limit (PQL) and estimated values (J-flagged) between the method detection limit (MDL) and the PQL. In accordance with §22.1203(h)(5), the PQL or MDL shall be the lowest concentration level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions using current laboratory standards. The PQLs and MDLs are determined by the analytical laboratory and are subject to change without notice.

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Appendix I Parameters					
Chloride	9056A	125 mL high-density polyethylene (HDPE)	cool to 4° C	28	0.0519 mg/l
Sulfate	9056A	125 mL HDPE	cool to 4° C	28	0.0774 mg/l
Ammonia	350.1	250 mL HDPE	cool to 4° C, NaThio H_2SO_4 to pH < 2	28	0.0317 mg/l
Antimony	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000754 mg/l
Arsenic	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000250 mg/l
Barium	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0017 mg/l
Beryllium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000120 mg/l
Cadmium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000160 mg/l
Chromium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000540 mg/l
Cobalt	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000260 mg/l
Copper	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000520 mg/l
Iron	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0141 mg/l
Lead	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0019 mg/l
Manganese	6010B	250 mL HDPE	HNO ₃ to pH < 2	180	0.0012 mg/l
Nickel	6020	250 mL HDPE	HNO ₃ to pH < 2	180	0.000350 mg/l
Selenium	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0074 mg/l
Silver	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0028 mg/l
Thallium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.0023 mg/l
Vanadium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000190 mg/l
	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.002560 mg/l
Zinc TDS	2540 C-2011	250 mL HDPE	cool to 4° C	7	2.82 mg/l
TOC	9060A	250 mL HDPE	cool to 4° C, HCl to pH < 2	28	0.1020 mg/l
VOCs	5000.1	200 112 100 2			012020
Acetone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001050 mg/l
Acrylonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000873 mg/l
Benzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00008960 mg/l
Bromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000145 mg/l
Bromodichloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000080 mg/l
Bromofrom	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
Carbon disulfide Carbon tetrachloride	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14 14	0.000101 mg/l 0.000159 mg/l
Chlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000139 mg/l
Chloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000141 mg/l
Chloroform	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000086 mg/l
Dibromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000128 mg/l
1,2-dibromo-3-chloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000325 mg/l
1,2-Dibromoethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000193 mg/l
1,2 Dichlorobenzene 1,4 Dichlorobenzene	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14 14	0.000101 mg/l 0.000121 mg/l
trans-1,4-Dichloro-2-butene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000121 mg/l
1,1-Dichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000114 mg/l
1,2-Dichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000108 mg/l
1,1-Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000188 mg/l
cis-1,2-Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00009330 mg/l
trans-1,2-Dichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000152 mg/l
1,2-Dichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14	0.000190 mg/l
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to $pH < 2$ cool to 4° C, HCl to $pH < 2$	14 14	0.00009760 mg/l 0.000222 mg/l
Ethylbenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000158 mg/l
2-Hexanone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000757 mg/l
Methyl bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000157 mg/l
Methyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000153 mg/l
Methylene bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to $pH < 2$	14	0.000117 mg/l
Methylene chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to $pH < 2$	14	0.001070 mg/l
Methyl ethyl ketone Methyl iodide	8260B 8260B	40 mL amber (3) 40 mL amber (3)	cool to 4° C, HCl to pH < 2 cool to 4° C, HCl to pH < 2	14 14	0.001280 mg/l 0.000377 mg/l
4-Methyl-2-pentanone	8260B 8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000377 mg/l 0.000823 mg/l
, ,		40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l
Styrene	8260B				
Styrene 1,1,1,2-Tetrachloroethane	8260B 8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000120 mg/l
			cool to 4° C, HCl to pH < 2	14 14	0.000130 mg/l
1,1,1,2-Tetrachloroethane	8260B	40 mL amber (3)			.

Table 5.1.Suggested analytical methods, volumes, bottle types, preservatives, holding times and
method detection limits.

Table 5.1.Suggested analytical methods, volumes, bottle types, preservatives, holding times and
method detection limits. (Continued)

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
1,1,1-Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000094 mg/l
1,1,2-Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
Trichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000153 mg/l
Trichlorofluoromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
1,2,3-Trichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000247 mg/l
Vinyl acetate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000645 mg/l
Vinyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000118 mg/l
Xylenes	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000316 mg/l

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Appendix 2 Parameters					
Chloride	9056A	125 mL HDPE	cool to 4° C	28	0.0519 mg/l
Sulfate	9056A	125 mL HDPE	cool to 4° C	28	0.0774 mg/l
Ammonia	350.1	250 mL HDPE	cool to 4° C, NaThioH ₂ SO ₄ to pH < 2	28	0.0317 mg/l
TDS	2540 C-2011	250 mL HDPE	cool to 4° C	7	2.82 mg/l
тос	9060A	250 mL HDPE	cool to 4° C, HCl to pH < 2	28	0.1020 mg/l
Iron	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0141 mg/l
		250 mL HDPE		1	0.
Manganese	6010B		HNO_3 to pH < 2	180	0.0012 mg/l
Acenaphthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000316 mg/l
Acenaphthylene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000309 mg/l
Acetone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001050 mg/l
Acetonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0150 mg/l
Acetophenone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002710 mg/l
2-Acetylaminofluorene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000253 mg/l
Acrolein	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.008870 mg/l
Acrylonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000873 mg/l
Aldrin	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.0000813 mg/l
Allyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0017 mg/l
4-Aminobiphenyl	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000461 mg/l
Anthracene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000291 mg/l
Antimony	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000754 mg/l
Arsenic	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000250 mg/l
Barium	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0017 mg/l
Benzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.00008960 mg/l
Benzo[a]anthracene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.00009750 mg/l
Benzo[b]fluoranthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.00008960 mg/l
Benzo[k]fluoranthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000355 mg/l
Benzo[ghi]perylene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000161 mg/l
Benzo[a]pyrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000340 mg/l
Benzyl alcohol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000393 mg/l
Beryllium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000120 mg/l
alpha-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001660 mg/l
beta-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001840 mg/l
delta-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000015 mg/l
gamma-BHC	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001760 mg/l
Bis-(2-chloroethoxy)methane	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000329 mg/l
Bis(2-chloroethyl) ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001620 mg/l
Bis-(2-chloro-1 -methylethyl) ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000445 mg/l
Bis(2-ethylhexyl) phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000709 mg/l
Bromochloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000145 mg/l
Bromodichloromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000080 mg/l
Bromoform	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
4-Bromophenyl phenyl ether	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000335 mg/l
Butyl benzyl phthalate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000275 mg/l
Cadmium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000160 mg/l
Carbon disulfide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000101 mg/l
Carbon tetrachloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000159 mg/l
Chlordane	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001980 mg/l
p-Chloroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000382 mg/l
Chlorobenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000140 mg/l
Chlorobenzilate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001330 mg/l
p-Chloro-m- cresol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000263 mg/l
Chloroform	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000086 mg/l

2: Obsorghender 8270C 100 m. amber giss (2) coot to 4° C 7 0.00033 mg/l 4: Obsorghendy phenyl ether 8270C 100 m. amber giss (2) coot to 4° C 7 0.00033 mg/l 4: Obsorghendy phenyl ether 8270C 100 m. amber giss (2) coot to 4° C, K1C to pH < 2 144 0.0012 mg/l Chromium 6000 250 m. II/0PE HMO, to pH < 2 1800 0.00053 mg/l Cohang 6000 250 m. II/0PE HMO, to pH < 2 1800 0.000550 mg/l Copper 6000 250 m. II/0PE HMO, to pH < 2 1800 0.000550 mg/l Copper 6000 250 m. II/0PE HMO, to pH < 2 1800 0.00051 mg/l Copper 9270C 100 m. amber giss (2) coot to 4° C 7 0.000012 mg/l 0: Cread 8270C 100 m. amber giss (2) coot to 4° C 7 0.000012 mg/l 0: Cread 8270C 100 m. amber giss (2) coot to 4° C 7 0.000012 mg/l 0: Cread 8270C 100 m. amber giss (2) coot to 4° C, pH 5 9	Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
2: Obscriptenel 8770C 100 mt, amber gins (2) coto to 4°C 7 0.00238 mg/l. Chicoppenel purple wither 82508 40 mt, amber gins (2) coto to 4°C 7 0.00238 mg/l. Chicoppenel purple wither 82508 40 mt, amber gins (2) coto to 4°C 7 0.00238 mg/l. Chicoppenel purple wither 8270C 100 mt, amber gins (2) coto to 4°C 7 0.00238 mg/l. Cotay 8270C 100 mt, amber gins (2) coto to 4°C 7 0.000256 mg/l. Cotay 8270C 100 mt, amber gins (2) coto to 4°C 7 0.000256 mg/l. Cotay 8270C 100 mt, amber gins (2) coto to 4°C 7 0.000276 mg/l. Cycride 8270C 100 mt, amber gins (2) coto to 4°C 7 0.000276 mg/l. Cycride 8270C 100 mt, amber gins (2) coto to 4°C 7 0.0000276 mg/l. Cycride 8270C 100 mt, amber gins (2) coto to 4°C 7 0.0000278 mg/l. Cycride 8270C 100 mt, amber gins (2) coto to 4°C,						
6-Chicognopic pheny Librery 9270C 100 mamber glass [2] cont lot 4", CM10 pH 7 0.00030 rmg/ Chromyme 8200 000 mamber glass [2] cont lot 4", CM10 pH 134 0.00037 rmg/ Chromyme 8200 020 mamber glass [2] cont lot 4", CM10 pH 1300 0.00036 rmg/ Chall 6000 250 mL HDPF HM0, to pH 1800 0.00036 rmg/ Colusi 6020 250 mL HDPF HM0, to pH 1800 0.00036 rmg/ Colusi 6270C 100 mL amber glass [2] cont lot 4" C 7 0.00037 rmg/ Colusi 6270C 100 mL amber glass [2] cont lot 4" C 7 0.00013 rmg/ Colusi 6270C 100 mL amber glass [2] cont lot 4" C 7 0.00013 rmg/ Colusi 6010 f" C 7 0.00013 rmg/ 0.00013 rmg/ 0.00013 rmg/ Colusi 6010 f" C 7 0.00013 rmg/ 0.00013 rmg/ 0.00013 rmg/ Colusi 6010 f" C 7 0.000023 rmg/ 0.00013 rmg/ 0.00013 rmg/			• • • •			
Discrete 52608 44 ml, amber (3) color bar (2, ml Cop tri 2) 14 0.0027 mg/l Chryanne 6020 125 ml, HDPE HHO, to pH < 2		+	U ()			U :
Chronium 6000 720m. 110Pt HH05 to PH 42 1300 0.00033 mg/l Cohyane 6000 220 mi. HDPE HH05 to PH 42 1300 0.000280 mg/l Cohyane 6000 220 mi. HDPE HH05 to PH 42 1300 0.000280 mg/l Cohyane 6000 220 mi. HDPE HH05 to PH 42 1300 0.000281 mg/l Cohyane 6000 100 mi. amber glass (2) cool to 41 C 7 0.000281 mg/l Cohyane 801700 100 mi. amber glass (2) cool to 41 C (2) 7 0.00021 mg/l Conder 801700 100 mi. amber glass (2) cool to 41 C (2) 7 0.00001 mg/l At-1 DDP 8081/8082 100 mi. amber glass (2) cool to 41 C (2) 7 0.000027 mg/l Dielen/J Marthacone 8270C 100 mi. amber glass (2) cool to 41 C (2) 7 0.0000287 mg/l Dielen/J Marthacone 8270C 100 mi. amber glass (2) cool to 41 C (2) 7 0.0000287 mg/l Dielen/J Marthacone 8270C 100 mi. amber glass (2) cool to 4						_
Chrysner 19700 100 m.t. amber glass [2] cool to 4* C 7 0.00332 mg/ Copel 6000 2250 mt HDPE HMO, to 91 < 2	•	-			180	-
Obshit 9600 250 mt HOPE HHO; to pH < 2 180 0.000280 mg/l nc Gread mcGread 870°C 100 mt amber glas(1) coal to 4° C 7 0.000280 mg/l nc Gread Scread 870°C 100 mt amber glas(1) coal to 4° C 7 0.000280 mg/l nc Gread Scread 820°C 100 mt amber glas(1) coal to 4° C 7 0.000280 mg/l nc Gread Scread 90128 120 mt amber glas(1) coal to 4° C, pt 5.9 7 0.000278 mg/l nc Gread Scread 881,1000 100 mt amber glas(1) coal to 4° C, pt 5.9 7 0.0000278 mg/l nc Gread Adv1000 881,1000 100 mt amber glas(1) coal to 4° C 7 0.0000278 mg/l nc Gread Adv1001 881,800 100 mt amber glas(1) coal to 4° C, pt 5.9 7 0.0000278 mg/l nc Gread Datent/chamber 8200 100 mt amber glas(1) coal to 4° C, pt 5.9 7 0.0000278 mg/l nc Gread Datent/chamber 8200 100 mt amber glas(1) coal to 4° C, pt 5.2 14 0.000028 mg/l nc Gread Datent/chamber <						÷.
Copyet 6020 235 mt HPF HMO, to pH < 2 180 0.000328 mg/l 0.000127 mt mcGregol 48700 100 mt amber glass [2] cool b 4° C 7 0.000127 mt Cotad 88700 100 mt amber glass [2] cool b 4° C 7 0.000127 mt Cotad 88700 100 mt amber glass [2] cool to 4° C 7 0.000174 mg/l Cotad 88715 11.1 tamber glass cool to 4° C, pH 59 7 0.0000174 mg/l At 1000T 88018/9812 100 mt, amber glass [2] cool to 4° C, pH 59 7 0.0000174 mg/l At 100T 88018/9812 100 mt, amber glass [2] cool to 4° C, pH 59 7 0.0000174 mg/l Diseradorum 8270C 100 mt, amber glass [2] cool to 4° C, pH 59 7 0.0000173 mg/l Diseradorum 8270C 100 mt, amber glass [2] cool to 4° C, pH 10 gl + 2 14 0.000137 mg/l Diseradorum 8270C 100 mt, amber glass [2] cool to 4° C, PH 10 gl + 2 14 0.000137 mg/l Diseradorum 8280M 40 mt, amber glas		-			1	
mc Cread 8270C 100 mL amber glass () cool to 4° C 7 0.000258 mg/l pCresol 8270C 100 mL amber glass () cool to 4° C 7 0.000258 mg/l pCresol 8270C 100 mL amber glass () cool to 4° C 7 0.000258 mg/l Q4-0 8151 1.1 amber glass () cool to 4° C 7 0.0000244 mg/l Q4-10DD 8981/8082 100 mL amber glass () cool to 4° C 7 0.0000144 mg/l Q4-10DD 8981/8082 100 mL amber glass () cool to 4° C 7 0.0000174 mg/l Q4-10DT 8981/8082 100 mL amber glass () cool to 4° C 7 0.0000174 mg/l Detens(b) Intritacence 8270C 100 mL amber glass (2) cool to 4° C 7 0.0000128 mg/l Detens(b) Intritacence 8270C 100 mL amber glass (2) cool to 4° C 7 0.0000128 mg/l Detens(b) Intritacence 8270C 100 mL amber glass (2) cool to 4° C 14 0.000128 mg/l 12-Detensorbinnene 8270C 100 mL amber glass (2) coo						
o-Cresol 9270C 100 mL amber glass [2] cool to 4° C 7 0.000312 mg/l Opende 90128 250 mL HDPE cool to 4° C. NaOH to pt > 12 14 0.00038 mg/l Q4-0 8151 11 Lamber glass cool to 4° C. NaOH to pt > 12 14 0.00038 mg/l Q4-1 DDE 8081/8082 100 mL amber glass [2] cool to 4° C. pt 5:9 7 0.000017 mg/l Q4-1 DDE 8081/8082 100 mL amber glass [2] cool to 4° C. pt 5:9 7 0.000017 mg/l Qablate 8270C 100 mL amber glass [2] cool to 4° C. pt 5:9 7 0.0000278 mg/l Dibencin/Liner 8270C 100 mL amber glass [2] cool to 4° C. 7 0.000028 mg/l Dibencin/Liner/normethane 82006 40 mL amber [3] cool to 4° C. pt 15 pt <		_				.
p. Cresol 870C 100 mL amber glass () cool to 4° C 7 0.000286 mg/l 2,4-0 8151 1.1 amber glass cool to 4° C 7 0.00014 mg/l 2,4-0 8151 1.1 amber glass cool to 4° C 7 0.000014 mg/l 2,4-0 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000017 mg/l 0.blantar 8081/8082 100 mL amber glass (2) cool to 4° C, C 7 0.000017 mg/l 0.blantar 8270C 100 mL amber glass (2) cool to 4° C 7 0.0000128 mg/l 0.blennofuran 8270C 100 mL amber glass (2) cool to 4° C 7 0.0000128 mg/l 0.blennofuran 8270C 100 mL amber glass (2) cool to 4° C, HCI to pH < 2						5,
Cynide 90128 250m. H09E cool to 4°C, NaOH to pH > 12 14 0.00138 mg/n Ad-D B151 11 amber glass cool to 4°C, NaOH to pH > 12 14 0.00017 mg/n Ad-Ya DDE 6081/8082 100 mL amber glass (D) cool to 4°C, PH 5-9 7 0.000017 mg/n Ad-Ya DDE 6081/8082 100 mL amber glass (D) cool to 4°C, PH 5-9 7 0.000017 mg/n Diamoluram 8087/0821 100 mL amber glass (D) cool to 4°C 7 0.000027 mg/n Diamoluram 8270C 100 mL amber glass (D) cool to 4°C, C H1 to pH < 2			e ()			.
24-D 815.1 11 amber glass. cont of *C 7 0.00071 mg/l A4*1-DDD 8081/8082 100 m1, amber glass.(1) cont to *C pH 5-9 7 0.0000017 mg/l A4*1-DDT 8081/8082 100 m1, amber glass.(1) cont to *C pH 5-9 7 0.000017 mg/l Dialitac 8270C 100 m1, amber glass.(1) cont to 4*C 7 0.0000278 mg/l Dibernical/intracene 8270C 100 m1, amber glass.(2) cont to 4*C 7 0.0000278 mg/l Dibernical/intra 8270C 100 m1, amber glass.(2) cont to 4*C 7 0.0000128 mg/l Dibernical/intra 8270C 100 m1, amber glass.(2) cont to 4*C PH 14 0.000128 mg/l Dibernical/intrative 8270C 100 m1, amber glass.(2) cont to 4*C PH 14 0.000138 mg/l Di-brit/orbitinative 8270C 100 m1, amber glass.(2) cont to 4*C PH 14 0.000118 mg/l J2. Distributinative 8270C 100 m1, amber glass.(2) cont to 4*C, H 15 pH + 2 14 0.0000118 mg/l J2. Dist						-
Av1-DDD 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5.9 7 0.000017 a/0 rg/ Au1-DDT 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5.9 7 0.00001240 rg/ Au1-DDT 8081/8082 100 mL amber glass (2) cool to 4° C 7 0.0000247 rg/ Dialate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000237 rg/ Disension/Lina 8270C 100 mL amber glass (2) cool to 4° C 7 0.000238 rg/ Disension/Lina 8270C 100 mL amber glass (2) cool to 4° C, HC to pH < 2						
4.44-DOE 8081/8082 100 mL amber gias (1) cool to 4° C, pH 5-9 7 0.00001370 mg/ Diallate 8081/8082 100 mL amber gias (2) cool to 4° C 7 0.0000279 mg/ Diallate 8270C 100 mL amber gias (2) cool to 4° C 7 0.0000279 mg/ Dibenduran 8270C 100 mL amber gias (2) cool to 4° C 7 0.000328 mg/ Dibromotran 8270C 100 mL amber gias (2) cool to 4° C 7 0.000338 mg/ Dibromotran 8270C 100 mL amber gias (2) cool to 4° C 7 0.000338 mg/ Dibromotrane 82608 40 mL amber (3) cool to 4° C 7 0.000035 mg/ Di-Dichorobenzene 82608 40 mL amber (3) cool to 4° C 7 0.0000257 mg/ Dichorobenzene 82608 40 mL amber (3) cool to 4° C, H1 to pH + 2 14 0.000127 mg/ Dichorobenzene 82608 40 mL amber (3) cool to 4° C, H1 to pH + 2 14 0.000127 mg/ Dichorobenzene 82608 40 mL amber (3) cool to 4° C, H						-
4_A-L-DOT 6081/8082 100 mL amber glass (1) cont to 4° C. pH 5-9 7 0.00001770 m(1) Dilatel 8270C 100 mL amber glass (1) cont to 4° C 7 0.000238 mg/l DibencipLinghinthracene 8270C 100 mL amber glass (2) cont to 4° C 7 0.000238 mg/l DibencipLinomathane 8270C 100 mL amber glass (2) cont to 4° C, HC to pH < 2		-				
Database 8270C 100 mt amber glass [2] cont 0.4° C 7 0.000238 mg/ Dibenzig.h.jhuntcene 8270C 100 mt, amber glass [2] cont 10.4° C 7 0.000238 mg/ Dibenzig.h.jhuntcene 8270C 100 mt, amber glass [2] cont 10.4° C 7 0.000238 mg/ Dibromochrane 82608 40 mt, amber [3] cool to 4° C, HCI to pH < 2		-		· · ·		.
Diberta planthracene 8270C 100 mL amber glass [2] cool to 4* C 7 0.000278 mg/l Dibentachuran 8270C 100 mL amber glass [2] cool to 4* C, HC to pH < 2		-				
Dibensorium 8270C 100 mt.amber glass (1) cool to 4° C 7 0.00038 mg/l Dibromochhoramethane 82608 40 mt.amber (3) cool to 4° C, HCI to pH < 2						-
Dithomethane 82608 40 mL amber [3] cool to 4° C, HCI to pH < 2 14 0.000128 mg/l 1,2-Dibromo-3-chloropropane 82608 40 mL amber [3] cool to 4° C, HCI to pH < 2						-
12Dibromo-3: chloropropane 82608 40 mL amber (3) cool to 4° C, HCI to pH < 2						.
1,2 Dibromeethane 82608 40 mL amber (3) cool to 4° C, HCI to pH < 2 14 0.000136 mg/ Di-h-byth pithtalate 8270C 100 mL amber (3) cool to 4° C, HCI to pH < 2				, ,		_
Dim-buty phthalate 8270C 100 mut amber glass [2] col to 4° C 7 0.000266 mg/l or. Dichlorobenzene 82608 40 mut amber (3) cool to 4° C, HCI to pH < 2			. , ,			_
o-Dichlorobenzene 92608 40 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000101 mg/l m-Dichlorobenzene 82608 40 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000121 mg/l 3,3*1-Dichlorobenzidine 8270C 100 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000127 mg/l Dichlorobenzidine 8270C 100 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000127 mg/l Dichlorobenzidine 82608 40 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000127 mg/l 1,1-Dichloroethane 82608 40 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000128 mg/l 1,2-Dichloroethylene 82608 40 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000138 mg/l 1,2-Dichloroethylene 82608 40 mL amber (3) cool to 4* C, HCI to pH - 2 14 0.000138 mg/l 2,4-Dichlorophenol 8270C 100 mL amber gass (2) cool to 4* C, HCI to pH - 2 14 0.000138 mg/l 2,4-Dichlorophenol 8270C 100 mL amber gass (2) cool to 4* C, HCI to pH + 2 14 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
mb. Dichlorobenzene 82608 40 mL amber (3) cool to 4" C, HCI to pH < 2 14 0.000121 mg/ p- Dichlorobenzene 82608 40 mL amber (3) cool to 4" C, HCI to pH < 2			ē ()			-
p-Dichlorobenzene 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2 14 0.000121 mg/l 3,3^1- Dichlorobenzidine 8270C 100 mL amber (3) cool to 4* C, HCI to pH < 2				, ,		-
3,3-1- Dichlorobenzidine 8270C 100 mL amber glass (2) cool to 4* C 7 0.002020 mg/l 1,4-Dichloro-2- butene 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2			. , ,	, ,		
trans.1,4-Dichloro-2-butene 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2 14 0.000257 mg/l Dichlorodhluoro methane 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2			. ,			
Dichlorodifluoro methane 82608 40 mL amber (3) cool to 4* C, HCl to pH < 2 14 0.000127 mg/l 1,1-Dichloroethane 82608 40 mL amber (3) cool to 4* C, HCl to pH < 2						_
1,1-Dichloroethane 82608 40 mL amber (3) cool to 4° C, HCl to pH < 2 14 0.000114 mg/l 1,2 - Dichloroethylene 82608 40 mL amber (3) cool to 4° C, HCl to pH < 2	,					-
1,2 - Dichloroethane 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2 14 0.000108 mg/l 1,1 - Dichloroethylene 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2			. , ,	· ·		
1,1 - Dichlororethylene 8260B 40 mL amber (3) cool to 4* C, HC to pH < 2 14 0.000188 mg/l cis.1,2 - Dichlororethylene 8260B 40 mL amber (3) cool to 4* C, HC to pH < 2						
cis-1,2- Dichloroethylene 82608 40 mL amber (3) cool to 4* C, HCl to pH < 2 14 0.0009330 mg/ 2,4- Dichlorophylene 82608 40 mL amber (3) cool to 4* C, HCl to pH < 2				· ·		_
trans-1,2- Dichloroethylene 8260B 40 mL amber (3) cool to 4* C, HCl to pH < 2 14 0.000152 mg/l 2,4- Dichlorophenol 8270C 100 mL amber glass (2) cool to 4* C 7 0.000284 mg/l 2,6- Dichlorophenol 8270C 100 mL amber glass (2) cool to 4* C 7 0.0002770 mg/l 2,6- Dichloropropane 8260B 40 mL amber (3) cool to 4* C, HCl to pH < 2				· · ·		
2,4- Dichlorophenol 8270C 100 mL amber glass (2) cool to 4* C 7 0.000284 mg/l 2,6- Dichlorophenol 8270C 100 mL amber glass (2) cool to 4* C 7 0.000270 mg/l 1,2- Dichloropropane 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2	· · · · ·			· ·		.
2,6 Dichlorophenol 8270C 100 mL amber glass (2) cool to 4* C 7 0.002770 mg/l 1,2- Dichloropropane 82608 40 mL amber (3) cool to 4* C, HCI to pH < 2						.
1.2. Dichloropropane 8260B 40 mL amber (3) cool to 4° C, HCI to pH < 2 14 0.000190 mg/l 1.3. Dichloropropane 8260B 40 mL amber (3) cool to 4° C, HCI to pH < 2						_
1.3- Dichloropropane 8260B 40 mL amber (3) cool to 4° C, HCI to pH < 2 14 0.000147 mg/l 2.2- Dichloropropane 8260B 40 mL amber (3) cool to 4° C, HCI to pH < 2	, ,					.
2,2- Dichloropropane 82608 40 mL amber (3) cool to 4° C, HCl to pH < 2 14 0.00009290 mg/ 1,1- Dichloropropene 82608 40 mL amber (3) cool to 4° C, HCl to pH < 2						-
1,1 - Dichloropropene 8260B 40 mL amber (3) cool to 4° C, HCl to pH < 2 14 0.000128 mg/l cis-1,3 - Dichloropropene 8260B 40 mL amber (3) cool to 4° C, HCl to pH < 2	/ / /					
cis-1,3- Dichloropropene 8260B 40 mL amber (3) cool to 4* C, HCI to pH < 2 14 0.00009760 mg/ trans-1,3- Dichloropropene 8260B 40 mL amber (3) cool to 4* C, HCI to pH < 2	, , , , , , , , , , , , , , , , , , , ,					
Trans-1,3- Dichloropropene 8260B 40 mL amber (3) cool to 4° C, HCI to pH < 2 14 0.000222 mg/l Dieldrin 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00000751 mg/ Dieldrin 8270C 100 mL amber glass (2) cool to 4° C 7 0.000282 mg/l Diethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000282 mg/l Dimethoate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000204 mg/l p- [Dimethylamino] azobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000288 mg/l 3,3^1- Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000288 mg/l 3,3^1- Dimethylbenz[dine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000624 mg/l y.4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l z,4-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.0002820 mg/l z,4-			. , ,			0,
Dieldrin 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.0000751 mg/ Diethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000282 mg/l Dimethoate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000244 mg/l Dimethoate 8270C 100 mL amber glass (2) cool to 4° C 7 0.001440 mg/l p- (Dimethylamino) azobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001710 mg/l 3.31 - Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.003290 mg/l 2,4- Dimethylbenz[dine 8270C 100 mL amber glass (2) cool to 4° C 7 0.003290 mg/l 2,4- Dimethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l 2,4- Diniethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.0002620 mg/l 2,4- Dinitrobenzene	· · · · ·					<u>.</u>
Diethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000282 mg/l Thionazin 8270C 100 mL amber glass (2) cool to 4° C 7 0.000204 mg/l Dimethoate 8270C 100 mL amber glass (2) cool to 4° C 7 0.001440 mg/l p- (Dimethylamino) azobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000208 mg/l 7,12- Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.0001701 mg/l 3,3'1 - Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l 3,3'1 - Dimethylbenz[a] 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l 2,4- Dimethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000280 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000260 mg/l 2,4- Dini				· · ·		-
Thionazin 8270C 100 mL amber glass (2) cool to 4° C 7 0.000204 mg/l Dimethoate 8270C 100 mL amber glass (2) cool to 4° C 7 0.001440 mg/l p- (Dimethylamino) azobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001710 mg/l 3,3^1- Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.003300 mg/l 3,3^1- Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.003300 mg/l 2,4- Dimethylbenz[a] 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l A,6-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000280 mg/l 2,4- Dinitroblenee 8270C 100 mL amber glass (2) cool to 4° C 7 0.000250 mg/l 2,4- Dinitrotolue		-		· •		-
Dimethoate 8270C 100 mL amber glass (2) cool to 4° C 7 0.001440 mg/l p- (Dimethylamino) azobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000208 mg/l 7,12- Dimethylbenzial anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001710 mg/l 3,3^1- Dimethylbenzidine 8270C 100 mL amber glass (2) cool to 4° C 7 0.003390 mg/l 2,4- Dimethylbenzidine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000280 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000280 mg/l 2,4- Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.002780 mg/l 2,4- Dinitrot						.
p- (Dimethylamino) azobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000208 mg/l 7,12- Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001710 mg/l 3,3^1- Dimethylbenzidine 8270C 100 mL amber glass (2) cool to 4° C 7 0.003390 mg/l 2,4- Dimethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000280 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrobluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001260 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001260 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.00179 mg/l Din-n-oct						_
7,12- Dimethylbenz[a] anthracene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001710 mg/l 3,3^1- Dimethylbenzidine 8270C 100 mL amber glass (2) cool to 4° C 7 0.003390 mg/l 2,4- Dimethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000624 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitroblene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Dinoseb						.
3,3^1- Dimethylbenzidine 8270C 100 mL amber glass (2) cool to 4° C 7 0.003390 mg/l 2,4- Dimethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000624 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000262 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrobuene 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000279 mg/l Di-n-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.00179 mg/l Di-n-octyl phthalate						
Z,4- Dimethylphenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.000624 mg/l Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000359 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002820 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.00279 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000279 mg/l Din-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Diphenylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disulfoton 8270C						_
Dimethyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000283 mg/l m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000359 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.00283 mg/l 2,4-Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.00250 mg/l 2,4-Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,4-Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.00279 mg/l 2,6-Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.00179 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.00278 mg/l Din-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Dishofton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disherylamine 8270C 100 mL amber						÷.
m-Dinitrobenzene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000359 mg/l 4,6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.00279 mg/l Di-n-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.00278 mg/l Diphenylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000267 mg/l Endosulfan I 8081/8082 100 mL						_
A.6-Dinitro-o- cresol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.002620 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.00279 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.00278 mg/l Di-n-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.00179 mg/l Disherylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disherylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disherylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disherylamine 8270C 100 mL amb						
2,4- Dinitrophenol 8270C 100 mL amber glass (2) cool to 4° C 7 0.003250 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.00279 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.00179 mg/l Di-n-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.001190 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l						÷.
2,4- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.001650 mg/l 2,6- Dinitrotoluene 8270C 100 mL amber glass (2) cool to 4° C 7 0.000279 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.00179 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.0179 mg/l Di-n-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.001278 mg/l Diphenylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.001190 mg/l Disulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000267 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l						_
Zobs Sector 100 mL amber glass (2) cool to 4° C 7 0.000279 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.0179 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.0179 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Dinoseb 8270C 100 mL amber glass (2) cool to 4° C 7 0.00190 mg/l Diphenylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Disulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000267 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l						-
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>						_
Di-n-octyl phthalate 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Diphenylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.001190 mg/l Disulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000278 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l						
Diphenylamine 8270C 100 mL amber glass (2) cool to 4° C 7 0.001190 mg/l Disulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000267 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l						
Bisulfoton 8270C 100 mL amber glass (2) cool to 4° C 7 0.000267 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l	, ,					U :
Endosulfan I 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.000016 mg/l Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/l						_
Endosulfan II 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001640 mg/ Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001960 mg/						-
Endosulfan sulfate 8081/8082 100 mL amber glass (2) cool to 4° C, pH 5-9 7 0.00001960 mg/		-		•		-
						-
	Endosultan sultate Endrin	8081/8082	100 mL amber glass (2) 100 mL amber glass (2)	cool to 4° C, pH 5-9 cool to 4° C, pH 5-9	7	0.00001960 mg/l 0.00001610 mg/l

Table 5.1.Suggested analytical methods, volumes, bottle types, preservatives, holding times and
method detection limits. (Continued)

Table 5.1.	Suggested analytical methods, volumes, bottle types, preservatives, holding times and method detection limits. (Continued)					
Ana	lyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Endrin aldehyde		8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001420 mg/l

Analyte	Method	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Endrin aldehyde	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001420 mg/l
Ethylbenzene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000158 mg/l
Ethyl methacrylate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0014 mg/l
Ethyl methanesulfonate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000326 mg/l
Famphur	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001060 mg/l
Fluoranthene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000310 mg/l
Fluorene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000323 mg/l
Heptachlor	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001080 mg/l
Heptachlor epoxide	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001750 mg/l
Hexachlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000341 mg/l
Hexachlorobutadiene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000329 mg/l
Hexachlorocyclopentadiene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002330 mg/l
Hexachloroethane	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000365 mg/l
Hexachloropropene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000149 mg/l
2-Hexanone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000757 mg/l
Indeno(1,2,3- cd)pyrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000279 mg/l
Isobutanol	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0390 mg/l
Isodrin	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000293 mg/l
Isophorone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000272 mg/l
Isosafrole	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000409 mg/l
Kepone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001880 mg/l
Lead	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.001880 mg/l
			J .	1	
Mercury	7470A	250 mL HDPE	HNO_3 to pH < 2	180	0.000049 mg/l
Methacrylonitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0130 mg/l
Methapyrilene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.004250 mg/l
Methoxychlor	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.00001930 mg/l
Methyl bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000157 mg/l
Methyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000153 mg/l
3- Methylcholanthrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000164 mg/l
Methyl ethyl ketone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001280 mg/l
Methyl iodide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000377 mg/l
Methyl methacrylate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0012 mg/l
Methyl methanesulfonate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000647 mg/l
2- Methylnaphthalene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000311 mg/l
Methyl parathion	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000213 mg/l
4-Methyl-2- pentanone	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000823 mg/l
Methylene bromide	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l
Methylene chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.001070 mg/l
Naphthalene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000372 mg/l
1,4- Naphthoquinone	8270C	100 mL amber glass (2)	cool to 4° C	7	0.005560 mg/l
1-Naphthylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000289 mg/l
2-Naphthylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000195 mg/l
Nickel	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000350 mg/l
o-Nitroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.0019 mg/l
m-Nitroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000308 mg/l
p-Nitroaniline	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000349 mg/l
Nitrobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000349 mg/l
o-Nitrophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000320 mg/l
p-Nitrophenol	8270C 8270C	100 mL amber glass (2)	cool to 4° C	7	0.002010 mg/l
N-Nitrosodi-n- butylamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000331 mg/l
N-Nitrosodiethylamine	8270C 8270C	100 mL amber glass (2)	cool to 4° C	7	0.000331 mg/l
	8270C 8270C	100 mL amber glass (2)	cool to 4° C	7	0.001260 mg/l
N- Nitrosodimethylamine N- Nitrosodiphenylamine	8270C 8270C	100 mL amber glass (2)	cool to 4° C	7	0.001280 mg/l
N- Nitrosodipropylamine	8270C 8270C	100 mL amber glass (2) 100 mL amber glass (2)		7	0.001190 mg/l
N- Nitrosodipropylamine	8270C 8270C		cool to 4° C cool to 4° C	7	0.000403 mg/l
,		100 mL amber glass (2) 100 mL amber glass (2)		7	0.001/10 mg/l 0.000268 mg/l
N- Nitrosopiperidine	8270C		cool to 4° C		_
N- Nitrosopyrrolidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002550 mg/l
5-Nitro-o- toluidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001990 mg/l
Parathion	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000379 mg/l
Pentachlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000369 mg/l
Pentachloronitro benzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000327 mg/l
Pentachlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000313 mg/l
Phenacetin	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000262 mg/l
Phenanthrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000366 mg/l

Analyte	Method ⁽¹⁾	Volume & Container	Preservative	Holding Time (days)	MDL ⁽²⁾
Phenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000334 mg/l
p- Phenylenediamine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.3870 mg/l
Phorate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000382 mg/l
PCB 1016	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.0001 mg/l
PCB 1221	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000073 mg/l
PCB 1232	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000042 mg/l
PCB 1242	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000047 mg/l
PCB 1248	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000086 mg/l
PCB 1254	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000047 mg/l
PCB 1260	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000120 mg/l
Pronamide	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000265 mg/l
Propionitrile	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.0130 mg/l
Pyrene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000330 mg/l
Safrole	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000259 mg/l
Selenium	6010B	250 mL HDPE	HNO₃ to pH < 2	180	0.0074 mg/l
Silver	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0028 mg/l
Silvex	8151	1 L amber glass	cool to 4° C	7	0.000845 mg/l
Styrene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000117 mg/l
Sulfide	4500S2 D-2011	250 mL amber glass	cool to 4° C, NaOH + ZnAc to pH > 9	7	0.0065 mg/l
2,4,5-T	8151	1 L amber glass	cool to 4° C	7	0.000843 mg/l
1,2,4,5- Tetrachlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.002410 mg/l
1,1,1,2- Tetrachloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000120 mg/l
1,1,2,2- Tetrachloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
Tetrachloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000199 mg/l
2,3,4,6- Tetrachlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.0020 mg/l
Thallium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000190 mg/l
Tin	6010B	250 mL HDPE	HNO_3 to pH < 2	180	0.0044 mg/l
Toluene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000412 mg/l
o-Toluidine	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000362 mg/l
Toxaphene	8081/8082	100 mL amber glass (2)	cool to 4° C, pH 5-9	7	0.000168 mg/l
1,2,4- Trichlorobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000355 mg/l
1,1,1- Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000094 mg/l
1,1,2- Trichloroethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000186 mg/l
Trichloroethylene	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000153 mg/l
Trichlorofluoromethane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000130 mg/l
2,4,5- Trichlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000236 mg/l
2,4,6- Trichlorophenol	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000297 mg/l
1,2,3- Trichloropropane	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000247 mg/l
0,0,0- Triethyl phosphorothioate	8270C	100 mL amber glass (2)	cool to 4° C	7	0.000537 mg/l
1,3,5- trinitrobenzene	8270C	100 mL amber glass (2)	cool to 4° C	7	0.001320 mg/l
Vanadium	6020	250 mL HDPE	HNO_3 to pH < 2	180	0.000180 mg/l
Vinyl acetate	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000645 mg/l
Vinyl chloride	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000118 mg/l
				14	0.000216
Xylene (total)	8260B	40 mL amber (3)	cool to 4° C, HCl to pH < 2	14	0.000316 mg/l

Table 5.1.Suggested analytical methods, volumes, bottle types, preservatives, holding times and
method detection limits. (Continued)

Notes: 1. Analytical methods listed may be substituted, as necessary, provided that the alternate methods provide adequate analytical data to fulfill monitoring requirements and meet regulatory standards.

2. Listed MDLs are based on currently achievable levels by the third-party laboratory and are subject to change. As required by §22.1204(d), MDLs will be less than or equal to the values reported in EPA Report SW-846 unless written approval from the Division is granted.

6.0 FIELD METHODS AND PROCEDURES

This section describes procedures that should be used to collect representative groundwater samples in accordance with §22.1203(j). A field sampling logbook that includes this SAP and WM's environmental media sampling standard (WM Groundwater Protection Program [GPP] 2012) should be provided to the sampling team prior to each sampling event.

6.1 Field Equipment

6.1.1 Purging and Sampling Devices

WM requires the use of QED bladder pumps for groundwater sampling. The use of other equipment should be approved by the WM GPP Director. The GPP director may approve the following types of equipment:

- Dedicated bailers, or
- Disposable bailers.

Recommended options for purging include positive-displacement pumps (bladder pumps), or peristaltic pumps with adjustable flow control. Sampling devices and associated tubing are to be made of inert materials to reduce the possibility of these materials altering sample chemistry.

6.1.2 Water Level Measurement Device

An electric water level meter is to be used to gauge static water levels in the monitoring wells. The tape circuitry is to be checked prior to use by lowering the electrode probe into potable water to determine if the indicators are functioning properly.

6.1.3 Calibration

Field devices used to measure water quality parameters are to be calibrated prior to use each day using commercial standards. If at any time instrument readings seem inaccurate based on historical data or professional judgment, calibration is to be checked and the instrument recalibrated if necessary. All field calibration data are to be recorded on a calibration form similar to the one provided in Appendix C.

Periodic calibration of the electric tape is to be performed to account for tape stretch over time.

6.2 Well Inspection

A well condition summary form and well condition inspection form should be filled out prior to sampling activities. These records should be submitted to a WM representative to communicate well maintenance needs. These forms can be found in Appendix C. If samplers encounter unusual conditions at a sampling location during the inspection that could result in collection of a non-representative sample, the sampler should notify the WM representative before collecting the sample. With input from the sampling personnel, the WM representative should decide whether to delay sampling or collect a sample. Examples of unusual conditions that could affect sample integrity include the following:

- A damaged well or sample point,
- Evidence of tampering,
- Gas emanating from well,
- Strong or unusual odors,
- Significant soil staining or other evidence that a spill may have occurred near the well, or
- Excessive turbidity.

6.3 Groundwater Level Measurements

Static water levels in all monitoring wells are to be gauged using an electric tape prior to any purging, sampling, or other activities that may change the water level. All readings are to be taken using the same deflection point on the indicator to ensure that water levels should be consistent among measurements. Water level data for each sampling event should be collected within a one-day period or less.

The tape is to be lowered slowly into each well until the indicator shows that contact with the water surface has been made. The depth to water should be recorded at the MP to the nearest 0.01 ft. The MP elevations are identified in Table 3.1. The date and time measured should also be recorded for each measurement. Verification measurements are to be taken until repeat measurements are within 0.02 ft of the original, or until the reason for lack of agreement is determined. If more than two measurements are required, best judgment is to be used to select the measurement most representative of field conditions. Additionally, any outside influences on water levels such as barometric changes or nearby pumping are to be noted. An example water level measurement form is included in Appendix C. The electric tape probe should be decontaminated prior to its use in each well.

Measuring to the bottom of the well may cause re-suspension of settled solids and cause protracted purging times for turbidity stabilization. If necessary, well depths should be measured after sampling is completed.

6.4 Well Purging and Sample Extraction

This section describes allowable well purging and sample extraction methods for the groundwater monitoring program. These methods are based on EPA guidance documents (Puls and Barcelona 1996) and the WM environmental media sampling standard (WM GPP 2012).

6.4.1 Low-Flow (Minimal Drawdown) Purging

Purging should be conducted at low-flow rates (<0.1 to 0.5 L/min) and continue until three successive readings are within \pm 0.2 su for pH, \pm 5% for conductivity, and \pm 10% or 0.2 mg/L

for dissolved oxygen, and until turbidity readings are 10 Nephelometric turbidity units (NTUs) or less, if reasonably possible. While stabilizing turbidity values below 10 NTUs and maintaining a minimal drawdown of (<0.33 ft) during purging is desirable, these protocols are not mandatory for sample collection. In accordance with the WM environmental media sampling standard (WM GPP 2012), should sample turbidity fall between 50 NTUs and 500 NTUs, the sampler should attempt to lower the turbidity by performing additional purging for a reasonable period of time or by lowering the flow rate. If NTU values exceed 500 and no attempt has been successful in lowering the turbidity below 500 NTUs, then the sampler should contact a WM representative and only collect a sample when authorized.

Water quality parameters are to be measured and recorded every 3 to 5 minutes during low-flow purging, as applicable. If parameters do not stabilize, at least three well water column volumes should be removed. The water level is to be checked periodically (every 3 to 5 minutes, or as appropriate) to monitor drawdown in the well as a guide to flow rate adjustment. Field personnel should avoid allowing recharge water to cascade in the well and should make proper adjustments to stabilize the flow rate as soon as possible. Purge rates and total volume of water purged are to be documented on the field information form in Appendix C. Formulas and methods to calculate the total volume of water in a well and volume of water removed during purging are provided in Appendix C.

Sampling should be performed as soon as possible after the well is purged and field measurements are performed. The same device used for purging the well is to be used to sample to reduce disturbance to the water column. The sampling flow rate should generally remain at the established purge rate (<0.1 to 0.5 L/min) unless minimal adjustments need to be made to minimize turbulence during the filling of sample bottles. Equipment and procedures that minimize sample agitation and reduce/eliminate contact with the atmosphere during sample transfer are to be utilized.

Non-dedicated sampling equipment should be decontaminated between wells as described in Section 6.6.

Groundwater samples should not be field-filtered prior to laboratory analysis in accordance with §22.1203(b). The exception to this is if sample turbidity of 10 NTUs or less cannot be achieved. Under this circumstance, a field-filtered split sample may be taken for comparative analysis using an in-line 0.45-micron filter. However, non-filtered samples should be collected for all required analyses.

6.4.2 Purging with Bailers

Bailers may only be used when approved by the GPP director, and using only disposable bailers and cordage is preferred. When bailers are approved for use, samplers should take the following steps:

- Attach new unused nylon line to the bailer each time it is used, regardless of whether the bailer is dedicated or disposable;
- Thoroughly rinse the bailer and line with distilled or deionized water prior to use;
- Lower the bailer to the midpoint of the well screen when performing traditional purging or to the bottom of the well screen if sampling with the complete evacuation method;
- Minimize splashing and bubbling as the bailer fills by slowly lowering the bailer below the water level; and
- Prevent the bailer or bailer line from touching the ground.

If a dedicated bailer is used, the bailer should be hung within the well above the water level between sampling events and the bailer line should be discarded.

6.4.3 Traditional Purging

When low-flow purging is not utilized, monitoring wells should be pumped prior to sample collection according to site-specific requirements, typically until three to five well volumes are removed. Other criteria for this method are listed as follows:

- Parameters should be stabilized with as little drawdown as possible;
- The pump inlet screen should never be exposed; and
- The same parameter stabilization criteria mentioned above in Section 6.4.1 should be met.

6.4.4 Wells That Purge Dry

When a well purges dry, recharge is very slow, drawdown is excessive, and the well is almost completely evacuated when pumping at low flow rates (0.5 L/min) and field parameters do not stabilize; therefore, field parameters are only recorded when samples are collected. When the above criteria are met, WM generally uses either the complete evacuation method or the minimal purge method to sample wells.

6.4.4.1 Complete Evacuation Method

When using the complete evacuation method, wells are purged dry and then allowed to recover before collecting the samples. When using this method, the following protocols should be followed:

- Document the date and time for both well evacuation and sample collection.
- Evacuate the well until it yields little or no water.
- Record the total volume of water removed.
- Allow the well to recover as specified in the site's controlling documents. If recovery criteria are not specified, collect samples as follows:
 - After the water level has recovered to 50% of the original water level,
 - When there is sufficient water to fill all sample bottles, or
 - At least 24 hours after evacuation.
- Record field parameters after collecting the samples for laboratory analysis.

6.4.4.2 Minimal Purge Method

This method is not approved for use in all states; therefore, it should only be used when specified in the controlling documents or authorized by the WM GPP director. When using this method, dedicated sampling pumps are required; bailers or non-dedicated pumps may not be used. To perform this method, the following protocols should be followed:

- 1. Calculate the volume of the water within the dedicated sample pump and tubing;
- 2. Purge one to three times that volume;
- 3. Record the total volume of water removed; and
- 4. Record field parameters after samples for laboratory analysis are collected.

The pumping rate used for minimal purge sampling is generally 100 mL per minute or less.

6.5 Wildcat Creek Sampling

This section describes the methods for collecting a surface water sample from Wildcat Creek. A surface water sample can be collected either utilizing a peristaltic pump or by taking a grab sample with a transfer device such as a polyethylene or stainless-steel dipper. Water quality parameters should be recorded prior to sample collection. To perform surface water sampling with a peristaltic pump, the following protocols should be followed:

- 1. Use new polyethylene and silicone peristaltic pump tubing.
- 2. Place the intake end of the tubing into the creek to a depth of 6 to 12 inches below the water surface, where possible, and turn the pump on.
- Pump several tubing volumes through the system to flush the tubing prior to sample collection.
- 4. Fill the sample bottles, being careful not to remove the inlet tubing from the water.

To perform surface water sampling using the grab method, the following protocols should be followed:

- 1. Rinse the dipper with ample amounts of stream water prior to collecting the first sample. Discard the rinsate downstream from the sampling location.
- After rinsing, fill the dipper with sample water from within the top 12 inches of the water column and avoid skimming the surface of the water during collection. Minimize agitation of the sample.
- Fill sample containers directly from the dipper. Minimize agitation during bottle filling. Do not touch the sample bottle with the dipper.

6.6 Sampling Records

Field observations and information pertinent to sampling should be recorded in the field logbook. All entries are to be legible and made in indelible ink. Entry errors are to be crossed out with a single line, dated, and initialed by the person making the correction. Documentation is to be sufficient to reconstruct each sampling event without relying on field personnel memory. A form similar to the field information form included in Appendix C is to be used to record sampling data and information, including the following:

- 1. Sample location, including facility name and sample number or well number;
- 2. Date and time of sampling;
- 3. Identification of field personnel;
- 4. Weather conditions;
- 5. Sampling method;
- 6. Well evacuation method, rates, and volume of groundwater purged;
- 7. Depth to groundwater surface;
- 8. Field observations of sample appearance, color, turbidity, etc.;

- 9. Field measurements (pH, specific conductance, temperature, dissolved oxygen, oxidation reduction potential, and turbidity); and
- 10. Other pertinent information.

Samplers should identify inconsistent measurements by comparing current data to results from the prior sampling event. Inconsistent data are results between two sampling events that vary more than the following:

- pH: ±1 standard unit,
- Specific conductance: ±25%, or
- Turbidity: significant change in clarity.

In the event where inconsistent data are observed, samplers should verify the calibration of the meters and make an attempt to resolve the issue by performing additional purging. Where meter calibration and additional purging do not resolve the issue, samplers should report the information to the WM representative before collecting a sample.

6.7 Equipment Decontamination Procedures

Non-dedicated sampling equipment and test equipment that enter the well or contact the sample should be thoroughly decontaminated before use at each well location. Disposable items such as rope or low-grade tubing shall not be re-used between wells and shall be properly disposed of in an appropriate trash receptacle. The procedures for equipment cleaning are as follows, unless otherwise specified by the manufacturer:

- 1. Clean with potable water and phosphate-free laboratory detergent;
- 2. Rinse thoroughly with potable water;
- 3. Rinse thoroughly with distilled/deionized water, and
- 4. Air dry.

Non-sample-contacting equipment that should be decontaminated includes field instrument probes. Probes are triple-rinsed with type I distilled water before use and between wells, as applicable. If needed, probes should be washed using a detergent solution. These procedures follow ASTM D5088-15a, *Standard Practice for Decontamination of Field Equipment Used at Waste Sites* (ASTM International 2015), and are consistent with EPA protocol. Decontamination procedures are to be documented in the field sampling logbook, as needed.

6.8 Sample Labeling, Preservation, and Shipment

Sample containers are to be labeled with the following information:

- 1. Site name;
- 2. Sample location name;
- 3. Analytes to be measured;
- 4. Date and time sampled;
- 5. Sample collector's initials; and
- 6. Remarks (preservatives, storage temperature, or special considerations in collection).

Sample containers should be filled and stored as follows:

- 1. Sample containers should be filled completely full to minimize headspace;
- 2. Sample containers should be tightly sealed and placed in re-sealable bags;
- 3. All sample containers should be placed in a cooler that is double-bagged to prevent liquid from leaking from the cooler during shipment or direct transport to the laboratory;
- 4. Pack leachate or other highly impacted samples in separate coolers;
- 5. If required, coolers are to be ice-filled to maintain the required sample temperature (see Table 5.1);

- 6. Prior to transport or shipment, the sampling team should inspect the condition of the samples and the COC documentation to verify that containers were correctly labeled; and
- 7. Affix a custody seal over the lid and secure the cooler by taping over the seal when shipping samples.

If shipped by commercial carrier, the following protocols should be followed:

- 1. Each ice chest should be labeled with the names, addresses, and telephone numbers of field personnel and laboratory personnel;
- 2. The original COC and field information forms should be double-sealed in plastic bags and taped to the inside of the cooler lid. The sampler should also retain a copy of these forms; and
- 3. Following federal and state regulations, samples should be marked as environmental samples and shipped (overnight).

6.9 Chain-of-Custody Documentation

COC procedures should be followed to establish a written record concerning sample transport from the sampling site to the laboratory. The sampling team leader should be responsible for the completion of the COC form and for the care and custody of the samples collected until they are transferred or dispatched properly. COC documentation should include the following information:

- 1. Site/project name and number;
- 2. Sample identification;
- 3. Date and time of sample collection;
- 4. Sample type;
- 5. Sample location;
- 6. Preservatives added (if appropriate);
- 7. Analysis requested;
- 8. Signatures, dates, and times involved in the chain of possession; and

9. Remarks relaying other information to the laboratory.

COC forms should be completed in duplicate. One copy of the COC should be retained by the sampling team and the other copy should be shipped/transported to the laboratory with the samples. Upon arrival at the laboratory, the laboratory sample custodian should sign for custody and return a copy of the COC form with the analytical data. Custody of the samples should then proceed according to the policies of the laboratory.

6.10 Disposal of Residual Material

In the process of collecting environmental samples, the sampling team should generate different types of wastes, including used personal protective equipment (PPE), disposable sampling equipment, and purged groundwater. Decontamination fluids should also be generated during each sampling event and should consist of deionized water, residual contaminants, and water with non-phosphate detergent. The volume and concentration of the decontamination fluid should be sufficiently low to allow disposal at the site or sampling area. Listed below are the procedures that are to be followed for handling the materials from each sampling event:

- Used PPE and disposable equipment should be double-bagged and placed in a municipal refuse dumpster, and
- Purge water should be discharged to the ground at least 20 ft from the wellhead and draining away from the well unless controlling documents specify handling purge water differently.

7.0 QUALITY CONTROL

This section describes field and laboratory quality assurance/quality control (QA/QC) and procedures.

7.1 Field Quality Control Samples

All field QC samples should be prepared in the same manner as groundwater samples with regard to analytical method and sample volume, container, and preservation. COC procedures for the QC samples should be the same as those used for groundwater samples.

7.1.1 Duplicates

Field duplicates are two samples taken concurrently from the same well and as close to each other in time as practical. Data from the duplicate pair are compared to evaluate the level of precision associated with the sampling and analytical methods. The duplicate sample should be collected by alternating filling between the regular sample and duplicate sample bottles while following the designated sampling order for the sampling bottle sets. The duplicate should then be sealed and shipped in the same manner as the groundwater sample. Unless specified otherwise in the controlling documents or by the WM representative, a minimum of one duplicate sample per sampling event should be collected, or one per 20 groundwater samples, whichever is greater.

7.1.2 Trip Blanks

Trip blanks are used to determine error introduced to organic samples by shipping or analytical procedures. Trip blanks are prepared by the laboratory and shipped with the other sample bottles. Trip blanks should remain sealed and should be identified on the COC form. Unless specified otherwise in the controlling documents or by the WM representative, a minimum of one trip blank should be provided per cooler containing volatile organic samples.

7-1

7.1.3 Equipment Blanks

Equipment blanks are required for all sampling events where non-dedicated sampling equipment is used. Equipment blank results are used to verify that proper protocols for collection of samples and decontamination of equipment were followed in the field. Equipment blanks are prepared by pouring laboratory-supplied deionized water into or over the sampling device after it has been properly decontaminated, and then pouring the water into the equipment blank sample bottles with the appropriate preservative. Equipment blanks are identified on the COC form using the designation EB-(#) and are sealed and shipped in the same manner as the groundwater samples. A minimum of one equipment blank should be taken each day that non-dedicated equipment is used.

7.1.4 Field Blanks

Field blank results are used to assess contamination from field conditions during sampling and should be prepared at a sampling location that is likely to be affected by field environmental conditions (e.g., near a gas well). Field blanks are prepared in the field at the sampling site by pouring laboratory-supplied deionized water into clean, empty sample containers provided by the laboratory. The blank should be unfiltered and observations that may explain anomalous results should be noted on the field information form. Field blanks are identified on the COC form using the designation FB-(#) and are sealed and shipped in the same manner as the groundwater samples. If not specified in the controlling documents or by the WM representative, a minimum of one field blank should be collected per sampling event, or one per 20 groundwater samples, whichever is greater.

7.2 Laboratory Quality Control Samples

Laboratory QC samples should include method blanks, matrix spikes, and surrogate recoveries equivalent to those described in EPA's SW-846 or its equivalent. Results from the QC samples should be used to verify laboratory accuracy and precision. The analytical laboratory should use standard procedures to monitor and document performance and to implement an effective program.

8.0 DATA REVIEW

Laboratory and field documentation records are to be reviewed as soon as practicable following each sampling event. The following sections describe the review of field documentation, laboratory data, and field QC data.

8.1 Review of Field Documentation

At a minimum, field records should be reviewed to evaluate consistency and QC information and to summarize the samples collected. The reviewer should utilize the groundwater data review and evaluation form supplied by WM to summarize any deviations from sampling protocols and the potential impact on data quality.

8.2 Review of Laboratory Data

Upon receipt of the analytical data from the laboratory, laboratory report(s) should be reviewed to determine compliance with method, procedural, and required QC protocols using the groundwater data review and evaluation form supplied by WM. Reported sample results should be collectively reviewed, including laboratory qualifiers, and summarized on the review form with respect to any QC deficiencies that have the potential to impact overall data quality.

8.3 Review of Field Quality Control Samples

Analytical results from field duplicates, equipment blanks, field blanks, and trip blanks should be reviewed and summarized using the groundwater data review and evaluation form supplied by WM. Results from duplicate pairs should be compared to determine whether sampling methods produce an acceptable level of reproducibility. Equipment blanks should be reviewed for detections above the laboratory reporting limit (RL) to determine if field decontamination procedures are adequate such that cross-contamination between sampling points is minimized and sample results are representative of groundwater quality. Field blanks and trip blanks should be reviewed for detections above the laboratory RL to determine if ambient field conditions or laboratory/shipping conditions, respectively, are affecting groundwater sampling results.

9.0 STATISTICAL APPROACH

This section describes the statistical approach for the indicator monitoring program, the detection monitoring program, and the assessment monitoring/corrective action programs. In accordance with permit condition 40 of permit no. 0290-S1-R4 and permit condition 15 of permit no. 0290-S4-R2, the sampling results for the Wildcat Creek sampling are not subject to the groundwater monitoring regulations within Chapter 12 of Rule 22 and will not be statistically evaluated.

9.1 Initial Data Screening

Groundwater data should be screened prior to statistical analysis to identify statistical outliers or excursions from normal. Suggested methods to identify outliers are described in EPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance* (EPA 2009). If suspect data are evident in the current monitoring period's data set, results should be verified with the analytical laboratory, and calculation and/or transcription errors should be checked. If any errors are found, they should be corrected in the database.

Data that are identified as outliers with independent evidence of an error should not be used in statistical computations and should be documented in the groundwater monitoring reports. Some low- or high-magnitude outliers may be flagged and excluded from statistical analysis even though evidence of error cannot be identified, in order to improve environmental protection. However, the decision to include or exclude potential outliers in background should be based on technical information and the professional judgment of the certifying professional.

9.2 Indicator Monitoring Program

Indicator monitoring data should be evaluated as follows:

• Chloride results should be compared to a well-specific limit calculated from baseline concentrations, as described below;

- Ammonia data should be compared to a fixed limit of 1 mg/L; and
- Trend tests should be applied to period-of-record data sets for each parameter on the indicator parameter list in Table 4.1.

Intrawell chloride limits are calculated using the average of historical chloride concentrations compiled prior to waste placement (i.e., "baseline" concentrations). Table 9.1 summarizes the data set date ranges for the indicator monitoring wells.

Table 9.1. Date ranges for historical baseline chloride data sets.

Wells	Date Range
LGW-8R, LGW-14R	August 2008 through February 2016
LGW-3R, MW-15 through MW-17, MW-19	June 2015 through February 2016
LGW-2, LGW-4 through LGW-7, LGW-9, LGW-10, MW-7N	July 2006 through May 2008

A "significant finding" must be declared if a well-parameter pair contains a statistically significant increasing trend at a 99% confidence level and a reported concentration of chloride greater than 10 times baseline or a reported concentration of ammonia greater than 1 mg/L.

9.3 Detection Monitoring Program

This section describes the statistical program design as required by §22.1203(f) through (i) of Rule No. 22. The statistical program design is based on Rule No. 22 requirements and EPA's Unified Guidance (EPA 2009). The sections below describe the formal retesting program and selected statistical methods for evaluating groundwater data for statistically significant increases (SSIs) (or statistically significant decreases [SSDs] in the case of pH). The selected statistical methods include the combined Shewhart-CUSUM control chart, prediction limits, or Double Quantification Rule. These tests, or their equivalent, should be used to statistically evaluate all constituents reported at verifiable, positive detections above the laboratory PQL in accordance with §22.1203(h)(5).

9.3.1 Retesting Program

The formal retesting program should follow a "1 of 2" retesting scheme. That is, when an initial value exceeds a background limit by a statistical test, the "1 of 2" strategy requires collection of up to two resamples prior to the next regularly scheduled monitoring event (Gibbons 1994). If retesting disconfirms the initial exceedance, then a declaration of an SSI/SSD is not required, as recommended by the Unified Guidance. Unless the initial (disconfirmed) exceedance can be documented as an outlier, error, or other anomaly, it should be retained in the database as a valid measurement in addition to the resample result. If retesting confirms the initial exceedance, the facility is required to declare a confirmed SSI/SSD.

9.3.2 Shewhart-CUSUM Control Charts with Retesting

Intrawell Shewhart-CUSUM control charts should be used to evaluate detected inorganic constituents with normally distributed background data sets (i.e., parametric). If an SSI/SSD is indicated by an initial statistical result, either by the observation or CUSUM, retesting should be performed in accordance with the facility's "1 of 2" retesting strategy. If the resample observation and CUSUM is within the limit, the SSI/SSD is disconfirmed. If the resample observation and/or CUSUM remain outside the control limit, then the SSI/SSD is considered confirmed and the notification procedures discussed in Section 10.4 must be followed.

9.3.3 Prediction Limits with Retesting

Intrawell prediction limits should be used to evaluate detected inorganic constituents with background data sets that are not normally distributed, or cannot be mathematically normalized (i.e., non-parametric). If an SSI/SSD is indicated by the initial statistical results, retesting should be performed in accordance with the facility's "1 of 2" resampling strategy. If the resample is within the limit, the SSI/SSD is disconfirmed. If the result remains outside the prediction limit, the SSI/SSD is considered confirmed and the notification procedures discussed in Section 10.4 must be followed.

9.3.4 Double Quantification Rule

VOC data will be evaluated using the Double Quantification Rule (DQR), where a confirmed SSI is declared if any VOC is detected at or above the laboratory RL in two consecutive sample and resample events.

9.3.5 Establishing and Updating Background Data Sets

Section 22.1203(e) of Rule No. 22 requires that background water quality be established for each constituent consisting of a minimum of four independent samples from each monitoring well. However, the Unified Guidance recommends 8 to 10 independent values for most statistical tests. Unless otherwise approved by DEQ, samples should be collected quarterly to account for seasonal and temporal variations and to ensure statistically independent values.

The Unified Guidance recommends updating initial background data sets to add more recent observations, when appropriate, since long-term fluctuation in background concentrations is possible even when a given well has not been impacted by a landfill. As a general rule, background should be evaluated for updating when there are at least 4 to 8 new compliance data. Methods used to update background should follow those described in Chapter 5 of the Unified Guidance.

9.4 Assessment Monitoring/Corrective Action Program

The selected statistical method for assessment monitoring and corrective action monitoring is the confidence interval, constructed with lower and upper confidence limits (i.e., LCLs and UCLs) around the mean, median, or upper percentile of a data set. The Unified Guidance and ASTM D7048 recommend using a minimum of eight values per compliance well to construct the confidence interval. The LCL and UCL are compared to an approved groundwater protection standard (GWPS) for assessment or corrective active, respectively. The currently approved GWPSs for Eco-Vista were established in 2014 and 2019 (DINs 65838, 65893, and 77318).

For assessment monitoring, a statistically significant level (SSL) must be declared if the LCL exceeds the GWPS and the notification procedures discussed in Section 10.5 must be followed. For corrective action, a SSL must be declared if the UCL exceeds the GWPS.

9.5 Handling of Non-Detect Data

In accordance with §22.1203(h)(5), each statistical test should account for non-detect data. For detection monitoring tests, non-detect data should be replaced with the median PQL. For assessment/corrective action tests, non-detect data should be replaced with ½ the median PQL value. Other methods may be used if appropriate.

10.0 REPORTING AND NOTIFICATION PROCEDURES

This section presents a schedule for submitting groundwater analytical data and groundwater monitoring reports and describes the DEQ notification procedures in the event that statistically significant results are identified.

10.1 Groundwater Analytical Data Submittal

Analytical data from each sampling event must be submitted directly to DEQ by the independent third-party laboratory as required by §22.1203(j)(4).

10.2 Indicator Monitoring Report Submittal

The indicator monitoring report must be submitted to DEQ on a monthly basis due at the end of each month following the month to which the report pertains.

Each report must include groundwater elevations, groundwater analytical data, a summary of statistically significant trends and associated graphical results, chloride and ammonia baseline comparisons, a discussion of the results, and the historical groundwater database.

In addition to the above deliverables, analytical and flow rate data collected from the leachate collection system (LCS) and leak detection system (LDS) as part of the Action Leakage Rate Contingency Plan (FTN 2021) must be included as an attachment to the report. The indicator monitoring reports must also include a list and figure of active and passive landfill gas well locations at the site and the operational status in accordance with DEQ correspondence dated May 5, 2016 (DIN 69516).

For monitoring periods where sampling is performed concurrently with the detection/assessment monitoring programs, then the list of deliverables in this section may be included in the same report presenting the results of detection/assessment monitoring.

10.3 Detection/Assessment Monitoring Report Submittal

Detection/assessment monitoring reports must be submitted to DEQ within 90 days from the date of the last recorded sampling event. The report must be certified by a qualified groundwater scientist and include the reporting requirements of §22.1203(k). Each report must also include a summary discussion of results collected since the last groundwater monitoring report submittal for corrective action monitoring. Additionally, reports will include laboratory results and graphs of detected parameters for the Wildcat Creek samples obtained during the sampling period.

10.4 Notification and Contingency Plan for Statistically Significant Increases (or Decreases)

In accordance with §22.1204(c)(1), if an SSI (or SSD, in the case of pH) is identified, Eco-Vista must, within 14 days, place a notice in the facility operating record identifying the SSIs/SSDs and notify the director of DEQ that the notice has been placed.

If in detection monitoring, then Eco-Vista must also:

- 1. Establish an assessment monitoring program meeting the requirements of §22.1205 within ninety (90) days, or
- 2. In accordance with §22.1204(c)(3), demonstrate that a source other than a landfill caused the contamination or that the statistically significant result was due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The alternate source demonstration must be certified by a qualified groundwater scientist, placed in the facility operating record, and submitted to DEQ within 90 days of the finding.

10.5 Notification and Contingency Plan for Statistically Significant Levels Above a GWPS

In accordance with §22.1205(g), if one or more assessment monitoring constituents is detected at an SSL above a GWPS, Eco-Vista must, within 14 days, place a notice in the facility operating record identifying the constituents that have exceeded the GWPS at an SSL and notify the director of DEQ and all appropriate local government officials that the notice has been placed in the operating record.

- 1. Eco-Vista must also:
 - i. Characterize the nature and extent of the release by installing additional monitoring wells as necessary;
 - ii. Install at least one additional monitoring well at the facility boundary in the direction of contaminant migration and sample this well in accordance with §22.1205(d)(2);
 - iii. Notify all persons who own the land or reside on the land that directly overlies any part of the contaminant migration if contaminants have migrated off-site if indicated by sampling of wells in accordance with §22.1205(g)(1); and
 - iv. Initiate an assessment of corrective measures as required by §22.1206 within ninety (90) days, and will be based on the findings of a completed nature and extent investigation; or
- 2. In accordance with §22.1205(g)(2), following the identification of a confirmed SSL above a GWPS, the facility may demonstrate that a source other than a landfill caused the contamination or that the statistically significant result was due to an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The alternate source demonstration must be certified by a qualified groundwater scientist, placed in the facility operating record, and submitted to DEQ within 90 days of the finding.

10.6 Return to Detection Monitoring

If groundwater results for the AMC list are determined to be at or below background values for two consecutive monitoring events, Eco-Vista must notify DEQ of this finding and may return to detection monitoring in accordance with §22.1205(e).

11.0 SELECTED REFERENCES

- Adamski, J.C., J.C. Petersen, D.A. Freiwald, and J.V. Davis. 1995. Environmental and Hydrologic Setting of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma [US Geological Survey Water Investigations Report 94-4022]. Little Rock, AR: US Geological Survey, National Water-Quality Assessment Program.
- APC&EC [Arkansas Pollution Control & Ecology Commission]. 2008. *Rule No. 22, Solid Waste Management Rules*. Little Rock, AR: Arkansas Pollution Control and Ecology Commission.
- ASTM International. 2004. D7048-04: Standard Guide for Applying Statistical Methods for Assessment and Corrective Action Environmental Monitoring Programs. West Conshohocken, PA: ASTM International. ASTM International. 2015. D5088-15a: Standard Practice for Decontamination of Field Equipment Used at Waste Sites. West Conshohocken, PA: ASTM International.
- CRC [Chimney Rock Consulting]. 2013a. Hydrogeologic and Geotechnical Investigation Report, Major Permit Modification, Lateral Expansion Area, Eco-Vista Landfill. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 63689]. Little Rock, AR: Chimney Rock Consulting. First published January 2013; revised October 2013.
- ———. 2013b. Volume 3, Supplemental Hydrogeologic and Geotechnical Investigation Report, Major Permit Modification, Lateral Expansion Area, Eco-Vista Landfill. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 64882]. Little Rock, AR: Chimney Rock Consulting. August 2013.
- Cunningham, W.L., and C.W. Schalk, comps. 2011. *Groundwater Technical Procedures of the US Geological Survey* [USGS Techniques and Methods 1–A1]. 151 pp. <u>https://pubs.usgs.gov/tm/1a1/</u>.
- EPA [United States Environmental Protection Agency]. 1986a. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document [EC-G-2002-130, EPA/530/SW-86/055].
 Washington, DC: US Environmental Protection Agency, Office of Waste Programs Enforcement, Office of Solid Waste and Emergency Response. [Also published in EPA/NWWA series by National Water Well Association, Dublin, OH.] 328 pp.
- ———. 1986b. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd ed. [EPA Publication SW-846]. <u>https://www.epa.gov/hw-sw846/sw-846-compendium</u>.
- ———. 1993. Solid Waste Disposal Facility Criteria, Technical Manual [EPA 530-R-93/017].
 Washington, DC. US Environmental Protection Agency, Office of Solid Waste and Emergency Response. November 1993.

- FTN [FTN Associates, Ltd.]. 2020. Geotechnical and Hydrogeological Investigation Summary Report, Eco-Vista, LLC, Class 1 Landfill, Springdale, Arkansas. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality on July 20, 2020 [DEQ DIN 78620]. Little Rock, AR: FTN Associates, Ltd.
- ———. 2021. Action Leakage Rate Contingency Plan for Cells 1 13 and LCS / LDS Monitoring and Characterization Plan. Little Rock, AR: FTN Associates, Ltd.
- GEC [Genesis Environmental Consulting, Inc.]. 1997. Hydrogeological and Geotechnical Report, Volume 3 of 3, Permit Modification, Solid Waste Class 1 Landfill, Tontitown, Arkansas.
 Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 4581]. Little Rock, AR: Genesis Environmental Consulting, Inc.
- Geraghty & Miller, Inc. 1986. *Hydrogeologic Assessment of the Sunray Landfill*. Prepared for Kawneer Company, Inc. Submitted to the Arkansas Department of Energy and Environment, Division of Environmental Quality [DEQ DIN 29957]. Baton Rouge, LA: Geraghty & Miller, Inc.
- Gibbons, R.D. 1994. *Statistical Methods for Groundwater Monitoring*. New York: John Wiley & Sons, Inc.
- Gillip, J.A., J.B. Czarnecki, and D.N. Mugel. 2008. Potentiometric Surfaces in the Springfield Plateau and Ozark Aquifers of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006 [Scientific Investigations Report 2007-5253]. Reston, VA: US Geological Survey. Prepared in cooperation with the Kansas Water Office.
- Helsel, D.R., and R.M. Hirsch. 2002. Statistical Methods in Water Resources [USGS Techniques of Water-Resources Investigations Book 4, Chapter A3]. Reston, VA: US Geological Survey. 524 pp. <u>https://pubs.usgs.gov/twri/twri4a3/html/toc.html</u>.
- Imes, J.L., and L.F. Emmett. 1994. Geohydrology of the Ozark Plateaus Aquifer System in Parts of Missouri, Arkansas, Oklahoma, and Kansas (Regional Aquifer-System Analysis—Central Midwest) [US Geological Survey Professional Paper 1414-D]. Washington, DC: United States Government Printing Office.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas [USGS Scientific Investigations Report 2014–5149]. Prepared in

cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp. <u>http://dx.doi.org/10.3133/sir20145149</u>.

- Puls, R.W., and M.J. Barcelona. 1996. Groundwater Issue Paper: Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures [EPA/540/S-95/504]. Washington, DC: US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response.
- WM GPP [Waste Management Groundwater Protection Program]. 2012. Environmental Media Sampling Standard, Appendix 1, Groundwater Sampling. March 2012.

APPENDIX A

Well Logs, Construction Diagrams, and Surveys

)	MONITORING WELL INSTA Job Name <u>Sunray/USA Waste Tontitown</u> Job Number 9750 Installation Date Datum Elevation <u>1298.59</u> Datum for Water Level Measurement <u>TOC</u> Screen Diameter & Material <u>2" PVC</u> Riser Diameter & Material <u>2" PVC</u> Granular Backfill Material <u>10/20 Sand</u> Drilling Method <u>Air Rotary</u> Dr	Well Number <u>MW-IN</u> <u>9/5/97</u> Location <u>N-1249.5592 E1271.3512</u> Surface Elevation <u>1295.59</u> Slot Size <u>0.010</u> Borehole Diameter <u>6"</u> GEC Representative <u>DWM</u>
	Lockable Cover Vented Cap Well Protector	Stickup: 3'
·	Ground Surface (Top of Clay)	
	Flush Joint Depth to Top of Upper _{86.5} ' bgs Granular Material Depth to Top of _{87.5} ' bgs Bentonite Seal Depth to Top of Lower	Length of Solid riser: <u>97.5'</u> Total Depth of Monitoring Well: <u>117.5'</u> Below TOC
	Granular Material <u>91.0' bgs</u> Scr ee n	Length of Screen
	2" Cap	Length of Backfilled Borehole: 0.5 Backfilled with:
-	Bentonite (Not	to Scale) Stabilized water levelfeet below datum. Measured on
)	GEC GENESIS ENVIRONMENTAL CONSULTING, INC. 11400 West Baseline Road Little Rock, AR 72209	MONITORING WELL INSTALLATION RECORD PROJECT NUMBER: 9750 WELL NUMBER: MW-1N DRAWING NUMBER: CHECKED BY: AES

Boring	#: MW-1N	······································	Location:	N -1249 54	592 E 1271.3512
	/2/97	GEC // GENESIS		ethod: AIR	
levatio	on: 1295.59	11400 West Baseline Rood Little Rock, AR 72209	Driller: AN		
Job No.	9750	· · · · · · · · · · · · · · · · · · ·	Logged B	y. DM	(pg.1)
Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks
		RED SILTY CLAY W/CHERT CHERT LENS RED SILTY CLAY W/CHERT WEATHERED CHERT WEATHERED CHERT WITH RED CLAY, EASY DRILLING HARDER DRILLING CHERT LOOSE, CAN NOT KEEP OPEN			BEGINING W/AIR DUE TO NO AUGERS

;

Boring #: MW-1N		Location: N -1249.55	592 E 1271.3512
Dote: 9/2/97	GEC GENESIS	Drilling Method: AIR	
<i>levation: 1295.59</i>	11400 West Boseline Rood Little Rock, AR 72209	Driller: ANDERSON	
Job No.: 9750		Logged By: DM	(pg.2)
Elev. Depth	Classification	Lithology Sample or Box No.	Remorks
	HARD SOME MOISTURE LIMESTONE W/CHERT HARD WATER INCREASING GOOD WATER 107-115' TD 115'		WATER @ 80' 9/5/97 ON RODS

÷

MONITORING WELL INS Job Name <u>Sunray/Tontitown</u> Job Number <u>9750</u> Installation Da Datum Elevation <u>1289.53</u>		Wall Mumber MV	V-2N .5690 E2391.43
Datum Elevation 1289.53	Surfac	ce Elevation 1286.53	
Jotum for Water Level Measurement 100	3		
Screen Diameter & Material <u>2" PVC</u> Riser Diameter & Material <u>2" PVC</u>		Slot Size <u>0.010"</u> Borehole Diamet	ter 6.5 Nomn
Granular Backfill Material GRANULAR		SEC Representative	M/AS
Drilling Method _ Air Rotary	_Drilling Co	ontractor Anderson	
Lockable Cover —	7		
Vented Cap —	1	1.1.2.	
Well Protector —	1th		
	101		
Ground Surface	S	tickup: <u>3'</u>	
(Top of Clay)			DURIRUA
Solid Riser		1	
		Length of Solid	
Flush Joint		riser: 99.5'	Total Depth
Depth to Top of Upper g1' bgs Granular Material			Monitoring
Depth to Top of 92' bgs			Well: 119.50' Below T
	Film.		Below I
Depth to Top of Lower			
Granular Material <u>95' bgs</u>			
		Length of Screen	
Screen —		20'	2
	题 3 -		
	- Xi	Length of Back	filled
		Borehole: 1.5	
		Backfilled with:	
Grout 2" Cap			
	at the Conda		3. S. S. S. S.
Bentonite (N	ot to Scale)) Stabilized water le below datum.	evelf
Gronular Backfill		Measured on	
CEC // GENESIS		ITORING WELL INSTALLATION	

\$

Boring #: MW-2N		Location:	N -277.56.	90 E 2391.4363
Dote: 9/15/97			ethod: AIR	
Ievation: 1286.53	11400 West Boseline Rood Little Rock, AR 72209	Driller: ANDERSON DEAN/GRAY		
Job No.: 9750		Logged B		(pq.1)
Elev. Depth	Classification	Lithology	Sample or Box No.	Remarks
	RED SILTY CLAY W/CHERT			AIR ROTARY TRI CONE BIT

Boring #: MW-2N		Location:	N -277.56	90 E 2391.4363
Date: 9/15/97	GEC / GENESIS		ethod: AIR	
Sevation: 1286.53	11400 West Baseline Road Little Rock, AR 72209	Driller: ANDERSON DEA		
Job No.: 9750		Logged B	Y. DM	(pq.2)
Elev. Depth	Classification	Lithology	Somple or Box No.	Remarks
	HARD LIMESTONE CHERT INCREASE DRY 102'-108' SMALL FRACTURE SOME WATER TD 118'			NEW BIT REAM HOLE TO 6 1/2"

ſ	MONITORING WELL INSTA	LLATION RECORD
	Job Name Sunray/Tontitown	Well Number_MW-3N
	Job Number 9750 Installation Date	<u>9/11/97</u> Location <u>N1391.7507 E1927.1853</u>
)	Datum Elevation <u>1222.04</u> Datum for Water Level Measurement <u>TOC</u>	Surface Elevation <u>1219.04</u>
	Screen Diameter & Material 2 [°] PVC	
	Riser Diameter & Material <u>2" PVC</u>	Borehole Diameter 6.5"
	Granular Backfill Material <u>10/20</u> Sond	GEC Representative <u>AS</u>
	Drilling Method <u>Air Rotory</u> Dr	illing Contractor Anderson
	Lockable Cover	
	Vented Cap	
	Well Protector	
	Ground Surface	Stickup: <u>3'</u>
	(Top of Clay)	
	Solid Riser	
		Length of Solid
- Carrow	Flush Joint	riser: 61.5'
20	Depth to Top of Upper 54' bgs	Total Depth of
-	Depth to Top of 55' bgs	Monitoring Well: 71.5'
	Bentonite Seal	Below TOC
	Death to Top of Lower	
	Depth to Top of Lower Granular Material <u>56.5'</u> bgs	
	Screen	Length of Screen
		10'
	2" Cap	Length of Backfilled
		Borehole: 1.5
		Backfilled with:
		CUTTINGS (CAVE IN)
	Grout	
	Bentonite (Not t	o Scale) Stabilized water levelfeet
-	Granular Bockfill	b c low datum.
		Measured on
j	GEC // GENESIS ENVIRONMENTAL CONSULTING, INC.	MONITORING WELL INSTALLATION RECORD
	ENVIRONMENTAL CONSULTING, INC.	PROJECT NUMBER: 9750
	11400 West Baseline Road	WELL NUMBER: MW-3N DRAWING NUMBER: CHECKED BY: AES
	// Little Rock, AR 72209	DRAWING NUMBER: CHECKED BY: AES

`;

Boring #: MW-3N	· · · · · · · · · · · · · · · · · · ·	Location:	N 1391 750	7 E 1927.1853
Date: 9/10/97	GEC GENESIS		ethod: AIR I	
Elevation: 1219.04	11400 West Boseline Rood Little Rock, AR 72209	Driller: AN		
Job No.: 9750		Logged B	Y AS	(pq.1)
Elev. Depth	Classification	Lithology	Sample or Box No.	Remarks
	RED SILTY CLAY W/CHERT MED PLASTIC MORE LIMESTONE (15'18') WEATHERED, SOME CHERT DRY 26' CLAY BALLS, SOME CHERT, CLAY SILTY MED PLASTIC, MOIST 37' RED SILTY CLAY W/CHERT AND LS VERY MOIST 55' 1 FT LS/CHERTY 58' BACK ONTO ROCK 61' HIT H20, SOME PRODUCTION SMALL FRACTURES 65' INCREASED CHERT, SLOWER DRILLING GOOD H20 68' CHERT STILL CAUSING SLOW DRILLING 68.5' VERY HARD CHERT TD 70'			

÷

ſ	MONITORING WELL INSTA			
(And the second	Job Name <u>Sunray/Tontitown</u> Job Number <u>9750</u> Installation Date	9/17/97	Well Number_MV _Location_N190	5.79 E -655.49
. 1	Datum Elevation <u>1250.84</u>		levation <u>1247.84</u>	
<i>₹</i>	Datum for Water Level Measurement <u>TOC</u> Screen Diameter & Material <u>2" PVC</u>		Slot Size 0.010	
	Riser Diameter & Material 2 PVC		Borehole Diame	ter <u>8"</u>
	Granular Backfill Material <u>10/20 Sand</u> Drilling Method <u>Air Rotary</u> Dr	GEC	Representative 🚣	AS
	Drilling Method Air Rotary Di	illing Contro		
	Lockable Cover		·	
	Vented Cap —	\ ·		
	Well Protector			
	1		גי	
	Ground Surface	Stickuj		
•	(Top of Clay)		LEBER DE PRODUCTION DE LA COMPACIÓN DE LA COMP	PR CONTRACTOR OF THE OWNER OF THE
	Solid Riser			
- And the second	Flush Joint		Length of Solid riser: <u>98</u> '	
	Depth to Top of Upper 89.5' bgs			Total Depth of Monitoring
	Depth to Top of 90' bgs			Well: 108'
	Bentonite Seal			Below TD
	Depth to Top of Lower			
	Granular Material <u>92' bgs</u>			
			Length of Screen	· · ·
	Screen		<u>10'</u>	
	2" Cap		Length of Back	filled
			Borehole: <u>1'</u>	
			- Chert cuttings	·
	Grout			
	Bentonite (Not	to Scale)	Stabiliz e d water le	evelfee
James .	Granular Backfill		below datum.	
1			Measured on	
/	GEC // GENESIS ENVIRONMENTAL CONSULTING, INC.		IG WELL INSTALLATION	
	11400 West Baseline Road		PROJECT NUMBER: 9 WELL NUMBER: M	

	Boring			Location	19057	0 5 15 15
	Date: 9/					9 E -655.48
C TONG					ethod: AIR	ROTARY
	A	n: 1247,84	// 11400 West Becathe Road Little Rock, AR 72200	Driller: Flip	ppin	•
	Job No.:	9750		Logged B	Y AS	(pg.1)
	Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks
						STARTED WITH
		-		<u> </u>		8" BIT
-		-	· · · ·			
		10	RED SILTY CLAY	A-A-A-A		
·			SOME CHERT DRY			
				<u> </u>		
	•	-				
				<u> </u>		
		20				
•	1		23'-27' YELLOW RED,	<u> </u>		
	'		WEATHERED LIMESTONE, ZONE	<u> </u>		
			•			
			RED SILTY CLAY	<u>A-A-A-</u> A		
			SOME CHERT DRY	- A A A A		
			SOME CHERT DRT			
(THE)	a.	7		AAAA		
	<u>)</u> .					
	all and a second	40	· · · · · · · · · · · · · · · · · · ·			
		50	RED CLAY MOD PLASTIC			
		-	SOME CHERT			÷
				4-4-4-4-		
1		-				
		60		<u> </u>		
		-			· · ·	
		-	66' SOFT ROCK, LIMESTONE,			
			WEATHERED SOME CHERT	<u> </u>		
		70				ADDING H20 TO
		//		<u> </u>		CLEAR HOLE
		_				
				$\begin{array}{c} \Delta - \Delta - \Delta - \Delta \\ \hline - \Delta - \Delta - \Delta - \Delta \end{array}$		
				<u> </u>		
			CLAY, RED, INTERBEDDED			
-	-	_	SOME CHERT	$\Delta \Delta \Delta \Delta$		
	0	—	· · · ·			
-		-				
				$\Delta \Delta \Delta \Delta \Delta$		
		——	•	4444		
-				<u>A A A A</u>		

	Boring	: MW-7N		Location: N 1905.79 E - 655.48 Drilling Method: AIR ROTARY		
	Date: 9/		GEC / DYVROMMENTAL CONSULTING, INC.			
and the second		: 1247.84	11400 West Bosethin Road Little Rock, AR 72200	Driller: Flip		
	Job No.:	9750		Logged B		(pq.2)
	Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks
		90 90 100 110 120	CLAY, RED INTERBEDDED CHERT BEDROCK, CHERTY LIMESTONE H20 98'-100' 105' TD		Bedrock Groundwater	

ŝ

Note: Depths to bedrock and groundwater were added

ſ	MONITORING WELL INSTALLATION DECORD								
	MONITORING WELL INSTALLATION RECORD								
Conserved.	Job Name Sunray/Tontitown Well Number MW-8N								
. (Job Number 9750 Installation Date 9/18/97 Location N2334.7197 E26.5031 Datum Elevation 1191.76 Surface Elevation 1188.76 Datum for Water Level Measurement TOC								
)									
	Screen Diameter & Material 2 PVC Slot Size 0.010								
	Riser Diameter & Material 2 [°] PVC Borehole Diameter 8 [°]								
	Granular Backfill Material 10/20 Sond GEC Representative DM								
	Drilling Method Air Rotary Drilling Contractor Flippin								
	Lockable Cover								
	Vented Cap -								
	Well Protector								
	Stickup: <u>3'</u>								
	Ground Surface (Top of Clay)								
	(100 01 010 J. Million of Mi								
	Solid Riser								
an and a second	Flush Joint Length of Solid riser: 53'								
J	Granular Material Monitoring								
	Depth to Top of 38' bgs Well: 73'								
	Bentonite SediBelow TOC								
	Depth to Top of Lower								
	Granular Material 41' bgs								
	Screen Length of Screen								
	2" Cap Length of Backfilled								
	Borehole: 0								
	Backfilled with:								
	Grout								
	Bentonite (Not to Scale) Stabilized water level feet								
	Bentonite (Not to Scale) Stabilized water levelfeet below datum.								
	Granular Bockfill Measured on								
4									
	11400 West Baseline Road Little Rock, AR 72209 DRAWING NUMBER: MW-8N CHECKED BY: AES								

÷

Boring # : MW-8N Date: 9/18/97 Elevation: 1188.76		#: MW-8N	· · · · · · · · · · · · · · · · · · ·	Location: N 2334.7197 E 26.5031 Drilling Method: AIR ROTARY Driller: FLIPPIN				
			GEC / GENESIS					
	Job No.: 9750			Logged B		(pg.1)		
	Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks		
			RED, SILTY CLAY W/WEATHERED CHERT AND LIMESTONE 41' BEDROCK LIMESTONE, CHERTY AND FOSSILIFEROUS 50–55' H20 FILLED FRACTURE					

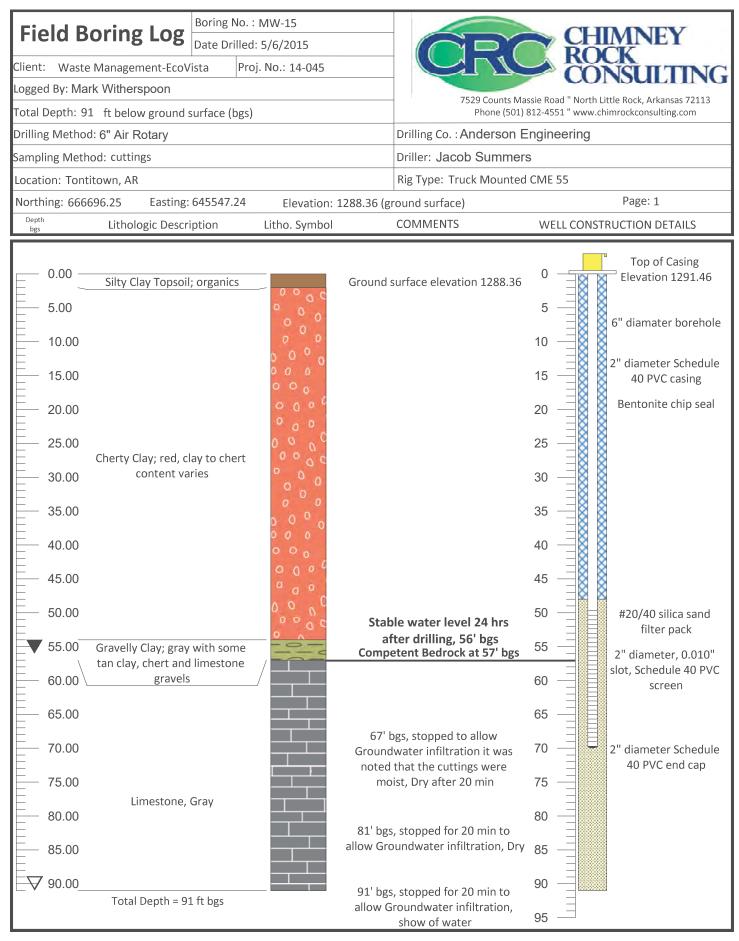
-		-			
	MONITORING WELL INST	Al	LATION RECOR	D	
			Well Numb		V10N
-SECOND	Job Number 9750Installation Date				
	Datum Elevation	-	_Surface Elevation 11		.0000 _L1100.0000
Л	Datum Elevation 1130.00		_Surface Elevation	90.00	· · · · · ·
	Datum for Water Level Measurement TOC			0.010	
	Screen Diameter & Material 2" PVC		Slot_Size .		
	Riser Diameter & Material 2" PVC				ter 6.5-6" Nomnol
	Granular Backfill Material 10/20 Sana		GEC Represent		45
	Drilling Method Air Rotary D	ril	ling Contractor Ander	son	
ŀ					
	Lockable Cover —				
	Verted Can -				
	Vented Cap				
	Well Protector	7	<u>) </u>		
		1			
			Stickup: <u>3'</u>		
	Ground Surface				
	(Top of Clay)	0	Contraction and	<u>ANNA</u>	
ł		8			
- 1		8			
		8			
	Solid Riser	Я			
		8			
		8	Length of	Solid	,
Anew	Flush Joint	オ	riser: 89'		
.,	Depth to Top of Upper _{80' bgs}	1			Total Depth of
		4			Monitoring
	Depth to Top of 81' bgs				Well: 109'
		1			Below TOC
	Depth to Top of Lower Granular Material <u>83' bgs</u>				
	Granular Material 83 bgs	14	N67.5		
		곍			
]			
				-	
	Screen		Length of	Screen	
		1	20		
		2			· · ·
		<u>.</u>			<u>1</u>
	2" Cap		Length o		filled
		27	Borehole:	0	
		1	Backfilled	with:	
		e			
	Grout				
	Bentonite (Not	to	o Scale) Stabilized w	rater le	evelfeet
			b el ow datu	n.	
	Gronular Backfill		Measured a	.	
- 1					
L			MONITORING WELL INST.	LLATION	RECORD
	GEC / ENVIRONMENTAL CONSULTING, INC.		PROJECT NUM	BER: 9	750
	11400 West Baseline Road		WELL NUN		
	Little Rock, AR 72209		DRAWING NUMBER:		CHECKED BY: AES

Boring #: MW-10	CEC // CENESIS	Location: N 2210.5939 E 1139.0099				
Date: 9/15/97	ENVIRONMENTAL CONSULTING, INC.	Drilling Method: AIR ROTARY Driller: ANDERSON				
Elevation: 1190.60	11400 West Boseline Rood Little Rock, AR 72209					
Job No.: 9750	ч. Талана (1997)	Logged B	Y AS	(pg.1)		
Elev. Depth	Classification	Lithology	Sample or Box No.	Remarks		
	RED, BROWN, SILTY CLAY, SOME CHERT AND LIMESTONE DRY DRY AS ABOVE, WEATHERED LIMESTONE AND CHERT 15' SOME WEATHERED LIMESTONE CHERTY 18' SOME WEATHERED LIMESTONE CHERTY 23' INCREASED CLAY DRY RED CLAY MOD PLASTIC, SOME CHERT MOIST 35' CHERTY, CLAY, MOIST AS ABOVE 40' RED CLAY, MOIST SOME CHERT VERY PLASTIC 48' SAME AS 40 50'-51' DRILLING HARDER BEDROCK 53' SWITCH TO HAMMER 6" 62' DRY, CHERTY LIMESTONE 71' LITTLE, SMALL FRACTURE CHERTY LIMESTONE 82' NO ADDITIONAL H20			 		

						· · ·				
Boring #: MW-10N				CENESIS	Location: N 2210.5939 E 1139.0099					
10	Date: 9/			Drilling Method: AIR ROTARY Driller: ANDERSON						
	_	1190.60	11400 West Boseline Rood Little Rock, AR 72209							
	Job No.:	9750			Logged B	Y. AS	(pq.2)	1		
	Elev.	Depth	Classif	ication	Lithology Sample or Box No.		Remorks	<u>.</u>		
		90 100 110	TD 106' END FROM 91' TO PRIOR TO WE	OF DRILLING 106' OVER DRILLED LL INSTALLATION			H20 COMING TO HOLE FROM 71' ZONE AT RATE OF <u>~</u> .1 GAL∕MIN			

6	MONITORING WELL INSTALLATION RECORD Job Name Sunray/Tontitown Job Number 9750 Job Number 9750 Job Number 1284.52 Datum Elevation 1284.52 Datum for Water Level Measurement TOC Screen Diameter & Material 2" PVC Riser Diameter & Material 2" PVC Borehole Diameter 8" to 6" Granular Backfill Material 10/20 Sand Drilling Method Air Rotary
	Lockable Cover Vented Cap Well Protector Ground Surface
Ç	(Top of Clay) Solid Riser Solid Riser Length of Solid Flush Joint Length of Solid Depth to Top of Upper 98' bgs Total Depth of Depth to Top of 99' bgs Well: 129.5' Bentonite Seal 99' bgs
	Depth to Top of Lower Granular Material <u>102' bgs</u> ScreenLength of Screen 20'
	2" Cap Length of Backfilled Borehole: Backfilled with:
	Grout Grout Gronular Backfill Granular Backfill
(~~	GEC GENESIS ENVIRONMENTAL CONSULTING, INC. Measured on 11400 West Baseline Road Little Rock, AR 72209 MONITORING WELL INSTALLATION RECORD PROJECT NUMBER: 9750 WELL NUMBER: MW-11N DRAWING NUMBER: CHECKED BY: AES

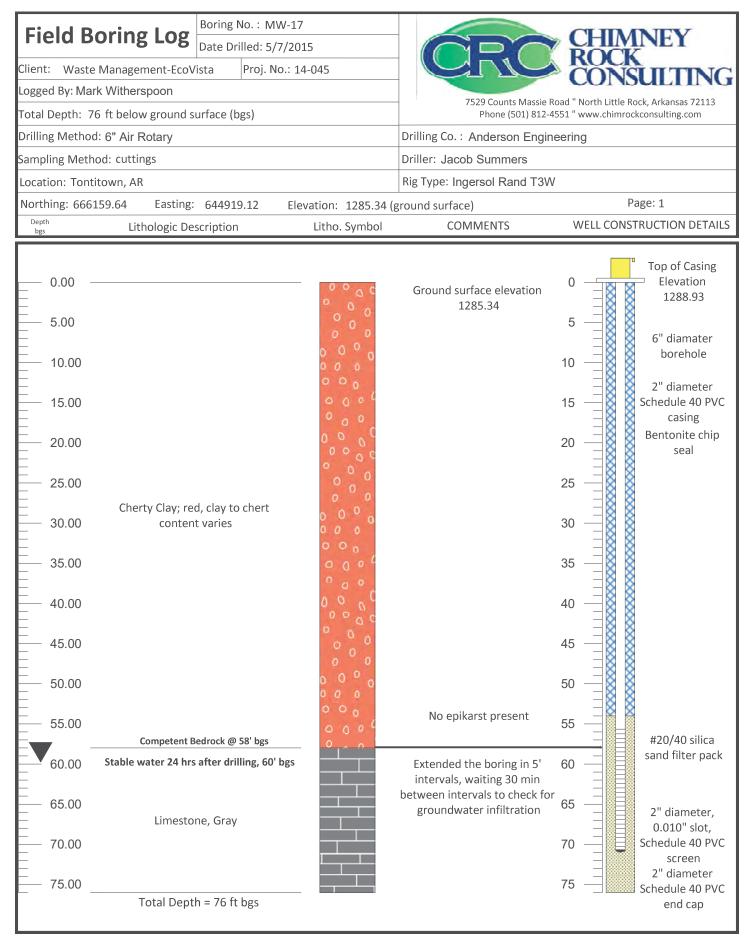
ŀ

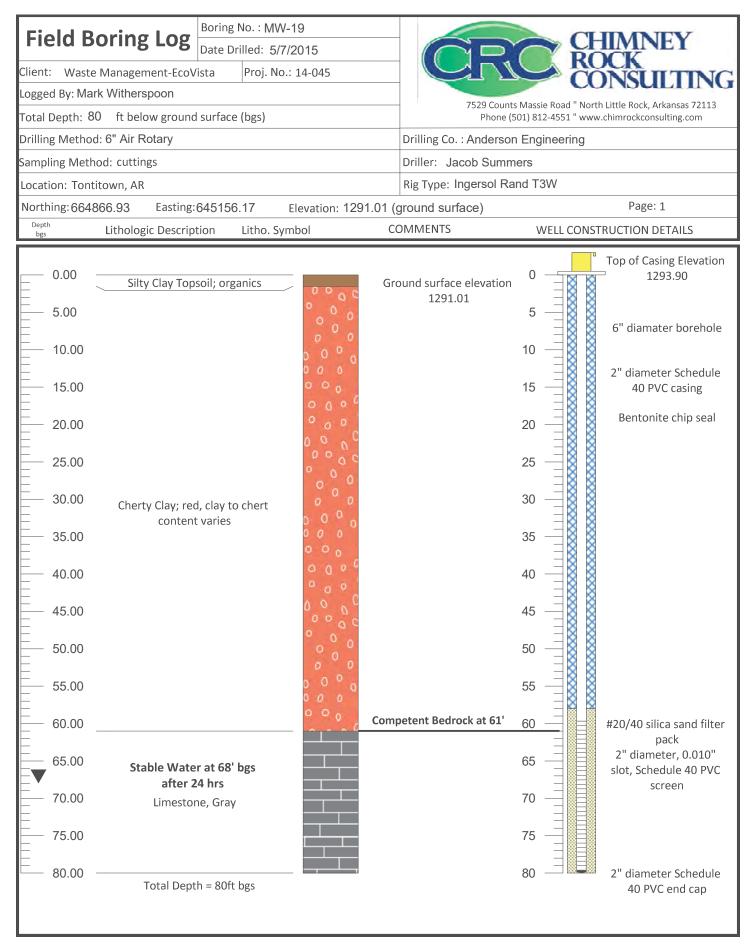

	Boring #	: MW-11N		Location:	N = 1.385.94	411 E -1166.3449
Contra	Date: 9/				ethod: AIR	
<i>F</i>	Elevation	: 1281.52	11400 West Boseine Rood Little Rock, AR 72209		PPIN-BROS	
لمر	Job No.:	9750		Logged B		(pq.1)
	Elev.	Depth	Classification	Lithology	Sample or Box No.	Remarks
			RED, CLAY, SOME CHERT DRY SOME SILT RED CLAY, CHERTY RED CLAY, CHERTY 66'-BEDROCK, CHERTY LIMESTONE			8 INCH BIT STARTED USING H2O TO CLEAN OUT HOLE 66' SWITCHING TO 6" HAMMER

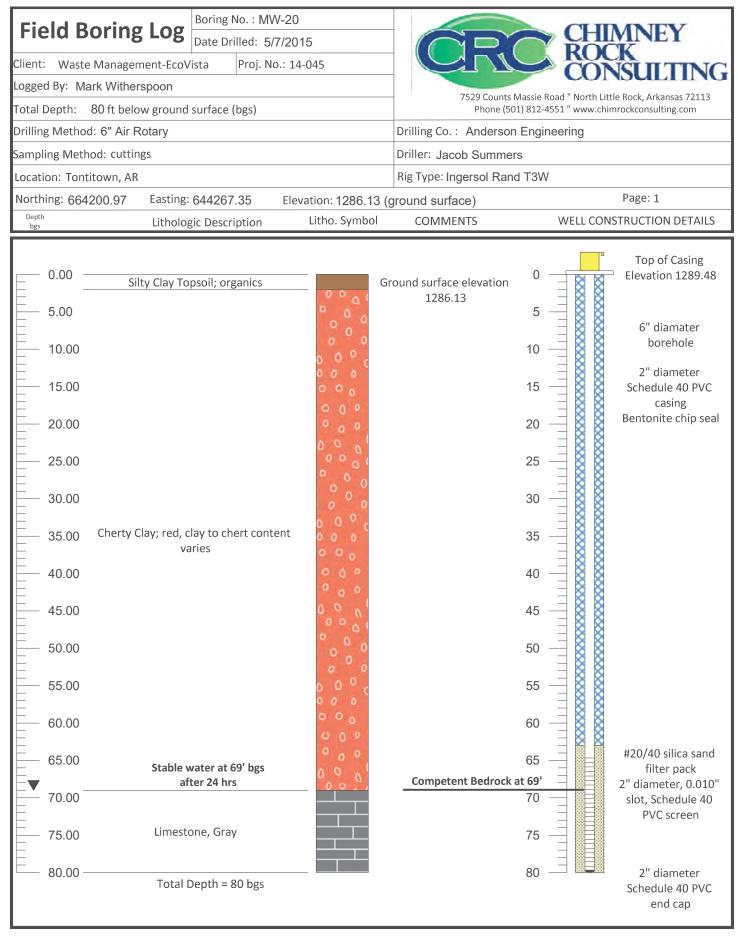
÷

			r		
Boring #: MW-11N				411 <u>E -1166.3449</u>	
Dote: 9/16/97			thod: AIR		
Elevation: 1281.52	// LRUe Rock AR 72209		Driller: FLIPPIN-BROS		
Job No.: 9750	-	Logged By	AS	(pq.2)	
Elev. Depth	Classification	Lithology	Sample or Box No.	Remarks	
	83-CHERTY LIMESTONE 103-CHERTY, LIMESTONE H20 ~ 110-116 VERY LITTLE H20 123 YIELDING ~ 1/4 GAL/MIN 126.5 TD			HOLDING TO TRY TO GET CHANGE IN TRANSDUCER IN OLD MONITOR WALL	

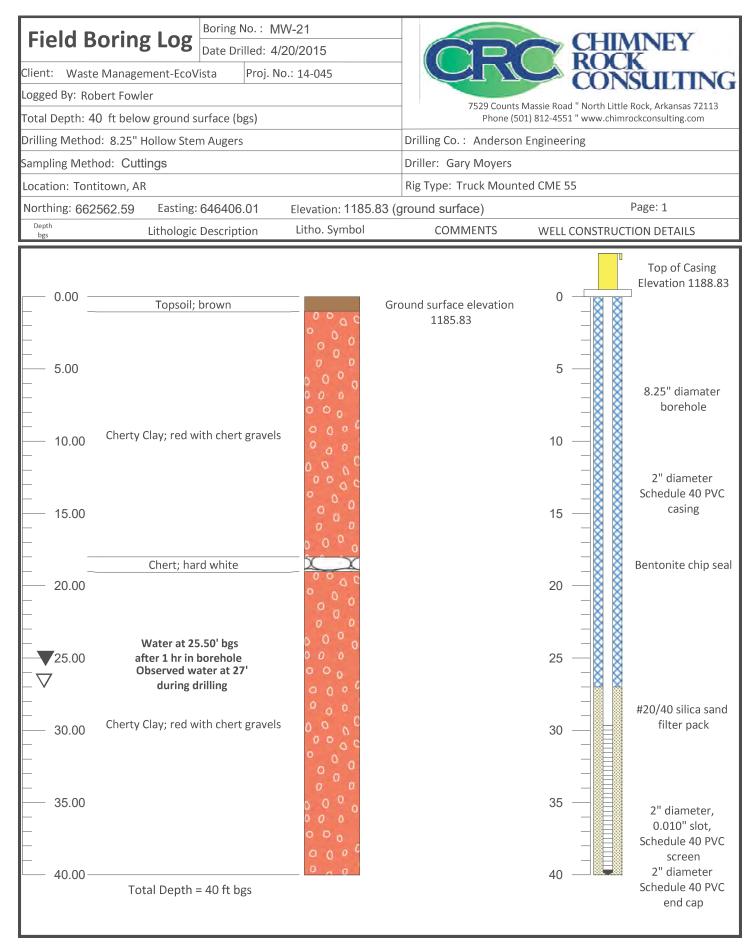
•


¢

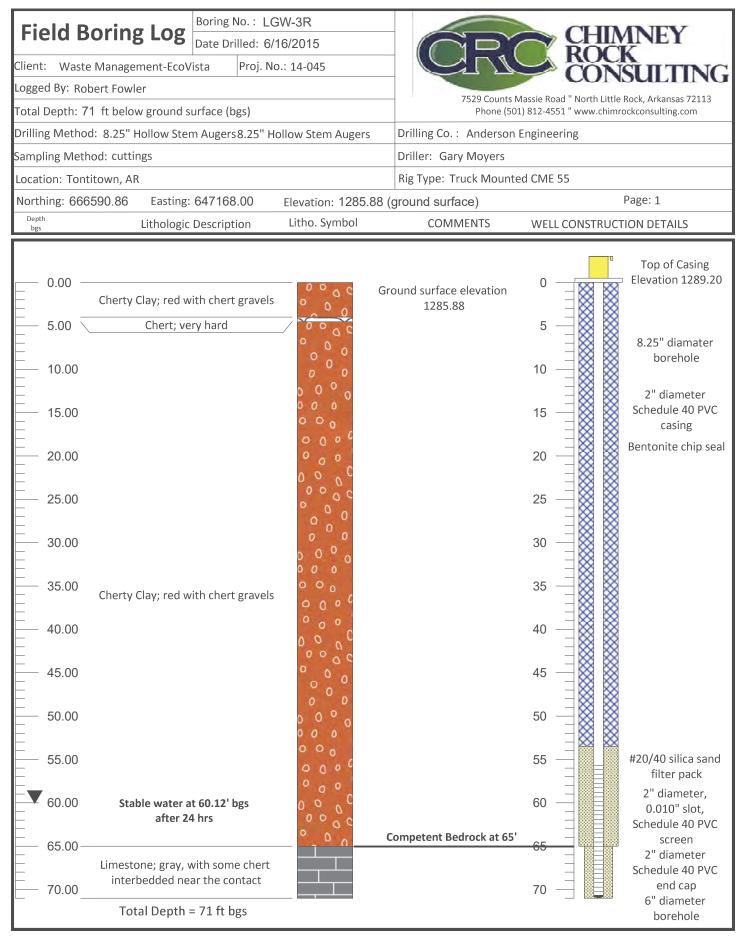

Quality Groundwater & Environmental Consulting


	ald B	oring Log	Boring No.: MV	V-16			C		NEV
			Date Drilled: 5/7	/15			RC		INEI
Client	:: Waste	Management-EcoVis	sta Proj. No	.: 14-045		CINC	55	N	ÌIITING
Logge	ed By: Marl	k Witherspoon			7529 Counts Massie	e Road " North	Little Ro	ock, Arkansas 72113	
Total Depth: 115 ft below ground surface (bgs)									kconsulting.com
Drillin	ng Method	: 6" Air Rotary			[orilling Co. : Anderson Engi	ineering		
Samp	ling Metho	od: cuttings			0	oriller: Jacob Summers			
	ion: Tonti					Rig Type: Ingersol Rand T	3W		
	ning: 6666	92.67 Easting:	645038.59	Elevation: 1285	.92 (gro			P;	age: 1
Depth bgs		Lithologic Des	scription	Litho. Symbol		COMMENTS	WELL CO	NSTRU	ICTION DETAILS
	0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 55.00	Silty Clay Topso	d, clay to			d surface elevation 1285.92	5		Top of Casing Elevation 1289.70 6" diamater borehole 2" diameter Schedule 40 PVC casing Bentonite chip seal
	65.00 70.00 75.00 80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00-	Limestone, Stable Water Le after 24 Water observed a during drii	vel 90' bgs hrs at 110' bgs lling		wate Ex interva i	No epikarst present hung screen 59' to 74', no r present in the borehole after 24 hours. tended the boring in 5' ls, waiting 30 min between ntervals to check for oundwater infiltration	60		#20/40 silica sand filter pack 2" diameter, 0.010" slot, Schedule 40 PVC screen 2" diameter Schedule 40 PVC
									Schedule 40 PVC end cap

Quality Groundwater & Environmental Consulting



Quality Groundwater & Environmental Consulting


Quality Groundwater & Environmental Consulting

Quality Groundwater & Environmental Consulting

MONITORING WELL IN	ISTALLATION RECORD
Job Name TONTITOWN LANDFILL	Well Number_LGW-2
Job Number 062-014-35017042 Installation Date 9	-26-05 Location TONTITOWN, ARKANSAS
Datum Elevation <u>1302.14</u>	
Datum for Water Level Measurement T.O.C.	
Screen Diameter & Material 2" PVC	Slot Size <u>0.01</u>
Riser Diameter & Material 2" PVC	Borehole Diameter <u>10.25" and 6"</u>
Granular Backfill Material 10-20 SAND	GEC Representative MR
Drilling Method <u>AUGER AND AIR HAMMER</u>	Drilling Contractor_MOHAWK DRILLING
Lockable Cover —	
Vented Cap —	
Well Protector	
Concrete Pad	Citizium 3 31'
Ground Surface	Stickup: <u>3.31'</u>
Called Diana	
Solid Riser	
Fluch Jobst	
Flush Joint	
os'	Length of Solid
Depth to Top of65'	riser: 70'
Bentonite Seal	Total Depth of
	Monitoring
Depth to Top of Lower	Well: 88.31'
Depth to Top of Lower 68'	from TOC
2	
Total Depth Drilled Screen	Length of Screen
130' fbgs	15'
4" Cap	Length of Backfill
lege deg	45'
	Backfilled with:
Portland-Bentonite Grout	
	94' to 130' bentonite
Bentonite Plug	to Socia)
(NOT	to Scale)
Granular Backfill Material	
GENESIS ENVIRONMENTAL CONSULTING, INC.	MONITORING WELL INSTALLATION RECORD
11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209	PROJECT NUMBER: 062-014-35017042
GIGG PN. (501) 455-45199 PAX. (501) 455-4547	WELL NUMBER: LGW-2
A Terracon Company	DRAWING NUMBER: 023 CHECKED BY: MR

		400 WEST BASELINE F TTLE ROCK, ARKANSA 4. (801) 455-2199 13. (801) 455-4547	RCAD IS 72209	BORING NO	: LGW	1-2	PAGE	: 1 of 2	
A lierracon Company			TOTAL DEP			BELOW GROU	JND SURFAC	CE (BGS)	
LIEN	NT: WA	ASTE MANAGEM	ENT				OWN LANDFILL		
		62-014-35017042	1071.0		DRILL	ING CO .: MC	DHAWK DRILLING		
	OGGED BY: MERRICK ROTENBERRY					ER: KEVIN			
_	-	LED: 9-26-05			RIG T	YPE: FAILING	G SS-25 AND INGE	RSOL T3W	
			GER 10.25" OD (0-41.5	5'); AIR HAMMER	6" OD (41	.5-130')			
		METHOD: N/							
		N: 666640.83	E: 646396.76	SURFACE ELEV: 129	8.84	Litho.	Comments	We Constru	
BGS I	nterval		DESCRIPTI	ON	_	Symbol		Г	7
								3.3' Stickup	
0+	+	0' - 41.5' Clav	and chert mixture.			8-8-8-8-	Logged by outlings	N	V
-							Logged by cuttings.		N
-						2-V-V-V-			1
-								1. M	K
-						-A-A-A-A			K
10 -						A-A-A-A			1.
-						V-V-V-V			K
-	11					-A-A-A-A	-		N
-						2-2-2-2-2			N
-	11					2222			K
20 -						A-A-A-A			N
-	11					V-V-V-V			1
-						2-2-2-2-			K
-						5-5-A-A-			N
-						7 7 7 7 7			1
30 -						$\nabla \nabla \nabla \nabla \nabla$			K
-						A-A-A-A			1
						V-V-V-V-V-			1
						- <u>v</u> -v-v-v			K
						-A-A-A-A-A-			1
40 -				2		V-V-V-V-			1
10						A-A-A-A-A			1
	H	41.5' - 130' Lim	nestone rock.					4	A
							-	1 1	И
							-		1
50 -								1 1	N
50-							-		K
	111	1					-		Ľ.

Quality Groundwater & Environmental Consulting

MONITORING WELL IN	ISTALLATION RECORD
Job Name	Well Number_LGW-4
Job Number 062-014-35017042 Installation Date 9	-26-05 Location TONTITOWN, ARKANSAS
Datum Elevation	
Datum for Water Level Measurement T.O.C.	
Screen Diameter & Material 2" PVC	Slot Size <u>0.01</u>
Riser Diameter & Material 2" PVC	Borehole Diameter 10.25" and 6"
Granular Backfill Material <u>10-20 SAND</u> Drilling Method <u>AUGER AND AIR HAMMER</u>	GEC Representative <u>MR</u>
Drining Wethou	Drilling Contractor
Lockable Cover —	
Vented Cap —	
Well Protector	
Concrete Pad	Citation 2 33'
Ground Surface	Stickup: 2.33'
cround surrace	
Solid Riser	
Solid Riser	
Flush Joint	
ridan oom	
Depth to Tap of 59'	Length of Solid
Depth to Top of 59'	riser: 65.5'
	Total Depth of
ja j	Monitoring
Depth to Top of Lower 62'	Well: 82.83'
Granular Material	from TOC
Total Depth Drilled Screen	Length of Screen
80' fbgs	15'
4" Cap	
+ cop =	Length of Backfill
TT Desitional Desites the Desite	Backfilled with:
Portland-Bentonite Grout	N/A
Rententle Dive	
Bentonite Plug (Not	to Scale)
Granular Backfill Material	
	MONITORING WELL INOTALLATION PEOPO
GENESIS ENVIRONMENTAL CONSULTING, INC.	MONITORING WELL INSTALLATION RECORD
11400 WEST BAGELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-4547	PROJECT NUMBER: 062-014-35017042
A Herracon Company	WELL NUMBER: LGW-4 DRAWING NUMBER: 025 CHECKED BY: MR
and the south of the state of t	CHECKED BI: MK

ES INE BOAD	FI				i .
99 547	BORING NO	D.: LO	GW-4	PAGE: 1 of 2	
npany	TOTAL DEP	TH: 80	FEET BELOW	V GROUND SURFAC	E (BGS
T		PROJECT	: TONTITOWN LAND	DFILL	
11		DRILLING	CO .: MOHAWK DF	RILLING	
ENBERRY		DRILLER:	KEVIN		
		RIG TYPE	FAILING SS 25 AN	ID INGERSOL T3W	
R 10.25" OD (0-65'); A	IR HAMMER 6"	OD (65-80')			
7545.50 GROUND ELEV	1264.89	Litho.	Comments	Well	
CRIPTION		Symbol	Commonto	Construction	
xture.	K	7.7.7.7	Logged by cuttings.		
		♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥			
*		2 2			
÷	. 하는 하는 정말을 정말할 것 같은 것 	A A			
		ELINE ROAD WANSAS 72209 BAT Mpany TOTAL DEF VT 11 ENBERRY R 10.25" OD (0-65'); AIR HAMMER 6" 7545.50 SURFACE ELEV: 1264.89 CRIPTION Xture.	BORING NO.: LO mpany TOTAL DEPTH: 80 VT PROJECT 11 11 DRILLING RIG TYPE R 10.25" OD (0-65'); AIR HAMMER 6" OD (65-80') Symbol 7545.50 Symbol Litho. 7545.50 Symbol Symbol 7545.50 Symbol Litho. CRIPTION Symbol Symbol Xture. X.X.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y	REARE ROAD BORING NO.: LGW-4 Impany TOTAL DEPTH: 80 FET BELOV VT PROJECT: II DRILLING CO.: MI DRILLER: KEVIN RIG TYPE: FALING SS 25 AN R 10.25° OD (0-65'); AIR HAMMER 6" OD (65-80') 7545.50 SXM2 ELEV: 1264.89 Litho. Symbol CRIPTION Symbol Comments V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.	BARMER BOAD BY/ Inpany BORING NO.: LGW-4 PAGE: 1 of 2 Inpany TOTAL DEPTH: 80 FEET BELOW GROUND SURFACE FRET BELOW GROUND SURFACE Internet of the second

	GENESIS ENVIRONMENTAL CONSULTING, INC. 11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547	FIELD BORING NO.: LGW		PAGE: 2 of 2
U	A Terracon Company	TOTAL DEPTH: 80		OW GROUND SURFACE (BG
Depth	DESCRIPTION	Litho. Symbol	Comments	Well Construction
	Water at 62'.	A-A-A-A A-A-A-A A-A-A	Bentonite Chips at 59' - 62' Sand pack at 62' - 80'	∑ Static Level 9-30-05
70	65' - 80' Limestone rock.		Screen 65' - 80'	
75 -				
-	Total Depth = 80'			

.

MONITORING WELL INSTALLATION RECORD	
Job Name TONTITOWN LANDFILL Well Number LGW-5	
Job Number 062-014-35017042 Installation Date 9-21-05 Location TONTITOWN, ARKANSAS	
Datum Elevation <u>1271.91</u> Datum for Water Level Measurement <u>TOC</u>	-
Screen Diameter & Material _2" PVC Slot Size _0.01	
Riser Diameter & Material <u>2" PVC</u> Borehole Diameter <u>10.25" AND 6"</u>	
Granular Backfill Material <u>10-20 SAND</u> GEC Representative <u>M. ROTENBERRY</u>	_
Drilling MethodAUGER AND HAMMER Drilling ContractorMOHAWK DRILLING	_
Lockable Cover	
Vented Cap -	
Well Protector	
Ground Surface	
Depth to Top of 0.5' Bentonite Seal	
Solid Riser Length of Solid	
Flush Joint riser:69.5'	
Total Depth Monitoring	of
Depth to Top of Lower 65' Well: 86.7 Granular Material	<u>8'</u>
Total Depth Drilled Screen Length of Screen	
<u>91</u> fbgs	
4" Cap	1
Length of Backfill	
Backfilled with: BENTONITE	
Bentonite Plug (Not to Scale)	
Granular Backfill Material	
GENESIS ENVIRONMENTAL CONSULTING, INC. MONITORING WELL INSTALLATION RECORD	
11400 WEST BASELINE HOAD LATTLE ROOK, ARKANSAS 72309 PROJECT NUMBER: 062-014-35017042	
A Terracon Company WELL NUMBER: LGW-5 DRAWING NUMBER: 026 CHECKED BY: MR	

	GENESIS ENVIRONMENTAL CONSULTING, INC.				ORINO		- UI
A Therracon Company		BORING NO .:		-		: 1 of 2	
-	A lierracon Company	TOTAL DEPT			T BELOW GRO	UND SURF	ACE (BGS
CLIENT:	WASTE MANAGEMENT	PROJEC	T: TONTI	FOWN LANDFILL			
JOB NO.	: 062-014-35017042-012		DRILLIN	G CO.: M	OHAWK DRILLING		
LOGGED	BY: MERRICK ROTENBERRY		DRILLEF	R: KEVIN			
DATE DE	RILLED: 9-21-05		RIG TYP	E: FAILIN	G SS-25 AND INGE	RSOL T3W	
DRILLIN	G METHOD: AUGER 10.25" OD (0-70');	AIR HAMMER 6" C	D (70-91')				
SAMPLIN	NG METHOD: N/A						
epth Samp	ble N: 665325.53 E: 647602.83	SURFACE ELEV: 1268		Litho.	Comments		/ell
BGS Interv	DESCRIPTION	ON		Symbol	Commonio	Const	truction
						3.2' Stickup	
	0' - 70' Clay and chert mixture. 40' - 42' Hard drilling.				Logged by cuttings.		20.00000000000000000000000000000000000
-	Cuttings moist at 52'.			∇-∇-∇ -∇-∇- -∇-∇		0000 0000 0000	000000

GEC :	1400 WEST BASELINE ROAD Ittle Rock, Ankanbas 72200 H. (801) 455-2199 R. (801) 455-459	BORING NO.: LGW-5 PAGE: 2 of 2				
	Terracon Company	TOTAL DEPTH: 91			OUND SURFACE (BGS	
epth Sample GS Interval	DESCRIPT		Litho. Symbol	Comments	Well Construction	
	No show of water during drilling. 70' - 91' Limestone rock. Total Depth = 91'		Symbol	Bentonite to surface Sand pack at 65' - 84' Screen 69' - 84' Bentonite at 84' - 91'	V Static Level 9-30-05	

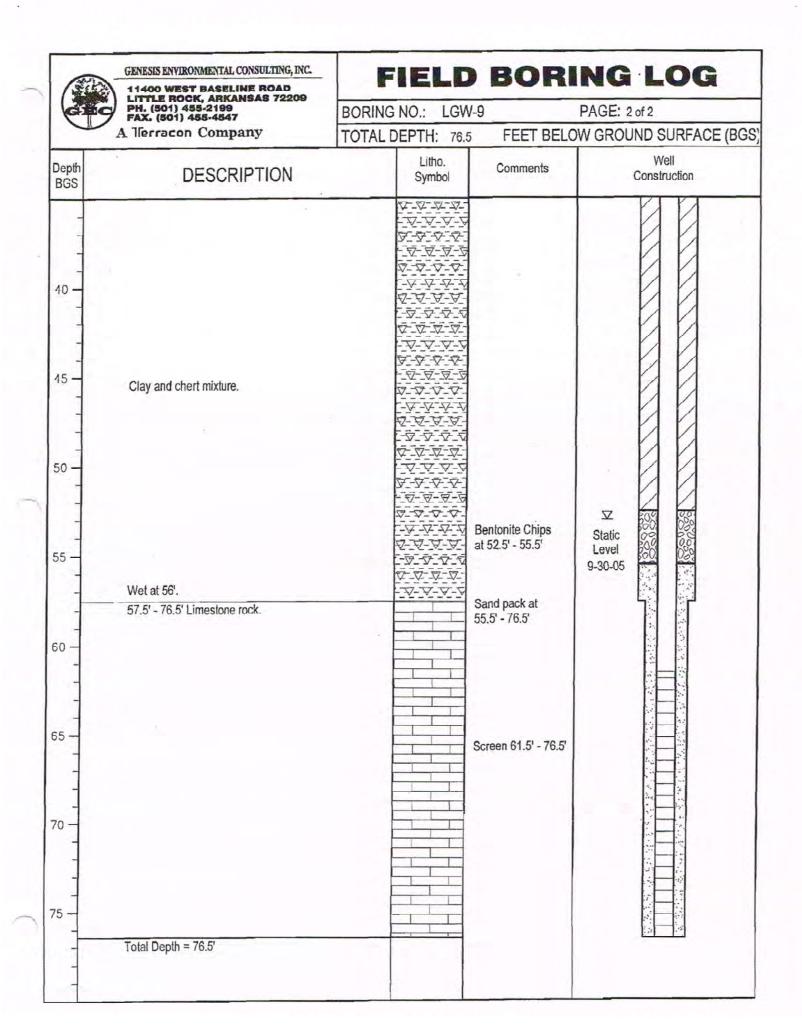
MONITORING WEL	L INSTALL/	ATION RECORE)
Job Name TONTITOWN LANDFILL		Well Number_LGW	/-6
Job Number <u>062-014-35017042</u> Installation Do Datum Elevation <u>1244.79</u>	ute <u>9-27-05</u>	Location	, ARKANSAS
Datum for Water Level Measurement _TOC			
Screen Diameter & Material _2" PVC		Slot Size 0.01	* ***
Riser Diameter & Material <u>2" PVC</u>		Borehole Diamete	r 10.25" AND 6"
Granular Backfill Material <u>10-20 SAND</u>	G	EC Representative M.R	OTENBERRY
Drilling Method <u>AUGER AND AIR HAMMER</u>	Drilling Cont	tractor MOHAWK DRILLING)
Lockable Cover	. —	÷	
Vented Cap	- 1		
Well Protector —	11		
	15-F	- Internet	1
Concrete Pad		Stickup: 2.75'	Ť
Ground Surface			
		THE STREET	1.2.5
Solid Riser	_4		
	11/1		
Flush Joint			
Depth to Top of 49' Bentonite Seal	11/	Length of Solid riser: 55.5'	
Bentonite Seal	0.57 494	riser:	Total Depth of
	69 20		Monitoring
Depth to Top of Lower 53'			Well: 73.25'
Depth to Top of Lower 53' Granular Material — 53'	- 22/4 63.9		from TOC
		1	
Total Depth Drilled	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Longth of Caroon	
		Length of Screen 15'	
	· · · ·		
		1	
4" Cap -		Length of Backfill	
		NA	
		Backfilled with:	
Portland-Bentonite Grout		NA NA	
Erry Delay to Delay			
Bentonite Plug (I	Not to Scale)		
Granular Backfill Material	Contraction of the		
CONTRACT CANADA CONTRACT	MONIT	OPING WELL INCTALLA	
GENESIS ENVIRONMENTAL CONSULTING, INC.		ORING WELL INSTALLA	HUN RECORD
CHIC PH. (501) 455-2199 PH. (501) 455-2199 PAX. (501) 455-4547		NUMBER: 062-014-35017042 BER: LGW-6	
A Terracon Company			BY: MR

	ESIS ENVIRONMENTAL CONSULTING, INC. 400 WEST BASELINE ROAD TLE ROCK, ARKANSAS 72209 . (501) 455-2199 X. (501) 455-4547	FIEL BORING NO.:	LGW-6	PAGE: 1 of 2
	erracon Company	TOTAL DEPTH:		ELOW GROUND SURFACE (BGS)
CLIENT: WAST	E MANAGEMENT	- I	JECT: TONTITOWN	
	014-35017042-013		LING CO.: MOHAV	
LOGGED BY:	MERRICK ROTENBERRY		ER: KEVIN	
DATE DRILLE	D: 9-27-05	RIG 1	YPE: FAILING SS	25 AND INGERSOL T3W
DRILLING ME	THOD: AUGER 10.25" OD (0-54'); /	AIR HAMMER 6" OD (54-	70.5')	
SAMPLING MI				
Depth N: 664913.		1242.04 Litho.	Liommonto	Well
BGS	DESCRIPTION	Symbo		Construction
0 - 0' - 54.0' 0 - - 5 - - - - - - - - - - - - - - - -	Clay and chert mixture.	A-A-A 		tings.
20				
30 -		 		

	11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547			ING LOG
J	FAX. (501) 455-4547 A Terracon Company	BORING NO.: LO		PAGE: 2 of 2
	A lierracon Company	TOTAL DEPTH: 7	70.5 FEET BEL	OW GROUND SURFACE (BG
Depth BGS	DESCRIPTION	Litho. Symbol	Comments	Well Construction
	54' - 70' Limestone rock. Wet at 55'. Total Depth = 70.5'		Bentonite Chips at 49' - 53'	X Static Level 9-30-05

MONITORING WELL IN	NSTALLATION RECORD						
Job Name <u>TONTITOWN LANDFILL</u>	Well Number LGW-7						
Job Number 062-014-35017042 Installation Date 1	9-27-05 Location TONTITOWN, ARKANSAS						
Datum Elevation							
Datum for Water Level Measurement <u>TOC</u>							
Screen Diameter & Material 2" PVC	Slot Size 0.01						
Riser Diameter & Material <u>2" PVC</u> Borehole Diameter <u>10.25" AND 6"</u>							
Granular Backfill Material <u>10-20 SAND</u>	GEC Representative <u>M. ROTENBERRY</u>						
Drilling Method <u>AUGER AND AIR HAMMER</u>	Drilling Contractor_MOHAWK DRILLING						
Lockable Cover — Vented Cap — Well Protector —							
Constants Dad							
Ground Surface	Stickup: 2.61'						
A CONTRACTOR OF THE OWNER							
Solid Riser							
Solid Riser							
Flush Joint							
riusii oonit							
Dopth to Top of 40'	Length of Solid						
Depth to Top of40 Bentonite Seal	riser: 46'						
Bentonite Seal	Total Depth of						
	Monitoring						
Depth to Top of Lower 43'	Well: 63.61'						
Depth to Top of Lower 43'	from TOC						
Total Depth Drilled Screen	Length of Screen						
61 fbgs	15'						
4" Cap	Length of Backfill						
	NA						
	Backfilled with:						
Portland-Bentonite Grout	NA						
Bentonite Plug (Not							
(Not	to Scale)						
Granular Backfill Material							
GENESIS ENVIRONMENTAL CONSULTING, INC.	MONITORING WELL INSTALLATION RECORD						
11400 WEST BASELINE BOAD							
HITTLE ROOK, ARKANSAS 72209 PH, (501) 458-2199 PH, (501) 458-4547	PROJECT NUMBER: 062-014-35017042 WELL NUMBER: LGW-7						
A Thereacon Company							
A Terracon Company	DRAWING NUMBER: 028 CHECKED BY: MR						

GENESIS ENVIRONMENTAL CONSULTING, INC.		FIE	LD BO	RING LO	G
GEC PH. (E ROCK. ARKANSAS 72209 301) 455-2199 (501) 455-4547	BORING NO .:	LGW-7	PAGE: 1 of 2	
	acon Company	TOTAL DEPTH:	61 FEET BI	ELOW GROUND SURF	ACE (BGS
CLIENT: WASTER	MANAGEMENT	PRO	JECT: TONTITOWN	LANDFILL	
JOB NO .: 062-014	-35017042-014	DRI	LING CO .: MOHAN	WK DRILLING	
LOGGED BY: ME	RRICK ROTENBERRY	DRI	LER: KEVIN		
DATE DRILLED:	9-27-05	RIG	TYPE: FAILING SS	25 AND INGERSOL T3W	
DRILLING METH	OD: AUGER 10.25" OD (0-44');	AIR HAMMER 6" OD (44	-61')		
SAMPLING MET	HOD: N/A				
Depth N: 664257.00 BGS	E: 648161.05 GROUND ELEN DESCRIPTION	V: 1216.90 Lith Syml	I commente	s Well Construc	
				3.7' Stickup	
0 0' - 44.0' Cla	y and chert mixture.	0.4.4 A-A-2 2.4.7 2.4.7 2.4.7	군_☆_ Logged by cut ▽_▽ 같-♡	tings.	
5-		Z-▼-▽ ▼-▼- ▼-▼- ▼-∇- ▼-∇-∇	2-₩- -₩-₩ -₩-₩		
		 2- <u>~</u> - <u>~</u> - <u>~</u>			
5-		\$\\ \-\-\-\- \-\	-▼- ⊽-⊽-		
		₹.	A-2 - 4 - 4		
5-		\$\\$\\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9-5 -2- 		
	Ŧ	<u></u>	∇-∇ ∇-∇		
0 —		A-A-A 4-A-A -A-A- -A-A- A-A-A	∀-⊽ -⊽- マ-⊽		


G	LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547	BORING NO .: LGV	V-7	PAGE: 2 of 2
A llerracon Company		TOTAL DEPTH: 61	FEET BEL	OW GROUND SURFACE (BG
epth IGS	DESCRIPTION	Litho. Symbol	Comments	Well Construction
-		▼		
0	39' - 44' Chert, hard drilling.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	at 40' - 43'	
5-	Cuttings, wet. 44' - 61' Limestone rock. Wet at 55'.		Sand pack at 43' - 61'	Static Level 9-30-05
			Screen 46' - 61'	
- - -				
	Total Depth = 61'			
	Total Doptit - 01			

MONITORING WELL I	NSTALLATION RECORD
Job NameINSTALLATION OF REPLACEMENT WELL	Well Number LGW-8R
Installation Date 8/19/08 Location ECO-VIS	
Datum Elevation 1186.24 (T.O.C.)	Surface Elevation 1183.35
Screen Diameter & Material 2" PVC	Borehole Diameter <u>8 1/4" / 4"</u>
Riser Diameter & Material 2" PVC	Terracon Representative JODY ADAMS
Granular Backfill Material 10-20 SAND	_ Northing <u>664011.30</u> Easting <u>648287.11</u>
Drilling Method HOLLOW STEM AUGER/AIR ROTARY	Drilling Contractor ANDERSON ENGINEERING
Lockable Casing —	
Vell Protector	
Ground Surface	Stickup: <u>3'</u>
Ground Survice	
Solid Riser	
Flush Joint	
	Length of Solid
	riser: 14.8'
	Total Depth of
Depth to Top of	Monitoring
Depth to Top of 10' bgs	Well: 33.20'
	from TOC
Depth to Top of	
Primary Filter Pack13' bgs	
	Length of Screen
Screen	and Bottom Cap.
	15.4'
Total Depth Drilled	
77	
Bentonite Chips	
Bentonite Pellets (N	ot to Scale)
Granular Backfill	
Therese	MONITORING WELL INSTALLATION RECORD
llerracon	PROJECT NUMBER: 062-014-35087055
Consulting Engineers and Scientists	WELL NUMBER: LGW-8R
25803130 South BRYANT, AR 72022 PHL (501) 847-9292 FAX (501) 847-9210	DRAWING NUMBER: 004 CHECKED BY: JBA

	ferracon	F	IELI	DB	ORING LOG
Con	sulting Engineers and Scientists	BORING NO .:	LGW-8R		PAGE: 1 of 1
25809 I-30 South PH. (501) 847-929	BRYANT, AR. 72022 2 FAX. (501) 847-9210	TOTAL DEPTH	H: 30	FEET B	ELOW GROUND SURFACE (BGS)
CLIENT:	ECO-VISTA CLASS 1 LANDFILL		PROJEC		LATION OF REPLACEMENT WELLS
JOB NO	.: 062-014-35087055-007		DRILLIN	IG CO .: AN	NDERSON ENGINEERING
LOGGE	D BY: JBA		DRILLE	R: GM	
DATE D	RILLED: 8/19/08		RIG TYP	E: CME-55	5
DRILLIN	G METHOD: 8 1/4" HOLLOW STEM	AUGER / AIR ROTA	RY		
SAMPLI	NG METHOD: CUTTINGS				
Depth Sam BGS Inter	ple N: 664011.30 E: 648287.11 val DESCRIPTIO	G.S. ELEV.: 1183.35	Litho. Symbol	PID (ppm)	Comments
	0'-8' GRAVELLY CLAY dark brown, gravel is chert and weat 8'-19' GRAVELLY CLAY reddish brown, gravel is chert and w 19'-30' LIMESTONE gray with intermittent chert beds Total Depth = 30' bgs.				Changed to air rotary at 20' bgs

MONITORING WELL IN	ISTALLATION RECORD
Job Name TONTITOWN LANDFILL	Well Number_LGW-9
Job Number 062-014-35017042 Installation Date 9-	22-05 Location TONTITOWN, ARKANSAS
Datum Elevation1237.47	
Datum for Water Level Measurement <u>TOC</u>	
Screen Diameter & Material	Slot Size <u>0.01</u>
Riser Diameter & Material 2" PVC	Borehole Diameter <u>10.25" AND 6"</u>
Granular Backfill Material 10-20 SAND	GEC Representative <u>M. ROTENBERRY</u>
Drilling Method <u>AUGER AND AIR HAMMER</u> D	Drilling Contractor_MOHAWK DRILLING
Lockable Cover	
Vented Cap	
Well Protector	
Well Protector	
Concrete Pad	Stickup: 2.36'
Ground Surface	
Solid Riser	
Flush Joint	
Depth to Top of52.5'	Length of Solid riser:61.5'
Bentonite Seal	Total Depth of
	Monitoring
Dopth to Top of Lower	Well: 78.86'
Depth to Top of Lower 55.5'	from TOC
1	
Total Depth Drilled	Length of Screen
	15'
/2g0	
4" Cap	Length of Backfill
	NA
	Backfilled with:
Portland-Bentonite Grout	NA
Bentonite Plug	
(Not f	to Scale)
Granular Backfill Material	
	MONITORING WELL INSTALLATION RECORD
GENESIS ENVIRONMENTAL CONSULTING, INC.	MONITORING WELL INSTALLATION RECORD
CITC INTERNET ASSELING ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-42199 FAX. (501) 455-4547	PROJECT NUMBER: 062-014-35017042
A Terracon Company	WELL NUMBER: LGW-9 DRAWING NUMBER: 030 CHECKED BY: MR
A nerrocon company	CHECKED BT: MR

GENESIS ENVIRONMENTAL CONSULTING, INC.	FI	ELC	BOR	ING LOG
CHECK 11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547	BORING NO).: L	.GW-9	PAGE: 1 of 2
A Terracon Company	TOTAL DEP	TH: 76.5	FEET BELC	OW GROUND SURFACE (BGS
CLIENT: WASTE MANAGEMENT		PROJEC	T: TONTITOWN LA	NDFILL
JOB NO.: 062-014-35017042-016		DRILLING	G CO .: MOHAWK	DRILLING
LOGGED BY: MERRICK ROTENBERRY		DRILLER	: KEVIN	
DATE DRILLED: 9-22-05		RIG TYPE	E: FAILING SS 25 A	AND INGERSOL T3W
DRILLING METHOD: AUGER 10.25" OD (0-57.5	5'); AIR HAMMER 6'	' OD (57.5-76	6.5')	
SAMPLING METHOD: N/A				
Depth N: 663904.19 E: 647801.14 GROUND EL	EV: 1234.07	Litho.		Well
BGS DESCRIPTION	2	Symbol	Comments	Construction
0 0' - 57.5' Clay and chert mixture.	Ŷ.	2-9-9-9 V-V-V	Logged by cuttings	3.4' Stickup
5	27 27 27	0-0-0 8-2-0 9-2-2 9-2-2 9-2-2		
0				
5-		V V V V V V V V V		
	∇	A-A-A A-A-A A-A-A A-A-A-A		
0 - -				
-		- - - - - - - - - - - -		
-	V-1	V-V-V-		
5-	\ 	<u>5-2-2</u> <u>5-5-6</u> <u>5-2-7</u>		
	-A-	-		
	A-2	∇-∇-∇ 7-∇-∇ ∇-∇-5		

MONITORING WELL INS	STALLATION RECORD
Job Name	Well Number_LGW-10
Job Number <u>062-014-35017042</u> Installation Date <u>9-2</u>	3-05 Location TONTITOWN, ARKANSAS
Datum Elevation <u>1240.61</u>	
Datum for Water Level Measurement <u>TOC</u> Screen Diameter & Material <u>2" PVC</u>	Clat Cine 0.01
Riser Diameter & Material 2" PVC	Slot_Size_0.01 Borehole_Diameter_10.25" AND 6"
Granular Backfill Material 10-20 SAND	GEC Representative <u>M. ROTENBERRY</u>
Drilling Method AUGER AND AIR HAMMER Dr	illing Contractor MOHAWK DRILLING
Lockable Cover —	
Vented Cap -	
Well Protector	
Well Protector	
Ground Surface	Stickup: 2.66'
Ground Surface	
Solid Riser	
//	
Flush Joint	
	Langth of Calld
Depth to Top of44'	Length of Solid riser: 56'
Bentonite Seal	Total Depth of
	Monitoring
Depth to Top of Lower 48'	Well: 73.66'
Granular Material	from TOC
Total Depth Drilled Screen	Length of Screen
fbgs	15'
4" Cap	
+ cop =	Length of Backfill NA
	Backfilled with:
Portland-Bentonite Grout	NA
Bentonite Plug (Not to	o Scale)
	o ours
Granular Backfill Material	
GENESIS ENVIRONMENTAL CONSULTING, INC.	MONITORING WELL INSTALLATION RECORD
A State of the second s	PROJECT NUMBER: 062-014-35017042
A lierracon Company	WELL NUMBER: LGW-10 DRAWING NUMBER: 031 CHECKED BY: MR

GENESIS ENVIRONMENTAL CONSULTING, I	NC.	ELC	BOR	ING LOG
GIEG PH. (501) 455-2199 FAX. (501) 455-4547			-GW-10	PAGE: 1 of 2
A lierracon Company	TOTAL DE			W GROUND SURFACE (BGS)
CLIENT: WASTE MANAGEMENT		-	T: TONTITOWN LAN	
JOB NO .: 062-014-35017042-017		-	G CO.: MOHAWK D	
LOGGED BY: MERRICK ROTENBERRY		DRILLER		
DATE DRILLED: 9-23-05		RIG TYP	E: FAILING SS 25 AM	ND INGERSOL T3W
DRILLING METHOD: AUGER 10.25" OD (0-5	0'); AIR HAMMER 6"			
SAMPLING METHOD: N/A				
	ELEV: 1237.41	Litho.	Comments	Well
BGS DESCRIPTION		Symbol	Commenta	Construction
25		A-A-A A-A-A A-A-A A-A-A-A A-A-A-A A-A-A-A A-A-A-A A-A-A-A		

GENESIS ENVIRONMENTAL CONSULTING, INC. 11400 WEST BASELINE ROAD LITTLE ROCK, ARKANSAS 72209 PH. (501) 455-2199 FAX. (501) 455-4547 A Terracon Company		FIELD BORING LOG						
		BORING NO .: LGW-10			PAGE: 2	of 2		
		TOTAL DEPT	"H: 71	OW GROUND SURFACE (BG				
epth BGS	DESCRIPTION		Litho. ymbol	Comments		Well Construction		
40	Clay and chert mixture.		2-∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- -∇-∇- - - -	o show of water rring drilling. entonite Chips 44' - 48'				
	50' - 71' Limestone rock.		Sa 48'	nd pack at ' - 71'				
	Total Dooth = 71!			reen 56' - 71'	IZ Static Level 9-30-05			
	Total Depth = 71'							

JOB NameINSTALLATION OF REPLACEMENT WELL	ISTALLATION RECORD
Installation Date 8/13/08 Location ECO-VISTA	Well Number LGW-14R
	Surface Elevation_1247.96
Screen Diameter & Material 2" PVC	Borehole Diameter_8 1/4" / 4"
Riser Diameter & Material 2" PVC	Terracon Representative JODY ADAMS
Granular Backfill Material 10-20 SAND	Northing 665280.74 Easting 648182.70
Drilling Method HOLLOW STEM AUGER/AIR ROTARY	Drilling Contractor ANDERSON ENGINEERING
Lockable Casing Cap Well Protector Ground Surface Solid Riser Flush Joint Depth to Top of 51' bgs	Stickup:
Depth to Top of Primary Filter Pack 60' bgs Screen Total Depth Drilled 77' fbgs	Length of Screen and Bottom Cap.
Bentonite Chips	
Bentonile Pellets (Not t	to Scale)
Tierracon Consulting Engineers and Scientists 255/31-30 South PH (501) 847 5922 FAX (501) 847 5920 FAX (501) 847 5920	MONITORING WELL INSTALLATION RECORD PROJECT NUMBER: 062-014-35087055 WELL NUMBER: LGW-14R DRAWING NUMBER: 003 CHECKED BY: JBA

*

.

Jerracon	FI	EL	DB	OR	ING LOG		
Consulting Engineers and Scientists	BORING NO .:	LGW-14	R		PAGE: 1 of 1		
09 i-30 South BRYANT, AR. 72022 (501) 847-9292 FAX. (501) 847-9210	TOTAL DEPTH	: 77	FEETE	BELOW	GROUND SURFACE (BGS)		
LIENT: ECO-VISTA CLASS 1 LANDFILL		PROJECT: INSTALLATION OF REPLACEMENT WELLS					
OB NO.: 062-014-35087055-008		DRILLI	NG CO .: A	NDERSO	N ENGINEERING		
OGGED BY: JBA		DRILLE	R: GM				
ATE DRILLED: 8/13/08		RIG TY	PE: CME-8	5			
RILLING METHOD: 8 1/4" HOLLOW STEM A	UGER / 4" AIR ROT						
AMPLING METHOD: CUTTINGS							
	. ELEV. 1247.96	Litho. Symbol	% Recovery	RQD	Remarks		
Depth BGS							
0 - 0'-51' <u>CLAY</u> red with chert and weathered limestone (10	gravel, moist at 46'				Changed to air rotary (4") at 52' bgs		

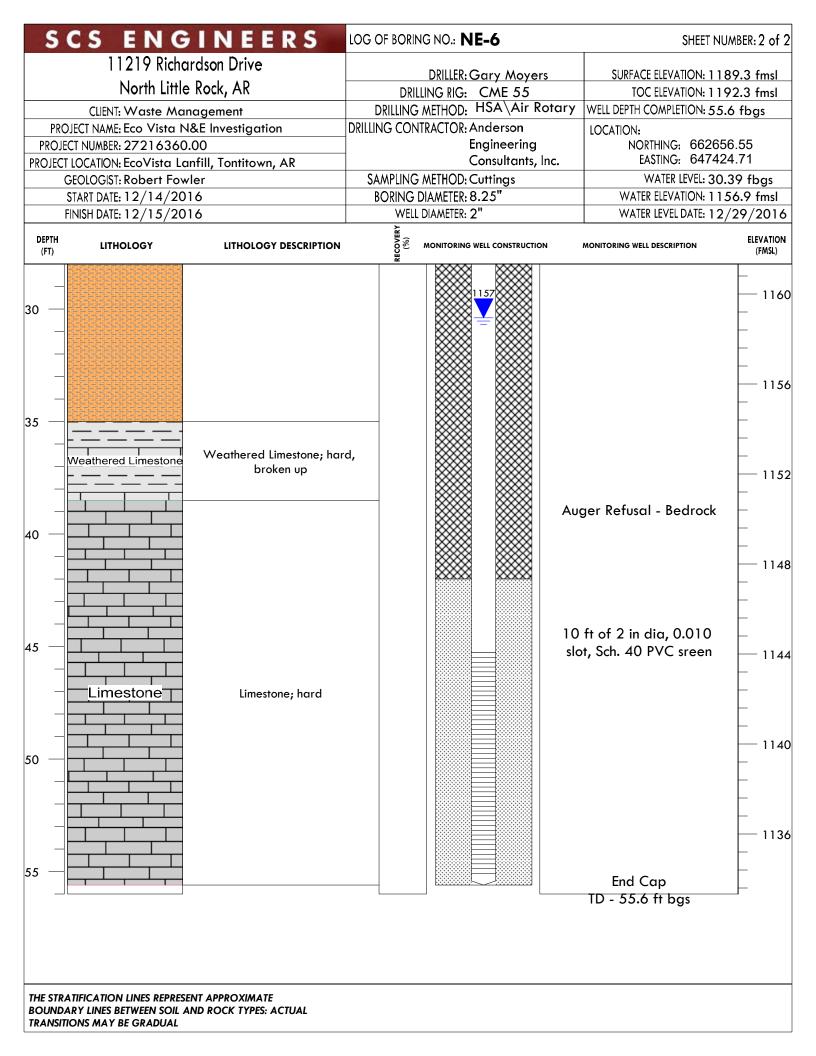
11400 West Phone: (501)		ittle Rock, AR 7220 Fax (501) 455-454	09	COORDINA	NE-1 Total Do ATES: N662064 E ATION: 1201.43			
PROJECT IN	IFORMATION		DRILLING INFORMATION DRILLING CO.: HORIZON DRILLING DRILLER: ALLEN BRANTLEY/RYAN THOMSON RIG TYPE: BOART LONGYEAR BK-66 DRILLING METHOD: 6.5 in. HOLLOW STEM AUGER (0-44') 6.25 in. AIR HAMMER (44-55.5')					
ROJECT: TONTITOWN LIENT: WASTE MAN OB NO.: 01042 OGGED BY: BILL SADI DATE INSTALLED: APRII	AGEMENT LER	C F						
GRAVEL PACK: 10-20 Sand			SEAL: BENTONITE GROUT: PORTLAND/BENTON					
CASING TYPE: PVC, SCH. 40	, FLUSH THREADS	DIAMETER: 2 in.	LENGT	H: 44.25 ft bg	s WATER LEV	WATER LEVEL: 45.25 ft bgs 👳		
SCREEN TYPE: 0.010 in. FAC	TORY SLOT	DIAMETER: 2 in.	LENGT	H: 9.5 ft	DATE OF WATER LEVEL: 4/20/01			
DEPTH SYMBOLS SOIL DESCRIPTIC			SAMPLE Type & N		WELL COMPLETION	WELL DESCRIPTION		
	freshly broken by auger. Clay - orangish-red, slightly moist, CL.					PVC Stickup, 3.0 ft Grout, 0 to 2.2 ft bgs		
		· . ·				PVC Casing, 3 ft ags to 44.25 ft bgs Centralizer, 15 ft		
						Bentonite, 2.2 to 34 ft bgs		
			-					
	and cuttings graduall light pink. Lighter co clay with highly weat chert.	for due to mixing of						
						Centralizer, 35 ft Grout, 34 to 39.6 ft		
						bgs Bentonite, 39.6 to 43.9 ft bgs		
						Groundwater Level Sand Pack, 43.9 to 54.5 ft bgs		
-50 -								

ſ				<u></u>	-	· · · · ·		DODELL			
	GEC GENESIS ENVIRONMENTAL CONSULTIN					FIELD BOREHOLE LOG					
						wen ivo ivi2-2 Total Depth. 51.15 it bgs					
1220		11	1) 455-2199	Fax (501) 455-4							
	·	PROJECT INFORMATION					DRILLI		TION		
	PROJECT: TONTITOWN LANDFILL					DRILLING CO.: HORIZON DRILLING					
	CLIENT:	WASTE MAI	NAGEMENT		DRILLER: ALLEN BRANTLEY/RYAN THOMSON RIG TYPE: BOART LONGYEAR BK-66 DRILLING METHOD: 6.5 in. HOLLOW STEM AUGER (0-23')						
	JOB NO	0.: 01042									
	LOGGE	D BY: BILL SAD	LER								
	DATE IN	STALLED: APRI	TL 24, 2001		6.25 in. AIR HAMMER (23-35.5')						
	GRAVEL	PACK: 10-20 Sand				SEAL:	BENTONIT	E GROUT: F	PORTLAND/BENTONITE		
	CASING T	TYPE: PVC, SCH. 4	0, FLUSH THREADS	DIAMETER: 2 ii					/EL: 21.50 ft bgs 👳		
	SCREEN	TYPE: 0.010 in. FA	CTORY SLOT	DIAMETER: 2 ii	n.	LENGTH:	ATER LEVEL: 4/24/01				
	DEPTH	SOIL SYMBOLS	SOIL DES	CRIPTION		SAMPLE Гуре & No.	Blows/ 6 in.	WELL	WELL DESCRIPTION		
][PVC Stickup, 3.0 ft		
	0 -										
	-		△ freshly broken by auger. Clay - reddish			UTTINGS			Grout, 0 to 2.5 ft bgs		
	-										
(~1)]	-										
	-5 -								PVC Casing, 3 ft ags to 21.0 ft bgs		
	-					,			10 2 1.0 11 bgs		
	-10 -								Bentonite, 2.5 to		
	-								20.38 ft bgs		
	-15 -								·		
	-										
	-20 -										
									Groundwater Level		
	-		LIMESTONE: 22.5 ft		-				Sand Pack, 20.38 to		
	-25 -		Limestone & Chert, - Limestone - gray, fizz		rt				32.5 ft bgs		
			- white.								
			-						PVC Screen, 21.0 to		
10000	-30		-						30.54 ft bgs		
									Cuttings/Slough 22 5		
	-35								Cuttings/Slough, 32.5 to 35.5 ft bgs		
	-35 -										

GEC	// GENESIS		AL CONSULTI	NG INC					OLE LOG
		Baseline Road	Little Rock, AR 72 Fax (501) 455-4	2209	Ċ	ELL NO. OORDINA OC ELEVA	TES: N6	62866 E6	Depth: 85.4 ft bgs
	PROJECT I	NFORMATION				DRILLIN	IG INF	ORMA	TION
PROJECT	T: TONTITOW	N LANDFILL		DRILLING	CO.	HOR	IZON DI	RILLING	
CLIENT:	WASTE MAN	NAGEMENT		DRILLER:		RYAN 1	HOMPS	SON	
JOB NO .:	01042			RIG TYPE		BOART	LONGY	EAR BK	-66
LOGGED	BY: DAN McC	ULLOUGH/BILL	SADLER	DRILLING	ME	THOD: 10	in. HOL	LOWST	TEM AUGER (0-5')
DATE DR	ILLED/CONSTR	RUCTED: APRIL 2	26, 2001			6.2	25 in. All	RROLL	ER CONE (5-88')
GRAVEL PA	ACK: 10-20 Sand			SEA	 L:	BENTONIT	E GF	ROUT: P	ORTLAND/BENTONITE
CASING TY	PE: PVC, SCH. 4	0, FLUSH THREADS	DIAMETER: 2 i	n. LENG	GTH:	75.2 ft bgs			/EL: 75.7 ft bgs
SCREEN TY	YPE: 0.010 in, FA	CTORY SLOT	DIAMETER: 2 i			9.55 ft			ATER LEVEL: 4/26/01
	SOIL						[· · · ·
DEPTH	SYMBOLS	SOIL DES		SAMPI Type &		Blows/ 6 in.		ETION	WELL DESCRIPTION
0									PVC Stickup, 3.0 ft
1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Chert and Clay. More	e Clay than Chert i		S				
-5 -1		cuttings. Chert - whi broken by auger. Cla	te, hard, freshly v - orangish-red.						Grout, 0 to 69.7 ft bgs
-10									
-15-						· .			
-20 -		· ·							DVC Cooling 2 th age
		Same as above exce color, probably from r							PVC Casing, 3 ft ags to 75.2 ft bgs
-25 -		up weathered chert.	More competent						
-30		chert than clay mixtur	e in cuttings.						
25									
-35-									
-40									
-45-									
-50 -									
_55		<i>i</i>							
-55-]									
-60									
- 65 -									
-03-				5					
-70		Cutting		Possible \	/oid				Bentonite, 69.7 to
-75 -									74.4 ft bgs
		LIMESTONE: 73.5 ft Limestone & Chert,	-50/50 mixture,						Groundwater Level
-80 -		Limestone - gray, spa fizzes with HCL, Che				-			PVC Screen, 75.2 to 84.75 ft bgs
-85-									Sand Pack, 74.4 to
									88 ft bgs

GEO	11400 Wes Phone: (50	S ENVIRONMENT, t Baseline Road 1) 455-2199 NFORMATION	Little Rock, AR 72 Fax (501) 455-4	209	Well NO. COORDIN, TOC ELEV	: NE-4 Total D ATES: N666189 E ATION: 1293.06	6644305
						NG INFORMA	
	T: TONTITOW			DRILLING		IZON DRILLIN	- · .
CLIENT:		NAGEMENT		DRILLER:			AN THOMPSON
JOB NO				RIG TYPE	BOART	LONGYEAR BE	K-66
	D BY: BILL SAD			DRILLING	METHOD: 7.	5 in. AIR ROLLI	ER CONE (0-62')
DATE IN	ISTALLED: MAY	3, 2001			6.	25 in. AIR HAM	MER (62-80.5')
GRAVEL F	PACK: 10-20 Sand			SEA	L: BENTONIT	E GROUT:	PORTLAND/BENTONITE
CASING T	YPE: PVC, SCH. 4	0, FLUSH THREADS	DIAMETER: 2 i	n. LENG	GTH: 58.49 ft bg	IS WATER LE	√EL: 59.0 ft bgs <u></u>
SCREEN			DIAMETER: 2 i		GTH: 9.57 ft		/ATER LEVEL: 5/3/01
						DATE OF W	
DEPTH	SOIL SYMBOLS	SOIL DES	CRIPTION	SAMPI Type &		WELL COMPLETION	WELL DESCRIPTION
0 -							PVC Stickup, 3.0 ft
-5			e Clay than Chert i te, hard, freshly		5		Grout, 0 to 3 ft bgs
-10		moist, CL.	, and a second				
-15 -							
-20 -							PVC Casing, 3 ft ags to 58.49 ft bgs
-30		more chert than clay, color, probably from r	cuttings tan in nixing with large	ot			Bentonite, 3 to 58.1 ft
-35 -		amount of ground up	weathered chert.				bgs
-40		CHERT & CLAY: Air greatly reduced durin					
-45 - -50 -		CHERT: Weathered c	-				
-55 -				i.			
-60							Groundwater Level
-65		LIMESTONE: 62 ft bg Limestone & Chert, ~ 30% chert, Limestor	-70% limestone,				PVC Screen, 58.49 to 68.06 ft bgs
-70 -		with HCL, Chert - whi					Sand Pack, 58.1 to 78.5 ft bgs
-75-							

GEC	11400 West Phone: (501) 455-2199	AL CONSULT Little Rock, AR 7 Fax (501) 455-4	2209		Vell NO.: OORDINA OC ELEVA	NE-5 ATES: N ATION:	Total De 662676 E6 1227.03	
	PROJECT I	NFORMATION				DRILLIN	IG IN	FORMA	TION
PROJECT	T: TONTITOW	N LANDFILL		DRIL	LING CO	.: MOH	IAWK	DRILLIN	G
CLIENT:	WASTE MAN	NAGEMENT		DRIL	LER:	MATT J	OHNS	ON	
JOB NO.:	01042			RIG	TYPE:	BOART	LONG	YEAR BK	-66
LOGGED	BY: BILL SAD	LER		DRIL	LING ME	THOD: 11	in. HO	LLOW ST	TEM AUGER (0-9')
DATE INS	STALLED: AUG.	7, 2001							R CONE (9-82')
GRAVEL PA	ACK: 10-20 Sand	· · ·			SEAL:	BENTONIT	E	ROUT: N	IONE
CASING TY	PE: PVC, SCH. 4	0, FLUSH THREADS	DIAMETER: 2	in.	LENGTH:	72.2 ft bgs	V	VATER LEV	/EL; 73.39 ft bgs 🗴
SCREEN T	YPE: 0.020 in. FA	CTORY SLOT	DIAMETER: 2	in.	LENGTH:	9.24 ft	0	DATE OF W	ATER LEVEL: 9/21/01
DEPTH	SOIL SYMBOLS	SOIL DES			SAMPLE	Blows/ 6 in.		ELL	WELL DESCRIPTION
。] □	· .		•						PVC Stickup, 3.0 ft
	<u>x x x x</u>	TOPSOIL: Brown, cla		t cu	TTINGS				
-5 -		CHERTY CLAY: Alter Chert and Clay. More	nating Layers of Clay than Chert	in					
		cuttings. Chert - whi broken. Clay - orangi	te, hard, freshly	Alte	ernating				
-10-]		bloken. Clay - blang	SI-IEU, III0ISI, CL	1.1.1	d & soft ling.				Concrete, 0 to 21.0
-15-									bgs
						. *			
-20-		2		•					- -
-25-									Bentonite, 21.9 to
-30 -									71.5 ft bgs
30									
-35 -									
-40-1									PVC Casing, 3 ft ag
-45-					,	-			to 82 ft bgs
-40-1									
-50 -									
		CHERT: with small an	nouts of clay		-				
-55-		Chert in various stage	es of weathering,						
-60		some soft enough to fingernail, some very	competent. Clay	- De	ssible voids				
-60-		reddish orange as ab	ove, moist.	~60) - 60.5 ft,				
-65-				66.	- 63.5 ft, 5 - 67.5 ft,				
				68 bgs	- 68.5 ft				
-70 -									
11		LIMESTONE: 71 ft bg Limestone & Chert,							Groundwater Level PVC Screen, 72.2 to
75			ouros minitaro,			,			PVU Screen. 72.2 10
-75 -		Limestone - gray, spa fizzes with HCL, Cher	rry, fossiliferous,		ry slow ling				81.4 ft bgs


	REC			LOCA Ecc DRILI Wa DRILI Ver DRILI Sor SAMI	JECT: -Vista, LLC Class 1 Landfill NEI Well Installation ATION: -Vista, LLC Landfill, Tontitown, AR LING CONTRACTOR: Iker-Hill Environmental, Inc. LING EQUIPMENT: sa-Drill VersaSonic LING METHOD: hic with 4x6 in dia. core and case in soils an PLING METHOD: httinuous with 10 ft, 4 in dia. core barrel in soi Description	NE-5E NORTHING 662678 GROUND S 1221.1 WELL DEP 86.6 d air rotai	NORTHING, FT SRC: 662678.1 GROUND SURFACE, FT SRE: 1221.1 WELL DEPTH, FT BELOW MP: 86.6 INSTALLATION DATES: 7/14-7/29/2019 I air rotary in bedrock					
Dept	%	ÿ	Ľ.	, ČŐ	Beconption			onstr	uction			
- 0	100	GC §₩ СН			CLAYEY GRAVEL, reddish orange to reddish brown, some silt, gravel (<3" dia), medium dense to dense, moist. SILTY SAND, tan to orange with a lenses of brown fat clay, medium dense, moist. WELL GRADED SAND with silt and gravel, gravel (<1" dia), loose, moist. FAT CLAY, dark reddish brown, stiff to very stiff, moist. CHERT, white, 6-7 ft bgs. FAT CLAY with gravel, dark reddish brown, stiff to very			ft concret locking of 76.4 ft of	ound completion including 2.5x2.5 e pad, four pipe bollards, and uter aluminum casing 2 in dia., Sch. 40 PVC solid riser, 3.2 ft of stickup			
10 -	100	CH GC GM ML GM GC CH			stiff, moist. CLAYEY GRAVEL, reddish brown, gravel (<2" dia), loose, moist. SILTY GRAVEL, orange, loose, moist. SILT with gravel, tan with lenses of reddish brown fat clay, stiff, moist. SILTY GRAVEL, orange, loose, moist. CLAYEY GRAVEL, reddish brown, gravel (<1" dia), loose, moist. CHERT, white, 19-19.5 ft bgs. GRAVELLY FAT CLAY, reddish brown, with black and			Cement/b 21.0 ft bg	pentonite grout from 0 ft bgs to s			
-	80	СН			red staining along weathered gravel, soft, moist. CHERT, white, 20-20.5 ft bgs. GRAVELLY FAT CLAY, reddish brown, with black and red staining along weathered gravel, gravel (<4" dia), soft, moist.	8	×					
30	- 100	CL			 @ 30-31 ft bgs gravel (<8" dia). GRAVELLY LEAN CLAY, with lenses of white silt and red fat clay throughout, gravel (<2" dia), medium stiff to soft, moist. GRAVELLY FAT CLAY, reddish brown, with black and red staining along weathered gravel, soft, moist. 			Bentonite ft bgs	chip seal from 21.0 ft bgs to 60.0			

					JECT: -Vista, LLC Class 1 Landfill NEI Well Installation	BORING ID):		WELL ID: NE-5E
									EASTING, FT SRC:
				Eco	o-Vista, LLC Landfill, Tontitown, AR	662678	.1		648201.9
_						GROUND S	SURFACE	, FT SRE:	TOC MP, FT SRE:
		T			Iker-Hill Environmental, Inc.	1221.1			1224.32
		socia	tes I to		LING EQUIPMENT: sa-Drill VersaSonic	WELL DEP	TH, FT B	ELOW MP:	INSTALLATION DATES:
vater resou	irces / envi	ronmental c	onsultants		LING METHOD:	86.6			7/14-7/29/2019
					nic with 4x6 in dia. core and case in soils an	d air rotai	v in be	drock	
.OGGE	D BY:				PLING METHOD:		,		
AJP				Cor	ttinuous with 10 ft, 4 in dia. core barrel in soi	and 10 ft	HQ co	re barrel	in bedrock
feet)	REC	Ś		2				We	2
Depth (feet)	% RE	nscs		Log	Description			Constr	
õ			////				\sim		
_	100						2		
		GC		<u> </u>	CLAYEY GRAVEL, tannish orange, loose, moist.		2		
-		CL	////		GRAVELLY LEAN CLAY, with lenses of white silt and red fat clay throughout, gravel (<2" dia), medium stiff to				
_				<u></u>	soft, moist. WEATHERED CHERT/EPIKARST, chert is weathered		2		
			24	s Å	into a silty gravel (<2" dia), tan to orange, with orange		2		
_				s Å	color along weathered surfaces. @ 48.5-49.5 ft bgs tannish white, loosely cemented		2		
50 —			**	s Â.	tripoli, very loose, moist. @ 49.5-50 ft bgs white, loose, moist.		2		
					@ 50-68 ft bgs tan to orange, chert is orange along				
-	100		**	<u> </u>	weathered surfaces.		2		
_			X 4	<u> </u>			2		
					@ 55-56 ft bgs white silt lens with little gravel, wet.				
_					@ 57-57.5 ft bgs chert layer.		2		
_				Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	@ 57-68 ft bgs with sand.				
							2		
60 —					@ 60-62 ft bgs color changes to tan. @ 60-60.5 ft bgs chert layer.				
_	60			۲ <u>۲۲</u> ۲	@ 62-64 ft bgs color changes to white, chert grave		2		
				۲ <u>۲۲</u> ۲	(<3" dia).		2	Depth to	water: 63.4 ft bgs (7/29/2019)
-				۲ ۲ ۲ ۲			2	Deptilito	water. 03.4 it bys (7/29/2019)
				۲ ۲۲۲۲			2		ase bentonite pellet seal from
	100			۲ ۲ ۲ ۲			2	60.0 π bg	s to 70.0 ft bgs
_	100		<u>ті</u>		LIMESTONE AND CHERT, interbedded. Limestone is				
70 —					competent, white and gray. Chert is competent to less competent, white. Some dissolution and brown clay				
.0 —	04				along fractures throughout.				
-	94				@68-74.8 ft bgs no loss of air, fractures 9-80° off			Silica size	e 20/40 filter pack from 70.0 ft bg
					horizontal. @ 68-70.5 ft bgs limestone weathered and parted			to 83.5 ft	
					along bedding planes.			10.05	
_					@ 70.5-73 ft bgs white chert breccia with gray microcrystalline limestone.			PVC scre	2 in dia., 0.010 in slot, Sch. 40 een
_	100				@ 71.4-74 ft bgs some bedding planes contain brown clay and white to tan silt.				
					@ 74.8-79 ft bgs no loss of air, fractures 59-70° off				
30 —					horizontal. Chert is white and light gray.			0.19 ft, 2	in dia., Sch. 40 PVC end cap
	100				@ 79-83 ft bgs no loss of air, fractures 59-70° off				
					horizontal. Weathered limestone and chert, parted along bedding planes. Chert is white and light gray.			Drilling te	rminated at 83.5 ft bgs
-							al received		
NOTE	з. Но	rizontal	and vertin	cal data	are based on the Mason Surveying & Consulting, Inc. report date	l d August 9-20	19. SRF=4	site reference	d elevation, SRC=site referenced
NULE					asing, MP=surveyed measuring point on TOC.				
					2 of 2				

Depth (feet) Anter Log Contract (feet) Anter		SSOCION ronmental c	 LOCA Ecc DRILI Wal DRILI Ver DRILI Sor SAME	ATION: D-Vista, LLC Landfill, Tontitown, AR LING CONTRACTOR: Iker-Hill Environmental, Inc. LING EQUIPMENT: sa-Drill VersaSonic LING METHOD: nic with 4x6 in dia. core and case in soils an PLING METHOD: ntinuous with 10 ft, 4 in dia. core barrel in soi Description	66268 GROUND 1225.4 WELL DE 93.7 d air rot	ING, FT SRC: 80.3 BURFACE, FT SRE: 4 1228.62 EPTH, FT BELOW MP: INSTALLATION DATES: 7/15-7/29/2019 tary in bedrock 0 ft HQ core barrel in bedrock Well Construction				
0 —		ML GC	Щ	SILT, tan to brown, soft, moist to dry. CLAYEY GRAVEL, reddish orange to reddish brown,			ft concret	ound completion including 2.5x2.5 e pad, four pipe bollards, and uter aluminum casing		
- - - 10 —	100 100	GC SM CL GM		with some tan silt, gravel (<3" dia), medium dense, moist. SILTY SAND, orange to tan, medium dense, moist. LEAN CLAY with sand, reddish brown with some dark red fat clay lenses, medium stiff, moist. SILTY GRAVEL, reddish brown to orange with some lenses of red fat clay, loose, moist.				2 in dia., Sch. 40 PVC solid riser, 3.2 ft of stickup		
-	100	GC SW GC ML		 @ 11-12 ft bgs color changes to tannish orange. CLAYEY GRAVEL, white with oxide staining on fractured surfaces and red fat clay lenses, gravel (<4" dia), dense, moist. CHERT, white, 12-13.5 ft bgs. WELL GRADED SAND with gravel, reddish orange, increasing clay with depth, gravel (<3" dia), loose. CLAYEY GRAVEL, reddish brown, loose to medium dense, moist. SILT, tan to tannish orange, clayey with some gravel, soft, moist. 			Cement/l 20.0 ft bg	pentonite grout from 0 ft bgs to Is		
20 —	100	CL ML GC		LEAN CLAY with gravel, gravel (<3" dia), soft, moist. SILT, tan to tannish orange, clayey with some gravel, soft, moist. @ 22.5 ft bgs gravel increasing with depth. CHERT, white with orange and black staining along fractured surfaces, 23.5-24.5 ft bgs. CLAYEY GRAVEL, reddish brown, gravel (<2" dia), medium dense, moist. CHERT, white to light grey, 26.5-27 ft bgs.						
	100	сн GW CL		GRAVELLY FAT CLAY, reddish brown, gravel (<2" dia) with red staining along fractures. WELL GRADED GRAVEL, black staining along fractured gravel, loose, moist. SANDY LEAN CLAY with gravel, reddish orange, gravel (<3" dia), soft, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<3" dia) with red staining along fractures.				e chip seal from 20.0 ft bgs to 65.8		
- 40 — -	80	GW CH CL		WELL GRADED GRAVEL, black staining along fractured gravel, loose, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<2" dia) with red staining along fractures. GRAVELLY LEAN CLAY, tannish orange with lenses of dark red fat clay, gravel (<1.5" dia), soft, moist.			ft bgs			

water resol	A:		tes Ltd. onsultants	Eco LOC/ Ecc DRIL Wa DRIL Ver DRIL	JECT: -Vista, LLC Class 1 Landfill NEI Well Installation ATION: D-Vista, LLC Landfill, Tontitown, AR LING CONTRACTOR: Iker-Hill Environmental, Inc. LING EQUIPMENT: sa-Drill VersaSonic LING METHOD: hic with 4x6 in dia. core and case in soils an	NORTHING 662680 GROUND 3 1225.4 WELL DEF 93.7	G, FT SR() .3 SURFACE PTH, FT B	E, FT SRE:	WELL ID: NE-5W EASTING, FT SRC: 648146.0 TOC MP, FT SRE: 1228.62 INSTALLATION DATES: 7/15-7/29/2019
LOGGE AJP	ED BY	:			PLING METHOD: htinuous with 10 ft, 4 in dia. core barrel in soi	l and 10 f	t HQ co	re barrel	in bedrock
Depth (feet)	% REC	nscs	Graphic	Log	Description			We Constr	ell
	70 64 80 100 93	GM ML			 SILTY GRAVEL, with some sand, tannish orange, gravel (<3" dia), loose, moist. GRAVELLY SILT with clay, tannish orange, gravel (<1" dia). @ 48.5-48.8 ft bgs dark red fat clay. WEATHERED CHERT/EPIKARST, chert is weathered into a silty gravel (<2" dia), white with tannish orange staining. @ 49-50 ft bgs chert, white. @ 53.5-55 ft bgs chert, white @ 57.5 ft bgs saturated. @ 59.5-70 ft bgs white with tannish orange staining, gravel (<2" dia), saturated. @ 70-75 ft bgs white to gray, saturated. @ To-75 ft bgs white to gray, saturated. LIMESTONE AND CHERT, interbedded. Limestone is competent, white and gray. @ 75.6-77.3 ft bgs parted along bedding planes, @ 79-90.2 ft bgs no loss of air, fractures 66-73° off horizontal. Chert is white and light grey, parted along bedding planes. 			Silica siz 5.8 ft bg 5.8 ft bg 10.0 ft of PVC scre 0.19 ft, 2	2 in dia., 0.010 in slot, Sch. 40
NOTE					are based on the Mason Surveying & Consulting, Inc. report date asing, MP=surveyed measuring point on TOC. 2 of 2	d August 9, 20	019. SRE=	site reference	d elevation, SRC=site referenced

2		FINEERS	LOG OF	- BORING	G NO.: NE	-6		SHEET NUMBER: 1 of 2		
		ardson Drive			DRILLER: G	ary Moyer	's	SURFACE ELEVATION: 1189.3 fms		
	North Littl	e Rock, AR		DRILLI	NG RIG: C	CME-55		TOC ELEVATION: 1192.3 f		
	CLIENT: Waste Ma		DR	RILLING A	AETHOD: H	SA/Air Ro	otary	WELL DEPTH COMPLETION: 55.0	6 fbgs	
)JECT NAME: Eco Vista I		DRILLING	G CONTI	RACIOR: Ar	nderson	,	LOCATION:		
	CT NUMBER: 27216360					gineering		NORTHING: 662650		
	LOCATION: EcoVista L		Consultants, Inc. SAMPLING METHOD: Cuttings				EASTING: 647424			
	GEOLOGIST: Robert For					-		WATER LEVEL: 30.3 WATER ELEVATION: 115		
	START DATE: 12/14/20 FINISH DATE: 12/15/20		BÇ		AMETER: 8.			WATER LEVEL DATE: 12/		
)EPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION		/ERY			N	MONITORING WELL DESCRIPTION	ELEVAT (FMS	
				RE						
_								Stick Up (2.95 ft)		
_	Top Soil	Topsoil; dark brown with				*****	I	Concrete Pad	F	
		rootlets					(Approximately 6")	Γ.	
									1	
									<u> </u>	
_									L .	
		Silty Clay; reddish brown								
	Silty Clay	with chert gravels								
									<u> </u>	
							-		_	
								dia. Sch. 40 PVC soild	_	
							rise	r from 0-43.27 ft bgs	-	
									1	
_	Chert, X	Chert; hard white							-	
									-	
									-	
								onite pellet seal from	-	
							grou	nd surface to 42 ft bgs	- 1	
									-	
_									-	
									-	
									\vdash	
									1	
							Sand	filter pack from 42 ft	\vdash	
								to 56.6 ft bgs	\vdash	
						\otimes		J	\vdash	
	Silty Clay	Silty Clay; reddish brown							\vdash	
		with chert gravels							1	
						\otimes			\vdash	
									\vdash	
11					88888	XXXXX			H-	

				Eco	JECT: -Vista, LLC Class 1 Landfill NEI Well Installation ATION:	BORING IE NE-6D			WELL ID: NE-6D EASTING, FT SRC:	
E					p-Vista, LLC Landfill, Tontitown, AR	NORTHING 662645		:	647433.5	
_		2			LING CONTRACTOR:	GROUND S	SURFACE,	FT SRE:	TOC MP, FT SRE:	
					ker-Hill Environmental, Inc.	1189.9			1192.90	
			bt Lao		LING EQUIPMENT:	WELL DEP	TH, FT BE	LOW MP:	INSTALLATION DATES:	
water reso	urces / envii	onmental c	CS LICL.		sa-Drill VersaSonic	76.3			7/24-7/29/2019	
					LING METHOD: nic with 4x6 in dia. core and case in soils an	d air rota	n, in hor	Irock		
					PLING METHOD:		ly in bec	IIOCK		
LOGGE AJP	ED BY:				itinuous with 10 ft, 4 in dia. core barrel in soi	l and 10 ft	t HQ cor	e barrel	in bedrock	
			,	>						
Depth (feet)	% REC	nscs	Graphi	Log	Description		C	We Constr		
0 —							-	ft concret	ound completion including 2.5x2.5 e pad, four pipe bollards, and uter aluminum casing	
0		ML		\sim	FILL SILT, brown, very soft, dry. @ 1.5-2.5 ft bgs with gravel,		8			
	100				medium stiff, moist. @ 2-2.5 ft bgs clayey. CHERT, white, 2.5-3 ft bgs.		\otimes			
_		СН			GRAVELLY FAT CLAY, dark reddish brown, gravel (<2" dia) with red and black staining along weathered	\otimes	8	66.1 ft of	2 in dia., Sch. 40 PVC solid riser,	
				<u>////</u>	Surfaces, moist. CHERT, white, 5.5-7 ft bgs.	- 🕅	\otimes		3.0 ft of stickup	
-				$\Delta \Delta A$			\otimes			
_	80	СН		$\langle \rangle \rangle$	GRAVELLY FAT CLAY, dark reddish brown, gravel (<2" dia) with red and black staining along weathered		\otimes			
				$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	surfaces, moist. CHERT, white, 9-10 ft bgs.	- 🛞	\otimes			
10 —		CL	////	11/	LEAN CLAY, tan to reddish brown, soft, moist.		\otimes			
_		CL		///		. 🛞	8			
		CH ML			CHERT, white, 12-12.5 ft bgs. GRAVELLY FAT CLAY, dark reddish brown, gravel (<2"		\otimes			
-	100	CL			dia) with red and black staining along weathered surfaces, moist.		\otimes		pentonite grout from 0 ft bgs to	
_		СН			LEAN CLAY, tan to white with thin red clay lenses, soft, moist.	1 🛛	\otimes	22.0 ft bg	S	
		CIT		//	LEAN CLAY with sand, reddish brown, fine-grained to		\otimes			
_			$\Delta \Delta Z$	$\sum_{i=1}^{n}$	medium-grained sand, gravel (<1" dia), soft, moist.		\otimes			
20 —		CL			mottles, gravel is heavily weathered with reddish brown and black staining, medium stiff, moist.		\otimes			
		GM	φφ	¢ [¢	CHERT, white, 17.5-19 ft bgs. GRAVELLY LEAN CLAY, brown, gravel (<2.5" dia),		\otimes			
_			$\phi \left[\phi \right]$	$\phi \phi$	soft, moist.		2			
_	100	CL			SILTY GRAVEL, tannish white, loose, moist. GRAVELLY LEAN CLAY, brown, gravel (<2.5" dia),					
					soft, moist. WEATHERED CHERT/EPIKARST, chert is weathered			Pontonia	which coal from 22.0 ft backs 24.0	
_			뜠슈		into a chert gravel (<2" dia) with sand and silt, white,			ft bgs	e chip seal from 22.0 ft bgs to 34.0	
			뜠샦		wet with rapid dilatancy in silt, loose, moist to wet. @26-26.2 ft chert lens.			Denth to	water: 27.6 ft bgs (7/29/2019)	
-			£₽°£		@28-29 ft bgs color changes from white to tannish				mator. 21.0 it bys (1128/2018)	
30 —					brown.		2			
			\$₽°\$	۲ ۲						
-				۲ ۲ ۲	@32 ft bgs lens (1 inch) of dark brown to black clayey layer.					
-	100		뜠샦		@32.1-34 ft bgs color changes to brown.					
			뜠샦	۲ <u>۲</u> ۲						
-			鉄鉄		@34-35 ft bgs color changes to white .		2			
-			\$\$ \$ \$	<u>}</u>	@35-36 ft bgs color changes to tannish brown.					
		in a state	₩Д	ر بېل ر	@36-41 ft bgs color changes to white.			ha rafari	d elevation (CDO-site set	
NOTE					are based on the Mason Surveying & Consulting, Inc. report dated asing, MP=surveyed measuring point on TOC.	u August 9, 20	19. SREESI	e releience	a didvation, orto-site referenced	

		SSOCIATE	es Ltd.	Eco LOCA Eco DRILI Wal DRILI Ver DRILI Sor	JECT: -Vista, LLC Class 1 Landfill NEI Well Installation ATION: D-Vista, LLC Landfill, Tontitown, AR LING CONTRACTOR: Iker-Hill Environmental, Inc. LING EQUIPMENT: sa-Drill VersaSonic LING METHOD: hic with 4x6 in dia. core and case in soils an PLING METHOD:	662645 GROUND 3 1189.9 WELL DEF 76.3	G, FT SRC: . 6 SURFACE, FT SRE TH, FT BELOW M	1192.90
LOGGI AJP				Con	itinuous with 10 ft, 4 in dia. core barrel in soi	l and 10 f		
Depth (feet)	% REC	NSCS	Graphic	Log	Description			Vell truction
40	100 100 100 59 100				 LIMESTONE AND CHERT, interbedded, less competent. Limestone is white and gray, chert is white. (@ 41-44 ft bgs no loss of air, fractures 42-87° off horizontal. (@ 43.5-44 ft bgs signs of dissolution, fractures and bedding planes filled with brown clay. (@ 44-50.5 ft bgs no loss of air, fractures 0-90° off horizontal. Some fracture and bedding planes filled with brown clay or with microcrystalline limestone. Dendrites and stylolites throughout. (@ 49-50.5 ft bgs limestone and chert breccia with gray microcrystalline limestone. (@ 50.5-60 ft bgs no loss of air, fractures 0-90° off horizontal. 		34.0 ft	elease bentonite pellet seal from bgs to 60.0 ft bgs size 20/40 filter pack from 60.0 ft bgs ft bgs
	100				 @ 68-73 ft bgs no loss of air, fractures 53-90° off horizontal, fracture thickness up to 0.1 ft. @ 70.5-71.9 ft bgs competent gray limestone. @ 72.7-73 ft bgs limestone and chert breccia, fractures contain gray microcrystalline limestone, yellow staining along fractures. 		PVC s 0.19 ft	of 2 in dia., 0.010 in slot, Sch. 40 creen 2 in dia., Sch. 40 PVC end cap terminated at 73.3 ft bgs
NOTE	S: Ha	rizontal a ordinates	nd vertic , TOC=tc	al data	are based on the Mason Surveying & Consulting, Inc. report date asing, MP=surveyed measuring point on TOC. 2 of 2	d August 9, 20)19. SRE=site referer	ced elevation, SRC=site referenced

	GINEERS		RING NO.: NE	-/		SHEET NUMBER: 1 of		
	ardson Drive		DRILLER: G	ary Moyer	's	SURFACE ELEVATION: 121	SURFACE ELEVATION: 1215 fmsl	
North Littl	le Rock, AR	DI	RILLING RIG: (CME 55		TOC ELEVATION: 121	7.9 fms	
CLIENT: Waste Ma	anagement	DRILLIN	G METHOD: H	ISA\Air Ro	otary	WELL DEPTH COMPLETION: 61.	5 fbgs	
PROJECT NAME: Eco Vista I		DRILLING CC	NTRACTOR: Ar			LOCATION:		
OJECT NUMBER: 2721636				ngineering		NORTHING: 662722 EASTING: 647732		
ECT LOCATION: EcoVista L		C A AADI IN		onsultants,	Inc.			
GEOLOGIST: Robert For START DATE: 12/7/201			IG METHOD: CU G DIAMETER: 8.			WATER LEVEL: 61.4 WATER ELEVATION: 115		
FINISH DATE: 12/8/201			ELL DIAMETER: 2			WATER LEVEL DATE: 12/		
	LITHOLOGY DESCRIPTION	RECOVERY (%)		ELL CONSTRUCTIO	N	MONITORING WELL DESCRIPTION	ELEVA (FM	
_						Stick Up (2.92 ft)		
_					1	Concrete Pad		
Top Soil	Topsoil; dark brown			\otimes	- (Approximately 6")		
Silty Clay	Silty Clay; reddish browr with chert gravels Chert; hard white					tonite pellet seal from nd surface to 56 ft bgs		

S		INEERS	LOG OF BOR	NG NO.: NI	E-7		SHEET NUMBER: 2 of 3		
	11219 Richo	ardson Drive			ary Moyers	:	SURFACE ELEVATION: 1 2 1	5 fmsl	
	North Little	e Rock, AR	DR		CME 55	,	TOC ELEVATION: 1217.9 fmsl		
	CLIENT: Waste Ma	inagement			ISA Air Rot	WELL DEPTH COMPLETION: 61.			
PRO	JECT NAME: Eco Vista N		DRILLING CO			_	LOCATION:		
	CT NUMBER: 27216360				ngineering		NORTHING: 66272		
	LOCATION: EcoVista Lo				onsultants, lı	າc.	EASTING: 64773		
	GEOLOGIST: Robert Fox START DATE: 12/7/201			G METHOD: C DIAMETER: 8.			WATER LEVEL: 61 WATER ELEVATION: 115	<u>v</u>	
	EINISH DATE: 12/8/201			L DIAMETER: 2			WATER LEVEL DATE: 12/		
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	tecovery (%)			I	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)	
30 — 30 — 31 — 35 — 40 — 40 — 40 — 45 — 50 — 55 — 55 —	Silty Clay	Silty Clay; reddish brown with chert gravels				rise Sand	dia. Sch. 40 PVC soild er from 0-58.5 ft bgs filter pack from 56 ft to 68.83 ft bgs	- 1184 - 1184 - 1180 - 1176 - 1176 - 1176 - 1168 - 1168 - 1164 - 1160 - 1160	
60	<u> </u>					10	ft of 2 in dia, 0.010		
THE STRA BOUNDA	ATIFICATION LINES REPRES ARY LINES BETWEEN SOIL . IONS MAY BE GRADUAL	ENT APPROXIMATE AND ROCK TYPES: ACTUAL					· · ·		

	CS ENG	INEERS	LOG OF BORI	NG NO.: NE-7		SHEET NU/	ABER: 3 of
	11219 Richa	rdson Drive					- ()
	North Little	Rock. AR	ופח	DRILLER: Gary Moyers LLING RIG: CME-55 Rig		SURFACE ELEVATION: 121 TOC ELEVATION: 121	
	CLIENT: Waste Man	•		G METHOD: HSA\Air Roto	ary	WELL DEPTH COMPLETION: 61.	
PRO	DJECT NAME: Eco Vista Na			ITRACTOR: Anderson	,	LOCATION:	1095
	CT NUMBER: 27216360.			Engineering		NORTHING: 662722	
ROJECT	[LOCATION: EcoVista Lar	nfill, Tontitown, AR		Consultants, Inc		EASTING: 647732	
	GEOLOGIST: Robert Fowl			HETHOD: Cuttings		WATER LEVEL: 61.4	
	START DATE: 12/7/2016			DIAMETER: 8.25"		WATER ELEVATION: 115	
F	FINISH DATE: 12/8/2016)		L DIAMETER: 2"		WATER LEVEL DATE: 12/	29/2010
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVER (%)	MONITORING WELL CONSTRUCTION	ı		ELEVATIOI (FMSL)
C _	Weathered Limestone	Weathered Limestone; har broken up		+++54	slo	t, Sch. 40 PVC sreen	-
_					Auc	ger Refusal - Bedrock	
					7.09		Γ.,
							- 115
_							
5 —	Limestone	Limestone; hard					L
_							
_							- 114
							-
						End Cap	\vdash
_						TD - 68.83 ft bgs	-
o —						1D - 00.05 11 bgs	-
_							- 114

2		INEERS	LOG OF	BORING	9 NO.: N	E-8		SHEEL NU/	MBER: 1 O
	11219 Richc				DRILLER: C	<u>Gary Moyer</u>	s	SURFACE ELEVATION: 117	'1.4 fmsl
	North Little	e Rock, AR				CME-55 Rig	•	TOC ELEVATION: 117	
	CLIENT: Waste Mar	nagement	DRILLING METHOD: HSA\Air Rotary			otary	WELL DEPTH COMPLETION: 30.	12 fbgs	
PRO)JECT NAME: Eco Vista N				RACTOR: A	nderson		LOCATION:	
	CT NUMBER: 27216360					ngineering		NORTHING: 662090	
	LOCATION: EcoVista Lo		.			Consultants,	lnc.	EASTING: 646798	
	GEOLOGIST: Robert Fow							WATER LEVEL: 18 1	<u> </u>
	START DATE: 12/20/20		ROF		AMETER: 8			WATER ELEVATION: 112 WATER LEVEL DATE: 12/	
EPTH	INISH DATE: 12/20/20	LITHOLOGY DESCRIPTION		/ERY		WELL CONSTRUCTIO	N		ELEVAT
(FT)				S S S S S S S S S S S S S S S S S S S					(FMSL
_					ſ			Stick Up (3.03 ft)	- 11
									— 1
				T	*****	*****	I	Concrete Pad	
						\otimes	(Approximately 6")	F
					\otimes				1
						\otimes			F
									-1
_									E
									E 1
_									
_									E
							2 in .	dia. Sch. 40 PVC soild	1
	Silty Clay	Silty Clay; reddish brown						iser 0-19.79 ft bgs	
_		with chert gravels						onite pellet seal from	— 1
								nd surface to 17 ft bgs	
_							9.000		F
_									1
									F
_									— 1
_									
									— 1
						\otimes			E'
					XXXX 1	122			F
	Chert X	Chert; hard white							1
	Silty Clay	Silty Clay; reddish brown				-	Sand	filter pack from 17 ft	F
	Siny Clay	with chert gravels						to 30.12 ft bgs	— 1
	Weathered Limestone	Weathered Limestone; har	d.		E		10	ft of 2 in dia, 0.010	Γ.
		broken up	~'		F			t, Sch. 40 PVC sreen	F
					F			ger Refusal - Bedrock	1
					E				F
					Ē				- 1
									E
$- \parallel$									E,
	Limestone	Limestone; hard, broken u	р						
									\vdash
			1	1					_

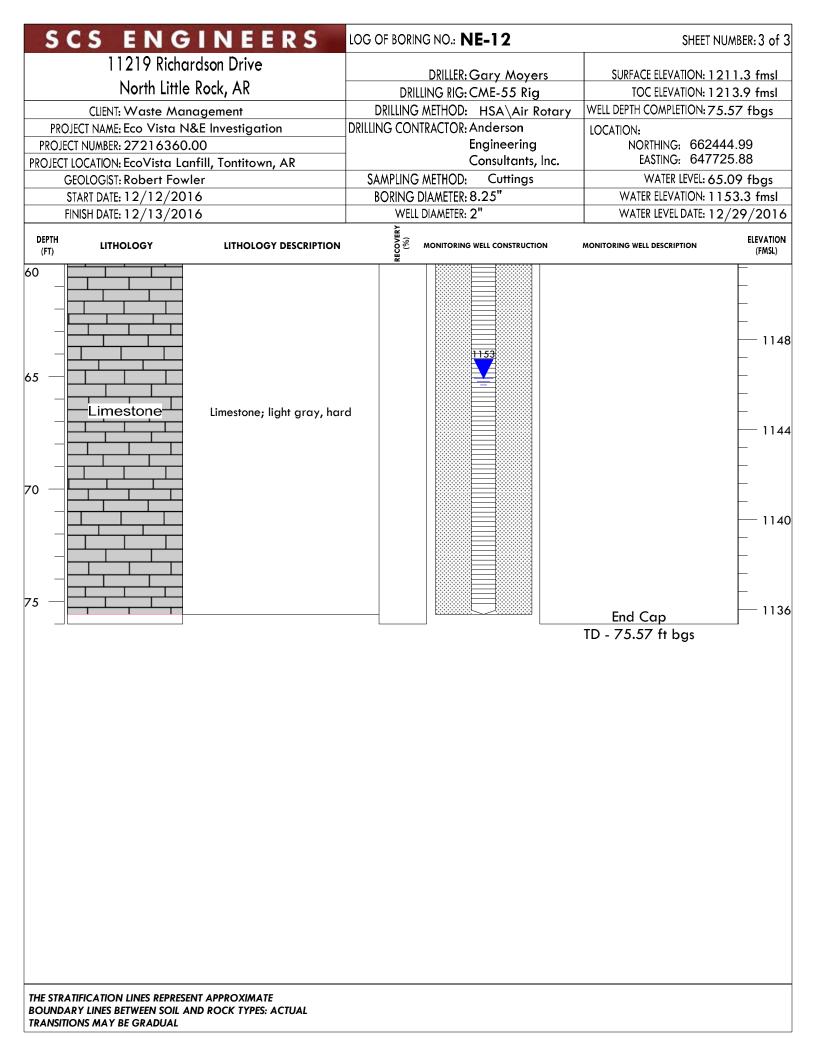
SC	S ENGI	NEERS	LOG OF BORI	NG NO.: NE-8	SHEET	NUMBER: 2 of 2
	11219 Richards					
				DRILLER: Gary Moyers	SURFACE ELEVATION: 1	
	North Little Ro			LLING RIG: CME-55 Rig	TOC ELEVATION: 1	
	CLIENT: Waste Manag			METHOD: HSA\Air Rotary	WELL DEPTH COMPLETION: 3	0.12 fbgs
	ECT NAME: Eco Vista N&E		DRILLING CON	NTRACTOR: Anderson	LOCATION:	000.05
	T NUMBER: 27216360.00			Engineering	NORTHING: 662 EASTING: 646	
	OCATION: EcoVista Lanfill	, Iontitown, AR	CANADUNIC	Consultants, Inc.		
	EOLOGIST: Robert Fowler			G METHOD: Cuttings	WATER LEVEL: 1 WATER ELEVATION: 1	•
	TART DATE: 12/20/2016 NISH DATE: 12/20/2016			DIAMETER: 8.25" L DIAMETER: 2"	WATER LEVATION: 1 WATER LEVEL DATE: 1	
11	NIGHT DATE: 12/20/2010					2/29/2010
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)		MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
30 —					End Cap TD - 30.12 ft bgs	1142
BOUNDAR	TFICATION LINES REPRESENT A Y LINES BETWEEN SOIL AND I NS MAY BE GRADUAL	-				

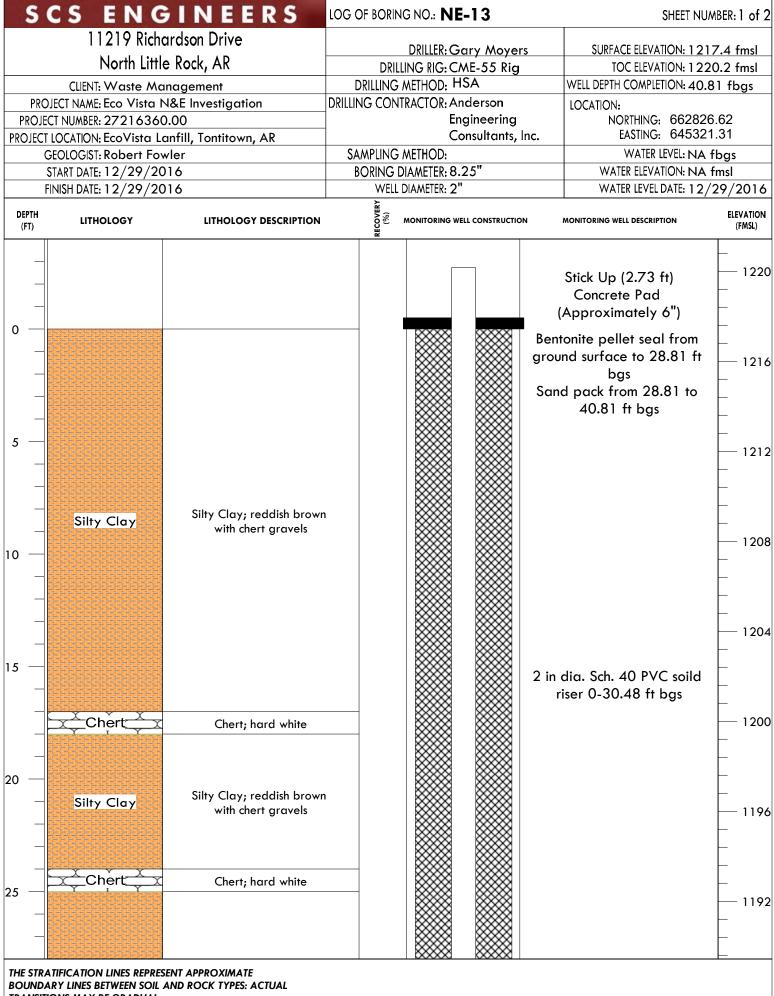
S		INEERS	LOG OF BC	RING NO.: NE -	-9		SHEET NU	MBER: 1 o
	11219 Richc			DRILLER: Go	iry Mover	's	SURFACE ELEVATION: 117	79.1 fms
	North Little	e Rock, AR	C	RILLING RIG: CN		-	TOC ELEVATION: 118	
	CLIENT: Waste Ma	nagement		NG METHOD: HS		otary	WELL DEPTH COMPLETION: 35.	15 fbgs
PR	ROJECT NAME: Eco Vista N	1&E Investigation	DRILLING C	ONTRACTOR: And	derson		LOCATION:	
	JECT NUMBER: 27216360				gineering		NORTHING: 66399	
) JE(CT LOCATION: EcoVista Lo				nsultants,	lnc.	EASTING: 64847	
	GEOLOGIST: Robert Fow			NG METHOD: Cut			WATER LEVEL: 17.	、
	START DATE: 12/6/201			G DIAMETER: 8.2 ELL DIAMETER: 2"	25		WATER ELEVATION: 110	
	FINISH DATE: 12/7/201	0	×	ELL DIAMETER: 2			WATER LEVEL DATE: 12/	29/20
EPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVEI		L CONSTRUCTIO	N		ELEVA (FMS
_	_							- 1
_							Stick Up (2.89 ft)	-
_								E 1
							Concrete Pad	
	Top Soil	Topsoil; dark brown with				- (Approximately 6")	
_		some chert gravels				(1
-								
_								<u> </u>
_								⊢ '
		Silty Clay; reddish brown						
	Silty Clay	with chert gravels						1
-		-						
_								<u> </u>
_						2 in 1	dia. Sch. 40 PVC soild	_ '
							iser 0-24.79 ft bgs	
_	Chert Chert	Chert; hard white						1
_						.		– 1
_		Silty Clay; reddish brown					onite pellet seal from	F.
	Silty Clay	with chert gravels				gro	ud surface to 22.5 ft	
_							bgs	1
_								
								— 1
_								F
					⁵⁴		filter pack from 22.5	
							ft to 35.15 ft bgs	1
_	Weathered Limestone	Weathered Limestone;						F
_		broken up						– 1
					\otimes			
								F
_								1
_						Au	ger Refusal - Bedrock	F
_						100		– 1
_								F
								F
								1
_						10	ft of 2 in dia, 0.010	F
_							t, Sch. 40 PVC sreen	-1
			1	100000000	000000000	0.0		H

S	CS ENG	INEERS	LOG OF BORI	NG NO.: NE-9	SH	EET NUMBER: 2 of 2
	11219 Richa	rdson Drive		DPILLED. Cary Moyors	SURFACE ELEVATIO	N. 1170 1 fmcl
	North Little	Rock, AR	DRI	DRILLER: Gary Moyers LLING RIG: CME-55 Rig		N: 1182 fmsl
	CLIENT: Waste Mar	nagement		METHOD: HSA\Air Rotary	WELL DEPTH COMPLETIO	N: 35.15 fbgs
PRC	DJECT NAME: Eco Vista N	&E Investigation	DRILLING CON	NTRACTOR: Anderson	LOCATION:	
	ECT NUMBER: 27216360.			Engineering	NORTHING: 6	
PROJEC	[LOCATION: EcoVista La	nfill, Tontitown, AR		Consultants, Inc.	EASTING: 6	
	GEOLOGIST: Robert Fow	ler		G METHOD: Cuttings		EL: 17.6 fbgs
	START DATE: 12/6/2010	5	BORING	DIAMETER: 8.25"	WATER ELEVATIO	N: 1164.4 fmsl
	FINISH DATE: 12/7/2010	6	WEL	L DIAMETER: 2"	WATER LEVEL DA	TE: 12/29/2016
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)			ELEVATION (FMSL)
30 — — 35 —		Limestone; hard			End Cap TD - 35.15 ft bgs	1150 1148 1146 1144

					JECT: -Vista, LLC Class 1 Landfill NEI Well Installation	BORING ID		WELL ID: NE-10D
								EASTING, FT SRC:
Ē					o-Vista, LLC Landfill, Tontitown, AR	662187	G, FT SRC: .1	645410.6
_				DRIL	LING CONTRACTOR:	GROUND S	SURFACE, FT SRE	: TOC MP, FT SRE:
		Î I		Wa	Iker-Hill Environmental, Inc.	1258.2		1261.10
					LING EQUIPMENT:		TH, FT BELOW MP	
water reso	ources / env	vironmental co	nsultants	-	sa-Drill VersaSonic	121.4		7/26-7/29/2019
					LING METHOD: nic with 4x6 in dia, core and case			
000	ED BY	<i>.</i>			PLING METHOD:			
		•			ntinuous with 10 ft, 4 in dia. core barrel			
set)	0	(0	, c)			١٨	/ell
Depth (feet)	% REC	nscs	Granh	Log	Description			ruction
						F		
-							ft conci	ground completion including 2.5x2. ete pad, four pipe bollards, and
0 —						N133	Cemen	outer aluminum casing
•		ML			SILT with gravel, tannish gray with white gravel (<1" dia), rootlets, medium stiff, moist.		Cemen	t/bentonite grout from 0 ft bgs to 3.
-	100	СН			GRAVELLY FAT CLAY, dark reddish brown, gravel		ft bgs	
-		CL			∖(<1.5" dia), stiff, moist. GRAVELLY LEAN CLAY, reddish brown, gravel (<2.5"			
		CH ML			dia), soft, moist. FAT CLAY with gravel, dark reddish brown, gravel (<1"			
-	1				\dia), stiff, moist to dry.			
-	100	GC	5		SILT with gravel, reddish brown, gravel (<1" dia), medium stiff, moist.			
			/0/	$\left \right\rangle$	CHERT, white, reddish orange staining along weathered surfaces, 6-7 ft bgs.			
10 –	1	GC	/0/	6	CLAYEY GRAVEL, reddish brown, reddish brown staining along weathered surfaces of chert gravel,			
		СН			loose, moist.			
		GC	/0/	767	CHERT, white, reddish orange staining along weathered surfaces, 7.5-8 ft bgs.			
-	100	СН	\sim	\sum	CLAYEY GRAVEL, reddish brown, reddish brown staining along weathered surfaces of chert gravel,			
-	-	CL	////		loose, moist. @ 10-12 ft bgs increasing clay with depth. FAT CLAY, dark red, stiff, moist.			
		СН	$\Delta \Delta Z$	$\Delta \Delta I$	CLAYEY GRAVEL with sand, reddish brown, reddish			
-	1				brown staining along weathered surfaces of chert gravel, loose, moist.			
20 —	-				FAT CLAY, dark red, stiff, moist. LEAN CLAY with gravel, reddish brown, gravel (<1.5"		111.2 f	t of 2 in dia., Sch. 40 PVC solid
		СН		$\langle \rangle \rangle$	dia), soft, moist. FAT CLAY, dark red, stiff, moist.			cluding 2.9 ft of stickup
-]		///		CHERT, white, reddish orange staining along			
	100	SW-SM	·••••	· · · · ·	Veathered surfaces, 17-18 ft bgs. FAT CLAY, dark red, stiff, moist. @19-23.5 ft bgs with			
			////	111	\gravel. WELL GRADED SAND with silt and gravel, tannish			
		CL		111	\orange, loose, moist. GRAVELLY LEAN CLAY with sand, gravel (<1" dia). @			
-			////	///	26-26.5 gravel (<2" dia)			
30 -		СН		////	FAT CLAY, dark red, stiff, moist.			
	100	SP	$\Delta \Delta \Delta$	$\Delta \Delta $	CHERT, white, reddish orange staining along weathered surfaces, 30-31 ft bgs.			
-			$\Delta \Delta \Delta$	$\Delta \Delta A$	WELL GRADED SAND with silt and gravel, tannish orange, loose, moist.			
		GC			CHERT, white, reddish orange staining along weathered surfaces, 32-33 ft bgs.			
					CLAYEY GRAVEL, reddish brown, heavily weathered			
-	60				\gravel (<2.5" dia), loose, moist. @33-33.1 lean clay with \gravel, grey, soft, moist.			
-		СН			GRAVELLY FAT CLAY, reddish brown with dark reddish brown and black staining along fractured chert,			
40					gravel (<2" dia), medium stiff, moist.			
40 —	1							
NOTE					a are based on the Mason Surveying & Consulting, Inc. report date asing, MP=surveyed measuring point on TOC.	u August 9, 20	IN SKESIte referend	ceu elevation, SRU=site referenced
					1 of 3			

					JECT:	BORING ID		WELL ID:
					-Vista, LLC Class 1 Landfill NEI Well Installation	NE-10D		NE-10D
Ê	É.				ATION: D-Vista, LLC Landfill, Tontitown, AR	NORTHING 662187		EASTING, FT SRC: 645410.6
					LING CONTRACTOR:		URFACE, FT SRE:	
		S			ling contractor.	1258.2	ONFACE, FI SNE.	1261.10
		FUI						
	-7	ssociate	es Ltd.		sa-Drill VersaSonic	121.4	TH, FT BELOW MP:	INSTALLATION DATES: 7/26-7/29/2019
water resou	irces / en	vironmental co	nsultants		LING METHOD:			1120-1123/2013
					nic with 4x6 in dia. core and case			
OGGE		/.		SAM	PLING METHOD:			
AJP				Cor	tinuous with 10 ft, 4 in dia. core barrel			
(feet)	S	S	c iq				W	ell
Depth (feet)	% REC	USCS	Gran	Log	Description		Constr	
		GM	φ φ	¢ þ	SILTY GRAVEL, tannish orange, gravel (<1.5" dia), loose, moist.			
-					GRAVELLY FAT CLAY, reddish brown with dark			
_	80	CL1			reddish brown and black staining along fractured chert, gravel (<2" dia), medium stiff, moist.			
		СН			@ 43-47 ft bgs gravelly black streaks in clay.			
-								
-		ML			SILT, white, soft, moist			
					WELL GRADED GRAVEL with silt and sand, white to			
50 —			1.		tannish orange, tripoli, gravel (<2" dia).			
_								
-	90	GW-GM		•				
_			•••					
-					@ 57.5-58 ft bgs lean clay, orange, soft, moist.			
60 —							Denterit	
					CHERT, white, 60-61 ft bgs. WELL GRADED GRAVEL with silt and sand, white to		ft bgs	e chip seal from 3.0 ft bgs to 90.0
-		GW-GM	1.		tannish orange, tripoli, gravel (<2" dia).			
_	60							
					CHERT, white, 64-65 ft bgs. WELL GRADED GRAVEL with silt and sand, white to			
-		GW-GM	1.0		tannish orange, tripoli, gravel (<2" dia).			
_		GW-GW						
					SILTY GRAVEL, white, gravel (<1.5" dia), very loose,			
70 —		GM	þ	oľ þľ	moist.			
_		GW-GM			WELL GRADED GRAVEL with silt and sand, white to tannish orange, tripoli, gravel (<2" dia).			
			T TT		SILT with gravel, white, loose, moist.			
-	80	ML						
_					0.70.77.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.			
			UI L	•	@ 76-77 ft bgs color changed to tannish orange.			
-			1.		WELL GRADED GRAVEL with silt and sand, tannish orange, tripoli, gravel (<2" dia).			
B0 —								
-								
_	100		• •					
								ed elevation, SRC=site referenced


ogged AJP ⊋	BY: DBY:	SSOCIATES ronmental consul	Ltd. Ltd. Ltd. Ltd. DRILL Vers DRILL Son SAMF	ATION: Vista, LLC Landfill, Tontitown, AR ING CONTRACTOR: ker-Hill Environmental, Inc. ING EQUIPMENT: sa-Drill VersaSonic ING METHOD: hic with 4x6 in dia. core and case PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel Description	NORTHING, FT SRC: 662187.1 GROUND SURFACE, FT SRE: 1258.2 WELL DEPTH, FT BELOW MP: 121.4	EASTING, FT SRC: 645410.6 TOC MP, FT SRE: 1261.10 INSTALLATION DATES: 7/26-7/29/2019
OGGED AJP	BY: DBY:	nscs	Nallaris DRILL Vers DRILL Son SAMF Con	ker-Hill Environmental, Inc. ING EQUIPMENT: sa-Drill VersaSonic ING METHOD: nic with 4x6 in dia. core and case PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel	1258.2 WELL DEPTH, FT BELOW MP: 121.4	1261.10 INSTALLATION DATES: 7/26-7/29/2019
OGGED AJP	BY: DBY:	nscs	ltants DRILL Vers DRILL Son SAMF Con	ING EQUIPMENT: sa-Drill VersaSonic ING METHOD: ic with 4x6 in dia. core and case PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel	WELL DEPTH, FT BELOW MP: 121.4	INSTALLATION DATES: 7/26-7/29/2019
OGGED AJP	BY: DBY:	nscs	Ltd. Itants DRILL Son SAMF Con	sa-Drill VersaSonic ING METHOD: ic with 4x6 in dia. core and case PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel	121.4 We	7/26-7/29/2019
OGGED AJP	BY: DBY:	nscs	Itants DRILL Son SAMF Con	LING METHOD: ic with 4x6 in dia. core and case PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel	We	I
OGGED AJP	BY: DBY:	nscs	DRILL Son SAMF Con	ic with 4x6 in dia. core and case PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel		ell
AJP	% REC	nscs	SAMF Con	PLING METHOD: tinuous with 10 ft, 4 in dia. core barrel		ell
AJP	% REC	nscs	Con	tinuous with 10 ft, 4 in dia. core barrel		ell
		۵.	Graphic Log	Description		ell
Depth (fe		۵.	Graphi Log	Description		Ell
-	(GW-GM			Constr	uction
0					Slow-rele	ase bentonite pellet seal from
- 1	00			@94-94.5 ft bgs fat clay lense, medium stiff.	90.0 ft bg	s to 105.0 ft bgs
_		sc		CLAYEY SAND with gravel, brown, gravel (<1" dia), loose, moist to saturated. WELL GRADED GRAVEL with clay, tannish brown,	Depth to	water: 96.1 ft bgs (7/29/2019)
		GW-GC	///////	very loose, saturated.		
0 —		sc		CLÁYEY SAND with gravel, tannish brown, gravel (<1" dia), very loose, saturated.		
- 7	70	.)		WELL GRADED GRAVEL with silt and sand, brown, tripoli, gravel (<2" dia) saturated.	122221 (2222)	e 20/40 filter pack from 105.0 ft 8.5 ft bgs
				@108 ft bgs lenses of brown clay.		-
_	¢	GW-GM		@112 ft bgs lenses of reddish brown clay.	10.0 ft of PVC scree	2 in dia., 0.010 in slot, Sch. 40 een
- 8	30			@114-115 color change tannish brown.		
		•. /.		@116 ft bgs lenses of reddish brown clay.	Native m	in dia., Sch. 40 PVC end cap aterials from 118.5to 119.0 ft bg
D —		Δ.	$\Delta \Delta \Delta$.	CHERT, competent, bedrock.	Drilling te	rminated at 119.0 ft bgs
-						
_						
	La	rizontal and	l vertical data	are based on the Mason Surveying & Consulting, Inc. report date	d August 9, 2010, CPE-site references	d elevation SPC-site referenced
IOTES:				are based on the Mason Surveying & Consulting, Inc. report date ising, MP=surveyed measuring point on TOC.	u August 9, 2019. ORE-Site reierencei	a Gevalion, ORG-Sile reletenced


2		INEERS	LOG OF BORIN					ABER: 1 O
	11219 Riche	ardson Drive			ary Moyer	s	SURFACE ELEVATION: 1201	6 ft SRE
	North Little	e Rock, AR			ME-55 Rig	\$	TOC ELEVATION: 1204	
	CLIENT: Waste Ma	•		METHOD: C			WELL DEPTH COMPLETION: 54.	
PR ⁱ	OJECT NAME: Eco Vista N		DRILLING CON		¥		LOCATION:	
	ECT NUMBER: 27216360				ngineering		NORTHING: 662698.	74 ft SR
	T LOCATION: EcoVista Lo		-		onsultants, l	nc.	EASTING: 648600.	86 ft SR
	GEOLOGIST: Robert For		SAMPLING	METHOD: C	uttings		WATER LEVEL: 47.6	5 fbgs
	START DATE: 12/6/201	6		DIAMETER: 8.			WATER ELEVATION: 115	1.9 fm
	FINISH DATE: 12/6/201	6	WELL	DIAMETER: 2	ił.		WATER LEVEL DATE: 12/	29/20
EPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	ECOVERY (%)			N		ELEVAT (FMS
		ill Environmental, Inc., removed the o						-
		ment grout was used to fill the well a						
_		[,] 17, Walker-Hill Environmental installe pad. The well was re-surveyed by Mas					Stick Up 2.4 ft	1
_		d on site-referenced coordinates (SRC						
_		was supervised by FTN Associates, Ltd					Concrete Pad	\vdash
	Top Soil	Topsoil; dark brown					Approximately 6")	\vdash
_		-				(\vdash
_	Silty Clay	Silty Clay; reddish brown with chert	1					1
_								\vdash
	Chert X	Chert; hard white						\vdash
								\vdash
								\vdash
_	- <u></u>							1
_		Silty Clay; reddish brown						\vdash
		with chert gravels (<5% gravels)						\vdash
		gravels						-
_								-
						0:	dia Sala 40 DVC asilal	- 1
_							dia. Sch. 40 PVC soild	-
						r	iser 0-44.86 ft bgs	-
					****			-
_								-
_								1
								\vdash
						Dant	مستنبع بمعالمه معما فيحس	-
_							onite pellet seal from nd surface to 43 ft bgs	-
_					****	grou	ia sollace to 45 ti bys	-
_								1
_								-
								-
								-
_								\vdash
_								- 1
_						Sand	filter pack from 43 ft	\vdash
	Silty Clay						to 55.19 ft bgs	\vdash
								\vdash
—						10	ft of 2 in dia 0.010	\vdash
_							ft of 2 in dia, 0.010	- 1
		Silty Clay; reddish brown	n			\$10	t, Sch. 40 PVC sreen	\vdash
	REAL REAL REAL REAL REAL REAL REAL REAL	with chert gravels	1		$\sim \sim \sim$			1

S		INEERS	LOG OF BORI	NG NO.: NE-11	SHEET N	IUMBER: 2 of 2
	11219 Richc	ırdson Drive		DRILLER: Gary Moyers	SURFACE ELEVATION: 12	201 6 ft SRF
	North Little	e Rock, AR	DRI	ILLING RIG: CME-55 Rig	TOC ELEVATION: 1	
	CLIENT: Waste Mai	•		G METHOD: Cuttings	WELL DEPTH COMPLETION: 5	
PRO	JECT NAME: Eco Vista N			NTRACTOR: Anderson	LOCATION:	
	CT NUMBER: 27216360			Engineering	NORTHING: 66269	8.74 ft SRC
	LOCATION: EcoVista Lo			Consultants, Inc.	EASTING: 64860	0.86 ft SRC
	GEOLOGIST: Robert Fow		SAMPLING	G METHOD: Cuttings	WATER LEVEL: 47	7.65 fbgs
	START DATE: 12/6/201			DIAMETER: 8.25"	WATER ELEVATION: 1	
F	INISH DATE: 12/6/201	6		L DIAMETER: 2"	WATER LEVEL DATE: 12	2/29/2016
DEPTH (FT)	LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)		MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
1 14	CX_ChertX Weathered Limestone	<u>Chert; hard white</u> Weathered Limestone; har broken up				- - - - - - - - - - - - - - - - - - -
45	Silty Clay	Chert; hard white Silty Clay; reddish brown with chert gravels				11 <i>5</i> 6 11 <i>5</i> 2
55 —		Weathered Limestone; har broken up	d,		End Cap TD - 55.19 ft bgs	1148
BOUNDA	ATIFICATION LINES REPRES ARY LINES BETWEEN SOIL A ONS MAY BE GRADUAL	ENT APPROXIMATE ND ROCK TYPES: ACTUAL				

50		SINEERS	LOG OF BC	DRING NO.: NE	-12		SHEET NU/	MBEK: I
		ardson Drive		DRILLER: G	ary Moyer	'S	SURFACE ELEVATION: 121	1.3 fm
	North Little	e Rock, AR	[DRILLING RIG: C/			TOC ELEVATION: 121	
	CLIENT: Waste Ma			NG METHOD: H		otary	WELL DEPTH COMPLETION: 75.5	57 fbg
	CT NAME: Eco Vista N		DRILLING C	ONTRACTOR: Ar			LOCATION:	
	NUMBER: 27216360				gineering	[NORTHING: 662444 EASTING: 647725	
		anfill, Tontitown, AR	C A AA DI II		onsultants,	inc.	WATER LEVEL: 65.0	
	DLOGIST: Robert Fox ART DATE: 12/12/20			NG METHOD: CU IG DIAMETER: 8.			WATER ELEVATION: 115	
	ISH DATE: 12/13/20			ELL DIAMETER: 2			WATER LEVEL DATE: 12/	
н)	LITHOLOGY	LITHOLOGY DESCRIPTION	COVERY			N	MONITORING WELL DESCRIPTION	ELEV,
	Top Soil	Topsoil, dark brown with chert gravels				I	Stick Up (2.53 ft) Concrete Pad Approximately 6")	
	Silty Clay	Silty Clay; reddish brown with chert gravels				ri Bent	dia. Sch. 40 PVC soild iser 0-55.24 ft bgs onite pellet seal from nd surface to 53 ft bgs	
	Chert	Chert; hard white						- I

	GINEERS	LOG OF BORIN	NG NO.: NE	-12		SHEET NU/	MBER: 2 of 3
11219 Rid	hardson Drive			ary Moyer	ç	SURFACE ELEVATION: 121	1.3 fmel
North Li	tle Rock, AR	DRII	LING RIG: C		3	TOC ELEVATION: 121	
CLIENT: Waste A				ISA\Air Ro	otary	WELL DEPTH COMPLETION: 75.	
PROJECT NAME: Eco Visto		DRILLING CON				LOCATION:	
PROJECT NUMBER: 272163				ngineering onsultants, l	nc	NORTHING: 662444 EASTING: 647725	
PROJECT LOCATION: EcoVista GEOLOGIST: Robert F		SAMPLING	METHOD: C		IIC .	WATER LEVEL: 65.0	
START DATE: 12/12/			DIAMETER: 8.			WATER ELEVATION: 115	
FINISH DATE: 12/13/			DIAMETER: 2			WATER LEVEL DATE: 12/	29/2016
DEPTH (FT) LITHOLOGY	LITHOLOGY DESCRIPTION	RECOVERY (%)			N	MONITORING WELL DESCRIPTION	ELEVATION (FMSL)
30	Silty Clay; reddish brown with chert gravels				20 slo	filter pack from 53 to 75.57 ft bgs ft of 2 in dia, 0.010 t, Sch. 40 PVC sreen ger Refusal - Bedrock	

(FMSL) i0 - Silty Clay Silty Clay; reddish brown with chert gravels (FMSL) (F	SCS ENGINEERS	L	LOG OF BORIN	G NO.: N	IE-1	3		SHEET 1	NUMBER: 2 of 2		
North Little Rock, AR DRILLING RIG: CME-55 Rig TOC ELEVATION: 1220.2 fmsl CLIENT: Waste Management DRILLING METHOD: HSA WELL DEPTH COMPLETION: 40.81 fbgs PROJECT NAME: Eco Vista N&E Investigation DRILLING CONTRACTOR: Anderson LOCATION: PROJECT NUMBER: 27216360.00 BRILLING CONTRACTOR: Anderson LOCATION: PROJECT NUMBER: 27216360.00 BRILLING CONTRACTOR: Anderson LOCATION: PROJECT LOCATION: EcoVista Lanfill, Tontitown, AR Consultants, Inc. EASTING: 645321.31 GEOLOGIST: Robert Fowler SAMPLING METHOD: Cuttings WATER LEVEL NA fbgs START DATE: 12/29/2016 BORING DIAMETER: 8.25" WATER LEVATION: NA fmsl FINISH DATE: 12/29/2016 WELL DIAMETER: 2" WATER LEVEL DATE: 12/29/2016 DEFTH (FT) LITHOLOGY DESCRIPTION § MONITORING WELL CONSTRUCTION BLEVATION (FMSL) 10 ft of 2 in dia, perforated Sch. 40 PVC 118 -	11219 Richardson Drive		DRILLER: Gary Moyers			rc	SURFACE FLEVATION: 1	217 1 fmsl			
CLIENT: Waste Management DRILLING METHOD: HSA WELL DEPTH COMPLETION: 40.81 fbgs PROJECT NAME: Eco Vista N&E Investigation DRILLING CONTRACTOR: Anderson LOCATION: PROJECT NUMBER: 27216360.00 Engineering NORTHING: 662826.62 PROJECT IOCATION: EcoVista Lanfill, Tontitown, AR Consultants, Inc. NORTHING: 662826.62 GEOLOGIST: Robert Fowler SAMPLING METHOD: Cuttings WATER LEVEL: NA fbgs START DATE: 12/29/2016 BORING DIAMETER: 8.25" WATER LEVATION: NA fmsl FINISH DATE: 12/29/2016 WELL DIAMETER: 2" WATER LEVATION: NA fmsl DEPTH LITHOLOGY LITHOLOGY DESCRIPTION	North Little Rock, AR		DRIL								
PROJECT NUMBER: 27216360.00 Engineering Consultants, Inc. NORTHING: 662826.62 EASTING: 645321.31 GEOLOGIST: Robert Fowler SAMPLING METHOD: Cuttings WATER LEVEL: NA fbgs START DATE: 12/29/2016 BORING DIAMETER: 8.25" WATER LEVEL: NA fmsl FINISH DATE: 12/29/2016 WELL DIAMETER: 8.25" WATER LEVEL DATE: 12/29/2016 DEPTH (FT) LITHOLOGY LITHOLOGY DESCRIPTION § 20 Silty Clay; reddish brown with chert gravels MONITORING WELL CONSTRUCTION IO ft of 2 in dia, perforated Sch. 40 PVC screen 118	CLIENT: Waste Management										
PROJECT LOCATION: EcoVista Lanfill, Tontitown, AR Consultants, Inc. EASTING: 645321.31 GEOLOGIST: Robert Fowler SAMPLING METHOD: Cuttings WATER LEVEL: NA fbgs START DATE: 12/29/2016 BORING DIAMETER: 8.25" WATER ELEVATION: NA fmsl FINISH DATE: 12/29/2016 WELL DIAMETER: 2" WATER LEVEL DATE: 12/29/2016 DEPTH (FT) LITHOLOGY LITHOLOGY DESCRIPTION get monitoring well construction Monitoring well description 10 - - - - - - 10 - Silty Clay; reddish brown with chert gravels - 10 ft of 2 in dia, perforated Sch. 40 PVC screen - 118 - - - - - -	PROJECT NAME: Eco Vista N&E Investigation	D	DRILLING CON								
GEOLOGIST: Robert Fowler SAMPLING METHOD: Cuttings WATER LEVEL: NA fbgs START DATE: 12/29/2016 BORING DIAMETER: 8.25" WATER LEVATION: NA fmsl FINISH DATE: 12/29/2016 WELL DIAMETER: 2" WATER LEVEL DATE: 12/29/2016 DEPTH LITHOLOGY LITHOLOGY DESCRIPTION 10								NORTHING: 662826.62			
START DATE: 12/29/2016 BORING DIAMETER: 8.25" WATER ELEVATION: NA fmsl FINISH DATE: 12/29/2016 WELL DIAMETER: 2" WATER LEVEL DATE: 12/29/2016 DEPTH (FT) LITHOLOGY LITHOLOGY DESCRIPTION ELEVATION (FMSL) 10 - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 15 - - - - 15 - - - -			CAMPUNIC				lnc.				
FINISH DATE: 12/29/2016 WELL DIAMETER: 2" WATER LEVEL DATE: 12/29/2016 DEPTH (FT) LITHOLOGY LITHOLOGY DESCRIPTION Image: Construction Monitoring well description ElEVATION (FMSL) 10 -									v		
DEPTH (FT) LITHOLOGY LITHOLOGY DESCRIPTION 10 - Silty Clay: reddish brown with chert gravels 15 - Silty Clay: reddish brown 15 - Silty Clay: reddish brown 15 - Silty Clay: reddish brown 16 - Silty Clay: reddish brown 17 - Silty Clay: reddish brown 18 - Silty Clay: reddish br	, , ,										
10 - Silty Clay Silty Clay; reddish brown with chert gravels						ONSTRUCTIO	DN		ELEVATION		
							pei	forated Sch. 40 PVC			

SSOCION ironmental c	Eco LOC/ Ecc DRIL Wa DRIL Ver DRIL Soi	D-Vista, LLC Class 1 Landfill NEI Well Installation ATION: D-Vista, LLC Landfill, Tontitown, AR LING CONTRACTOR: Iker-Hill Environmental, Inc. LING EQUIPMENT: rsa-Drill VersaSonic LING METHOD: nic with 4x6 in dia. core and case PLING METHOD:	NORTHING, FT SRC: 664751.7 GROUND SURFACE, F 1196.3	1199.25
NSCS	Graphic Log	Description	C	Well onstruction
5.41		GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia), increasing gravel with depth medium stiff moist		Above ground completion including 2.5x2.5 ft concrete pad, four pipe bollards, and locking outer aluminum casing 12.5 ft of 2 in dia., Sch. 40 PVC solid riser, including 2.9 ft of stickup
GM		SILTY GRAVEL with sand, weathered gravel (<3" dia) with oxidation along fractures. medium stiff, moist. @5-7 ft bgs with clay.		Cement/bentonite grout from 0 ft bgs to 6.0 ft bgs Bentonite chip seal from 20.0 ft bgs to 35.0 ft bgs
ML		 @7 ft bgs color changes to tan to orangish tan, tripoli chert, moist to somewhat wet. SILT, orangish tan to tan, medium stiff, moist. 		Silica size 20/40 filter pack from 74.1 ft bgs to 89.0 ft bgs
GM CL		weathered gravel (<3" dia) with oxidation along fractures, tripoli chert, moist to somewhat wet. LEAN CLAY with gravel, orangish brown, very soft, saturated. CLAYEY GRAVEL with sand, reddish brown to tan,		10.0 ft of 2 in dia., 0.010 in slot, Sch. 40 PVC screen
GC		saturated. @16-17 ft bgs silty.		Depth to water: 15.2 ft bgs (7/29/2019) 0.19 ft, 2 in dia., Sch. 40 PVC end cap
	E SOST	ML GM GC GC GC GC GC GC GC GC GC GC	LOCATION: Eco-Vista, LLC Landfill, Tontitown, AR DRILLING CONTRACTOR: Walker-Hill Environmental, Inc. DRILLING EQUIPMENT: Versa-Drill VersaSonic DRILLING METHOD: Sonic with 4x6 in dia. core and case SAMPLING METHOD: Continuous with 10 ft, 4 in dia. core barrel Image: Same state sta	Eco-Vista, LLC Class 1 Landfill NEI Well Installation NE-145 LOCATION: NORTHING, FT SRC: 664751.7 SRCVINSURFACE, FT 196.3 DRILLING CONFRACTOR: Walker-Hill Environmental, Inc. Inc. DRILLING EQUIPMENT: Well, DEPTH, FT BELG 22.7 SGOUNSURFACE, FT 196.3 DRILLING EQUIPMENT: Well, DEPTH, FT BELG 22.7 SMCLING METHOD: Continuous with 10 ft, 4 in dia. core barrel Continuous with 10 ft, 4 in dia. core barrel SMPLING METHOD: Continuous with 10 ft, 4 in dia. core barrel SMPLING METHOD: Continuous with 10 ft, 4 in dia. core barrel ML GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia), increasing gravel with depth, medium stiff, moist. ML GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia), increasing gravel with depth, medium stiff, moist. ML GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia), increasing gravel with depth, medium stiff, moist. ML GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia), increasing gravel with depth, medium stiff, moist. GM GRAVELLY SILT, orangish tan to tan, medium stiff, moist. GM GRAVELLY with sand, tan to orangish tan, tripoli chert, moist to somewhat wet. GM GRAVEL with sand, redish brown to tan, saturated. GM GRAVEL with sand, redish brown to tan, saturated. GM GRAVEL with sand, redish brown to tan, saturated.

				PRO	JECT:	BORING I	D:		WELL ID:	
				Eco	-Vista, LLC Class 1 Landfill NEI Well Installation	NE-14	D		NE-14D	
	<u>-</u>			LOCA	ATION:	NORTHIN	IG, FT SRC:		EASTING, FT SRC:	
_				Eco	o-Vista, LLC Landfill, Tontitown, AR	66475	1.9		648503.2	
		2			LING CONTRACTOR:	GROUND SURFACE, FT SRE: TOC MP, FT SRE:				
		ÉTTI		Wa	lker-Hill Environmental, Inc.	1195.7 1198.76				
					LING EQUIPMENT:	WELL DE	PTH, FT BE	LOW MP:	INSTALLATION DATES:	
water reso	AS urces / envi	<u>International SSOCIOI</u>	<u>es Lia</u> .		sa-Drill VersaSonic	42.0			7/2-7/29/2019	
Hator 1000		in on information	noununto		LING METHOD:					
				Sor	nic with 4x6 in dia. core and case in soils an	d air rota	ary in bed	rock		
LOGGI AJP	ED BY	:			PLING METHOD: It <mark>inuous with 10 ft, 4 in dia. core barrel in soi</mark>	il and 10 ft HQ core barrel in bedrock				
eet)	0	(0	,	C				We		
th (fe	REC	nscs	ique	Log	Description		6			
Depth (feet)	%		Č	59	I		C	Jonstr	uction	
						1	*			
-									ound completion including 2.5x2.5 te pad, four pipe bollards, and	
									uter aluminum casing	
0 —		ML			GRAVELLY SILT, dark brown, rootlets, gravel (<2" dia),	``` ⊗	×``			
-			6 6		increasing gravel with depth, medium stiff, moist. SILTY GRAVEL with sand, weathered gravel (<3" dia)		\otimes			
	80		[þ] (o] þ]	with oxidation along fractures, medium stiff, moist.	\otimes	\otimes		2 in dia., Sch. 40 PVC solid riser, 3.0 ft of stickup	
-				ol o la la		8	\otimes			
_		GM	φ[φ[$\phi [\phi$	@5-7 ft bgs with clay.	8	×			
					@7 ft bgs color changes to tan to orangish tan, tripoli chert, moist to somewhat wet.		2	Cement/l	bentonite grout from 0 ft bgs to 6.0	
-	100			ol bl	chert, moist to somewhat wet.		2			
10 —		ML			SILT, orangish tan to tan, medium stiff, moist.		2			
10 -	1		$\phi \phi$	$\phi \phi$	SILTY GRAVEL with sand, tan to orangish tan, weathered gravel (<3" dia) with oxidation along		2	Bentonite ft bgs	e chip seal from 6.0 ft bgs to 13.0	
-		GM			fractures, tripoli chert, moist to somewhat wet.		2	It bys		
		CL			LEAN CLAY with gravel, orangish brown, very soft,		▼2	Depth to	water: 13.1 ft bgs (7/29/2019)	
-	80		5/0	707	Saturated. CLAYEY gravel with sand, reddish brown to tan,		2			
-			0/	%	saturated.		2			
		GC	6/	0/0	@16-17 ft bgs silty.		2			
-			6%	$^{\circ}$	@19-19.2 ft bgs dark brown clay coated gravel.		2		ease bentonite pellet seal from	
20 —					LIMESTONE AND CHERT, interbedded. Limestone is		2	13.0 11 00	js to 23.9 ft bgs	
					white and gray, chert is white.					
	1				@ 20-28 ft bgs no loss of air, fractures 0-75° off horizontal, fractures contain sparry calcite. Stylolites		2			
-	100				throughout.		1			
				È	@ 20-23.5 ft bgs limestone breccia.					
	1								e 20/40 filter pack from 23.9 ft bgs	
-					@ 28-30 ft bgs no loss of air, fractures 0-75° off			to 40.0 ft	bgs	
	100				horizontal, fractures up to 0.02 ft and filled with sparry calcite.					
30 —					@ 30-40 ft bgs no loss of air. Fractures 45-81° off					
_					horizontal, up to 0.02 ft thick, and filled with sparry					
					calcite. Bedrock is white microcrystalline limestone, gray sparry limestone, and white chert. Stylolites			10.0 ft of	2 in dia., 0.010 in slot, Sch. 40	
-					throughout. @ 33 ft bgs water level noted during drilling.			PVC scre		
	92				@ 36.5-36.7 ft bgs signs of dissolution					
								0 10 4 0	in dia Sah 40 DV/C and an	
-					@ 40 ft bgs air compressor was shut down for approximately 1.25 hours. Water level in borehole			ο. 19 π, 2	in dia., Sch. 40 PVC end cap	
40					measured at approximately 19 ft bgs.		000	Drilling te	erminated at 40.0 ft bgs	
40 -		rizontal	and vortin	- dota	are based on the Macon Surviving & Consulting Inc. report data			e reference	d elevation SRC-site referenced	
NOTE					are based on the Mason Surveying & Consulting, Inc. report date asing, MP=surveyed measuring point on TOC.	i August 9, 2	UIU. OKE-SII	e reierence	u elevation, ord-site teteteticeu	
					1 of 1					

water resource DGGGEt AJP				LOCA ECC DRILI Wal DRILI Ver DRILI Sor	-Vista, LLC Class 1 Landfill NEI Well Installation ATION: D-Vista, LLC Landfill, Tontitown, AR LING CONTRACTOR: Iker-Hill Environmental, Inc. LING EQUIPMENT: sa-Drill VersaSonic LING METHOD: hic with 4x6 in dia. core and case PLING METHOD: htinuous with 10 ft, 4 in dia. core barrel Description	NE-15S NE-15S NORTHING, FT SRC: EASTING, FT SRC: 663665.8 648250.4 GROUND SURFACE, FT SRE: TOC MP, FT SRE: 1212.5 1215.29 WELL DEPTH, FT BELOW MP: INSTALLATION DATES: 45.3 7/24-7/29/2019				
Dep	%			<u>د (</u>			Above ft conc	ground completion including 2.5x2.5 rete pad, four pipe bollards, and outer aluminum casing		
0 —	100	ML			GRAVELLY SILT, tannish brown, gravel (<2" dia) weathered with brown and red staining, soft, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<1.5" dia),stiff, moist.					
-	100	GC CL GC			CHERT, white with orange staining along weathered surfaces, 4-5 ft bgs CLAYEY GRAVEL, dark red fat clay, increasing silt with depth, gravel (<1.5" dia), loose, moist. LEAN CLAY with sand, reddish brown, soft, moist. CLAYEY GRAVEL, dark red fat clay, gravel (<1.5" dia), loose, moist. @8-9 ft bgs silt increasing with depth.			of 2 in dia., Sch. 40 PVC solid riser, ng 2.8 ft of stickup		
10 —		GM ML GC			GRAVELLY SILT, tannish orange, loose, moist. SILT with gravel and clay, tan to white with orange staining, some lenses of reddish brown clay, gravel (<1" dia), soft, moist. CLAYEY GRAVEL, reddish brown, gravel (<2" dia) orange and black staining along weathered chert, loose		Ceme 20.0 ft	nt/bentonite grout from 0 ft bgs to bgs		
	100	СН	20		moist. CHERT, white to reddish orange, 14-15 ft bgs. GRAVELLY FAT CLAY, reddish brown, gravel (<1.5" dia),stiff, moist. @17-20 ft bgs gravel (<3" dia) with black staining along weathered gravel.					
20 —	100	CL			GRAVELLY LEAN CLAY, tannish brown, gravel (<1" dia), soft, moist. FAT CLAY with gravel, dark reddish brown, gravel (<4" dia) heavily weathered, soft to medium stiff, moist.		Bentor ft bgs	nite chip seal from 20.0 ft bgs to 24.0		

Associates Ltd. er resources / environmental consultants	Eco-Vista, LLC Class 1 Landfill NEI Well Installation LOCATION: Eco-Vista, LLC Landfill, Tontitown, AR DRILLING CONTRACTOR: Walker-Hill Environmental, Inc.	BORING ID: NE-15S NORTHING, FT SRC: 663665.8 GROUND SURFACE, FT SRE: 1212.5 WELL DEPTH, FT BELOW MP: 45.3 We	1215.29 INSTALLATION DATES: 7/24-7/29/2019
- CL - CL - CH - 60 - 60 - 100 - 100	GRAVELLY LEAN CLAY with sand, tannish brown, gravel (<1" dia), soft, moist. FAT CLAY with gravel, dark reddish brown, gravel (<4" dia) heavily weathered, soft to medium stiff, moist. CLAYEY GRAVEL, dark reddish brown, gravel (<3" dia), loose, moist. FAT CLAY with gravel, dark reddish brown, gravel (<1.5" dia), soft, moist. WEATHERED CHERT/EPIKARST, chert is weathered to well-graded gravel with silt and sand, tan to white, loose, moist. @35-36 ft bgs with some brown clay. @37-41.5 ft wet, rapid dilatancy. LIMESTONE AND CHERT, interbedded.	24.0 ft bg Silica size to 42.1 ft 10.0 ft of PVC scree 0.19 ft, 2 Drilling te	ase bentonite pellet seal from s to 29.0 ft bgs e 20/40 filter pack from 29.0 ft bgs bgs 2 in dia., 0.010 in slot, Sch. 40

				PRO	JECT:	BORING	G ID:		WELL ID:
				Eco	-Vista, LLC Class 1 Landfill NEI Well Installation	NE-1	5D		NE-15D
	<u>-</u>			LOCA	ATION:	NORTH	ING, FT SR	C:	EASTING, FT SRC:
				Eco	-Vista, LLC Landfill, Tontitown, AR	6636	75.0		648523.4
	7	2			LING CONTRACTOR:	GROUN	D SURFAC	E, FT SRE:	TOC MP, FT SRE:
		ÉT			ker-Hill Environmental, Inc.	1212.	.8		1215.73
			has I tal		LING EQUIPMENT:		EPTH, FT E	BELOW MP:	INSTALLATION DATES:
water res	ources / env	ironmental c	onsultants		sa-Drill VersaSonic	60.6			7/23-7/29/2019
					nic with 4x6 in dia. core and case in soils an	d air ro	tary in b	edrock	
	ED BY	:			PLING METHOD: Itinuous with 10 ft, 4 in dia. core barrel in soi	l and 10) ft HQ co	ore harrel	in bedrock
AJP									
i (fee	REC	nscs	cide Cide	Log	Description	Well			
Depth (feet)	% F	SN	c,	Log	Description		Construction		
							— °		ound completion including 2.5x2.5
	-								te pad, four pipe bollards, and uter aluminum casing
								,	
0 -	1	ML		Ш	GRAVELLY SILT, tannish brown, gravel (<2" dia)	Ŕ	2		
					weathered with brown and red staining, soft, moist. GRAVELLY FAT CLAY, reddish brown, gravel (<1.5"		8 🛛 -		
	80	СН		\square	dia),stiff, moist.		8 8		
				$\langle \rangle \rangle$			88		
	1		$\Delta \Delta Z$	$\Delta \Delta $	CHERT, white with orange staining along weathered		8 🕺 –		
		GC		\sim	surfaces, 4-5 ft bgs. CLAYEY GRAVEL, dark red fat clay, increasing silt with		88		
	1	CL	14	1/1	\depth, gravel (<1.5" dia), loose, moist. \LEAN CLAY with sand, reddish brown, soft, moist.	- 8	88		
	100	GC	20	$\langle \rangle$	CLAYEY GRAVEL, dark red fat clay, gravel (<1.5" dia),		* *		
· ·	1	00	0/0	/0/	loose, moist. @8-9 ft bgs silt increasing with depth.		88		2 in dia., Sch. 40 PVC solid riser,
10		GM	$\phi \phi$) d	GRAVELLY SILT, tannish orange, loose, moist.			Including	2.9 ft of stickup
10 –		ML			SILT with gravel and clay, tan to white with orange staining, some lenses of reddish brown clay, gravel (<1" dia), soft, moist.				
	1		5/6	\sim	CLAYEY GRAVEL, reddish brown, gravel (<2" dia)		8 🕺 –		
	100	GC	-/	0/0	orange and black staining along weathered chert, loose moist.		88		
	1		$\Delta \Delta Z$	Δ	CHERT, white to reddish orange, 14-15 ft bgs.				
					GRAVELLY FAT CLAY, reddish brown, gravel (<1.5" dia), stiff, moist.		88	Cement/l 20.0 ft bg	pentonite grout from 0 ft bgs to Is
		011	$\langle \rangle \rangle$	\square	@17-20 ft bgs gravel (<3" dia) with black staining along				
		СН		\square	weathered gravel		88		
				$\langle \rangle \rangle$			8 8		
20 -	-			<u> </u>	GRAVELLY LEAN CLAY, tannish brown, gravel (<1"		38		
		CL		$\langle \rangle \rangle$	dia), soft, moist.				
	100								
			$\langle \rangle \rangle$	$\langle \rangle \rangle$	FAT CLAY with gravel, dark reddish brown, gravel (<4" dia) heavily weathered, soft to medium stiff, moist.				
		СН		\square					
					GRAVELLY LEAN CLAY with sand, tannish brown,				
· ·		CL	////		gravel (<1" dia), soft, moist.				
		СН		111	FAT CLAY with gravel, dark reddish brown, gravel (<4"				
· ·	1	GC		/ 0 /	dia) heavily weathered, soft to medium stiff, moist. CLAYEY GRAVEL, dark reddish brown, gravel (<3"				e chip seal from 20.0 ft bgs to 35.0
		<u> </u>		111	dia), loose, moist. FAT CLAY with gravel, dark reddish brown, gravel			ft bgs	
30 -	1	СН			(<1.5" dia), soft, moist.				
NOTE					are based on the Mason Surveying & Consulting, Inc. report date	d August 9	, 2019. SRE=	site reference	d elevation, SRC=site referenced
	CO	ordinates	s, IOC=t	op of ca	asing, MP=surveyed measuring point on TOC. 1 of 2				
					1 01 2				

				JECT: -Vista, LLC Class 1 Landfill NEI Well Installation	BORING ID: NE-15D	WELL ID: NE-15D	
_	<u></u>		LOC	ATION: D-Vista, LLC Landfill, Tontitown, AR	NORTHING, FT SRC: 663675.0	EASTING, FT SRC: 648523.4	
_				LING CONTRACTOR:	GROUND SURFACE, FT SR		
			Wa	Iker-Hill Environmental, Inc.	1212.8	1215.73	
			DRIL	LING EQUIPMENT:	WELL DEPTH, FT BELOW N	P: INSTALLATION DATES:	
-	As	<u>sociates</u>		sa-Drill VersaSonic	60.6	7/23-7/29/2019	
vater resol	irces / envi	ronmental consu	Itants DRIL	LING METHOD:			
			So	nic with 4x6 in dia. core and case in soils an	d air rotary in bedrock		
OGGE	ED BY:		SAM	PLING METHOD:			
AJP			Cor	ntinuous with 10 ft, 4 in dia. core barrel in soi	I and 10 ft HQ core barr	el in bedrock	
eet)	с	í	<u>.0</u>		Well		
Depth (feet)	% REC	uscs	Graphic Log	Description		truction	
Del	6	_	Ľ Ü		Cond		
	70	X,	₽₽₽₽₽ ₽₽₽₽₽	WEATHERED CHERT/EPIKARST, chert weathered to gravel with silt and sand, tan to white, loose, moist.			
_	70	Z	P AP AP A				
		Æ					
-		Z					
		Ż	\$`#\$`#\$`	@35-36 ft bgs with some brown clay.			
-		Ż	144	@36-40 ft bgs wet, rapid dilatancy.			
		\rightarrow	<u>,</u>				
-	100				Slow-I	elease bentonite pellet seal from	
	100	4			35.0 f	bgs to 43.0 ft bgs	
0 —		Z-		LIMESTONE AND CHERT, interbedded, competent.			
				Limestone is white and gray, chert is white. Stylolites			
_			+ + +	throughout.			
		2		@ 40-42 ft bgs sample destroyed by 6-inch override	Depth	to water: 42.8 ft bgs (7/29/2019)	
_		2		casing.			
		2		@ 42.0-49.5 ft bgs no loss of air, fractures 18-90° off horizontal, up to 0.01 ft thick, fractures are filled with	Cilias	ine 20/40 filter neek from 42.0 ft be	
_	100			calcite.		size 20/40 filter pack from 43.0 ft bg) ft bgs	
				 @ 44 ft bgs staining along fractured surfaces. @ 48-49 ft bgs sparry calcite. 			
_							
		2	7 4 7				
0 —		2	1 4 1	@ 49.5-59 ft bgs no loss of air, fractures 0-90° off horizontal, fractures up to 0.01 ft thick and filled with			
Č (4		calcite, stylolites throughout.			
_			$\frac{1}{2}$	@ 49.5-53 ft bgs thinly bedded and parted along bedding planes.			
		4		@ 49.8-55.2 ft bgs range of water levels		of 2 in dia., 0.010 in slot, Sch. 40 creen	
				measured during drilling. @ 56 ft bgs fracture filled with brown clay.			
	100		Ī Ą Į	@ 57-58.5 ft bgs dissolution along fractures.			
_							
			+ + +	@59 ft bgs air compressor shut off. Water level	0.19 fi	, 2 in dia., Sch. 40 PVC end cap	
				measured at 56.3 ft bgs. Downhole camera used to confirm water-bearing fractures. Twenty-two minutes	800		
				lapsed and water level measured at 50.7 ft bgs.	Drilling	terminated at 59.0 ft bgs	
0							
0 —							
-							
-							
OTE	s. Ho	rizontal and	d vertical data	I a are based on the Mason Surveying & Consulting, Inc. report date	d August 9, 2019. SRE=site referei	ced elevation. SRC=site referenced	
OIE				asing, MP=surveyed measuring point on TOC.			
				2 of 2			

Survey of Existing Monitoring Wells Waste Management - Eco Vista Landfill Permit No.0290-S1-R2; AFIN 72-00144 MSCI Project No.: 21115

Table 1. Surveyed Locations of Monitoring Wells (MW)

			Top of PVC Pipe	Top of Adjacent
MW ID	Northing (1,4)	Easting (1,4)	Elevation ₍₂₎	Ground Elevation (3)
LGW-2	666,641.20	646,396.28	1302.23	1299.14
LGW-3R	666,590.83	647,167.96	1289.24	1286.13
LGW-4	665,925.07	647,545.10	1267.93	1265.82
LGW-5	665,325.97	647,602.26	1271.91	1269.94
LGW-6	664,913.65	648,172.75	1244.78	1242.13
LGW-7	664,257.39	648,160.17	1220.69	1219.29
LGW-8R	664,011.57	648,287.11	1186.33	1184.67
LGW-9	663,904.39	647,800.96	1237.56	1235.41
LGW-10	663,943.41	647,347.50	1240.66	1238.66
LGW-14R	665,280.95	648,182.74	1250.83	1247.94
MW-1N	665,516.54	644,923.24	1298.57	1296.32
MW-2N	664,194.55	644,251.38	1289.59	1286.79
MW-3N	662,823.05	645,309.94	1222.09	1219.29
MW-7N	663,318.62	647,895.76	1247.31	1244.53
MW-8N	662,664.63	647,425.41	1191.74	1189.16
MW-10N	662,360.96	646,348.24	1193.74	1191.05
MW-11N	666,560.22	647,130.04	1284.50	1281.73
MW15	666,696.30	645,547.33	1291.51	1288.64
MW16	666,692.70	645,038.83	1289.75	1286.31
MW17	666,159.64	644,919.06	1288.99	1285.55
MW19	664,867.17	645,156.12	1293.89	1291.20
MW20	664,201.03	644,267.33	1289.55	1286.29
MW21	662,562.61	646,405.86	1188.90	1186.06

MWID	Northing (1,4)	Easting (1,4)	Top of PVC Pipe Elevation ₍₂₎	Top of Adjacent Ground Elevation (3)
NE-1	662,064.30	647,307.43	1201.55	1199.14
NE-2	662,259.16	647,576.88	1176.89	1174.12
NE-4	666,189.30	644,305.25	1293.26	1290.55
NE-5	662,676.06	648,172.91	1227.13	1224.24
NE-5E	662,678.21	648,201.83	1224.34	1221.27
NE-5W	662,680.42	648,145.97	1228.63	1225.66
NE-6	662,656.53	647,424.68	1192.33	1189.27
NE-6D	662,645.64	647,433.40	1192.94	1189.92
NE-7	662,722.35	647,732.18	1217.89	1214.99
NE-8	662,090.56	646,798.68	1174.51	1171.70
NE-9	663,996.09	648,472.24	1182.02	1179.01
NE-10D	662,187.10	645,410.61	1261.07	1258.17
NE-11	662,698.72	648,600.84	1203.96	1202.21
NE-12	662,444.94	647,725.83	1213.83	1211.24
NE-13	662,826.59	645,321.32	1220.18	1217.39
NE-14D	664,751.77	648,503.05	1198.81	1196.02
NE-14S	664,751.71	648,494.49	1199.24	1196.24
NE-15D	663,674.98	648,253.32	1215.67	1212.88
NE-15S	663,665.82	648,250.32	1215.36	1212.65

Notes:

1. Northing and Easting Locations were measured on the lock side at marked location.

2. Top of PVC pipe elevation was measured on the lock side at marked location.

3. Top of adjacent ground elevation was measured at the lock side of casing just beyond the concrete pad.

4. Field measurements were surveyed by MSCI and completed on 06-29-2021 and are based on site specific control data as provided by WM to MSCI. Site specific control datum is scaled and rotated to State Plane Projection NAD83, Arkansas North and NAVD88 as provided to MSCI. No independent survey has been performed by MSCI to verify the correctness of the site control datum to NAD83 and NAVD88. Table 2 below shows site benchmarks used to control the survey.

Table 2. Landfill Permanent Benchmarks

Point	Northing	Easting	Elevation
1	665,349.93	645,326.51	1298.10
2	666,639.51	646,397.86	1299.17
21	662,089.30	647,253.71	1195.31

Digitall Mason Reason docum accept conten Date: 2

an5800008860

Digitally signed by Johnny Mason Reason: I have reviewed this document in sufficient depth to accept full responsibility for its contents. Date: 2021-07-01 15:41-05:00

MASON SURVEYING & CONSULTING, INC.

VOI

APPENDIX B

Rule No. 22 Analytical Lists for Groundwater

Plus chloride, total dissolved solids, sulfate, total organic carbon, pH, specific conductance, iron, and manganese per the requirements of 22.1204(d)

APPENDIX 1	
Appendix I to Part 258 - Constituents for	or Detection
Monitoring [1]	of Detection
Common name2 CAS RN3	
Common Name	157 CAX
	RN
Inorganic Constituents:	
(1) Antimony	(Total)
(2) Arsenic	(Total)
(3) Barium	(Total)
(4) Beryllium	(Total)
(5) Cadmium	(Total)
(6) Chromium(7) Cobalt	(Total) (Total)
(8) Copper	(Total)
(9) Lead	(Total)
(10) Nickel	(Total)
(11) Selenium	(Total)
(12) Silver	(Total)
(13) Thallium	(Total)
(14) Vanadium	(Total)
$(15) \operatorname{Zinc}$	(Total)
Organic Constituents:	67 64 1
(16) Acetone	67-64-1
(17) Acrylonitrile(18) Benzene	107-13-1 71-43-2
(19) Bromochloromethane	74-97-5
(20) Bromodichloromethane	75-27-4
(21) Bromoform; Tribromomethane	75-25-2
(22) Carbon disulfide	75-15-0
(23) Carbon tetrachloride	56-23-5
(24) Chlorobenzene	108-90-7
(25) Chloroethane; Ethyl chloride	75-00-3
(26) Chloroform; Trichloromethane	67-66-3 124-48-1
(27) Dibromochloromethane; Chlorodibromomethane	124-48-1
(28) 1,2-Dibromo-3-chloropropane; DBCP	96-12-8
(29) 1,2-Dibromoethane; Ethylene dibromide;	106-93-4
EDB	
(30) o-Dichlorobenzene; 1,2 Dichlorobenzene -	95-50-1
(31) p-Dichlorobenzene; 1,4 Dichlorobenzene -	106-46-7
(32) trans-1,4-Dichloro-2-butene	110-57-6
(33) 1,1-Dichloroethane; Ethylidene chloride	75-34-3
(34) 1,2-Dichloroethane; Ethylene dichloride	107-06-2
(35) 1,1-Dichloroethylene; 1,1Dichloroethene;	75-35-4
Vinylidene chloride - (36) cis-1,2-Dichloroethylene; cis-1,2-	156-59-2
Dichloroethene	150 57 2
(37) trans-1,2-Dichloroethylene; trans-1,2-	156-60-5
Dichloroethene	
(38) 1,2-Dichloropropane; Propylene dichloride	78-87-5
(39) cis-1,3-Dichloropropene	10061-01-5
(40) trans-1,3-Dichloropropene	10061-02-6
(41) Ethylbenzene	100-41-4
(42) 2-Hexanone; Methyl butyl ketone	591-78-6
(43) Methyl bromide; Bromomethane	74-83-9

(44) Methyl chloride; Chloromethane	74-87-3
(45) Methylene bromide; Dibromomethane	74-95-3
(46) Methylene chloride; Dichloromethane	75-09-2
(47) Methyl ethyl ketone; MEK; 2-Butanone	78-93-3
(48) Methyl iodide; Iodomethane	74-88-4
(49) 4-Methyl-2-pentanone; Methyl isobutyl	108-10-1
ketone	100-10-1
(50) Styrene	100-42-5
(50) Styrche (51) 1,1,1,2-Tetrachloroethane	630-20-6
(51) 1,1,2-Tetrachloroethane	79-34-5
(52) 1,1,2,2-1 ctrachloroethalie (53) Tetrachloroethylene; Tetrachloroethene;	127-18-4
Perchloroethylene	127-10-4
(54) Toluene	108-88-3
(55) 1,1,1-Trichloroethane; Methylchloroform	71-55-6
(56) 1,1,2-Trichloroethane	79-00-5
(50) 1,1,2- Inchloroethale (57) Trichloroethylene; Trichloroethene	79-00-3 79-01-6
(57) Trichlorofluoromethane; CFC-11	75-69-4
	96-18-4
(59) 1,2,3-Trichloropropane	90-18-4 108-05-4
(60) Vinyl acetate	
(61) Vinyl chloride	75-01-4
(62) Xylenes	1330-20-7
(63) Chloride	
(64) Sulfate	
(65) Total Dissolved Solids	
(66) Specific Conductance (field measurement)	
(67) pH (field measurement)	
(68) Turbidity	

- 1. This list contains 47 volatile organics for which possible analytical procedures provided in EPA Report SW-846, Test Methods for Evaluating Solid Waste, third edition, November 1986, as revised December 1987, includes Method 8260; and 15 metals for which SW-846 provides either Method 6010 or a method from the 7000 series of methods.
- 2. Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.
- 3. Chemical Abstracts Service registry number. Where Total is entered, all species in the ground water that contain this element are included.
- 4. Practical Quantitation Limit values must not be reported as detection limits. All values above the Method Detection Limit must be reported.

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (7 /L)6

Common Name2 CAS RN3	CASI Sugge	sted PQL methods 3 (t /L)6	
Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (\u03c7/L)
Acenaphthene	83-32-9	Acenaphthylene, 1,2-dihydro-	8100 200; 8270 10
Acenaphthylene	208-96-8	Acenaphthylene	8100 200; 8270 10
Acetone	67-64-1	2-Propanone	8260 100
Acetonitrile; Methyl cyanide	75-05-8	Acetonitrile	8015 100
Acetophenone	98-86-2	Ethanone1-phenyl-	8270 10
2-Acetylaminofluorene, 2-AAF	53-96-3	Acetamide N-9H- fluoren-2-yl	8270 20
Acrolein	107-02-8	2-Propenal	8030 5; 8260 100
Acrylonitrile	107-13-1	2-Propenenitrile	8030 5; 8260 200
Aldrin	309-00-2	1,4:5,8- Dimethanonaphthalene, 1,2,3,4,10,10- hexachloro-1,4,4a,5,8,8a-hexahydro-(1,4,4a,5,8,8a)-	8080 0.05; 8270 10
Allyl chloride	107-05-1	Propene, 3-chloro-	8010 5; 8260 10
4-Aminobiphenyl	92-67-1	1,1 ¹ 1-Biphenyl]- 4-amine	8270 20
Anthracene	120-12-7	Anthracene	8100 200; 8270 10
Antimony	(Total)	Antimony	6010 300; 7040 2000; 7041 30
Arsenic	(Total)	Arsenic	6010 500; 7060 10; 7061 20
Barium	(Total)	Barium	6010 20; 7080 1000
Benzene	71-43-2	Benzene	8020 2; 8021 0.1; 8260 5
Benzo[a]anthracene	56-55-3	Benz[a]anthracene	8100 200; 8270 10
Benzanthracene			,
Benzo[b]fluoranthene;	205-99-2	Benz[e]acephenanthrylene	8100 200; 8270 10
Benzo[k]fluoranthene	207-08-9	Benzo[k]fluoranthene	8100 200; 8270 10
Benzo[ghi]perylene	191-24-2	Benzo[ghi]perylene	8100 200; 8270 10
Benzo[a]pyrene	50-32-8	Benzo[a]pyrene	8100 200; 8270 10
Benzyl alcohol	100-51-6	Benzenemethanol	8270 20
Beryllium	(Total)	Beryllium	6010 3; 7090 50; 7091 2
alpha-BHC	319-84-6	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1,2,3,4,5,6)-	8080 0.05; 8270 10
beta-BHC	319-85-7	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1,2,3,4,5,6)-	8080 0.05; 8270 20
delta-BHC	319-86-8	Cyclohexane, 1,2,3,4,5,6- hexachloro-,(1,2,3,4,5,6)-	8080 0.1; 8270 20
gamma-BHC; Lindane	58-89-9	Cyclohexane, 1,2,3,4,5,6-hexachloro-, (1,2,3,4,5,6)-	8080 0.05; 8270 20
Bis-(2-chloroethoxy)methane	111-91-1	Ethane, 1,1^1- [methylenebis(oxy)] bis[2-chloro-	8110 5; 8270 10
Bis(2-chloroethyl)	111-44-4	Ethane, 1,1 ¹ oxybis[2-chloro-	8110 3 8270 10
ether; Dichloroethyl ether	111 44 4		0110 5 0270 10
Bis-(2-chloro-1 -methylethyl) ether; 2,2^1-Dichlorodiisopro	108-60-1	Propane, 2,2 ¹ - 1- oxybis[1-chloro-	8110 10; 8270 10
pyl ether; DCIP,See note 7			
Bis(2-ethylhexyl) phthalate	117-81-7	1,2- Benzenedicarboxylic acid, bis(2-ethylhexyl) ester	8060 20
Bromochloromethane Chlorobromomethane	74-97-5	Methane, bromochloro-	8021 0.1/ 8260 5
Bromodichloromethane; Dibromochloromethane	75-27-4	Methane, bromodichloro-	8010 1; 8021 0.2; 8260 5
Bromoform; Tribromomethane	75-25-2	Methane tribromo-	8010 2; 8021 15; 8260 5
4-Bromophenyl phenyl ether Butyl benzyl phthalate; Benzyl butyl phthalate	101-55-3 85-68-7	Benzene, 1-bromo-4-phenoxy- 1,2- Benzenedicarboxyli c acid, butyl phenylmethyl ester	8110 25; 8270 10 8060 5; 8270 10
Cadmium	(Total)	Cadmium	6010 40; 7130 50; 7131 1
Carbon disulfide	(10tar) 75-15-0	Carbon disulfide	8260 100
Carbon tetrachloride	56-23-5	Methane, tetrachloro-	8010 1; 8021 0.1; 8260 10
Chlordane	See Note 8	4,7-Methano-1H- indene, 1,2,4,5,6,7,8,8-octachloro- 2,3,3a,4,7,7a - hexahydro	8080 0.1; 8270 50;
p-Chloroaniline	106-47-8	Benzenamine, 4-chloro-	8270 20
Chlorobenzene	108-90-7	Benzene, chloro-	8010 2; 8020 2; 8021 0.1; 8260 5
Chlorobenzilate	510-15-6	Benzeneacetic acid, 4-chloro—(4-chlorophenyl)— hydroxy-, ethyl ester	8270 10
p-Chloro-m- cresol; 4-Chloro-3	59-50-7	Phenol, 4-chloro- 3-methyl-	8040 5; 8270 20

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (7 /L)6

Common Name2 CAS RN3	CASI Sugges	sieu r QL memous 3 (t /L)0	
Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (τ/L)
methylphenol	55 00 0	F.(1)	0010 5 0001 1 00 00 10
Chloroethane; Ethyl chloride	75-00-3	Ethane, chloro-	8010 5; 8021 1; 8260 10
Chloroform; Trichloromethane	67-66-3	Methane, trichloro-	8010 0.5; 8021 0.2; 8260 5
2- Chloronaphthalene	91-58-7	Naphthalene, 2-chloro-	8120 10; 8270 10
2- Chlorophenol	95-57-8	Phenol, 2-chloro-	8040 5; 8270 10
4- Chlorophenyl phenyl ether	7005-72-3	Benzene, 1-chloro-4-phenoxy-	8110 40; 8270 10
Chloroprene	126-99-8	1,3-Butadiene, 2- chloro-	8010 50; 8260 20
Chromium	(Total)	Chromium	6010 70; 7190 500; 7191 10
Chrysene	218-01-9	Chrysene	8100 200; 8270 10
Cobalt	(Total)	Cobalt	6010 70; 7200 500; 7201 10
Copper	(Total)	Copper	6010 60; 7210 200;7211 10
m-Cresol; 3- methylphenol	108-39-4	Phenol, 3-methyl-	8270 10
o-Cresol; 2- methylphenol	95-48-7	Phenol, 2-methyl-	8270 10
p-Cresol; 4- methylphenol	106-44-5	Phenol, 4-methyl-	8270 10
Cyanide	57-12-5	Cyanide	9010 200
2,4-D; 2,4- Dichlorophenoxya	94-75-7	Acetic acid, (2,4- dichlorophenoxy-	8150 10
cetic acid)4-75-7	Acette acid, (2,4- dicinorophenoxy-	8150 10
	72 54 9	Panzona 1 1A1 (2.2 diablareathylidana)hia[1 al	9090 0 1, 9270 10
4,4^1-DDD	72-54-8	Benzene 1,1^1- (2,2- dichloroethylidene)bis[4-chloro-	8080 0.1; 8270 10
4,4^1-DDE	72-55-9	Benzene, 1,1^1- (dichloroethyenylidene)bis[4-chloro-	8080 0.05; 8270 10
4,4^1-DDT	50-29-3	Benzene, 1,1^1-(2,2,2- trichloroethylidene)bis[4-chloro-	8080 0.1; 8270 10
Diallate	2303-16-4	Carbamothioic acid, bis(1-methylethyl)-,S-(2,3-dichloro- 2-propenyl) ester	8270 10
Dibenz[a,h]anthracene	53-70-3	Dibenz[a,h]anthracene	8100 200; 8270 10
Dibenzofuran	132-64-9	Dibenzofuran	8270 10
Dibromochloromethane; Chlorodibromomethane	124-48-1	Methane, dibromochloro-	8010 1; 8021 0.3; 8260 5
1,2-Dibromo-3- chloropropane; DBCP	96-12-8	Propane, 1,2- dibrome-3-chloro-	8011 0.1; 8021 30; 8260 25
1,2- Dibromoethane; Ethylene dribromide; EDB	106-93-4	Ethane, 1,2- dibromo-	8011 0.1; 8021 10; 8260 5
Di-n-butyl phthalate	84-74-2	1,2- Benzenedicarboxylic acid, dibutyl ester	8060 5; 8270 10
o- Dichlorobenzene;1,2- Dichlorobenzene	95-50-1	Benzene, 1,2- dichloro1-	8010 2; 8020 5; 8021 0.5; 8120 10; 8260 5; 8270 10
m- Dichlorobenzene; 1,3- Dichlorobenzene	541-73-1	Benzene, 1,3- Dichloro-	8010 5; 8020 5; 8021 0.2; 8120 10; 8260 5; 8270 10
p - Dichlorobenzene; 1,4- Dichlorobenzene	106-46-7	Benzene, 1,4- dichloro-	8010 2; 8020 5; 8021 0.1; 8120 15 260 5; 8270 10
3,3^1- Dichlorobenzidine	91-94-1	[1,1^1-Biphenyl]- 4,4^1-diamine, 3,3^1-dichloro-	8270 20
trans-1,4- Dichloro-2- butene	110-57-6	2-Butene, 1,4- dichloro-, (E)-	8260 100
Dichlorodifluoro methane; CFC	75-71-8	Methane, dichlorodifluoro-	8021 0.5; 8260 5
12;	/3-/1-0	Memane, dichlorodinuoro-	8021 0.3, 8200 5
12, 1,1-Dichloroethane; Ethyldidene chloride	75-34-3	Ethane, 1,1- dichloro-	8010 1; 8021 0.5; 8260 5
1,2 - Dichloroethane; Ethylene dichloride	107-06-2	Ethane, 1,1- dichloro-	8010 0.5; 8021 0.3; 8260 5
1,1- Dichloroethylene; 1,1- Dichloroethene; Vinylidene	75-35-4	Ethene, 1,1- dichloro-	8010 1; 8021 0.5; 8260 5
chloride cis-1,2- Dichloroethylene; cis-1,2-	156-59-2	Ethene, 1,2- dichloro-, (Z)-	8021 0.2; 8260 5
Dichloroethene trans-1,2- Dichloroethylene trans- 1,2- Dichloroethene	156-60-5	Ethene, 1,2- dichloro-, (E)-	8010 1; 8021 0.5; 8260 5
2,4- Dichlorophenol	120-83-2	Phenol, 2,4- dichloro-	8040 5; 8270 10
2,4- Dichlorophenol			
	87-65-0	Phenol, 2,6- dichloro-	8270 10
1,2- Dichloropropane; Propylene	78-87-5	Propane, 1,2- dichloro-	8010 0.5; 8021 0.05; 8260 5

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (τ /L)6

Common Namez CAS KNS	CASI Sugge		
Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (\u03c7/L)
dichloride			
1,3- Dichloropropane; Trimethylene dichloride	142-28-9	Propane, 1,3- dichloro-	8021 0.3; 8260 5
2,2- Dichloropropane; Isopropylidene chloride	594-20-7	Propane, 2,2- dichloro-	8021 0.5; 8260 15
1,1- Dichloropropene	563-58-6	1-Propene, 1,1- dichloro-	8021 0.2; 8260 5
cis-1,3- Dichloropropene	10061-01-5	1-Propene, 1,3- dichloro-, (Z)-	8010 20; 8260 10
trans-1,3- Dichloropropene	10061-02-6	1-Propene, 1,3- dichloro-, (E)-	8010 5; 8260 10
Dieldrin	60-57-1	2,7:3,6- Dimethanonaphth[2, 3-b]oxirene, 3,4,5,6,9,9- hexa, chloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1a,2,2a,3,6,6a,7,7a)-	8080 0.05; 8270 10
Diethyl phthalate	84-66-2	1,2- Benzenedicarboxylic acid, diethyl ester	8060 5; 8270 10
0,0-Diethyl 0-2- pyrazinyl phosphorothioate; Thionazin	297-97-2	Phosphorothioic acid, 0,0-diethyl 0-pyrazinyl ester	8141 5; 8270 20
Dimethoate	60-51-5	Phosphorodithioic acid, 0,0-dimethyl S-[2- (methylamino)- 2-oxoethyl] ester	8141 3; 8270 20
p- (Dimethylamino) azobenzene	60-11-7	Benzenamine, N,N- dimethyl-4- (phenylazo)-	8270 10
7,12- Dimethylbenz[a] anthracene	57-97-6	Benz[a]anthracene, 7,12-dimethyl-	8270 10
3,3^1- Dimethylbenzidine	119-93-7	[1,1^1-Biphenyl]- 4,4^1-diamine,3,3^1-dimethyl-	8270 10
2,4- Dimethylphenol; m-Xylenol	105-67-9	Phenol, 2,4- dimethyl-	8040 5; 8270 10
Dimethyl phthalate m-Dinitrobenzene	131-11-3 99-65-0	1,2- Benzenedicarboxylic acid, dimethyl ester Benzene, 1,3- dinitro-	8060 5; 8270 10 8270 20
4,6-Dinitro-o- cresol 4,6- Dinitro- 2- methylphenol	534-52-1	Phenol, 2-methyl-4,6-dinitro	827020
2,4- Dinitrophenol;	51-28-5	Phenol, 2,4- dinitro-	8040 150; 8270 50
2,4- Dinitrotoluene	121-14-2	Benzene, 1-methyl-2,4-dinitro-	8090 0.2; 8270 10
2,6- Dinitrotoluene	606-20-2	Benzene, 2-methyl-1,3-dinitro-	8090 0.1; 8270 10
Dinoseb; DNBP; 2- sec-Butyl-4,6-	88-85-7	Phenol, 2-(1- methylpropyl)-4,6- dinitro-	8150 1; 8270 20
dinitrophenol	115 04 0		
Di-n-octyl phthalate	117-84-0	1,2- Benzenedicarboxylic acid, dioctyl ester	8060 30; 8270 10
Diphenylamine Disulfoton	122-39-4 298-04-4	Benzenamine, N- phenyl- Phosphorodithioic acid, 0,0-diethyl S-[2- (ethylthio)ethyl	8270 10 8140 2; 8141 0.5; 8270 10
Districtori	298-04-4	ester	8140 2; 8141 0.3; 8270 10
Endosulfan I	959-98-8	6,9-Methano-2,4,3- benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a hexahydro-,3-oxide,	8080 0.1; 8270 20
Endosulfan II	33213-65-9	6,9-Methano-2,4,3- benzodioxathiepin, 6,7,8,9,10,10- hexachloro- 1,5,5a,6,9,9a hexahydro-, 3-oxide, (3,5a,6,9,9a)-	8080 0.05; 8270 20
Endosulfan sulfate	1031-07-8	6,9-Methano-2,4,3- benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a hexahydro-,3-3-dioxide	8080 0.5; 8270 10
Endrin	72-20-8	2,7:3,6- Dimethanonaphth[2, 3-b]oxirene, 3,4,5,6,9,9- hexachloro-1a,2,2a,3,6,6a,7,7 a-octahydro-, (1a, 2,2a,3,6,6a,7,7a)-	8080 0.1; 8270 20
Endrin aldehyde	7421-93-4	1,2,4- Methenocyclopenta[cd]pentalene-5- carboxaldehyde,2,2a,3,3,4,7-hexachlorodecahydro- ,(1,2,2a,4,4a,5,6a,6b,7R*)-	8080 0.2; 8270 10
Ethylbenzene	100-41-4	Benzene, ethyl-	8020 2; 8221 0.05; 8260 5
Ethyl methacrylate	97-63-2	2-Propenoic acid, 2-methyl-, ethyl ester	8015 5; 8260 10; 8270 10
Ethyl methanesulfonate Famphur	62-50-0 52-85-7	Methanesulfonic acid, ethyl ester Phosphorothioic acid, 0-[4-	8270 20 8270 20
Fluoranthene	206-44-0	[(dimethylamino)sulfonyl]phenyl] 0,0-dimethyl ester Fluoranthene	8100 200; 8270 10

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (7 /L)6

Common Name2 CAS KNS	CASI Sugge	sted PQL methods 5 (t /L)6	Suggested Methods;	
Common Name	CAS RN	Chemical abstracts service index name	$PQL (\tau/L)$	
Fluorene	86-73-7	9H-Fluorene	8100 200; 8270 10	
Heptachlor	76-44-8	4,7-Methano-1H- indene, 1,4,5,6,7,8,8-heptachloro- 3a,4,7,7a tetrahydro-	8080 0.05; 8270 10	
Heptachlor epoxide	1024-57-3	2,5-Methano-2H- indeno[1,2- b]oxirene,2,3,4,5,6,7,7- heptachloro-1a,1b,5,5a,6,6a hexahydro-,(1a,1b, 2, 5, 5a, 6, 6a)	8080 1; 8270 10	
Hexachlorobenzene	118-74-1	Benzene, hexachloro-	8120 0.5; 8270 10	
Hexachlorobutadiene	87-68-3	1,3-Butadiene, 1,1,2,3,4,4- hexachloro-	8021 0.5; 8120 5; 8260 10; 8270 10	
Hexachlorocyclopentadiene	77-47-4	1,3- Cyclopentadiene, 1,2,3,4,5,5-hexachloro-	8120 5; 8270 10	
Hexachloroethane	67-72-1	Ethane, hexachloro-	8120 0.5; 8260 10; 8270 10	
Hexachloropropene	1888-71-7	1-Propene, 1,1,2,3,3,3-hexachloro-	8270 10	
2-Hexanone; Methyl butyl ketone	591-78-6	2-Hexanone	8260 50	
Indeno(1,2,3- cd)pyrene	193-39-5	Indeno(1,2,3- cd)pyrene	8100 200; 8270 10	
Isobutyl alcohol	78-83-1	1-Propanol, 2- methyl-	8015 50; 8240 100	
Isodrin	465-73-6	1,4,5,8- Dimethanonaphthalene,1,2,3,4,10,10-	8270 20; 8260 10	
Isodim	405-75-0	hexachloro-1,4,4a,5,8,8a hexahydro-(1,4,4a,5,8,8a)-	8270 20, 8200 10	
Isophorone	78-59-1	2-Cyclohexen-1- one, 3,5,5- trimethyl-	8090 60; 8270 10	
-				
Isosafrole	120-58-1	1,3-Benzodioxole, 5-(1-propenyl)-	8270 10	
Kepone	143-50-0	1,3,4-Metheno-2H- cyclobuta[cd]pentalen-2- one,1,1a,3,3a,4,5,5,5a,5b,6-decachlorooctahydro-	8270 20	
Lead	(Total)	Lead	6010 400; 7420 1000 7421 10	
Mercury	(Total)	Mercury	7470 2	
Methacrylonitrile	126-98-7	2-Propenenitrile, 2-methyl-	8015 5; 8260 100	
Methapyrilene	91-80-5	1,2- Ethanediamine, N.Ndimethyl-N^1-2-pyridinyl- N1/2-thienylmethyl)-	8270 100	
Methoxychlor	72-43-5	Benzene,1,1^1- (2,2,2,trichloroet hylidene)bis[4- methoxy-	8080 2; 8270 10	
Methyl bromide; Bromomethane	74-83-9	Methane, bromo-	8010 20; 8021 10	
Methyl chloride; Chloromethane	74-87-3	Methane, chloro-	8010 1; 8021 0.3	
3- Methylcholanthrene	56-49-5	Benz[j]aceanthrylene, 1,2-dihydro-3-methyl-	8270 10	
Methyl ethyl ketone; MEK; 2- Butanone	78-93-3	2-Butanone	8015 10; 8260 100	
Methyl iodide; Iodomethane	74-88-4	Methane, iodo-	8010 40; 8260 10	
Methyl methacrylate	80-62-6	2-Propenoic acid, 2-methyl-, methyl ester	8015 2; 8260 30	
Methyl methanesulfonate	66-27-3	Methanesulfonic acid, methyl ester	8270 10	
2- Methylnaphthalene	91-57-6	Naphthalene, 2- methyl-	8270 10	
Methyl parathion; Parathion methyl	298-00-0	Phosphorothioic acid, 0,0-dimethyl	8140 0.5; 8141 1; 8270 10	
4-Methyl-2- pentanone; Methyl isobutyl ketone	108-10-1	2-Pentanone, 4- methyl-	8015 5; 8260 100	
Methylene bromide; Dibromomethane	74-95-3	Methane, dibromo-	8010 15; 8021 20; 8260 10	
Methylene chloride; Dichloromethane	75-09-2	Methane, dichloro-	8010 5; 8021 0.2; 8260 10	
Naphthalene	91-20-3	Naphthalene	8021 0.5; 8100 200; 8260 5; 8270 10	
1,4- Naphthoquinone	130-15-4	1,4- Naphthalenedione	8270 10	
1,4- Naphthoquinone 1-Naphthylamine	130-15-4 134-32-7	1,4- Naphthalenamine	8270 10 8270 10	

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (7 /L)6

	CLCDN		Suggested Methods;			
Common Name	CAS RN	Chemical abstracts service index name	$PQL (\tau/L)$			
2-Naphthylamine	91-59-8	2-Naphthalenamine	8270 10			
Nickel	(Total)	Nickel	6010 150; 7520 400			
o-Nitroaniline; 2-Nitroaniline	88-74-4	Benzenamine, 2- nitro	8270 50			
m-Nitroaniline; 3-Nitroanile	99-09-2	Benzenamine, 3- nitro	8270 50			
p-Nitroaniline; 4-Nitroaniline	100-01-6	Benzenamine, 4- nitro	8270 20			
Nitrobenzene	98-95-3	Benzene, nitro-	8090 40; 8270 10			
o-Nitrophenol; 2- Nitrophenol	88-75-5	Phenol, 2-nitro-	8040 5; 8270 10			
p-Nitrophenol; 4- Nitrophenol	100-02-7	Phenol, 4-nitro-	8040 10; 8270 50			
N-Nitrosodi-n- butylamine	924-16-3	1-Butanamine, N- butyl-N-nitroso-	8270 10			
N- Nitrosodiethylamine	55-18-5	Ethanamine, N- ethyl-N-nitroso-	8270 20			
N- Nitrosodimethylamine	62-75-9	Methanamine, N- methyl-N-nitroso	8070 2			
N- Nitrosodiphenylamine	86-30-6	Benzenamine, N- nitroso-N-phenyl-	8070 5			
N- Nitrosodipropylamine N-	621-64-7	1-Propanamine, N- nitroso-N-propyl;	8070 10			
Nitroso-N-dipropylamine;Di-n-						
propylnitrosamine						
N- Nitrosomethylethalamine	10595-95-6	Ethanamine, N- methyl-N-nitroso	8270 10			
N- Nitrosopiperidine	100-75-4	Piperidine, 1- nitroso-	8270 20			
N- Nitrosopyrrolidine	930-55-2	Pyrrolidine, 1- nitroso-	8270 40			
5-Nitro-o- toluidine	99-55-8	Benzenamine, 2- methyl-5-nitro-	8270 10			
Parathion	56-38-2	Phosphorothioic acid, 0,0-diethyl 0-(4-nitrophenyl) ester	8141 0.5; 8270 10			
Pentachlorobenzene	608-93-5	Benzene, pentachloro-	8270 10			
Pentachloronitro benzene	82-68-8	Benzene, pentachloronitro	8270 20			
Pentachlorophenol	87-86-5	Phenol, pentachloro-	8040 5; 8270 50			
Phenacetin	62-44-2	Acetamide, N-(4- ethoxyphenyl)	8270 20			
Phenanthrene	85-01-8	Phenanthrene	8100 200; 8270 10			
Phenol	108-95-2	Phenol	8040 1			
p- Phenylenediamine	106-50-3	1,4- Benzenediamine	8270 10			
Phorate	298-02-2	Phosphorodithioic acid, 0,0-diethyl S-	8140 2; 8141 0.5;			
		[(ethylthio)methyl] ester	8270 10			
Polychlorinated biphenyls; PCBs; Aroclors	See Note 9	1,1'-Biphenyl, chloro derivatives	8080 50; 8270 200			
Pronamide	23950-58-5	Benzamide, 3,5- dichloro-N-(1,1-dimethyl-2-propynyl)-	8270 10			
Propionitrile; Ethyl cyanide	107-12-0	Propanenitrile	8015 60; 8260 150			
Pyrene	129-00-0	Pyrene	8100 200; 8270 10			
Safrole	94-59-7	1,3-Benzodioxole, 5-(2-propenyl)-	8270 10			
Selenium	(Total)	Selenium	6010 750; 7740 20; 7741 20			
Silver	(Total)	Silver	6010 70; 7760 100; 7761 10			
Silvex; 2,4,5-TP	93-72-1	Propanoic acid, 2- (2,4,5-trichlorophenoxy)-	8150 2			
Styrene	100-42-5	Benzene, ethenyl-	8020 1; 8021 0.1; 8260 10			
Sulfide	18496-25-8	Sulfide	9030 4000			
2,4,5-T; 2,4,5- Trichlorophenoxy	93-76-5	Acetic acid, (2,4,5- trichlorophenoxy)-	8150 2			
acetic acid						
1,2,4,5- Tetrachlorobenzene	95-94-3	Benzene, 1,2,4,5- tetrachloro-	8270 10			
1,1,1,2- Tetrachloroethane	630-20-6	Ethane, 1,1,1,2- tetrachloro-	8010 5; 8021 0.05; 8260 5			
1,1,2,2- Tetrachloroethne	79-34-5	Ethane, 1,1,2,2- tetrachloro-	8010 0.5; 8021 0.05; 8260 5			
			8010 0.5; 8021 0.1; 8260 5			
Tetrachloroethylene	127-18-4	Ethene, tetrachloro-	8010 0.5; 8021 0.5; 8260 5			
Tetrachloroethene;						
Perchloroethylene	59 00 2	Dhanal 2.2.4.6 taturahlana	8270.10			
2,3,4,6- Tetrachlorophenol	58-90-2	Phenol, 2,3,4,6- tetrachloro-	8270 10			
Thallium Tin	(Total)	Thallium	6010 400; 7840 1000; 7841 10 6010 40			
Tin	(Total)	Tin Penzana mathul	6010 40			
Toluene	108-88-3	Benzene, methyl-	8020 2; 8021 0.1;			
a Taluidina	05 52 4	Danzanamina 2 mathed	8260 5			
o-Toluidine	95-53-4	Benzenamine, 2- methyl-	8270 10			
Toxaphene	See Note 10	Toxaphene Panzana 1.2.4 trichloro	8080 2			
1,2,4- Trichlorobenzene	120-82-1	Benzene, 1,2,4- trichloro-	8021 0.3; 8120 0.5; 8260 10; 8270 10			
			AZ/U IU			
1,1,1- Trichloroethane;	71-55-6	Ethane, 1,1,1- trichloro-	8010 0.3; 8021 0.3; 8260 5			

APPENDIX 2 Appendix II to Part 258 - List of Hazardous Inorganic and Organic Constituents [1] Common Name2 CAS RN3 CASI Suggested PQL methods 3 (τ /L)6

Common Name	CAS RN	Chemical abstracts service index name	Suggested Methods; PQL (\u03c7/L)
Methylchloroform		·	· · · · · · · · · · · · · · · · · · ·
1,1,2- Trichloroethane	79-00-5	Ethane, 1,1,2- trichloro-	8010 0.2; 8260 5
Trichloroethylene;	79-01-6	Ethene, trichloro-	8010 1; 8021 0.2; 8260 5
Trichloroethene			
Trichlorofluoromethane; CFC-11	75-69-4	Methane, trichlorofluoro-	8010 10; 8021 0.3; 8260 5
2,4,5- Trichlorophenol	95-95-4	Phenol, 2,4,5- trichloro-	8270 10
2,4,6- Trichlorophenol	88-06-2	Phenol, 2,4,6- trichloro-	8040 5; 8270 10
1,2,3- Trichloropropane	96-18-4	Propane, 1,2,3- trichloro-	8010 10; 8021 5; 8260 15
0,0,0- Triethyl phosphorothioate	126-68-1	Phosphorothioic acid, 0,0,0-triethylester	8270 10
sym- Trinitrobenzene	99-35-4	Benzene, 1,3,5- trinitro-	8270 10
Vanadium	(Total)	Vanadium	6010 80; 7910 2000; 7911 40
Vinyl acetate	108-05-4	Acetic acid, ethenyl ester	8260 50
Vinyl chloride; Chloroethene	75-01-4	Ethene, chloro-	8010 2; 8021 0.4; 8260 10
Xylene(total)	See Note11	Benzene, dimethyl-	8020 5; 8021 0.2; 8260 5
Zinc	(Total)	Zinc	6010 20; 7950 50; 7951 0.5

Notes

- 1. The regulatory requirements pertain only to the list of substances; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnotes 5 and 6.
- 2. Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.
- 3. Chemical Abstracts Service registry number. Where Total is entered, all species in the ground water that contain this element are included.
- 4. CAS index are those used in the 9th Collective Index.
- 5. Suggested Methods refer to analytical procedure numbers used in EPA Report SW-846 Test Methods for Evaluating Solid Waste, third edition, November 1986, as revised, December 1987. Analytical details can be found in SW-846 and in documentation on file at the agency. CAUTION: The methods listed are representative SW-846 procedures and may not always be the most suitable method(s) for monitoring an analyte under the regulations.
- 6. Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in ground waters that can be realiably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 mL samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.
- 7. This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2-oxybis[2-chloro- (CAS RN 39638-32-9).
- Chlordane: This entry includes alpha-chlordane (CAS RN 5103- 71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6). PQL shown is for technical chlordane. PQLs of specific isomers are about 20 (r)g/L by method 8270.
- Polychlorinated biphenyls (CAS RN 1336-36-3); this category contains congener chemicals, including constituents of Aroclor 1016 CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097- 69-1), and Aroclor 1260 (CAS RN 11096-82-5). The PQL shown is an average value for PCB congeners.
- 10. Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.
- 11. Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7). PQLs for method 8021 are 0.2 for o-xylene and 0.1 for m- or p-xylene. The PQL for m-xylene is 2.0 (r)g/L by method 8020 or 8260.

APPENDIX C

Groundwater Sampling Forms

Si	te							F	IEL			ORM							_					
Si	me: te				Sampl				 	This for submitte	m is to ed alor	be complete of with the Cl with the co	d, in a nain of	ldition to a Custody F	iny State Fo forms that a	rms. T ccompa	he Field H ny the sai		La	iboratory (Jse Only/	Lab ID:		7
N	0.:				Point	:	Sar	nple ID		containt	.13 (1.0	. which the cot	ner tha		d to the lab	oratory								
PURGE	INFO		RGE D				URGE T 400 Hr C			ELAPS	ED H	IRS	V	VATER	VOL IN (Gallons		 NG ⊥	ACTU		DL PUR	GED		LL VOI	
님		Note: Fo		Sampling		e "Water	Vol in C			Vols Purg		/ Water Vol in				ng/Flov		Ū		k changes,	record fi	eld data	, below.	
PURGE/SAMPLE	ENT		Device	ning Equ			nersible	L Pump	Y or D-B				rnter	Device:	I OF			ı or Disposa	able C	-Vacuum		<i>n</i> IIII III <i>)</i>)	
3E/SA	EQUIPMENT	Samplir	g Device				taltic Pu Bladder			ston Pur ipper/Bo			Filt	er Type:			Pressure	;		-Other				
PUR	EQ	X-Other:	0									Samp	ole Tu	be Type:			Teflon Stainles	s Steel		-PVC -Polypro		Other:		
1 T 1	NALA	Well El (at TO	evation C)				(ft/		Depth to (from T		(DT	W)			(ft)		oundwa te datum						(ft/	/msl)
WELL DATA		(from T					(ft)		Stick Up (from gro	ound ele		,		in dha Cid	(ft)	ID		711/	(in)	Casing Mater	ial			
-	Sa	mple Ti 00 Hr Cl	me	Rate/	-	pH (std		Cond	luctance	(SC/EC		al data, unle: Temp. (°C)	ss requ	Τι	urbidity (ntu)	veii Ele	D.		a Groun	eH/OF (mV)	RP	ust de ci	DTW (ft)	r
		1		l	1 st	J	15	t										I			L			
I)		1			2 nd		2 ⁿ	d																
tiona		1			3 rd		3 ^r	a										l			ļ			
(Op		1			4 th		4 ^t	h										l						
ATA																		ļ						
ON D																								
IT																								
3ILI7		1																l						
STABILIZATION DATA (Optional)		1		l														I			L			
		1	[I			L			
	note	Permit/Sta	e for 3 con te requiren	nents:	-	+/- 0.			+/- 3%				_ _					10%	ļĹ	+/- 25 n			Stabiliz	
-	by Si	ate/Perm	it/Site. If	a Data Lo		other El		format i	is used, fill	l in final i		ers required gs below and		electronie	c data separ		Site. <u>If</u>	more fi		ove are ne	eded, us	e separ	ate sheet	
ATA			E DAT DD YY)	E		pH (std)			NDUCT			TEMP. (°C)			RBIDITY (ntu)		D (mg/L	-		eH/OF	-	Other: Jnits		
FIELD DATA																								
FI			-	_	<u>ed</u> (i.e.	record f	ĩeld mea	sureme	ents, final	stabilize		lings, passive	-							-	-	e/Permi	it/Site.	
			pearance ondition		ed dail	v or as	conditio	ons cha	nge):			lor: ction/Speed					:				er: ecipitatio	on: V	or N	
						-			ulations	if requi					0	unook					zipitatio	<u></u>	01 1	<u>`_</u>
\mathbf{ST}																								
COMMENTS																								
OMI																								
FIELD																								
	I ce	tify that	samplin	g procec	lures w	vere in a	ccordan	ce with	h applica	ble EPA	A, Stat	e, and WM	proto	cols (if n	nore than o	one sai	npler, al	l shou	ld sign)):				
		/	/																					
		/ 	/ vate		Name		RIBUTIO)N: W	HITE/OF	RIGINAI		Signature ys with Samp	ole, YF	LLOW -	Returned to	o Client	PINK -		Compa	ny				

Well Condition Summary Form

Facility:	Well/Piezometer Name:	
•		

Evaluation Date:

	Y	Ν	N/A
Is the well's location appropriately shown on a facility map?			
Is the well adequately flagged if hard to find?			
Is the well elevation information inscribed at or on the well correct?			
Is the well:			
□ flush with surface?			
□ above ground?			
Is the well free of physical damage?			
Is the well labeled on the inside?			
Is the well labeled on the outside?			
Does the well have protective posts, if necessary?			
Do above ground wells have weep holes at the base of the protective casing?			
Does the area around the well appear clean?			
Is the casing secure (attempt to move along two perpendicular axes)?			
Is the surface seal void of differential erosion around and under the base?			
Is the surface seal free of cracks that might affect the integrity of the seal?			
Is the surface seal sloped to prevent ponding around the well?			
Is the well free from standing or ponded water?			
Is the well locked to prevent unauthorized access?			
Is the protective casing cap void of large gaps which would breach security?			
Is the locking cap free of rust?			
Is there a survey mark on the riser/wellhead assembly cap?			
Is the riser cap vented?			
Is the annular space free of animal/insect nests?			
Is the annular space appropriately filled with filtering material?			
If a pump, can it be lifted a few inches? (do not test prior to sampling)			
Is the well free of kinks or bends?			

COMMENTS:

Site: _____

Personnel: _____

		Date:				Page	of	
Well ID	Protective Casing	Well Casing	Label	Lock	Sample Equipment Type	General Turbidity	Well Yield	Comments/Observations *
	ОК	ОК	🗌 ок	Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	🗌 Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		U Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	🗌 Yes		Clear	🗆 ок	
	Damaged	Damaged	Inadequate	🗌 No		U Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		U Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		U Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	🗌 Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		U Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	🗌 Yes		Clear	🗌 ок	
	Damaged	Damaged	Inadequate	🗌 No		🗌 Turbid	Inadequate	
	🗌 ок	🗌 ок	🗌 ок	Yes		Clear	🗆 ок	
	Damaged	Damaged	Inadequate	□ No		🗌 Turbid	Inadequate	

* Note ponding water, weep holes, or any other information pertaining to well condition. Provide additional details on listed items. Return this form to Site Manager - FOR INTERNAL USE ONLY.

Groundwater Elevation Data Sheet

ne:	Pro	ject Number:	Investigator:	Page of		
Weather Conditions:		asuring Device:				
Vell ID Date Time Wate		Depth to Water (feet below TOC)	Comme	omments		
	onditions:	onditions: Me	Onditions: Measuring Device: Date Depth to Water (feet	Onditions: Measuring Device: Date Time Depth to Comme		

Daily Log

Site Location:		Date:
Project Number:	Initials:	Page of

FTN Associates Calibration Form

Date/Time:

Prepared By:_____

Location:

Project #:

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calib	rated	Post Calibration Reading	Comments	
		pН	7	su			Y	Ν		Lot# Exp#	
\checkmark	\checkmark	pН	4	su			Y	Ν		Lot# Exp#	
\checkmark	\checkmark	pН	10	su			Y	Ν		Lot# Exp#	
\checkmark	\rightarrow	Cond		uS/cm			Y	Ν		Lot# Exp#	
\checkmark	\checkmark	DO		mm/Hg		mg/l	Y	Ν	mg/l		
\checkmark	\checkmark	Temp		Degrees C			Y	Ν	N/A		
\checkmark	\rightarrow	ORP		mv			Y	Ν		Lot# Exp#	
		Turbidity		NTU	N/A		Y	Ν		Lot# Exp#	
\checkmark	\checkmark	Turbidity		NTU	N/A		Y	Ν		Lot# Exp#	
\checkmark	\rightarrow	Turbidity		NTU	N/A		Y	Ν		Lot# Exp#	
\checkmark	\checkmark	Turbidity		NTU	N/A		Y	Ν		Lot# Exp#	
							Y	Ν			
							Y	Ν			
							Y	Ν			

Notes:

pH Calibration (pH Method: EPA 150.1)

DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.

Temperature Calibration: No calibration is necessary. Simply record temperature of standard using thermometer while in calibration cup.

Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

CALCULATING THE VOLUME OF WATER IN A WELL

Calculate the total volume of water in the well using the following equation:

$$V = (0.041)d^2 x h$$

Where: V = volume in gallons d = well diameter in inches h = height of the water column in feet

The total volume of water in the well may also be determined with the following equation by using a casing volume per foot factor (gallons per foot of water) for the appropriate internal well diameter:

V = [Gallons per Foot of Water] x h

Where:

: V = volume in gallons h = height of the water column in feet

Casing Internal Diameter	Approximate Gallons per Foot of Water					
0.75"	0.02					
1"	0.04					
1.25"	0.06					
2"	0.16					
3"	0.37					
4"	0.65					
5"	1.02					
6"	1.47					
12"	5.88					

CALCULATING VOLUME-OF-WATER PURGED

Measuring the purge volume — The volume of water that is removed during purging must be recorded. Therefore, you must measure the volume during the purging operation.

Determine the pumping rate by measuring the amount of water using a graduated cylinder (or other container with a known volume) that is pumped for a fixed period of time and constant rate, or use a flow meter.

1. Calculate the discharge rate (D):

2. Calculate the time needed to purge one well volume (V):

Time =
$$\frac{V}{D}$$

3. Make new measurements and associated calculations if the pumping rate is changed.