Section 2.306 Site Specific Water Quality Study for Cl, SO_4 and TDS

Prepared for:

Great Lakes Chemical Company A Chemtura Corporation El Dorado Central Plant 3940 Haynesville Highway El Dorado, AR 71730-9726

Prepared by:

GBM^c & Associates 219 Brown Lane Bryant, AR 72022

CONTENTS

1.0	INTRODUCTION	1
2.0	SIGNIFICANT FINDINGS AND RECOMMENDATIONS	3
	2.1 Significant Findings	3
	2.2 Recommendations	3
3.0	BACKGROUND	4
	3.1 Introduction	4
	3.2 Designated Uses	
	3.3 Domestic Water Supply Use	
	3.4 Effluent Characteristics	
	3.5 Description of Pollution Prevention Practices	
	3.5.1 Outfall 002	
	3.5.2 Outfall 003	
	3.5.3 Outfall 004	.10
	3.6 Current NPDES Permit Status	
	3.6.1 NPDES Permit Compliance	
	3.6.1.1 Discharge and Monitoring Requirements	
	3.6.2 Toxicity Testing	
	,	
4.0	AQUATIC LIFE FIELD STUDY	
	4.1 Introduction	
	4.2 Habitat Characterization	
	4.2.1 Introduction	
	4.2.2 Methods	
	4.2.2.1 Channel Morphology	.19
	4.2.3 Scoring and Analysis of Habitat Assessment Data	. 24
	4.2.4 Results and Discussion	
	4.2.4.1 Habitat Quality	. 26
	4.2.4.2 Habitat Potential	
	4.2.5 Habitat Conclusions	
	4.3 Water Quality	. 32
	4.3.1 Chemical Characteristics	
	4.3.2 Methods	
	4.3.3 Results and Discussion	
	4.3.4 Conclusions	
	4.4 Benthic Macroinvertebrate Community	
	4.4.1 Introduction	
	4.4.2 Methods	
	4.4.3 Results and Discussion	
	4.4.3.1 Overview	
	4.4.3.2 Reach UTA 002	
	4.4.3.3 Reach UT004	
	4.4.3.4 Reach UT003	
	4.4.3.5 Reach UTLCB-1	
	4.4.3.6 Reach UTLCB-2	
	4 4 3 7 Riometric Score Comparisons	41

į

Contents (cont.)

		4.4.4 Conclusions	41
	4.5	Fish Community	
		4.5.1 Introduction	42
		4.5.2 Methods	
		4.5.3 Results and Discussion	
		4.5.3.1 Overview	
		4.5.3.2 Reach UT002	
		4.5.3.3 Reach UT004	
		4.5.3.4 Reach UT003	
		4.5.3.5 Reach UTLCB-1	
		4.5.3.6 Reach UTLCB-2	
		4.5.4 Conclusions	
	4.6	Summary	
		•	
5.0		STING LOADINGS OF DISSOLVED MINERALS	
	5.1	Chloride, Sulfate, & TDS Water Quality Criteria	48
	5.2	Mass Balance	
		5.2.1 Methods	
		5.2.2 Instream Waste Concentration (IWC) Computations	
		5.2.2.1 IWC Computations for UT004	
		5.2.2.2 IWC Computations for UT002	.51
		5.2.2.3 IWC Computations for Bayou de Loutre (from the mouth of UT004	
		to the confluence of Loutre Creek)	
		5.2.2.4 IWC Computations for UT003	
		5.2.2.5 IWC Computations for UTLCB-2	
		5.2.2.6 IWC Computations for Little Cornie Bayou	
	5.3	Compliance with LA standards for dissolved minerals.	. 55
6.0	ΔΙΤ	TERNATIVE ANALYSES	.56
		No Action	
		No Discharge	
	6.3	Hydrograph Controlled Release (HCR)	.56
		Treatment	
		Source Reduction/Pollution Prevention	
		WQS Modifications	
		6.6.1 Designated Uses	. 57
		6.6.2 Existing Uses	. 58
		6.6.3 Attainability of the Domestic Water Supply Use	. 58
	6.7	Summary of Alternative Assessment	. 59
7.0	REF	FERENCES	.62

Figures

Figure 1	Great Lakes facility boundary and storm water outfall locations for 3 rd party rule making	,
Eiguro 2	Study Area Watersheds5	
	Watershed delineation 6	,
	Summary of chronic lethality toxicity test results. Great Lakes Outfall 003. POR January 2004 to January 2006 1	3
	Bayou de Loutre stream reaches evaluated for Great Lakes Section 2.306 aquatic life field study1	5
Figure 6	Study reaches of Little Cornie Bayou and Outfall 003 tributary as evaluated for Great Lakes Chemical Company1	
Figure 7	Stream channel depicting bankfull stage1	Ĉ
Figure 8	Approximate position of measurements across transect2	1
Figure 9	Comparison of functional assemblages of the benthic communities as characterized	
J	for the 3 rd party rule making in relation to the discharges form Great Lakes	9
Figure 10	Stream segments for removal of domestic water supply use on tributaries to Bayou de Loutre	
Figure 11	Stream segments proposed for removal of domestic water supply use from tributaries of Little Cornie Bayou	
Tabla		
<u>Table</u>	5	
Table 2.1	Summary of Proposed WQS Modifications for Bayou de Loutre watershed	4
	Summary of proposed WQS Modifications for Little Cornie Bayou Watershed	4
Table 3.1	Outfall 002 Discharge Statistics (monthly maximums) POR January 2000 through September 2005.	9
Table 3.2	Outfall 003 Discharge Statistics (monthly maximums) POR January 2000 through September 2005.	ç
Table 3.3	Outfall 004 Discharge Statistics (monthly maximums). POR January 2000 through .	
Table 3.4	Potential storm water pollution sources in the Outfall 002 drainage basin1	
	Potential storm water pollution sources in the Outfall 004 drainage basin1	
	Final Discharge Limitations for Great Lakes Chemical CompanyCentral	
Table 5.0		2
Table 2.7	Outfall 002	_
Table 3.7	Outfall 002.	
T	Final Discharge Limitations for Great Lakes Chemical CompanyCentral	2
Table 3.8	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 0031	3
	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	
	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	3
	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	3
	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	3
	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	35
Table 4.2	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	3
Table 4.2	Final Discharge Limitations for Great Lakes Chemical CompanyCentral Outfall 003	3 5

Tables (cont)

	Water quality data measured/sampled in April and May 2005	. 34
	Lakes Chemical CompanyStorm water discharges, Union Co. AR., April & May 2005	. 37
Table 4.6	Macroinvertebrate community assemblage collected from Great Lakes Chemical Companystorm water watersheds in Union Co. AR. April & May 2005	38
Table 4.7	Comparison of fish community assemblages as collected from study reaches dur aquatic life field assessment	
Table 4.8	Comparison of fish community metrics for study reaches as evaluated during aquilife filed assessment	iatic 47
Table 5.1	Instream Waste Concentration (IWC) Calculation for UT002	52
	Instream Waste Concentration (IWC) Calculation for UT003	
	Instream Waste Concentration (IWC) Calculation for UT004	
	Instream Waste Concentration (IWC) Calculation for UTLCB-2	
	Instream Waste Concentration (IWC) Calculation for UTLCB-2	
	Instream waste concentration calculation	
Table 5.7	Instream waste concnetration calculation	67
Table 5.8	Insteam waste concentration calculation for Bayou de loutre	68
	Instream waste concentration calculation	
Table 6.1	Summary of Proposed WQS Modifications for Bayou de Loutre watershed	65
	Summary of proposed WQS Modifications for Little Cornie Bayou Watershed	

Appendices

- Appendix A: Aquatic Life Field Study Plan
- Appendix B. State Agency Correspondence
- Appendix C. DMR and Outfall specific mineral data with statistical assessment
- Appendix D. Toxicity testing Results and Summary of historical results
- Appendix E. Aquatic Life field Study: Field data sheets and analytical data
- Appendix F. Site photos of Study Reaches

LO INTRODUCTION

This report presents the documentation required in support of a third party rulemaking. The proposed rulemaking addresses the existing final permit limits for dissolved minerals in the NPDES permit (AR0001171) of Great Lakes Chemical Company (GLCC) central facility. The following documentation, required by Section 2.306 of the Arkansas Water Quality Standards (WQS), supports the proposal modifications to designated but non-existing and unattainable uses and associated water quality criteria. This report also addresses the requirements of the 1994 Administrative Guidance Document of the ADEQ, which clarifies the Section 2.306 documentation process.

In addition, this report provides documentation regarding the attainability of the domestic water supply uses from the perspective of the 40 CFR 131.10(g) rationale for use removal. The requirement for providing 40 CFR 131.10(g) documentation is to fulfill US EPA Region 6 requests for inclusion of use attainability information in the third party rule making process.

GLCC's central facility operates a bromine extraction and chemical facility in Union County, El Dorado, Arkansas (Figure 1). For the purpose of this report, three outfalls (002, 003, & 004) will be discussed and addressed. Outfalls 002 & 004 are storm water only outfalls that drain the northeastern and eastern portions of the facility via unnamed wet weather tributaries to Bayou de Loutre. Outfall 003 drains the western slopes of the facility and includes non-process waters as well as storm water. Outfalls 002, 003, & 004's discharge contains concentrations of chloride, sulfate, and total dissolved solids (TDS) that are in excess of the ecoregion based water quality criteria and/or stream based water quality criteria, and, in most cases, contains concentrations in excess of relevant secondary drinking water criteria. The primary report objectives are to:

- provide the required documentation to support a third-party rulemaking in accordance with Section 2.306 to remove the designated and unattainable domestic water supply use from two unnamed tributaries to Bayou de Loutre, Bayou de Loutre from headwaters to the mouth of Loutre Creek, and from unnamed tributaries of Little Cornie Bayou,
- propose site-specific water quality criteria for dissolved minerals (Cl, SO₄, and TDS) that
 - ➤ reflect the current discharge concentrations, (which have been reduced substantially from historical concentrations through facility upgrades to BMP's and spill control and containment),
 - account for recent reductions in mineral concentrations related to site improvements, and
 - > are shown to support the designated seasonal fishery use and the supporting biotic communities to maintain that use.

This report provides conclusions and recommendations (Section 2.0), a summary of the site's background (Section 3.0), the physical, chemical, and biological characteristics of tributaries that receive permitted discharges from the outfalls (Section 4.0), and mass balance modeling results (Section 5.0). A review of alternatives for removal of dissolved minerals to meet ecoregion criteria is provided in Section 6.0. Attainability of the domestic water supply use of the respected unnamed tributaries is also discussed in Section 6.0. Section 7.0 provides the citation for documents referenced in this report.

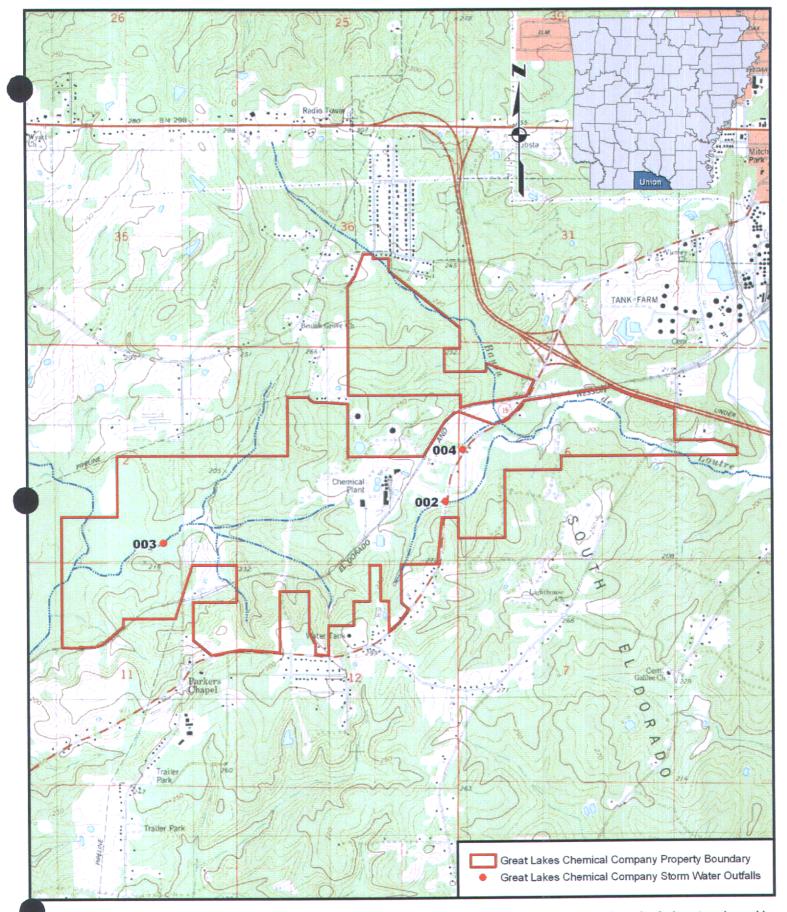


Figure 1. Great Lakes Chemical Company facility boundary and storm water outfall locations for 3rd party rule making.

2.0 Significant Findings and Recommendations

2.1 Significant Findings

The following findings are based on the information developed as part of the documentation in support of the proposed rule making and as directed by the aquatic life field survey study plan (Appendix A).

- 1. The facility manages water discharges under the NPDES permit AR0001171.
- 2. The NPDES permit storm water discharges have final dissolved mineral limitations based on least disturbed ecoregion reference water quality criteria.
- 3. The historical and existing discharges, exceed the water quality based Gulf Coastal Ecoregion mineral criteria.
- 4. The facility maintains a Storm Water Pollution Prevention Plan and a Spill Prevention Control and Countermeasure Plan.
- 5. The watershed into which each storm water discharge occurs is limited in size, ranging from 0.078 to 1.24 square miles.
- 6. The watershed sizes and resulting hydrologic characteristics are primarily responsible for the use attainment and govern biotic community development.
- 7. Although variable, each of the unnamed tributaries into which the storm water outfalls discharge maintains the designated aquatic life use, including a seasonal fishing use.
- 8. According to Arkansas state resource agencies the domestic water supply use is not an existing use, nor is it an attainable use.
- 9. The proposed modifications for the Little Cornie Bayou water shed do not impact the existing water quality standards for Louisiana. and
- 10. Modification to the mineral criteria will not preclude the attainment of the other designated and attainable uses.

2.2 Recommendations

Based on the documentation presented herein, it is recommended that the designated domestic water supply use be removed from:

- 1. Unnamed tributary into which Outfall 002 discharges,
- 2. Unnamed tributary into which Outfall 004 discharges,
- 3. Bayou de Loutre from the mouth of UT004 to the mouth of Loutre Creek,
- 4. Unnamed tributary into which Outfall 003 discharges, and
- 5. Unnamed tributary of Little Cornie Bayou from the mouth of UT003 downstream to its confluence with Little Cornie Bayou.

In addition, an increase in the water quality criteria for chloride (Cl), sulfate (SO₄), and total dissolved solids (TDS) for UT002 and UT003, an increase in the water quality criteria for Cl and TDS for UTLCB, and an increase in the water quality criteria for Cl and SO₄ in Little Cornie Bayou (LCB) is recommended. Tables 2.1 and 2.2 summarize the recommended changes:

Table 2.1. Summary of Proposed WQS Modifications for Bayou de Loutre watershed.

UT002 - unnamed tributary to Bayou de Loutre	UT004 - unnamed tributary to Bayou de Loutre	Bayou de Loutre from mouth of Outfall 004 tributary downstream to the mouth of Loutre Croak to the mouth of the Croak to the course Croak to the c
Remove Designated Domestic	Remove Designated Domestic	Remove Designated Domestic
Water Supply Use	Water Supply Use	Water Supply Use
Amend ecorecton dissolved	Amend ecoregion dissolved	Amend stream expression
A STORES DEVINE AND STATE OF THE STATE OF TH	Antorn decident menoren	
minerals criteria:	minerals criteria:	dissolved minerals criteria
	minerals criteria	
minerals criteria:		dissolved minerels criteria:

Table 2.2. Summary of proposed WQS Modifications for Little Cornie Bayou watershed.

UT003 - unnamed tributary to an a unnamed tributary of Little		
Remove Designated Domestic Water Supply Use	Remove Designated Domestic Water Supply Use	No Change
Amend ecoregion dissolved minerals criteria:	Amend ecoregion dissolved minerals criteria:	Amend stream dissolved minerals criteria:
Chloride from 14 mg/L to 538 mg/L; Sulfate from 31 mg/L to 35 mg/L, and TDS from 123 mg/L to 519 mg/L	Chloride from 14 mg/L to 305 mg/L and TDS from 123 to 325 mg/L	Chloride from 200 mg/L to 215 mg/L and Sulfate from 20 mg/L to 25 mg/L

3.0 BACKGROUND

3.1 Introduction

The GLCC central facility operates a bromine extraction facility in Union County on the south side of El Dorado, Arkansas. The facility has two outfalls that consist of storm water only (Outfalls 002 & 004) and one outfall (Outfall 003) that consist of primarily storm water but also includes non-process water (e.g. non-contact cooling water, boiler blow down, freeze protection, etc.). The discharges from these outfalls all discharge into unnamed wet weather tributaries. Outfalls 002 and 004 discharge into unnamed tributaries of Bayou de Loutre (Figure 2), while Outfall 003 discharges into an unnamed tributary of an unnamed tributary of Little Cornie Bayou (Figure 3).

The Arkansas Water Quality Standards - Regulation No. 2 (WQS) allows modification of water quality standards under various conditions. Specifically, Section 2.306 of the WQS (1998) allows the removal of a designated use other than a fishable or swimmable use, and for establishment of less stringent water quality criteria without affecting fishable or swimmable uses. This project report documents the information required to amend Reg. 2 through third party rulemaking. The study areas are shown above in Figure 1.

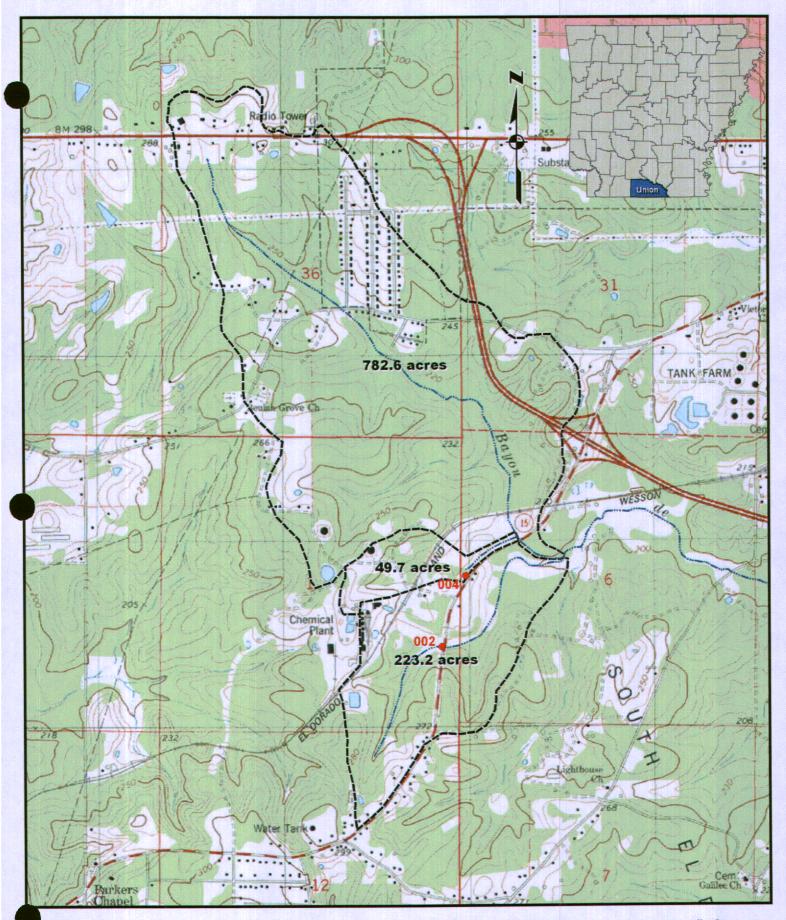


Figure 2. Watershed deleniation of Bayou De Loutre and Great Lakes Chemical Company storm water discharges as evaluated for the Great Lakes Chemical Company section 2.306 aquatic life field study. June 2005.

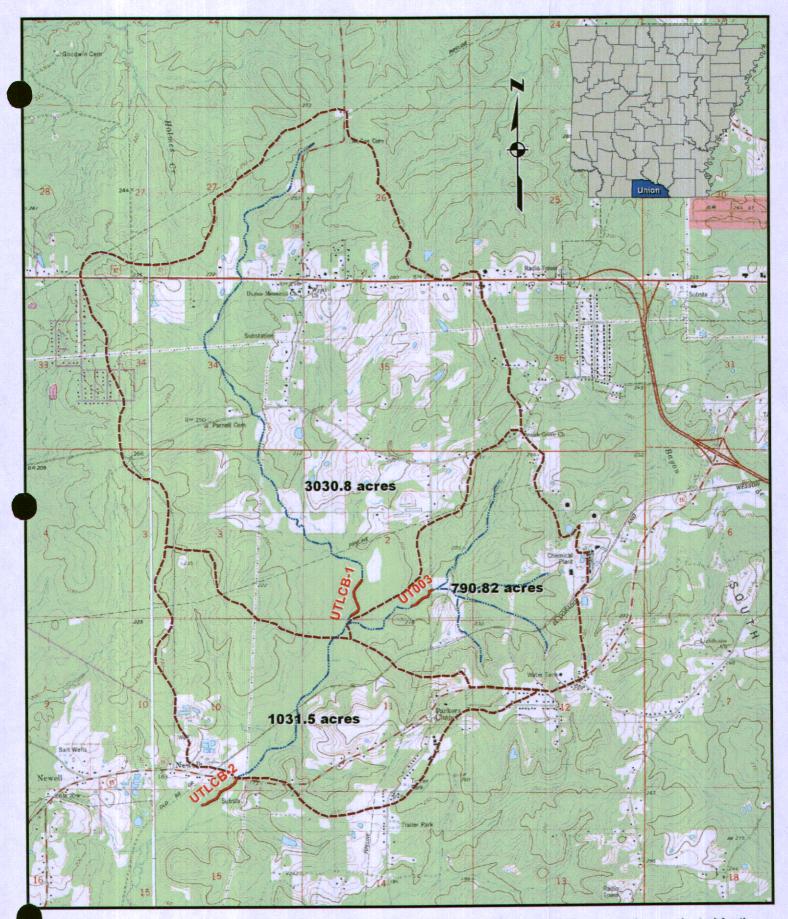


Figure 3. Watershed deleniation of unnamed tributary of Little Comie Bayou and stream reaches evaluated for the Great Lakes Chemical Company section 2.306 aquatic life field study. June 2005.

3.2 Designated Uses

The designated uses for UT002, UT004, UT003, and UTLCB-2 are those listed in the WQS for Gulf Coastal Plain streams with watersheds less than 10 mi². The designated uses for Bayou de Loutre and Little Cornie Bayou are those listed in the WQS for Gulf Coastal Plain Streams with watershed greater the 10 mi². The designated uses for all streams are listed below. They are as follows:

Unnamed Tributary to Bayou de Loutre (UT004)

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Unnamed Tributary to Bayou de Loutre (UT002)

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Bayou de Loutre above mouth of Loutre Creek

- Secondary Contact Recreation,
- Seasonal & Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Unnamed Tributary to the UT Little Cornie Bayou (UT003)

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Unnamed Tributary of Little Cornie Bayou (UTLCB-2)

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Little Cornie Bayou

- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

3.3 Domestic Water Supply Use

Based upon documentation provided by the Arkansas Department of Health and Human services (ADHHS), UT002, UT004, UT003, UTLCB-2 below UT003, or Bayou de Loutre is neither an existing or planned public water supply source. In addition, the Arkansas Natural Resources Commission (ANRC) has documented that the removal of the designated domestic water supply use from these water sources does not conflict with the Arkansas Water Plan. The letters from the ADHHS and ASWCC are provided in Appendix B.

3.4 Effluent Characteristics

Tables 3.1, 3.2, & 3.3 present the effluent characteristics of Outfalls 002, 003, and 004, respectively. This data represents all available recent data. Documentation for the 95th percentile value is presented in Section 5.0. The percentile concentration values represent statistically calculated values based on methodologies outlined in *Statistical Methods for Environmental Pollution Monitoring* (Gilbert, 1987) which will be discussed in detail in Section 5.2.2. Details of the facility and outfall specific data upon which the outfalls were characterized is provided in Appendix C.

Table 3.1. Outfall 002 Discharge Statistics (monthly maximums) POR January 2000 through September 2005.

September 2000.			
Statistic	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
(Data Characterization)	N=66	N=65	N=19
Maximum	1436	869	1376
Minimum	1.30	3.00	3.40
Average	230	78.9	544
95 th percentile	1029	380	1376
Median	90.5	25.7	429

Table 3.2. Outfall 003 Discharge Statistics (monthly maximums) POR January 2000 through September 2005.

Statistic	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
(Data Characterization)	N=72	N=72	N=22
Maximum	5437	197	3699
Minimum	13.0	4.00	96.0
Average	489	35.4	684
95 th percentile	2374	95.8	2079
Median	178	28.0	443

Table 3.3. Outfall 004 Discharge Statistics (monthly maximums). POR January 2000 through September 2005.

en e				
(Data Characterization)	N=66	N=65	N=19	
Maximum	2625	147	2881	
Minimum	6.00	4.60	160	
Average	314	23.5	700	
95 th percentile	1702	63.7	1932	
Median	59.0	17.3	350	

^{*} includes statistical outliers

3.5 Description of Pollution Prevention Practices

Each outfall (002, 003, & 004) is addressed specifically in the facility's Spill Prevention Control and Countermeasures (SPCC) and Storm Water Pollution Prevention Plan (SWPPP) plans (GBMc, 2002). The following sections generally describe the potential pollution sources and best management practices (BMP's) at each outfall implemented to reduce contamination of storm water and prevent spill release. GLCC has installed pollution prevention practices at the facility designed to reduce the potential of storm water contamination and to prevent spills from entering waters of the state (i.e., UT002, UT003, & UT004).

3.5.1 Outfall 002

The NPDES Outfall 002 drainage basin includes the eastern portions of the facility. Areas of industrial activity that drain to Outfall 002 include the chlorine railcar loading/unloading area, southern portion of the Hertz/Penske vehicle maintenance area, old COPT area, old tail brine area, and the eastern portion of the railroad loading/unloading area. Table 3.4 summarizes the potential storm water pollution sources present in the Outfall 002 drainage basin.

Table 3.4. Potential storm water pollution sources in the Outfall 002 drainage basin.

Source Description and Map Reference	Pollutant Material
Chlorine loading/unloading area	COD
Trailer parking area south of Hertz/Penske	TSS, Oil and Grease
Old COPT area	TSS
Old tail brine pond area	TSS
Eastern portion of the railroad loading/unloading area	COD, Oil and Grease, TPH, TOC,

Specific BMP's at Outfall 002 are detailed in the facilities SPCC and SWPPP plans. However, GLCC Central maintains good housekeeping, a preventive maintenance program, spill prevention and response procedures, inspections, employee training, and record keeping and reporting at each outfall covered under their SPCC and SWPPP plans. In addition to these general BMP's, Outfall 002 has a retention basin into which storm water flow can be diverted prior to discharge via Outfall 002 should the need arise. Discharge through Outfall 002 is controlled on an as needed basis and can be discontinued if ever needed.

Based on the assessment of the structural and non-structural controls for the Outfall 002 drainage area, the existing procedures appear to be adequate for minimizing potential storm water contamination.

3.5.2 Outfall 003

The NPDES Outfall 003 drainage basin is the largest of the GLCC Central drainage basin areas. It includes non-process runoff from the facility production areas. These areas include:

- 1) Bromine Tower 8) Organic Chemical Processing (OCP)
- 2) Fine Chemicals 9) Calcium & Hydrogen bromides (CaBr/HBr)
- 3) Alkyl Bromides 10) Tetrabrom Carbonate Oligomers (TCO)
- 4) Bromated Organic Chemicals (BOC) 11) Bromine Recovery Unit
- 5) Sodium hydrosulfide (NAHS) 12) Process Water Area
- 6) Groundwater Treatment 13) Packaging and Shipping Area
- 7) Tetrabromo-bisphenal A (IOB) 14) Spray Dryer Area

NPDES Outfall 003 also receives runoff from the western portion of the railroad loading/unloading area, the maintenance building, the hazardous waste storage area, the north and south landfill, the solid waste landfill, gasoline vehicle fueling station, the paint contractor area, the Milam and Systems contractor areas, and the Feed Mill. Discussion of activities and storage areas within the Outfall 003 drainage basin can be found in the facilities SPCC and SWPPP plans.

BMP's at Outfall 003 include good housekeeping, a preventive maintenance program, spill prevention and response procedures, inspections, employee training, and record keeping and reporting. Outfall 003 also has a sump system designed to capture first flush waters and to serve as tertiary spill containment should primary and secondary controls (sumps) fail or be overwhelmed. Should primary and secondary systems fail (or be over whelmed), the west side sump in designed and operated to collect and pump any non-permitted discharge and/or process wastewater to the central waste water treatment system for treatment and injection to the deep well injection system on an as needed basis. Specific BMP's can be found in the facilities SPCC and SWPPP plans.

Based on the assessment of the structural and non-structural controls for the Outfall 003 drainage area, the existing procedures appear to be adequate for minimizing potential storm water contamination.

3.5.3 Outfall 004

The NPDES Outfall 004 drainage basin includes the northeastern portions of the facility. Areas of industrial activity that drain to Outfall 004 include the GLCC Central facility entrance, the Hertz/Penske vehicle maintenance area, and the supply room area. There are other areas that contribute storm water to Outfall 004 that would not necessarily be considered areas of industrial activity. These areas include office buildings, parking areas, the research and development laboratory, and the guardhouse. These areas would contribute minimal pollutant material to NPDES Outfall 004. Table 3.5 summarizes the potential storm water pollution sources present in the Outfall 004 drainage basin.

Table 3.5 Potential storm water pollution sources in the Outfall 004 drainage basin.

Source Description and Map Reference	Pollutant Material
GLCC-Central facility entrance (AA-1)	TSS, Oil and Grease
Northern portion of the Hertz/Penske vehicle maintenance area	TSS, Oil and Grease
Store Room area	TSS, Oil and Grease
Car wash	TSS, Oil and Grease

BMP's at Outfall 004 include good housekeeping, a preventive maintenance program, spill prevention and response procedures, inspections, employee training, and record keeping and reporting. Specific BMP's can be found in the facilities SPCC and SWPPP plans.

Based on the assessment of the structural and non-structural controls for the Outfall 004 drainage area, the existing procedures appear to be adequate for minimizing potential storm water contamination.

3.6 Current NPDES Permit Status

3.6.1 NPDES Permit Compliance

GLCC's Central current NPDES permit (Permit No. AR0001171) was initially issued in December 2003 and became effective on January 1, 2004. The permit remains in effect until December 31, 2008.

3.6.1.1 Discharge and Monitoring Requirements

The effluent limitations for chloride, sulfate, and TDS are based on the maintenance of the designated, but not existing domestic water supply use for the unnamed tributaries of Bayou de Loutre (UT002 & UT004), and the unnamed tributary of Little Comie Bayou (UT003). Tables 3.6, 3.7, & 3.8 summarize Outfall 002's, 003's, and 004's daily maximum and monthly average limits for chloride, sulfate, and TDS. In addition, the following tables provide final discharge limitation and monitoring requirements for Outfalls 002, 003, & 004.

Table 3.6. Final Discharge Limitations for GLCC Central Outfall 002.

Monthly Average	Daily Maximum	Frequency of Analysis
N/A	NA	Daily**
129	193.5	Once per month**
N/A	35	Once per month**
N/A	0.1	Once per quarter**
250	375	Once per month**
500	750	Once per month**
10	15	Once per month**
*	*	Once per day**
	N/A 129 N/A N/A 250 500	N/A NA 129 193.5 N/A 35 N/A 0.1 250 375 500 750 10 15

pH shall not be less then 6.0 standard units nor greater that 9.0 standard units.
**When discharging

Table 3.7. Final Discharge Limitations for GLCC Central Outfall 003.

Effluent Characteristic	Monthly Average	Daily Maximum	Frequency of
Flow (MGD)	N/A	NA	Daily**
Chloride (mg/L)	31	46.5	Once per month**
Total Organic Carbon (mg/L)	N/A	35	Once per month**
Total Purgeable Halocarbons (mg/L)	N/A	0.1	Once per quarter**
Sulfate (mg/L)	66	99	Once per month**
Total Dissolved Solids (mg/L)	201	302	Once per month**
Oil and Grease (mg/L)	10	15	Once per month**
Temperature (°F)	N/A	86.0	Once per day**
pH (SU)	*	*	Once per day**
pH shall not be less than 6.0 standar When discharging	d units nor greater tha	at 9.0 standard unit	

Table 3.8 Final Discharge Limitations for GLCC Central Outfall 004

Effluent Characteristic	Monthly Average	Dally Maximum	Frequency of Analysis
Flow (MGD)	N/A	NA	Daily**
Chloride (mg/L)	98	147	Once per month**
Total Organic Carbon (mg/L)	N/A	35	Once per month**
Total Purgeable Halocarbons (mg/L)	N/A	0.1	Once per quarter**
Sulfate (mg/L)	Report	Report	Once per month**
Total Dissolved Solids (mg/L)	500	750	Once per month**
Oil and Grease (mg/L)	10	15	Once per month**
pH (SU)	*	*	Once per day**
pH shall not be less than 6.0 standard When discharging	d units nor greater tha	at 9.0 standard unit	

3.6.2 Toxicity Testing

Outfalls 002 and 004 are storm water discharges and not subject to routine whole effluent toxicity testing. However, acute testing was completed on storm flows to both Outfall 002 and 004 using a 100% effluent as the critical dilution. These tests were completed in March 2006 and are provided in Attachment D-1. Both tests passed, demonstrating no mortality to either test organism when exposed in 100% storm water effluent. There is no information to indicate that either storm water effluent has ever exhibited toxicity.

Chronic toxicity tests have been completed on Outfall 003 on a quarterly basis since the current permit was issued in December 2003. A summary of the results of the chronic biomonitoring is provided in Appendix D-2. The chronic testing completed over the last 2 years requires testing using a two tiered critical dilution (100% and 45%). This approach was approved by ADEQ in recognition of the small watershed size. This approach reflects the seasonal nature of the discharge and accounts for the flows present during the spring seasonal period. Figure 4 depicts the results of the Outfall 003 chronic tests indicating that no significant lethality has been demonstrated in the Outfall 003 discharge since the chronic testing was initiated.

Prior to the current permit chronic biomonitoring requirement, acute biomonitoring has been completed on discharges through Outfall 003 for several years, with a variety of results. During the

previous permit cycle, recurrent acute toxicity at the 100% critical dilution indicated sporadic test failures at a frequency sufficient to require a toxicity reduction evaluation (TRE). The TRE was completed in an effort to determine the cause(s) of the sporadic biomonitoring tests failures.

Multiple toxicity identification evaluations (TIE) indicated non-polar organics (and pH) to have been the cause for the historical tests failures. These findings and the findings of CAO investigations related to TOC and pH (GBMc, 2004--CAP Report. CAO LIS02-081 for Outfall 003 GLCC) excursions led to improvements of internal spill control and management policies and procedures. These general house keeping and process control modifications resulted in improved storm water discharges and resulted in the current sequence of biomonitoring tests that pass the required endpoints and has eliminated the TOC and pH excursions in discharges through Outfall 003.

The monitoring program implemented during the Outfall 003 investigation demonstrated that the dissolved minerals were not contributors to the permit excursions or the sporadic biomonitoring test failures exhibited by discharges through Outfall 003. In fact, during the TIE investigations, manipulations were completed to specifically address the potential that dissolved minerals were responsible for the biomonitoring failures. These efforts clearly exonerated dissolved minerals as a contributing factor to permit failures.

The results of the TRE investigation were submitted to ADEQ along with proposed schedule for compliance (GBMc, 2001). Subsequently, Outfall 003 has maintained compliance with the TOC and pH permit requirements.

In all the activities related to the TRE efforts, dissolved minerals were never demonstrated to be the cause of the biomonitoring failures or the source of the TOC and pH permit excursions

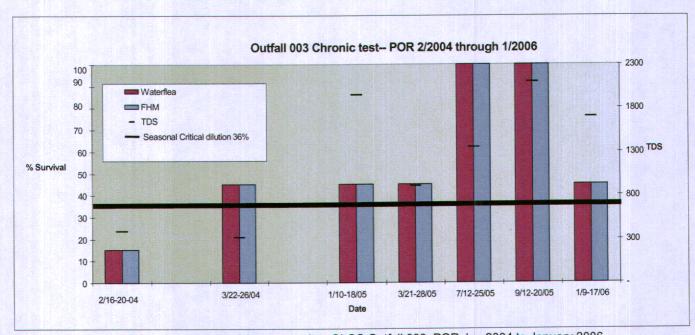


Figure 4. Summary of chronic lethality toxicity test results. GLCC Outfall 003. POR Jan 2004 to January 2006.

In summary, current whole effluent toxicity does not indicate effluent discharged through 003 is toxic at appropriate critical dilutions and there is no evidence to implicate dissolved minerals as the source of historical WET test failures.

4.0 AQUATIC LIFE FIELD STUDY

4.1 Introduction

The objective of the aquatic life field study was to document whether the designated aquatic life uses were being maintained in stream segments downstream existing discharges from the GLCC Central Facility on Highway 15, south of El Dorado in Union County, Arkansas (Figures 5 & 6). The following stream segments were assessed during this study: unnamed tributaries of Bayou de Loutre (UT002 and UT004) (Figure 5), unnamed tributary of an unnamed tributary of Little Cornie Bayou (UT003), Unnamed tributary of Little Cornie Bayou below the confluence of UT003 (UTLCB-2), and unnamed tributary of Little Cornie Bayou above the confluence of UT003 (UTLCB-1) (Figure 6). The watersheds of the unnamed tributaries at the sampling locations vary in size; Table 4.1 provides watershed sizes for the respected locations.

Table 4.1. Study Reach Watershed sizes.

10000 1111 01000 110000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 110000 110000 110000 11000 11000 11000 11000 11000 11000 11000 1100	
Study Reach	Watershed Size
UT002	0.349 sq. miles
UT004	0.078 sq. miles
UT003	1.24 sq. miles
UTLCB-1	4.74 sq. miles
UTLCB-2	7.58 sq. miles

Based on locations and watershed sizes, each of the unnamed tributaries are designated as having a seasonal Gulf Coastal Fishery use in the Arkansas Water Quality standards.

To accomplish the objective, the aquatic life field study included evaluations of the habitat conditions, water quality, aquatic macroinvertebrate community, and fish community assemblages. Studies reaches for the aquatic life field study are as follows:

- Reach UT002.
- Reach UT004.
- Reach UT003,
- · Reach UTLCB-1, and
- Reach UTLCB-2.

The evaluations were conducted during April and May, 2005. The results of this evaluation are provided in this section. Details of aquatic life field survey are provided in Appendix E and site photos are provided in Appendix F.

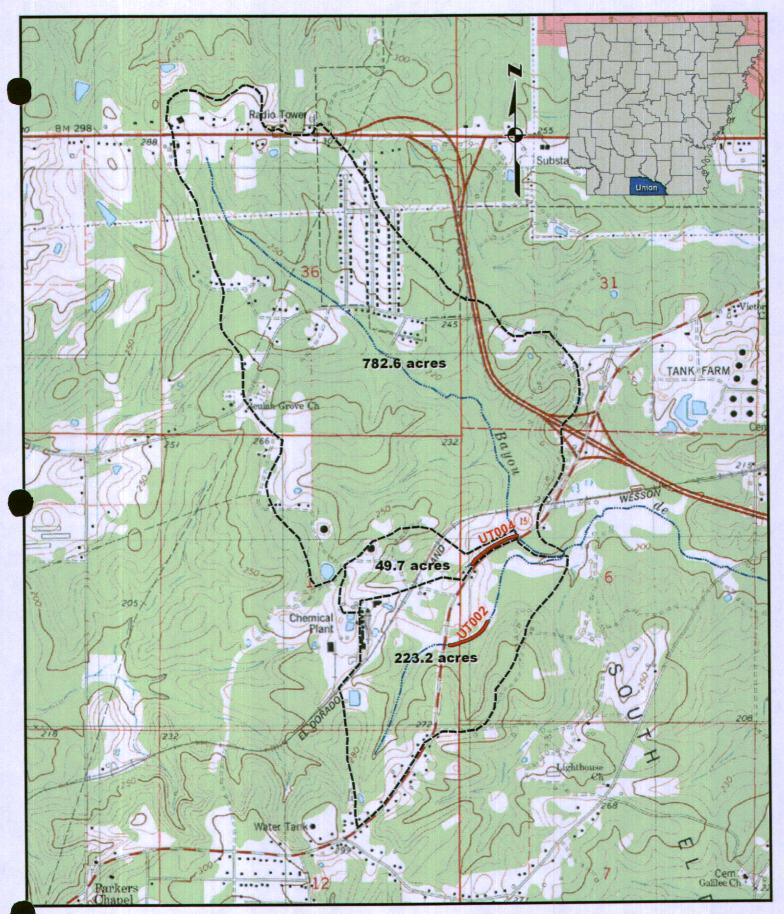


Figure 5. Bayou De Loutre stream reaches evaluated for Great Lakes Chemical Company Section 2.306 aquatic life field study. June 2005.

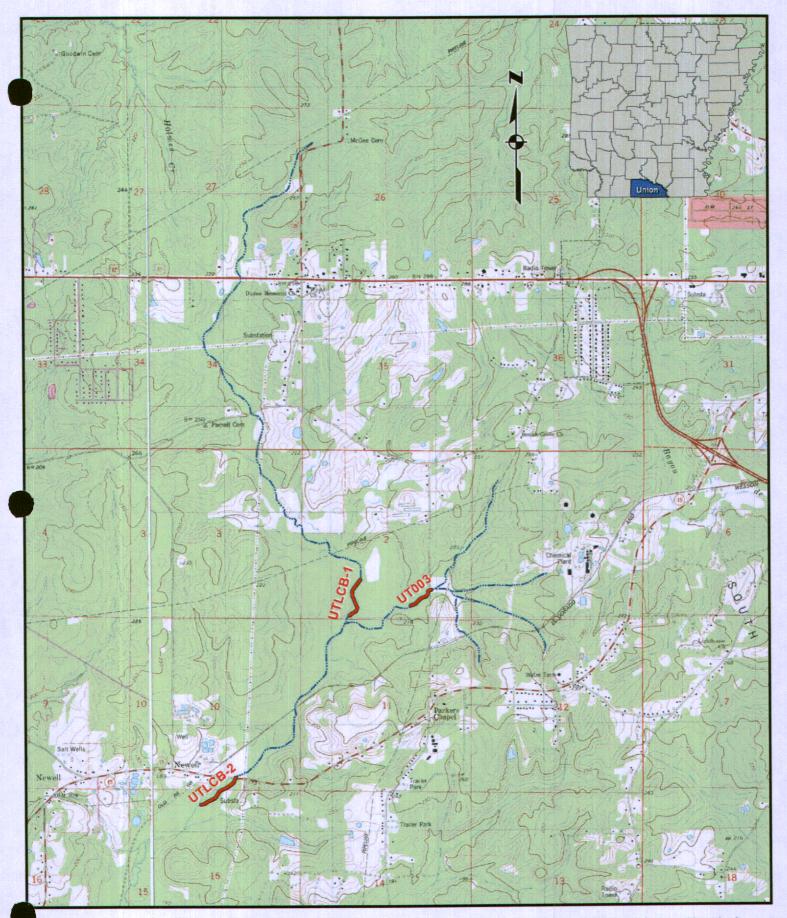


Figure 6. Study reaches of Little Cornie Bayou and Outfall 003 tributary as evaluated for Great Lakes Chemical Company section 2.306 aquatic life field study. June 2005.

4.2 Habitat Characterization

4.2.1 Introduction

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel-riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, instream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs

The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment (Semi-Quantitative), and include:

- 1) Channel Morphology
 - a) Reach Length Determination
 - b) Riffle-Pool Sequence
 - c) Depth and Width Regime

- 2) Instream Structure
 - a) Epifaunal substrate
 - b) Instream Habitat
 - c) Substrate Characterization
 - d) Sediment Deposition
 - e) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
 - a) Canopy Cover
 - b) Bank Stability and slope
 - c) Vegetative Protection
 - d) Riparian Vegetative Zone Width

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses.

These procedures are intended for evaluating physical habitat in wadeable streams, but may be adapted for use in larger streams as necessary. The field procedures applied to this characterization are most efficiently applied during low flow conditions and during times when terrestrial vegetation is active, but can also be applied during spring seasonal conditions with higher base flows. This collection of procedures is designed for monitoring applications where robust, quantitative or semi-quantitative descriptions of habitat are desired. This semi-quantitative habitat procedure is usually used in conjunction with the *General Physical Habitat Characterization* and the *Qualitative Habitat Assessment* to provide a detailed view of the streams habitat condition.

The habitat characterization protocol provided herein differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol summarized in this SOP is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000).

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width. The semi-quantitative habitat sampling reach length should coincide as much as possible with that of the fish and macroinvertebrate collection reaches. Measurements are taken in each of 10 sub-reaches, which are systematically placed, at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

4.2.2 Methods

The habitat assessment was conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat was characterized from measurements and observations of stream attributes made within 10 sub-reaches. The team assessing habitat moved along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described below in the following sections.

4.2.2.1 Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences, i.e. a measure of the amount of riffles, runs and pools that occur in a given reach.

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 7). The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

Figure 7. Stream channel depicting bankfull stage.

Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) was identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in each study reach. Then bankfull depth and width was determined from 5 stream transects and recorded on the record sheet. Transect locations was selected to include each prominent morphology type represented in the stream. Bankfull depths were

measured to the nearest 1/10 foot and bankfull widths were measured to the nearest foot using a wading rod and tape measure, respectively. An average of the 5 bankfull widths was then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length was then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach began at the head of a given stream morphology (i.e. riffle, run or pool).

2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach was measured using a tape measure and recorded on the record sheet. The sequence of each morphological type was depicted on the record sheet using the provided notations so as to create a map to the location of each riffle, run or pool. The resulting measurements provided a quantitative measure of the percent of the study reach representing each stream morphological type (i.e. 40% riffle, 30% run, 30% pool, etc).

3) Depth and Width Regime

The average stream depth and width were estimated in riffles and pools in each sub-reach. Depths were measured along a transect, similar to that depicted in Figure 8, in a representative section of each riffle and pool in the sub-reach. Depths were generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach was derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this provided an accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths were measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach was recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this provided accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

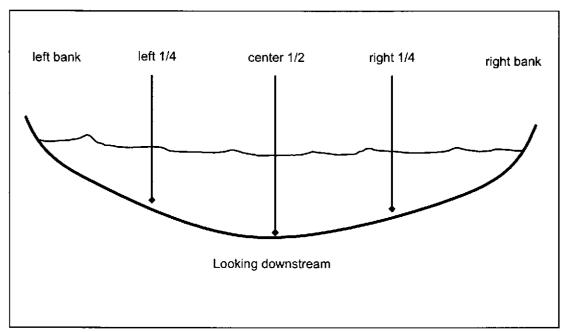


Figure 8. Approximate position of measurements across transect.

4.2.2.2 Instream Structure

Instream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc.), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of instream structure including some that is permanent and some that is mobile during high flow events.

1) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

2) Instream Habitat (Fish)

Instream habitat refers to the habitat features within the wetted perimeter of the stream subreach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater)and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

3) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each sub-reach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

Particle are classified into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

Bedrock smooth or rough

Boulder >25 cm
Cobble 6-25 cm
Coarse Gravel 1.6 - 6 cm
Fine Gravel 0.2 - 1.6 cm
Sand <0.2 cm
Silt/Mud/Clay fine, not gritty

Notations are made for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

4) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

5) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a subreach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

4.2.2.3 Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these stream-side riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks form erosion, provides shading, inputs nutrients, provides materials as habitat (instream structure) and filters run-off entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses.

1) Canopy Cover

Canopy cover (percent stream shading) over the stream was determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates were made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point was estimated visually.

2) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

Score 9-10 = Stable, little evidence of erosion, < 5% bank eroding Score 6-8 = Moderately stable, some evidence of new erosion, 5-29% bank eroding Score 3-5 = Moderately unstable, obvious new erosion, 30-59% bank eroding

Score 1-2 = Unstable, most of bank actively eroding, 60-100% bank eroding

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, was recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

3) Vegetative Protection

Bank vegetative protection was measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) was assessed separately and the value recorded on the record sheet. Banks was assessed from the edge of the water to the top of the first terrace or normal top of bank.

4) Riparian Vegetative Zone Width

Riparian zone with encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from run-off, and

the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters

Score 6-8 = Riparian Zone Width 18 - 12 meters

Score 3-5 = Riparian Zone Width 11 - 6 meters

Score 1-2 = Riparian Zone Width < 6 meters

4.2.3 Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment was utilized in two different ways. First, data collected for each attribute (assessment category) was used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, %riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean %canopy cover, etc. Second, the data collected during the assessment was used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies was incorporated into this intensive aquatic biota field study. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

1) Epifaunal Substrate/Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (Instream habitat) are combined into an overall average percent coverage and used to score this metric.

The following table presents the scoring criteria:

Rank	Optimal	Sub-Optimal	Marginal	Peer
% Coverage	>70%	40%-70%	20%-39%	<20%
Score	20 -16	15 -11	10 - 6	5 - 1

2) Pool Substrate Characterization

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

Rank	9	ntimal	Sub-Optimal	Marginal	Poor
Substrate	Cobble	or Gravel	Sand/Silt/Clay	Sand/Silt/Clay	Bedrock or Clay Only
Macrophytes Present	Yes	No	Yes	No	No
Score	20 - 18	17 - 16	15 - 11	10 - 6	5-1

3) Pool Variability

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

Pool Characteristic	Large Deep	Large-Shallow	Small-Deep	Small-Shallon
Size	Length ≥ Width	Length ≥ Width	Length < Width	Length < Width
Depth	≥3.2 feet	< 3.2 feet	≥3.2 feet	< 3.2 feet

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

Rank	Optimal	Sub-Optimal	Marginal	Poor
% Bottom Affected	<5%	5%-30%	31%-50%	>50%
Score	20 -16	15 -11	10 - 6	5-1

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semi-quantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semi-quantitative record sheet) is used directly to score this metric for the right and left bank.

Rank	Optimal	Sub-Optimal	Marginal	Poor
% Protected	>90%	70% - 90%	50% - 69%	<50%
Score	20 -16	15 -11	10 - 6	5 - 1

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semi-quantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

4.2.4 Results and Discussion

4.2.4.1 Habitat Quality

The field study was initiated on April 27, 2005, but due to spring storms that elevated stream levels above base flow conditions, the completion of the aquatic life field characterization was delayed till May 24, 2005.

A summary of the physical attributes of all stations where physical data was collected is presented in Table 4.2. All of the study reaches were generally characteristic of seasonal wetweather tributaries with small watersheds. The watershed size and resulting perennial nature of the stream reaches limited the development of the biotic communities and naturally limit the attainable uses.

The study reaches of the largest watersheds (i.e. UTLCB-2) in the study reflected typical Gulf Coastal Plain streams with small watersheds. Field sheets and the raw habitat data are provided in Appendix E.

Table 4.2. Habitat characteristics of study reaches during seasonal flow conditions. Bayou de Loutre and Little Cornie Bayou watersheds. GLCC Section 2.036 . 3rd party rule making. 2005.

		e Louire		ilia Conta Boyo	
Observation	UT002	UT004	U1003	UTLCB-1	UNCB-2
Date	4/27/2005	4/27/2005	4/27/2005	5/23/2005	5/24/2005
General Stream Characteristics	e un indicide some in a			1 70	1.34
Upstream Watershed Size, mi ²	0.349	0.078	1.24	4.74	7 58
Total Habitat Reach Length, ft	154	112	180	250	412
Average Bankfull Width, ft	7.7	5.6	9.0	12.5	20.6
Average Bankfull Depth, ft ¹	1.7	11	NA	NA	NA
Average Velocity, fps	0.08	NA	0.87	0.01	NA
Flow, cfs	0.03	NA	3.62	0.02	NA
Morphology Regime				15:	
% Pool	78	72	44	81	100
% Riffle	22	89	NA	NA	NA
% Run	0	19	56	19	NA
Depth and Width Regime		The second secon			
Average Riffle Depth, ft.	0.2	0.1	NA	NA	NA
Average Riffle Wetted Width, ft	2.4	1.7	NA	NA NA	NA
Average Pool Depth, ft.	0.6	06	1.2	0.8	1.9
Average Pool Wetted Width, ft	5.2	4.7	7.3	10.2	19.3
Instream Habitat (Percent Stable Habitat)				140°	
Epifaunal Substrate, Macroinvertebrates	26	33	46	32	33
Instream Cover, Fish	19	29	45	31	51
Substrate Charactertzation (Dominate Sub	strate)	医多皮病 侧侧			asse de
Riffle	fine gravel	sand	NA	NA	NA
Pool	sand	sand	Sand	silt/clay	silt/clay
Sediment Deposition					
Average Percent of Bottom Affected	7	54	66	47	72
Aquatic Macrophytes and Periphyton (Perc	ent Coverage)				(I) (I) (I) (I)
Riffle Macrophytes	0	0	NA	NA	NA
Riffle Periphyton	0	0	NA	NA	NA NA
Pool Macrophytes	0	1.5	0	0	0
Pool Periphyton	0	0	0	0	0
Canopy Cover (Percent Stream Shading)					
Stream Shading	83	59	90	86	70
Bank Stability and Stope					
Average Left Bank Stability	mod stable	mod. stable	mod. Stable	mod. stable	mod. stable
Average Left Bank Slope (degrees)	76	52	47	74	55
Average Right Bank Stability	mod. unstable	mod. stable	mod. Stable	mod. stable	stable
Average Right Bank Slope (degrees)	74	53	54	84	59
Bank Vegetative Protection					
Average Left Bank Protection (percent)	50	33	20	36	55
Average Right Bank Protection (percent)	44	28	21	41	70
Riparian Vegetative Zone Width			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		I III Se
Left Bank Riparian Width, meters	12 - 18	> 18	> 18	> 18	> 18
Right Bank Riparian Width, meters	> 18	> 18	> 18	> 18	> 18

Reach UT002

The water shed of Outfall 002 tributary at the mouth of Bayou De Loutre is less than 0.5 sq. miles and above the actual Outfall 002 discharge location the watershed is less than 0.2 sq. mile. The watershed of the 002 unnamed tributary is comprised equally of wooded areas, a wetland complex and areas within the GLCC facility. The majority of the Outfall 002 tributary receives storm flows from areas off the facility and storm flows from the adjacent unregulated watershed also flows into the unnamed tributary. The lower reaches of the 002 unnamed tributary forms a large wetland complex as other unnamed tributaries converge with Bayou de Loutre in the same vicinity (Figure 5).

The study Reach UT002 was comprised approximately 75% shallow pools and 25% riffles (site photos F-1 and F-2 in Appendix F). The remaining small stream segments above this study reach are channels that direct storm water sheet flow from facility areas around Outfall 002 and the adjacent highway right-of-way.

The study reach, as determined by a distance equal to 20 times the bank full width, was 154 feet. The average wetted riffle depth and width was 0.2 ft and 2.4 ft, respectively. The average wetted pool depth and width was 0.6 ft and 5.2 ft, respectively. The average velocity and flow recorded at this station were 0.08 fps and 0.03 cfs, respectively (Table 4.2). The average bankfull width (the point at which the stream enters its active floodplain) was measured at 7.7 ft.

Instream habitat (fish cover) was limited and composed mostly of logs and woody debris, but only covering approximately 20% of the area surveyed. The epifaunal substrate (macroinvertebrates habitat) was also limited and covered only approximately 25% of the area surveyed. The Instream substrate composed mostly of fine gravel in the riffle/runs and sand in the pools. Stream shading (canopy) along the reach was good at 83%. Bank slope was approximately 75° and bank stability ranged from moderately unstable to moderately stable. Bank vegetative protection covered approximately 45 -50% of the reach, while riparian vegetative zone averaged 12 to >18 meters.

Reach UT - 004

The water shed of Outfall 004 tributary at the mouth of Bayou De Loutre is less than one-tenth of a square mile. Unlike the 002 watershed, the majority of the entire UT004 water shed lies above the actual Outfall 004 discharge location (Figure 5). The majority of the UT004 watershed is comprised of wooded areas, however some areas receive storm flows from GLCC facility bone-yard and the corporate office complex. (GBMc, 2005 SWPPP)

UT004 sampling reach had very limited wetted habitat. The limited wetted area limits the biotic community develop potential and the prevents the attainment of several designated uses. The study reach of UT004 included 112 feet (20 times the bank full width of 5.6 ft) and was composed of approximately 70% shallow pools and 30% riffle/runs (F-3 and F-4 in Appendix F). The remaining stream segments above this station are small storm water runoff areas and were dry. The average wetted riffle depth and width was 0.1 ft and 1.7 ft, respectively. The average wetted pool depth and width was 0.6 ft and 4.7 ft, respectively. Due to very low water conditions, no flow was detected at reach UT004 and only intermittent pools connected by small channels of water were sampled. The average bankfull width was measured at 5.6 ft. The reach UT004 termination is a wetland complex (Figure's F-5 and F-6 in Appendix F).

Instream habitat (fish cover) and epifaunal substrate (macroinvertebrates habitat) both covered approximately 30% of the area surveyed. However, the habitat was limited due to the small area of wetted stream. Silts and sediment dominated UT004 substrate comprising approximately 55% of the inorganic substrates. Stream shading (i.e. canopy) along the reach was ample at 59%. Bank slope was approximately 50° and bank stability fell into the moderately stable category. Bank

vegetative protection was low and covered only 30% of the reach. However, the riparian vegetative zone averaged more than 18 meters.

Reach UT003

The water shed of Outfall 003 tributary at the mouth of the unnamed tributary to Little Cornie Bayou is approximately 1.25 sq. miles. The watershed above Outfall 003 study reach includes several unnamed tributaries that receive storm water runoff from areas other than areas of industrial activity within the property boundary of the GLCC facility (Figure 1). The majority of the UT003 watershed is comprised of wooded areas, however some areas receive storm flows from areas of industrial activity within the GLCC facility (GBMc, 2005 SWPPP). The point that UT003 tributary joins the unnamed tributary of Little Cornie Bayou (UTLCB-1), the watershed ratio is approximately 1:4, Outfall 003 tributary to UTLCB-1.

The study reach included an area of multiple shallow flow channels with no clearly defined primary stream channel (Appendix F: photos F-7 and F-8). The UT003 stream segment was flowing into a wooded flat and transitioning into a wetland complex as it met the unnamed tributary of Little Cornie Bayou (Appendix F: F-9). Reach UT003 was composed of approximately 45% shallow pools and 55% runs (Appendix E). Reach UT003 was made up of runs and pools only, no true riffles were found along the surveyed reach. The average wetted pool depth and width was 1.2 ft and 7.3 ft, respectively. The average velocity and flow recorded at this station were 0.87 fps and 3.62 cfs, respectively. The average bankfull width was measured at 9.0 ft. The remaining stream segments above this station are storm water runoff areas and were intermittent with shallow pools separated by areas of dry stream segments.

Instream habitat (fish cover) and epifaunal substrate (macroinvertebrates habitat) covered approximately 30% of the area surveyed. Sediments dominated the UT003 substrate where approximately 65% of the bottom was affected. Stream shading (canopy) along the reach was scored at 90%, the highest of any reach evaluated, reflecting the natural surroundings of the study reach. Bank slope was approximately 50° and bank stability fell into the moderately stable category. Bank vegetative protection was low and covered approximately 20% of the reach. However, the riparian vegetative zone was good and averaged greater than 18 meters.

Reach UTLCB-1

The water shed of the unnamed tributary of Little Cornie Bayou at the upstream study reach (UTLCB-1) is approximately 4.75 square miles (Figure 6). The watershed is predominately wooded with little contributions from urban storm water runoff. A small percentage of the watershed is cleared for pasture and there are poultry houses within the immediate watershed.

The study reach (UTLCB-1) was 250 feet (20 times the bank full channel width). Reach UTLCB-1 was composed of approximately 80% pools and 20% runs no riffles were found along the study reach (Appendix photos F-10 and F-11). The average wetted pool depth and width was less that 1 foot (0.8 ft) and 10.2 ft, respectively. There was little instream flow. The average velocity and flow recorded at this study reach were 0.01 fps and 0.02 cfs, respectively. The average bankfull width was measured at 12.5 ft.

Instream habitat (fish cover) and epifaunal substrate (macroinvertebrates habitat) both covered approximately 30% of the area surveyed. While adequate to maintain the respective communities, the available habitat limited the development potential. The habitat was not limited due to outside influences but was a function of stream size and the complexity of stream channel development given the small water shed size.

The dominate Instream substrate was silt/clay, with clays exposed in the runs and silts accumulated in the pool areas. Stream canopy along the study reach approximated 90%. Bank

slope was approximately 75° for the left bank and placed bank stability into the moderately stable category. The right bank slope was approximately 85° and bank stability fell into the moderately stable category. Bank vegetative protection covered between 55% and 70%, while the riparian vegetative zone was greater than 18 meters.

Reach UTLCB-2

The water shed of the unnamed tributary of Little Cornie Bayou at the down stream study reach (UTLCB-2) is approximately 7.58 square miles, almost double the size of the upstream study reach (Figure 3). The watershed is predominately wooded with little contributions from urban storm water runoff. Like the immediate watershed of the upstream reach, a small percentage of the watershed is cleared for pasture and there are poultry houses within the immediate watershed. In addition, there is limited contributions from other industrial activities within the watershed that could contribute to the mineral loading in the unnamed tributary of little Cornie Bayou.

The study reach UTLCB-2 (2,412 feet) was composed of 100% pools (Appendix F: F-12 to F-15). Reach UTLCB-2 was unique among the study reaches in that the reach was a single extended long pool. The reach is dominated by beaver dams and the downstream control was a beaver dam with maximum height greater than 6 ft. The average wetted pool depth in the upper end of the pool (which comprised 100% of the study reach) was 1.9 ft and the average pool width was 19.3 ft, respectively. Due to the pool/backwater characteristics created as a result of the beaver dam, flow was not detected at UTLCB-2.

Instream habitat (fish cover) within the study reach scored high (51% stable habitat), while epifaunal substrate (macroinvertebrates habitat) scored lower at 33% and was more characteristic of the other study reaches. The dominate Instream substrate was silt/clay. Thick deposits of sediment dominated the pool substrate and affected 72% of the bottom surface area with in the reach evaluated. Stream canopy (70%) was less that that encountered at either of the other 2 study reaches. Bank slope was between approximately 55° and 60° on both banks. Bank stability was characterized as moderately stable and the stable. Bank vegetative protection was high and scored between 55% and 70%, the highest of any stream reach. Like the other reaches within the watershed, the stream side riparian vegetative zone was greater than 18 meters, reflecting the woodland dominated floodplain.

4.2.4.2 Habitat Potential

A qualitative assessment of the habitat potential at 4 of the 5 study reaches (UT002, UT003, UTLCB-1, and UTLCB-2) evaluated during the aquatic life field assessment placed the surveyed reaches in the lower end of the sub-optimal category with mean scores of 13.2, 11.5, 13.2, and 13.3, respectively (Table 4.3). The assessment of habitat potential of UT004 placed it the marginal category with a score of 10.4 (Table 4.3). This qualitative assessment classifies the habitat potential of each study reach as having the potential for supporting an expected level of community development and is based on pre-selected habitat requirements. Differences in the scores between the individual reaches were reflected most significantly by differences in pool variability, channel alteration, sediment deposition, and channel flow status.

The results of the qualitative habitat assessment indicate sub-optional habitat for fish and macroinvertebrates at stations UTLCB-1, UTLCB-2, and UT002. Stations UT003 and UT004, also sub-marginal, scored lower and close to the marginal supporting category for fish and macroinvertebrate habitat due to small watershed size, reduced flow, and alterations to the channel. The individual scoring forms are provided in Appendix E.

Table 4.3. Summary of the qualitative habitat potential of study reaches evaluated during the aquatic life field studies completed in support of the GLCC 3rd party rulemaking. April and May 2005.

Entrange of the state of the st			Reach	and may 2000	9.0
Parameters	UT002	UT004	UT003	UTLCB-1	ufice-2
Epifaunal Substrate	9	10	13	11	11
2. Pool Substrate	15	11	13	10	8
3. Pool Variability	10	8	10	10	16
4. Channel Alteration	16	12	8	18	17
5. Sediment Deposition	19	9	9	11	6
6. Channel Sinuosity	11	11	12	15	11
7. Channel Flow Status	16	8	14	17	18
8. Bank Stability					
Left Bank	8	7	7	8	8
Right Bank	5	6	7	8	9
9. Vegetative Protection					
Left Bank	4	2	2	3	4
Right Bank	3	2	2	3	7
10. Riparian Vegetative Zone Width	1.65				
Left Bank	7	9	9	9	9
Right Bank	9	9	9	9	9
Score (Total)	132	104	115	132	133
Score Average	13 2	10.4	11.5	13.2	13.3
Ranking	S	М	S	S	S

 Ranking
 Range

 Optimal (O)
 16-20

 Sub-optimal (S)
 11-15

 Marginal (M)
 6-10

 Poor (P)
 0-5

4.2.5 Habitat Conclusions

The habitat evaluation indicated that:

- The habitat of the individual unnamed tributaries support biotic communities during seasonal periods of the year as a result of periodic discharge of storm water from the GLCC facility. These communities may not be supported in the absence of the storm flows.
- The marginal habitat and limited enduring pool habitat in the ephemeral wet-weather tributaries (UT002, UT004, and UT003) limits the development and maintenance of the benthic macroinvertebrate community and the fish community assemblages that would otherwise be representative of a typical Gulf Coastal stream.
- 3. The water quality of the existing storm water flows from the GLCC facility does not appear to inhibit the development of the macroinvertebrate and/or fish communities in fact, the existing communities may not be sustained if the storm flows were not directed into the respective drainages.
- 4. The habitat potential of the wet weather tributaries are being met to the extent possible given the watershed size, and

5. The contribution of the storm water flows from the GLCC facility likely enhances the biotic community development of the small watersheds into which they discharge.

4.3 Water Quality

4.3.1 Chemical Characteristics

This section presents the methods and results of the water quality characterization for *in-situ* and minerals analysis in the unnamed tributaries of Bayou de Loutre (UT002 and UT004) and the unnamed tributary of the unnamed tributary of Little Cornie Bayou (UT003), as well as the unnamed tributary of Little Cornie Bayou upstream of UT003 (UTLCB-1) and the unnamed tributary of Little Cornie Bayou downstream of UT003 (UTLCB-2). The analytical methods used followed procedures outlined in Standard Methods for the Examination of Water and Wastewater and appropriate EPA published methods.

4.3.2 Methods

The water quality analysis was conducted during April and May of 2005 to document Instream conditions that existed during the aquatic life field survey and biotic characterization. Water quality analyses consisted of *in-situ* measurements and grab samples for laboratory analysis of chloride, sulfate, and TDS. *In-situ* measurements for water temperature, dissolved oxygen (DO), and specific conductance were measured using a YSI Model 85 digital meter. The pH was measured using an Orion model 230A pH meter that was calibrated using the standard two point method. Turbidity was measured using a Hach 2100P turbidimeter. Grab samples of ambient surface waters were collected and preserved on ice for laboratory analysis of chloride, sulfate, and TDS. All field meters were calibrated the morning prior to use in the field. Calibration records, analytical results and chain of custodies are provided in Appendix B.

4.3.3 Results and Discussion

The *in-situ* water quality data is presented in Table 4.4. DO ranged from 3.5 mg/L to 7.5 mg/L in the study reaches. The pH ranged from 5.6 s.u. to 6.9 s.u. in the five reaches evaluated. Specific conductivity was a magnitude higher in the UT004 study reach than the other sampling reaches (4293 μ mhos compared to a range of 127 - 495 μ mhos for all other study reaches). The elevated specific conductance was likely residuals from an Outfall 004 discharge. The analytical results of surface grab samples indicated that the chloride and TDS concentrations were also higher at UT004 than at any other study reach evaluated.

Table 4.4. Water quality data measured/sampled in April and May 2005.

NO LOS	Bayou	de Loutre enshed	4 P	ornie Bayou Wat	ershed ^a
Parameter	UT002	UT004	UT003		Unjets/
Field Crew			SKH/BJP/REM/	JBB	
Date	4/27/2005	4/27/2005	4/27/2005	5/23/2005	5/24/2005
Time	755	1140	1505	1640	1010
Temperature, C°	14.9	16.5	17.4	21.8	25.3
Dissolved Oxygen, mg/L	7.5	3.5	7.5	3.5	2.8
Specific Conductance, uS	475	4293	495	127	53.0
pH, su	6.5	5.6	6.4	6.9	6.6
Turbidity, ntu	12.7	21.2	17.0	42.1	29.2
Total Dissolved Solids, mg/L	280	2000	300	140	220
Chloride, mg/L	79	1200	100	12	62
Sulfate, mg/L	12	11	15	4.4	21

The TDS concentrations of all study reaches exceeded the Gulf Coastal ecoregion standard of 123 mg/L, including the background reference reach (UTLCB-1). The chloride criteria (14 mg/L) was exceeded in 4 of the 5 reaches evaluated. However, the sulfate ecoregion criteria of 31 mg/L was not exceeded in any other ambient surface water samples tested. However, UT004 was the only sample found to exceed the drinking water standard for TDS (500mg/l) and the chloride standard (250mg/L).

4.3.4 Conclusions

- 1) The *in-situ* parameters measured during the study indicate that water quality supports the attainment of the designated aquatic life use and the development and maintenance of the biological integrity in the stream segments as supported by available habitat.
- The upstream reference condition was found to exceed the existing Gulf Coastal ecoregion criteria for TDS (123mg/L) without the influence of any permitted point source discharge.
- 3) Despite the increased TDS and chloride concentrations in the ephemeral storm water tributaries, biotic communities were not precluded, and
- 4) The water quality of stream reaches into which the target outfalls discharge appear to be dominated by the discharge during and immediately subsequent to storm events. However, in addition to the facility storm water, each of the tributaries receives storm flows from the adjacent watersheds and road side ditches. These ancillary storm contributions serve to further reduce the dissolved mineral concentrations contributed by the site waters prior to reaching Bayou de Loutre. This mixing of site and non-site waters maintains the biotic uses to the extent the habitat condition allows.

4.4 Benthic Macroinvertebrate Community

4.4.1 Introduction

The development of benthic macroinvertebrate community diversity reflects the combination of habitat availability, and the long term exposure to physical and chemical properties of the water in which it develops and lives. The presence and diversity the benthic macroinvertebrate community reflects a water body's biological integrity. The benthic community assemblage was characterized during the aquatic life field survey.

As discussed in Section 4.1, the watersheds of UT002, and UT004 (Bayou de Loutre watershed) and UT003 (Little Cornie Bayou Watershed) are very small. The GLCC facility is located on a watershed divide with storm water flowing eastward through Outfall 002 and storm flow north and east through Outfall 004. Storm flows off the western portion of the facility flow through Outfall 003 westward into the Little Cornie Bayou watershed.

As characterized in the habitat characterization (Section 4.2), the receiving streams are dominated by seasonal storm flows with limited permanently wetted habitat during the dry season. These restricted habitats and seasonally wetted stream corridors limit the potential for aquatic life community development.

4.4.2 Methods

An assessment of the benthic macroinvertebrate community was performed using rapid bioassessment (RBA) techniques as detailed in ADEQ, 1988. The methods were modified to sample in pool habitats. As indicated in Section 1.2, five sampling stations associated with the discharges were evaluated. Reach UT002 is down stream of GLCC Outfall 002 on an unnamed tributary to Bayou De Loutre. Reach UT004 is down stream of GLCC Outfall 004 on an unnamed tributary to Bayou de Loutre. Reach UT002 and UT004 are separate wet weather tributaries to Bayou de Loutre. The UT004 enters Bayou de Loutre upstream of the UT002, (Figure 5). The point at which the wet weather tributaries flow into Bayou de Loutre is an extensive wetland area with limited defined stream channel morphology (Figure 5). The down stream reaches of Bayou de Loutre have been characterized previously as part of other regulatory actions to set site specific temperature criteria (GBM°, 2001). This information demonstrated that the designated use of seasonal fisheries and the aquatic life community required to support that use were maintained by the discharges into Bayou de Loutre.

Macroinvertebrates were sampled using a Turtox Indestructible® dip net. Each station was sampled for three minutes according to the RBA protocol. The three minute sample period included time spent actively sampling the selected microhabitat and did not include time moving from microhabitat to microhabitat and/or sorting large debris particles from the sample to be processed.

Each sample was placed in a bucket and condensed using multiple washings into a standard #30 sieve. The samples were preserved in the field and transported to the lab for further processing, sub-sampling, identification and enumeration. In the lab, each of the field preserved samples were sub-sampled at random, placed on a grid, white sorting tray from which the macroinvertebrates sub-sample was collected. The white tray, with a 10 X 10 grid, was used to randomly select a 100 organism sub-sample from the qualitatively collected benthic sample. Numbered grids were selected at random, from which all insects were collected and ultimately identified. Collections from individual grids continued until 100 organisms were collected. The 100 organism sub-samples were

preserved in Kaylee's solution or 70% ethanol as a voucher for verification. The remainder of the original sample was concentrated, large particles removed, preserved in Kaylee's 'solution and retained as a voucher for the sample picking techniques used. These voucher samples will be held at GBM^c for a period of 24 months or until the project is completed. After project completion the samples may be contributed to a university zoological collection.

The macroinvertebrate assemblages from each station were analyzed according to several benthic community biometrics. These include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), and species diversity as determined by the Shannon-Wiener diversity Index. The analysis also included the seven biometrics used by the State of Arkansas (ADPCE, 1988) in their RBA scoring system. This scoring system places a value (1 to 4, 1=excessive differences, 4=no differences) on each of the seven biometrics to achieve a final mean score. The field data sheets and biometric score forms are provided in Appendix C.

4.4.3 Results and Discussion

4.4.3.1 Overview

The taxonomic richness was similar in all unnamed tributaries into which the storm water outfalls discharge, regardless of size. Although each watershed is very small and according to the water quality standards, not expected to maintain a fishery (ADEQ, 2001), each maintained a developed benthic community. The species diversity was greatest (3.68) at the downstream most station on the unnamed tributary of Little Cornie Bayou (UTLCB-2), and lowest (2.82) from the UT002 downstream of the Outfall 002. The range of taxonomic richness varied from a low of 14 to a maximum of 21 taxa (Table 4.5). Table 4.6 provides a summary of the benthic assemblage for all study reaches.

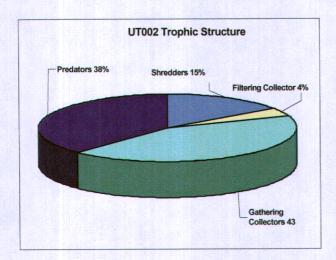
In comparing the unnamed tributaries (UT002, UT003 and UT004) to the background study reach (UTLCB-1), all had taxa richness equal to or greater than the upstream community despite being a fraction of the watershed size. The benthic community development was less diverse in the outfall tributaries, but not significantly so. Also, there were some minor differences in the ordinal group assemblage when compared to the upstream condition, this to is likely a reflection of the watershed size and the resulting enduring pool habitat in UTLCB-2

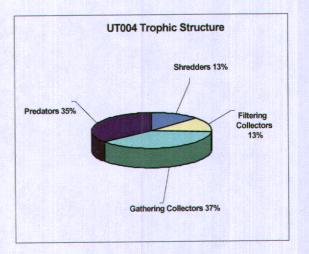
Another factor limiting the benthic community development is the transition from a storm water channel into an extensive wetland complex at each of the discharge reaches (UT002, UT003, and UT004), when compared to the incised stream channel with a maintained pool/rifle/run complex in the upstream study reach (UTLCB-1).

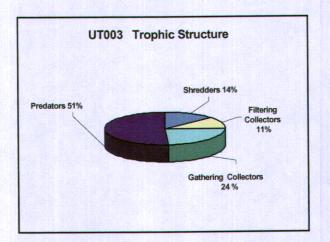
The benthic community within the down stream reach (UTLCB-2) was significantly different as a result of the extensive beaver activity that ponded water for long segments of the unnamed tributary to Little Cornie Bayou.

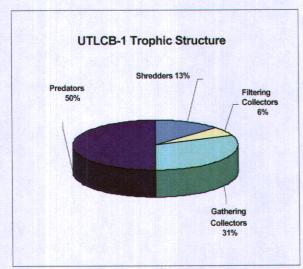
The benthic functional assemblage reflected the effect of the changes in hydrology caused by the beaver ponding. The dominant functional feeding group changed from predators at UTLCB-1 to collectors at UTLCB-2 and the gathering collectors dominated the increase. This active "gathering mode" is required in pooled habitat more so that the "filtering mode" in flowing waters. A summary of the benthic macroinvertebrate community assemblages of the storm water discharge tributaries and the unnamed tributary of Little Cornie Bayou as collected during the spring seasonal aquatic field study is presented in Table 4.6. Figure 9 provides a comparison of the function feeding assemblages of each study reach. The following sections provide a brief description of the benthic assemblage at each study reach.

Table 4.5. Macroinvertebrate community metric analysis for the receiving streams of GLCC storm water discharges, Union Co. AR., April & May 2005


PARAMETER Watershed	Bayou o	ia Loutra	Lin	Little Comile Bayou		
COMMUNITY MEASURES REACH	UT002	UT004	UT003	UTLCB41	UTCB-2	
Total number of Taxa (Richness)	16	14	19	15	21	
EPT Richness				2	3	
EPT % Abundance				28	26	
Diversity Indices (Shannon-Wiener)	2.82	3.14	3.06	3.07	3.68	
Total % of 5 Dominant Taxa	66	59	71	73	59	
PERCENTAGE OF THE 4 DOMINANT ORDINAL GROUPS	Nakatina 🚃					
Annelida	6	14	-			
Coleoptera			18	11	-	
Crustacea	44	28	33	40	33	
Diptera	28	51	26		13	
Ephemeroptera			-	_	25	
Hemiptera			15	14	10	
Odonata	16					
Tricoptera				23	_	
FUNCTIONAL FEEDING ASSEMBLAGES 1/2	5.5, com 6			n ethil e		
Shredders	15	13	13	13	7	
Scrapers					-	
Filterers	4	13	11	6	15	
Collectors	43	37	24	31	44	
Predators	38	35	51	50	34	
Biometric Score*:		1.0	2.5		3.1 6	


Table 4.6. Macroinvertebrate community assemblage collected from GLCC storm water watersheds in Union Co.


AR. April & May 2005


AR. April & Way 200		1000				4.4 4
Wajershed		Bayou d	e Loutre	Little	Comie Ba	(6) (2)
Taxe/Station kD:	Trophic. Group	UTA-002	UTA-004	UT KCB-1	UTA-003	171.70.4
COLUMBOLLA	y Group			GIRRET.		
Poduridae	PR	2				
AKNELIDA		- 				11.4
Oligochaeta	GC	6	14	3		
Hirudidae	PA				1	
3ŘEBEGY90DA				e e e u labore a	3.0	
Corbicula	FC		5		5	
CRUSTACEA		e same during				
Cambarinae	SH	7	5	13	10	7
Amphipoda	GC	5	13	19		16
Isopoda	GC	31	10	4	26	3
Palaemonetes	FC	**		4		9
EPHENEROPTERA						
Caenis	GC			5		17
Callibaetis	GC					9
ODONATA				4.2.3		
Argia	PR					11
Calopteryx	PR				2	
Corduligaster	PR	14			1	
Enallagma	PR					5
Gomphus	PR	2				
Neurocordulia	PR					1
Perithemis	PR				=-	1
HEMIPTERA				estă Z		
Belostoma	PR					1
Corixidae	PR			12	16	8
Notonecta	PR			2		
Ranatra	PR					2
MEGALOPTENA	2480 (9.30)					
Chauliodes	PR					1
Sialis	PR					2
I ROTO PLANE						A A S
Agapetus	FC					
Cheumatopsyche	PR			23		2
COLEOPTERA	200000 200000 200000					inginger of .
Dineutis (larvae)	PR			3	2	
Haliplidae	SH				4	
Stelemis	PR	4			2	
Thermonectus	PR			11	1	
Trophisteruns			1	1		
Uvarus	PR			6	11	7
b philas	4.2		11.5		1 1	39

Water her		Bayou de Loutre		Little Cornie Bayou		
Taxa/Station LD.	Trophic Group	UTA-002	UTA-004	Pakital UT LOSAT	UTA-003	Unicasa
Dianara de la compansión de la compansió						
Bittacomorpha	SH	7	1			
Probezzia	GC			<u></u>		11
Chironominae	FC	2	8	2	6	6
Tanypodinae	PR	6	13	3	2	
Tanytarsini	PR	4	5		2	
Chaborous	GC					11
Hemerodromia	PR	1	6		8	
Hexatoma	PR	4	8		8	6
Psycoda	PR		3			
Simulium	FC	2			1	
Tipula	SH	1	7		1	
Sum of Percentages		100	100	100	100	100
Total Abundance:		98	99	101	109	106
Species Richness:		16	14	15	19.	21
Shannon-Wiener Diversity In	dex	2.82	3.14	3.07	3.06	3,68

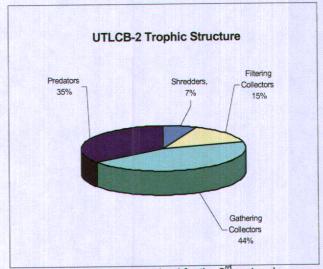


Figure 9. Comparison of functional feeding assemblages of the benthic communities as characterized for the 3rd party rule making in relation to the discharges from GLCC. April & May 2005.

4.4.3.2 Reach UTA 002

The discharges from Outfall 002 do not preclude the maintenance of the benthic community of the UT002. The UT002 benthic community was dominated by Crustaceans (isopods and crayfish). Although this reach had the largest number of taxa than any other discharge reach, UT002 had the lowest diversity index as a result of the dominance of the isopod population. These taxa are shredders and common inhabitants where the primary energy source is allochthonous (deposited into streams from outside the water column) and not produced within the water column (e.g. algae, and attached submergent vegetation). These organisms are primary consumers and act to process coarse organic particulate matter (e.g. leaf litter) into fine particulate organic matter (FPOC) that other aquatic organisms (filterers) can process. The second dominant taxa was the dragonfly, Cordulasgaster, a predator. This dragonfly is one of the largest dragonflies found in Arkansas, and are typically found in very small watersheds with some ground water (spring) influence. Cordulasgaster is considered an indicator of good water quality and unlike most dragonflies over-winter as an immature nymph during 2 winter cycles rather than a single winter cycle and therefore are exposed to long term water quality conditions.

4.4.3.3 Reach UT004

The discharges from Outfall 004 do not preclude the maintenance of the benthic community of the UT004. Although the watershed of UT004 is extremely small, a benthic community was maintained. There was no individual taxa collected from UT004 that was not also collected from some other study reach.

In fact, the invertebrate community of Reach UT004 had the second highest diversity, even greater than the upstream reference reach (UTLCB-1), despite having the smallest watershed evaluated and the lowest taxonomic richness. The increased diversity resulted from the fact that no single benthic taxa dominated the benthic assemblage.

Like UT002, the UT004 benthic community was collectively characterized by Crustacea followed by the order Diptera (true flies) and Annelida (aquatic worms). Unique to the benthic community of UT004, there was no clear sub-dominant ordinal group, six orders each approximated 10 percent of the community.

4.4.3.4 Reach UT003

The discharges from Outfall 003 do not preclude the maintenance of the benthic community of the UT003. The benthic invertebrate community of Reach UT003 had the second greatest taxonomic richness, second only to the downstream most reach. Like the previous study reaches, the outfall 003 tributary was also dominated by Crustacea and Diptera, which combined for 59% of the community identified. In contrast to other study reaches, the trophic structure of community was dominated by predators belonging to the orders Hemiptera (true bugs) and Coleoptera (beetles). The benthic community of UT003 was found to be most similar to the upstream reach UTLCB-1.

4.4.3.5 Reach UTLCB-1

The benthic invertebrate community of Reach UTLCB-1 was determined to be maintained at a level typical of the other reaches evaluated despite the watershed size being several times larger than those of the discharge tributaries. Although this reach served as an un-impacted reference

condition, UTLCB-1 had the next to the lowest taxonomic richness, second only to the UT004 community.

The primary difference appears to be the presences of EPT taxa (insects belonging to the insect orders Ephemeroptera, Plecoptera, and Trichoptera), in the community and not in the benthic assemblages of the outfall communities. The EPT richness accounted for almost 1/3 of the assemblage and replaced Diptera as the co-dominate ordinal group, along with Crustacea (the dominate order in the other study reaches.

4.4.3.6 Reach UTLCB-2

The benthic invertebrate community of Reach UTLCB-2 demonstrates the greatest taxonomic richness and the highest community diversity of any reach evaluated. The benthic community of Reach UTLCB-2 reflected the development resulting from permanently wetted habitats and reflect a more typical gulf Coastal benthic assemblage that includes a wide diversity and ordinal assemblage including numerous insect orders.

There was more difference between the UTLCB-1 and UTLCB-2 benthic communities that there were between any of the effluent tributaries and the UTLCB-1 reference reach. This difference was driven by the difference in habitats between the up/downstream habitats.

4.4.3.7 Biometric Score Comparisons

Although there were some specific taxonomic differences in the species collected, the biometric scores calculated for the comparison of the assemblages collected were 3.0, 2.5 and 3.2, indicating only minimal differences between the benthic community assemblages. The most notable difference between the representative communities upstream and downstream in UTLCB-1 and UTLCB-2 is in their trophic structure (Figure 9).

4.4.4 Conclusions

The following conclusions are based on the analysis of the macroinvertebrate community assemblages from the study reaches evaluated in association with the storm water discharges from GLCC Corporation.

- 1) The macroinvertebrate community is being maintained downstream of the effluent discharges, as is the designated aquatic life use.
- 2) All tributaries which receive discharge through the storm water outfalls from the GLCC facility were found to maintain benthic communities similar in form and function to the upstream reference condition represented by the unnamed tributary to Little Cornie Bayou.
- 3) The biological integrity of Bayou de Loutre and the unnamed tributary to Little Cornie Bayou is being supported by the existing discharge conditions.
- 4) The macroinvertebrate communities observed at all study reaches are similar in the development of taxonomic diversity despite having watersheds that are considerably smaller than the reference utilized.
- 5) Biometric comparisons indicate that are minimal differences in the benthic

communities.

- 6) The community structure (form and function) demonstrated minimal differences which could be attributed to differences in physical conditions (watershed sizes) of the stream reach evaluated.
- 7) The macroinvertebrate communities observed in the storm water tributaries to Bayou de Loutre are similar in structure and composition to those characterized by Gulf Coastal Plain ecoregion for small watersheds; however the complexity of the community was limited when compared to least disturbed streams. and
- 8) The minimal differences actually reflect an improved benthic community at UTLCB-2 downstream when compared to UTLCB-1. The improvement is likely a response to increased flow and the improved habitat diversity indicated in the qualitative habitat assessment.

4.5 Fish Community

4.5.1 Introduction

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of an ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community. Backpack electrofishing equipment is used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect the capture of fish species. Other methods of fish sampling may be implemented when conditions are not adequate for backpack eletrofishing or seining; these may include, using boat electrofishing equipment and/or hook and line sampling equipment. Usually 2–4 team members will make up the sampling team involved in collecting the aquatic vertebrates.

Major factors that influence collecting include flows, water depth, instream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections will be a Smith-Root backpack electroshocker. However, seines and block nets may be utilized as necessary to adequately characterize a sampling reach. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the macroinvertebrate sample and habitat data.

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. The entire stream width within the sampling reach will be sampled. PDT time will continue for not less than 30 minutes unless the wetted habitat of any reach limits the PDT. In addition to the PDT, the total collection time will be recorded.

Unless specified in a project specific sampling analysis plan (SAP), there will not be a maximum time limit for the collection period, however the collections may be terminated when in the opinion of the principal investigator determines that a representative collection has been obtained. Sampling information is recorded on the Fish Community Collection Form, general comments

(perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on this form.

An effort to search for and collect fish will be completed at all reaches, even if the stream is extremely small, and it appears that sampling may not collect any specimens. If no specimens are collected, the "NONE COLLECTED" field on the Fish Collection Form will be completed. Provide an explanation in the comments section of the form.

4.5.2 Methods

An assessment of the fish community in UT002, UT003, UT004, UTLCB-1, and UTLCB-2 was performed. During the spring of 2005, each reach was sampled using a Smith-Root backpack electroshocker. The shocker includes an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. At the end of each sampling effort fish from both reaches were preserved in formalin for later identification in the lab. Fish identifications were made according to the Fishes of Arkansas (Robison, 1988) and The Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach were compared according to several biometrics including: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant family groups; percent of tolerant species; trophic structure; percent of hybrids; percent of diseased fish; and key and indicator species as listed in Reg. No. 2. In addition, the fish community was assessed using a Biocriteria method developed by ADEQ. This Biocriteria uses a scoring system by which the assemblage collected is compared to a reference stream in the same ecoregion using eight different metrics. The metric scores are totaled and the resulting sum is used to assess if a stream reach is in support of its assigned designated uses.

4.5.3 Results and Discussion

4.5.3.1 Overview

Despite watersheds that ranged from 0.078 to less than 1.25 square miles, 2 of the 3 three storm water effluent tributaries (UT002 and UT003) were found to maintain a limited Gulf Coastal Ecoregion fish community assemblage. The very small watershed of UT004 (less than one-tenth of a square mile) limited the fish community development even during the spring seasonal flow period. The fish community of the other two discharge tributaries supported a limited fish community and did not seen to be related to the size of the watershed, in that the fish community of UT002 was more developed that that of the UT003 tributary.

The stream channel of UT002 was more developed, and was more confined into a single stream channel than that of UT003 which was multi-channeled with sheet flow through oak flats, making sampling UT002 more effective and probably contributed to the differences indicated between the fish communities of UT002 and UT003. Despite these differences both of these discharge tributaries provided habitat for numerous key and indicator fish species for the Gulf Coastal plain ecoregion as stipulated in Reg. 2 (ADEQ, 2001).

Although there were some differences above and below the mouth of the UT003 tributary, the fish communities of the UTLCB were not precluded by the discharge from Outfall 003. The pool conditions that persisted in the downstream reach limited collection success. However, like other reaches evaluated, there were numerous key and indicator fish species collected within the Reach UTLCB-2. The species diversity was greatest (3.47) at the upstream reference reach of Little Cornie Bayou (UTLCB-1), and lowest from the UT004 downstream of

the Outfall 004. Table 4.7 provides a comparison of community metrics used to compare fish community development. Table 4.8 provides a summary of fish collected from each study reach.

4.5.3.2 Reach UT002

Despite a watershed size of less than one-half square mile, the historical Outfall 002 discharge maintains a limited Gulf Coastal Ecoregion fish assemblage in the receiving stream (UT002). One-half of the species collected from UT002 (7 of 14) were listed as a key and indicator species for Gulf Coastal ecoregion fish communities. A total of 104 fish representing 14 species were collected during the 31.1 minute PDT sampling effort at UT002. The "Key and Indicator" species collected at UT002 were represented by seven of the possible 12 species for the Gulf Coastal Ecoregion.

This equates to a relative fish abundance of 3.34 fish/minute of PDT. The fish community had a taxa richness of 14 and a Shannon-Wiener diversity index of 2.92. The three dominant family groups were Poeciliidae (28.8%), Centrarchidae (22.1%), and Catostomidae (22.1%).

Trophic structure was dominated by insectivores (93.3%) with a small percentage of piscivores (5.77%) and omnivores (0.96%). Table 4.7 provides all the fish community structural analysis. With respect to pollution tolerance, intermediate species had the highest representation at 79.8% followed by pollution tolerant species at 20.2%.

A biometric scoring system was used to evaluate the fish community as it is compared to a least disturbed Gulf Coastal stream. The watershed size and watershed condition of UT002 scored low when compared to those streams used by ADEQ in the biocriteria development. However, more importantly, UT002 scored higher than that of the upstream reference site on the unnamed tributary of Little Cornie Bayou (UTLCB-1).

The biometric assessment resulted in a total of 12 points at UT002, while total of 10 points at UTLCB-1 (upstream) out of 32 possible points. These would be considered as low scores when compared to an ecoregion least disturbed reference site. The low scores for UT002 reflect the absence of sensitive, catfishes, darters, and key species rarity, as well as an over abundance of sunfish representatives and low species diversity within the study reach.

4.5.3.3 Reach UT004

The watershed at the mouth of UT004 is less than 0.1 square mile. This very small watershed does not maintain enduring pools outside storm event activity. The discharge through Outfall 004 is transported to Bayou de Loutre via an unnamed ditch that is not indicated on a 7.5 minute USGS quad map, even as an ephemeral drainage. Although there was water present during the time of sample collections, there was no measurable flow and pools were very shallow and the ditch channel averaged less than 1ft in width. Although sampling was completed in the drainage ditch, the wet weather tributary provides little habitat for fish community development. Outside periods of storm flow, there is no evidence of enduring pools, even during the seasonal wet weather period. The temporary nature of the available wetted habitat is reflected in the benthic community assemblage (See Section 4.4.3.3).

Due to the very limited sampling reach and availability of wetted habitat, only 11 fish were collected during the 8.1 minute PDT sampling effort at UT004. This is a relative fish abundance of 1.36 fish/minute of PDT. Only one species, mosquito fish (*Gambusia affinis*), was collected at UT004. The mosquito fish is a relative invasive fish and is typically one of the first species to populate a wet weather tributary like UT004. Its trophic structure is insectivore and its tolerance level is intermediate. Table 4.7 depicts the fish collection at UT004.

Table 4.7. Comparison of fish community assemblages as collected from study reaches during aquatic life field assessment for GLCC 3rd party rule making, El Dorado, AR. April & May 2005.

assessment for GL	.CC 3 [™] party rule making, El D			CONTRACTOR CONTRACTOR AND		Manthalas Charlinand Pata / A
		UT002		DALDO3	UTLEB4	UTLEB-2 3
Scientifia Name	Common Name	4/27/2005	42772005	4/27/2005	STRUCK	1242095
CYPRINIDAE	Allered Siller & Miller					
Lythrurus umbratilis ¹	redfin shiner				5	
Notemigonus crysoleucas	golden shiner	1			3	
Semotilus atromaculatus	creek chub				1	
CATOSTOMIDAE	A service of the serv		Wiji i	e de la el la	kaltasi 186 iliki es	5 (0.00)
Erimyzon oblongus²	creek chubsucker	23			1	
POECILIIDAE						gradient details
Gambusia affinis	mosquitofish	30	11	2	37	11
CYPRINODONTIDAE		Ē				
Fundulus olivaceus	blackspotted topminnow			1	37	2
ESOCIDAE						12
Esox americanus¹	grass pickerel	6		5	38	7
APHREDODERIDAE						
Aphredoderus sayanus²	pirate perch	2		4	34	4
ICTALURIDAE			(Alba): //EE			
Ameiurus natalis¹	yellow bullhead	1		2	7	1
Ameiurus melas	black bullhead	1		1		
CENTRARCHIDAE					a sua Establishing	
Lepomis cyanellus	green sunfish	19		2	9	5
Lepomis gulosus ¹	warmouth	2		1	14	7
Lepomis punctatus ²	spotted sunfish			_	6	
Lepomis macrochirus	bluegill sunfish			~4	44	2
Lepomis megalotis	longear sunfish	2		1	10	6
Centrarchus macropterus ²	flier				1	
Micropterus salmoides	largemouth bass					1
ELASSOMATIDAE						14 17
Elassoma zonatum²	banded pigmy sunfish	4			9	4
PERCIDAE					4	
Etheostoma gracile1	slough darter	5			10	1
Etheostoma parvipinne	goldstriped darter	7				
Etheostoma chlorosomum	bluntnose darter	1			1	
Total No. Taxa Collected		14 🖹		9	18	4411 12 11 (1
Total Fish Collected		104	91	19	267	51
Level of Effort (Minutes) PDT		31.1	8.1	28.8	48.6	52.7
Catch per Minute, PDT		3.34	1.36	0.66	5.49	0.97
Shannon-Wiever Diversity In		2.92	0,00	2.90	3.47	3.23

Typical Gulf Coastal Ecoregion Key Species
Typical Gulf Coastal Ecoregion Indicator Species
Pedal Down Time

Table 4.8. Comparison of fish community metrics for study reaches as evaluated during aquatic life field

assessment for GLCC 3rd party rule making, El Dorado, AR. April & May 2005

assessment for GLCC3 party rule mai	Annual Communication of	ALCOHOL STATE AND ADMINISTRATION OF THE PARTY OF THE PART	anno contant consequent that	UTLCB-1	
Paremeter COMMUNITY MEASURES		U1004	UIVW	U ILUDAI	UILUGA.
Richness (Total Number of Taxa)	14	1	9	18	12
Darter Richness (Number of Taxa)	3			2	1
Sunfish Richness (Number of Taxa)	3		3	6	5
% Pollution Tolerant Species	20.2		21.1	7.5	11.8
% Pollution Intermediate Species	79.8	100	78.9	92.5	88.2
% Pollution Intolerant Species	79.0	100		92.3	
% Poliution intolerant Species % Diseased	1.0			0.7	
Number of Key & Indicator Species (Taxa)*	7.0		4.0	10.0	6.0
			12.0		24.0
Number of Key & Indicator Species (Individuals)	43.0			125.0 46.8	47.0
% Key & Indicator Species	41.3		63.2		-
Diversity Indices (Shannon-Wiever)	2.92		2.90	3.47	3.23
Abundance, fish collected/minute	3.34	1.36	0.66	5.49	0.97
TROPHIC STRUCTURE	蒙古文物。				
% Herbivores					
% Omnivores	0.96			1.50	
% Insectivores	93.3	100.0	73.7	84.3	84.3
% Piscivores	5.77		26.32	14.23	15.69
PERCENT OF 5 DOMINANT FAMILY GROUPS HER					
Centrarchidae	22.1		23.5	31.5	41.2
Poeciliidae	28.8	100.0	11.8	13.9	21.6
Catostomidae	22.1			~~	
Aphredoderidae			23.5	12.7	7.8
Percidae	12.5				
Cyprinodontidae			5.9	13.9	
Cyprinidae					
Ictaluridae			5.9		
Elassomatidae					7.8
Esocidae	5.8	-	29.4	14.2	13.7
Total % of 5 Dominant Groups	91.3	100.0	100.0	86.1	92.2

^{*} Total of 12 key and indicator species possible.

The biometric assessment resulted in a total of 6 points at UT004. The low scores are due to a very limited sampling reach reflective of the very small watershed size, and fish cover availability.

4.5.3.4 Reach UT003

Despite the small watershed size, (1.25 sq. miles), the UT003 (and the historical discharges through Outfall 003) was found to maintain a limited Gulf Coastal fish community. A total of 19 fish were collected during the 28.8 minute PDT sampling effort at UT003. This equates to a relative fish abundance of 0.66 fish/minute of PDT. Even though numerical abundance of individual fish were low, the overall fish community was represented with a taxa richness of 9 and a Shannon-Wiener diversity index of 2.90. The low fish count may have been attributed to the development of multiple shallow stream channels as UT003 enters into the

wetland complex and the unnamed tributary to UTLCB. The UT003 stream reach was braided and very shallow in places with very little fish habitat available. The dominate family species were Esocidae (29.4%), Centrarchidae (23.5%), and Aphredoderidae (23.5%).

UT003 fish community trophic structure was dominated by insectivores (73.7%) followed by piscivores at 26.3%. Table 4.8 provides the list of fish community structural analysis for the study reach. Fish tolerance was very similar to UT002, where intermediate species had the highest representation at 78.9% followed by pollution tolerant species at 21.1%. The "Key and Indicator" species were represented by 4 or 25% of the total possible number of species (12).

The biometric assessment resulted in a total of 10 points at UT003, equaling the total (10 points) at UTLCB-1 (upstream reference site) out of 32 possible points. The low scores when compared to a least disturbed reference, are a result of sensitive, catfishes, darters, and key species rarity, as well as an over abundance of sunfish representatives and low species diversity through out the study reaches.

4.5.3.5 Reach UTLCB-1

The observed fish community is typical of that expected in similar habitat and watershed size in the Gulf Coastal Ecoregion. A total of 267 fish were collected during the 48.6 minute PDT sampling effort at UTLCB-1. This equates to a relative fish abundance of 5.49 fish/minute of PDT. The fish community at UTLCB-1 a taxa richness of 18 and a Shannon-Wiener diversity index of 2.47. Table 4.6 provides a complete list of fish species collected at UTLCB-1. The Centrarchidae family had the highest taxa richness (6) and the highest percent of total individuals collected (31.5%) of all family groups. Esocidae, Cyprinodontidae, Poeciliidae, and Aphredoderidae all followed closely together at 14.2%, 13.9%, 13.9%, & 12.7%, respectively. Table 4.7 summarizes the fish species collected at UT003

UTLCB-1's fish community trophic structure was dominated by insectivores (84.3%). Piscivores represented 14.2%, while omnivores represented 1.5%. Fish tolerance at UTLCB-1 was represented by intermediate species at 92.5% followed by pollution tolerant species at 7.5%. The "Key & Indicator" species was represented by 10 of the possible 12 species for the Gulf Coastal Ecoregion.

The biometric assessment resulted in a total of 10 points at UTLCB-1 (upstream reference site) out of 32 possible points. The low scores when compared to a least disturbed reference, are a result of sensitive, catfishes, darters, and key species rarity, as well as an over abundance of sunfish representatives and low species diversity through out the study reaches. Table 4.8 provides the fish community structural analysis.

4.5.3.6 Reach UTLCB-2

A total of 51 fish were collected during the 52.7 minute PDT sampling effort at UTLCB-2. This equates to a relative fish abundance of 0.97 fish/minute of PDT. The fish community at UTLCB-2 had a taxa richness of 12 and a Shannon-Wiener diversity index of 3.23. A summary of the fish species collected at UTLCB-2 is provided in Table 4.7. The Centrarchidae family had the highest Taxa Richness (5) and the highest percent of total individuals collected (41.2%) of all family groups. The study reach's fish community trophic structure was dominated by insectivores (84.3%) followed by piscivores at 15.7%. Characteristics of the fish community structural analysis for UTLCB-2 are provided in Table 4.8. 88.2% of the community fell under the intermediate category for fish tolerance. Additionally, 6 of the possible 12 "Key and Indicator" species for the Gulf Coastal Ecoregion were collected.

The biometric assessment resulted in a total of 10 points at UTLCB-2, equaling the total (10 points) at UTLCB-1 (upstream reference site) out of 32 possible points. The low scores

when compared to a least disturbed reference, are a result of sensitive, catfishes, darters, and key species rarity, as well as an over abundance of sunfish representatives and low species diversity through out the study reaches.

Due to larger stream channel, deeper water conditions, and low water clarity at UTLCB-2, fish collections were more difficult and provided fewer fish. However, collected species does indicate a potentially normal Gulf Coastal Ecoregion fish community.

4.5.4 Conclusions

Based on the results of the fish collections completed during the spring steady state conditions that existed during 2005, the following conclusions are provided:

- Although all study reaches and specifically of the permitted storm water outfall receiving streams are not expected to maintain typical gulf Coastal fisheries due to very small watersheds, all but one were found to maintain a seasonal Gulf Coastal fish assemblage.
- 2) The very small watershed (and the intermittent nature of the storm flows) of UT004 precludes the maintenance of the Gulf coastal seasonal fish community assemblage However, this is a water quantity issue and not a water quality issue. The water quality was not preclusive of fish when sufficient wetted habitat is available.
- 3) The UT002 and UT003 study reaches provided habitat and maintained representative components of a Gulf Coastal fish community including multiple key and indicator fish species.
- 4) It does not appear that the historical discharges to the study reaches precluded the attainable level of fish community development.

4.6 Summary

Based on the aquatic life field study, the designated aquatic life use and the biological integrity of UT002, UT004, UT003, and UTLCB-2 is maintained downstream of the discharges from the GLCC Company's central facility. In addition, the historical mineral concentrations discharged from the permitted storm water outfalls have not precluded the maintenance of the designated and attainable uses as allowed by the existing habitat

5.0 EXISTING LOADINGS OF DISSOLVED MINERALS

5.1 Chloride, Sulfate, & TDS Water Quality Criteria

The existing ecoregion based chloride, sulfate, and TDS water quality criteria for UT002, UT003, and UT004, and UTLCB-2 are 14 mg/L, 31 mg/L and 123 mg/L, respectively. The existing stream based chloride, sulfate, and TDS water quality criteria for Bayou de Loutre above Gum Creek are 250 mg/L, 90 mg/L, and 500 mg/L, respectively. The existing stream based chloride, sulfate, and TDS water quality criteria for Little Cornie Bayou (LCB) are 200 mg/L, 20 mg/L, and 500 mg/L, respectively. Utilizing the appropriate flows and background concentrations provided in the WQS and the Continuous Planning Process (CPP), the discharge via Outfalls 002, 003, & 004 from the GLCC Central facility will not maintain the majority of the existing ecoregion dissolved minerals criteria in the unnamed tributaries of Bayou de Loutre (UT002 & UT004), the unnamed tributary of

the unnamed tributary of Little Cornie Bayou (UT003), or the unnamed tributary of Little Cornie Bayou (UTLCB-2). Additionally, discharge via Outfalls 002, 003, & 004 from the GLCC Central facility will not maintain the majority of the existing stream dissolved minerals criteria in Bayou de Loutre above the mouth of Loutre Creek, or in Little Cornie Bayou (LCB). In addition to ecoregion water quality criteria (UT002, UT003, UT004, & UTLCB-2) and stream based water quality criteria for Bayou de Loutre above Loutre Creek, and Little Cornie Bayou (LCB), the domestic water supply use designation for UT002, UT003, UT004, UTLCB-2, LCB, and Bayou de Loutre above Loutre Creek results in a numeric criterion of 250 mg/L, 250 mg/L and 500 mg/L for chloride, sulfate and TDS, respectively. As discussed in Sections 3.2 and 3.3, the domestic water supply use is a designated, but not an existing use for UT002, UT003, UT004, UTLCB-2, LCB, or Bayou de Loutre above Loutre Creek. Additionally, there are no plans to utilize any of the aforementioned water bodies as a domestic water supply use.

In order to determine appropriate chloride, sulfate, and TDS criteria for UT002, UT003, and the section of Bayou de Loutre downstream to the mouth of Loutre Creek; appropriate chloride and TDS criteria for UT004 and UTLCB-2; appropriate chloride and sulfate criteria for LCB; appropriate sulfate and TDS for the sections of Bayou de Loutre; and the appropriate chloride for Bayou de Loutre from the mouth of UT002 to the confluence of Loutre Creek, mass balances calculations were developed as described in the following sections.

5.2 Mass Balance

The following mass balance equation was used to calculate instream waste concentrations (IWC) for chloride, sulfate, and TDS:

 $IWC = [(Qb \times Cb) + (Qe \times Ce)] / (Qb + Qe)$

Where:

Qb = The background flow of the receiving stream

Cb = The background concentration of chloride, sulfate or TDS in the receiving stream

Qe = The discharge flow of the effluent

Ce = The effluent concentration of chloride, sulfate or TDS

5.2.1 Methods

The procedure for evaluating Instream concentrations and developing permit limits for dissolved minerals can be found in *ADEQ Discharge Permit, Toxic Control Implementation Procedure* in Arkansas' 1995 Continuing Planning Process (CPP). The value used for the background concentration of chloride (5 mg/L), sulfate (13 mg/L), and TDS (67 mg/L) was the mean concentration for the Gulf Coastal Plain Ecoregion. The background values are listed in the CPP in Attachment XII, *Mineral Permitting Strategy*, for streams in the Gulf Coastal Plain with a 7Q-10 of less than 100 cfs. A background flow of 4 cfs was used in each stream, as allowed for determining instream mineral concentrations in the WQS. Effluent concentrations for chloride, sulfate, and TDS were derived from historical maximum monthly concentrations from January 2000 through September 2005 (chloride & sulfate) and January 2004 through September 2005 (TDS). Instream concentrations were calculated for UT002, UT003, UT004, UTLCB-2, LCB, Bayou de Loutre from the mouth of UT002 to the mouth of Loutre Creek.

5.2.2 Instream Waste Concentration (IWC) Computations

The Gulf Coastal Plain ecoregion background concentrations for chloride, sulfate, and TDS are 5 mg/L, 13 mg/L, and 67 mg/L, respectively (Table 5.1). Flow values used for the IWC computations is the facility's reported highest monthly average flow for a period from January 2004 through October 2005 from each outfall (Outfall's 002, 004, & 003). The flow value used in the computations as the discharge flow at each outfall was selected as directed by Section D of ADEQ Discharge Permit. Toxic Control Implementation Procedure in the CPP. The effluent Concentrations used for chloride, sulfate, and TDS were the 95th percentile of its respective data set. One of two different 95th percentile calculations were used, either according to a parametric (the data set was normally distributed) statistical technique or according to a non-parametric (the data set was not normally distributed) statistical technique, as outlined in Statistical Methods for Environmental Pollution Monitoring (Gilbert, 1987). A frequency histogram was prepared for each data set to characterize its distribution. Computations for pertinent minerals at each outfall and their respective techniques are presented below. A schematic depiction of the 95th percentile contributions of the respective mineral and the effluent flow from each source utilized in the development of predicted instream waste concentration and the proposed water quality standard modification for each stream segment is provided in Appendix C.

5.2.2.1 IWC Computations for UT004

Due to the distribution of the available data for the individual dissolved minerals components, IWC computations for chloride at UT004 utilized the non-parametric statistical technique, while the computations for sulfate and TDS utilized a parametric statistical technique. The calculated IWC for sulfate at UT004 proved to be lower than the current ecoregion based water quality criteria and therefore, sulfate concentrations at Outfall 004 does not show any instream reasonable potential to exceed the current ecoregion criteria at this time. No change in the water quality criteria for sulfate at UT004 is being proposed at this time. Frequency histograms for chloride showed the data set is not normally distributed, while the histogram for TDS indicated a normal distribution (Appendix C). The following calculations were used to determine the IWC for each relevant mineral at UT004.

```
Chloride: k = p(n=1)
```

where: k = the ranked order number from the mineral data set (values of k that are not integers are interpolated for using the two values that k falls between).

p = desired percentilen = number of data points

This method returns k values of 63.65 for chloride. The chloride data set has an n=66. Therefore, the value in the data set ranked as "63.65" for chloride and TDS was 1702 mg/L. These "ranked" values are equal to the 95^{th} percentile. Flow values used in the following calculations (0.414 MGD or 0.64 cfs) is the reported highest monthly average flow for a period from January 2004 through October 2005 at Outfall 004. Utilizing all the aforementioned data the IWC is calculated below. The summary of the mass balance data inputs are provided in Table 5.3 for UT004.

TDS:

$$X_P = \overline{X} + (Z_p * s)$$

where: $X_P =$ desired percentile

 \bar{x} = sample mean of the mineral data set

 Z_p = statistical "look up value" for the standard normal distribution of the

desired percentile

s = standard deviation of the mineral data set

This method returns Z_p values of 1.64 for the 95th percentile, a standard deviation of the TDS data set of 749, and a sample mean value for the TDS data set is 700. This data returned a 95th percentile value of TDS data set of 1932 mg/L. Flow values used in the following calculations (0.414 MGD or 0.64 cfs) are the reported highest monthly average flows for a period from January 2004 through October 2005 at Outfall 004. Utilizing all the aforementioned data, the IWC is calculated below. The summary of the mass balance data inputs are provided in Table 5.3 for UT004.

IWC_{chloride} =

[(4.0 cfs x 5.0 mg/L) + (0.64 cfs x 1702 mg/L)] / (4.0 cfs + 0.64 cfs) = 239 mg/L]

IWC_{TDS} =

[(4.0 cfs x 67 mg/L) + (0.64 cfs x 1932 mg/L)] / (4.0 cfs + 0.64 cfs) = 324 mg/L]

Table 5.1. Instream Waste Concentration (IWC) Calculation for UT004.

Parameters	Chloride	
Ce, mg/L (projected 95 th %tile)	1,702	1,932
Cb, mg/L	5.0	67
Qe, cfs	0.64	0.64
Qb, cfs	4.0	4.0
Projected IWC (mg/L)	239	324

5.2.2.2 IWC Computations for UT002

IWC computations for chloride, sulfate, and TDS at UT002 were calculated using the non-parametric statistical technique. The frequency histograms for chloride, sulfate, and TDS all showed a data set that was not normally distributed (Appendix C). The following calculations were used to determine the IWC for each mineral at UT002.

$$k = p(n=1)$$

where: k = the ranked order number from the mineral data set (values of k that are not integers are interpolated for using the two values that k falls between).

p = desired percentilen = number of data points

This method returns k values of 63.65 for chloride, 62.70 for sulfate, and 19.0 for TDS. The chloride data set has an n = 66, the sulfate data set has an n = 65, and the TDS data set has an n = 19. Therefore, the values ranked in the data set as "63.65", "62.70", & "19.0" for chloride, sulfate,

and TDS was 1,029 mg/L, 372 mg/L, and 1376 mg/L, respectively. These "ranked" values are equal to the 95th percentile. Flow values used in the following calculations (0.154 MGD or 0.24 cfs) is the reported highest monthly average flow for a period from January 2004 through October 2005 at Outfall 002. Utilizing all the aforementioned data the IWC is calculated below. The summary of the mass balance data inputs are provided in Table 5.1 for UT002.

IWC_{chloride} =

 $[(4.0 \text{ cfs} \times 5.0 \text{ mg/L}) + (0.24 \text{ cfs} \times 1029 \text{ mg/L})] / (4.0 \text{ cfs} + 0.24 \text{ cfs}) = 63 \text{ mg/L}, \text{ say } 65 \text{ mg/L}]$

IWC_{sulfate} =

 $[(4.0 \text{ cfs} \times 13 \text{ mg/L}) + (0.24 \text{ cfs} \times 380 \text{ mg/L})] / (4.0 \text{ cfs} + 0.24 \text{ cfs}) = 33.8 \text{ mg/L}, \text{ say } 35 \text{ mg/L}]$

IWC_{TDS} =

[(4.0 cfs x 67 mg/L) + (0.24 cfs x 1376 mg/L)] / (4.0 cfs + 0.24 cfs) = 141 mg/L]

Table 5.2. Instream Waste Concentration (IWC) Calculation for UT002.

Parameters	Chloride	Sulfate	: TDS
Ce, mg/L (projected 95 th %tile)	1029	380	1376
Cb, mg/L	5.0	13	67
Qe, cfs Qb, cfs	0.24	0.24	0.24
Qb, cfs	4.0	4.0	4.0
Projected IWC (mg/L)	63.0	33.8	141

5.2.2.3 IWC Computations for Bayou de Loutre (from the mouth of UT004 to the confluence of Loutre Creek)

IWC computations for chloride, sulfate, and TDS at Bayou de Loutre from the mouth of UT002 to the confluence of Loutre Creek were preformed utilizing the previously calculated IWCs and flows from UT004 & UT002 (above), and Bayou de Loutre background flow (4 cfs) for each respective mineral.

The following calculations were used to determine the IWC for chloride in this section of Bayou de Loutre. This method returns "effluent concentration" of 1,519 mg/L for chloride. "Effluent flow" values are the combined flows form Outfall 002 & Outfall 004's reported highest monthly average flow for a period from January 2004 through October 2005. The resulting "effluent flow" value used in the IWC computations was 0.88 cfs. Utilizing all the aforementioned data the IWC is calculated below:

IWC_{chloride} =

 $[(4.0 \text{ cfs} \times 5.0 \text{ mg/L}) + (0.88 \text{ cfs} \times 1519 \text{ mg/L})] / (4.0 \text{ cfs} + 0.88 \text{ cfs}) = 278 \text{ mg/L}$

Table 5.3. Instream Waste Concentration (IWC) Calculation for chloride on Bayou de Loutre (from the mouth of UT004 to the confluence of Loutre Creek).

Parameters	Chloride
Ce, mg/L	1519
Ce, mg/L Cb, mg/L Qe, cfs	5.0
Qe, cfs	0 88
Qb, cfs	4.0
Projected IWC (mg/L)	278

While the calculated IWC for chloride indicated higher concentrations than the current stream based water quality criteria for this section of Bayou de Loutre, the calculated IWC for sulfate and TDS proved to be lower than the current stream based water quality criteria and demonstrates no reasonable potential to exceed the existing criteria at this time. Therefore, no change in the water quality criteria for sulfate or TDS in this section of Bayou de Loutre is being proposed.

5.2.2.4 IWC Computations for UT003

IWC computations for chloride and sulfate at UT003 utilized the non-parametric statistical technique, while the computations for TDS required a parametric statistical technique. The frequency histograms for chloride, sulfate, and TDS demonstrated the chloride and sulfate data set is not normally distributed and the TDS data set is normally distributed (Appendix C). The following calculations were used to determine the IWC for each mineral at UT002.

Chloride & Sulfate:

```
k = p(n=1)
```

where: k = the ranked order number from the mineral data set (values of k that are not integers are interpolated for using the two values that k falls between).

p = desired percentilen = number of data points

This method returns k values of 69.35 for chloride and sulfate. Both the chloride and sulfate data sets has an n=72. Therefore, the value in the data set ranked as "69.35" for chloride and sulfate was 2374 mg/L and 96 mg/L, respectively. These "ranked" values are equal to the 95th percentile. Flow values used in the following calculations (0.747 MGD or 1.16 cfs) is the reported highest monthly average flow for a period from January 2004 through October 2005 at Outfall 003. Utilizing all the aforementioned data the IWC is calculated below. The summary of the mass balance data inputs are provided in Table 5.2 for UT003.

TDS: $X_P = \overline{x} + (Z_p * s)$

where: $X_P =$ desired percentile

 \bar{x} = sample mean of the mineral data set

 Z_p = statistical "look up value" for the standard normal distribution of the

desired percentile

s = standard deviation of the mineral data set

This method returns Z_p values of 1.64 for the 95th percentile, a standard deviation of the TDS data set of 848, and a sample mean value for the TDS data set is 684. This data returned a 95th percentile value of TDS data set of 2079 mg/L. Flow values used in the following calculations (0.747 MGD or 1.16 cfs) is the reported highest monthly average flow for a period from January 2004 through October 2005 at Outfall 003. Utilizing all the aforementioned data the IWC is calculated below. The summary of the mass balance data inputs are provided in Table 5.2 for UT003.

IWC_{chlonde} =

[(4.0 cfs x 5.0 mg/L) + (1.16 cfs x 2374 mg/L)] / (4.0 cfs + 1.16 cfs) = 538 mg/L

IWC_{sulfate} =

 $[(4.0 \text{ cfs} \times 13 \text{ mg/L}) + (1.16 \text{ cfs} \times 95.8 \text{ mg/L})] / (4.0 \text{ cfs} + 1.16 \text{ cfs}) = 31.6 \text{ mg/L}, say 35 \text{ mg/L}]$

IWC_{TDS} =

[(4.0 cfs x 67 mg/L) + (1.16 cfs x 2079 mg/L)] / (4.0 cfs + 1.16 cfs) = 519 mg/L]

Table 5.4. Instream Waste Concentration (IWC) Calculation for UT003. Great Lakes Chemical Company.

i.: Parametata	Chloride	Sulfate	TD9:#3046
Ce, mg/L (projected 95 th %tile)	2,374	95.8	2,079
Cb, mg/L	5.0	13	67
Qe, cfs	1.16	1.16	1.16
Qb, cfs	4.0	4.0	4.0
Projected IWC (mg/L)	538	31.6	519

5.2.2.5 IWC Computations for UTLCB-2

IWC computations for chloride, sulfate, and TDS at UTLCB-2 were preformed utilizing the previously calculated IWCs and flows from UT003 (above) as the "effluent concentration" and "effluent flows" for each respective mineral. The following calculations were used to determine the IWC for each relevant mineral at UTLCB-2.

This method returns "effluent concentration" of 538 and 519 for chloride and TDS, respectively. "Effluent flow" values are the combined flows from UT003 background flow (4 cfs) and Outfall 003's reported highest monthly average flow for a period from January 2004 through October 2005. The resulting "effluent flow" value used in the IWC computations was 5.16 cfs. Utilizing all the aforementioned data the IWC is calculated below.

IWC_{chlonde} =

 $[(4.0 \text{ cfs} \times 5.0 \text{ mg/L}) + (5.16 \text{ cfs} \times 538 \text{ mg/L})] / (4.0 \text{ cfs} + 5.16 \text{ cfs}) = 305 \text{ mg/L}]$

IWC_{TDS} =

[(4.0 cfs x 67 mg/L) + (5.16 cfs x 519 mg/L)] / (4.0 cfs + 5.16 cfs) = 322 mg/L, say 325 mg/L.

Table 5.5. Instream Waste Concentration (IWC) Calculation for UTLCB-2.

Parmeters.	Chloride	TDS
Ce, mg/L (UT003's IWC)	538	519
Cb, mg/L	5.0	67
Qe, cfs	5.16	5.16
Qb, cfs	4.0	4.0
Projected IWC (mg/L)	305	322

While the calculated IWC for chloride and TDS indicated higher concentrations than the current ecoregion based water quality criteria for UTLCB, the calculated IWC for sulfate proved to be lower than the current ecoregion based water quality criteria and shows no reasonable potential to exceed the water quality based criteria at this time. Therefore, no change in the water quality criteria for sulfate at UTLCB-2 is being requested at this time.

5.2.2.6 IWC Computations for Little Cornie Bayou

IWC computations for chloride, sulfate, and TDS at LCB were preformed utilizing the previously calculated IWCs and flows from UTLCB-2 (above) as the "effluent concentration" and "effluent flows" for each respective mineral. The following calculations were used to determine the IWC for each relevant mineral in Little Cornie Bayou (LCB) for the section form the mouth of the unnamed tributary (UTLCB-2) to the Arkansas State line.

This method returns "effluent concentration" of 305 and 23.5 for chloride and sulfate, respectively. "Effluent flow" values are the combined flows form UT003 background flow (4 cfs), UTLCB-2 background flow (4 cfs), and Outfall 003's reported highest monthly average flow for a period from January 2004 through October 2005. The resulting "effluent flow" value used in the IWC computations was 9.16 cfs. Utilizing all the aforementioned data the IWC is calculated below.

$$IWC_{chloride} = [(4.0 \text{ cfs x } 5.0 \text{ mg/L}) + (9.16 \text{ cfs x } 305 \text{ mg/L})] / (4.0 \text{ cfs + } 9.16 \text{ cfs}) = 214 \text{ mg/L}, say 215 \text{ mg/L}]$$

IWC_{sulfate} = $[(4.0 \text{ cfs} \times 13 \text{ mg/L}) + (9.16 \text{ cfs} \times 23.5 \text{ mg/L})] / (4.0 \text{ cfs} + 9.16 \text{ cfs}) = 20.3 \text{ mg/L}, say 25 \text{ mg/L}.$

Table 5.6. Instream Waste Concentration (IWC) Calculation for	able 5.6 Instre	am Waste Cond	entration (IWC)	Calculation for LC	B.
---	-----------------	---------------	-----------------	--------------------	----

Parameters	Chloride	Sulfate
Ce, mg/L (UTLCB-2's IWC)	305	23.5
Cb, mg/L	5.0	13
Qe, cfs	9.16	9.16
Qb, cfs	4.0	4.0
Projected IWC (mg/L)	214	20.3

While the calculated IWC for chloride indicated higher concentrations than the current stream based water quality criteria for LCB, the calculated IWC for sulfate and TDS was equal to or lower than the current stream based water quality criterion (20 mg/L and 500 mg/L, respectively) and shows no reasonable potential at this time to exceed the existing water quality criteria. No change in the water quality criteria for sulfate or TDS for this reach of Little Cornie Bayou are being requested at this time.

5.3 Compliance with LA standards for dissolved minerals.

Based on information as presented in the Louisiana WQS, the water quality criteria for unnamed streams in the Little Cornie Bayou watershed are 250 mg/L, 250 mg/L, and 500 mg/L for chloride, sulfate, and TDS, respectively and the critical flow is considered as a long term average flow. Since the above computations indicate that the IWC all remain below the existing mineral criteria, there should be no impact to waters of the state of Louisiana.

6.0 ALTERNATIVE ANALYSES

This section summarizes the analyses of alternatives for the GLCC's central facility to maintain the WQS for UT002, UT003, UT004, UTLCB-2, and LCB. As seen in Section 5.0, the discharges from GLCC's central facility maintains protective criteria related to the existing uses; however, it does exceed the ecoregion standard criteria for chloride, sulfate, and TDS (UT002 & UT003), chloride and TDS (UT004 & UTLCB-2), and the stream standard criteria for chloride and sulfate (LCB). In addition, the current concentration of respective dissolved minerals is projected to cause Instream exceedances under critical flow conditions.

Six alternatives were identified to address designated uses and the protective criteria for chloride, sulfate, and TDS (as needed). They are as follows:

- 1) no action,
- 2) no discharge,
- 3) hydrograph controlled release,
- 4) treatment
- 5) source reduction/Pollution Prevention
- 6) Water Quality Standards modification.

6.1 No Action

This alternative would maintain the current discharge situation. Respective mineral effluent concentrations would exceed the permit limits established to maintain the designated but non-existing, domestic water supply use. In addition, it is projected that Instream exceedences of the ecoregion based and/or stream based chloride, sulfate, and TDS criteria will occur under critical conditions. For these reasons, this alternative is not considered to be feasible.

6.2 No Discharge

The no discharge alternative is not economically feasible. Although the GLCC Central facility practices deep-well injection of process wastewaters, the cost and added volume of deep-well injection of surface storm water runoff, non-contact cooling water boiler blowdown and cooling tower overflows would ultimately make it economically infeasible to continue operations.

GLCC employs approximately 559 workers (536 employees plus 23 full time on site contractors) with an annual payroll estimated at approximately \$45.6 million. In addition, GLCC pays approximately \$5 million in local and state taxes. GLCC is a significant employer in Union County. This alternative would require the cessation of operations at GLCC facilities, an action which would greatly affect the local economy.

This alternative is considered infeasible due to the socioeconomic effects to the local area should the GLCC facilities close.

6.3 Hydrograph Controlled Release (HCR)

The feasibility of a HCR was examined as an alternative for minimizing the impact of GLCC Central discharges with mineral concentrations that exceed the current ecoregion criteria. In this situation, an HCR system would not achieve compliance with the ecoregion based dissolved minerals water quality criterion because the hydrology of the unnamed tributaries is dictated by limited watershed size (the largest is less than 3 square miles) at the Outfall locations. An analyses

of the flows required to attain the existing water quality criteria demonstrates that a storm event equal to a 1 in 10 year event would be required to generate the flow in Bayou de Loutre to create sufficient instream flows with ecoregion background mineral concentrations to allow compliance with the existing instream criteria in the unnamed tributaries.

In addition, as described in Section 3.5, the discharge through Outfalls 002 and 004 are storm water only, and discharge only in response to storm events. There is no capacity to implement a HCR system to capture the storm water from these discharges and then meter the discharge of the contained storm water only during subsequent events.

6.4 Treatment

EPA has no Best Available Technology (BAT) for removal of chloride, sulfate, or TDS from waste streams. While ion exchange (anion) and reverse osmosis treatment technologies exist, these methods currently are not cost effective on a large scale and are not typically recommended for treatment of storm waters prior to discharge. Also, the concentrated reject streams generated from such processes present their own unique set of potential environmental risks which can be much greater than the treated wastewater and/or storm waters from which the minerals were extracted. In addition this advanced treatment places large burdens on the cost effectiveness of the facility and goods produced.

The technical limitations and uncertain environmental effects of concentrated waste streams generated from ion exchange and reverse osmosis treatment make the treatment alternative infeasible when other alternatives are considered.

6.5 Source Reduction/Pollution Prevention

The dissolved minerals in the storm water outfalls are primarily contributed from collected storm water from the site. The facility has completed site modifications and prevention activities to reduce storm water contamination as discussed in Section 3.5. As provided in Section 3.5, the facility also maintains SWPPP and SPCC plans for routine control and management of storm water.

6.6 WQS Modifications

Discussions concerning the WQS Modification alternative are contained in the following sections.

6.6.1 Designated Uses

As discussed in Section 3.2, the following designated uses have been assigned to UT002, UT003, UT004, and UTLCB-2 in the AWQS.

Secondary Contact Recreation, Seasonal Gulf Coastal Fishery, Domestic Water Supply, Industrial Water Supply, and Agricultural Water Supply.

6.6.2 Existing Uses

The documented existing fishery use in the unnamed tributaries of Bayou de Loutre (UT002 & UT004), the unnamed tributary of the unnamed tributary of Little Comie Bayou (UT003), and the unnamed tributary of Little Comie Bayou (UTLCB) is a Seasonal Gulf Coastal Fishery.

The primary contact recreation use was not documented as an existing use. The uses of agricultural and industrial water supply were also not documented as existing and may be limited due to water volume, but are not precluded due to water quality.

6.6.3 Attainability of the Domestic Water Supply Use

As previously noted based on the documentation provided by ADH, the unnamed tributaries of Bayou de Loutre (UT002 & UT004), the unnamed tributary of the unnamed tributary of Little Cornie Bayou (UT003), and the unnamed tributary of Little Cornie Bayou (UTLCB-2) is not existing or planned public water supply source. In addition, the ASWCC has documented that the removal of the designated domestic water supply use from the unnamed tributaries of Bayou de Loutre (UT002 & UT004), the unnamed tributary of the unnamed tributary of Little Cornie Bayou (UT003), and the unnamed tributary of Little Cornie Bayou (UTLCB-2) does not conflict with the Arkansas Water Plan.

In addition to an evaluation of the existing and planned use of UT002, UT004, UT003, & UTLCB-2 as a domestic water supply, the USEPA Region 6 has requested that information concerning the attainability of the domestic water supply use on the basis of the regulatory criteria contained at 40 CFR 131.10(g) be included in use removal request documentation. Review of the project documentation considering the 40 CFR 131.10(g) criteria demonstrates that removing the designated, but not existing domestic water supply use is appropriate because the use is not attainable based on two of the 40 CFR 131.10(g) criteria. The first of these is criterion No. 2, which states:

"Natural, ephemeral, intermittent or low flow conditions or water levels prevent the attainment of the use, unless these conditions may be compensated for by the discharge of sufficient volume of effluent discharges without violating State water conservation requirements to enable uses to be met."

The respective watersheds at appropriate outfall locations are all less than 5 mi² in size, the streams is intermittent in nature and does not have consistent base flows required to supply the volume of water necessary for the development and operation of a domestic water supply. In addition, because of the intermittent nature of the discharge from GLCC Central facility's storm water outfalls the increased flow supplied sporadically through effluent discharge is not sufficient to compensate for the small watershed sizes. Neither the stream systems nor the discharges provide consistent flow volume required for feasible attainment of a domestic water supply use.

The second applicable 40 CFR 131.10 (g) criterion is No. 5, which states:

"Physical conditions related to the natural features of the water body, such as the lack of a proper substrate, cover, flow, depth, pools, riffles, and the like, unrelated to water quality, preclude attainment of aquatic life protection uses"

As can be seen in the documentation, the physical characteristics of the respective stream segments, which primarily consist of shallow pools and run areas, will not support intake and storage areas necessary for the development of a domestic water supply system. As such, the extensive physical modifications required to develop intake and storage areas would result in the removal of riparian habitat and modification of Gulf Coastal fisheries habitats. Such modifications would impact the existing aquatic life use.

Table 6.1. Summary of Proposed WQS Modifications for Bayou de Loutre watershed.

UT002 - unnamed tributary to Bayou de Loutre	UT004 - Unnamed tributary to Bayou de Loutre	Bayou de Loutre from mouth of Outfail 004 tributary downstream to the mouth of Loutre Cheke
Remove Designated Domestic	Remove Designated Domestic	Remove Designated Domestic
Water Supply Use	Water Supply Use	Water Supply Use
Amend ecoregion dissolved	Amend ecoregion dissolved	Amend stream ecoregion
minerals criteria:	minerals criteria:	dissolved minerals offerals.
Chloride from 14 mg/L to 65mg/L;	Chloride from 14 mg/L to 239 mg/L	Chloride from 250 mg/L to 278
Sulfate from 31 mg/L to 35 mg/L,	and TDS from 123 mg/L to 324	mg/L.
and TDS from 123 mg/L to 141mg/L	mg/L	

Table 6.2. Summary of proposed WQS Modifications for Little Cornie Bayou Watershed.

UT003 - unnamed tributary to an unnamed tributary of Little Comile Bayou	UTLCB-2 – unnamed tributary of Little Cornie Bayou to Little Comie Bayou	Little Cornie Bayou ⊷to the Arkansas / Louisiana state line
Remove Designated Domestic Water Supply Use	Remove Designated Domestic Water Supply Use	No Change
THE RESERVE OF THE PROPERTY OF	Amend ecoregion dissolved minerals criteria:	Amend stream dissolved minerals criteria:
Chloride from 14 mg/L to 538mg/L; Sulfate from 31 mg/L to 35 mg/L, and TDS from 123 mg/L to 519 mg/L	Chloride from 14 mg/L to 305mg/L and TDS from 123 to 325 mg/L	Chloride from 200 mg/L to 215mg/L and Sulfate from 20 mg/L to 25 mg/L

These proposed modifications are supported by the documentation which meets the requirements of AWQS Section 2.306 as clarified by the Administrative Guidance Document.

6.7 Summary of Alternative Assessment

Based on the information developed and presented above (with supporting details in Appendix), the selected alternative to achieve compliance with the dissolved minerals criteria is to prusue the 3rd party rule making to increase the instream criteria and modify the existing designated uses to reflect actual conditions and attainable uses, which are not precluded by the proposed rulemaking. The proposed rulemaking supports the removal of the domestic water supply use for those stream reaches as depicted in Figures 10 and 11. The proposed 3rd party rule making supports the removal of the domestic water supply use from those stream reaches indicated in figures 10 and 11.

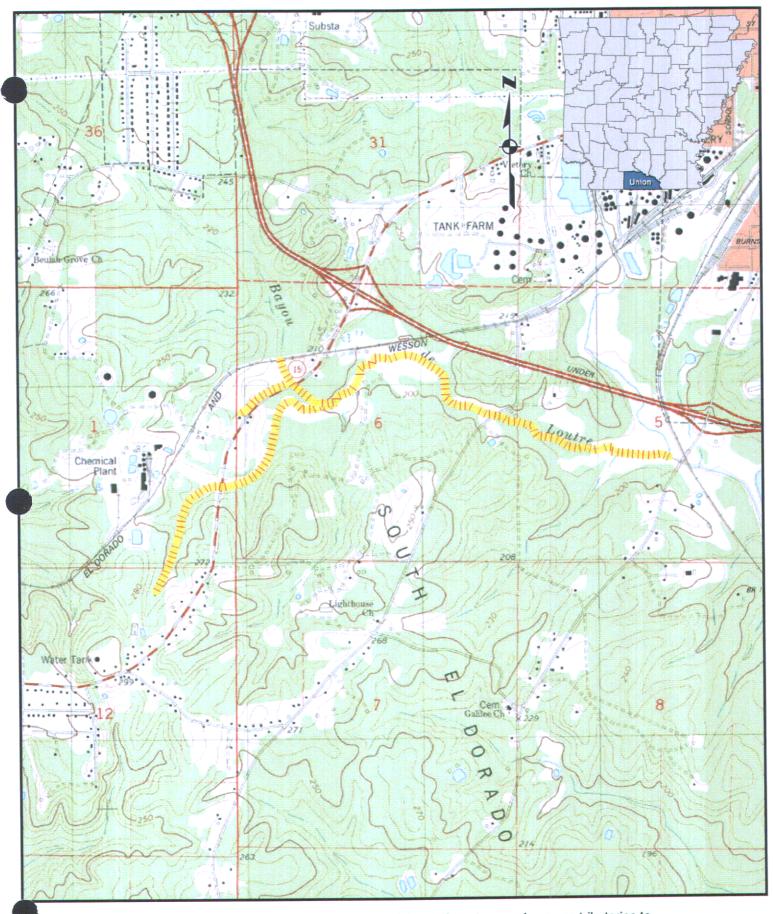


Figure 10. Stream segments proposed for removal of domestic water supply use on tributaries to Bayou De Loutre by Great Lakes Chemical Company 3rd party rule making.

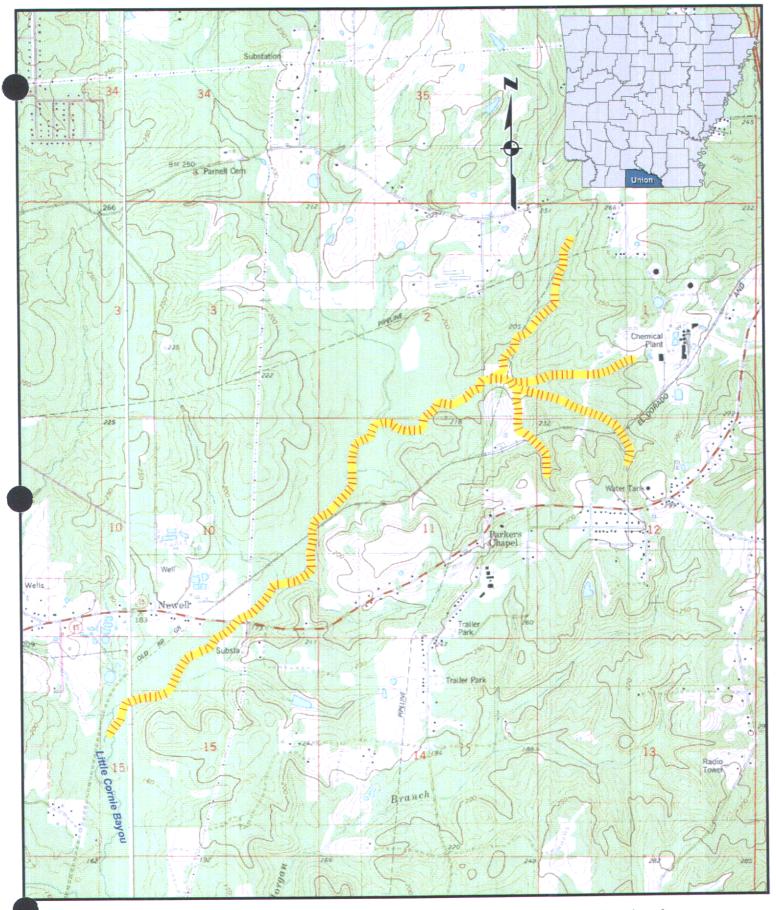


Figure 11. Stream segments proposed for removal of domestic water supply use from tributaries of Little Cornie Bayou through 3rd party rule making.

7.0 References

ADEQ, 1998. Regulation No. 2, As Amended: Regulation Establishing Water Quality Standards for Surface Waters of the State of Arkansas, January 1998 (Regulation No. 2).

ADEQ, 1995. State of Arkansas Continuing Planning Process, Update and Revisions, January 1995. ADEQ Water Division.

ADEQ, 1987. Rapid Bioassessment of Lotic Macroinvertebrate Communities: Biocriteria Development. 45 pp.

GBMc, 2001. Site Specific Water Quality Criterion Modification: Temperature. Report submitted to ADEQ in support of site specific water quality criteria. 2001.

GBMc, 2001. Great Lakes Outfall 003 TRE report. Report submitted to ADEQ in accordance with CAO LIS00134.

GBMc, 2002. Storm water pollution and prevention plan, Developed for GLCC Corporation. GLCC Corporation: Central Facility.

GBMc, 2004—Corrective Action Plan Report for TOC and pH CAO LIS02-081 for Outfall 003. Submitted to ADEQ February 2004.

GBMc, 2002. Spill Prevention Control and Countermeasure Plan. GLCC Central Facility.

Pflieger, W. L., 1975. The Fishes of Missouri. Missouri Department of Conservation. 343 pp.

Merritt R&J.C. Cummings 1989. Aquatic insects of North America. 862 pp.

Gilbert 1987. Methods for Environmental Pollution Monitoring.

EPA, 1991. Technical Support Document for Water Quality Based Toxics Control. EPA/505/2-90-001. March 1991.

Robison, H. W. and T. M. Buchanan, 1988. Fishes of Arkansas. University of Arkansas Press. 536 pp.

Appendix A Section 2.306 [Formerly 4(g) Field Study Plan]

Section 2.306 [formerly 4(g)] Field Study Plan

Prepared for:

Great Lakes Chemical Corporation El Dorado Central Plant 3940 Haynesville Highway El Dorado, AR 71730-9726

Prepared by:

GBM° & Associates 219 Brown Lane Bryant, AR 72022

DRAFT April 13, 2005

1.0	0 Intr	oduction
	1.1	oduction1
	1.2	Background
2.0	Qua	ality Assurance/Quality Control2
		- and notion did validation.
	2.4	QA/QC Checks Following Each Stream Visit6
2.6		
J.(vvat	ershed Characterization6
	3.2	Period of Study7
4.0		
	4.1	sical Habitat Characterization7
	4.2	Purpose
		T.Z.Z ITISTICATI STUCTURE
	4.3	YVVIIIV AND ANDIVSIS OF HADIST Accessment Data
		TO THUS DIGUICA AND STRAM COMPLEYOR
		4.3.2 Alternative Metrics for Low Gradient Streams
5.0	Wat	
0.0	5.1	er Quality20
	5.2	In-situ Measurements
		21
6.0	Bent	hic Macroinvertebrate Community21
	•	***************************************
	~	WOULD GO
	6.3	Sample Processing22
7 0		
7.0	risn 7 1	Community23
		111041104011111111111111111111111111111
	٠.٠	Sample Processing24
3.0		
		Study Schedule25
		rences25
		25

į

DRAFT

Figures

9 4. 5 1.2.	Great Lakes Chemical Company Central vicinity and outfall locations GLCC Outfall Watershed Boundaries, outfall locations,	
Figure 4.1. Figure 4.2.	and proposed study reaches. Stream channel depicting bankfull stage. Approximate position of measurements across transect. Depiction of percent embedded characteristics.	.10

Attachment

Attachment A Selected Standard Operating Procedures from GBM^c & Associates QAP

1.0 Introduction

1.1 Background

A third-party rule making is being developed to address the existing final permit limits for dissolved minerals in the Great Lakes Chemical Company (GLCC) Central Facility's NPDES permit (AR0001171). The current interim permit limits are monitor and report only. During the interim period, these parameters have been demonstrated to exceed the final permit limitations.

Currently, the dissolved solids discharged through Outfall 002 (chloride, sulfate and TDS), Outfall 003 (chloride and sulfate) and Outfall 004 (chloride and TDS) will not consistently meet the final permit limits. Outfalls 002 and 004 are storm water discharges that drain the northeastern and eastern portions of the Central facility via unnamed tributaries into Bayou de Loutre. Outfall 003 drains the western slopes of the facility and includes non-process waters as well as storm water (Figure 1.1).

The final permit limits are scheduled to become effective on January 2007, unless they are modified through the third-party rule making provision of the Arkansas Water Quality Standards (Regulation No. 2). The current final dissolved mineral permit limits were developed and are being implemented to protect the designated but non-existing and unattainable drinking water uses through the application of criteria of 250 mg/L, 250mg/L, and 500 mg/L for chloride, sulfate and TDS, respectively.

The ADEQ recognizes that the application of the dissolved mineral criteria using long term average flows (rather than Q7-10 flows) do not necessarily preclude other designated uses (fishable/swimmable) and have provided for the application of long-term flows to determine site specific instream criteria once the drinking water uses are removed. This third-party rule making is accomplished through the application of Section 2.306 [formerly 4(g)] in Regulation No. 2.

1.2 Study Objective

The objective of the study plan is to complete the field documentation required to support a third-party rulemaking in accordance with Section 2.346 to remove the designated domestic water supply use and modifying the final permit limits for dissolved minerals that will allow maintenance of existing uses.

GLCC has developed and implemented best management practices (BMPs) to address and control storm water discharges and limit exposure of storm water. The facility is located on Highway 15 approximately one mile south of El Dorado, Arkansas (Figure 1.1) GLCC is authorized to discharge storm water and other non-process waters under National Pollutant Discharge Elimination System (NPDES) permit no. AR0001171. Due to the nature of Outfalls 002 and 004 (exclusively storm water), there is not a constant discharge. Outfall 003 generally discharges on a continuous basis and has non-process waters contributing to the effluent.

April 13, 2005

This Section 2.306 field study plan is focused on the waterbodies that receive discharges from these three outfalls. These water bodies are unnamed wet weather tributaries of Bayou de Loutre (Outfalls 002 & 004) and an unnamed tributary to Little Cornie Bayou (Outfall 003), (Figure 1.2).

The following sections provide the details of the field studies.

2.0 Quality Assurance/Quality Control

A complete and thorough Quality Assurance (QA) program with defined data quality objectives (DQO) is an essential part of any biological field study. The degree to which the study data meets the DQO dictates the quality and representativeness of the overall project.

2.1 Quality Control

The DQOs of this study are to attain data that meets the following quality control (QC) criteria:

- 1) Precision is a gauge of the ability of a measurement to be repeated acquiring similar results. The *in-situ* and analytical data will be checked for precision by use of duplicate samples at a minimum rate of 10%. An acceptable level of data precision will be based on the relative percent difference (RPD) between duplicate samples not to exceed 20%. The habitat, fish and macroinvertebrate portion of the study cannot be easily duplicated. Standard collection procedures will be used at each collection station to achieve the greatest degrees of reproducibility possible.
- 2) Representativeness is a gauge of the degree to which a measurement is representative of the true condition. Sampling reaches have been carefully selected as to best represent the conditions in that segment of the stream.
- 3) Comparability is a gauge of the ability of the resulting data to compare to data from similar measurements performed in the same study and in other studies. An effort to use standardized techniques based on EPA accepted methodologies was made to maximize comparability. Also, only experienced and trained personnel are performing the various measurements.
- 4) Completeness is a measure of the degrees of validity of the data collected. Completeness is evaluated by ongoing review of project data by team members to assure that all the necessary data will be collected and is reasonable.

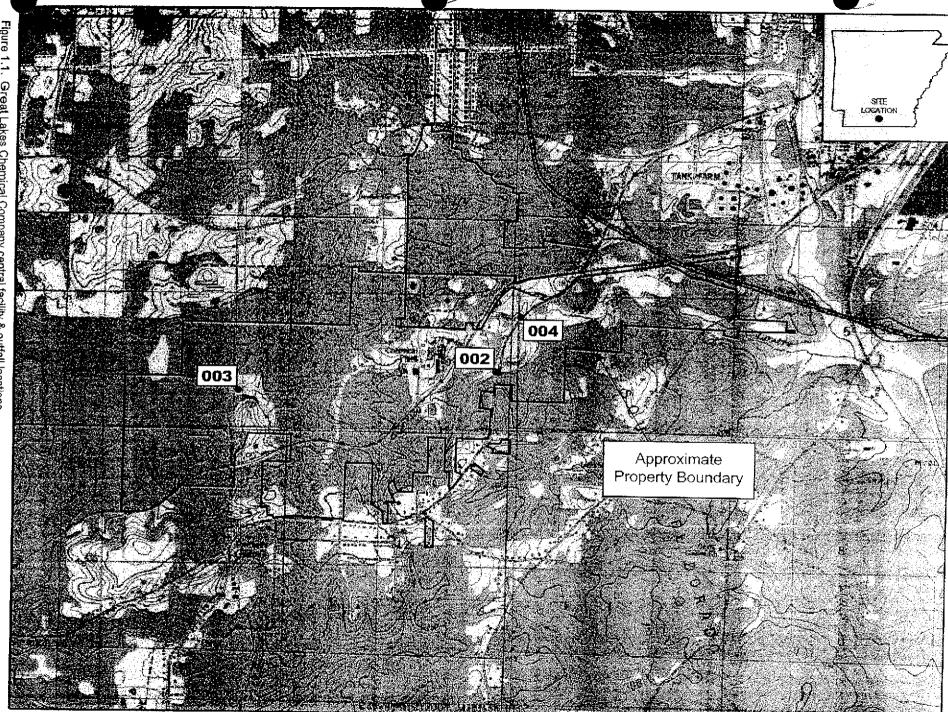


Figure 1.1. Great Lakes Chemical Company central facility & outfall locations.

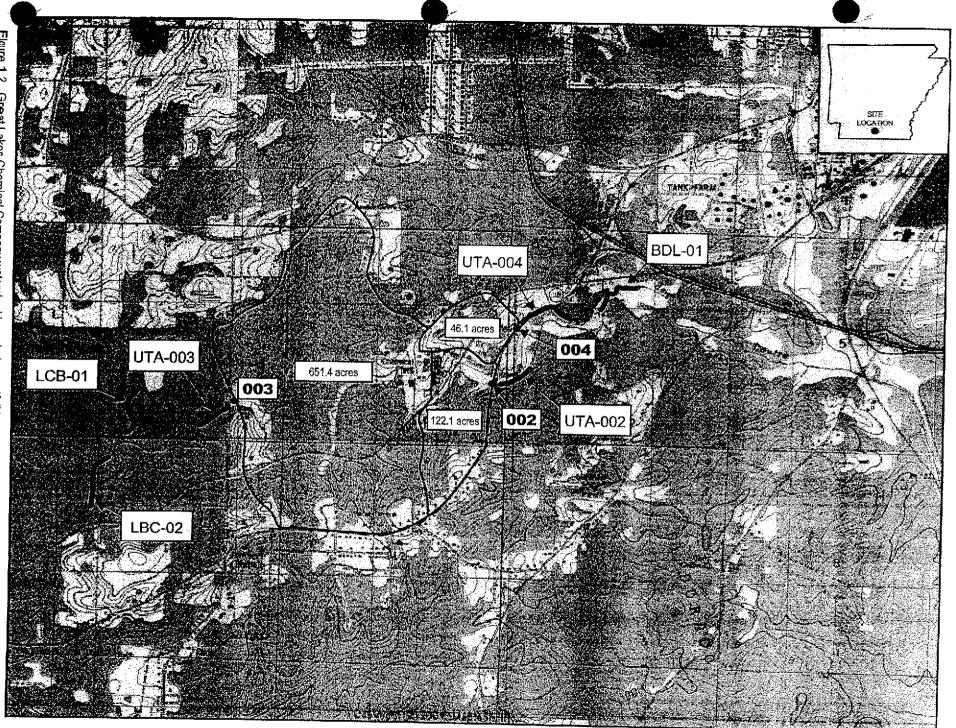


Figure 1.2. Great Lakes Chemical Company watershed boundaries, outfall locations & proposed study reaches.

- 5) Accuracy is a gauge of the degree of agreement between the measured value and the real value. Proper instrument calibrations and reference solution checks assure accuracy of *in-situ* data. All field equipment will be utilized and calibrated according to manufacturer's directions. Calibrations will be conducted daily prior to use. If any equipment fails to conform to known QA/QC manufacturers' specifications, the equipment will be replaced with duplicate equipment that will meet the specifications. Accuracy for biological collections/assessments is not quantifiable, since the true value is not known.
- 6) A chain of custody will be executed whenever samples are to be transferred between separate entities (e.g., water quality samples).

2.2 Field Method QC

The quality of data collected during this study will be further assured by the following QC measures:

- A Field Equipment Checklist will be maintained and followed for all field trips.
 Use of the checklist helps ensure that all field equipment and forms are
 prepared and available for use in the field.
- 2) All methodologies used during this study will be based on approved and widely accepted EPA methodologies. An effort is continuously made to keep abreast of the most current methodologies and to adjust our program so as to be more comparable, representative and accurate.
- 3) Field data sheets are designed for each type of measurement (i.e., *In-situ*, benthos, fish, habitat, etc.). Field sheets contain the necessary information along with space to note anomalies or variances from standard procedures.
- 4) Trained and experienced field biologists will conduct the study. All crucial team members hold college level degrees in biological sciences or related fields. Continuing education is encouraged through short courses, scientific journal review, conference attendance, and readings in current text and manuals to assure up-to-date knowledge of the field.
- 5) Fish and aquatic macroinvertebrates will be identified to the lowest taxonomic level practicable. Taxonomic references will be those widely accepted in the scientific community. Identification checks will be made randomly by the project manager or other senior level scientists to verify the accuracy and of the identifications. This check will occur at a rate of approximately 10%.
- 6) Where analyses are quantifiable EPA approved test methods will be utilized. In these quantifiable cases MDLs will be established and adhered to along with all pertinent QC procedures (i.e., blanks, controls, spikes, and spike duplicates).

2.3 Data Review and Validation

It is necessary to establish QC guidelines for reviewing, validating, and if necessary correcting data following its measurement and analysis in the field or laboratory. This is accomplished by following the steps listed below.

- 1) All field record sheets, taxonomic identifications, community metrics, and analytical results will be reviewed for precision, representativeness, comparability, completeness, and accuracy.
- 2) When data quality problems are discovered the project manager and/or the senior scientist will determine the level of the problem and the corrective action, if any, necessary to eliminate the problem.
- 3) Corrective actions will vary along with the type of QC problem and the degree of the problem. Corrective action for a duplicate sample returning an RPD greater than 20% might result in a repeat of the analysis or even a repeat of the sampling event. Corrective action for a field record sheet being incomplete would likely result in a team meeting to facilitate the missing parameters being filled in correctly.

2.4 QA/QC Checks Following Each Stream Visit

Following the conclusion of all activities at each sample reach, the sample team will review all completed data forms and sample labels for accuracy, completeness, and legibility, and will conduct a final inspection of samples collected. If information is missing from the forms or tabels, the team leader will make any corrections prior to proceeding to the next sample reach. The team leader will initial all data forms after review. Other team members will inspect and clean sampling equipment, inventory field supplies, prepare samples for shipment or storage as needed.

3.0 Watershed Characterization

3.1 Study Reaches

The watershed of the unnamed tributaries originates within the property boundaries of the GLCC facility in Union County (Figure 1.2). As part of this 3rd party rulemaking, stream reaches on both Bayou de Loutre and Little Cornie Bayou and tributaries thereof will be evaluated. As indicated by Figure 1.2, the individual reaches will include:

1.	UTA 002	Unnamed tributary to Bayou de Loutre into which Outfall 002 discharges downstream of Hwy 15 but upstream of Bayou de Loutre;
2.	UTA004	Unnamed tributary to Bayou de Loutre into which Outfall 004 discharges but upstream of Bayou de Loutre;
3.	BDL01	Bayou de Loutre downstream of UTA 002 & 004;
4.	UTA 003	Unnamed tributary to Little Cornie Bayou into which Outfall 003 discharges and downstream of Feed Mill Road;
5.	LCB 01	Little Cornie Bayou upstream of UTA 003; and
6.	LCB 02	Little Cornie Bayou downstream of the mouth of UTA 003.

Physical, chemical, and biological data will be collected at each of these reaches in accordance with the following schedule.

3.2 Period of Study

Due to the limited watershed size (less than 10 square miles) and the nature of the respective discharges (exclusively or primarily storm water), data collection for the 3rd party rule making will occur during the spring seasonal period of the year during steady state flow conditions. It is currently proposed that field activities be completed during the last week of April or the first week of May.

4.0 Physical Habitat Characterization

4.1 Purpose

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, instream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs

The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment-Semi-Quantitative (Attachment A) and include:

- 1) Channel Morphology
 - a) Reach Length Determination
 - b) Riffle-Pool Sequence
 - c) Depth and Width Regime
- 2) Instream Structure
 - a) Epifaunal substrate
 - b) Instream Habitat
 - c) Substrate Characterization
 - d) Embeddedness
 - f) Sediment Deposition
 - g) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
 - a) Canopy Cover
 - b) Bank Stability and slope
 - c) Vegetative Protection
 - d) Riparian Vegetative Zone Width
 - e) Land-use Stream Impacts

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses.

These procedures are intended for evaluating physical habitat in wadeable streams. The field procedures will be applied during spring seasonal conditions with steady base flows. This semi-quantitative habitat procedure will be applied in conjunction with the General Physical Habitat Characterization and the Qualitative Habitat Assessment to provide a detailed view of the streams habitat condition.

The habitat characterization protocol differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol is based on those of USEPA in their EMAP and RBP procedures (Barbour, 1999), USGS NAWQA program and Missouri

Department of Natural Resources ESP. The protocol is objective and repeatable and employs previously developed methods to produce repeatable measures of physical habitat in place of estimation techniques wherever possible.

Two people will complete the specified assessment, including stream flow. The actual time required to complete the habitat characterization at each monitoring location can vary considerably with channel characteristics.

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width, or at least 100 yards of instream distance. The semi-quantitative habitat sampling reach length will include to the extent possible the fish and macroinvertebrate collection reaches. Measurements will be taken in each of 10 subreaches, which are systematically placed, at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

4.2 Procedure

The habitat assessment will be conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat will be characterized from measurements and observations of stream attributes made within 10 sub-reaches. The field team assessing habitat should move along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described in the GBM^c QAP.

4.2.1 Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences (i.e., a measure of the amount of riffles, runs and pools that occur in a given reach).

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 4.1) The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

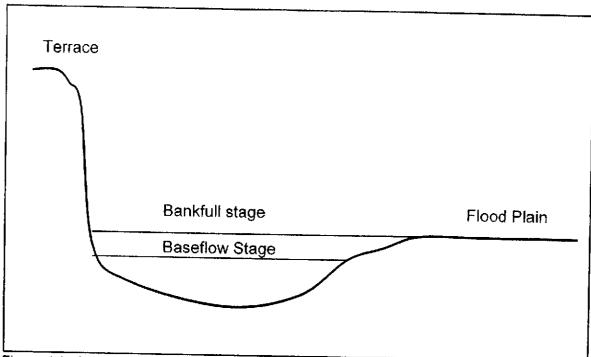


Figure 4.1. Stream channel depicting bankfull stage.

1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalway to bankfull stage on the bank) is identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in the study reach. Then bankfull depth and width is determined from five (5) stream transects and recorded on the record sheet. Transect locations should be selected to include each prominent morphology type represented in the stream. Bankfull depths are measured to the nearest 1/10 foot and bankfull widths are measured to the nearest foot using a wading rod and tape measure/range finder, respectively. An average of the 5 bankfull widths is then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length is then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach should begin at the head of a given stream morphology (i.e., riffle, run or pool).

2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach should be measured using a range finder or tape measure and recorded on the record sheet. The sequence of each morphological type should be depicted on the record sheet using the provided notations so as to create a

map to the location of each riffle, run or pool. The resulting measurements should provide a quantitative measure of the percent of the study reach representing each stream morphological type (i.e., 40% riffle, 30% run, 30% pool, etc.).

3) Depth and Width Regime

The average stream depth and width will be estimated in riffles (or runs in the absence of riffles) and pools in each sub-reach. Depths will be measured along a transect, similar to that depicted in Figure 4.2, in a representative section of each riffle and pool in the sub-reach. Depths are generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach is derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths will be measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach should be recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

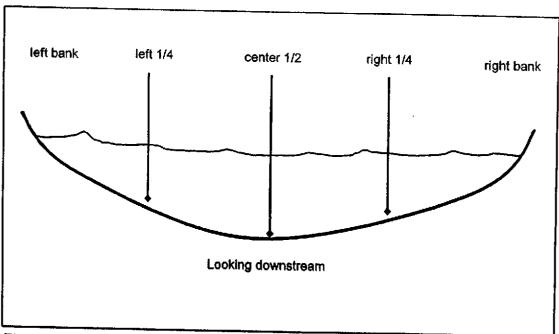


Figure 4.2. Approximate position of measurements across transect.

4.2.2 Instream Structure

Instream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of instream structure including some that is permanent and some that is mobile during high flow events.

4) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

5) Instream Habitat (Fish)

Instream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater)and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

6) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each sub-reach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

DRAFT

Classify the particle into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

Bedrock smooth or rough
Boulder >25 cm
Cobble 6-25 cm
Coarse Gravel 1.6 - 6 cm

Fine Gravel 0.2 – 1.6 cm Sand <0.2 cm

Silt/Mud/Clay fine, not gritty

Always make notations for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

7) Embeddedness

Embeddedness is the fraction of a particle's surface that is surrounded by (embedded in) sand or finer sediments on the stream bottom. By definition, the embeddedness of sand, silt, clay, and muck is 100 percent and the embeddedness of hardpan and bedrock is 0 percent.

For this attribute estimations are not made per sub-reach but for the entire stream reach as a whole. An estimation of the "percent embedded" is recorded for coarse riffle substrates in the study reach. This is accomplished by removing 12 pieces of cobble, gravel, or small boulders in at least two different riffles (three maximum) and recording the percent embedded for each. Percent embedded can be visually observed as the darkened portion of the coarse substrate that was buried in the streams fine bed material. If the darkened area covers half the coarse substrates height than the percent embedded is 50%, etc (Figure 4.3)

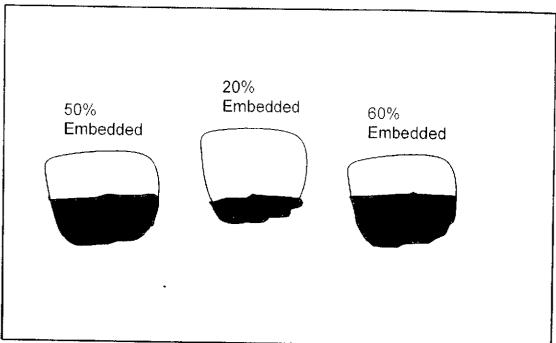


Figure 4.3. Depiction of percent embedded characteristics.

8) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

9) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a sub-reach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

4.2.4 Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these stream-side riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks form erosion, provides shading, inputs nutrients, provides materials as habitat (instream structure) and filters run-off entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses.

10) Canopy Cover

Canopy cover (percent stream shading) over the stream is determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates are made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point can be estimated visually or by use of a spherial densiometer.

11) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream The right and left banks are classified according to the following reaches. categories:

Score 9-10 = Stable, little evidence of erosion, < 5% bank eroding;

Moderately stable, some evidence of new erosion, 5-29% bank Score 6-8 =eroding;

Moderately unstable, obvious new erosion, 30-59% bank Score 3-5 =

eroding:

Score 1-2 = Unstable, most of bank actively eroding, 60-100% bank eroding;

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, is recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

12) Vegetative Protection

Bank vegetative protection is measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) is assessed separately and the value recorded on the record sheet. Banks are assessed from the edge of the water to the top of the first terrace or normal top of bank.

13) Riparian Vegetative Zone Width

Riparian zone with encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer

pollutants will enter the stream from run-off, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

14) Land-Use Stream Impacts

Significant Alteration of the land-uses in the immediate riparian area can have detrimental affects on the stream habitat and biota. Urban and agricultural activities are often considered the more prominent of those land-uses that may impact a stream. These impacts are assessed by indicting a specific land-use impact associated with a sub-reach (on either bank) on the record sheet and assigning a degree of impact score to the land-use. The following land-use categories and impact scoring system are provided:

Land-uses:

C = Cattle

R = Row Crops

U = Urban encroachment

I = Industrial Encroachment

O = Other (noted on field form)

Scoring:

0 = no land-use impacts

1 = minor impacts

2 = moderate impacts

3 = major impacts

4.3 Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment can be utilized in two different ways. First, data collected for each attribute (assessment category) can be used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, %riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean %canopy cover, etc. Second, the data collected during the assessment can be used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies should be incorporated into all intensive aquatic blota field studies where habitat assessment accuracy and repeatability is critical. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

4.3.1 High Gradient (riffle-pool stream complexes)

1) Epifaunal Substrate / Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (Instream habitat) are combined into an overall average percent coverage and used to score this metric.

The following table presents the scoring criteria:

THE STATE OF THE S	riggigo gallinis (sping)	Subjetinales		
% Coverage	>70%	40%-70%	20%-39%	<20%
Score	20 -16	15 -11	10 - 6	5 - 1

2) Embeddedness

Reach average percent embedded (from category 7) is used directly to score this metric.

% Embedded	<25%	25%-50%	49%-75%	>75%
Score	20 -16	15 -11	10-6	5 - 1

3) Velocity / Depth Regime

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) along with flow and velocity data collected in the reach is used to score this metric. Use the following table to determine which regimes are present:

e se stante e se	Stoyrelogy	Slow shallow [Fish (lagg)	FaskShallow.
Velocity	<1 fps	<1 fps	>1 fps	>1 fps
Depth Regime	>1.6 feet	<1.6 feet	>1.6 feet	<1.6 feet
Typical Morphology	Deep pool	Shallow pool	run	riffle

If a reach has deep and shallow pools, and distinctive run and riffle morphology, then you have at least three regimes and possible all four regimes. Score each rank lower if shallow regimes are the missing regimes. Scoring is applied as per the following table.

April 13, 2005

Mark Medini (All Santa		irespireonilmates	grafik yla rigili izili soggi	e a menor com
No. Regimes	Four regimes	Three regimes	Two regimes	On e regime
	present	present	present	present
Score	20 -16	15 -11	10 - 6	5 - 1

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

Building and	ara Didlineila.	ASHOSO addition a	is a solution of	Maria Daniela de de la constante de la constan
% Bottom Affected	<5%	5%-30%	31%-50%	>50%
Score	20 -16	15 -11	10 - 6	5 - 1

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Frequency of Riffles

Using semi-quantitative category 3 (Depth and Width Regime) the average width of the stream is determined as the average of riffle and pool widths combined. Using category 2 (Riffle-Pool Sequence) the distance between riffles can be calculated using the sequencing notations and the morphological lengths. The table presented below should be used to develop scores for this metric.

Example: a reach with an average width of 18 feet, with 4 riffles separated by a 50 foot pool, a 20 foot run, and a 100 foot pool would result in an average distance between riffles of 57 feet. Therefore, the ratio = 57/18 = 3.2 and would rank as Optimal (score @ 18).

Pents .	- Journal	Sub-Ophical	Warkstrait	Don
Ratio (distance between riffles : stream width)	<7:1	7 – 15 : 1	16 -25 : 1	>25 : 1
Score	20 -16	15 -11	10 - 6	5 - 1

In continuous riffle streams the consistent placement of boulders and logs provides scores in the highest range of the optimal category.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semiquantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e., an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semiquantitative record sheet) is used directly to score this metric for the right and left bank.

BreakenKobres	ar Optimal se	MSubiOptimalab	Haywarana kara	A SECURITY OF THE SECURITY OF
% Protected	>90%	70% - 90%	50% - 69%	<50%
Score	20 -16	15 -11	10 - 6	5-1

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e., an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

4.3.2 Alternative Metrics for Low Gradient Streams (pool dominated complexes)

2) Pool Substrate Characterization (replacement for Embeddedness)

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

	enigação (e)	tilfinally n ar M enge	∘Sübt@phimaJ₩	www.Marcinal/#av	San Popradus
Substrate	Cobble	or Gravel	Sand/Silt/Clay	Sand/Silt/Clay	Bedrock or
					Clay Only
Macrophytes	Yes	No	Yes	No	No
Present					
Score	20 - 18	17 - 16	15 - 11	10 - 6	5 - 1

3) Pool Variability (replacement for Velocity/Depth Regime)

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

Politica Chargeteriatio	Tarifordes)	Lacepasticition!	Hin all Decip	នៃពីសៀនវង្គរៀតវុប
Size	Length ≥ Width	Length ≥ Width	Length < Width	Length < Width
Depth	≥3.2 feet	< 3.2 feet	≥3.2 feet	< 3.2 feet

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

5.0 Water Quality

During the field study, water quality will be documented through in-situ measurements and sampling for laboratory analyses at each of the study reaches as identified in Section 3.1. The following sections present the parameters and documentation methods.

5.1 In-situ Measurements

The following parameters will be monitored at each of the study reaches:

- 1) temperature, C°
- 2) dissolved oxygen, mg/L
- 3) conductivity, μS
- 4) pH, su and
- 5) flow, cfs

In accordance with Section 2.0 calibration will be performed and documented according to the manufacturer's recommendations. Details of the methods and procedures utilized are provided in Attachment A.

The *in-situ* measurements are recorded on the second page of the Field Data Form. Other information recorded on the Field Data Forms will include:

- 1) general station location information,
- 2) the field crew completing the assessment,
- 3) current hydrologic conditions,
- 4) antecedent moisture conditions, and
- 5) identification of the meters utilized.

5.2 Water Chemistry

Grab samples for laboratory analysis of chloride, sulfate and TDS will be collected at each sample reach at the same time as *in-situ* measurements are obtained. Analytical results from the laboratory will be retained for use in project documentation. The instream mineral concentrations will also be utilized in the development of the site specific water quality criteria for each discharge.

6.0 Benthic Macroinvertebrate Community

6.1 Introduction

The benthic macroinvertebrate protocol utilized in these field studies is intended to evaluate the biological integrity of wadeable streams for the purpose of detecting stresses on community structure, assessing the relative severity of these stresses, and determining the maintenance of the designated uses. The approach is based on the "Rapid Bioassessment Protocol III – Multi Habitat approach using an aquatic dip net as published by the U.S. Environmental Protection Agency (Barbour, M.I. et al., 1999) as adapted for use in pool dominated streams of the Gulf Coastal Plain Ecoregion. The details of the benthic characterization are provided in Section 9.0 of Attachment A.

The one-man protocol is the preferred macroinvertebrate collecting method for pool dominated streams (a second person can be used for water safety and to keep time and record information on the field forms). The U.S. Geological Survey utilizes the one-man approach for their National Water-Quality Assessment Program (NAWQA; Cuffney et al., 1993).

During this Project, the benthic community of the following reaches will be evaluated:

DRAFT

1.	UTA 002	Unnamed tributary to Bayou de Loutre into which Outfall 002 discharges downstream of Hwy 15 but upstream of Bayou de Loutre;
2.	UTA004	Unnamed tributary to Bayou de Loutre into which Outfall 004 discharges but upstream of Bayou de Loutre;
3.	BDL01	Bayou de Loutre downstream of confluence of UTA 002 & 004;
4.	UTA 003	Unnamed tributary to Little Cornie Bayou into which Outfall 003
	LCB 01 LCB 02	discharges and downstream of Feed Mill Road; Little Cornie Bayou upstream of UTA 003; and Little Cornie Bayou downstream of the mouth of UTA 003.

6.2 Methods

Qualitative samples of the benthic macroinvertebrate assemblage will be collected over a predetermined period of time using an aquatic dip net and sampling all available microhabitats present within the stream reach.

Each station will be sampled for three minutes according to the RBA protocol. Each sample will be placed in a bucket and condensed with a series of washings through a series of sieves, the smallest of which will be a U.S. Standard #30 sieve.

6.3 Sample Processing

Random sub-samples of the concentrated sample will be then placed on a white sorting tray from which the macroinvertebrates will be removed. A 100 organism sub-sample will be randomly picked (according to the RBA procedures) from the tray and field identified to the lowest possible taxon.

The 100 organism sub-samples will be preserved in 70% ethanol or Kayles solution for lab verification of field identifications and as a voucher to be used if more detailed analysis becomes necessary. Laboratory verification will be accomplished using general keys including but not limited to Merritt & Cummings (1996), Pennak, (1989), and Unsinger (1963). In addition more taxa specific keys such as Mayflies of North and Central America (Edmunds et. al., 1976), Dragonflies of North America, (Needham & Westfall, 1975) or keys developed specifically for Arkansas may be utilized for the laboratory verification of the field identifications.

After the 100 organism random sample is collected, labeled and preserved, the larger debris items (e.g., leaves, sticks, rocks, etc.) in the collected sample will be examined for clinging benthic macroinvertebrates. Any organisms will be removed prior to the larger debris being discarded. The remainder of the original sample not utilized in the selection of the 100-organism sub-sample will be concentrated and retained as a voucher for the sample picking techniques used. The voucher samples will be preserved with 70% ethanol or Kayles solution. These voucher samples will be held at GBM° for a period of 24 months following the conclusion of the third party rulemaking at which time the samples may be submitted to an academic zoological collection. The macroinvertebrate assemblages from each station will be analyzed according to several benthic community biometrics. These will include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera,

Plecoptera, and Trichoptera), and species diversity as determined by the Shannon-Wiener Diversity Index.

The analysis will also include the seven biometrics used by the State of Arkansas (ADPCE, 1988) in their RBA scoring system. This scoring system places a value (1 to 4, 1 = excessive differences, 4 = no differences) on each of the seven biometrics to achieve a final mean score. The biometric scoring will indicate the impacts to a benthic community when compared to the benthic community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the two-page field data sheets — Benthic Macroinvertebrates. The first page of the two-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1) time sampled,
- 2) relative abundance of aquatic tropic level communities,
- 3) percent of major habitats sampled,
- 4) percent of specific microhabitats sampled, and
- 5) relative abundance of the ordinal groups observed during sample collection.

The second page provides for the listing of the taxa comprising the 100 organism sub-sample and the field identifications and the numbers of each. Also included on page 2 are the general reach identifiers and preliminary summary sections to be used in the application of selected biometric scoring criteria.

7.0 Fish Community

7.1 Introduction

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of the ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community assemblage. Backpack electrofishing equipment will be used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect capture of benthic species. All team personnel will be involved in collecting fish.

Although most of the receiving streams into which the discharges occur are a fraction of the 10 square mile threshold for perennial fish community maintenance, the fish community of the following reaches will be evaluated during this project:

- UTA 002 Unnamed tributary to Bayou de Loutre into which Outfall 002 discharges downstream of Hwy 15 but upstream of Bayou de Loutre;
- 2. UTA004 Unnamed tributary to Bayou de Loutre into which Outfall 004 discharges but upstream of Bayou de Loutre;
- 3. BDL01 Bayou de Loutre downstream of confluence of UTA 002 & 004;
- 4. UTA 003 Unnamed tributary to Little Cornie Bayou into which Outfall 003 discharges and downstream of Feed Mill Road;
- 5. LCB 01 Little Cornie Bayou upstream of UTA 003; and
- 6. LCB 02 Little Cornie Bayou downstream of the mouth of UTA 003.

7.2 Methods

Major factors that influence collecting include flows, water depth, instream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections will be a Smith-Root backpack electroshocker. However, seines and block nets may be utilized as necessary to adequately characterize the reaches indicated.

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the benthic and habitat data as described in Sections 4 and 5.

Shocked fish will be captured with hand held dip nets and held in buckets while the sampling continues throughout the reach. The entire channel within the sampling reach will be sampled. Actual shocking time will continue for not less than 30 minutes unless the wetted habitat area of any reach is too small for 30 minutes of shocking time. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT). In addition to PDT, the total collection time will be recorded. There will not be a maximum time limit for the collection period, however the collections may be terminated when the principal investigator determines that additional collection time will not likely result in additional fish species. Sampling information will be recorded on the Field Data Sheets - Fish. General comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on the form.

An effort to search for and collect fish will be completed at all reaches, even if the stream is extremely small, and it appears that sampling may not collect any specimens.

7.3 Sample Processing

Following collection, each sample of fish from a reach will be preserved in formalin for later processing. Sample processing will involve tallying and identifying fish, examining individual specimens for external anomalies, preparing voucher specimens for taxonomic confirmation and archival at a museum.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the two-page Field Data Sheets – Fish. The first page of the two-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1) time sampled,
- 2) Pedal Down Time (PDT),
- 3) relative abundance of aquatic tropic level communities.
- 4) percent of major habitats sampled,
- 5) percent of specific microhabitats sampled, and
- 6) relative abundance and scoring of substrate.

Ultimately, the fish identification will be verified in the lab using keys in the Fishes of Arkansas (Robison and Buchanan, 1988) and the Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach will be compared according to several biometrics including: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant ordinal groups; percent of tolerant species; trophic structure; percent of hybrids; percent of diseased fish; and key indicator species as listed in Regulation No. 2 of the ADEQ.

In addition, the fish assemblage will be evaluated utilizing the fish community biocriteria and a comparison to typical Gulf Coastal Ecoregion least disturbed streams. The fish community biocriteria scoring was developed by the ADEQ and uses eight metrics to determine use support status.

8.0 Field Study Schedule

The spring seasonal biotic characterizations will be completed during April/ May 2005. This period corresponds to the seasonal fishery period as stipulated in ADEQ seasonal fishery designation. Due to the storm water nature of the discharge and the small watershed size, a perennial fishery use does not apply to the unnamed tributaries into which the Outfalls 002, 003 and 004 discharge.

9.0 References

- Barbour, M.T. 1999. Rapid Bioassessment Protocols for use in wadeable streams and rivers. 2nd Edition USEPA 841-B-99-002.
- Cuffney, T.F., M.E. Gurtz, and M.R. Meador. 1993. Methods for Collecting Benthic Invertebrate Samples as Part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-406, Raleigh, North Carolina.
- Edmunds, G.F., Jr., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. Univ. Minnesota Press, Minneapolis, MN. 330 pp.

DRAFT

- Kaufmann, P.R. (ed.). 1993. Physical Habitat. pp. 59-69 <u>IN</u>: R.M. Hughes (ed.). Stream Indicator and Design Workshop.
- Merritt, R.W. and K.W. Cummins. 1984. An introduction to the aquatic insects of North America (Second edition). Kendall/Hunt Publishing Company, Dubuque, IA 52001.
- Needham, J.G. and M.J. Westfall, Jr. 1954. Dragonflies of North America. Univ. Calif. Press, Ithaca, NY. pp. 41-57.
- Pennak, R.W. 1989. Freshwater invertebrates of the United States Protozoa to Mollusca (Third edition). John Wiley and Sons, Inc., New York, NY, 628 pp.
- Pflieger, W.L, 1975. Fishes of Missouri. Missouri Department of Conservation. 343pp.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and rivers: Benthic Macroinvertebrates and Fish. EPA/440/4-89/001. U.S. Environmental Protection Agency, Assessment and Watershed Protection Division, Washington, D.C.
- Robison, H.W. and T.M. Buchanan, 988. Fishes of Arkansas. University of Arkansas Press. 536 pp.
- Unsinger, R.L. 1963. Aquatic insects of California with keys to North American genera and California species. University of California Press, Berkley, CA.
- U.S. Environmental Protection Agency (EPA). 1983. Technical Support Manual: Waterbody Surveys and Assessments for Conducting Use Attainability Analyses.

1.0 pH Meter Calibration SOP

Purpose

This SOP describes the methods for calibration and use of the portable Orion® 200 series pH meters. Field forms used for meter calibration and measurement recording are attached to this SOP.

Procedure

Calibration

- 1. Be sure that the electrode (probe) is properly attached and that a good battery is installed.
- 2. Turn the meter on and check the read-out for any warning messages ("Low Bat.", etc.) If problems occur refer to the owners manual for help.
- 3. Record the proper information (date, time, etc.) on the Calibration Field Form (attached) or in a field logbook.
- 4. Remove the probe protection cap and place the probe in pH buffer solution 7.00 (yellow in color) submerging the end to at least 1 inch. Allow the meter to adjust to the buffers pH for approximately 1 minute.
- 5. Press the "Cal" button on the meter to begin the calibration process. The display should read "calibration" and "P1" along with the pH reading.
- 6. When the meter has accepted the buffer it will beep and "ready" will be displayed. Press "Yes" to accept the value. Record this number on the pH Calibration Record sheet. The display should now read "P2" at the screen's bottom.
- 7. Remove the probe from the 7.00 buffer and rinse with distilled water to remove any excess buffer solution.
- 8. Place the probe in the second buffer solution, 4.01 (pink) or 10.01 (blue), whichever best brackets the expected pH range to be measured, and stir it gently.
- 9. When the meter has accepted the value it will beep and the "ready" sign will be displayed as in step 6 above. Press "Yes" to accept this value. Record this number on the pH Calibration Record sheet.

- 10. The display will immediately show the slope, a number that should be between 92% and 102%. Record this number on the pH Calibration Record sheet. If the slope is larger or smaller than this range the meter should be recalibrated.
- 11. A calibration check should be done once the meter is calibrated. This is done simply by placing the probe in the pH 7.00 buffer solution and taking a reading. Record this reading on the pH Calibration Record form. If the reading is between 6.90 and 7.10 then the original calibration remains valid. If the measurement falls outside this range then the meter should be recalibrated.
- 12. Gently shake or rinse off excess liquid from the probe. The meter is now ready for use.
- 13. The pH meter should be calibrated once per day on days that it is used. The pH meter should have its calibration checked once for each sampling trip or once every 5 samples whichever is greater. This is done simply by placing the probe in the pH 7.00 buffer solution and taking a reading. Record this reading on the pH Calibration Record form. If the reading is between 6.90 and 7.10 then the original calibration remains valid. If the measurement falls outside this range then the meter should be recalibrated. Furthermore, if the battery or probe is ever disconnected from the meter during use, a new calibration would be required.

pH Measurements

- 1. Place the probe in the liquid to be analyzed and stir it gently. The probe should be submerged at least 1 inch into the liquid.
- 2. Allow the meter to stabilize on a reading (may take up to 4 minutes). The meter will respond with "ready" when it has properly stabilized. Record the reading. If the meter will not indicate "ready" after several minutes and the pH value displayed is not fluctuating greatly then a value may be recorded without the meter indicating "ready."
- 3. Be sure to turn off the meter when the final pH measurement has been taken and recorded.

Meter Maintenance/Storage

- 1. Store the meter in a safe dry place.
- 2. Keep the probe cover on the probe when not in use and between measurements.

- 3. A small piece of paper towel soaked in pH buffer 7.00 should be place in the bottom of the probe cover to keep the probe surface wetted with the buffer. The probe should **never** be allowed to dry out.
- Use only "Low Maintenance Triode" ATC probes with the 200 series pH meters (model # 9107BN or equivalent.)

Quality Assurance/Quality Control

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

2.0 Dissolved Oxygen (D.O.) Meter Calibration SOP

Purpose

This SOP describes the methods for calibration and use of the portable YSI Model 58 and Model 85 D.O. meters. Field forms used for meter calibration and measurement recording are attached to this SOP.

Procedure

Calibration

Model 58

- Be sure that the oxygen probe is properly attached to the meter and that the end
 of the probe is affixed in storage bottle containing a piece of wet sponge or towel
 to keep the probe moist, and to provide a water-saturated air environment.
- Turn the meter on and check the read-out for the "LOBAT" warning, and for the normally observed display readings. If problems occur refer to the owners manual for help.
- 3. Record the proper information (date, time, etc.) on the Dissolved Oxygen Calibration Record sheet or in a field logbook.
- 4. Set the D.O. meter to "ZERO" and use the "O2 ZERO" knob to adjust the display to 0.0. If the meter will not adjust to zero refer to the owners manual for guidance.
- 5. Perform a Calibration according to one of the following procedures:

Winkler Titration (verification calibration)

- a) Fill a container with at least 500 mL distilled water (or tap water if distilled not available) and allow it to acclimate. It can be aerated overnight to achieve 100% oxygen saturation if desired.
- b) Fill each of two BOD bottles with the water from the container by gently submerging them into the container.
- c) Add one each of the HACH manganous sulfate and alkaline iodide-azide powder pillows to each bottle. Cap the bottles and invert them 15-20 times to mix the solution thoroughly.
- d) Allow the bottles to settle until a precipitate appears in the bottom half of the bottle. This will usually take 3-5 minutes.
- e) Add one HACH sulfamic acid powder pillow to each BOD bottle. Invert the bottles until all the precipitate has been dissolved.

GBM^c v2.1 May 2002 Page 1 of 4

- f) Using a graduated cylinder measure and place 200 mL of the solution into a flask.
- g) Add 1 mL of HACH starch indicator to the flask. The solution should turn black.
- h) Using a burette filled with sodium thiosulfate (at room temperature) titrate the solution in the flask drop-wise until the solution turns clear.
- i) Record the starting and ending volumes from the burette.
- j) Repeat this titration (steps f-l) for a second flask filled with fresh solution.
- k) Subtract ending volumes from starting volumes to arrive at the volume used for each titration. The volume used is equivalent to the dissolved oxygen content of the water in mg/L.
- I) If the D.O. values from the two titrations differ by more than 5%RPD then the titrations should be repeated.
- m) Remove the D.O probe from the storage bottle and place it in the container holding the water. It must be submerged at least 1 inch below the waters surface. Set the meter to the "0.1 mg/l" measurement mode.. Swirl the probe gently and slowly in the water.
- n) Calibrate the meter to the average of the two dissolved oxygen measurements by turning the "O2 CALIB" knob until the display reads the corresponding D.O. concentration. Record the final calibrated value.

Air Calibration (Standard Calibration)

- a) Set the meter to the temperature measurement mode ("TEMP...").
- b) Record the temperature of the probe in the storage bottle on the record form or in a field logbook.
- c) Refer to the attached table presenting Solubility of Oxygen in Water values (also on back of meter) and find the solubility of oxygen at the corresponding temperature.
- d) Record the appropriate barometric pressure or altitude (use pressure when available).
- e) Refer to the attached table presenting Calibration Values at Various Pressures and Altitudes (also on back of meter) and record the "CALIB VALUE" in % saturation at the corresponding pressure or altitude.
- f) Using the solubility of oxygen value and the % saturation value as a decimal calculate the calibration value by multiplication (i.e. at an altitude Of 1413 ft. and a temperature of 20°C the calibration value would be 8.64 mg/L or 8.6 mg/L).
- g) Set the meter to the D.O. measurement mode ("0.1 mg/l") and adjust the display using the "O2 CALIB" knob to read the calibration value as calculated.
- h) Record the final calibrated value on the record form or in a field logbook.

Model 85

- 1. Turn on the meter and make sure the meter is in the D.O. mode (will display mg/L).
- 2. Wet the sponge in the calibration/storage chamber and insert the probe into the chamber.
- 3. Allow the D.O. and Temperature readings to stabilize (up to 15 minutes).
- 4. Press the up arrow and down arrow buttons simultaneously.
- 5. When prompted to do so, enter the local altitude in hundreds of feet by scrolling up or down with the up or down arrow buttons.
- 6. Press enter when the correct altitude is displayed. Base altitude on barometric pressure when possible, as it will have an affect on the calibration. See "Air Calibration" above for details.
- When the percent reading is stable, press enter. Save will be displayed on the screen for a few seconds, then the meter will return to the normal operation mode.

NOTE: Each time either of the meters is turned off they should be recalibrated.

D.O. Measurements

Model 58 and 85

- Set the meter to the D.O. measurement mode. Place the probe in the liquid to be analyzed and stir it gently and slowly to keep water passing over the probe membrane. The probe should be submerged at least 1 inch into the liquid.
- 2. Allow the meter to stabilize on a reading (should take less than one minute). Once the meter has stabilized record the reading.
- 3. If the meter will not stabilize check the probe for air bubbles. If bubbles are found shake the probe firmly but not violently a couple of times and re-measure. If problems still occur probe maintenance is necessary.
- 4. The meter should be placed in the "ZERO" mode between measurements to conserve battery life. Be sure to turn off the meter when the final D.O. measurement has been taken and recorded.

Meter Maintenance/Storage

1. Store the meter in a safe dry place.

- 2. Keep the probe cover on the probe when not in use and between measurements.
- 3. A small piece of sponge or paper towel soaked in clean water should be place in the bottom of the probe cover to keep the probe surface moist. The probe should never be allowed to dry out.
- 4. The probe membrane should be replaced at a minimum every 6 months or whenever the meter fails to perform to standard.
- 5. Use only YSI replacement parts and probes with the meter.

Quality Assurance/Quality Control

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

3.0 Conductivity Meter Calibration and Measurement SOP

Purpose

This SOP describes the methods for calibration and use of portable YSI conductivity meters. Field forms used for meter calibration and measurement recording are attached to this SOP.

Procedure

Calibration

Calibration of YSI conductivity meters is performed by the manufacturer and is rarely needed. However, the accuracy of the meter should be monitored bi-weekly and before each use. The bi-weekly monitoring of accuracy should be recorded in the calibration log book, along with date/time performed and name of person performing task.

- 1. Turn the instrument on and allow it to complete its self test procedure.
- 2. Bi-weekly the instrument should be checked for accuracy using a standard of 80 uS/cm. The meter should be set to measure specific conductance. The steps listed below under "Conductivity Measurements" should be followed for checking conductivity accuracy. This standard check should be recorded in the calibration log book.
- 3. YSI conductivity meters are calibrated a minimum of once a year or when there is reason to believe the instrument is reading incorrectly (outside the range of 80 ± 10 uS/cm during the accuracy check).
- 4. To calibrate, select a calibration solution, which is most similar to the sample you will be measuring. The following should serve as a guideline:

for sea water choose a 50 mS/cm conductivity standard, for fresh water choose a 1 mS/cm conductivity standard, and for brackish water choose a 10 mS/cm conductivity standard.

- 5. Place at least 3 inches of solution in a clean glass beaker.
- 6. Insert the probe into the beaker deep enough to completely cover the oval shaped hole on the side of the probe. Do not rest the probe on the bottom of the container -- suspend it above the bottom at least 1/4 inch.

- 7. Allow at least 60 seconds for the temperature reading to become stable.
- 8. Move the probe vigorously from side to side to dislodge any air bubbles from the electrodes.
- 9. Press and release the up and down keys (\land, \lor) at the same time. The CAL symbol will appear at the bottom left of the display to indicate that the instrument is now in Calibration Mode.
- 10. Use the up or down arrow key to adjust the reading on the display until it matches the value of the calibration solution you are using.
- 11. Once the display reads the exact value of the calibration solution being used press the ENTER key once. The word "SAVE" will flash across the display for a second indicating that the calibration has been accepted.

Conductivity Measurements

- Press the "ON/OFF" button to turn the meter on. The meter will go through a selftest procedure, which will last for several seconds. The cell constant will be displayed when the self-test is finished. Consult the Operations Manual if an error is displayed during the self-test.
- Select the mode of measurement on the meter by pressing and releasing the "MODE" button on the meter. GBM^C generally measures specific conductance in its field studies. The following are the modes of measurement capable of the YSI 30 meter:

Conductivity - measurement of the conductive material in the liquid sample without regard to temperature. Displayed when the large numbers on the display will be followed by the respective units, and the temperature units will not be flashing.

Specific Conductance - temperature compensated conductivity which automatically adjusts the reading to a calculated value which would have been read if the sample had been at 25°C. Displayed when the large numbers on the display will be followed by the respective units, and the temperature units will be flashing.

Salinity - A calculation done by the instrument electronics, based upon the conductivity and temperature readings. Displayed when large numbers on the display will be followed by ppt.

3. Insert the probe into the solution being measured for conductivity, making sure that the probe is inserted deep enough to cover the hole located on its side. If possible,

refrain from touching any solid located in the solution, and hold the probe at least 1/4 inch from the bottom and sides of any container used to hold the sample. The probe should also be vigorously shaken in the solution to dislodge any air bubbles, which may be adhered.

NOTE: The YSI meters are factory calibrated, and retain the last calibration conducted. This means that once batteries are installed, or when the meter is turned on, you are ready to begin taking measurements.

Meter Maintenance/Storage

Always rinse the conductivity cell with clean water after each use.

Cleaning the conductivity cell

- 1. Dip the cell in cleaning solution of 1:1 isopropyl alcohol and 10N HCl, and agitate for two to three minutes.
- 2. Remove the cell from the cleaning solution.
- 3. Use a nylon brush to dislodge any contaminants from inside the electrode chamber.
- 4. Repeat steps one and two until the cell is completely clean. Rinse the cell thoroughly in deionized water.
- 5. Store the conductivity cell in the meter storage chamber.

Quality Assurance/Quality Control

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

4.0 Temperature Measurement/Check SOP

Purpose

This SOP describes the methods for the measurement of temperature using the Orion MODEL 230 A pH meter, Hach MODEL 50050 pH meter, YSI MODEL 58 DO meter, YSI MODEL 30 conductivity meter, and YSI MODEL 85 combination meter. Field forms used for meter calibration and measurement recording are attached to this SOP.

Procedure

Accuracy Check for all Instruments

- Insert the probe for the corresponding instrument into a container holding water, and allow the temperature reading to stabilize.
- 2. Record the temperature displayed on each respective instrument in the calibration log book along with date/time and individual performing the task.
- Compare the actual temperature of the water measured with a certified calibrated thermometer to the temperature measured by the respective instruments.
- 4. If the temperature relative percent difference exceeds 20%, then do not use that particular meter for temperature analysis.

Temperature Measurement

Orion Model 230 A pH meter

- 1. Connect the combination pH/temperature electrode to the meter.
- 2. Turn the meter on, and allow it to go through its self-test.
- 3. Insert the probe into the solution to be measured.
- 4. The temperature read out is located in the lower left of the LCD on the meter.

HACH EC10 pH/mV/temperature meter

- 1. Connect the combination pH/temperature electrode to the meter.
- 2. Turn the meter on, and allow it to go through its self-test.
- 3. Insert the probe into the solution to be measured.
- 4. The temperature read out is located in the prompt line followed by ATC.

YSi Model 30 Conductivity meter and YSI Model 85 Combination meter

- 1. Turn the meter on.
- 2. Insert the probe into the solution to be measured.
- 3. The temperature read out is located in the lower right of the LCD on the meter.

YSI Model 58 Dissolved Oxygen meter

- 1. Turn the meter to temperature mode.
- 2. Insert the probe into the solution to be measured.
- 3. The temperature read out is located on the screen

Quality Assurance/Quality Control

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Values measured during biweekly calibrations are compared between meters to verify accuracy.
- 3. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

5.0 Flow Measurements SOP

Purpose

This SOP describes the procedure used in the determination of water flow, which is necessary for the calculation of water volume passing through a given water body.

No single method for measuring discharge is applicable to all types of stream channels. The preferred procedure for obtaining discharge data is based on "velocity-area" methods (e.g., Rantz and others, 1982; Linsley et al., 1982). For streams that are too small or too shallow to use the equipment required for the velocity-area procedure, two alternative procedures are presented.

Stream discharge is equal to the product of the mean current velocity and vertical cross sectional area of flowing water. Discharge measurements are critical for assessing pollutant loading and reaeration rates used for dissolved oxygen modeling, as well as, other characteristics that are very sensitive to stream flow differences. Discharge will be measured at a suitable location within the sample reach that is as close as possible to the location where chemical samples are collected so that these data correspond. Field data forms for recording measurements are attached to this SOP.

Procedure

Velocity Area Procedure

Because velocity and depth typically vary greatly across a stream, accuracy in field measurements is achieved by measuring the mean velocity and flow cross-sectional area of many increments across a channel. Each increment gives a subtotal of the stream discharge, and the whole is calculated as the sum of these parts.

A Marsh McBirney Model 201 Portable Water Current Meter will be used whenever conditions allow. The site selected for flow measurements will be chosen on the basis of the most uniform streambed cross-section. This facilitates the best measurements since non-uniform streambeds may cause errors in velocity and depth. Manmade structures (bridges and culverts) may be used as flow measurement sites, but are not ideal.

Discharge measurements are generally made at only one carefully chosen channel cross section within the sampling reach. It is important to choose a channel cross section that is as much like a canal as possible, void of obstructions, as this provides the best conditions for measuring discharge by the velocity-area method. Rocks and other obstructions may be removed to improve the cross-section before any measurements are made. However, because removing obstacles from one part of a

cross-section affects adjacent water velocities, you must not change the cross-section once you commence collecting the set of velocity and depth measurements.

The procedure for obtaining depth and velocity measurements is outlined below:

- 1) Locate a cross-section of the stream channel for discharge determination that exhibits as many of these qualities as possible: Segment of stream above and below cross-section is straight, depths mostly greater than .5 feet, and velocities mostly greater than 0.5 feet/second. Do not measure discharge in a pool. Flow should be relatively uniform, with no eddies, backwaters, or excessive turbulence.
- 2) Stretch a tape measure across the stream perpendicular to its flow, with the "zero" end of the rod or tape on the left bank, as viewed when looking downstream. Tightly suspend the measuring tape across the stream, approximately one-foot above water level and secure at both ends.
- 3) Record the total wetted distance indicated by the tape from the left descending bank (LDB) to the right descending bank (RDB).
- 4) Attach the velocity meter probe to the calibrated wading rod that indicates depth and holds the flow probe at 60% depth. Check to ensure the meter is functioning properly and the correct calibration value is displayed. If necessary the meter and probe can be calibrated according to the instructions in the QA/QC section of this SOP (which is based on manufacturers recommendations).
- 5) Divide the total wetted stream width into equally sized intervals, generally one foot wide (minimum of ten measurement locations, but never less than 1/2 foot increments).
- 6) Stand downstream of the tape and to the side of the midpoint of the first interval (closest to the LDB).
- 7) Place the wading rod in the stream at the midpoint of the interval. Record the distance from the left bank (in feet) and the depth indicated on the wading rod (in tenths of a foot) on the Flow Measurement Form.
- Stand downstream of the probe to avoid disrupting the stream flow. If the water depth is less than 3 ft., adjust the position of the probe on the wading rod so it is at 60% of the measured depth below the surface of the water (Meador et al., 1993). The probe is set at the 60% depth by adjusting the foot scale on the sliding rod with the tenth scale on the depth gauge rod. If the water depth is greater than 3 ft., take measurements at 20% and 80% of the depth from the water surface. The average of these two readings is considered the water velocity for the respective measurement point. To set the probe at the 20% depth, first multiply the water depth by two, then use the calculated number to line up the foot scale as with the

- 60% depth. The same method is used for the 80% depth, except the calculated value is the water depth divided by two.
- 9) Face the probe upstream at a right angle to the cross-section. Do not adjust the angle of the probe, even if local flow eddies hit at oblique angles to the crosssection.
- 10) Wait 20 seconds to allow the meter to equilibrate then measure the velocity. Record the value on the Flow Measurement Form. For the electromagnetic current meter (e.g., Marsh-McBirney), use the lowest time constant scale setting on the meter that provides stable readings.
- 11) Move to the midpoint of the next interval and repeat Steps 6 through 8. Continue until depth and velocity measurements have been recorded for all intervals.
- 12) Record the data from each measurement on the Discharge Flow Recording form.

Timed Filling Procedure

In channels too "small" for the velocity-area method, discharge can be determined directly by measuring the time it takes to fill a container of known volume. "Small" is defined as a channel so shallow that the current velocity probe cannot be placed in the water, or where the channel is broken up and irregular due to rocks and debris, and suitable cross-section for using the velocity area procedure is not available. This can be an extremely precise and accurate method, but requires a natural or constructed spillway of free-falling water. If obtaining data by this procedure will result in a lot of channel disturbance or stir up a lot of sediment, wait until after all biological and chemical measurements and sampling activities have been completed.

Choose a cross-section of the stream that contains one or more natural spillways or plunges that collectively include the entire stream flow. A temporary spillway can also be constructed using a portable V-notch weir, plastic sheeting, or other materials that are available onsite. Choose a location within the sampling reach that is narrow and easy to block when using a portable weir. Position the weir in the channel so that the entire flow of the stream is completely rerouted through its notch. Impound the flow with the weir, making sure that water is not flowing beneath or around the side of the weir. Use mud or stones and plastic sheeting to get a good waterproof seal. The notch must be high enough to create a small spillway as water flows over its sharp crest.

Make sure that the entire flow of the spillway is going into the bucket. Record the time it takes to fill a measured volume on the Field Measurement Form. Repeat the procedure five times. If the cross-section contains multiple spillways, you will need to do separate determinations for each spillway. If so, clearly indicate which time and volume data replicates should be averaged together for each spillway; use additional field measurement forms if necessary.

Neutrally-Buoyant Object Procedure

In streams too shallow to use the velocity-area method the neutrally-buoyant object method may be employed. This procedure involves measuring the time it takes a floating object to pass a known stream distance. This is done using buoyant objects that float low in the water such as key limes, sticks, or small rubber balls. The following steps should always be followed to ensure accurate results.

- 1. Mark off on the stream bank the starting and ending points. These should be far enough apart to allow at least 10 seconds of drift time between them. Record the distance between the two points in feet to the nearest 0.1 foot.
- 2. Place the buoyant object in the water upstream of the starting point and begin timing on a stopwatch when the object reaches the start line.
- 3. Record the elapsed time till the object crosses the end line, in seconds to the nearest 0.1 seconds.
- 4. Repeat steps two and three at least three times to develop an average time of passage in seconds.
- 5. Average velocity is equal to distance divided by average elapsed time.
- 6. Measure cross sectional depths and width in the middle of the flow path to acquire a cross sectional wetted area. This can be used along with the average velocity to determine flow in cubic feet per second.

Observations and Calculations

Discharge is usually determined after collecting water chemistry samples. Although discharge is part of the physical habitat indicator, it is presented as a separate section.

Flow data will be recorded on the Discharge Flow Recording forms. Any additional observations will be recorded in field notebooks. Calculations will be performed using hand held calculators to determine flow volume in CFS. The calculated volume will be evaluated for reasonableness and may be repeated if there are questions regarding the flow accuracy. A sketch of the stream cross section should be added to the flow form, especially if there were critical conditions that may have impacted the flow measurement.

The following calculations are used to calculate flow/discharge:

- a. Calculate Area (A) by multiplying Width (W) X Depth (D).
- b. Calculate discharge (Q) by multiplying Velocity (V) by Area (A).
- c. Calculate total Area (A) and Discharge (Q) in each respective column.

d. Calculate average Velocity (V) by dividing summed Discharge (Q) by summed area or by taking an average of each velocity measurement.

QA/QC Stream flow Current Velocity Meters

Field teams will be using an electromagnetic type meter (e.g., Marsh McBirney Model 201 D). General guidelines regarding performance checks and inspection of current meters are presented below. If required the operating manual for the specific meter will be referenced for information as necessary.

Periodically or prior to field studies, the meter is calibrated to a zero value using a bucket of quiescent water and the following routine. The probe is placed in the bucket and allowed to sit for 30 minutes with no disturbance. The velocity value obtained should be 0.0 ± 0.1 . The meter is adjusted to zero if the value is outside this range.

Duplicate flow measurements are taken for at least one in ten sites where flow is measured. A relative percent difference (RPD) is calculated, and must be less than 20% to be within control parameters. Any values exceeding 20% are investigated to determine the cause and the need for corrective action. When possible flow measurement values are compared to gauging station data or data from fixed flow meters as a QA check

6.0 General Physical Characterization SOP

Purpose

The physical characteristics of an entire watershed are important components of an overall biological assessment of an individual stream. Watershed features and uses have a great affect on the development of a stream morphology and its biota.

Physical characterization includes documentation of weather conditions before and during the survey, description of stream origin and type, flow status, watershed features (landuse, etc), instream morphological features, water observations, and sediment observations. These parameters provide a general overview of the stream system in which a study is occurring.

Procedure

A General Physical Characterization Field Form (attached) should be completed for each stream reach in a study. The information (apart form general headings) provided below is included on the field form. A brief explanation of how to complete the information under each parameter heading is provided below.

Parameter:

- 1. Stream Name
- 2. Latitude/Longitude
- 3. River Basin (basin the stream is a part of)
- Weather Conditions

Check the appropriate box for the current weather conditions and the weather conditions in the past 24 hours. If there is cloud cover provide an approximation of the percent coverage. Indicate if there has been significant rain in the past 7 days. Provide an estimate (or measure) of air temperature.

5. Stream Attributes

Check the box indicating if the stream is perennial, intermittent, or tidal. Check if the stream is a coldwater habitat (trout) or a warmwater habitat (bass). Mark the correct stream geological origin (glacial, montane, swamp, etc.) Estimate or measure, on a topographic map, the catchment size and record on the field form.

6. Hydrology

Check the appropriate current flow status of the stream (low, moderate, high) and indicate if flow measurements will be taken.

Watershed Features

Check the appropriate boxes concerning dominant land uses (pasture, industrial, etc.) in the area of the stream. Mark appropriate boxes concerning potential non-point source (NPS) pollution contributions. Note watershed erosion evidence observed.

8. Instream Features

Assess what portion of the stream reach can be characterized by the three morphological types (riffle, run, pool). Make an effort to assess the entire reach accurately and rank each morphological type as a percentage of the whole reach (i.e. 30% riffle, 50% run, 20% pool). Complete this parameter by having each participating field biologist collaborate in the ratings. Have each collaborating biologist initial the field form in this section. Note if any channelization or dams are present.

9. Water/Observations

Assess the water for odors, turbidity, and surface sheen's and mark the appropriate descriptor listed on the field form.

Sediment/Observations

Assess the sediment for odor and deposits and mark the appropriate descriptor on the field form.

Make additional notes and observations for each category directly on the field form or provide a code to reference comments written in a separate field notebook.

7.0 Semi-Quantitative Habitat Assessment SOP

Purpose

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel-riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, in-stream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs

The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment (Semi-Quantitative), and include:

- 1) Channel Morphology
 - a) Reach Length Determination
 - b) Riffle-Pool Sequence
 - c) Depth and Width Regime

- 2) In-Stream Structure
 - a) Epifaunal substrate
 - b) In-Stream Habitat
 - c) Substrate Characterization
 - d) Embeddedness
 - e) Sediment Deposition
 - f) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
 - a) Canopy Cover
 - b) Bank Stability and slope
 - c) Vegetative Protection
 - d) Riparian Vegetative Zone Width
 - e) Land-use Stream Impacts

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses.

These procedures are intended for evaluating physical habitat in wadeable streams, but may be adapted for use in larger streams as necessary. The field procedures applied to this characterization are most efficiently applied during low flow conditions and during times when terrestrial vegetation is active, but can also be applied during spring seasonal conditions with higher base flows. This collection of procedures is designed for monitoring applications where robust, quantitative or semi-quantitative descriptions of habitat are desired. This semi-quantitative habitat procedure is usually used in conjunction with the General Physical Habitat Characterization and the Qualitative Habitat Assessment to provide a detailed view of the streams habitat condition.

The habitat characterization protocol provided herein differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol summarized in this SOP is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000).

We strive to make the protocol objective and repeatable by using previously developed methods to produce repeatable measures of physical habitat in place of estimation techniques wherever possible.

Two people typically complete the specified assessment, including stream flow measurements, in about two hours of field time. However, the time required can vary considerably with channel characteristics.

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width, or at least 100 yards of in-stream distance. The semi-quantitative habitat sampling reach length should coincide as much as possible with that of the fish and macroinvertebrate

collection reaches. Measurements are taken in each of 10 sub-reaches, which are systematically placed, at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

Procedure

The habitat assessment will be conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat will be characterized from measurements and observations of stream attributes made within 10 subreaches. The team assessing habitat should move along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described below in the following sections.

Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences. i.e. a measure of the amount of riffles, runs and pools that occur in a given reach.

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 1.) The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

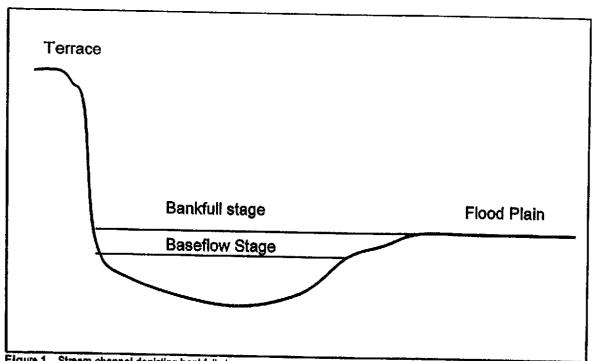


Figure 1. Stream channel depicting bankfull stage.

1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) is identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in the study reach. Then bankfull depth and width is determined from 5 stream transects and recorded on the record sheet. Transect locations should be selected to include each prominent morphology type represented in the stream. Bankfull depths are measured to the nearest 1/10 foot and bankfull widths are measured to the nearest foot using a wading rod and tape measure/range finder, respectively. An average of the 5 bankfull widths is then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length is then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach should begin at the head of a given stream morphology (i.e. riffle, run or pool).

2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach should be measured using a range finder or tape measure and recorded on the record sheet. The sequence of each morphological type should be depicted on the record sheet using the provided notations so as to create a map to the location of each riffle, run or pool. The resulting measurements should provide a quantitative measure of the percent of the study reach representing each stream morphological type (i.e. 40% riffle, 30% run, 30% pool, etc).

3) Depth and Width Regime

The average stream depth and width will be estimated in riffles (or runs in the absence of riffles) and pools in each sub-reach. Depths will be measured along a transect, similar to that depicted in Figure 2, in a representative section of each riffle and pool in the sub-reach. Depths are generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach is derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths will be measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach should be recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

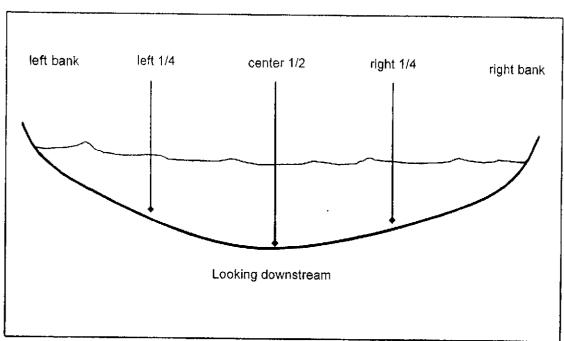


Figure 2. Approximate position of measurements across transect.

In-Stream Structure

In-stream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic blota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of in-stream structure including some that is permanent and some that is mobile during high flow events.

4) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

5) In-Stream Habitat (Fish)

In-stream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute

substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater)and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

6) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each subreach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

Classify the particle into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

Bedrock smooth or rough
Boulder >25 cm
Cobble 6-25 cm
Coarse Gravel 1.6 - 6 cm
Fine Gravel 0.2 - 1.6 cm
Sand <0.2 cm
Silt/Mud/Clay fine, not gritty

Always make notations for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

7) Embeddedness

Embeddedness is the fraction of a particle's surface that is surrounded by (embedded in) sand or finer sediments on the stream bottom. By definition, the embeddedness of sand, silt, clay, and muck is 100 percent and the embeddedness of hardpan and bedrock is 0 percent.

For this attribute estimations are not made per sub-reach but for the entire stream reach as a whole. An estimation of the "percent embedded" is recorded for coarse riffle substrates in the study reach. This is accomplished by removing 12 pieces of cobble, gravel, or small boulders in at least two different riffles (three maximum) and recording the percent embedded for each. Percent embedded can be visually observed as the darkened portion of the coarse substrate that was buried in the streams fine bed material. If the darkened area covers half the coarse substrates height than the percent embedded is 50%, etc (Figure 3.)

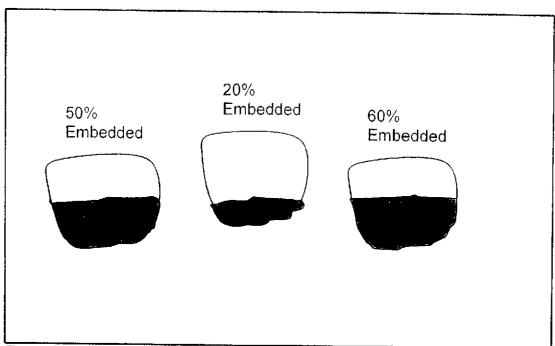


Figure 3. Depiction of percent embedded characteristics.

8) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

9) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a subreach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic blota.

Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these stream-side riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks form erosion, provides shading, inputs nutrients, provides materials as habitat (in-stream structure) and filters run-off entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses.

10) Canopy Cover

Canopy cover (percent stream shading) over the stream is determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates are made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point can be estimated visually or by use of a spherial densiometer.

11) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

Score 9-10 = Stable, little evidence of erosion, < 5% bank eroding
Score 6-8 = Moderately stable, some evidence of new erosion, 5-29% bank eroding
Score 3-5 = Moderately unstable, obvious new erosion, 30-59% bank eroding
Score 1-2 = Unstable, most of bank actively eroding, 60-100% bank eroding

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, is recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

12) Vegetative Protection

Bank vegetative protection is measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) is assessed separately and the value recorded on the record sheet. Banks are assessed from the edge of the water to the top of the first terrace or normal top of bank.

13) Riparian Vegetative Zone Width

Riparian zone with encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from run-off, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

14) Land-Use Stream Impacts

Significant Alteration of the land-uses in the immediate riparian area can have detrimental affects on the stream habitat and biota. Urban and agricultural activities are often considered the more prominent of those land-uses that may impact a stream. These impacts are assessed by indicting a specific land-use impact associated with a sub-reach (on either bank) on the record sheet and assigning a degree of impact score to the land-use. The following land-use categories and impact scoring system are provided:

Land-uses:

C = Cattle.

R = Row Crops,

U = Urban encroachment,

I = Industrial Encroachment, and

O = Other (noted on field form)

Scoring:

0 = no land-use impacts,

1 = minor impacts,

2 = moderate impacts, and

3 = major impacts

Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment can be utilized in two different ways. First, data collected for each attribute (assessment category) can be used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, %riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean %canopy cover, etc. Second, the data collected during the assessment can be used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies should be incorporated into all intensive aquatic biota field studies where habitat assessment accuracy and repeatability is critical. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

High Gradient (riffle-pool stream complexes)

1) Epifaunal Substrate / Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (In-Stream habitat) are combined into an overall average percent coverage and used to score this metric.

The following table presents the scoring criteria:

(株) (本)	Clerking (South replication	thing male	Regen .
% Coverage	>70%	40%-70%	20%-39%	<20%
Score	20 -16	15 -11	10 - 6	5 - 1

2) Embeddedness

Reach average percent embedded (from category 7) is used directly to score this metric.

ar anks: a	°aa-(Optimāl:≸e⊬	K-Sub-Optimal)	Marginal .	*****************************
% Embedded	<25%	25%-50%	49%-75%	>75%
Score	20 -16	15 -11	10 - 6	5 - 1

3) Velocity / Depth Regime

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) along with flow and velocity data collected in the reach is used to score this metric. Use the following table to determine which regimes are present:

<mark>errenet, k</mark> anks og s	≅ikSilowati€eβ/\$⊌	Sibwashallowar	EspEastraceov (V	z Pastshallaws
Velocity	<1 fps	<1 fps	>1 fps	>1 fps
Depth Regime	>1.6 feet	<1.6 feet	>1.6 feet	<1.6 feet
Typical Morphology	Deep pool	Shallow pool	run	riffle

If a reach has deep and shallow pools, and distinctive run and riffle morphology, then you have at least three regimes and possible all four regimes. Score each rank lower if shallow regimes are the missing regimes. Scoring is applied as per the following table.

Bellin Ratinik (s. 184)		a SübiQbilinalist	Za Marginil	Rejoir 7
No. Regimes	Four regimes	Three regimes	Two regimes	One regime
	present	present	present	present
Score	20 -16	15 - 11	10 - 6	5 - 1

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

Kink	Capallinguis	Shibelbilleteil	(Marejinal :	The Home
% Bottom Affected	<5%	5%-30%	31%-50%	>50%
Score	20 -16	15 -11	10-6	5 - 1

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Frequency of Riffles

Using semi-quantitative category 3 (Depth and Width Regime) the average width of the stream is determined as the average of riffle and pool widths combined. Using category 2 (Riffle-Pool Sequence) the distance between riffles can be calculated using the sequencing notations and the morphological lengths. The table presented below should be used to develop scores for this metric.

Example: a reach with an average width of 18 feet, with 4 riffles separated by a 50 foot pool, a 20 foot run, and a 100 foot pool would result in an average distance between riffles of 57 feet. Therefore, the ratio = 57/18 = 3.2 and would rank as Optimal (score @ 18).

	agagic political brains	a Sub-Optimelar	we Marabitales co	ranke Poolania
Ratio (distance between riffles :	<7 : 1	7 – 15 ; 1	16 -25 : 1	>25 : 1
stream width) Score	20 -16	15 -11	10 - 6	5 - 1

In continuous riffle streams the consistent placement of boulders and logs provides scores in the highest range of the optimal category.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semi-quantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semi-quantitative record sheet) is used directly to score this metric for the right and left bank.

Rapik	Spatted of	Sittle Opplied in	A Marginal Co	Property 4
% Protected	>90%	70% - 90%	50% - 69%	<50%
Score	20 -16	15 -11	10 - 6	5-1

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

Alternative Metrics for Low Gradient Streams (pool dominated complexes)

2) Pool Substrate Characterization (replacement for Embeddedness)

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

sidditki k	100000000000000000000000000000000000000	Almaile (S. 1988)			ha apong a
Substrate		or Gravel	Sand/Silt/Clay	Sand/Silt/Clay	Bedrock or
					Clay Only
Macrophytes	Yes	No	Yes	No	No
Present					
Score	20 - 18	17 - 16	15 - 11	10 - 6	5-1

3) Pool Variability (replacement for Velocity/Depth Regime)

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

i i na Poolitia. Chamballalis	lknojpatjago.	ปลาสุดิสกุกใหญ่	ไรใช้เลมียังสอด์ เล	Şäkijişəhijlöv:
Size	Length ≥ Width	Length ≥ Width	Length < Width	Length < Width
Depth	≥3.2 feet	< 3.2 feet	≥3.2 feet	< 3.2 feet

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

8.0 Qualitative Habitat Assessment (Habitat Potential) SOP

Purpose/Objective

After all other samples and field data have been collected, the field team conducts an overall habitat assessment of the stream, makes a general visual assessment of the stream, and performs a final check of the data forms and samples before leaving the stream site. The habitat assessment protocol used is adapted from EPA's "Rapid Bioassessment Protocols..." (Barbour et al, 1999), and has been refined from various applications across the country. The approach focuses on integrating information from specific parameters on the structure of the physical habitat.

The objective of the visual stream assessment is to record field team observations of catchment and stream characteristics that are useful for data validation, future data interpretation, ecological value assessment, development of associations, and verification of stressor data. The observations and impressions of field teams are extremely valuable. Thus, it is important that these observations about stream characteristics be recorded for future data interpretation and, validation. The assessment form is designed as a template for recording pertinent field observations. It is by no means comprehensive and any additional observations should be recorded in the Comments section of the form.

Based on the perception gained from collecting samples and measurements from throughout the sampling reach, the reach will be classified as either "Riffle/run" or "Pool/glide" prevalent based on visual impressions of the dominant habitat type. The prevalent habitat type will be based on which habitat type occupies the majority of the length of the sampling reach. A different field data form is completed depending upon the prevalent habitat type.

For each prevalent habitat type, ten characteristics (termed "parameters") of habitat are considered and evaluated as part of the rapid habitat assessment. These parameters are described below. Most of the parameters are evaluated similarly for both types of prevalent (Riffle/run and Pool/glide) habitats. In four cases, the same parameter is evaluated differently, or a different, but ecologically equivalent, parameter is evaluated in riffle/run prevalent streams versus pool/glide prevalent streams. Epifaunal substrates are evaluated differently in riffle/run and pool/glide prevalent streams. Substrate embeddedness is evaluated in riffle/run prevalent streams, while pool substrate composition is evaluated in pool/glide prevalent streams. The presence of four potential types of microhabitat types based on combinations of depth and current velocity is evaluated in riffle/run prevalent streams, while the presence of four potential

GBM° v8.1 May 2002 Page 1 of 6 types of pool microhabitat based on depth and area are evaluated in pool/glide prevalent streams. The frequency of riffles is evaluated in riffle/run prevalent streams, while channel sinuosity is evaluated in pool/glide prevalent streams.

Procedure

For each of the ten parameters, rate the overall quality of the sampling reach on a scale of 0 to 20. Scores for each parameter are recorded on the pool/glide or riffle/run version of the Qualitative Habitat Assessment Field Form. If the stream is classified as a pool/glide prevalent stream, record your scores for each parameter on the pool/glide version of the Qualitative Habitat Assessment Field Form. Transfer the scores assigned for each parameter to the box in the left-hand column of the form. Sum the scores for each parameter and record the total score in the box at the bottom of page 2 of the form. Divide the total score by ten to arrive at a reach average score.

The following parameters are used for the evaluation:

- 1. epifaunal substrate/available cover.
- (a)embededdness, or
 (b)pool substrate characterization.
- (a)velocity and depth regimens, or (b)pool variability,
- 4. channel alteration.
- 5. sediment deposition,
- 6. (a)frequency of riffles, or (b)channel sinuosity,
- 7. channel flow status,
- 8. bank stability,
- 9. vegetative protection, and
- 10. riparian vegetative zone width.

Each reach will be evaluated by two to four experienced field biologists who ranked each attribute independently and summed them for a total score. The scores were then averaged to produce the overall ranking. Calculated scores placed the reach into a habitat category of optimal (16-20), suboptimal (11-15), marginal (6-10), or poor (1-5). The distinction within the four (4) categories may be subjective. (e.g., a large patch of clear cut logging on a hill overlooking the stream would be rated high within the poor category [a rating of 5] while limited logging activity right on the stream bank would be rated low within the poor category [a rating of 1]). When assessing reach characteristics, the entire sampling reach is considered a third level evaluation.

Complete the assessment form after all other sampling and measurement activities have been completed. Take into account all observations the sampling team has made while at the site. The assessment includes the following components:

GBM° v8.1 May 2002 Page 2 of 6

Parameter

Description and Rationale

 Epifaunal Substrate/Available Cover

Essentially the amount of niche space or hard substrates (gravel, cobble) for macroinvertebrate colonization and the amount of available cover (logs, branches) for fish refugia. Numerous types of insect larvae attach themselves to rocks, logs, branches, or other submerged substrates. The greater the variety and number of available niches, and cover the greater the variety of insects and fishes in the stream. Rocky bottom areas are critical for maintaining a healthy variety of insects in most high gradient stream. Woody cover is critical in developing a well-balanced fish community. The abundance, distribution, and quality of substrate and other stable colonizing surfaces and cover (e.g., old logs, snags, and aquatic vegetation) maximize the potential for colonization by fish and insects.

2a. Embeddedness (high gradient)

The extent to which rocks (gravel, cobble, and boulders) are covered or sunken into the silt, sand, or mud of the stream bottom. Generally, as rocks become embedded, the surface area available to macroinvertebrates and fish for shelter, spawning, and egg incubation is decreased. To estimate the percent of embeddedness, observe the amount of silt or finer sediments overlying and surrounding the rocks. If kicking does not dislodge the rocks or cobble, they may be greatly embedded. It is useful to observe the extent of the dark area on their underside of a few rocks.

2b. Pool Substrate Characterization (low gradient) Gravel or firm vegetated pool substrates support a wider variety of organisms than a pool substrate dominated by mud or bedrock and no plants. In addition, a stream that has a uniform substrate in its pools will support far fewer types of organisms than a stream that has a variety of substrate types.

3a. Velocity and Depth Regimens (high gradient)

There are four primary current and depth combinations: (1)slow-deep, (2)slow-shallow, (3)fast-deep, and (4)fast-shallow. The best streams in high gradient regions will have all four combinations present. The presence or availability of these four habitats relates to the ability of the stream to provide and maintain a stable aquatic environment. In general use a depth of 0.5 m to separate shallow from deep and a current velocity of 0.3 m/sec to separate fast from slow.

3b. Pool Variability (low gradient)

Rates the overall mixture of pool types found in streams, according to size and depth. The four basic types of pools are large-shallow, large-deep, small-shallow, and small-deep. A stream with many pool types will support a wide variety of aquatic species. Rivers with sinuosity (few bends) and monotonous pool characteristics do not have sufficient quantities and types of habitat to support a diverse aquatic community. As a general guideline, consider a pool deep if it is greater than 1 m deep, and large if its length, width, or oblique dimension is greater than half the stream width.

4. Channel Alteration

Basically a measure of large-scale changes in the shape of the stream channel. Many streams in urban and agricultural areas have been straightened, deepened or diverted into concrete channels, often for flood control purposes. Such streams have far fewer natural habitats for fish, macroinvertebrates, and plants than do naturally meandering streams. Channel alteration is present when the stream runs through a concrete channel; when artificial embankments, rip-rap, and other forms of artificial bank stabilization or structures are present; when the stream is very straight for significant distances; when dams and bridges are present; and when other such changes have occurred.

5. Sediment Deposition

The amount of sediment that has accumulated and the changes that have occurred to the stream bottom as a result of the deposition. Deposition occurs from large-scale movement of sediment caused watershed erosion. Sediment deposition may cause the formation of islands, point bars (areas of increased deposition usually at the beginning of meanders that increase in size as the channel is diverted toward the outer bank) or shoals or result in the filling of pools. Increased sedimentation also results in increased deposition. Usually this is evident in areas that are obstructed by natural or man-made debris and areas where the stream flow decreases, such as bends. High levels of sediment deposition create an unstable and continually changing environment that becomes unsuitable for many organisms.

6a. Frequency of Riffles (high gradient)

The sequence of riffles occurring in a stream. Riffles are a source of high-quality habitat and diverse fauna; therefore, an increased frequency of occurrence greatly enhances the diversity of the stream community. For areas where riffles are uncommon, a run/bend ratio can be used as a measure of sinuosity. A large degree of sinuosity provides for diverse habitat and fauna, and the stream is better able to handle the high-energy flows that result from storms than are relatively straight streams.

6b. Channel Sinuosity (low gradient)

Evaluates the meandering or relative frequency of bends of for aquatic organisms, whereas straight stream segments are characterized by monotonous habitats that are prone to flooding. A high degree of sinuosity creates a variety of pools and reduces the energy from surges when the stream flow fluctuates. The absorption of this energy by bends protects the stream from excessive erosion and flooding. In "ox bow" streams of coastal areas and deltas, meanders are highly exaggerated and transient. Natural conditions are shifting channels and bends. Alteration of these streams is usually in the form of flow regulation and diversion.

7. Channel Flow Status

The degree to which the channel is filled with water. The flow status will change as the channel enlarges or as flow decreases as a result of dams and other obstructions, diversions for irrigation, or drought. When water does not cover much of the streambed, the amount of useable substrate for aquatic organisms is limited.

8. Bank Stability

The stream banks are eroded (or have the potential for erosion). Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks and are therefore considered to be unstable. Signs of erosion include crumbling, unvegetated banks, exposed tree roots, and exposed soil

Vegetative Protection

The amount of the stream bank and near-stream riparian area that is covered by vegetation. The root systems of plants growing on stream banks help hold soil in place, thereby reducing the amount of erosion that is likely to occur. This parameter supplies information on the ability of the bank to resist erosion, as well as some additional information on the uptake of nutrients by the plants, the control on instream scouring, and stream shading. Banks that have full, natural plant growth are better for fish and macroinvertebrates than are banks without vegetative protection or those shored up with concrete or riprap.

10. Riparian Vegetated Zone Width

The width of natural vegetation from the edge of the stream bank (riparian buffer zone). The riparian vegetative zone serves as a buffer zone to pollutants entering a stream from runoff, controls erosion, and provides stream habitat and nutrient input into the stream. A relatively undisturbed riparian zone reflects a healthy stream system; narrow, far less useful riparian zones occur when roads, parking lots, fields, lawns, bare soil, rocks, or buildings are near the stream bank. The presence of "old fields" (i.e., a previously developed field allowed to convert to natural conditions) will rate higher than fields in continuous or periodic use. Paths and walkways in an otherwise undisturbed riparian zone may be judged to be Inconsequential to destruction of the riparian zone.

9.0 Benthic Macroinvertebrate Protocol SOP

Purpose

Benthic invertebrates inhabit the sediment or live on the bottom substrates of streams. The diversity and the presence of an expected level of benthic community reflects the maintenance of a systems biological integrity. Monitoring these assemblages is useful in assessing the status of the water body and detecting trends in ecological condition. Benthic communities respond to a wide array of stressors in different ways so that it is often possible to determine the type of stress that has affected a macroinvertebrate community (e.g., Klemm et al., 1990). Because many macroinvertebrates have relatively long life cycles of a year or more and are relatively immobile, macroinvertebrate community structure can be a function of present or past conditions. The benthic invertebrate community also reflects the effects of habitat availability, and the long-term exposure to physical and chemical properties of the water in which they develop and live.

The benthic macroinvertebrate protocol is intended to evaluate the biological integrity of wadeable streams for the purpose of detecting stresses on community structure, assessing the relative severity of these stresses, and determine the maintenance of the designated uses. The approach are based on the *Rapid Bioassessment Protocols for Wadeable Streams and Rivers* published by the U.S. Environmental Protection Agency (Barbour, 1999). Variations of the approach is utilized by the U.S. Geological Survey for their National Water-Quality Assessment Program (NAWQA; Cuffney et al., 1993) and by the EPA in their Environmental Monitoring and Assessment Program (EMAP, Lazorchak, 1998). The protocol requires only one person and is the preferred macroinvertebrate collecting method where habitat is variable (a second person can be used for water safety and to keep time and record information on the field forms). The methodology used by GBMc & Associates is a modification of the EPA "Multi-habitat Approach" (Barbour, 1999) designed to better assess pool dominated streams and riffle dominated streams using similar but different collection techniques. The approach can be generally considered a semi-quantitative methodology, in that there is some measure of abundance on a per sample basis and data is comparable to other collections.

Procedure

Pool Dominated Stream/Multihabitat Approach

An aquatic dip net is used to sample all available microhabitats present within the stream reach. Sampling is conducted using kicking, jabbing, and sweeping techniques. Kicking involves placing the net on the substrate and kicking the substrate upstream of the net allowing the dislodged invertebrates and debris to float into the net. Jabbing involves quick jabs of the net into submerged or exposed habitat types (macrophytes, root wads, branches, etc.) in an effort to dislodge invertebrates for capture. Sweeping entails sweeping the net through or above a habitat type to dislodge and capture invertebrates. Sweeping is often done above sandy and sitty areas and root wads so as to capture as little debris as possible but still dislodge organisms. Sampling effort is timed on a stopwatch for a total of three minutes. Only time actually spent kicking, jabbing, or sweeping is allowed to accrue on the timer. The net is periodically emptied into a bucket for transport of the sample up and down the stream reach.

Riffle Dominated Stream

An aquatic dip net (generally the rectangular sort at least 16" wide) is used to sample the riffle habitat in a stream. The net is placed on the stream bottom and the substrate upstream of the net is vigorously kicked by the sampler to dislodge invertebrates allowing them to drift into the net. Sampling is conducted in this manner at different riffle locations throughout the study reach for a total kick time of 5 minutes. It may be useful to sweep the net through the dislodged and drifting debris in an effort to pick up as many invertebrates as possible. Kick time is monitored with a stop watch allowing time to accrue only during kicking and subsequent drift time. The net contents are placed in a bucket for holding after each riffle sample is collected.

Sample Processing

After collection, samples are initially sorted and concentrated using a series of U.S. standard sieves the smallest of which has a #30 mesh with an opening size of 600μm. Random subsamples of the concentrated sample will be placed on a white sorting tray from which the macroinvertebrates will be removed. A 100 organism sub-sample will be randomly picked from the tray and field identified to the lowest possible taxon. A representative amount of the concentrated sample is picked to be sure that each type of debris (i.e. leafs, algal mats, sediment, etc.) have been checked for macroinvertebrates. The 100 organism sub-samples will be preserved in Kaylee's Solution (a fixative, 15 pts. ethanol, 6 pts. formalin, 1 pt. glacial acetic acid, 30 pts. deionized water) or 70% ethanol for lab verification of field identifications and as a voucher to be used if more detailed analysis becomes necessary. If the sample is placed in Kaylee's solution it is removed and placed in 70% ethanol within 7-days. Each sample is labeled inside with a waterproof label and outside with laboratory tape containing the following information:

- station I.D.,
- location (waterbody, county, state),
- project number.
- date/time.
- initials of collector, and
- collection method/duration.

After the 100 organism random sample is collected, labeled and preserved, the larger debris items (e.g. leaves, sticks, rocks etc.) in the collected sample will be examined for clinging benthic macroinvertebrates. Any organisms will be removed prior to the debris being discarded. The remainder of the original sample not utilized in the selection of the 100-organism subsample will be concentrated and retained as a voucher for the sample picking (sub-sampling) techniques used. The voucher samples will be preserved in either Kaylee's Solution or 70 % ethanol. Voucher samples will be held at GBM° for a period of 24 months, from the conclusion of the study at which time the samples may be submitted to an academic zoological collection.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the Benthic Macroinvertebrates Field Data Form (attached). The first page of the form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1. time sampled.
- 2. relative abundance of aquatic trophic level communities (periphyton, macrophytes, etc.),
- 3. percent of major habitats sampled,
- 4. percent of specific microhabitats sampled, and
- 5. relative abundance of the ordinal groups observed during sample collection.

The second page provides for the listing of the taxa comprising the 100 organism sub-sample and the field identifications and the numbers of each. Also included on page 2 are the general reach identifiers and preliminary summary sections to be used in the application of selected biometric scoring criteria.

All macroinvertebrate identifications shall be verified in the laboratory by experienced invertebrate biologists. Laboratory verification will be accomplished using general keys including but not limited to Merritt & Cummings, (1996); and Pennak, (1989). In addition more taxa specific keys such as Mayflies of North and Central America (Edmunds et, al, 1976), Dragonflies of North America, (Needham & Westfall, 1975) or species specific keys developed for a state or region will be utilized for the laboratory verification of the field identifications.

Community Biometric Analysis

The qualitative samples are used to taxonomically characterize the aquatic community, identify indicator taxa and determine relative abundance of taxa and ecological types. The macroinvertebrate assemblages from each station are analyzed according to several benthic community biometrics. These will include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), percentage of dominant ordinal groups, species diversity as determined by the Shannon-Wiener diversity Index, and functional feeding group assessment. The analysis may also include the seven biometrics used by the State of Arkansas (ADPC&E, 1988) in their RBA scoring system, as well as other state specific biotic indexes. The biometric scoring activity will indicate the impacts to a benthic community when compared to the benthic community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

Alternative Sampling and Processing Methodologies

An alternative processing technique may be used for the macroinvertebrate samples collected using the preceding RBA protocols. This technique involves concentrating the entire sample in the field and preserving it for transport to the laboratory. No on-site picking occurs. Once in the lab the sample is further concentrated and sorted to size using standard sleves. The sample is then placed into white sorting trays. Every macroinvertebrate in the sample is picked out and placed in a sample container. Once the entire sample has been picked and all organisms are in a single container the macroinvertebrates are poured onto a gridded and numbered sorting tray and swirled to distribute them randomly and as evenly as possible throughout the tray. Random numbers are then drawn that correspond to a given grid. All of the macroinvertebrates found in that grid are then removed and tallied. This process continues until a sample of sufficient size has been achieved, usually 100, 200, or 300 macroinvertebrates. The final sample size is dependant on the level of random error that is acceptable in the study. The macroinvertebrates are then identified to the lowest taxonomic level possible and the assemblage is analyzed as outlined above.

In addition to the semi-quantitative sampling protocols described in the preceding sections other semi-quantitative and quantitative methodology may be utilized where circumstances require a more detailed and precise assessment of the macroinvertebrate community. Quantitative and semi-quantitative protocols utilize sampling devices where a known area of substrate is sampled (i.e. 1.0 ft², 0.1 m², etc.) such as with a Surber Sampler or a Hester-Dendy , respectively. Quantitative techniques require processing of the entire sample collected to remove all macroinvertebrates captured. Macroinvertebrates are identified to the lowest possible taxonomic level, enumerated, and calculations of density per unit area are completed at varying taxonomic levels. Biometric analysis can then be completed using the same metrics as in the semi-quantitative assessment.

Quality Control

Field teams collecting macroinvertebrates are led by experienced aquatic biologists and ecologists. Field forms designed specifically for macroinvertebrate collection studies and set up to include all pertinent field data are completed for each sample site. All field forms are reviewed at the end of the study for completeness and accuracy. Identification of macroinvertebrates is verified in the laboratory by an experienced invertebrate biologist. Periodic spot checks to verify laboratory identifications are made by a qualified biologist on the team. Efforts are made to remain abreast of current research in macroinvertebrate biology and identification techniques through scientific journals and conferences. In addition, EPA document updates and new information on macroinvertebrate community assessment is tracked via the internet.

Macroinvertebrate duplicate samples are collected at one of ten study sites. In years where less than ten sites are sampled a minimum of one duplicate sample should be collected at a given site. Duplicate samples are treated the same way as the base sample for processing and identification. A similarity index is calculated for the duplicate and base samples. Index results indicating similarity less than 65% are considered out of control. In the case of an "out of control" condition the organism identifications will be assessed as will the collection techniques. Corrective action will be determined by the project manager and/or the senior biologist and could include adjustments to techniques or a re-sampling of the sites in question.

10.0 Fish Collection Protocol SOP

Purpose/Objective

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of a ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community. Backpack electrofishing equipment is used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect the capture of fish species. Other methods of fish sampling may be implemented when conditions are not adequate for backpack eletrofishing or seining; these may include, using boat electrofishing equipment and/or hook and line sampling equipment. Usually 2 – 4 team members will make up the sampling team involved in collecting the aquatic vertebrates.

Major factors that influence collecting include flows, water depth, in-stream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections will be a Smith-Root backpack electroshocker. However, seines and block nets may be utilized as necessary to adequately characterize a sampling reach. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the macroinvertebrate sample and habitat data.

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. The entire stream width within the sampling reach will be sampled. PDT time will continue for not less than 30 minutes unless the wetted habitat of any reach limits the PDT. In addition to the PDT, the total collection time will be recorded.

Unless specified in a project specific sampling analysis plan (SAP), there will not be a maximum time limit for the collection period, however the collections may be terminated when in the opinion of the principal investigator determines that a representative collection has been obtained. Sampling information is recorded on the Fish Community Collection Form, general comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on this form.

An effort to search for and collect fish will be completed at all targeted reaches, even if the stream is extremely small, and it appears that sampling may not collect any

specimens. If no specimens are collected, complete the "NONE COLLECTED" field on the Fish Collection Form. Provide an explanation in the comments section of the form.

Procedure

Electroshocking

The procedure to sample with the backpack electrofisher unit is presented below:

Initially a decision will have to be made on what type of current to be used, alternating current (AC) or direct current (DC). AC flows from the anode and the cathode with an alternating direction of current flow. This alternating flow of current causes the fish to have strong muscle contractions, resulting in immobilization. AC has the highest electrofishing sucsess rate but also poses the highest risk of permanent injury to the fish (particularly to larger specimens). DC is the direct flow of electrical current from the cathode to the anode. DC causes the fishes muscles to contract in such a way that the fish swim towards the anode probe. Muscle contractions occur until the fish is so close to the probe that the higher level of electricity stuns the fish. DC pulse length and duration can be adjusted with the shocking unit mode switches to more efficiently apply electricity that will draw fish to the probe without causing injury.

Make sure that the unit is full of properly mixed gas and oil (100:1), attach cathode (cable tail that drags behind operator, and anode (actual shocking probe with thumb switch to control electricity current)

Select the initial voltage based on the measured conductivity of the stream. For high conductivity water (300 - 1200 μ S) use a voltage setting of 100 - 400 volts. For medium conductivity water (100 - 300 μ S) use a voltage setting of 500 - 800 volts. For low conductivity water (10 - 100 μ S) use a voltage setting of 900 - 1100 volts.

Select the initial frequency and/or wavelength based on the expected size of fish. Find a setting, using the number dial (1-16) and the letter dial (A-P), that will allow you to have maximum amperage output without overloading the unit, typically 0.7-1.9 amps. Start with a setting of I-6 and adjust letters then numbers to find your setting. A higher mode setting provides more amperage as does a higher voltage setting. Typical setting used by GBMc & Associates are I (5-7) and J (5-7) at a voltage of 100-300 volts.

Record the latitude and longitude of the starting location and the starting time for electrofishing. Start the electrofisher, place the generator on the 300VA position for full generator output, set the timer to zero, and depress the switch to begin fishing. Starting at the bottom of the reach, fish in an upstream direction. Adjust voltage and waveform output according to sampling effectiveness and incidental mortality to specimens. The backpack unit is equipped with an audio alarm that sounds when the output voltage exceeds 30 V. It also serves as an input current indicator for pulse cycles greater than 5Hz. It begins as a strong continuous tone and begins to beep

slowly at currents of 1.25 amps. It beeps faster as input current increases. In case of an overload (in excess of 3 amps), the beep becomes very rapid and the overload indicator comes on. Release the anode switch and adjust voltage and waveform and continue fishing.

When fishing, slowly sweep the anode wand from side to side in the water in riffles and pools. Sample available cut-bank and snag habitat areas as well as riffles and pools. Move the wand in and out of large snags or deep cuts or release the electrode switch, move the wand away slightly, depress the switch again and sweep the wand away from the cover to draw fish out into open. In fast, shallow water, it may be more effective to use a seine or a couple of handheld nets as a block net; sweep the anode and fish downstream into the net.

In streams wider than can be effectively sampled during a single pass (generally 5 ft or more), it may be necessary to work from the midline of the stream channel to the banks. Be sure that deep, shallow, fast, slow, complex, and simple habitats are all sampled. In stretches with deep pools, fish the margins of the pool as much as possible, being extremely careful not to step into deep water.

One or two netters follow along beside or slightly behind the person operating the electrofisher (on the anode side). Each netter uses an insulated dip net to retrieve stunned individual fish, which are then deposited into a bucket carried by one of the netters for later processing

At the completion of electrofishing, note the PDT, total sampling time, the total distance sampled, and information obtained while sampling. Record this information on the Fish Collection Form or in a team member's field notebook.

Electrofishing Precautions

Because fishes and amphibians are collected using portable electrofishing units, safety procedures must be followed meticulously at all times. Primary responsibility for safety while electrofishing rests with the principal investigator. Electrofishing units have a high voltage output and may deliver a dangerous electrical shock. While electrofishing, avoid contact with the water unless sufficiently insulated against electrical shock. Use chest waters and rubber gloves to prevent the chance of electric shock

Avoid contact with the anode and cathode at all times due to the potential shock hazard. While electrofishing avoid reaching into the water. If it is necessary for a team member to reach into the water to pick up a fish or something that has been dropped, do so only after the electrical current has been interrupted and the anode is removed from the water. Do not resume electrofishing until all individuals are clear of the electroshock hazard. The electrofishing equipment is equipped with a 45° tilt switch that interrupts the current and may shut off the unit completely in the event the person carrying the unit falls. Do not make any modifications to the electrofishing unit that would bypass the unit's automatic shutoff features.

Electrofishing equipment will not be utilized near unprotected people, pets, or livestock. Activity will be discontinued during thunderstorms or heavy rain.

Seining

Seining may be used in conjunction with electrofishing to ensure sampling of those species which may otherwise be under presented by an electrofishing survey alone (e.g., darters, madtoms, and benthic cyprinids). Seining may also be used in sites where the stream is too deep for electrofishing to be conducted safely or in turbid, simple, soft-bottomed streams where it is more effective.

Depending on the particular use (block netting vs. active seining) and the habitat, different sizes of seines are used. In riffle habitats, the seine is held stationary while team members disturb the substrate immediately upstream of the net. In pools, the seine is pulled back and forth across the pool, using the shore and other natural habitat breaks as barriers, or pulled rapidly downstream through the pool and then swept toward the shore. Block nets may be used in very large pools to limit escape or as seines. Large nets are typically deployed parallel to the current and swept to shore.

Proceed upstream through the reach, allocating the seining effort among habitat areas (riffles and pools) so that the entire reach is sampled. Deposit fish collected by seining into a bucket for later processing. It is not necessary to segregate the fish collected via electroshocking or seining. However the number of seine hauls and the time expanded in seining will be recorded on the Fish Field Data Sheet. At the completion of sampling activities (electrofishing and/or seining), record the total fishing time on the Fish Field Data Sheets.

Sample Processing

Sample processing involves tallying and identifying fish, examining individual specimens for external anomalies, preparing voucher specimens for taxonomic confirmation and archival at GBM^c.

Unless otherwise specified in a project specific SAP, at the end of each sampling effort fish from the entire reach are preserved in formalin for identification in the lab. For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the 2 page Field Data Sheets — Fish (attached). The first page of the 2-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

time sampled,
pedal down time (PDT),
relative abundance of aquatic trophic level communities,
percent of major habitats sampled,
percent of specific microhabitats sampled, and
relative abundance and scoring of substrate.

The second page provides for the listing of the taxa (field identification) and the numbers of each. Also included on page 2 are the general reach identifiers. Ultimately, the fish identification will be verified in the lab using keys in the Fishes of Arkansas (Robison, 1988) and the Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach will be compared according to several biometrics which may include: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant ordinal groups; percent of tolerant species; trophic structure; percent of hybrids; and percent of diseased fish. The analysis may also include the eight biometrics used by the State of Arkansas in their RBA scoring system. This scoring system places a value of 0, 2, or 4 on each of the eight biometrics to achieve a final mean score. The final mean score (0 to 32, 0-8=not supporting, 9-16=impaired, 17-24=generally supporting, 25-32=fully supporting) will indicate the impacts to a fish community when compared to the fish community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

Sample Maintenance

At the conclusion of all identifications, all fish collections are placed in 40% - 50% isopropyl alcohol for permanent preservation. The fish collections are maintained at GBMc & Associates for a period of three years after the completion of the project. An archive list of all fish collections is on file at GBMc & Associates. After the three year time period is up preserved fish may be offered to a scholastic institution or museum, discarded in an appropriate manner, or remain in storage at GBMc & Associates.

Quality Control

Field teams collecting fish are led by experienced aquatic biologists. A team of qualified personnel using proven sampling techniques makes field collections. Sampling equipment is routinely inspected to maintain and ensure proper working order prior to a sampling trip. Adjustment in the field to the equipment and/or techniques can be made in the field by the sampling team to improve the collection results. All aspects of the fish collection are documented in team members' personal field books, as well as specific field forms. The field forms are designed specifically for fish collection studies and are set up to include all pertinent field data. Field forms are completed for each sample site. All field forms are reviewed at the end of the study for completeness and accuracy.

identification of the collected fish starts in the field and is conducted by one or more experienced aquatic biologists that were involved in the collection effort. Field identifications are later verified in the laboratory by an experienced aquatic biologist. Laboratory identifications are then confirmed by a senior biologist to ensure completeness and accuracy. Efforts are made to remain abreast of current research in fisheries biology and identification techniques through scientific journals and conferences. In addition, EPA document updates and new information on fish assessment is tracked via the internet.

12.0 Sample Collection and Custody

Purpose

This SOP describes the materials and methods necessary for the routine collection of water and wastewater samples for the analysis of various conventional and unconventional pollutants. It also gives guidance for the completion of the COC forms necessary for each set of samples collected for laboratory analysis. This SOP provides general guidance and should not be substituted for a study specific work plan and/or Sampling and Analysis Plan.

Procedures

Sample Collection

- Fill out an Equipment Checklist for each sampling trip, checking (✓) all the necessary gear for sample completion.
- Clean sample bottles should be supplied by the laboratory or a reputable scientific supply company. Be sure to have an extra set of sample bottles on hand on each field trip.
- Check all bottles prepared by the lab to ensure the proper analyses are covered with the correct type of preservation. (Table 1)
- 4. A duplicate sample for a given analyte shall be taken, 1 for every 10 samples collected. That is, a duplicate sample will be collected 10% of the time. A duplicate sample is simply a second sample taken from the same location immediately following the original sample. The duplicate sample serves as a quality control check for the sample sources (stream water, etc.) variability, and the sampling methodology repeatability.
- A field blank shall be collected 10% of the time (1 in 10 samples) when metals or organic chemicals are being analyzed. A field blank is simply a sample bottle filled with deionized water (blank water) on-site at the study location to represent any potential contamination present at the site or in the sampling techniques.
- 6. A trip blank should be collected at the rate of 1 per 10 samples when metals or organic chemicals are being analyzed. A trip blank is a bottle filled in the lab with deionized water to verify blank water and sample bottle purity.
- 7. Use appropriate safety precautions while collecting the samples (i.e., wear latex gloves, Tyvek® suits, etc.) as necessary.
- 8. Place a label on the sample bottle, prior to collecting the samples, and record the following information on the label using a permanent marker (e.g., Sharpie⁶):
 - a. sample identification.
 - b. date of collection.
 - c. time of collection.
 - d. initials of collectors, and

GBM°v12.1 May2002 Page 1 of 3

- e. parameters to be analyzed (NH₃-N, Total Cu, etc.)
- 9. Fill one bottle per site completely, and place the cap securely on the bottle.

When filling sample bottles be sure to choose a representative sample location which is accessible in a manner as to prevent bottom and/or attached solid materials from entering the sample bottle. Samples should be taken in flowing water where possible. Samples should be taken from below the water surface if depth allows.

- 10. Place the bottle in an ice filled ice chest to keep the sample cool (4°C±2). If the ice chest(s) will be shipped to a laboratory, ice should be placed in a plastic bag(s) to prevent possible sample contamination from melting.
- 11. Record sample information on the Field Data Form or in a field notebook, along with any pertinent observations. If available, record instantaneous flow at the time of sample collection. This is important if the samples are from an NPDES discharge or other regulatory monitored system.
- 12. If samples are to be composited according to flow (flow-weighted) the following protoccol should be followed:
 - a) record a flow for each sample time on the COC form
 - b) include compositing instructions on the COC form for laboratory use
- 13. Measure any necessary in-situ parameters (pH, temperature, dissolved oxygen, specific conductivity) and record on the appropriate field form or in a field notebook.
- 14. When sampling is complete a COC form should be completed.
- 15. Take note of sample holding times (Table 1) and make an effort to return samples to lab as soon as possible.

Chain of Custody (COC)

- A COC form (attached) must be filled out for all samples submitted to the laboratory for analysis.
- 2. The COC form must be filled out with a ballpoint pen, and signed in the appropriate locations by each individual receiving the sample(s).
- The following information must be completed on each COC form:
 - a. company/facility,
 - b. contact name,
 - c. address.
 - d. phone number,
 - e. sample id.
 - f. sample description (where taken),
 - g. date (from sample bottle),
 - h. time (from sample bottle),

- i. number of containers,
- j preservative,
- k. parameters to analyze at lab,
- I. sampler(s),
- m. shipment method,
- n. turnaround time required,
- o. coc form completed by,
- p. coc form checked by, and
- q. relinquished by.
- 4. Each completed COC form shall be photocopied and the copy filed.
- 5. If shipping ice chests to a laboratory, the original COC form should be placed in a ziplock bag and then taped to the inside top of the ice chest for shipment.
- 6. At the lab the COC form will be received and signed. A copy of the COC form should be returned by the lab, along with the analysis results, when completed.

14.0 Turbidity Meter Calibration SOP

Purpose

This SOP describes the methods for calibration and use of the portable HACH Model 2100P Turbidimeter.

Calibration

Procedure

1. Prepare formazin 20, 100, and 800 NTU calibration dilutions immediately before calibrating. The solutions are made with a well mixed 4000 NTU stock solution and high quality dilution water (<0.5 NTU) as follows:

Dilution water--Deionized water. The deionized water should have a turbidity reading $< 0.5 \ NTU$.

- 20 NTU--Add 0.5 mL stock solution to a 100 mL volumetric flask and bring to volume.
- 100 NTU--Add 2.5 mL stock solution to a 100 mL volumetric flask and bring to volume.
- 800 NTU--Add 20 mL stock solution to a 100mL volumetric flask and bring to volume.
- (The 4000 NTU solution is stable for up to a year, but dilutions deteriorate more rapidly.)
- 2. Use the same sample cuvette for each different dilution reading. Rinse the clean cuvette with dilution water three times; then fill to the line with dilution water.
- 3. Place the instrument on a flat surface. Then insert the sample cuvette into the cuvette compartment with the orientation mark on the cuvette aligned with the mark on the front of the compartment. Close the lid and press I/O.
- 4. Turn the signal average off by pressing the Signal Average key until off is indicated. Then press calibrate (CAL). CAL and S0 should be displayed on the screen along with the value for the S0 standard for the last calibration.
- 5. Press READ. After the count down is completed, the blank value will be displayed, then the display will advance to the next standard. Remove the sample cuvette. (In case of error, refer to manual.)
- 6. S1 and 20 NTU will be displayed on the screen.

- 7. Rinse the sample cuvette 3 times with the well mixed, 20 NTU standard. Then fill the cuvette to the line with the 20 NTU standard.
- 8. Clean the outside of the cuvette with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.
- 9. Insert the sample cuvette into the cuvette compartment with the orientation mark on the cuvette aligned with the mark on the front of the compartment.
- 10. Close the lid and press READ. After the count down is completed, the standard value will be displayed, then the display will advance to the next standard. Remove the sample cuvette.
- 11. Repeat steps 6 through 10 for the S2 and S3 samples (100 and 800 NTU, respectively.)
- 12. After S3 has been read, the display will show S0. Remove the sample cuvette. Press CAL to accept the calibration.
- 13. Once the calibration has been accepted, the instrument will automatically proceed to measurement mode.

(If any errors occur during calibration, revert to manual for explanation.)

Calibration Verification

The 2100P Turbidimeter does not require calibration before every measurement. Gelex® Standards are used for routine calibration checks. Routine calibration checks should be performed bi-monthly. If the Gelex® standards read more than 5% from their recorded value, the meter should be recalibrated.

Procedure

Assigning values to the Gelex® standards

- 1. Calibrate the meter as described above.
- 2. Select the automatic range mode using the RANGE key.
- 3. Turn the signal average off by pressing the SIGNAL AVERAGE key until SIG AVG is not displayed on the screen.
- 4. Clean the outside of the Gelex® vile with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.

- 5. Insert the 0-10 NTU Gelex® standard into the cuvette compartment with the orientation mark on the vile aligned with the mark on the front of the compartment. Close the compartment lid.
- Press READ and record the displayed value after the lamp signal is no longer displayed on the screen.
- 7. Remove the vile and mark the value on the band near the top of the vile with a permanent marker.
- 8. Repeat steps 3 through 6 for the other Gelex® standards.
- 9. The values for each Gelex® standard should be reassigned each time a new calibration is performed.

Checking meter calibration

- 1. The Gelex® standards should be used as a routine check for instrument calibration. If the standards do not read within 5% of the assigned value, the instrument should be recalibrated before use, and new values assigned to the Gelex® standards.
- 2. Place the instrument on a flat surface.
- After turning the instrument on, select the automatic range mode using the RANGE key.
- 4. Turn the signal average off by pressing the SIGNAL AVERAGE key until SIG AVG is not displayed on the screen.
- 5. Clean the outside of the Gelex® vile with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.
- 6. Insert the 0-10 NTU Gelex® standard into the cuvette compartment with the orientation mark on the vile aligned with the mark on the front of the compartment. Close the compartment lid.
- Press READ and record the displayed value after the lamp signal is no longer displayed on the screen.
- 8. Remove the vile and compare the value on the band near the top of the vile with the recorded value. If the recorded value is within 5% of the value marked on the vile, continue to step 8. Otherwise recalibrate the instrument.
- 9. Repeat steps 3 through 6 for the other Gelex® standards.

Turbidity Measurements

Procedure

- Collect a representative sample of the liquid to be analyzed in a clean container. Rinse the clean sample cuvette three times with the sample water and fill to the line with sample, taking care to prevent the formation of air bubbles and not leave fingerprints on the sides of the cuvette.
- 2. Clean the outside of the cuvette with a soft, lint-free cloth removing water spots and fingerprints. Then apply a thin film of silicone oil and spread the oil evenly over the outside surface with a soft cloth.
- 3. Place the instrument on a flat surface and turn it on by pressing I/O.
- 4. Insert the sample cuvette into the cuvette compartment with the orientation mark on the cuvette aligned with the mark on the front of the compartment and close the lid.
- 5. Select automatic range by pressing the RANGE key until AUTO RNG is displayed.
- 6. Turn the signal average off by pressing the SIGNAL AVERAGE key until SIG AVG is not displayed on the screen.
- 7. Press READ and record the turbidity value after the lamp symbol is no longer displayed on the screen.

Meter Maintenance/Storage

- 1. Store the meter in the designated portable carrying case.
- 2. The meter should not be stored or left in a "dirty" condition.
- 3. The sample cuvette, silicone oil, and Gelex® standards should be stored in clean state in the proper boxes in the portable carrying case.
- 4. The 4000 NTU stock solution should be stored in a refrigerator at 5° C.

Quality Assurance/Quality Control

- 1. Meters are calibrated biweekly (at a minimum) to ensure proper function and accuracy.
- 2. Duplicate measurements should be taken at a rate of 10% (minimum) of samples analyzed.

Appendix B Agency documentation

Arkansas Department of Health and Human Services

Division of Health

Paul K. Halverson, DrPH, Director

Engineering Section - Environmental Health Branch - Center for Local Public Health Postal Address P. O. Box 1437, Slot H-37 Little Rock, AR 72203-1437

Physical Address for UPS or Fedex

1-501-661-2623

TDD: 1-800-234-4399

4815 West Markham St., Slot H-37

Little Rock, AR 72205

Fax: 1-501-661-2032

December 6, 2005

Mr. Vince Blubaugh GBMc & Associates 219 Brown Lane Bryant, AR 72022

Re: Domestic Water Supply Determination

Unnamed Tributaries of Little Cornie Bayou and Bayou De Loutre

Union County, AR

Dear Mr. Blubaugh.

In response to your letter of October 27, 2005 regarding the above streams, please be advised that these water bodies are not currently used as a source of supply for a public water system, nor are we aware of their being considered for such use.

We have no information regarding their use as a private or individual water supply. By copy of this letter, if the County Sanitarian is aware of such use, he/she is requested to respond to you in writing.

Should you have any questions in this regard, feel free to contact our office. We apologize for the delay in responding.

Sincerely.

Bob Makin, P.E., Assistant Director

Engineering Section

Cc: Martin Maner, ADEQ Water Division

Union County Sanitarian

Arkansas Department of Health and Human Services

Division of Health

Paul K. Halverson, DrPH, Director

Engineering Section - Environmental Health Branch - Center for Local Public Health

Poetal Address P. O. Box 1437, Slot H-37 Little Rock, AR 72203-1437 Physical Address for UPS or Fedex 1-501-661-2623 4815 West Markham St., Slot H-37

TDD: 1-800-234-4399 Little Rock, AR 72205

Fax: 1-501-661-2032

December 6, 2005

Mr. Vince Blubaugh GBMc & Associates 219 Brown Lane Bryant, AR 72022

Re: Domestic Water Supply Determination

Unnamed Tributaries of Little Cornie Bayou and Bayou De Loutre

Union County, AR

Dear Mr. Blubaugh,

In response to your letter of October 27, 2005 regarding the above streams, please be advised that these water bodies are not currently used as a source of supply for a public water system, nor are we aware of their being considered for such use.

We have no information regarding their use as a private or individual water supply. By copy of this letter, if the County Sanitarian is aware of such use, he/she is requested to respond to you in

Should you have any questions in this regard, feel free to contact our office. We apologize for

Sincerely,

Bob Makin, P.E., Assistant Director

Engineering Section

Cc: Martin Maner, ADBQ Water Division

Union County Sanitarian

Arkansas Natural Resources Commission

J. Randy Young, PE Executive Director

101 East Capitol, Suite 350 Little Rock, Arkansas 72201 http://www.anrc.arkansas.gov/

Phone: (501) 682-1611 Fax: (501) 682-3991 E-mail: aurc@arkansas.gov

Mike Huckabee Governor

November 8, 2005

Mr. Vince Blubaugh Principal, CBM^c & Associates 219 Brown Lane Bryant, Arkansas 72022

RE: Review and Comments

Removal of Designated Domestic Water Supply Use from Loutre Creek

Dear Mr. Blubaugh:

Thank you for the opportunity to review and comment on the removal of the Designated Domestic Water Supply Use from Loutre Creek near El Dorado in Union County, Arkansas. The downstream most coordinates for the reach under review are Latitude 33°11'33.08" and Longitude 92°40'42.39".

The removal of the Designated Domestic Water Supply Use from this reach of Loutre Creek would not conflict with the Arkansas State Water Plan. If you need any further assistance, or have any questions, please contact Steve Loop at (501)-682-3959.

Sincerely.

Barl T. Smith, P.E., Chief Water Resources Division

May 31, 2006

Mr. Robert Hart, P.E. Chief Engineer Arkansas Department of Health 4815 West Markham Street Little Rock, AR 72205-3867

Re: Domestic Water Supply Determination

GBM° No. 2072-05-070 & 2160-05-070

Dear Mr. Hart:

GBM^c & Associates is developing documentation, pursuant to the Arkansas Water Quality Standards, to evaluate removal of the Designated Domestic Water Supply Uses from the upper reach of Bayou De Loutre down to its confluence with Gum Creek near El Dorado, Arkansas. Please see the attached map of the stream reach.

Pursuant to ADEQ policy, we are requesting a determination as to whether this reach of Bayou De Loutre has been approved, or is being considered for use, as a domestic water source.

Thank you for your attention to this request for information. If you have any questions or need additional information please contact me or Roland McDaniel at (501) 847-7077.

Respectfully submitted, GBM° & ASSOCIATES

Vince Blubaugh

Principal

Attachment: Figure 1 - Map of Bayou De Loutre

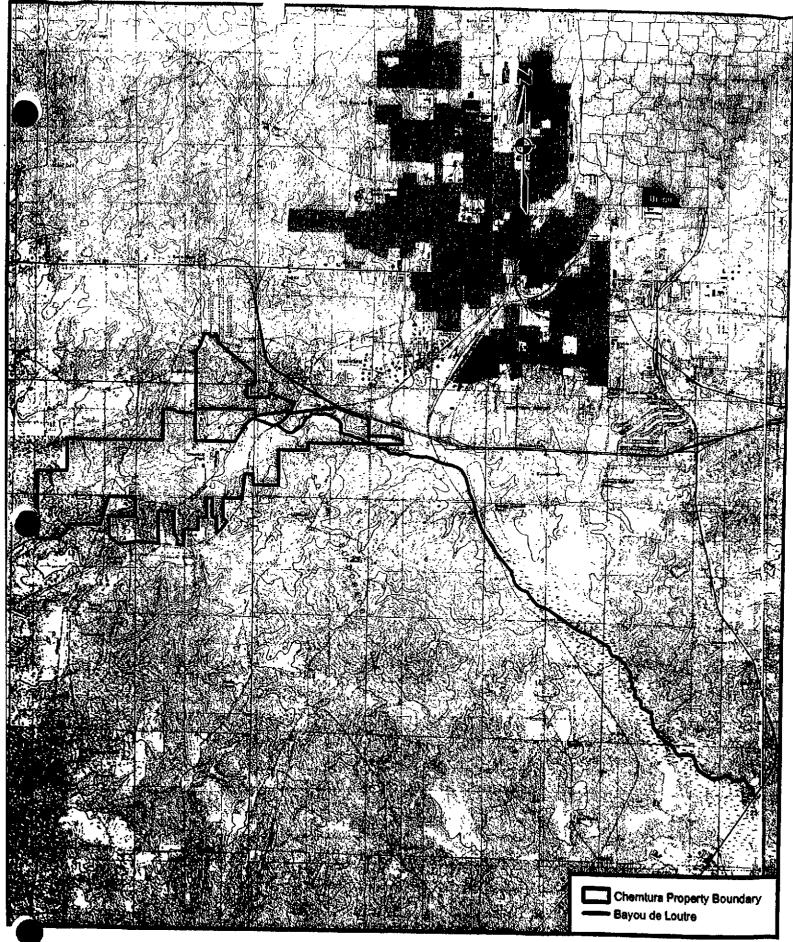


Figure 1. Bayou de Loutre downstream to the mouth of Gum Creek.

May 31, 2006

Mr. Earl T. Smith Chief Water Management Division Arkansas Soil and Water Conservation Commission 101 East Capital, Suite 350 Little Rock, AR 72201

Re: Domestic Water Supply Determination

GBM° No. 2160-05-070 & 2072-05-070

Dear Mr. Smith:

GBM^c & Associates is developing documentation, pursuant to the Arkansas Water Quality Standards, to evaluate removal of the Designated Domestic Water Supply Use from the upper reach of Bayou De Loutre down to its confluence with Gum Creek near El Dorado. Please see attached map of the stream reach.

Pursuant to ADEQ policy, we are requesting a determination as to whether removal of the Designated Domestic Water Supply Uses from this portion of Bayou De Loutre.

Thank you for your attention to this request for information. If you have any questions or need additional information please contact me or Roland McDaniel at (501) 847-7077.

Respectfully submitted, GBM^c & ASSOCIATES

Vince Blubaugh Principal

Attachment: Figure 1 -Map of Bayou De Loutre

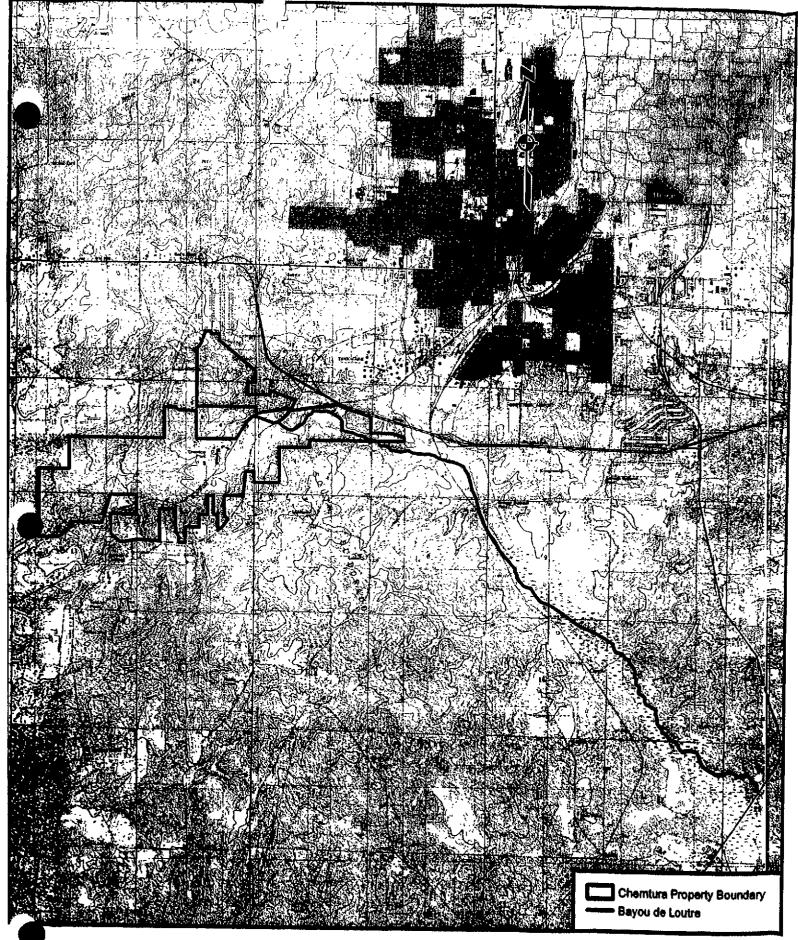


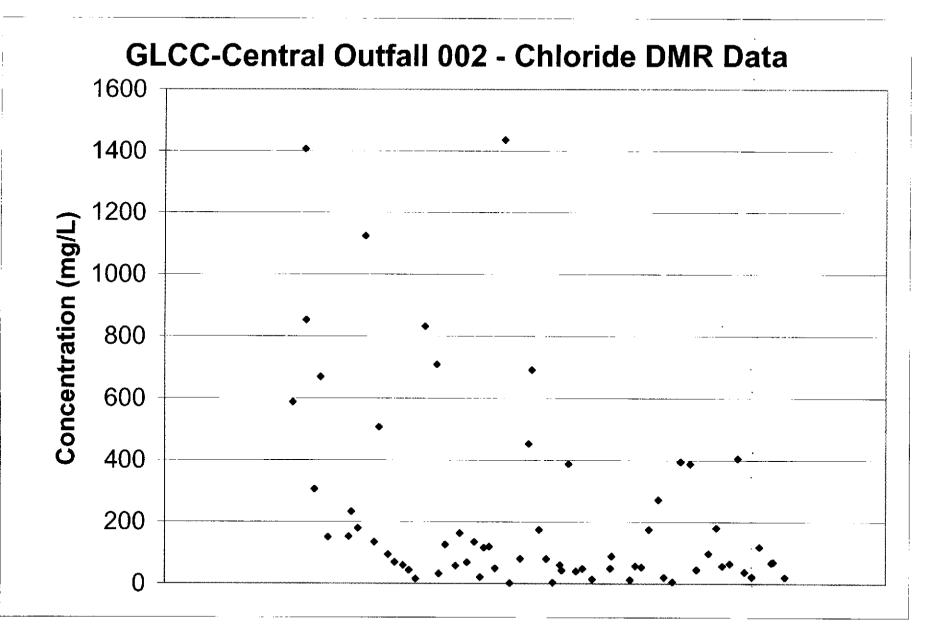
Figure 1. Bayou de Loutre downstream to the mouth of Gum Creek.

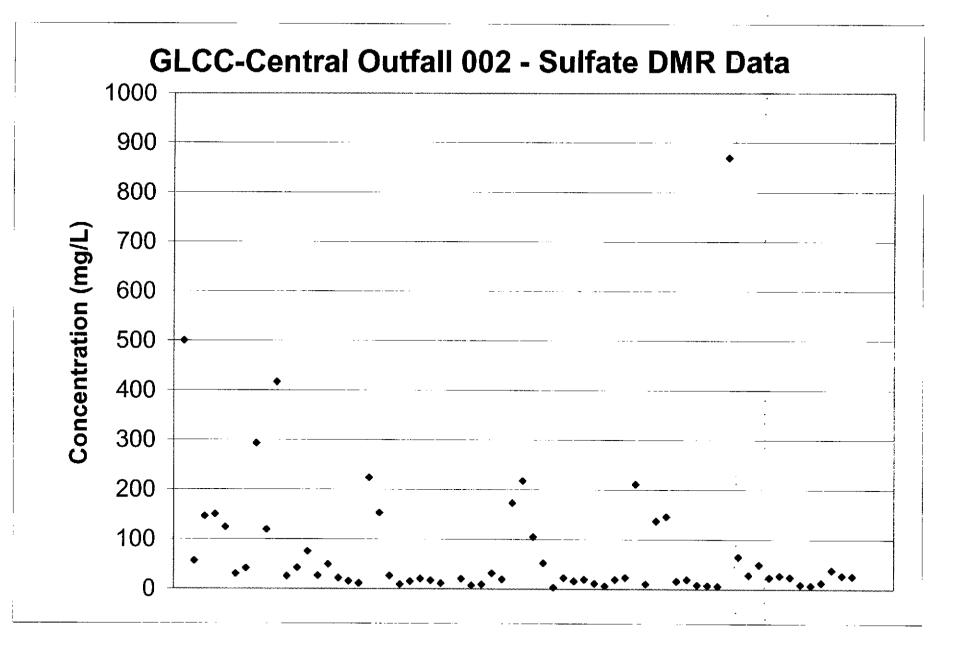
Appendix C DMR and Outfall Specific Mineral Data with Statistical **Assessment**

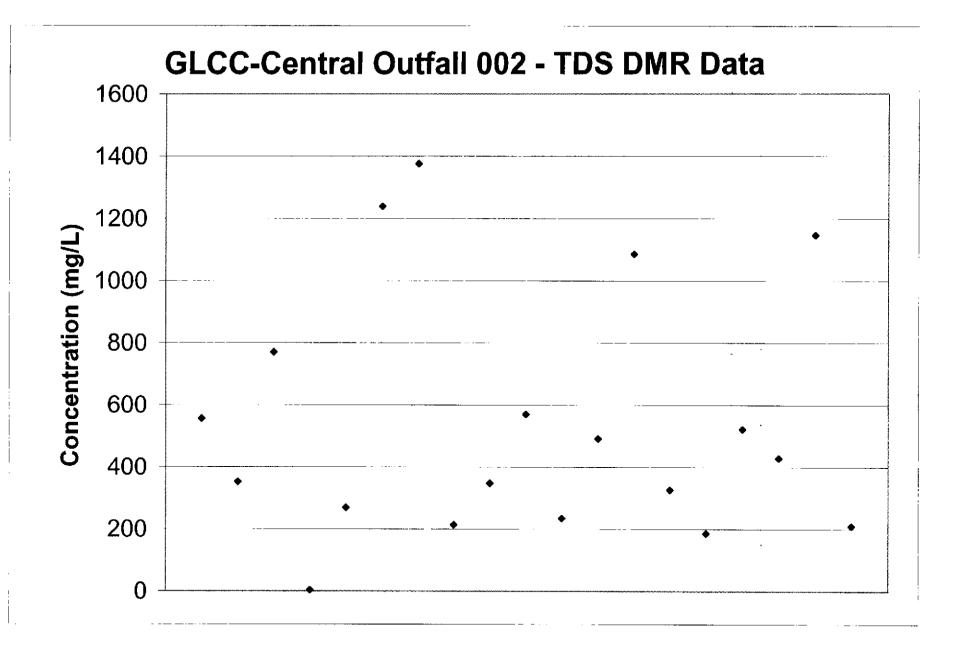
FACILITY NAME (1):	GREAT LAKES CHEMICAL CORP- CENT	NPDES:	A D00004474			
FACILITY NAME (2):	***	LIMIT TYPE :	AR0001171	<u> </u>		·
	RAL PLANT		3 = INTERIM			· · ·
PIPE NUMBER :	002	SEASON NUM:	0			
REPORT DESIGNATOR:	Α	PARAMETER CODE:	50050 = FLOW, IN CONDUIT OR THRU TREATMENT PLANT			
PIPE SET QUALIFIER :	9	MONITORING LOCATION:	1 = EFFLUENT GROSS VALUE			
MODIFICATION NUM:	0		_			
MONITORING PERIOD END DATE	DISCHARGE IND	MAXIMUM (MGD)	AVERAGE (MGD)	CONC MAXIMUM	CONC AVERAGE	CONC MINIMUM
31-Oct-05		0.043	0.025		-	
30-Sep-05		0.422	0.059		 	
31-Aug-05		0.297	0.154			
31-Jul-05		0.173	0.057			;
30-Jun-05		0.054	0.021			, , , , , , , , ,
31-May-05		0.101	0.025			•
30-Apr-05		0.475	0.051	_		
31-Mar-05		0.137	0.019			
28-Feb-05		0.113	0.018			
31-Jan-05		0.256	0.034			
31-Dec-04		0.262	0.036			
30-Nov-04		0.297	0.04		-	
31-Oct-04		0.416	0.119			
30-Sep-04	C = NO DISCHARGE			-		
31-Aug-04		0.095	0.045		- -	
31-Jul-04		0.06	0.043		-	<u>.</u>
30-Jun-04		0.22	0.048			 -
31-May-04		0.297	0.053			,
30-Apr-04		1.1	0.059			
31-Mar-04		0.392	0.045			'
29-Feb-04		0.232	0.069			
31-Jan-04		0.214	0.025			
Totals:			MGD	cfs		
	Average	0.269	0.050	0.417	0.077	
	Minimum	0.043	0.018	0.067	0.028	<u> </u>
	Maximum	1.1	0.154	1.702	0.238	

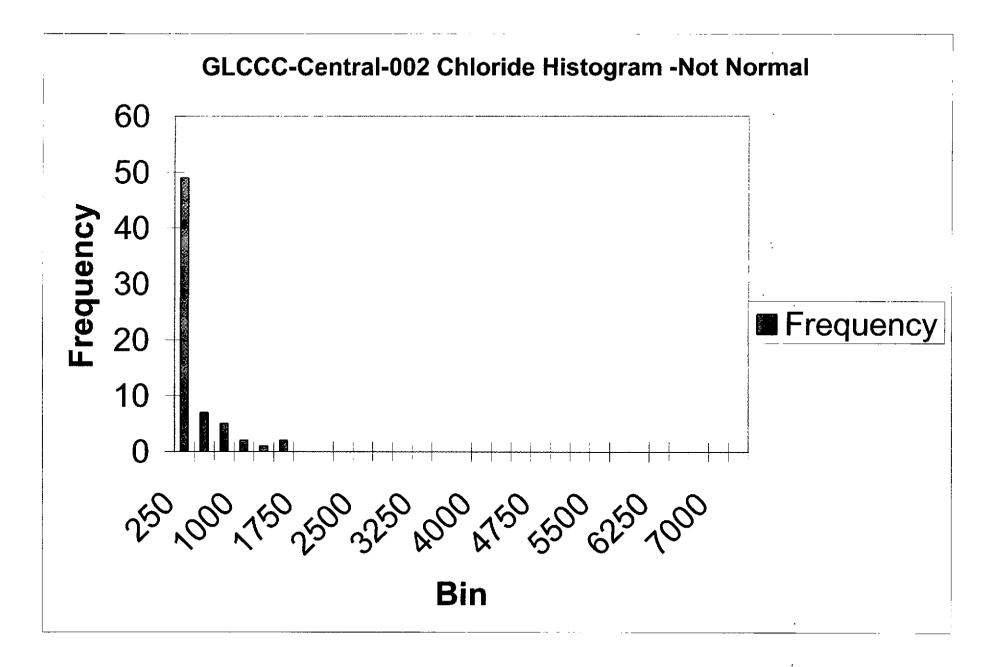
.

Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 002. Period of Record January 2000 - September 2005

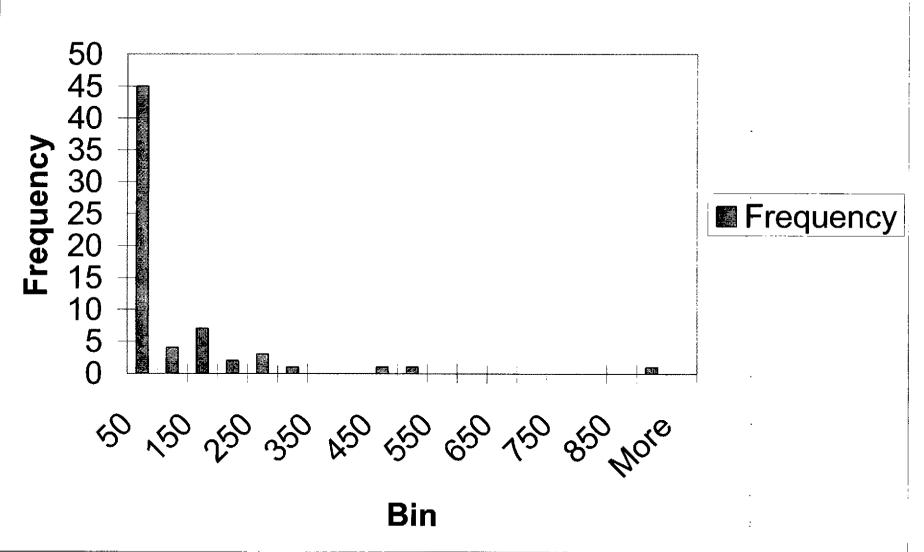

Date	Chloride (mg/L)	Sulfate (mg/L)	TD\$ (mg/L)	
1/8/00	587	500		
2/26/00	1407	56		
3/3/00	852	146		
4/7/00	305	150		
5/3/00	669	124		
6/3/00	150	30		•
8/29/00	152	41		
9/9/00	233	293		_
10/6/00	179	119		
11/4/00	1124	417		
12/13/00	134	25		
1/1/01	506	42		
2/9/01	93	75		
3/8/01	69	26		
4/12/01	59	49		•
5/7/01	43	21		
6/4/01	15	15		
7/13/01	832	11		
8/31/01	709	224		
9/9/01	32	153		
10/6/01	125.3	26.1		
11/19/01	57.3	8.8		
12/6/01	163	14.6		
1/5/02	68	20		
2/5/02	134	16.8		•
3/1/02	21	11		
3/17/02	115			•
4/8/02	119	20		
5/2/02	49	6.7		*
6/9/02	1436	8.9		
7/3/02	1.3	31.3		Þ
8/16/02	80	19		•


Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 002. Period of Record January 2000 - September 2005


Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	
9/20/02	452	173		
10/3/02	691	218		•
11/3/02	174	105		
12/3/02	79	52		
12/30/02	3	3		
1/29/03	60	22		•
2/5/03	42	15.5		
3/5/03	388	19		•
4/6/03	39	11		
5/3/03	48	6.3		
6/12/03	14	19		
8/27/03	49	23		•
9/1/03	88	211		
11/18/03	12	10		
12/9/03	57	137		•
1/4/04	53	146	556	
2/4/04	175	16	352	
3/14/04	271	19	770	
4/7/04	20	8	3	. :
5/12/04	5	7	270	
6/15/04	395	6	1239	
7/25/04	388	869	1376	
8/20/04	44.9	64.5	214	
10/9/04	96.4	27.8	348	
11/10/04	180	49	570	
12/5/04	57	23	235	
1/5/05	64	27	492	• •
2/7/05	405	24	1086	
3/7/05	37	9	326	:
4/6/05	22	7	186	
5/8/05	118	12.5	522	
6/26/05	67	38	429	,
7/3/05	69	27	1147	
8/21/05	20.2	25.7	210	•
9/13/05 9/16/05	5333 F 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72 59 Standa	11015 11015 11015 11015	


Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 002. Period of Record January 2000 - September 2005

Date	Chloride (mg/L)		Sulfate (mg/L)		TDS (mg/L)	· · · · · · · · · · · · · · · · · · ·
Statistics	Chlorides (mg/l)		Sulfate (mg/l)		TDS (mg/l)	
Data Characterization	, , ,					• •
99th%tile	1417	III BURNANAN MARKATAN	6 33	os applintable	ja (k. j. j. j. j. j. j. 1351	•
95th%tile	\$2000 E E BOOK 847	a dispositi	279		1253	+ ₊ · · · ·
average	230	er Egy Hardenberger	78.9		544	
maximum	1436		869	erin Kade diliki	1376	
minimum	1436 1.30 90.5		3.00 25.7		3:40	
median	90.5		25.7	Benevious de la company de La company de la company d	429	
count	66	(C. C. C. 1000 of 1000	65		19	
standard deviation	321		138		397	
CV	1.39		1.75		0.73	
Pn	0.93		0.93		0.78	
99%	0.99		0.99		0.99	1 7
95%	0.95		0.95		0.95	•
Z for 99 %tile	2.33		2.33		2.33	
Z for 95 %tile	1.64		1.64		1.64	
99% Value	1436	320 3 5 10 10 10 10 10	869		= 376	
95% Value	1029		380	AG HILL THE SOLUTION	1376	
	ORDER STATS		ORDER STATS		ORDER STATS	
						,
	k	value	k	value	k	yalue
Order Stats (95)		1029	62.70	380	 19	1376
Order Stats (99)		1436	65.34	869	19.8	1376



	GREAT LAKES CHEMICAL CORP-					
FACILITY NAME (1):	CENT	NPDES :	AR0001171			
FACILITY NAME (2):	RAL PLANT	LIMIT TYPE :	3 = INTERIM			
PIPE NUMBER :	003	SEASON NUM:	0			
DEDODT			50050 = FLOW, IN			:
<u>REPORT</u>		PARAMETER CODE:	CONDUIT OR THRU			- ,
DESIGNATOR:	Α		TREATMENT PLANT			
PIPE SET		MONITORING	1 = EFFLUENT GROSS			÷
QUALIFIER:	9	LOCATION:	VALUE			
MODIFICATION						:
NUM:	0					,
MONITORING				CONC	CONC	CONC
PERIOD END DATE	DISCHARGE IND			MAXIMUM	AVERAGE	
EKIOD END DATE		MAXIMUM (MGD)	AVERAGE (MGD)	710 0 01010103	, III LIVIOL	
31-Oct-05		1.083	0.069			
30-Sep-05		3.843	0.416			
31-Aug-05		2.328	0.236			. '
31-Jul-05		1.57	0.283			
30-Jun-05		0.054	0.022			•
31-May-05		0.92	0.137			• •
30-Apr-05		4.331	0.459			
31-Mar-05		1.245	0.174			
28-Feb-05		1.029	0.156			
31-Jan-05		2.328	0.313			
31-Dec-04		2.382	0.327			
30-Nov-04		2.707	0.359			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
31-Oct-04		3.789	0.747			
30-Sep-04		1.245	0.1			
31-Aug-04		0.866	0.099			
31-Jul-04		0.542	0.197			
30-Jun-04		2,003	0.428			
31-May-04		2.707	0.391			
30-Apr-04		1.191	0.242			
31-Mar-04		3.573	0.406			
29-Feb-04		2.111	0.626	1		
31-Jan-04		1.95	0.408			<u> </u>
Totals:		Specification of the state of t	MGD		S mire, meet	
	Average	1.991	0.300	3.080	0.464	
	Minimum	0.054	0.022	0.084	0.034	• •
	Maximum	4.331	0.747	6.701	1.156	<u> </u>

•

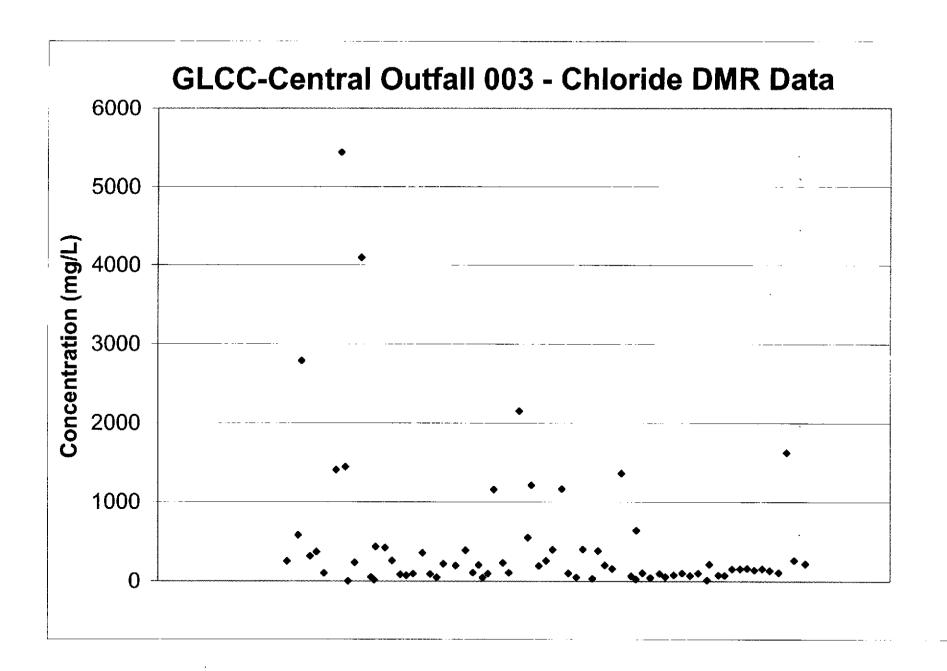
· \$

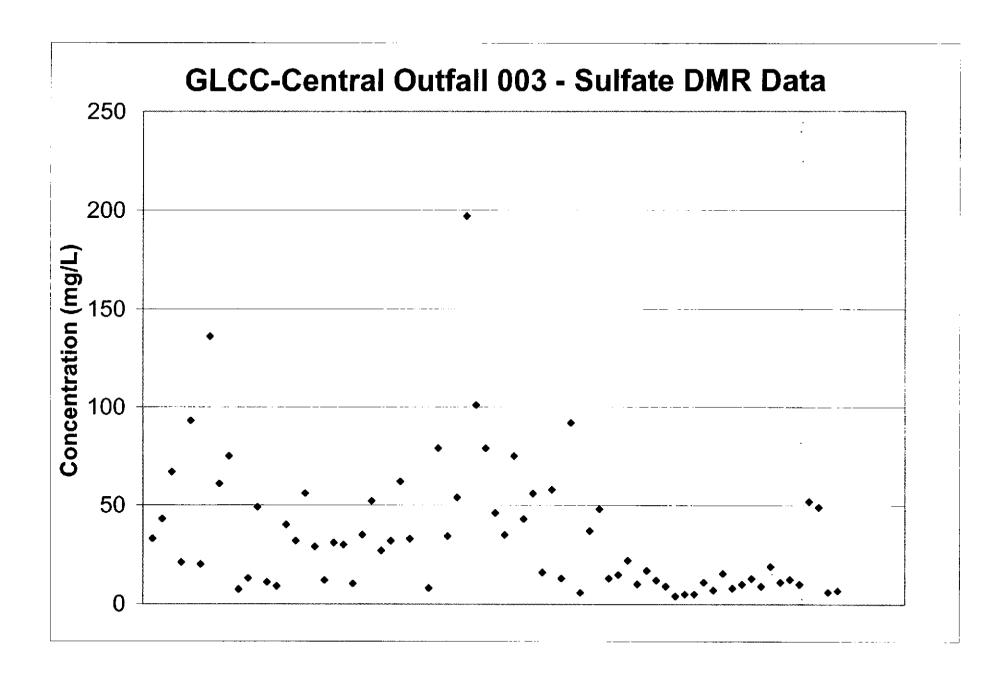
.

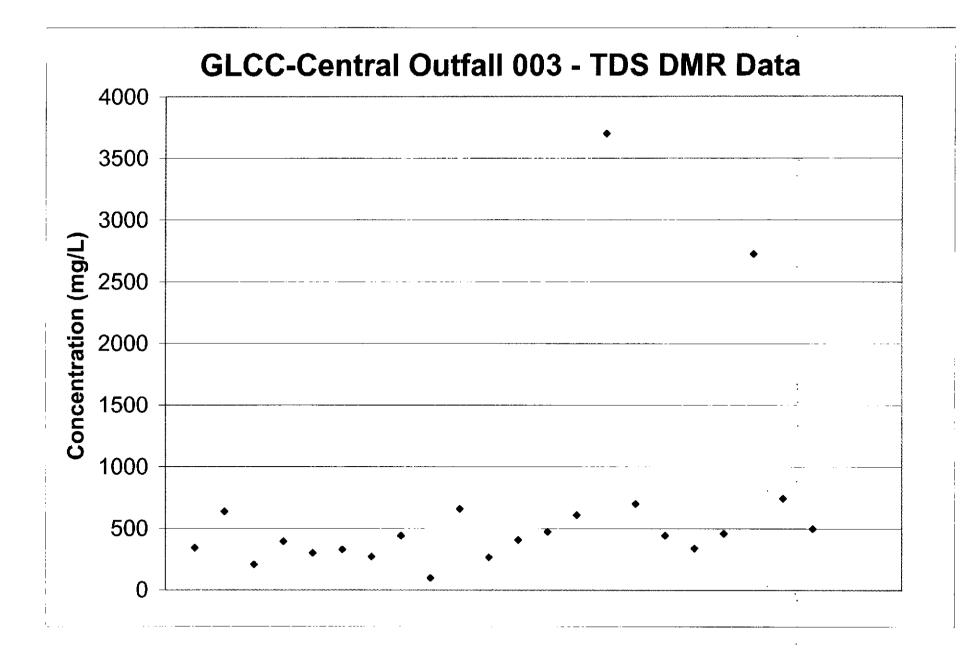
Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 003. Period of Record January 2000 - October 2005

Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
1/3/00	253	33	
2/18/00	581	43	
3/3/00	2789	67	
4/7/00	318	21	
5/3/00	370	93	
6/3/00	101	20	
7/22/00	1406	136	
8/11/00	5437	61	
8/29/00	1445	75	
9/9/00		7.3	
10/6/00	236	13	
11/2/00	4094	49	
12/13/00	50	11	
12/25/00	15	9	
1/1/01	436	40	
2/9/01	422	32	
3/9/01	261	56	
4/12/01	83	29	
5/7/01	72	12	
6/4/01	93	31	
7/13/01	359	30	
8/13/01	90.3	10.3	
9/9/01	47	35	
10/6/01	220	52.1	
11/26/01	198	27	
1/5/02	392	32	
2/5/02	107	62.1	
3/1/02	206	33	
3/17/02	44		
4/8/02	96	8	
5/2/02	1158	79	
6/9/02	232	34.3	
7/3/02	106	54	
8/14/02	2150	197	
9/19/02	552	101	
10/3/02	1213	79	
11/3/02	193	46	
12/3/02	259	35	
12/30/02	400	75	

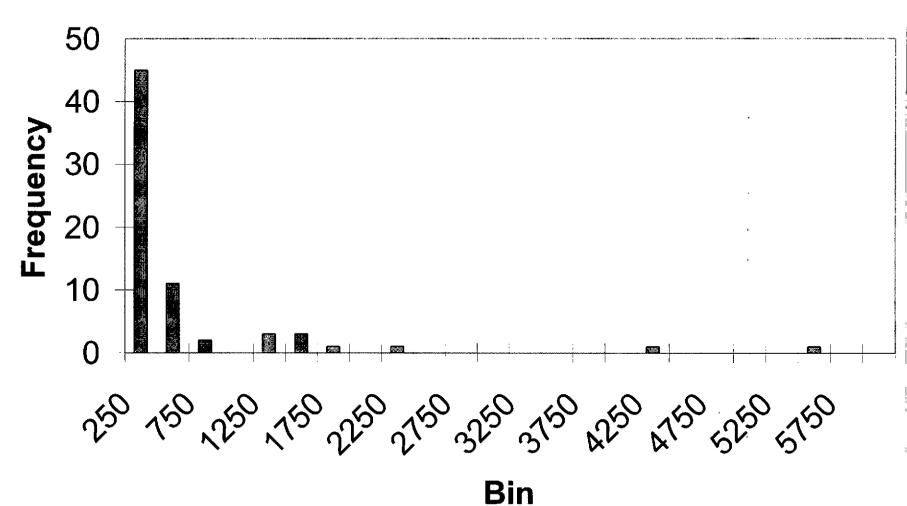
Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 003. Period of Record January 2000 - October 2005

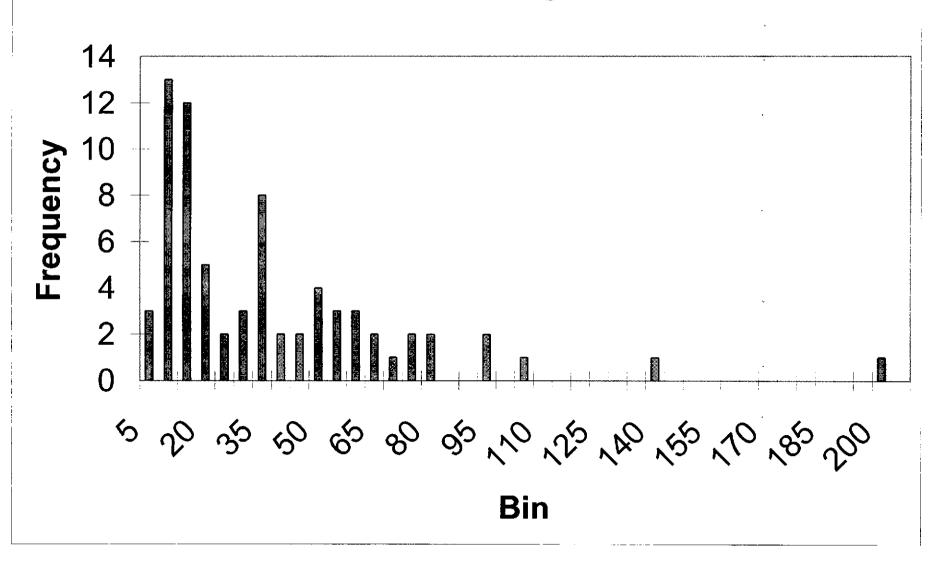

Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
2/5/03	1166	43	
3/5/03	100	56	
4/6/03	48	16	
5/3/03	403	58	
6/12/03	33	13	
7/5/03	385	92	
8/2/03	204	5.7	
9/1/03	159	37	
10/9/03	1364	48	
11/18/03	66	13	
12/7/03	25.3	14.8	
12/9/03	642	22	
1/4/04	104	10	343
2/4/04	42	17	635
3/14/04	95	12	206
4/7/04	56	9	395
5/11/04	78	4	302
6/15/04	102	5	330
7/17/04	69	5	271
8/19/04	100	11	441
9/24/04	13	7	96
10/4/04	213	15.5	658
11/10/04	75	8	266
12/5/04	74	10	409
1/5/05	155	13	474
2/7/05	156	9	608
3/7/05	163	19	3699
4/6/05	141	1 1	699
5/8/05	156	12.5	444
6/7/05	135	10	340
7/14/05	107	52	460
8/15/05	1624	49	2726
9/15/05	265	6	743
10/31/05	222	6.8	500

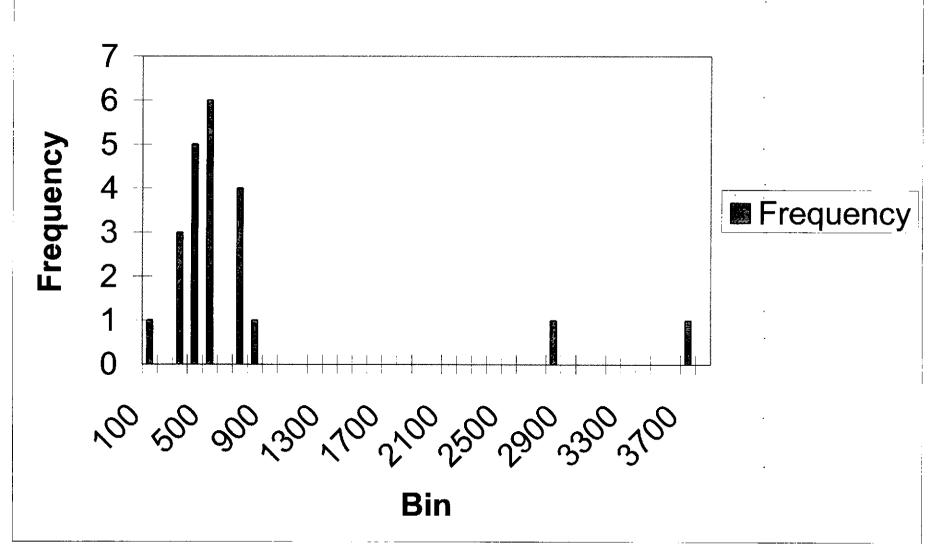

Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 003. Period of Record January 2000 - October 2005


Date	Chloride (mg/L)		Sulfate (mg/L)		TDS (mg/L)
Statistics	Chlorides (mg/l)		Sulfate (mg/l)		TDS (mg/l)
Data Characterization					
99th%file	4483	all dingh		200 (300 (3) . 101 (1 VA 00 A 1 VA 0	34 9 5
95th%tile	1861		- Time the committee (92)		2627
average	489		35.		. 684
maximum	5437		19 4 0		3699
minimum			4.0		96 0
median	12 12 Philips 178		######################################	10.00.0000000000000000000000000000000	443
count	72		7.		22
standard deviation	901		33.		848
CV	1.84		0.9		1.24
Pn	0.94		0.9		0.81
99%	0.99		0.9	9	0.99
95%	0.95		0.9		0.95
Z for 99 %tile	2.33		2.3	3	2.33
Z for 95 %tile	1.64	+ 1	1.6	4	1.64
99% Value	5437	-600	19		2657
95% Value	2374	ee ee ee	95.		2079
	ORDER STATS		ORDER STATS		NORMAL FORMULA
	k	value	k	value	
99		5437	72.2		
95	,,,	2374	69.3		
	639			8	
	63.9		0.		
	223.65		0. 2 <i>.</i>		
	223.63		۷.	U	

2373.65


95.8




GLCC-Central 003 Chloride Histogram - Not Normal

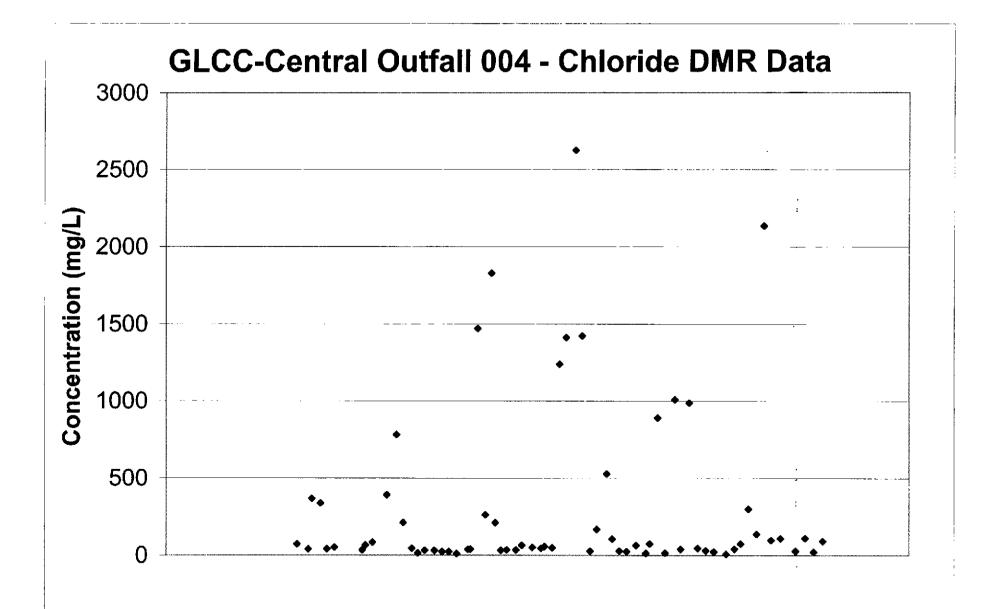
GLCC-Central-003 SO4 Histogram - Not Normal

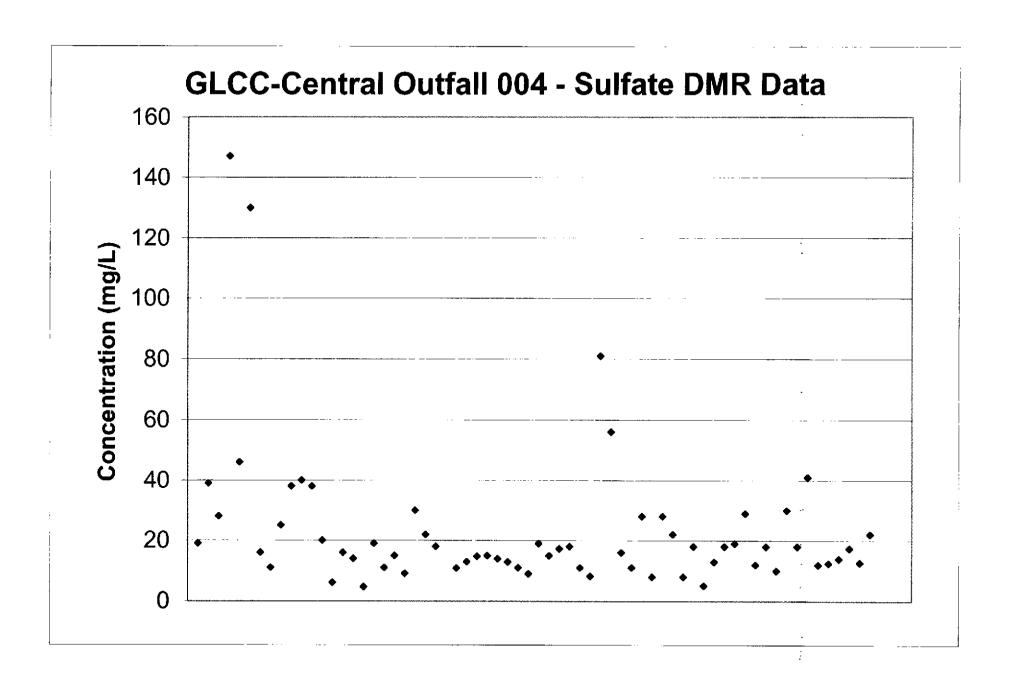
FACILITY NAME (1):	GREAT LAKES CHEMICAL CORP- CENT	NPDES:	AR0001171			
FACILITY NAME (2).	RAL PLANT	<u>LIMIT TYPE :</u>	3 = INTERIM			
PIPE NUMBER :	004	SEASON NUM:	0			
REPORT DESIGNATOR :	A	PARAMETER CODE:	50050 = FLOW, IN CONDUIT OR THRU TREATMENT PLANT			
<u>PIPE SET</u> QUALIFIER:	9	MONITORING LOCATION:	1 = EFFLUENT GROSS VALUE			•
MODIFICATION NUM:	0					·
MONITORING PERIOD END DATE	<u>DISCHARGE IND</u>	MAXIMUM (MGD)	AVERAGE (MGD)	CONC MAXIMUM	CONC AVERAGE	CONC MINIMUM
31-Oct-05		0.36	0.36			
30-Sep-05		0.747	0.327			
31-Aug-05		0.387	0.24			,
31-Jul-05		0.261	0.19			
30-Jun-05	C = NO DISCHARGE					
31-May-05		0.183	0.173			
30-Apr-05		0.72	0.108			•
31-Mar-05		0.207	0.04			
28-Feb-05		0.171	0.026			7
31-Jan-05		0.387	0.052			
31-Dec-04		0.396	0.054			
30-Nov-04		0.45	0.059			
31-Oct-04		0.63	0.21			:
30-Sep-04		0.414	0.414			
31-Aug-04		0.144	0.022			. '
31-Jul-04		0.09	0.033			
30-Jun-04		0.333	0.085			
31-May-04		0.45	0.104			
30-Apr-04		0.198	0.063			
31-Mar-04		0.594	0.068			
29-Feb-04		0.351	0.104			
31-Jan-04		0.324	0.042			
Totals:		Book grand and the tenance		cf	S & S Trugger	
The second secon	Average	0.371	0.132	0.574	0.204	
	Minimum	0.090	0.022	0.139	0.034	_
	Maximum	0.747	0.414	1.156	0.641	

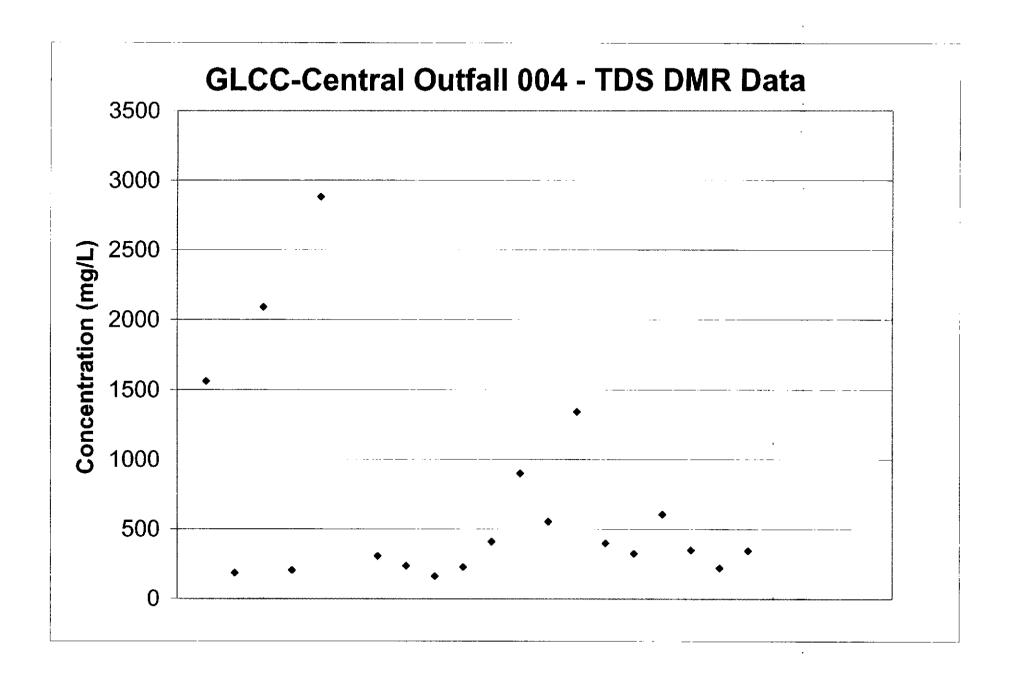
.

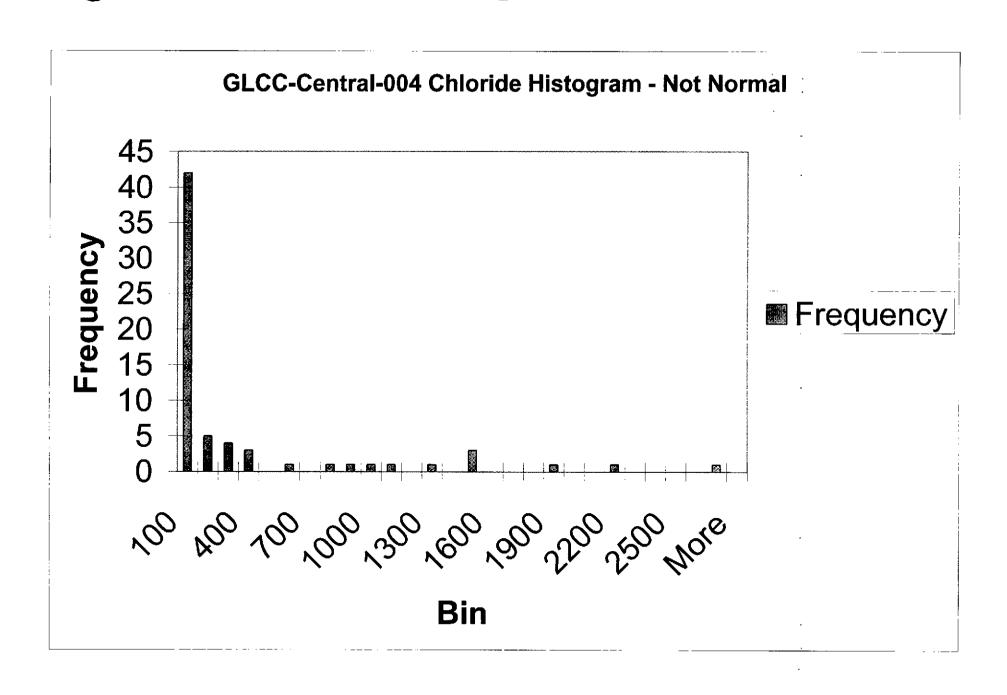
Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 004. Period of Record January 2000 - October 2005

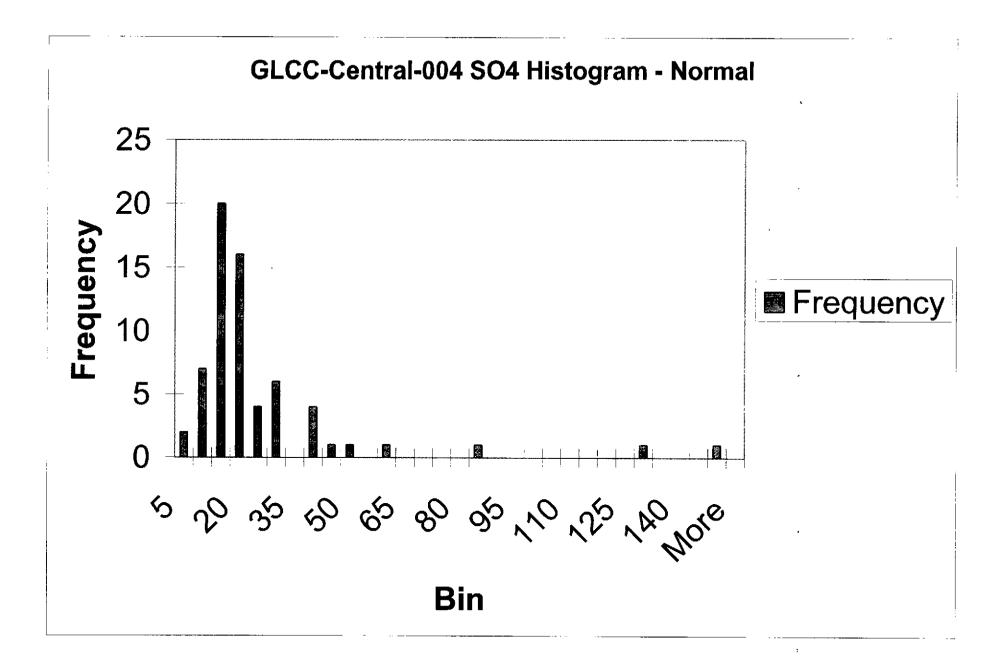
Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	
1/3/00	72	19		
2/18/00	40	39		
3/3/00	367	28		
4/7/00	336	147		
5/3/00	41	46		
6/3/00	51	130		
9/24/00	33	16		
10/6/00	65	11		
11/4/ 0 0	83	25		
1/1/01	390	38		
2/9/01	781	40		
3/8/01	210	38		
4/12/01	44	20		
5/7/01	14	6		
6/4/01	31	16		
7/13/01	30	14		
8/13/01	21.8	4.6		
9/9/01	22	19		
10/11/01	9	11		
11/26/01	37	15		
12/6/01	38.2	9.1		
1/5/02	1470	30		
2/5/02	260	21.9		
3/1/02	1827	18		
3/17/02	209			
4/8/02	32.1	10.9		
5/2/02	33	13		
6/9/02	33	14.8		
7/3/02	63	1 5		
8/14/02	50	14		
9/19/02	45	12.9		
10/3/02	55	11		

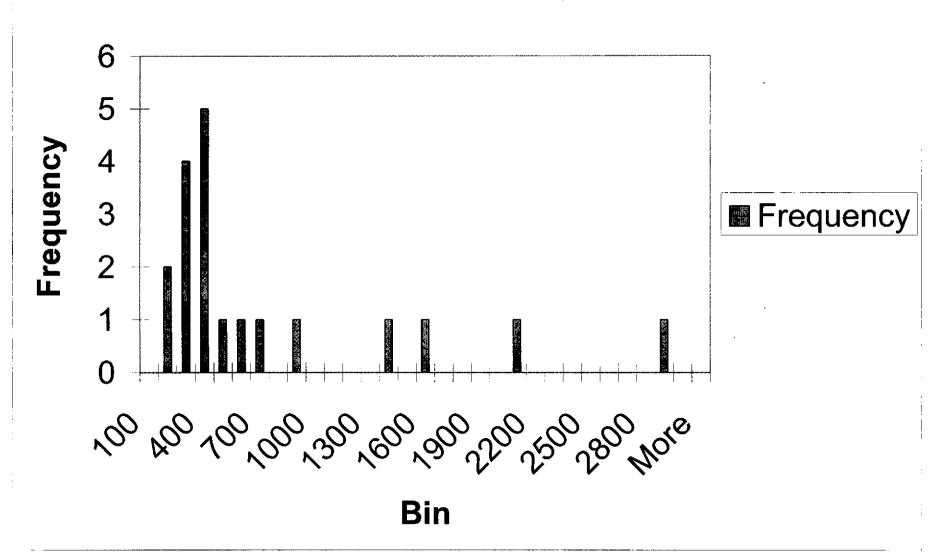

Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 004. Period of Record January 2000 - October 2005


Date			TDS (mg/L)	
11/3/02	48	9		
12/3/02	1239	19		
12/30/02	1411	15		
2/5/03	2625	17.3		
3/5/03	1422	18		
4/6/03	26	11		
5/3/03	167	8.2		
6/12/03	528	81		
7/5/03	104	56		
8/2/03	27	16		
9/1/03	23	11		
10/9/03	63	28		
11/18/03	12	8		
12/3/03	73	28		
1/4/04	890	22	1561	
2/4/04	15	8	184	
3/14/04	1009	18	2089	
4/7/04	39	5	203	
5/11/04	987	13	2881	
6/15/04	45	18	200.	
7/17/04	29	19	306	
8/19/04	22	29	235	
10/7/04	6	12	160	
11/10/04	40	18	227	
12/5/04	74	10	409	
1/5/05	299	30	900	
2/7/05	136	18	553	
3/7/05	2136	41	1342	
4/6/05	97	12	399	
5/14/05	108	12.5	324	
7/13/05	26	14	605	
8/21/05	110	17.4	350	
9/24/05	21.27	12.72	220	
10/31/05	91	22	345	


Summary of DMR values for Chloride, Sulfate, and TDS for GLCC-Central Outfall 004. Period of Record January 2000 - October 2005


Date	Chloride (mg/L) Sulfate (mg/L)		TDS (mg/L)
Statistics	Chlorides (mg/l)	Sulfate (mg/l)	TDS (mg/l)
ata Characterization			
)th%tile	2307	136	2738
th%tile	1458	ggg, 54.0 gg = 54.0 gg	2738 2168
verage	314	23.5	00X (1.5 - 1.5 -
naximum	2625	147	2881
oinimum	6:00	4.60	160
nedian	59.0	5.37 0 0 173	350
ount	66	65	19
andard deviation	561	24.4	749
/	1.79	1.04	1.07
1	0.93	0.93	0.78
%	0.99	0.99	0.99
1%	0.95	0.95	0.95
for 99 %tile	2.33	2.33	2.33
or 95 %tile	1.64	1.64	1.64
1% Value	2625	803	2442.7
o% Value⊕	1702	63.7	1932.1
	ORDER STATS	NORMAL FORMULA	NORMAL FORMULA


99% 66.33 **2625** 95% 63.65 **1702** 357 35.7 232.05 1702.05



GLCC-Central-004 TDS Histogram - Normal

Bayou de Loutre / Loutre Creek IWC Calcs - Final

Chloride IWC	DISCHG. CONC (mg/L)	DISCHG. FLOW (cfs)	U/S CONC. (mg/L)	U/S FLOW (cfs)	TOTAL FLOW (cfs)	IWC (mg/L)
GLCC-Central - 004: 95th%tile	1702	0.64	5	. 4	4 64	239
Bayou de Loutre u/s of UT-002	1702	0.64	5	4	4,64	239
GLCC-Central - 002: 95th%tile	1029	0.24	5	4	4.24	63
Bayou de Loutre u/s of Loutre Creek	1519	0.88	5	4	4.88	278
Loutre Creek	503	4.06	5	4	8.06	256
Bayou de Loutre d/s of Loutre Creek	684	4.94	5	8	12.94	264
Bayou de Loutre d/s of City of EIDo - South	358	12.37	5	8	20.37	219
Bayou de Loutre d/s of Hwy 79	358	12.37	5	12	24.37	184

Sulfate IWC	DISCHG. CONC (mg/L)	DISCHG. FLOW (cfs)	U/S CONC. (mg/L)	U/S FLOW (cfs)	TOTAL FLOW (cfs)	IWC (mg/L)
GLCC-Central - 004: 95th%tile	63.7	0.64	13	4	4.64	20.0
Bayou de Loutre u/s of UT-002	63.7	0.64	13	4	4.64	20.0
GLCC-Central - 002: 95th%tile	380	0.24	13	4	4.24	33.8
Bayou de Loutre u/s of Loutre Creek	148	0.88	13	4	4.88	37.4
Loutre Creek	1967	4.06	13	4	8,06	997
Bayou de Loutre d/s of Loutre Creek	1643	4.94	13	8	12 94	635
Bayou de Loutre d/s of City of ElDo - South	702	12.37	13	8	20 37	431
Bayou de Loutre d/s of Hwy 79	702	12.37	13	12	24.37	363

TDS IWC	DISCHG, CONC (mg/L)	DISCHG. FLOW (cfs)	U/S CONC. (mg/L)	U/S FLOW (cfs)	TOTAL FLOW (cfs)	IWC (mg/L)
GLCC-Central - 004: 95th%tile	1932	0.64	67	4	4.64	324
Bayou de Loutre u/s of UT-002	1932	0.64	67	4	4.64	324
GLCC-Central - 002: 95th%tile	1376	0.24	67	4	4.24	141
Bayou de Loutre u/s of Loutre Creek	1780	0.88	67	4	4.88	376
Loutre Creek	3420	4.06	67	4	8.06	1756
Bayou de Loutre d/s of Loutre Creek	3128	4.94	67	8	12.94	1236
Bayou de Loutre d/s of City of ElDo - South	1548	12.37	67	8	20.37	966
Bayou de Loutre d/s of Hwy 79	1548	12.37	67	12	24.37	819

Mass Balance Calcs

Chloride

	Flow		Conc	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	1029	1330.531574	
GLCC-Central - Outfall 004	0.64	0.41344	1702	5868.648499	
Totals	0.88	0.56848		7199.180074	1518

Chloride

	Flow		Conc	Load	mixed conc
Source	cfs	m gd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	1029	1330.531574	
GLCC-Central - Outfall 004	0.64	0.41344	1702	5868.648499	
Lion - Outfall 001	4.06	2.62276	504	11024.40447	
Totals	4.94	3.19124		18223.58455	685

Chloride

	Flow		Conc	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	1029	1330.531574	
GLCC-Central - Outfall 004	0.64	0.41344	1702	5868.648499	
Lion - Outfall 001	4.06	2.62276	504	11024.40447	
City of ElDo - South	7.43	4.79978	142	5684.283458	
Totals	12.37	7.99102		23907.86801	35

Sulfate

	Flow		Сопс	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	380	491.352768	
GLCC-Central - Outfall 004	0.64	0.41344	63.7	219.6433075	
Totals	0.88	0.56848		710.9960755	150

Sulfate

	Flow		Conc	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	380	491.352768	
GLCC-Central - Outfall 004	0.64	0.41344	63.7	219.6433075	
Lion - Outfall 001	4.06	2.62276	1967	43025.80079	
Totals	4.94	3.19124		43736.79687	1

Sulfate

	Flow		Conc	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	380	491.352768	
GLCC-Central - Outfall 004	0.64	0.41344	63.7	219.6433075	
Lion - Outfall 001	4.06	2.62276	1967	43025.80079	
City of EIDo - South	7.43	4.79978	76	3042.292555	
Totals	12.37	7.99102		46779.08942	702

TDS

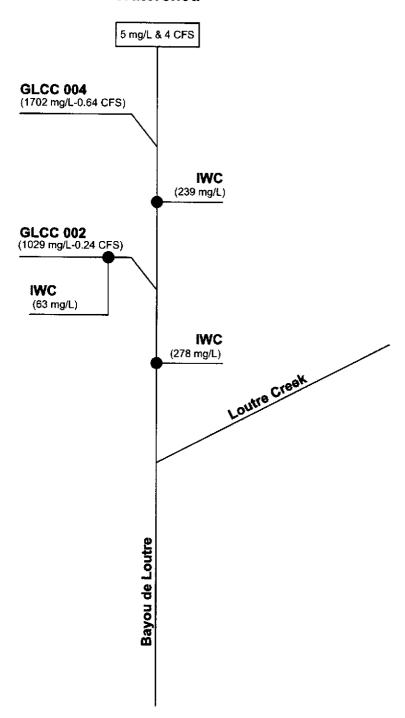
	Flow		Conc	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	1376	1779.214234	
GLCC-Central - Outfall 004	0.64	0.41344	1932	6661.709107	
Totals	. 0.88	0.56848		8440.923341	1780

TDS

	Flow		Conc		Load	mixed conc
Source	cfs	mgd	mg/L		lb/day	
GLCC-Central - Outfall 002	0.2	4 0.15	504	1376	1779.214234	
GLCC-Central - Outfall 004	0.6	4 0.41	344	1932	6661.709107	
Lion - Outfall 001	4.0	6 2.62	276	3420	74808.45893	
Totals	4.9	4 3.19	124		83249.38227	31

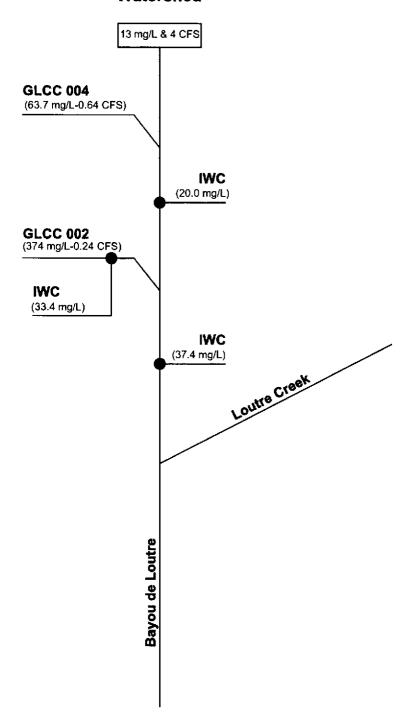
TDS

	Flow		Conc	Load	mixed conc
Source	cfs	mgd	mg/L	lb/day	
GLCC-Central - Outfall 002	0.24	0.15504	1376	1779.214234	
GLCC-Central - Outfall 004	0.64	0.41344	1932	6661.709107	
Lion - Outfall 001	4.06	2.62276	3420	74808.45893	
City of EIDo - South	7.43	4.79978	497	19894.9921	
Totals	12.37	7.99102		103144.3744	154

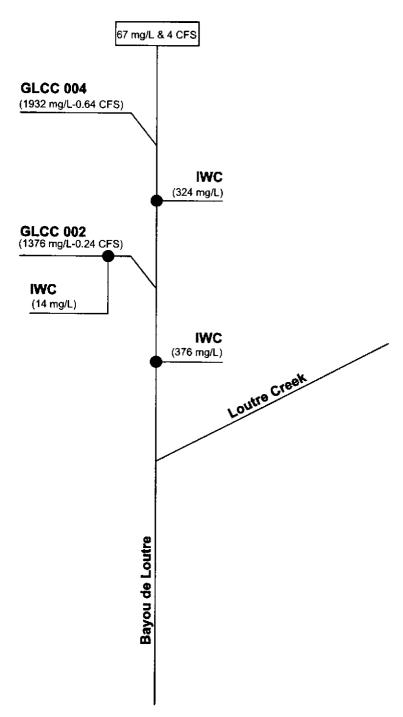

Outfall 003 / Little Cornie Bayou - IWC Calcs - Final

Chloride IWC	DISCHG. CONC (mg/L)	DISCHG. FLOW (cfs)	U/S CONC. (mg/L)	U/S FLOW (cfs)	TOTAL FLOW (cfs)	IWC (mg/L)
UT-003	2374	1.16	5	4	5.16	538
UT-Little Cornie Bayou	538	5.16	5	4	9.16	305
Little Cornie Bayou	305	9.16	5	4	13.16	214

Sulfate IWC	DISCHG. CONC (mg/L)	DISCHG. FLOW (cfs)	U/S CONC. (mg/L)	U/S FLOW (cfs)	TOTAL FLOW (cfs)	IWC (mg/L)
UT-003	95.8	1.16	13	4	5.16	31.6
UT-Little Cornie Bayou	31.6	5.16	13	4	9.16	23.5
Little Cornie Bayou	23.5	9.16	13	4	13.16	20.3


TDS IWC	DISCHG. CONC (mg/L)	DISCHG. FLOW (cfs)	U/S CONC. (mg/L)	U/S FLOW (cfs)	TOTAL FLOW (cfs)	IWC (mg/L)
UT-003	2079	1.16	67	4	5. 16	519
UT-Little Cornie Bayou	519	5.16	67	4	9.16	322
Little Cornie Bayou	322	9.16	67	4	13.16	244

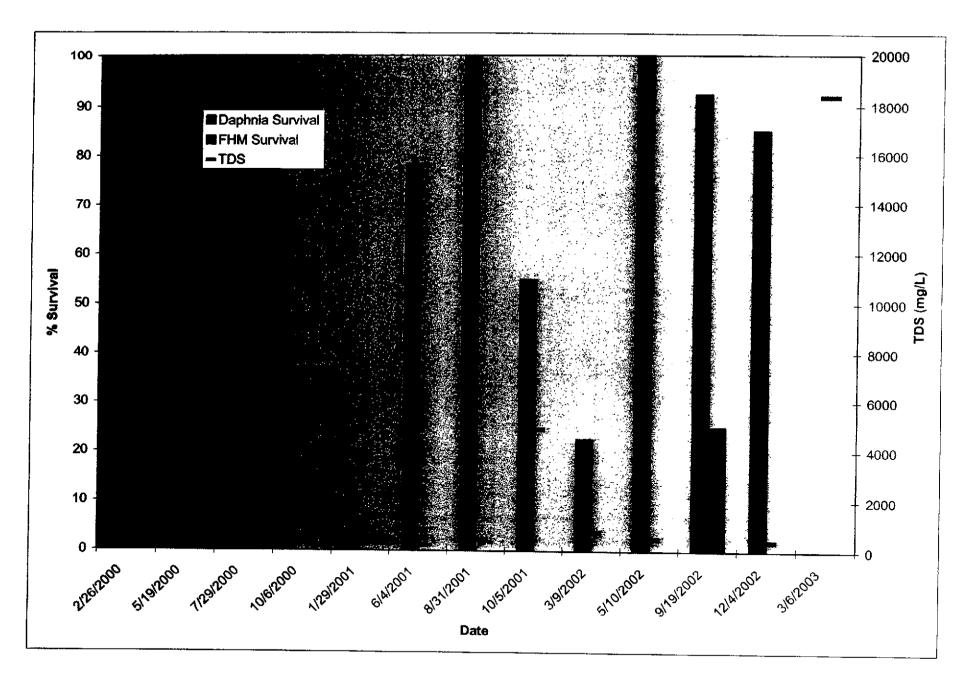
Bayou de Loutre Watershed


Schematic of Chloride discharges considered for Great Lakes Chemical Company-Central Facility 3rd party rule making indicating the instream waste concentration resulting from the 95 percentile of historical discharges, the mean maximum monthly flow and background flow of 4 CFS for Bayou de Loutre to the mouth of Loutre Creek.

Bayou de Loutre Watershed

Schematic of Sulfate discharges considered for Great Lakes Chemical Company-Central Facility 3rd party rule making indicating the instream waste concentration resulting from the 95 percentile of historical discharges, the mean maximum monthly flow and background flow of 4 CFS for Bayou de Loutre and to the mouth of Loutre Creek.

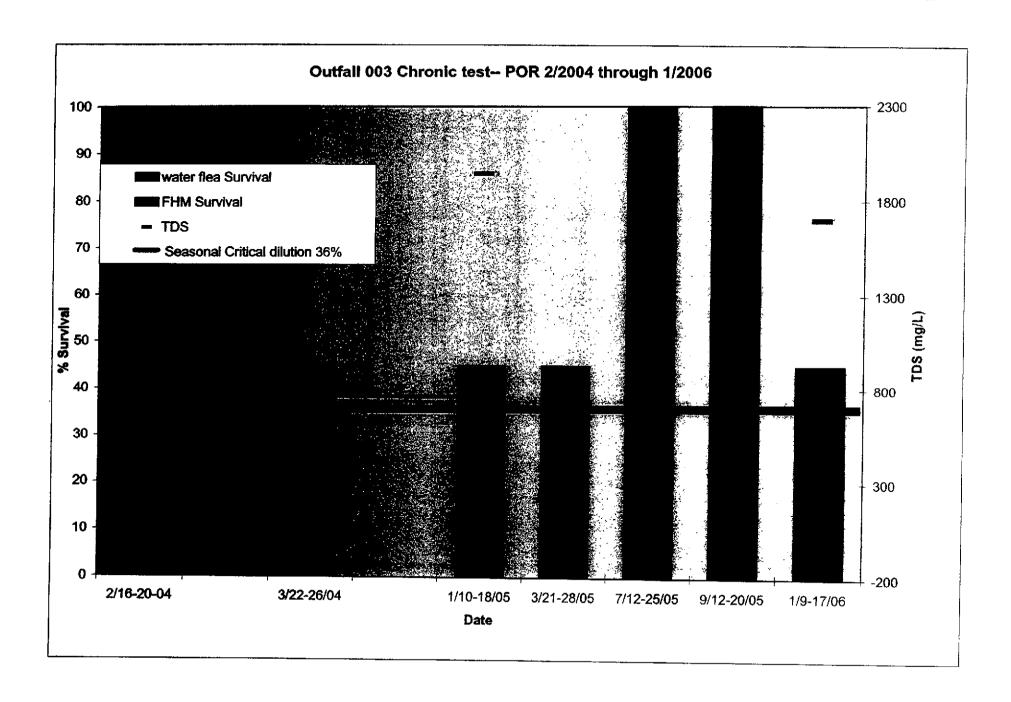
Bayou de Loutre Watershed



Schematic of TDS discharges considered for Great Lakes Chemical Company - Central Facility 3rd party rule making indicating the instream waste concentration resulting from the 95 percentile of historical discharges, the mean maximum monthly flow and background flow of 4 CFS for Bayou de Loutre and to the mouth of Loutre Creek.

Appendix D Summary of Toxicity Testing Data

Measured endpoints		Waterflea				ead minne	ow .		Water	Chemistry	
Date of Test	24	48	LC50	Control	24	48	LC50	Control	Hardness	Alkalinity	Conductivity
Oct-98	NA	NA	NA	NA	97.5	95	>100%	100	40	8	228
Jun-98	100	100	>100%	100	100	100	>100%	100	121	10	723
Jul-98	90	65	>100%	100	0	0	5.25	100	63	<1	529
Jul-98	NA	NA	NA	NA	47.5	30	>100%	100	71	16	55 8
Aug-98	NA	NA	NA	NA	10	2.5	9.9	100	34	4	258
Dec-98	NA	NA	NA	NA	47.5 76	50 73	10.75	100	180 15	22 2.9	1077 52
Dec-98	NA	NA	NA	NA	7.5	0	9	100	63 4	11 7	320 16(57)
Jan -99	87.5	62.5	>100%	90	32.5 100	12.5 92.5	13.5	100	130 4	17 7	688 16
Jul-00	55	40	30		0	0	11	100	572	132	3900
Oct-00	0	0:	9.9		0	0	9.9	100	164	26	990
Ja n-01	70	2.5	1 5 .5	97	22.5	0	9.9	100	56	24	412
Jun-01		79			0	0	9.8	100	44	16	343
Aug-01	100	100	>100%		0	0	9.8	100	120	28	715
Oct-01	100	55	>100%		0	0	9.5	100	224	112	7130



Page 1

GLCC-Central

Outfall 003 Toxicity Summary (48-h Acute Screening Test)

	Da	phnia %Sun	/ival	Fathea	d Minnow %	Survival			Ma	ximum			Minimum	
Sample Date	CNTL	100% Eff	LC50	CNTL	100% Eff	LC50	TRC	Hardness	Alkalinity	Conductivity	TDS (est.)	pН	D.O.	NOTES
2/26/2000	100	95	na	100	20	18	0.01	120	6	728	473 2	7.5	7.2	MH dil. water / Increase in pl
5/19/2000	100	40	46	100	0	10	0.01	32	16	175.4	114.01	7	ľ	soft dil. Water / chemistry?
7/29/2000	100	40	30	100	0	11	0.01	572	132	3920	2548	7.8		soft dil Water
10/6/2000	100	0	9.9	100	0	9.9	0.01	164	26	998	648.7	7.9	6.1	soft dil. Water
1/29/2001	97.5	2.5	15.5	100	0	9.9	0.01	56	24	415	269.75	8.7	7.5	soft dil Water
6/4/2001	92.5	78.5	na	100	0	9.8	0.01	44	16	343	222.95	8.6	7.4	soft dil. Water
8/31/2001	100	100	na	100	_ o	9.6	na	120	28	698	453.7	8	 	soft dil. Water
10/5/2001	100	55	na	100	0	9.5	0.4	924	112	7540	4901	7.9		soft dil, Water
3/9/2002	100	22.5	20	100	0	8.9	0.1	231	8	1163	755.95	6.9		soft dif. Water
5/10/2002	100	100	na	100	o	9.6	0.1	96	32	750	487.5	7.9		soft dil Water
9/19/2002	90	92.5	na	100	25	21	0.2	296	76	2300	1495	7.9		soft dil. Water
12/4/2002	90	85	na	100	0	9.5	0.2	112	16	596	387.4	7.2		soft dil. Water
3/6/2003	96	0	8.7	100	0	9.6	0.01	72	32	28300	18395	6.5		soft dil. Water

GLCC-Central
Outfall 003 Toxicity Summary (7-day chronic toxicity test) POR Fet

			Cerioaphnia			Min.	
Sample Date	Survival CNTL	Survival max diultuion	Survival NOEL	Repro. CNTL)	рН	D.O.	NOTES
2/16-20-04	90	0	15 15 15 15 15 15 15 15 15 15 15 15 15 1	18 3	6.6	3 5 d	Critical dilution 36%. Failed ALL ENDPOINTS A CRITICAL DILUTION
3/22-26/04	100	90	45	24 1	64		1st retest of 003 failure CD repro effect at critical dilution, Pp noe effects even at 1 5X critical dilution . Not low DO 4.2ppm
1/10-18/05	100	90	4 5	23 6	7 4	7	Passed all endpoints except cd repo. Note last renewal very different from 1st two Incresaed hardness & conductivity and decrease in pH
3/21-28/05	90	100	4 5	24 8	7.7	7.4	PASSED ALL END POINTS Critical dilution based on seasonal flows
7/12-25/05	100	100	100	18	7.3	7.8	PASSED LETHALITY AT 100%, failed sub see contrl ???
9/12-20/05	97.5	97 5	100	18.9	72	6.9	PASSED ALL But sub Cd. Note cnt repo, barely passed minimum SEE DETAILS OF CONTROL & CULTURE
1/9-17/06	100	80	45	26.5	75	7.8	PASSED ALL But sub Cd. SEE DETAILS OF CONTROL & CULTURE

Bio-Analytical Laboratories (BAL)
ADEQ #88-0630
Project X2593
Executive Summary

Bio-Analytical Laboratories' Executive Summary

Permittee: Great Lakes Chemical Corporation

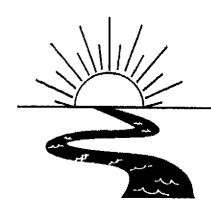
P.O. Box 7020

El Dorado, AR 71731

Permit #: AR0001171

Project #: X2593

Outfall: 002 upstream and 004 upstream


Contact: Mr. David Hill
Test Dates: March 10 - 12, 2006

Test Type: 48-hour Acute Screening Toxicity Tests using Pimephales promelas and

Daphnia pulex (EPA Methods 2000.0 and 2021.0)

Results:

Greater than 50 percent survival occurred in the 100 percent dilution after 48 hours of exposure in all tests.

Bio-Analytical Laboratories

3240 Spurgin Road Post Office Box 527 Doyline, LA 71023

(318) 745-2772 1-800-259-1246 Fax: (318) 745-2773

bioanalytical@worldnet.att.net

THE RESULTS OF FOUR 48-HOUR ACUTE SCREENING TOXICITY TESTS ON 002 UPSTREAM AND 004 UPSTREAM WATER SAMPLES

FOR

GREAT LAKES CHEMICAL CORPORATION El Dorado, Arkansas

NPDES #: AR0001171

EPA Methods 2000.0 and 2021.0

Project X2593

Test Dates: March 10 - 12, 2006 Report Date: March 23, 2006

Prepared for: Mr. David Hill Great Lakes Chemical Corporation P.O. Box 7020 El Dorado, AR 71731

Prepared by: Ginger Briggs Bio-Analytical Laboratories P.O. Box 527 Doyline, LA 71023 ADEQ 88-0630

TABLE OF CONTENTS

TABLE OF CONTENTS	
1.0 Introduction	1
2.0 Methods and Materials	1
2.1 Test Methods	1
2.2 Test Organisms	1
2.3 Control Water	1
2.4 Test Concentrations	1
2.5 Sample Collection	2
2.6 Sample Preparation	2
2.7 Monitoring of the Tests	2
2.8 Data Analysis	2
3.0 Results and Discussion	2
4.0 Conclusions	4
5.0 References	5
Appendices	
A- Chain-of-Custody Documents	
B- Raw Data Sheets	
C- Statistical Analysis	
D- Quality Assurance Charts	
E- Agency Forms	
F- Report Quality Assurance Form	

1.0 Introduction

Bio-Analytical Laboratories (BAL), Doyline, Louisiana conducted four 48-hour acute screening toxicity tests on water samples collected upstream from Outfalls 002 and 004 at Great Lakes Chemical Corporation's Central Plant, El Dorado, Arkansas. Such testing will determine compliance with Arkansas Department of Environmental Quality's Water Quality Standard of greater than 50 percent survival of the appropriate test organism in the defined low-flow effluent concentration (critical dilution) for a 48-hour period. The test organisms used were the fathead minnow, *Pimephales promelas* and the cladoceran, *Daphnia pulex*.

2.0 Methods and Materials

2.1 Test Methods

All methods followed were according to the latest edition of "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms" (EPA-821-R-02-012).

2.2 Test Organisms

The fathead minnow test organisms were raised in-house and were approximately three days old at test initiation. The *Daphnia pulex* test organisms were also raised in-house and were less than 24 hours old at test initiation. The test organisms were acclimated to test temperature and dilution water hardness prior to test initiation.

2.3 Control Water

Soft reconstituted water made per EPA guidelines was used as the control for the acute screening tests.

2.4 Test Concentrations

The test concentrations used in the acute toxicity tests were 100.0 percent effluent and a reconstituted water control. The tests were conducted using five replicates of eight animals each for a total of 40 animals per concentration. Forty-eight hour reference toxicant tests, using sodium chloride (NaCl), was run with the acute screening tests in order to document organism sensitivity

2.5 Sample Collection

Grab samples of water, collected upstream of Outfalls 002 and 004, were collected by Great Lakes Chemical personnel on March 9, 2006. Upon completion of collection, the samples were chilled to 4° Celsius and delivered to Bio-Analytical Laboratories by BAL personnel.

2.6 Sample Preparation

Upon arrival, the samples were logged in, given an identification number and refrigerated until needed. Prior to use, each sample was warmed to $25\pm1^{\circ}$ Celsius. Total residual chlorine levels were measured with a Capital Controls^R amperometric titrator and recorded if present. Dissolved oxygen, pH and conductivity measurements were taken at test initiation and at each renewal. Alkalinity and hardness levels were measured on the control and the highest effluent concentration.

2.7 Monitoring of the Tests

The tests were run in a Precision^R Model 818 dual programmable illuminated incubator at a temperature of 25±1° Celsius. An AEMC^R data logger was used to monitor diurnal temperature throughout the testing period. Light cycle and intensity were recorded twice a month.

2.8 Data Analysis

The LC₅₀ value from the reference toxicant tests were obtained by approved EPA methods of analysis, using a computer program developed by EMSL, Cincinnati, Ohio.

3.0 Results and Discussion

The results of the tests can be found in Table 1 on the following page. Greater than 50 percent survival occurred in the 100 percent dilution in all tests after 48 hours of exposure.

Table 1: Results of the 48-hour Acute Definitive Toxicity Tests

Percent Effluent	Percent Surviva	I
Test Organism	D. pulex	P. promelas
Control for 002 test	90.0	100.0
100%	100.0	100.0
Control for 004 test	90.0	100.0
100%	97.5	100.0

The 48-hour reference toxicant test results can be found in Table 2 below. The test results indicate that the test organisms were within the respective sensitivity range. The graphs of the acute reference toxicant tests can be found in Appendix D- Quality Assurance Charts.

Table 2: Results of the 48-hour Reference Toxicant Tests - g/L

Test Organisms	Date Started	LC ₅₀	Upper and Lower CUSUM Chart Limits
Daphnia pulex	3/10/06	1.25	3.05 - 0.64
Pimephales promelas	3/9/06	8.99	9.14 - 7.17

BAL ADEQ #88-0630 Project X2593 Page 4 of 5

4.0 Conclusions

The grab samples collected upstream from Outfalls 002 and 004 on March 9, 2006 at Great Lakes Chemical Corporation's Central Plant in El Dorado, Arkansas, were not found to be lethally toxic to the *Pimephales promelas* test organisms nor the *Daphnia pulex* test organisms in the 100 percent dilution after 48 hours of exposure.

BAL ADEQ #88-0630 Project X2593 Page 5 of 5

5.0 References

EPA, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012, Office of Water.

EPA, 2000. Method Guidance and Recommendations for Whole Effluent (WET) Testing. EPA/821-B-00-04, Office of Water

APPENDIX A CHAIN-OF-CUSTODY DOCUMENTS

Dis-Amilytical Laboratories 3240 Sparitin Riaed Doyline, LA 71023 (315) 745-2772 Fax (318) 745-2773

piomini timi di	porking.att.zet	LEL.	ap #1975,	EPA Code LA00	917, ADEQ 02-011-0					- - 100		· · ·		Labo	ratory Use Only:	
Company			•	Phon	e:		Ań	alysi	51		•				Lab Costrol Number:	Project Number:
Address:				Fax:	· · · · · · · · · · · · · · · · · · ·		Chror	Chro	Acute	.Acute	Acute	Acute	-Fecal	Total		X <i>2</i> 593
Permit#:	AROOO1171 Sampler's Signstore:				se Order:		Chronic Ceriodaphnia	Chronic minnow	Acute minnow	Acute Daphrúa	Acute Ceriodaphnia	Acute Mysid	Fecal Coliform	Total Coliform		Temp. upon nerivid:
	Permit#: Pur AROCO117 Samialar's Signature: Divise Shart Thise Shart Thise End C G # cointaine		Printed Name		aphnia	, W	4.		hnia					3°C		
Date Start Date 1884	<u>Time Start</u> Thise End	С	G	# combiners	Sample Identificati	on .				` :						Preservative: (below)
3/9/06	1255			2.	Outto	11 002		· ·							B9012	ICE
, ,					- I .	tream		,					,			
3/9/00	1245		<u>.</u>	2	Duta	11004				· .	-				B9013	
		-	-		4957	tream		-J.		- 1		, 1 e . ,			· · · · · · · · · · · · · · · · · · ·	
Relinguis	Reliagiant led by:					Time: 0.945	Rec	refye	1 1/2	3					Date: 3/10/06	Time: 09K5
	-				3/10/0C0 Date:	Time:	, <u> </u>	ciye	d by:				•		Datë:	Time:
Relinquisi	ed by:	17	フ シ		Date: 3/10/26	Time:		eive				- ,		÷	Date: 3/10/06	Time: 1dao
Method of Comments	Shipment:/	1_	Lab	Bus	•	irborneUP										

APPENDIX B
RAW DATA SHEETS

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST WATER QUALITY DATA

Project# <u>X25</u>	93		· 		***					
Client <u>Great</u>	Lakes	Chem	rical Cor	ρ					·	
Address Q . O .				•	do	, AR). -	1-13	1	
NPDES# AR OOK			•			,			•	
Technicians De						·		,		
Test initiated:	Date	3-10-0	€ Time	1415						
Test terminated	l: Dat	e_3/12	ow Time	1405	5					
		San	uple Inf	ormatic	<u>)11</u>					
ID D.O. M. (mg/l. F. and 1)	erate? inutes/ inal .O(mg/L	Total Residual Chlorine (mg/L)	. 1	Sodlum thiosuila (mg/l)	te	Salinit	y II.a	telnouz	Alkalinity	
B9012 17 93.12	No	40.01	No	NA		N/A	4 7	المراجع	40.0	
B9012 8.0 95.71	No	1	1					16.0		
		1	n Water	To Co.						
	<u></u>	<u> </u>	m Marel	Inform	ia C1	on				ব
Control	t	tD ∦	Initia) D.O (mg/L ⊊ t)	Necate? Minutes/D (mg/L & 1		рli	Haido	ens	Alkalintty	
SOFT reconsti	whed a	1418	NA	NA		想	48	.O	4800	Esca
4 4	ő	2479		1		7.60		8.0	48.8	22/
			Species	Informa	itic	<u>) []</u>				9 /O/2
Test Species Info.	Species	P. prome AL/ 370(species:	D. pulex 205-6,	Spec 10#:	ies:	IA.	Spec 101:	Ins: N/A	
Age		3 day	1 4241) Nz					1	1
Test Container Size	25	Dala	250	ml						
Test volume	200	0 ml	100 r							
Feeding: Type		emia	YCT: A	lgae						Ħ
Amount	acc)	limated	acclim	ated						
Aeration?	W-	1A	- NA	 				-		
Amount	}	A	Davd =	active lan	4 4			<u> </u>		
Condition of survivors	go	ul.	1		,-	1	<u> </u>			

Comments: B9012 - yellow that @ 3/10/06
No notable odor.

pH 7.1

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

Project#_	X25	593									Te	st s	tart	ed:	Date	3/10	/06		Time	151	<u>ء</u>			
Client	GLCC	,			. <u>.</u>						Te	st e	nded	.:	Date	<u> 3/12</u>	2/04	2	Time	135	- 50 AL/1			
Sample De	scription	00%	-	_14	est	rea	יתו				Te	st S	peci	es_#). <u>p</u>	ulex			ID	#_B	<u> </u>	D5 -(, . 	
echnicia ime: Inc emperatu	n: Ohour Ohour re: Ohour	(E)) 1510 240	241 241 241	hour hour hour	(C)		8hou 8hou 8hou	ır (ır i	を) 350 5.20	72h 72h 72h	our_ our_	1	961 961	hour hour		<u>, </u>					,			
Percent Effluent	Replicate	1		# of Live Organisms					Dissolved Oxygen										Conductivity					
<u> </u>			,	0	24	48	72	96	٥	24	4.8	72	96	o	24	48	72	96	D D	24	48	72	96	
0	A	N/	Α	8	8	6			8,5	8.1	13			7,6	X	1.8			163.3	168	5,11.	う		
	В			8	8	7																		
	C			8	8	8																		
	D			8	8	7			3															
	E			8	8	8		· · · · · · · · · · · · · · · · · · ·																
	0			0	Q	o				49	. (9)				16					48	1			
100	A		\rightarrow	8	8	8			7.1	48	م. ا			7.2	1/3	√ ∵			657	165	-653			
	В			8	8	8																		
	<u>C</u>			8	8	8																		
	D			8	8	8								_										
	E			8	8	8															ĺ			
																			İ					
Kev: pre	renewal/po	strene	ewal														<u></u>	<u></u>			<u>_</u>	. نمستان		

File ACUTEI

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

Client										Τ e	st e	naea	:	Date	<u>-71</u>	Ank	i	Time	1413 140	23			
Sample De	scription	_002	-147	2547	PON	<u>n</u>		4 00		Te	st S	peci	es	<u> </u>	<u> </u>	m e	100	ID	# <u>137</u>	1 2/3	706	٤	
Technicia Time: Temperatu	n: Ohour Ohour we: Ohour	<u>E0</u> 24 1415 24 ∂5.5°⊂ 24	thou: thou: thou:	(<u>E)</u> - ''' 3'') 30 4 35 4	8hou 8hou 8hou	n 9 n 14 n ((1) (05 (5°C	72h 72h 72h	our_ our_	1	961	oor oor				241 1111						
Percent	Replicate	Test	# of Live Organisms						solve		en_		Ha						Conductivity				
Effluent .		Salinity	0	24	4.6	72	96	0	24	48	72	9€	٥	24	4.8	72	96	٥	24	48	72		
0	A	N/A	8	8	8			85	1.5	11			7,6	13	1.0			143.3	182	M	,प		
	В	1	8	Ŷ	Ŷ				Ų.					741									
	C		8	8.	8																		
	D		8	Ŷ	8			3															
	E		8	8	8			<u> </u>											<u> </u>				
			<u> </u>						43					5					16			Ļ	
100	A		8	8	3			1	13	14			1.7	3	1.5			651	15	हिल् हा		L	
	B		8	8	8									,									
	C		8	8	8																		
	D		8	8	8																		
	E	1	8	8	8	1															,		

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST WATER QUALITY DATA

Projec	t# <u>X</u> ,	2593	<u>}</u>	<u> </u>									
Client	Grea	+ Lok	es Chem	./.C	al Con	ა							
	s <u>(</u> ?.O. (f	JR.	-11	<u> -1</u>	3	1	-
	ARO			•			•	٠,					
Techni	cians]	Josh J	ole 110		h.L.								
				-						,			
	nitiate							_					
rest t	erminate	ed: Da						-					
			Sa	шÞ	le Inf	ormatic	ווכ	<u> </u>					
Sampie IU	Initla} D.O. {mg/I.	Aetale? Minules Final	Total Residua Chlorin		Dechlor inated?	Sodium thlosulfa (mg/l)	ite	Salinit	Y	Hard	ព្រះមួន	Alkat	tuity
	and 1)	0.0 (mg/l	(mg/L)_									
B9613		yes/97	77 40,0	!	No	NIA		NA		36	00	20.	0
B9013	9.4 100.12	Nο	1		1						0	1	0
						(, ,					
			DITUEI	<u>កា</u>	Water	Inform	nat.	<u>ion</u>					
Contro			ID¶	Ð.	itia) .O (mg/L .1)	herate? Minutes/D (mg/L & t		pit	Hai	dues	;	Alkath	ni(y
SOFT	reconst	itited	2478		N /A	NA		7.6	48	ŝ. O		3a.	0
\downarrow	4	2 2-11-11-1	2479					7.6		8.0	- 1	38	. ^
			<u>Test</u>	Sp	ecies	Informa	iti	on					
Test Spe	cles Info.	Spec 1D¶:	PAL 370	ela:	Species:). pulex -/05-G.	Spe IUI	cles: /	J/F	7	Spec U#:	les: N	VA
Age			3 days		<24F	rs.							
	tainer Size		oml		251			• ,	 .		·		
Test vol			model	 -	100	<u>n/</u>	 						
reading:	Amount	acc	temia limated		PCT: A	agae mated							
Aeration	17		n/A			A							
Amount			NIT		, ,	, ,							·
Condition	n of survivo	ra C	pood		Smaller H	pale pale van 0021	D) 3 ·	1204				(
			L. h / 8	_					-				7.0

Comments: B9013 -> golden tint @3/10/06
No notable oder.

pH -9.1

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

Sample De										ı.e.	st e	.idea		ก	· 	400		- + m=		<u>.</u>) .	_	
	scription_	004	را	ps	rec	<i>ኢ</i> /ሃን				Te	st S	peci	ese	<u>U.</u>	<u>pul</u>	<u> </u>		ID	# <u>B</u> F	<u>n</u> /1	D5 -	G.
Technicia Time: Temperatu	n: Ohour Ohour re: Ohour	2) 1510 2 34°C 2	4hou: 4hou: 4hou:	(E) (14) 25) 4 30 4 30 4	8hou 8hou 8hou	ur (ur 1	<u>در</u> مرون مرون	72h 72h 72h	our_ our_	/	96] 96] 96]	our iour	1				 				
Percent	Replicate	Test		f Live					solved				Нg					Cond	luctiv	ity		
Effluent		Salinity	0	24	48	72	96	°	24	48	72	96	0	24 /-	4.8	72	96	0	24	48	72	91
0	A	NA	8	7	7			85	7	15			7,6	1/18	7.8			163.3	96	390		
	B		8	8	8																	
	C		8	8	6																	
	D		8	8	7			`														
	E		8	8	8																	
									W					ين ا			:		.20-	٥		
100	Α		8	8	8			જું.	<u> </u>	ハウ			નુ.પ		1.5			125,5	24.	0 ارب ^خ	. 0	
	B		8	8	7				<i>V</i>			((3) (3)	14								
	C		18	8	8							7	,//									
	D		8	8	8																	
	E		8	8	8															1		

Key: prerenewal/postrenewal

File.ACUTEI

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

Project#	GLCC	<u> </u>					<u>-</u>			Te:	st e:	iarte nded:	ed:] :] 7	Date Date	$\frac{3}{1}$	3/96 3/96	· ·	l'ime Cime	1415 14 #_ <i>B</i>	<u>.</u> [0 n /~	ma(-	
Sample Des Technician Time: Z Temperatu		150		′ /			1	到 中心 中心 中心	72hc 72hc 72hc			96b 96b	our lour	1	// <u>o</u> /	neu	<u>کیک</u>	ID:	# <u>\\2</u> *	<u></u>	100)
Percent Effluent	Replicate	Test Salinity				nisms		Dis	solved	Охуді	=n	<u> </u>	рĦ				<u> </u>	Cond	luctiv			Τ
Billiani			o	24	48	72	96	0	24	48	72	96	0	24	4.8	72	96	0	24 /i.(48	72	
0	A	N/A	ጵ	8	8		i	3.5	7.45	/ /{1			7.6	17/	7.17			163.3		5143	9	
	В	10/1-1	8	8	8				811				Z	48				- *-^	(6.8,5			
	C		8	Ŷ	४																	
	D		X	8	8			`														
	E		8	8	8																	
	\$23.10d								3					Y					يرر	2		
/50	A		8	8	8			8,0	181	7.4			1.4	14	15			ريخر،	1	4.42	9.3	1
	B		X	Я	8													(£3/11)	D6		
	C		ÿ	8	8																	
	D		8	8	8																	
	E		8	8	8																	
 				<u> </u>													_					1

BIO-ANALYTICAL LABORATORIES

REFERENCE TOXICANT TEST QUALITY DATA

Date start: 3 - 10- 0/2	Date end: 3/12/56
Test organism:	
Age: < 29hrs	
Source and ID#: 1364	D5-6,
Dilution Water used: Type:	MH * Jug#: 2476
Reference Toxicant: NaCl	(BAL 3/2/06) + Units: 100 g/L ug/L
Manufacturer:	Lot: ₹13.75 B65
48-hour LC50: 1.0561	Statistical Method:
* 1	Control Limits: 3.0.5-0.10()
Tess Number (for the year):	3
We verify that this data is true and	correct:
Technician: Erry Kark	412
Statistician:	Berg 35
Quality Control Officer:	:09.Busio,85
*MH- Moderately hard S-Soft 11 - Hard	+NaCl - Sodium Chloride

File: Ref Tox Cover

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

roject#_										Ţe	: s t 3	tart	ed:	Date	3/10	ŽÔV.		Time	<u> 15%</u>	<u>{ </u>		
lient 🥂	lef Tox	··								Te	st e	nded	:	Date	5/18	$\frac{\lambda}{2}$ e(.		Time	184	<u>)(</u>		
	scription_							ز		Te	st S	peci	es	\mathcal{D}_{i}	2016	<u>'</u>		ID	#_2-	≟/1),	-G.	
echnicia ime: emperatu	n: Ohour Ohour re: Ohour	(13) 24 13(0 24 35°C 24	hour hour hour			8hoi 8hoi 8hoi	ır_(!r(!r	(s) 430 450 450	72h 72h 72h	our_ our_ our[<u>, </u>	_ 96; _ 96; _ 96;	nour nour		<u></u>							
Percent Billyent	Replicate	Test Salinity	# 0:	f Live	Orga	nisms		Dis	solve	Oxyg	en		рĦ	,				Con	ducti	vity		
8/L			0	24	48	72	96	0	24	48	72	96	D	24	48	72	96	0	24	48	72	96
0	A	NIA	5	ぎ. 5′	5			35	<u>.</u> (3)	8.7.	8		3.O		3.5			East	ς	3,5	-	-
	В		5	3	14																	
	C		5	1/25	Set-							1			1			-				
	P		حَتِيُّ	3	5			,														
1	A		5	5	3			8.5	-4.444.4-	7:1			3.3	٠.	81			1300		205	,	
	B		5	S	í																	
	0	-	5	5	ڒ																	
	0		5	5	<i>د</i> (~~~				1		
2	Ą		5	٦	(۲)			83		7,3			1.8	^	5,1			6 T		39	7	Ì
	ß		S	£	\bigcirc																	
	C	d alle g	5	4	ا ن											•						
	D		5	5	ĺ	j					************					j						

File:ACUTE2

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

Salanty 9/L 3 A N/A 5 2 O 95 0 24 48 72 96 0 26 48 72 96 0 24 48 72 96 B SS (O)	roject#_										Te	st s	cart	ed:	Date	3- D		Time	(5%	<u> </u>		
C	lient	Pef Tr	<u>×</u>								Te	st e	nded	:	Date	<u>) 10</u>	<u>)</u> - (-(c	Time	* F	<u>)</u> .		
C	ample De	scription	1009/	1 A	la C	[(/.	3 <i>A</i> Y_	3/0	2-06)	Te	st S	peci	es	D.,	pul	<u>6</u> 7	 	# <u>B4</u>	4/0	$_{s}$ $_{G}$: .
Percentage Replicate Replicate Sealinity Sea	echnicia ime: emperatu	n: Ohour Ohour re: Ohour	(E) 24 1940 24 35° 5 24	hour hour hour	+255 - 1445 +	- 4 - 4 - 4 - 4	Shou Shou Shou	ır (ır i	GU 730 15°-	72h 72h 72h	our_ our_ our_	7	96) 96) 96)	hour hour hour						,		
3 A N/A 5 2 0 36 0 24 48 72 96 24 48 72 96 96 24 48 72 96 96 96 96 96 96 96 9	Percent											1						 Cop	ductiv	rity		
3 A N/A 5 2 O 80 - 1,8 81 41 A A A A A A A A A A A A A A A A A A	9/1		Julian			4.8	72	95	ĺ			72	96	0	24	48	72	}	Ì	48	72	96
B 5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3		N/A	5	<u></u>	()			13.3		7.3			cķ N		۲, ۱		16.75	Ž	明代		
D		B	1 1	5		دے												! J				
4 A 5 C 4 45 1.7 5 S S S S S S S S S S S S S S S S S S		C		5	2.	0																
B		D		5	7				,													
C 5	4	A		5	0	_	adamira yang man		45,5	1,7			[\$.	52			139) - \{\zeta_{\sigma}			į
5 A 5 0 - 63 7.7 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		B		5																		
5 A 5 O - 33 7.7 88 30 000 000 000 000 000 000 000 000 0		<u></u>	1	15																		
B 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		D		5	3																	
	5	A	ì	5	\bigcirc				10°3	7.7				3.\	() (0,00	4	`		
		B		5																		
		C		5	17																	************
		D	<u>.</u>	5	(2)		-															

File.ACUTED

Stream Habitat Assessment (Semi-Quantitative)

Station #:	uTA-9			Date/1	Herry Co.	,		7	· · · · · · · · · · · · · · · · · · ·		1
	WIM-9			Date	mie. 4/	27/0	5		nitials:	164 /	BIL
9. Aquat	c Macrophy	tes and	d Periph:	yton (Pe					39	/	
1/01/2						each il La			raide de la company		
Riffle	Macrophyte	S	- O	5		0			0 0		
D = =1	Periphyton		0	0		O	0	0	0 0	· -	0
Pool	Macrophyte Periphyton	s <u>10</u>	5	0	0	0	0		0 0		1.5
	Feriphyton		. 0		_	0	0 1	0	0 6	O	
10. Cano	py Cover (Po	ercent									
ોદ્રાલીકો	1 2 60		rii Ng	ujciel Mo). Postala	est toyopart See See Surg	(//a 8 i }	áleicí) Vári A z	n Sheir La	er Gerenalis		
Shading	40%	101	60 y.	70V	80%	707	301	50	70	70	59
11. Bank	Stability (Sc	ore) ar	nd Slane		-0	<u></u>	1	 .:			
		A second	Mark	Degree	:S)	Fig. News.	1975				Assessed 3
Score	\mathcal{G}	9	0	8			//		4.6		(vi.)201
Slope (°)	300	45	45	35	Ce.	800	80 80	40	600	600	6.9
* 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							7 de la constant	10		(90	5-2 (AVA) & (6.6) (5.5)
Score		9	$\overline{2}$								400000
Slope (°)	500 3	3.5	4<	45	45	400	60	70	80°	5	7.5
Score 9-10	= Stable, < 5% t	oank affe	cted.		`-	Score 6-8	= Moderate	ly stable, 5	-29% of bar	nk eroding	54.7
	Moderately uns			_		Score 1-2	= Unstable,	60-100%	bank erodin	g.	
12. Veget	ative Protec	tion (P	ercent B	anks Pro	otected)		W7/6 ok 44				
ប៊ីនូវស្រែ								(0)			^\V-4':10[6)
%	180 4	10	10	10	30	40	30	30	30	30	3-3
Souling										(E)	Awarajaja
%	50 6	<u>S</u>	20	20	20	10	10	30	30	20	27.5
13. Ripar	lan Vegetati	ve Zon	e Width			٠					
Same	A. [1] 雪田 安美教	karitasi.			17.		7.00	- B			Avainsja
Score	10	9	11)	10	10	10	10	lo	10	10	9.9
							7		9	10	Armija
Score	10	10	/ A	10	lO		10	(3)	(0)		
Score 9-10	= Riparian Zone	Width >	18 meters				Zone Widt	h 18 - 12 n		10	10
Score 3-5 =	Riparian Zone	Width 11	- 6 meters				Zone Widt				
14. Land	Use Stream	Impac	ts		و خنایان						
			.3		19 ⁶ 新數 1960年	e Blog is ho Tari	iga pid Lieb. 1. oz	inter Section			
Impact	I, I							·			1.0
C = Cattle Score 0 = r		w Crops		oan Encroa			al Encroaci	hment	0=(Other	7.0
Page 2 of	}	minor aff	ect 2	2 = modera	te affect	} = major a	ffect				

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTA - 4	Client:
Stream name: Unmered from of BAL	Date/Time: 4/27/06
Location: Union Comy	Form Completed By: SKH

Habitat	T	CATEG	ODV	
Parameter		CATEG	INC	
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
2. Pool Substrate	20 19 18 17 16 Mixture of substrate	15 14 13 12 11	(0) 9876	5 4 3 2 1
Characterization	materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; tittle or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
SCORE // 3. Pool Variability	20 19 18 17 16	15 14 13 12 (1)	10 9 8 7 6	5 4 3 2 1
o. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE Y	20 19 18 17 16	15 14 13 12 11	10 9 (8) 7 6	5 4 3 2 1
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
5. Sediment	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
5. Sediment Deposition SCORE 9	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
OUTE	20 19 18 17 16	15 14 13 12 11	10/9/8 7 6	54321

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTA-4 Date/Time: 4/27/64
Stream name: Unrock bob of Rdu L Form Completed By: 5/64

Habitat		CATE	GORY	
Parameter				
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity SCORE	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	20 19 18 17 16	15 14 13 12(11)	10 9 8 7 6	5 4 3 2 1
Status SCORE	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
8. Bank Stability	20 19 18 17 16	15 14 13 12 11	10 9/8)7 6	5 4 3 2 1
2	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
SCORE 7 LB	Left Bank 10 9	8 6 6	5 4 3	2 1
SCORE (o RB	Right Bank 10 9	8 7 (6)	5 4 3	2 1
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
	Left Bank 10 9	8 7 6	5 4 3	Ø 1
SCORE 2 RB	Right Bank 10 9	8 7 6	5 4 3	<u>(3</u> 1
10. Riparian Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.
	Left Bank 10 🔗	8 7 6	5 4 3	2 1
SCORE 4 RB	Right Bank 10 (9)	8 7 6	5 4 3	2 1

TOTAL SCORE: 104
AVERAGE SCORE: 10.4

Barbour, M.T. et.al., 1999. Rapid Bloassessment Protocols For Use in Streams and Wadeable Rivers.

Discharge/Flow Measurement Form

Station: UTA - C	1	
Waterbody: would T	rib at Boyn de Lo	·h
Date: 4/27/05		
Crew: SHIBJP	Start Time: 1255	Recorder: 524
	End Time:	GH. Change:
	Staff/Gage:	hrs.
Width: 3,8 ' .	Area:	Velocity:
Disch/Flow:	Method:	No Secs:
Meter No:	Max Vel:	Min Vel:
above, below gage,	llent good fair poor base	
Flow	Weather	
Other	Air°F @	<u> </u>
Gage	Water°F @	<u> </u>
Observer		
Control		
Remarks		

(1) (2) (3) (3) (4) (4) Avg. Velocity (0.2) (0.2) (1)	0-2 0-25 0-25 0-25 0-25 0-2	0 0 0
1.0 6.5 0.5 ND 1.5 0.5 0.6 ND 2.0 0.5 0.5 ND 2.7 0.7 0.5 ND 3.0 0.5 0.4 ND 3.8 0.0 ND	0.25	0 0
2.5 0.5 0.6 NO 2.0 0.5 0.5 NO 2.5 0.5 ND 3.0 0.5 0.4 ND 3.8 0.8 0.0 ND	0.25	0
2.0 05 0.5 ND 2.5 0.5 0.4 ND 3.9 0.8 0.0 ND	0.25	0
2.5 0.5 0.4 ND 3.8 0.8 0.0 ND	0.25	0
	0.25	<u> </u>
	0.2	
	0	6
		0
	·	
		
TOTALS	ı	0.0

Note: Flow Not Detected . However, Small surgery Als on Small surgery Als on Small surgery fifth a 0.1'dep plus = < 0.1 CFS

Completed By	Checked by	Reviewed by
--------------	------------	-------------

FIELD DATA SHEETS - FISH

Waterbody Name: UT4 004	Location: Octal 004
Olient: Great Lakers	Ecoregion: Coult Coardal
Project no: 2072-05-070	Weather: Sunny Clear
Investigators: REM . SKH.	Mild
JBB BJP	Form Completed By: JBS/REM .
Date Sample Collected: 4/27/05	Form Checked By:
Habitat Forms Completed yes / no	Fish Sampling Completed: yes / no

	Collection Site O	oservations	
	ath 004		
	Above Station	Below Station	
Total Time Sampled:		33.7. 0.00011	Additional
######################################	& Relative Abundance of Aquatio Bio		Observations:
Periphyton:	(0/1 2 3 4	0 1 2 3 4	COCONTALIONS.
Filamentous Algae:	01234	0 1 2 3 4	
Macrophytes:	0 1 2 3 4	0 1 2 3 4	
Slimes:	0 12 3 4	0 1 2 3 4	
Macroinvertebrates:	0 (1 2) 3 4	0 1 2 3 4	
Fish:	0 1 2 3 4	0 1 2 3 4	
Other:	0 1 2 3 4	0 1 2 3 4	
0=Not Ob:	served, 1=Rare, 2=Common, 3=Abunda	int, 4=Dominant	
THE PART OF THE PART OF	1 A Major Haidlan Sampled (%)		
Riffle/Run:	0/30		
Shallow Pool:	30		
Deep Pool:			
Backwaters:			
Chanelized:			
	a etater Michalaitais (Sanijalea) (Va		
Woody debris:			
Emergent Vegatation:	30		
Submerged Vegetation:			
Depositional Area:	30		
Overhanging Veg:			
Root Wads:	20		
Undercut Banks:			
Filamentous algae:			
Leafy debris:	20		
Substrate	Score	Adj. Score	
Bedrock:	X 0.1		
Lg. Boulder:	X 1.0		
Boulders:	X 1.0		
Rubble:	X 1.0		
Gravel:	X 0.5		.
Sand:	20 X 0.1	·	
Mud/Slit:	80 · Lower undsilt X 0.1	· · · · · · · · · · · · · · · · · · ·	
Score: /	Abundant 11-15, Common 6-10, Sparce	1-5. Absent 0	
	upper 40 hard cha		·

upper 40 hard chy

	Sampling Gear Type: Electrofishin	ng Seine Gill nets
. 1)	Unit of Effort: Above: 487 PDT / 1	7 min Below:
	Quantity of Available Fish Cover:	
	Above Station: Very Abundant, Abundan	t Maderato Sparsa Abaset
	Below Station: Very Abundant, Abundant	
		, woderate, Sparse, Absent
	Site Description & Notes:	
	Above Station:	
) I c	
5PP 15	βος Below Station:	
rd	Below Station:	
eer .	<u> </u>	cies Observed
	Above Station#	Below Station #
) – .	Mosquito Fish MIMI	
-		
_		
-		
· -		
_		
_		
_		
-		
_		
_		-
_		
_		
-		
-		
_		
-		

Revision 1.2 05/28/02 GBM^o & Assoc. Doc. 1 Page 2 of 2

	FIELD DATA	SHEETS - BENT	HIC INVERTEBRA	ATES	
Waterbody Name: <i>U</i>	Location: _ <i>ರಿಟ</i>	Hall 004			
Client: Grat Lake			Ecoregion:		/
Project no: 2072-			Weather 5	about Class	
Investigators: REW			Weather: <u></u> シ	Wild	<u>-</u>
			<u>v</u>	15 20 /	<u>-</u>
			Form Complete		
Date Sample Collecte		-	Form Checked	By:	
Habitat Forms Comple	eted: yes / no		Fish Sampling (Completed: yes	s / no
Collection	ւ Site Observatio	ns	Macroinverteb	rate Qualitative	Sample List
	UTA 4 Above Station	Below Station	Taxa	Above Station	
ist in the Schrick is			Annelida		
ું (કોલો)પુર્વ (પેઇ)	alcielnisieven zacielskih		Decapoda		
Periphyton:	01234	01234	Gastropoda		
Filamentous Algae:	0/1234	01234	Pelecypoda		
Macrophytes:	0 1 2 3 4		Hemiptera		
Slimes:	0 1 2 3 4		Coleoptera		
Macroinvertebrates:	0 2 3 4	01234	Lepidoptera		·
Fish:	Q P 2 3 4	01234	Odonata		
Other:	01234	01234	Megaloptera		
			Diptera		
0=Not Observed, 1=Rare,			Chironomidae		
			Plecoptera		
Riffle/Run:	40		Ephemeroptera		
Shallow Pool:	20		Trichoptera		
Deep Pool:			Amphipoda		
Backwaters:					
Chanelized:					
Viereeld					
Woody Debris:	30		R=Rare, C=Con	nmon, A=Abundant, I	D=Dominant
Emergent Vegatation:			1	1 3-9, Abundant>10, I	

Site Description and Observations:

Frog I TAD poles

Abundant

Cray Fiel - Dominat

"No Fiel"

Other :: Revision 1.2 05/28/02

30

15

15

10

Submerged Vegetation:

Depositional Area:

Overhanging Veg: Root Wads:

Undercut Banks:

Filamentous algae: Leafy Debris:

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D:	UTA-3	LOCATION: (W-ex-	f of GLCC C	+P 11 1000
STREAM NAME: (A	more this of with Comin	RIVER BASIN:	ad b Bird	10/2001 003
LAT:	LONG:	PROJECT:		
INVESTIGATORS:	ELY BOP DATE/TIME:	4/27/05 (1710	FORM CHECKED I	BY:
WEASUREFEE Contribute	storm (heavy rain) rain (steady rain) showers (intermittent) % cloud cover clear/sunny		in the last 7 days?	10
, 中经营产品建设。	Stream Gradient: ☐ High (≥25ft	Tidal Spring-fed Mixture of origins Other	Stream Type Coldwater Coldwater Catchment Area: Stream Order: ft/mi) Cow (<10	mi²
1700,100Y	Flows ☐ High ☐ Moderate Low ☐ 1	Flows Measured? None ✓ Yes ☐ No	Reach: Slope	& Sinuosity _ft/mi
	Predominant Surrounding Land Forest	ban	al Watershed NPS P No evidence ☐ Agri Industrial Storm Wate Urban/Sub-Urban Sto	icultural er
ALTERNATIONS AT A STANK	Mature Forest 70 % Shru ☐ Riffle %	3% [Stool 44.2%	☐ Point S	Ource
	Channelized: Ye Local Watershed Erosion: N	es 🔲 Some 💆	No Moderate	vy leadcutting
	— · · — · —	bid	ent Deposits dge Sawdust id Relict shells er Sitt	☐ Olls
		Z-0111	د ۲۲۰ دے ا	

Stream Habitat Assessment (Semi-Quantitative)

	•
Station#: UTA-3 Stream: unraned this of 4th Date/Time: 4/27/0	5 Analyst: Sical/1970
Location:	7-10
Mart (AC W/C 11 10 52-2-X206) //	3 10 51.9 (31.12)
1. Reach Length Determination 92 43 2/1.8 4/5	12 43 22 9
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	art Totel Reach Subireach age Length (i) Length (i)
Bankfull Width 10' 92' 81 10.2/ 25' 9	o 180 (8 o'
Bankfull Depthy 1.6 1 x 3 1.4 1.3 1.8	U na na
Average width times 20 2 Total Length give ed by 10	
2. Riffle-Pool Sequence	
	A CONTRACTOR OF THE CONTRACTOR
Riffle	
	The state of the s
Pool 10.0 10.0 12 11 18	/00,5
Pool (2.5) (4) 7	18 18 79.5 44:
Sequence m- m-mm-	vizziti and and
¹Riffle="xxx", Run="", Pool="~~~"	www.
3. Depth and Width Regime	
Control of the contro	
12 (12 12 11 12 12 12 12 12 12 12 12 12 12 1	
Riffle Depth (0.7) 0.4 07 0.9 0.5 0.6 0.7 -	.64
Pool Douth 7.5 9.5 6.0 -	- 4.9\$
Pool Width C. /	8 1.0 07 1.15
Howy With Park March 15 11 3.	5 8.5 8 43.5 7,25
4. Epifaunal Substrate, Percent Stable Habitat (for Macroinvertebrates)	
	<u> P</u> Vse iž iČlike čaltaVaraje, s 1
Most Habitet is Lead & grant wood achies packs	60 40 46
5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted I	Perimeteri
A THE REPORT OF THE PROPERTY O	Bel Mei
% Area	Average :
10 SO 1301. (e) 40 30	(e) 40 44.5
6. Substrate Characterization (Dominant Substrate)	
Height Standardin Danning of suing pass	
Riffle $S(2)$ $S(2)$ $S(2)$ $S(2)$ $S(2)$ $S(3)$ $S(4)$ $S(6)$	De la Co
Pool $S(2)$ — — $S(2)$ $S(2)$ — $S(3)$	6/0\ 2/0\ 6/0\
BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine) \$ (2) \$(2) 5 (7) 3), \$=\$and(2), \$C=\$ilt/Clav(1)
7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)	
Secretary Country Country Boulders Percent Embedded)	10 14 24 Example 1
Embedded	
8. Sediment Deposition (Percent of Bottom Affected)	
	A AMENIO
1 80 30 45 75 75 70x 60 90	80 KD (05.5

Page 1 of 2 V 2.1

Stream Habitat Assessment (Semi-Quantitative)

Station #:	WTA	-B		Date/1	'ime: 4	127/08	5	I	nitíals:	524/183	tp
. Aquati	c Macroph	nytes an	d Periph	yton (Pe	rcent Co	verage)					
Vicilaii Nation					44.1. N. S.	e idhibb		ajjik (Jojva)	dje je		r. de v
Riffle	Macrophy	/tes /	0) 0		0	()	<i>(</i>)		o o		** ***************************
	Periphyto	-1/- -		0 0	G	10	5		<u>_</u>	0 0	
Pool	Macrophy	1 1	2 6		ð	0	0	0		0 0	10
	Periphyto	n Z) [) 0	Ò	0	0	0	0	0 0	0
i0. Canoj	py Cover ((Percent	Stream	Shading)						•
1.1000				garayalo. Mara	i flaro ai	ulva Sha	eleiet Will		at Olijeti je e	ji	
Shading	950	80	95	75	90	97	91)	90	91)	90	49.5
ld Dank	Ctability (- /D - 1000		.L. <u> L. V</u>	1	1.00	1 (0	1 10	0112
	Stability (2	iiiu Siop	A (negle	28) Tigothal		77.			146	Javarsigh
		Y-7			Ø			(7 ~		(Schortham)
Score Slope (°)	1000	450	500	1 40°	30°	50	X E	60	7 8	45	7.4
d e i mas					153.6				19	37.5	- 70 - Walatala (*)
୍ୟାଣ୍ଡଣ Score	3 _	フ	(0		7	Y	-7		6		25/9/19/202
Slope (*)	10°	500	65	tall	40	41	55	20	1.6	4n	6.7
core 9-10 =	= Stable, < 5	% bank aff	ected.	' 3			= Moderat			ınk eroding	
	Moderately			Ü		Score 1-2	= Unstable	, 60-100%	bank erodii	ıg.	
2. Veget	ative Prot	ection (Percent	Banks Pr	otected)	la a se se	Sept.		1600000000		
petollog :											
	30	20	30	10	20	20	200	20	15	15	20
											raversieler
%	140	20	40	120	15	20	10	10	20	ا رام ا	20.5
	lan Veget	ative Zo	ne Width	1		Maga Nayanga wasan sa	1040,				
ust () Verticas		2.							9).	140.5	cavanisieja Sigore
Score	10	10	10	10	10	10	10	,0	Ю	10	10
ing The Paris I	4 4 2			4						110	Avorage Mary
Score	10	10	10	10	1.0	iO	10	10	10	10	10
Score 9-10	= Riparian Z	one Width			Score 6-8			Jth 18 - 12 t		_i_t_*l	
	Riparian Zo			rs	Score 1-2	≀≔ Kiparia	n Zone Wid	ith < 6 mete	78		
14. Land	-Use Strea	am Impa	cts			1 314 - 7	man E	ta Negation			
i dia				4	4. 40 			11 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m			avadagger
Impact	Ø		0	0	0	0	0	0	9	0	Ø
C = Cattle	TO	Row Crop	o Ŭ sa I	Jrban Encro	achment	I = Indust	rial Encroa	chment	Ω-	Other	

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTA - 003	Client:
Stream name: Unnamed Trib of LAR Cong Bayes	Date/Time: 4/27/04
Location: Unith Courty	Form Completed By: SICH

Habitat		04750				
Parameter	CATEGORY					
	Optimal	Suboptimal	Marginal	Poor		
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking		
SCORE 13 2. Pool Substrate	20 19 18 17 16	15 14 (3)12 11	10 9 8 7 6	5 4 3 2 1		
Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan day or bedrock; no root or vegetation.		
3. Pool Variability	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1		
·	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.		
SCORE //	20 19 18 17 16	15 14 13 12 11	(10) 9 8 7 6	5 4 3 2 1		
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.		
SCORE Y	20 19 18 17 16	15 14 13 12 11	10 9/8)7 6	5 4 3 2 1		
5. Sediment Deposition SCORE 9	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately slited; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily slited; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.		
OCURE	20 19 18 17 16	15 14 13 12 11	109/876	5 4 3 2 1		

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTA-3 Date/Time: 4/27/04

Stream name: Unread Trb of LCR Form Completed By: SKH

Habitat Parameter	CATEGORY					
	Optimal	Suboptimal	Marginal	Poor		
6. Channel Sinuosity SCORE 12	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.		
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		
7. Channel Flow Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
3CORE 17	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5.4321		
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.		
SCORE + LB	Left Bank 10 9	8 / 1 6	5 4 3	2 1		
SCORE 7 RB	Right Bank 10 9	8 7 6	5 4 3	2 1		
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble helght remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.		
SCORE 2 LB	Left Bank 10 9	8 7 6	5 4 3	3 1		
SCORE 2 RB	Right Bank 10 9	8 7 6	5 4 3	(2) 1		
10. Riparian Vegetative Zone Width	Width of riparlan zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.		
SCORE 7 LB	Left Bank 10 (9)	8 7 6	5 4 3	2 1		
SCORE 9 RB	Right Bank 10 (9)	8 7 6	5 4 3	2 1		

TOTAL SCORE: //3
AVERAGE SCORE: ///

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

Discharge/Flow Measurement Form

Station: UTA - 3						
Waterbody:						
Date: 4/27/05						
Crew: SUH/BJP	Start Time: /7-15	Recorder: 524				
7	End Time: / 7 2 5 GH. Change:					
	Staff/Gage:	hrs				
Width: 17.0	Area:	Velocity:				
Disch/Flow:	Method:	No Secs:				
Meter No:	Max Vel:	Min Vel:				
ORIENTATION:						
Wading, Boat, Upstre	eam, Downstream, Side Bri	dgeft/mi,				
above, below gage,	and					
Measurement rated: exce	flent good fair poor based	on the following				
conditions: Cross section						
Flow	Weather	· · · · · · · · · · · · · · · · · · ·				
Other	Air°F @					
Gage						
Observer						
Control						
Remarks						

(1) Distance from Initial point	(2) Width (W)	(3) Depth	Obstruction(s) logs, rocks, other)	(4) Avg. Velocity At Point (V)	Method Depth (0.2, 0.6, or 0.8)	(5) Area (A)	(6) Discharge (Q)	
	<u> </u>		ု ခ်ို့				<u> </u>	
0.5	05	0.3		0.03		0.15	0.005	
1.5	1.0	0.5		0.10		0.5	0.05	
2.5	1-0	07		0.13		0.7	0.091	
3.5	7.0	0.7		0.14		0.7	0.098	
4.5	1.0	0.7		013		0.8	0.109	_ ,
<u>ح ک</u>	1-0	0.7		0.13		0.7	0.099	5/4
<u> </u>	0.0	0.5		0.07		0.5	0. D85	
7.0	0.5	0./		NO	- -		<u> </u>	
			-					
	····							
			···					
							-	
							<u> </u>	
	-						 	
			_					
			-			· ·		
								
TOTALS		ĺ		0.09	1	410	0.474	
				7		1.(<u>U 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	

Completed By SXH

Checked by_____

Reviewed by____

FIELD DATA SHEETS - FISH

Waterbody Name: 4743	Location: Out Fall 003
Client: Great Lakes	Ecoregion: Galt Coasta
Project no: 2072-05-070	Weather: Sunny (1800)
Investigators: ZEW SKH	Mild
JBB . BJP .	Form Completed By: JBJREW.
Date Sample Collected: 4/27/05	Form Checked By:
Habitat Forms Completed: (yes) / no	Fish Sampling Completed: yes / no

	Collection Site Obser	vations	
	# 003	ļ	
	Above Station	Below Station	
编DJotalJine Sampled:			Additional
	🐢 🖙 Rejative Abundanc a o Aduatik Biola 🕏	\$ 16 × 18 \$ 15 \$ \$ \$ \$	Observations
Periphyton:	0 1 2 3 4	01234	
Filamentous Algae:	①1 <u>2</u> 3 4	0 1 2 3 4	
Macrophytes:	<u>0</u> 1@34	0 1 2 3 4	
Slimes:	0/1234	0 1 2 3 4	
Macroinvertebrates:	0 1 2 3 4	0 1 2 3 4	
ish:	0 1 2 3 4	0 1 2 3 4	
Other:	0 1 2 3 4	0 1 2 3 4	
0=Not	Observed, 1=Rare, 2=Common, 3=Abundant,	4=Dominant	
	as en as Aylaiga Babilats amolec (konsa)	AUTHORISE STREET STREET, STREE	
Riffle/Run:	5/25		
Shallow Pool:	65		
Deep Pool:			
Backwaters:			
Chanelized:			
	San Control Microsophila is Samulai (96) Lang		
Woody debris:	70		
Emergent Vegatation:			
Submerged Vegetation:			
Depositional Area:	23		
Overhanging Veg:			
Root Wads:	5		
Undercut Banks:			
Filamentous algae:			
Leafy debris:			
	CONTROL STANDARD CONTROL STANDARD STAND		
Substrate	Score	Adj. Score	
Bedrock:	X 0,1		
Lg. Boulder:	X 1.0		•-
Boulders:	X 1.0		
Rubble:	X 1.0		
Gravel:	X 0.5		
Sand:	20 X 0.1		
Mud/Silt:	80 X 0.1	i	

	Samplin	ng Gear Type:	Electrofi	shing ()	Seine	Gill nets	
	Unit of	Effort: <u>Above:</u>	1726 5 3	57min	Below:		·······
	Quanti	ty of Available	Fish Cover:				
	Above :	Station: Very A	bundant, Abur	idant, Mode	rate, Sparse	, Absent	
	Below S	Station: Very Ab	oundant, Abund	dant, Modera	ate, Sparse,	Absent	
	Site De	scription & Note	<u>∋s:</u>				
		Above Station:			<u> </u>		
Andre (50	Below Station:					
) who		,	Fish	Species Ob	served		
	Above	Station# - #	:003	Belo	w Station #		
3) -	Gras	s Pickwel	HTT 1				
(1) -	Hack	Bullhead La	Hish /	<u> </u>	HKS ALL		
<u></u>		mpomis X	1/	+7	ry en C	hardbushis	
(1)-	_ Coron	en Soutish	1				¥ /2
4)_	Pilate		1111				
<u>D</u> –	Black	spoted Top	Minuon 1				
3) -	Coam	bu-sia					···
		 					·····
			·····			·	·
-							
					<u></u>		
				<u> </u>			
		······					
						· · · · · · · · · · · · · · · · · · ·	

Revision 1.2 05/28/02 GBM° & Assoc. Doc. 1 Page 2 of 2

FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Waterbody Name: UTA3 Client: Great Lakes	Location: Ontall 003. Ecoregion: Gat Coastal
Project no: 2072-05-070	Weather: Sunny Char.
Investigators: REM . SKH	mild
JBB . BJP .	Form Completed By: PEN/SBB.
Date Sample Collected: 4/24/65	Form Checked By: KM
Habitat Forms Completed: (ves) / no	Fish Sampling Completed ves / no

Collection	Site Observatio	ns	Macroinverteb	rate Qualitative	Sample Liet	
	003		Macroinvertebrate Qualitative Sample List			
	Above Station	Below Station	Taxa	Above Station	Below Station	
			Annelida			
ji (jeleniya) Afoni		Ellőjérsker észák	Decapoda			
Periphyton:	6 2 3 4	0 1 2 3 4	Gastropoda			
Filamentous Algae:	<u> </u>	0 1 2 3 4	Pelecypoda			
Macrophytes:	0(13)3 4	01234	Hemiptera			
Slimes:	() 1 2 3 4	01234	Coleoptera			
Macroinvertebrates:	0 12324	01234	Lepidoptera			
Fish:	00 234	01234	Odonata			
Other:	01234	01234	Megaloptera			
			Diptera			
0=Not Observed, 1=Rare,	2=Common, 3=Abuno	lant, 4=Dominant	Chironomidae			
Villa : 12 - SacioNajoria	ielikieSkimpleof(v)	SARCES OF SARS	Plecoptera			
Riffle/Run:	5/35		Ephemeroptera			
Shallow Pool:	60		Trichoptera			
Deep Pool:			Amphipoda			
Backwaters:						
Chanelized:						
Meiolie	oliajs (Sample) (7)					
Woody Debris:	50		R=Rare, C=Con	птол, A=Abundant, I	D=Dominant	
Emergent Vegatation:	X SUL NOTES.		1	n 3-9, Abundant>10,		
Submerged Vegetation:						
Depositional Area:	10		YUDE- TAITC		vations:	
Overhanging Veg:			Accurate annel being out South & impous come of fire - very shall	المراجعة المراجعة		
Root Wads:	20		WATE IMPACTS COM	makarihisi Ohio (S	W J	
Undercut Banks:	15		over/through low!	ption and Obser	. 6	
Filarmentous algae:			White pap of Real	th.	}}	
Leafy Debris:	5		Whitelest of profes at	ý ·		
Other:	حيي.		stusmon wordy de	Arric	= 00%	
•			strem channel Very	silled &		
	l	l	emerget veg at			

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

กลุยเน ธเอลรรessment Field Sheet

Point Sou	irce <u>GLCL outl</u>	COLLART				
Collector	REM Sa	mole Technique			Date	
Habitat D	escription: ABOVE	imple Technique 3mpos	/ .	Sedimer	nt ?	
		UTA 003: UNNAMED FILE	Mary to	GNARHA	Kribulary of CHA	Cornic BOJON
	BELOW	117668-1 -1 11	· ·			
		UTUCK-1 - warmed f	16 . FO	6.49/6 Co.	INIE BRYON - Above	UT003
		MACROINVERT	EDDAT	5 0044	***************************************	
ABOVE	Station # GTA 00	MACROINVERTI	EBKAI	E COMM	MUNITY	-)
Cnt.	Taxa	Tally	 -	BEFOA	V Station #47 LCB	- /
_10	Combarince			Cnt.	Taxa	Tally
26	Isopada	47144		/3	Combaine	4111111
1	mooroballe	MANUALUM CALOR	 -	#	Isopoda	111)
				3	Orgolitae	111
				4	Palamenter	1111
/				19	Hyalella metas	44 241 241 1111
				23	Cheumatoporche	WINT HIT LATIN
	Condugaster	<u> </u>	[41141141111
-				5	Coenus	444
4	Calopteryx	[/				<i>an</i>
	Hyphilitae (0)	<u>m</u>		7	Truplatorns	7
	Director (0)	11		3	Dinentus (1)	#1)
-/-	Corixidae	MI MUM/		12	Corixidae	
	unrus	44/1	— r	6	Uvneus	4111111
	Thermoreure			7	Thermorenes	WHI!
- 2	Stevelmis	1 (Adlt) 1 (LATIA)			The Moderas	
	Tipula	1				
9 8	Speculium	/				
-	Hexatoric	MT III				
	Corporala	411				
a	4					
	Cherananiza		_	7	Notonsuta	
·				-2	C)	//
			_		<u> </u>	441
			_ -	<u> </u>		
			_			
			一		-	
			_			
			_ -			
10.0			一	 .		
100	:TOTAL:			00	:TOTAL:	
		Community	سا للاز V Struct	ure	VIAL.	
0/ E-+	ABOVE	BELOW		<u>~ X</u>	ABOVE	DEL ALL
% Ephem.		5	% O	don.	700VE	BELOW
% Plecop.	0		% C			
% Trichop	0	23		ustacea	20	
% EPT	<u> </u>	28	, o O	uolatod	34	40
% Chir.	9		# of 1	Tava:	11	4
' Diptera	19	5				
iment		<u> </u>	DIJOIG	Score:		

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: UT LCB-1 STREAM NAME: LIPE CO	LOCATION: / Line C.
STREAM NAME: Little Co	wine Baya RIVER BASIN: Quad. h Ru
LAT: LONG	PROJECT: UCC- 46
INVESTIGATORS: 5 164 1083/	CARC- 96 CHANGED TIME: 5/23/25 (15:44) FORM CHECKED BY:
sh -%	Past 24-hr storm (heavy rain) rain (steady rain) nowers (intermittent) % cloud cover clear/sunny Heavy rain in the last 7 days? Yes No Air Temperature Other Other
Stream Or Glacial Montane Swamp Stream Gr	ial Intermittent I Tidal Coldwards Street
	Flows Measured? Reach: Slope & Sinuosity Moderate Low None Yes Noft/mi
Forest f Pasture Row Cro	Local Watershed NPS Poliution Sub-Urban No evidence Agricultural Industrial Storm Water Industrial Work Other Paraller Local Watershed NPS Poliution No evidence Agricultural Industrial Storm Water Urban/Sub-Urban Storm Water
Mature F	Forest <u>70</u> % Shrub/Sapling <u>Z0</u> %
☐ Roads ☐ Dams (☐ Bridges ☑ Pipelines ☐ Beaver Dams ☐ Point Source ☐ Trash ☐ Cattle Access ☐ Mining ☐ ATV Crossing ☐ Other ☐ ed: ☐ Yes ☐ Some ☑ No ershed Erosion: ☐ None ☑ Minimal ☐ Moderate ☐ Heavy ynamics: ☐ Aggrading ☐ Degrading ☐ Widening ☐ Heavy
Mormal/t ☐ Petrofeu ☐ Flshy	None Sewage Slick Shoop Science
☐ Clear ☐ Opaque	
Sediment O Normal Chemica Other	Sewage Petroleum Sludge Sawdust Colle

	Stream Habitat Assessif	ient (Semi-Quantitativ	e)
Station #: ZCB-1	Stream: Little Charie Rayon	Date/Time: 5/23/05	Analyst: 524/313B
	Location:	1430 -	,
	WY115 / 23 10 53.		
1. Reach Length De	termination 4/5 92 44 64 Straff La-Measurement Number W		
	7. 7. 7. 13 TUBER PROBLEM TO SERVICE STATE OF THE PROBLEM TO S		GINAFACA FISUDISEADIA Lencia (II) Lengin (II)
Bankfull Width 13	100000000000000000000000000000000000000	115 1125	250' 25'
Bankfull Depth 2	4' (1.7') 13' (1.4'	1 20' (1.4)	na na
Average width times	20 Total Length divided by 10		
2. Riffle-Pool Seque	ence		
Majoria (1887)		oe is Esuceric (In Finite e Nove de la	
Riffle			<u> 1971, St. 1910, St. Florend</u>
Run	12 9		100
Pool 25		25 25	25 25 203 81%
Total		25 25	25 25 203 8/1/
Sequence ¹ ~~~	m-m-m	m	mmm
¹Riffle="xxx", Run्="-	", Pool="~~~"		
3. Depth and Width	Regime Rw Fw	Pw	
Woodil Carlo	TO A STATE OF THE ADDITION OF TAXES	egerelejűk(fe//Wildistri) "z	
Riffle Depth	0.4/0.3 0.2/0.1	0.5/03	sa callos aversies
Riffle Width	0.4/0.3) (0.2/0.1)	Z(0)	
Pool Depth 1.1 /0.2	8 10/07 02/04/8/05 12/02	210/04 = 19/10/25	12.40706 0.8
Pool Width //	13 8.0 70 90	7 - 17	14 10 10.2
Thelway Avy	5		
4. Epilauriai Substra	ate, Percent Stable Habitat (for Macroi	nvertebrates)	
	30 34 35 15 20) 20 35 50	2 60 32,0
E in Circum Habitat			
o. m-Stream Habitat	t, Percent Stable Habitat (Available Fis	th Cover in Wetted Perimet	
			The state of the court will be a confirmed and a superior with a state of the court
% Area 10	20 33 25 10 24	25 35 60	
6. Substrate Charac	cterization (Dominant Substrate)	Run	
Marsh 1	Zonach Nig - T	lejer igniedi Statisphader	
Riffle -	2 (1)		Att Mark Average
Pool /	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-10°	1 214/1/6
BR=Bedrock(7), BLD=	Boulder(6), COB=Cobble(5), GC=Gravel Coa	rse(4), GF=Gravel Fine(3), S=S	and(2), SC=Silt/Clav/1)
	Gravel, Cobble, Boulders Percent Em		A 7.1
rection	Graver, Couble, Boulders Percent Emi	pedded)	All Marie Agreement &
% Emberded			
8. Sediment Deposi	ition (Percent of Bottom Affected)		
	40 40 00 25 10		

Page 1 of 2 V 2.1

Stream Habitat Assessment (Semi-Quantitative)

Station #:		3-1		Date/T	ime: 🄫	123/0	5	In	itials: S	:24/		$\overline{}$
9. Aquat	ic Macroph		d Periphy	ton (Per	Cent Cov	/erage)	Pu]1			2.(
Many S							F/O(O)	i i Cook ii	(je) 1 6.677544	1 10 1 12 1 1		
Riffle	Macrophy	rtes	15	(1 - 14 - 15)	10			5			Serio Velo Is	965
	Periphyto		0		0			0/				
Pool	Macrophy Periphyto			0	0	0	5		$\frac{1}{2}$			
							<u> </u>					
10. Cano	py Cover (Percent			· Paperint	(9) (8) (8)		richen der			organist in the second	
Shading				Sara Si Caratana Laboro III. 🕆		1811.5 V	K/484	20			MAY/SUCTOOD!	
Griading	195	190	195	80	90	70	170	1.00	75	195	1862	<u> </u>
11. Bank	Stability (Score) a	ind Slope	(Degree	s)						The Street was 121	
Complete.											300re	
Score Slope (°)	3	20	70	4	16	5	0	Q ()	65	70	ModS.	
NA CAR		7				6					777 (AV) (31016) (1	
Score	2	2	Z,	5	7	: 7-	X	£ 7	- (0		Mad 5	
Slope (°)		95	75	80	80	60	75	90	90	95	83.5	
	= Stable, < 5 = Moderately			eroding.	•			ly stable, 5- 60-100% b				
12. Vege	tative Prot	tection (Percent B	anks Pro	otected)							
i B				(2)	75)			(8)	9) e lei	All/el/alc/e/	
%	40	60	40	30	30	30	30	40	25	30	35,5	-
Siegolis):		, F							S.		AVelango	
%	20	20	50	45	50	40	50	30	55	45	40.5	
13. Ripa	rian Veget	ative Zo	ne Width									
		2					7	3	3),	10	(Weirage) Store)	
Score	9	9	9	9	9	9	9	9	9	4	718	
en Diener						7					Ampha min	
Score	9	9	9	19	9	9	9	19	9	9	718	
) = Riparian Z = Riparian Zo							th 18 - 12 n th < 6 meter				
14. Lan	d-Use Stre	am Impa	ıcts			<u> </u>						
i e sa sa Andreja			4 8 7 8 9		Sept. 18		nation		;;		1 (Weng Ha)	
impact	0	0	0	0	0	0.	0	0.	0	0		
C = Cattle Score 0=		Row Crop 1 = minor		rban Encro 2 = moder		I = Indust 3 = major	rial Encroad	hment	0=	Other		
Page 2 o V 2.1					-					÷		

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: CEB-1	Client:
Stream name: Little Amethinga	Date/Time: 5/22/04
Location: Unity Carry	Form Completed By: (VI)

Habitat Parameter	CATEGORY							
	Optimal	Suboptimal	Marginal	Poor				
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking				
SCORE 1/	20 19 18 17 16	15 14 13 12 (1)	10 9 8 7 6	5 4 3 2 1				
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.				
SCORE O	20 19 18 17 16	15 14 13 12 11	(10) 9 8 7 6	5 4 3 2 1				
3. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.				
SCORE (D	20 19 18 17 16	15 14 13 12 11	(10) 9 8 7 6	54321				
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.				
SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: LCB-1	Date/Time: 5/21/06
Stream name: LAL Omic Base	Form Completed By: SKH

Habitat				
Parameter		CATE	GORY	
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity SCORE 15	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	20 19 18 17 16 Water reaches base of	15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Status	both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
SCORE 17 8. Bank Stability	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
6	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
SCORELB	Left Bank 10 9	6) 7 6	5 4 3	2 1
SCORE Y RB	Right Bank 10 9	(8) 7 6	5 4 3	2 1
9. Vegetative Protection SCORE LB	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
	Left Bank 10 9	8 7 6	5 4 (3)	2 1
SCORE 7 RB 10. Riparian Vegetative Zone Width	Right Bank 10 9 Width of riparlan zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	8 7 6 Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	5 4 (3) Width of riparian zone 6-12 meters; human activities have impacted a great deal.	2 1 Width of riparian zone <6 meters; little riparian vegetation to human activities.
SCORE 4 LB	Left Bank 10 (8)	8 7 6	5 4 3	2 1
SCORERB	Right Bank 10 (9)	8 7 6	5 4 3	2 1

TOTAL SCORE: 132 AVERAGE SCORE: 12.2

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

Discharge/Flow Measurement Form

Station: LCB-1		
Waterbody: L.M. (bruiz Bayon	
Date: 5/23/05		
Crew: SHAJOBA	Start Time: 1450	Recorder: 54
,	End Time: 1 TCU	GH. Change:
	Staff/Gage:	hrs.
Width: 5.5	Area:	Velocity:
Disch/Flow:	Method:	No Secs:
Meter No:	Max Vel:	Min Vel:
above, below gage,	lent good fair poor base	
Flow	Weather	
Other	Air°F @	1
Gage	Water°F (<u> </u>
Observer		
Control		
Remarks		

(1) Distance from initial point	(2) Width	(3) Depth (D)	Obstruction(s) logs, rocks, other)	(4) Avg. Velocity At Point	Method Depth (0.2 0.6, or 0.8)	(5) Area (A)	(6) Discharge
2.0	0.5	٥٠٥		du	<u></u>	6) (
1.0	7		·	WS -		0.1	10
1.5	 	0.3		0.01		0.15	
		0.4		0.07		0.0	0.0015
2.0		0.4		0.01		0.2	0.002
3.0		0.4		0.03			0.006
3.5	/	0.4		0.01		0.2	0.002
4.0		0.4		0.01		0.2	0.002
45		0.3		NID	· · · · · · ·	0.15	12
5.0		0.2		ND		0.1	0
5.5		0.0		NO		U	0
							-
							
			[
			I				
TOTALS						1.60	002

My 0.01

Completed By		
Completed By	Checked by	Reviewed by

	FIELD DATA SHE	ETS - FISH	
Waterbody Name: Little (· 	
Waterbody Name: Little C	OLACE KS STO YOU	Location: <u>LCB-/</u> Ecoregion: <u>Coasta / Pls M</u>	<u> </u>
		Ecoregion: (OASTR / 1/15 1)	16
Project no:		Weather:	
Investigators; <u>RON</u>	:		
Date Sample Collected: 5/2) 	Form Completed By:	**************************************
		Form Checked By:	
Habitat Forms Completed yes) / no	Fish Sampling Completed yes /	
			HO
	Collection Site (Observations	T
	Above Station	Below Station	
41. Coulding Samol Secures	468-1		Additional
	41- Relative Abundance of Aquatic B	iola i i i culti se estici de la comi	Additional Observations:
Periphyton:	(0)1234	0 1 2 3 4	
Filamentous Algae: Macrophytes:	1 2 3 4	0 1 2 3 4	1
Slimes:	0 0 2 3 4	0 1 2 3 4	1
Macroinvertebrates:	0 1 2 3 4	0 1 2 3 4	1
Fish:	0 1 2 (3) 4	0 1 2 3 4	1
Other	0 1 2(3)4	0 1 2 3 4	1 .
<u></u>	erved, 1=Rare, 2=Common, 3=Abun	0 1 2 3 4	1
	erved, 1-Kare, 2-Common, 3-Appin	Jant, 4=Dominant	ı
Riffi (Rup:	5/20		
Shallow Pool:	60		r
Deep Pool:	75		1
Backwaters:			ı
Chanelized:			
Woody debris:	Microfipiotens en implest (9/1) y		
Emergent Vegatation:		1:	
Submerged Vegetation:			
Depositional Area:	BAA		
Overhanging Veg:	820		
Root Wads:	15		
Undercut Banks:	15	<u> </u>	÷
Filamentous algae:	<u> </u>		
Leafy debris:	200		
A WAR ALL THE COLUMN TO THE CO	Serio Substrate: Evaluate and Sealth gr		
Substrate	Score	Adj. Score	
Bedrock:	X0.	Auj, Score	•
Lg. Boulder:	X1.0		
Boulders:	— X1.0	***	
Rubble:	X1.0		•
Gravel:	X 0.5	5	
Sand:	<i>30</i> x 0.1	1	-
Mud/Siit:	<i></i>		

Score: Abundant 11-15, Common 6-10, Sparce 1-5, Absent 0

Sampling Gear Type:	Electrofishing	Seine	Gill nets	st.11425
Unit of Effort: Above: P	DT 29/3	Below:		stop 1545
Quantity of Available F	ish Cover:			
Above Station: Very Abu		oderate. Sparse.	Absent	
Below Station: Very Abu				
Site Description & Notes			- 1000111	
Above Station: _	_			
Below Station:				
				
6 1 203-1	Fish Species C	bserved		
Above Station #	Be	elow Station #		Rel-
8) Green Sunfish 4	r/11			
@ Barded Migny U	H HIF			
9 Warmonth	141 1111		· · · · · · · · · · · · · · · · · · ·	(4)
(4) Blue al	M MM HM H	1:41/1		
(19) grass pick-col L	HT HT LHOUIL			19
	HT HIT WILL HI	1 1111		
(5) red Fin shin 1	1			
gold shire 111		<u> </u>		
	<u>t 11 </u>			
B black spotted top 1	· · · · · · · · · · · · · · · · · · ·	IH IIm II		<u> </u>
Bull spoper	H H H H H	71 147	W/ W0	with
1) Creek chub			· ·	
39 gamboni It	TUN UN UN H	11 1111 111		· · · · · · · · · · · · · · · · · · ·
(10) Slouge doctor LHT	IM 3			
4 yellow bull hood H	11 1	W/ Exturne paras	r Has	
Orack chub suku /				
6 SUNYOY H	TUH UT III			
CREASE Spot				
W Flree 1			···········	· · · · · · · · · · · · · · · · · · ·
1 Bluntrose darth	x 1 \	1		
Revision 1.2 05/28/02 GBM ^c & Assoc. Doc. 1	Fish	Colleca	I'Y Sary: (D)	<u>)</u>
Page 2 of 2	•	Collected and Show Show	10 mm	/
	fug	/5/0	190 ° (V)	
		b	are, a	

FIELD DATA SHEETS - BENTHIC INVERTEBRATES

	Cleas - Song - 1807
A A A Mark A Mar	pleted By: REM

Collectio	n Site Observatio	ins	Macroinverte	orate Qualitative	Sample List
·	Above Station	Below Station			
Yakii Tira Kalangiar		Delow Station	Taxa Annelida	Above Station	Below Station
Estative, Age	niektencer bit Acerteile	500	Decapoda		
Periphyton:	01234	01234	Gastropoda		
Filamentous Algae:	01234	01234	Pelecypoda		
Macrophytes:	01234	01234	Hemiptera		
Slimes:	01234	01234	Coleoptera		
Macroinvertebrates:	0 1 2 3 4	01234	Lepidoptera'		
Fish:	01284	01234	Odonata	 	<u></u>
Other	01234	01234.	Megaloptera		<u> </u>
			Diptera		
0=Not Observed, 1=Rare,	2=Common, 3=Abund	ant, 4=Dominant	Chironomidae		
沙自的是	adicit kannales (2)		Plecoptera		_
Riffle/Run:	5/20		Ephemeroptera		
Shallow Pool:	65		Trichoptera		
Deep Pool:	10		Amphipoda		
Backwaters:		·.		1	
Chanelized:			-		
Merole	bilis saidolaetea				
Woody Debris:	20	the second of the same burner and 1 1 200 and and any of the	R=Rare, C=Con	nmon, A=Abundant, E)=Dominant
Emergent Vegatation:				n 3-9, Abundant>10, E	•
Submerged Vegetation:				ption and Obser	
Depositional Area:	30		Low Flow co	nditions	i i
Overhanging Veg:			- Conduce	1 bonks W	pozed
Root Wads:	·		LOW Flow co - Induce - root h	ado out of	water
Undercut Banks:				' 7	
Filamentous algae:					.•
Leafy Debris:	BD 50				
Other			• •		•
,					
vicion 1.1.00/15/07	<u> </u>				

Revision 1.1 09/15/97 GBMc Assoc. Doc.2 Page 1 of 3

rapiu bioassessment Field Sheet

	. —		Date	
llector <u>REM</u> Satisfact Satisfact Description ABOVE	mple Technique 3 m pool	Sediment	?	
bitat Description ABOVE	william of	GLCC OUTF	111 003 mouth	(DUPE)
BELOW	LCB-Z downstream o	F GLOC ONS	and waturbed	1 111
		. 0000 003	and wantered	~ 4× co laye
1.77	MACROINVERTEB	RATE COMM	UNITY	
BOVE Station #474CA-1	(Dups)		Station # LCB-2	2
nt. Taxa	Tally	Cnt.	Taxa	Tally
3 CAMBATINAL	HT 1111	7	Cambanael	MI/I
4 Palamonetes	2111	9	Palamoneres	W1 1111
26 Dopoda	I nu nu mu munu	3	Isopoda	111
19 Hyallea arten	WHI WHI WIT WILL ROW	. 16	Ampripoda.	in unum)
3 Olipochatas	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·			
23 Cheumatapyche	וון ראט חט מט מט	2	Cheunatopyche	, 7/
5 Carries	417	17	CALNUT	WILH WIN
		9	Beetis	14 111
-			Cordulidae	/
12 Corixidae	247147711	_ 8	Consider	211)
6 Uvarus	M)		Uvarus	14111
		_ 2	ROMATIA	71
			Arsia	
			Caberhous	1
		_	Enollogue	441
		_ <u> </u>	Hontona	411/
		_	Relaitera	1
		- /2	Chanlot les	/
1 Trophistemus	,	-	SILIIS	4
	1	-	Probuecia	
3 Dinontis(1)	2/1	- -	Trobucaa	<u> </u>
5 Chironomilae	unt		Chiromonistie	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
1 Thermoretus	1		- 11110 ~ pas dece	441/
Neppercuta	/	-		
				
		–		
:TOTAL:			:TOTAL:	
	<u>Community</u>	Structure		
ABOVE	BELOW		ABOVE	BELOW
Ephem. <u>\$7</u> Plecop	24	% Odon.	_ • Ø	7
		% Cole.	14	7
		% Crustacea		16
			4	
Chir. 5 Diptera 8	<u> </u>	# of Taxa:	14	20
nments: ca/ 8		Biotic Score:		
Building: , , , ,	ca/6			

'1.1 6/99 'age 2 of 3

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

	STATION I.D:	1CR-2	LOCATION: //c // //
•)	STREAM NAME:	Little arma Bayon	RIVER BASIN: Ougeline River
	LAT:	LONG:	PROJECT:
	INVESTIGATORS	SKH/RSP/DED DATE/TIME:5	/24/05 (1035) FORM CHECKED BY:
	Y ASTER Molylopia S	Now Past storm (heavy rain) rain (steady rain) showers (intermittent) % cloud cover clear/sunny	24-hr Heavy rain in the last 7 days? ☐ Yes ☑ No ☐ Air Temperature
	AT ENDRUGGE	☐ Montane, non-glacial ☐ N ☐ Swamp and bog ☐ ☐ C	Z Tallimatel
į	Tradicary	Flows ☐ High ☐ Moderate ☐ Low 🕍 N	
		Predominant Surrounding Landu ☐ Forest	Local Watershed NPS Pollution Dan No evidence Agricultural roial % Industrial Storm Water
	A PERMITTER I	Mature Forest <u>70</u> % ☐Shrub	/Sapling 20% Herbs/Grasses 10% Turf%
	Reality of the second of the s	☐ Riffle% ☐ Run ☑ Roads ☐ Bridges ☐ Pipelines ☐ Dams ☐ Trash ☐ Cattle Ac	Beaver Dams Point Source 4/5 cess Mining ATV Crossing Other
		Water Odors ☐ Sewage	
		Petroleum Chemical Fishy Other Turbidity///other Clerify (6 and a	Flecks None Other
		Turbidity/Water Clarity (If not mea ☐ Clear ☐ Slightly turbi ☐ Opaque ☐ Stained	d Turbid Other
			Sediment Deposits Petroleum ☐ Sludge ☐ Sawdust ☐ Oils None ☐ Sand ☐ Relict shells ☐ Other

Stream Habitat Assessment (Semi-Quantitative)

Station #: LCB-2	Stream: /	14	····				
		Ah Comic B	anda	Date/Time: 5/	bula	Analyst	1/1/2
		Is of Hay 1	50.1	0925 - 1		Analyst: 5	<u> 191135P</u>
		1 /				, 	
. Reach Length	Determination	d/c upt	WY	(NO 6)	25 Signal		
elesiescher (v. 18		(Magastripengleir) (Magastripengleir)		APPENDEN	14.6	Total Reach	V Sub-Rei
1 1 - C - (1 1 5 () - (c)	20' 21	444		/	Avelage	Length (ff)	Lilength
ankfull Depth	25 45		7.0 (20	20.4	412	41.2
Average width tim		Total Length di	vided by 10	2.9		na ————	na
Piffle-Pool Son		•					
. Riffle-Pool Seq	uence						
A Second River				e di Pennijirah Pennijirah	NP is the same		
Riffle						A disc extent	As a second of the latest
Run							·
ool 41.5	2						1
equence ¹					J.		· ·
	V VV	<u>~~~</u>	+~~\-	~~			
Riffle="xxx", Run=		اليديد.				<u>1</u>	_ L
Depth and Widt	h Regime						
logigit. Francisco. 11. julija		i (Hele	y Nies, waveleste	e wedlertio	yalığın in jeye		6. 3 . 9. 8. 9.
ffle Depth					9		zi zavyejneje
ffle Width							
- D-45 /				1	· 	3	1
	.5 3,5/2,0 24	1/5/2/1/18	20/10/28/	1575/	32/0-28	Z 5 3/2	
pol Width 20'	5 3.5/2.0 24 24' 1	8 18	30/15/28/	15 3.5/2.0	37/2238	12027/2	0 1.9
ool Width 20	2411	8 18	21 120	11+	37/2238	12027/2	0 1.9
ool Width 20	rate. Percent S	8 18	21 120	11+	37/2238 18 /	72027/2	0 1.9
Dol Width 20	rate. Percent S	8 18 Stable Habitat (for Macroinv	ertebrates)	37/2238 18 /	72627/2	/9.3
Dol Width 20 The large Mag Epifaun al Subst	24' / irate, Percent 8	8 18 Stable Habitat (for Macroinversion 40	ertebrates)	18 7 18 7 18 18 18 18 18 18 18 18	9 18	0 1.9 19.3 32.5
Dol Width 20 The large Mag Epifaun al Subst	24' / irate, Percent 8	8 18 Stable Habitat (for Macroinversion 40	ertebrates)	18 7 18 7 18 18 18 18 18 18 18 18	9 18	/9.3
Epifaun al Subst	irate, Percent S 30 30	8 18 Stable Habitat (for Macroinversion 40	ertebrates)	18 / / 45 3C ted Perimete	9 18 0 30 er)	19.3 Nesco 32.5
Epifaun al Subst	irate, Percent S 30 30	8 18 Stable Habitat (for Macroinversion 40	ertebrates) 30 Cover in Wet	18 /	9 18	19.3 Avalate 32.5
Epifaunal Substantial Area 30 In-Stream Habita Area 45	irate, Percent S 30 30 at, Percent Sta	Stable Habitat (SO ble Habitat (Av Redon N.	for Macroinvi	ertebrates) 30 Cover in Wet	18 / / 45 3C ted Perimete	9 18 0 30 er)	19.3 Nesco 32.5
Epifaunal Substantial Area 30 In-Stream Habita	irate, Percent S 30 30 at, Percent Sta	Stable Habitat (SO ble Habitat (Av Solon No 40 4	for Macroinversion 40 (allable Fish (ertebrates) Sover in Wet	ted Perimeters 1914	9 18 0 30 er)	19.3 Avalate 32.5
Epifaunal Substantial Substantial Substrate Chara	irate, Percent S 30 30 at, Percent Sta	Stable Habitat (SO ble Habitat (Av Solon No 40 4	for Macroinvi	ertebrates) Sover in Wet	18 / 45 3C ted Perimete 18 18 18 18 18 18 18 18 18 18 18 18 18 1	9 18 30 er) 50	19.3 32.5 30.5
Epifaunal Substantial Substantial Substrate Chara	irate, Percent S 30 30 at, Percent Sta	Stable Habitat (SO ble Habitat (Av Solon No 40 4	for Macroinversion (20) for Macroinversion (2	ertebrates) 30 Cover in Wet	ted Perimeters 40	9 18 0 30 er)	19.3 Avalage 32.5
Epifaunal Substalia Area 30 In-Stream Habita Area 45 Substrate Chara	24' / irate, Percent S 30 30 at, Percent Sta 50 40 acterization (Do	Stable Habitat (Solution Solu	for Macroinversion 40 (allable Fish (ertebrates) 30 Cover in Wet	ted Perimeters 40	9 18 0 30 er) 50	32.5 30.5
Epifaunal Substantial Area 30 In-Stream Habita Area 45 Substrate Characterial	24' / irate, Percent S 30 30 at, Percent Sta 50 40 acterization (Do	Stable Habitat (Solution Solu	for Macroinversion 40 (allable Fish (ertebrates) 30 Cover in Wet	ted Perimeters 40	9 18 0 30 er) 50	32.5 30.5
Epifaunal Substantial Substant	at, Percent Sta 50 (60) acterization (Do	Stable Habitat (Avaluation of the Habitat (Avalu	for Macroinverse (Solution 1997) (ailable Fish (Solution 1997	ertebrates) Sover in Wet Out of the second	ted Perimeters 40	9 18 0 30 er) 50	32.5 30.5
Epifaunal Substalia Area 30 In-Stream Habita Area 45 Substrate Chara file ol =Bedrock(7), BLD=	at, Percent Sta 50 (60) acterization (Do	Stable Habitat (Avaluation of the Habitat (Avalu	for Macroinverse (Solution 1997) (ailable Fish (Solution 1997	ertebrates) Sover in Wet Cover in Wet A), GF=Gravel	ted Perimeters 40	9 18 0 30 er) 50	32.5 32.5 50.5 \$14/11
Epifaunal Substantial Substant	at, Percent Sta 50 (60) acterization (Do	Stable Habitat (Avaluation of the Habitat (Avalu	for Macroinverse (1997) (ailable Fish (1997	ertebrates) Sover in Wet Cover in Wet A), GF=Gravel	ted Perimeters 40	9 18 0 30 er) 50 	32.5 30.5
Epifaunal Substation Area 30 In-Stream Habits Area 45 Substrate Chara file 500 R=Bedrock(7), BLD= Embedded	at, Percent Sta 50 (conterization (Do cterization (Do (Gravel, Cobbi	Stable Habitat (Average Agents) ble Habitat (Average Agents) comminant Substrates com	for Macroinverse (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	ertebrates) Sover in Wet Cover in Wet A), GF=Gravel	ted Perimeters 40	9 18 0 30 er) 50 	32.5 32.5 50.5 \$1+/1.6
Epifaunal Subst	at, Percent Sta 50 (conterization (Do cterization (Do (Gravel, Cobbi	Stable Habitat (Average Agents) ble Habitat (Average Agents) comminant Substrates com	for Macroinverse (1997) (ailable Fish (1997	ertebrates) Sover in Wet Cover in Wet A), GF=Gravel	ted Perimeters 40	9 18 0 30 er) 50 	32.5 32.5 50.5
Epifaunal Substantial Substantial Substrate Chara Substrate Chara File Substrate Chara	at, Percent Sta 50 (conterization (Do cterization (Do (Gravel, Cobbi	Stable Habitat (Average Agents) ble Habitat (Average Agents) comminant Substrates com	for Macroinverse (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	ertebrates) Sover in Wet (a) (b) (c) (d) (d) (d) (d) (d) (d)	ted Perimeters 40	9 18 0 30 er) 50 	32.5 32.5 50.5 \$1+/1.6

Stream Habitat Assessment (Semi-Quantitative)

Station #:	LCO.	2		Date/	Time: 4	1/24/0	4		nitials: «	5/64/	RJP
9. Aquati	c Macron	hvtes an	d Periph	yton (Pe	rcent Co			L		777	30 8
				1,000			ik Erkijoj Lius — T	mi Cever	19.8		
Riffle	Macroph Periphyto	100				\rightarrow					TAN VAIGHER
Pool	Macroph	don T	9 3	=		0		6			+
	Periphyto	on c		0	0	0	0	6	0 0) 5	}
10. Cano	oy Cover	(Percent	Stream :	Shading)	-				<u></u>	
neroślojeją .		2	là de	sidalikle) Lili		((%)) Sh:	icl: icl: y/4[iii ii: 72.2	in Artini Jedesa	e Cirilianie Zistle ook		Ī
Shading	95	70	50	70	90	85	170	90	40	40	<u> </u>
11. Bank	Stability (Score) a	nd Slope	(Degree			SETTED NOW TO BEEN				-
Santija						\$1					Wypragte Rejord
Score Slope (°)	60	60	7	45	50	45	7	P	9	9	8-4
F.B.		179						30	95	45	55 24 Velocija - 18
Score	9	9	9	8	8	9	9	9	8	V	8.6
Score 9-10 =	(60) Stable. < 5	// // // bank affi	ected.	75	50	45	70	45	60	(0)	59.5
Score 3-5 = 1	Moderately 1	unstable, 30	0-59% bank	~		Score 1-2 =	= Moderate = Unstable,	iy stable, 5. 60-100% b	29% of bas ank erodin	nk eroding g.	
12. Veget	ative Prot	ection (F	ercent B	anks Pr	otected)				(Lassac)	Andrew Co.	
Selettons. %	٥٥)	20	<u>/.</u> λ	40							AVP-alge
F(#13)			(e)		40	40	40	50	(25)	20	1545
0/				3. S. S. A. S.					000		37.)
%	7 0	70	80	70	57)	(0)	<i>20</i>	P()	77		AMPICALGE
	→ 7 ○ an Vegeta	1 -1 -		70	50	60	70	PÒ	75	70	69.5
13. Ripari	7 0 an Vegeta	ative Zon		70 ·	50	60	70	PÒ	95 75		AMPICALGE
13. Ripari	1 1 1 1	ative Zon		9	9	60	70 9	PO 3	75		69.5
13. Ripari	9	ative Zon	e Width			9	70 7		75	70	AMPICALGE
13. Ripari	9	ative Zon	e Width	9	9	9	9	9	75	70	69.5 Avalence 7 18
13. Ripari	9 9 Riparian Z	ative Zon	e Width	9	9 9 Score 6-8	9 = Riparian	70 9 Zone Widt	9 9 18-12 m	3 75 st	70	69.5 7 18
13. Ripari Score Score Score 9-10 =	9 Riparian Zon	q one Width:	e Width	9	9 Score 6-8 Score 1-2	9 Riparian Riparian	9 Gune Widti	9 9 18-12 m	3 75 st	70	69.5 7 18
Score Score 9-10 = Score 3-5 = 1	9 Riparian Zon	q one Width:	e Width	9	Score 6-8 Score 1-2	9 Riparian Riparian	9 Gune Widti	9 9 18-12 m	3 75 st	70	69.5 7 18
Score Score 9-10 = Score 3-5 = 14. Land-	9 Riparian Zon Riparian Zon Se Strea	q one Width:	9 18 meters 1 - 6 meters	9	9 Score 6-8 Score 1-2	9 = Riparian = Riparian	9 Zone Widti Zone Widti	9 18 - 12 m 1 < 6 meter	75 q eters	70 9	69.5 7 18
Score Score 9-10 = Score 3-5 = 14. Land-	9 Riparian Zor Riparian Zor Jse Strea	ative Zon	P Width P 18 meters 1 - 6 meters U = Urt	9	Score 6-8 Score 1-2	9 = Riparian = Riparian	Zone Widt Zone Widt Zone Widt	9 n 18 - 12 m n < 6 meter	75 9 eters s	70 9 9 Other_	69.5 7 18

Habitat Assessment Field Data Sheet (Low Gradlent)

Station I.D: 43-2	Client:
Stream name: LHL Ame Rusan	Date/Time: 5 24 bc
	Form Completed By: 544

Habitat											
Parameter	CATEGORY										
	Optimal	Suboptimal	Marginal	Poor							
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking							
SCORE 1/	20 19 18 17 16	15 14 13 12/11)	10 9 8 7 6	5 4 3 2 1							
2. Pool Substrate Characterization SCORE	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.							
3. Pool Variability	20 19 18 17 16	15 14 13 12 11	10 9(8)7 6	5 4 3 2 1							
o. 1 ooi variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.							
SCORE / 6	20 19 18 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1							
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.							
SCORE /	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1							
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily sitted; >80% affected; movement/shifting of bottom occurs frequently; pools, nearly absent due to deposition.							
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 (8)	54321							

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: ISB Date/Time: 6/24/c/c

Stream name: IAL Conn & Raya Form Completed By: 5/44

Habitat									
Parameter		CATE							
0.01	Optimal	Suboptimal	Marginal	Poor					
6. Channel Sinuosity SCORE	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line. 20 19 18 17 16	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.					
7. Channel Flow	Water reaches base of	15 14 13 12(11)	10 9 8 7 6	5 4 3 2 1					
Status SCORE 18	both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					
8. Bank Stability	20 19/18/17 16	15 14 13 12 11	109876	5 4 3 2 1					
2	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.					
SCORE 7 LB	Left Bank 10 9	8 7 6	5 4 3	2 1					
SCORE 4 RB	Right Bank 10 /9)	8 7 6	5 4 3	2 1					
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.					
SCORE 7 LB	Left Bank 10 9	8 7 6	5 4 3	2 1					
SCORE 7 RB	Right Bank 10 9	8 (7) 6	5 4 3	2 1					
Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.					
SCORE 9 LB	Left Bank 10 (9)	8 7 6	5 4 3	2 1					
SCORE 4 RB	Right Bank 10 (9)	8 7 6	5 4 3	2 1					

TOTAL SCORE: 133
AVERAGE SCORE: 13.3

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

FIELD DATA SHEETS - FISH

Waterbody Name: Little Corney Buyou	Location: LCB-2
Client: CLCC	Ecoregion: Con A Constal
Project no: 2072-05-070	Weather: Swary Clear
Investigators: <u>SKH . BJF .</u>	_ Ho 7
JAO REM	Form Completed By: AEM/5819
Date Sample Collected: 5/25/05	Form Checked By:
Habitat Forms Completed: (yes) / no	Fish Sampling Completed: (res)/ no

			4	
	Colle	ection Site Obse		
			LCB-2 Below Station	
Company of the property of the company of the compa	Above Stati	on	Below Station	
A file (1916) is a pollection.	s. Trelativezatora étasási			Additional
Periphyten:				Observations:
Filamentous Algae:	0 1 2 3 0 1 2 3	,	<u>6</u> 3 2 3 4	
Macrophytes:	0 1 2 3	•	0 1 2 3 4	Many
Slimes:	0 1 2 3	•	Ø1234	Many Small Fish
Macroinvertebrates:	0 1 2 3	· .	0 1 2 3 4	
Fish:	0 1 2 3	·	0 1 2 3 4	collected in
Other :	0 1 2 3		0 1 2 3 4	ì .
0=Not Ob	oserved, 1=Rare, 2=Comm	on 3=Abundant	4=Dominant	Inact
	A Committee of the Comm	in the state of th	1 Dometer	collection
Riffle/Run:				Collection
Shallow Pool:			25	
Deep Pool:		-	75	effect priced
Backwaters:				
Chanelized:				surface source
		ninded (A) i Sig		· Mater douth
Woody debris:			50	Aberdune of
Emergent Vegatation:			10	Anhitit.
Submerged Vegetation:				good Representation of
Depositional Area:				9000 Representation of Key (indicators species
Overhanging Veg:				
Root Wads:			20	. Abun dart
Undercut Banks:			20	ROPM = many
Filamentous algae:				accumulations
Leafy debris:				Accomplations.
THE RESERVE OF THE PROPERTY OF		ald Sanitra		
Substrate	Score		Adj. Score	Dorden incomeda
Bedrock:		X 0.1	7 (4)7 (400)0	· Darter insorph
Lg. Boulder:	· · · · · · · · · · · · · · · · · · ·	X 1.0		- ysnall.
Boulders:		X 1.0		···
Rubble:		X 1.0		
Gravei:	10	X 0.5		
Sand:	10	X 0.1		
Mud/Sitt:	.80	X 0.1	· · · · · · · · · · · · · · · · · · ·	
Score:	Abundant 11-15, Commo		5. Absent 0	

Sampling Gear Type: Electrofishing	Seine	Gill nets	
Unit of Effort: Above:	Below:	3160 pdf	
Quantity of Available Fish Cover:			
Above Station: Very Abundant, Abundar	nt, Moderate, Spars	e, Absent	
Below Station Very Abundant, Abundant	, Moderate, Sparse	, Absent	
Site Description & Notes:			
Above Station:			
Below Station: <u>によっ</u> て			
	cles Observed		
Station # US-2	- Below Station #		
Gambusia HT HT 1			
Grass Pickerel Htt 1			
Vellow Bulliand Cathish 1			
Was month HT 11 Blue Sil 11			
Large Month Bass 1			 ·
Burded Pyrnie Santish	1111		
Long ear HT 111			
black spotted 11			
Prote Perch III			
Grown Smaligh III YOY Lepomis 1			
TO I ESPANCE)			
			
	1		

Revision 1.2 05/28/02 GBM° & Assoc. Doc. 1 Page 2 of 2

Unit of Effort: Above:	Below: LC B-L	P117-3160
Quantity of Available Fish Cov		
	Abundant, Moderate, Sparse, Absent	
Below Station: Very Abundant,	Abundant, Moderate. Sparse, Absent	
Site Description & Notes:		
Above Station:		
Below Station:	1-2	
F	ish Species Observed	h ct 3/7
Above Station #	Below Station # LCB-2	(M) 3/3
	yellow Sullhad (1)	
	ingerest Beg ()	
	Longer (C)	
	Green (5)	
1 1/2	Grass prokeral (7)	3
1/1/1	Bulgathel Bonnas (<u>2</u>
	barbur (1)	<u> </u>
	Pinte purh (4)	
V	Bluegel) 2	
	warnout (7)	
	Slough clocker (1)	
		· · · · · · · · · · · · · · · · · · ·
	<u> </u>	<u> </u>
levision 1.2 05/28/02	Fish Collected in By suph	•
BBM° & Assoc. Doc. 1 Page 2 of 2	Bendal Program : 23	
	Bendel Piggang . 23 Pirale perch : 3 Slough Date : [19]	
	bambusia 25	

FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Waterbody Name: <u>LCB-Z</u>	Location: <u>LCB-Z</u>
Client: 64.66	Ecoregion: Cath Coastal
Project no: 2072: 05-070	Weather: Sunny Clear
Investigators: <u>SKH</u> BJP	Hot
OBB REM	····
Date Sample Collected: 5/25/05	Form Completed By: REM (SEA)
Habitat Forms Completed: (yes) no	Fish Sampling Completed: ves no

Conection	n Site Observatio		Macroinvertel	rate Qualitative	Sample List
	Above Station	LCB-2 Below Station	Tava	AL 01.6	
Con This Expendent		pelów station	Taxa Annelida	Above Station	Below Station
pgA estilve Abg			Decapoda		
Periphyton: อม แต่ง d	01234	0 (2) 3 4	Gastropoda		·· ·· · · · · · · · · · · · · · · · ·
Filamentous Algae:	01234	01234	Pelecypoda		,
Macrophytes: Brokenso	01234	01234	Hemiptera		
Slimes:	01234	01234	Coleoptera		
Macroinvertebrates:	01234	01234	Lepidoptera		
Fish:	01234	01234	Odonata		
Other:	01234	01234	Megaloptera		
			Diptera		
0=Not Observed, 1=Rare,	2=Common, 3=Abund	ant, 4=Dominant	Chironomidae		
in the second			Plecoptera	,	
Riffle/Run:	·		Ephemeroptera		
Shallow Pool:		10	Trichoptera		
Deep Pool:		90	Amphipoda		
Backwaters:					
Chanelized:					· · · · · · · · · · · · · · · · · · ·
A Moint	bicits templacion				
Woody Debris:		10	R=Rare, C=Cor	nmon, A=Abundant, I	D=Dominant
Emergent Vegatation:			1 · ·	n 3-9, Abundant>10, I	
Submerged Vegetation:	,			ption and Obser	
Depositional Area:		10	most of colle	ctro- at wood	water ut &
Overhanging Veg:			30 me Leade o	debru	
Root Wads:		25	- mary small Fi	it collected m	invert
Undercut Banks:			somple.		
Filamentous algae:			- Pool 6/5 of	Huy Bridge	
Leafy Debris:		5	·		
Other:		 	1		

Revision 1.1 09/15/97 GBMc Assoc, Doc.2 Page 1 of 3

BIO-ANALYTICAL LABORATORIES

REFERENCE TOXICANT TEST QUALITY DATA

Date start: 3/9/66	Date end: 3/11/13/	
Test organism: P promote	<u> </u>	
Age: 12 days		
Source and ID#: BAL/ 316	3 t _o	
Dilution Water used: Type: <u> </u>	H * Jug#: 3474	
Reference Toxicant: 1/6Cl (42 3/2/(s/o) + Units: /OO g/L ug/L	
Manufacturer: EMI)	Last: 4 1375 B6S	
48-hour LC 56: 8.99 c. 2	Statistical Method:	^
Upper and Lower CUSUM Chart (ontrol Limits: 9.14-7.17	
Test Number (for the year):		
We verify that this data is true and c		
Technician:	<u> </u>	-
Statisticiam:	32,000.35	
Quality Control Officer:	·	
*MH- Moderately hard S-Soft H - Hard	-NaCl - Sodium Chloride ^P - Probit CuSO, - Copper Sulfate SK - Spearman Karber TSK - Trimmed Spearman Karber	

File: Ref Tox Cover

BIO-ANALYTICAL LABORATORIES ACUTE TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

oject#															3/9/			Time				
ient <u>R</u> é															34.17							
umple Des	cription_	10001	1. 14	CCL	(8)	PI_	<u>3</u> ? .	45)			st Sy	peci	es <u> </u>	1.	Juko kia	<u></u> -	*	ID	# <u>107</u>	2/3	201	
chnician me: mperatur	ohour Ohour ce: Ohour	24 24.3° 24	hour hour hour	1241	4 }4	8hou 8hou 8hou	ir <u>. </u>	15.5	72hc 72hc 72hc	our_ our_		961	our our our	1	<u>-</u>		<u> </u>					
Pergent	Replicate	Test Salinity	7	f Live				1		Oxyge	·n		рÆ					Cons	uctiv	ıty		
Coll.		Salinity	0	24	43	72	96	0	24	48	72	9€	0	24	48	72	96	Ş	24	48	72	96
Õ	A	St 1/2	10	ار_	; <u>;</u> ;			33		7.6		<u> </u>	19		13.C			3.7		33		<u> </u>
	B	1	jo	10								<u> </u>										<u> </u>
5	A		/c	<u></u>	,			8.3		1/4-			3.0		1 - 1		F	8350		1,872_0		<u></u>
	₿	Į.	1/1		: 1 .			7	ļ 										ļ			-
7	E \		10		10			3.3		Įλę	21 14 Table 10 Table	-	Υ. Ο		1.5			100		- ui	iu	ļ
	3	-	ic		f. ·	ļ																
G	A		10			<u> </u>		8.3		1142			€,5		153			W.E	<u> </u>	155.	~`	<u> </u>
	B		170		- /					ļ		<u> </u>										<u> </u>
\$ {	ρ _ε		10	62	()			3.7		10			βS					S O	<u> </u>	: - ;	-	
	<u> </u>		10	10	(C)			ļ <u>.</u>														-
13	A	1	[10]	<u> 0</u>				3.3	7.4				<u>₹</u> ()	7.60				ارى ا	E. J'2 "	<u> </u>		-
	\mathcal{B}	!	10	1 .	1	ļ	Į .	•	ĺ	1		1	1		1	}	}	[Ī	I		1

APPENDIX C STATISTICAL ANALYSIS

PROBIT DAPHNIA 3/10/06

	Conc.	Number Exposed	Number Resp.	Observed Proportion Responding	Res Adju	portion ponding sted for ntrols
	Control	20	2	0.1000	0	.0000
	1.0000	20	6	0.3000	0	.2219
	2.0000	20	19	0.9500	0	.9444
	3.0000	20	20	1.0000	1.	.0000
	4.0000	20	20	1.0000	1	.0000
	5.0000	20	20	1.0000	1.	.0000
Ch: Ch:		e for Heter e for Heter		(calculated)	=	0.027
~		bular value		level)	=	7.815

PROBIT DAPHNIA 3/10/06

Estimated LC/EC Values and Confidence Limits

	Exposure	95% Confide	nce Limits
Point	Conc.	Lower	Upper
LC/EC 1.00	0.638	0.289	0.859
LC/EC 50.00	1.251	0.971	1.513

TRIMMED SPEARMAN-KARBER METHOD. VERSION 1.5

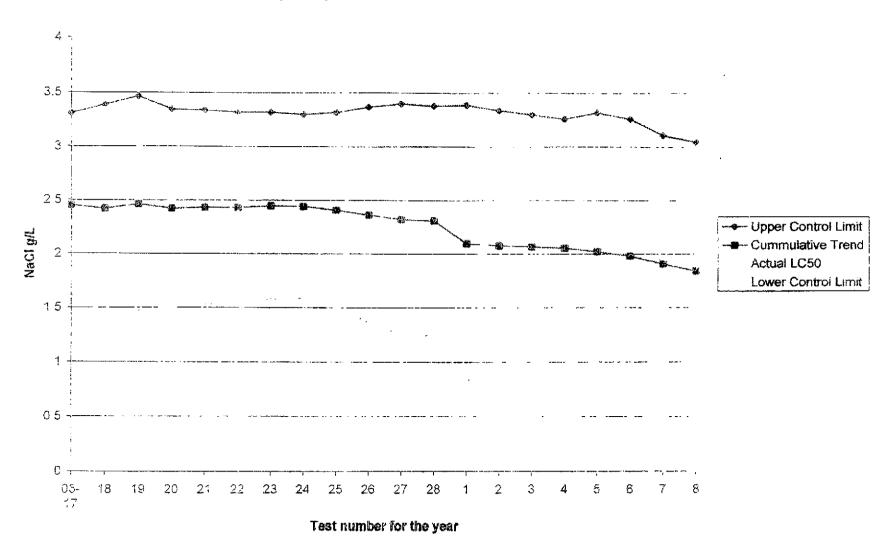
DATE: 3/9/06 TEST NUMBER: 3706 DURATION: 48 H

TOXICANT: NACL

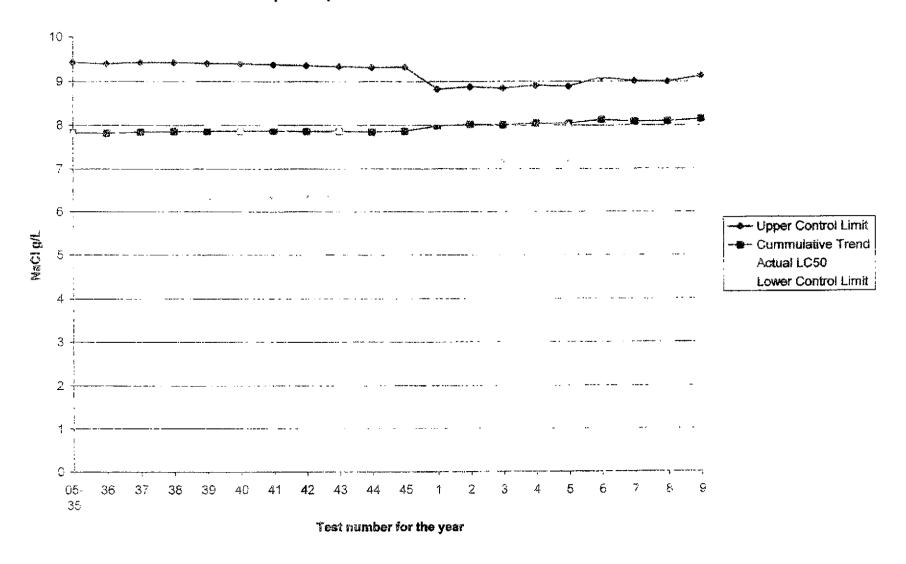
SPECIES: P. PROMELAS

KWM	DMT'A	Concentration	Number	Mortalities
		(G/L)	Exposed	
		.00	20	O
		5,00	20	0
		7.00	20	9
		9.00	20	9
		11.00	20	50
		13.00	20	20

SPEARMAN-KARBER TRIM: .00%


SPEARMAN-KARBER ESTIMATES: LC50: 8.99

95% LOWER CONFIDENCE: 8.55


95% UPPER CONFIDENCE: 9.45

APPENDIX D QUALITY ASSURANCE CHARTS

2006 Daphnia pulex 48-hour Reference Toxicant Test Results

2006 Pimephales promelas 48-hour Reference Toxicant Test Results

APPENDIX E AGENCY FORMS

Acute Forms <u>Daphnia</u> pulex Survival

Permittee: Great Lakes Chemical Corporation- Outfall 002 upstream

NPDES Permit Number:

AR0001171

Composite Collected

From: 3/9/06

To: 3/9/06

From:

To:

Test Initiated: 3/10/06

Dilution Water Used:

Receiving Water

X Reconstituted Water

Dilution Series Results - Percent Survival

	Diffici	Series I	Results - Perce	ent Survivai	
TIME OF READING	REP	0	100		
24-hour	A	100	100		
	В	100	100		
	C	100	100		
	D	100	100		
	E	100	100		
48-hour	A	75.0	100		
	В	87.5	100		
	С	100	100		
	D	87.5	100		
	E	100	100		
	Mean	90.0	100		

- 1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:
- a.) LOW FLOW OR CRITICAL DILUTION (100%)

YES

X NO

b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%)

YES

NO

2. Enter percent effluent corresponding to the LC₅₀ below:

LC₅₀ =

N/A% effluent

95 % confidence limits: N/A

Method of LC₅₀ calculation: N/A

- 3. If you answered NO to 1.a) enter (P) otherwise enter (F): P
- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): N/A
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Biomonitoring Daphnia 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: Great Lakes Chemical Corporation NPDES Number: AR0001171-002 Upstream

Contact: David Hill Analyst: Deshotels

Sample Collected

From:

Date

Time

To: Date 3/9/06 Date 3/10/06 Time 1255 Time 1510

Test Begin Test End

Date 3/12/06

		1 CON EA				Date	5/12/06		Time 135	0					
Parameter	4/160	D.O.	,		Temperati	ire		Alkalinit	y .	,	Hardnes	s	T	pН	
Dilut/Time	Ohrs.	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs
0	8.5	8.1	7.8	24	25	25	32.0	28.0		48.0	48.0		7.6	7.8	7.6
100	7.7	7.8	7.6	24	25	25	40.0			76.0			7.2	7.3	7.7
			<u> </u>		_										
			ļ												
												1	 		
his Form is t	o be subn	nitted with a	each DMR				<u> </u>					<u>.i</u>		<u> </u>	

Alkalimity and hardness to be reported as mg/l CaCO,

Acute Forms <u>Pimephales promelas</u> (Fathead Minnow) Survival

Permittee: Great Lakes Chemical Corporation- Outfall 002 upstream

NPDES Permit Number:

AR0001171

Composite Collected

From: 3/9/06

To: 3/9/06

From:

To:

Test Initiated: 3/10/06

Dilution Water Used:

Receiving Water

X

Reconstituted Water

Dilution Series Results - Percent Survival

	Ditutio	n Series	Results - rer	cent Survival	
TIME OF READING	REP	0	100		
24-hour	A	100	100		
	В	100	100		
	С	100	100		
	D	100	100		
	E	100	100		
48-hour	A	100	100		
	В	100	100		
	C	100	100		
	Đ	100	100		
	E	100	100		
	Mean	100	100		

- 1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:
- a.) LOW FLOW OR CRITICAL DILUTION (100%)

 b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%)

 YES

 NO
- 2. Enter percent effluent corresponding to the LC₃₀ below:

 $LC_{50} = N/A\%$ effluent

95 % confidence limits: N/A

Method of LC₅₀ calculation: N/A

- 3. If you answered NO to 1.a) enter (P) otherwise enter (F): P
- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): N/A
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Blomonitoring Fathead Minnow 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: Great Lakes Chemical Corporation NPDES Number: AR0001171-002 Upstream

Contact: David Hill Analyst: Deshotels

Sample Collected

From: To: Date

Time

Date 3/9/06 Date 3/10/06 Time 1255 Time 1415

Test Begin Test End

Date 3/12/06

Time 1405

		1401 101				DALC	3/12/00									
Parameter	D.O			<u> </u>	Temperature			Alkalinity			Hardness			pН		
Dilut/Time	Ohrs.	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs	
0	8.5	8.1	7.7	24	25	25	32.0	28.0		48.0	48.0		7.6	7.8	7.6	
100	7.7	7.8	7.4	24	25	25	40.0			76.0			7.2	7.3	7.6	
			<u> </u>													
			ļ													
				ļ												
This Form is t																

^{*}This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/l CaCO₃

Acute Forms <u>Daphnia pulex</u> Survival

Permittee: Great Lakes Chemical Corporation - Outfall 004 upstream

NPDES Permit Number: AR0001171

Composite Collected From: To:

From: 3/9/06 To: 1245

Test Initiated: 3/10/06

Dilution Water Used: Receiving Water X Reconstituted Water

Dilution Series Results - Percent Survival

	T	T		Teent Survi	1 444	
TIME OF READING	REP	0	100			 <u> </u>
24-hour	A	87.5	100			
	В	100	100			
	C	100	100			
	D	100	100			
	E	100	100			
48-hou	A	87.5	100			
	В	100	87.5			
	C	75.0	100			
	D	87.5	100			
	E	100	100			
	Mean	90 0	97.5			

- 1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:
- a.) LOW FLOW OR CRITICAL DILUTION (100%)
 b.)½ LOW FLOW OR 2X CRITICAL DILUTION (N/A%)
 YES
 NO
- 2. Enter percent effluent corresponding to the LC50 below:

 $LC_{50} = N/A\%$ effluent

95 % confidence limits: N/A

Method of LC₅₀ calculation: N/A

- 3. If you answered NO to 1.a) enter (P) otherwise enter (F): P
- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): P
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Biomonitoring Daphnia 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: Great Lakes Chemical Corporation - Outfall 004 upstream

NPDES Number: AR0001171

Contact: David Hill Analyst: Deshotels

Sample Collected

From:

Date

Time

To:

Date 3/9/06

Time 1245 Time 1510

Test Begin Test End Date 3/10/06
Date 3/12/06

Time 1400

		Test Prof]			Date	3/12/00		111116 1-04	,			.,		
Parameter		D.O.	4	40	Temperate	ne .	,	Alkalinit	у		Hardnes:	3	1	pН	
Dilut./Time	Ohrs.		48hrs	Ohrs :	24hrs	48hrs	Ohrs	24hrs	48hrś	Ohrs	24hrs	48hrs	Ohrs	24hrs	48hrs
0	8.5	8.1	7.7	24	25	25	32.0	28.0		48.0	48.0		7.6	7.8	7 8
100	8.0	8.1	7.5	24	25	25	20.0		<u> </u>	36 0			7.4	7.4	7.5
									<u> </u>	<u> </u>		_			
·								ļ	<u> </u>	ļ		<u> </u>			
.				-											
					1										

^{*}This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/l CaCO₃

Acute Forms <u>Pimephales promelas</u> (Fathead Minnow) Survival

Permittee: Great Lakes Chemical Corporation - Outfall 004 upstream

NPDES Permit Number: AR0001171

Composite Collected

From:

To:

From: 3/9/06

To: 1245

Test Initiated: 3/10/06

Dilution Water Used:

Receiving Water

X Reconstituted Water

Dilution Series Results - Percent Survival

Ditution Series Results - Percent Survival									
TIME OF READING	REP	0	100						
24-hour	A	100	100						
	В	100	100						
	C	100	100						
	D	100	100						
	E	100	100						
48-hour	A	100	100						
	В	100	100						
	С	100	100						
	D	100	100						
	E	100	100						
	Меан	100	100						

- 1. Dunnett's Procedure or Steel's Many-One Rank Test as appropriate: Is the mean survival at 48 hours significantly different (p=.05) than the control survival for the % effluent corresponding to:
- a.) LOW FLOW OR CRITICAL DILUTION (100%)

YES

NO

b.)% LOW FLOW OR 2X CRITICAL DILUTION (N/A%)

YES

NO

X

2. Enter percent effluent corresponding to the LC_{so} below:

 $LC_{50} = N/A\%$ effluent

95 % confidence limits: N/A

Method of LC₅₀ calculation: N/A

- 3. If you answered NO to 1.a) enter (P) otherwise enter (F): P
- 4. Enter response to item 3 on DMR Form, parameter TEM3D
- 5. If you answered NO to 1.b) enter (P) otherwise enter (F): P
- 6. Enter response to item 5 on DMR Form, parameter TFM3D

Biomonitoring Fathead Minnow 48 hour Acute Static Renewal Chemical Parameters Chart*

Permittee: Great Lakes Chemical Corporation - Outfall 004 upstream

NPDES Number: AR0001171

Contact: David Hill Analyst: Deshotels

Sample Collected

From: To: Date

Time

: Date 3/9/06

Time 1245

Test Begin Test End Date 3/10/06 Date 3/12/06

Time 1410

Parameter		D.O. ;	7		Temperati	ite		Alkalinit	y :		Hardnes	S		pH	
Dilut./Time	Ohrs.	24hrs	48hrs	0hrs	24hrs	48hrs	0hrs	24hrs	48hrs	Ohrs	24hrs	48hrs	0hrs	24hrs	48hrs
0	8.5	8.1	7.7	24	25	25	32.0	28.0		48.0	48.0		7.6	7.8	77
100	8.0	8.1	7.4	24	25	25	20.0			36.0			7.4	7.4	7.5
													 		- -

^{*}This Form is to be submitted with each DMR.

Alkalinity and hardness to be reported as mg/l CaCO3

APPENDIX F REPORT QUALITY ASSURANCE FORM

Bio-Analytical Laboratories

3240 Spurglio Road Post Office Box 527

(318) 745-2772

1-800-259-1246

Ooyilno, LA 71921. Fax: (318) 745-2773

bicanalytical@worldnet.att nat

REPORT QUALITY ASSURANCE FORM

Client: Great Lakes Chemi	cal Corporation
Project#: X2593	*
Proofed First Draft: Employable	Date: 3-24-06
Proofed Final Draft: Sum III. Brupp	Date: 3-24-010
I certify that this document was prepared under my with a system designed to assure that qualified personnel prinformation submitted. The information contained in this distrue, accurate and complete.	operly gather and evaluate the
Quality Assurance Officer	Date: 3-04-010

No part of this work may be altered in any form or by any means without written permission from Blo-Analytical Laboratories.

Appendix E Field Data Sheets

Page _	1	_ of _	

Field Data Form

FIELD MEASUREMENT RECORD (Date 4/27- /05)

REVIEWED BY:_____

Station/Depth	Date	Time	Field Crew	Temp C°	DO mg/l	Sp. Cond. u\$	pH su	Turb. (ntu)		ole # of ainers W=Wat	Notes
4TA-2 WM-4	4/27/	0755-	BJD/SKH	14,9%	75.2% 7.5	475	6,5	12.7	_	1	Sample Collected @0740 CI, Sulfale, TDS WQ SAMPLE Orlected CL, SOY, TDS
UTA-4	1/27/05	1140	85°9 524	16.5°C	347. 3.5mg/L	9293	1	21.2)	re soy TDS
14A-3	1/2.7/15	1505	Torra	m	50.57.	1000	6.4	17.0	-	1	1'
LC-3	1/28/05	0800	524/ 185P	23.6°C	53.0% 4.4mg/c	2788	7.5	220		7	11
LC-2	4/24/05	1045	SE4/58	26.80	66.6% 5.2 ms/L	2874	7.9	24.0	_	1	1 /
LC-3 LC-2 LC-1	4/2405	1410	DB	21.10	41.0% 3.7mk	295	レチ	133	_	(11

^{*} Indicates calibration check was made

	_	
Page	_ of	

CCC

Field Data Form

5/18/0-		
FIELD MEASUREMENT RECORD (Date 72905) REVIEWED BY:	

Date	Time	Field Crew	Temp C°	DO mg/l	Sp. Cond. uS	pH su	Turb. (ntu)	Samp Conta S=Sed.	ole # of ainers W=Wat.	Notes
5/23/05	1640	BIP/SCH KADO	21.8	3.5 mg/ 3530	126.9115	6,9	42,1			
	•									
	,									
										
				···						
		5/23/05 1640	5/25/05 1640 858/30A 5/25/05 1640 66A/50	5/23/05 1640 1818/QAH 21.8	5/25/05 1640 BTP/AH KMBN 21.8 3.5MBY 25.39	5/25/05 1640 1517/39 21.8 3.5m/ 3539 126.9 us	5/23/05 1640 150/GH 21.8 3.5mg/ 3539 126.9 16,9	5/25/05 1640 8 10/20 21.8 3.5 moly 126.9 us 6,9 42.1	5/25/05 1640 1870/QH 21.8 3.5mb/ 1269us 6,9 42.1	5/23/05 1640 1579/gp 21.8 3.5 mg/ 323gg 126.9 us 6,9 42.1

^{*} Indicates calibration check was made

•	
Page	of

Field Data Form

FIELD MEASUREMENT RECORD (Date_	5	7/2	4/05	

REVIEWED BY:

Station/Depth	Date	Time	Field Crew	Temp C°	DO mg/l	Sp. Cond. uS	pH su	Turb. (ntu)	Samp Cont S=Sed.	ole # of ainers W=Wat.	Notes
UB2	5 pybs	1009	lēm þag	25.3	2,75	53.0 15.9	6.64	29.2		/	
		·									
Indicates calib				,							

^{*} Indicates calibration check was made

Calibration Field Form

Dissolved O	xygen Meter A	dr Calibration	Record	d					
Date/Time:	Calibrators Initials:	Meter:	,) % Air turation g/l)	Altitu (ft)	P	larometric ressure nm Hg)	Comme	ents:
4/27/05 (674	Bop	YSI 85	100	%	0		24.92"		
pH Meter Ca	libration Reco	rd			<u> </u>				
Date/Time:	Calibrators Initials:	Meter:	Stan (4, 7,		Slope	<u>-</u>	7.00 Buff Check	er Com	iments:
4/27/05 (0721	KIP	Orin 1	[4,	7)	92,	5%	7.0		
Conductivity	Meter Calibra	tion Record							
Date/Time:	Calibrators	Meter:	Standard:		rd:	Meter Cond:		Commer	nts:
4/27/05 (15730)		45E 85		1000		905		(adjus	1.1 1000)
Turbidity Me	ter Calibration	Record							
	Calibrators Initials :	Meter:	Gel S	tandard	4	Met	er Readin	9	Comments:
			0-10	0-100	0-100	0 0-1	0 0-100	0-1000	
4/27/05 (734)		HACI DKUP	517	51.1	435	5.18	5/:/	437	
	Meter Calibrat	والمتناز والمستحد المستحد							
Date/Time:	Calibrators initials:	Meter:		ometer erature °		Meter Temper	ature °C:	Comm	ents:
				<u> </u>					
-	·								
						<u></u>		<u> </u>	
						·		-	
)// 0. 0.//oz									
V1.0 04/00									

Calibration Field Form

Dissolved Ox	kygen Meter A	ir Calibration	Record	1						
Date/Time:	Calibrators Initials:	Meter:		% Air uration g/l)	Altitud (ft)	Pi	arometric ressure nm Hg)	Commo	ents:	
4/28/05 (0 pc	BII	452 85								
pH Meter Cal	ibration Reco	rd	<u> </u>			l				
Date/Time:	Calibrators Initials:	Meter:	(4, 7, 10)		Slope:		7.00 Buffer Check		Comments:	
4/20/05 (03c	NOT!	Orian 1	(4,7)			7.09	(3)	neter slow to calibrate	
Conductivity	Meter Calibra	tion Decord							7.0	
Date/Time:	Calibrators Initials:	Meter:			rd:	Meter Cond:		Comme	nts:	
4/28/45 (0745)		YS [85	/000)	1014				
Turbidity Met	er Calibration	Record	· · · · · · · · · · · · · · · · · · ·				:			
Date/Time:	Calibrators Initials :	Meter:	Gel Standard:			Mete	er Readin	3	Comments:	
			0-10	0-100	0-1000	0-10	0-100	0-1000)	
4/24/15 (0747)		HACH 2000	5,17	57.1	431	5.21	5014	435		
	Meter Calibrat									
Date/Time:	Calibrators Initials:	Meter:		ometer erature °		Vieter Femper	ature °C:	Comm	nents:	
						<u></u>				
44.0.04400					-					

Winkler Calibration Field Form

Date/ Time:	Calibrators initials:	Meter:	100 % Air Saturation (mg/l):	Altitude (ft):	Barometric Pressure (mm Hg):	Titration #1:	Titration #2:	Winkler/Air RPD:
5/4/cz 0640	150/5B	45145 6.2018	100 % - Inst cea	0	29.98	Final: 26, 3 Initial: 20, 0 Difference: 6, 3 Final DO: 6, 3	Final: 36.6 Initial: 36.0 Difference: 6.0	
						Final: Initial: Difference: Final DO:	Final: Initial: Difference.	
Comm	ents:					Timar DO.		

Mc & Associates, Inc. Brown Lane Bryant, AR 72022

ANALYTICAL RESULTS

AIC No. 89880-1

Total Dissolved Solids Chloride Sulfate	EPA 160.1 EPA 300.0 EPA 300.0	1800 220 950	10 2 2	mg/l mg/l mg/l	W13817 S15746 S15746	D
AIC No. 89880-6 Sample Identification: LC-3 4-28-05 (086 Analyte	Method	Result	RL	Units	Batch	Qualifier
Sulfate	EPA 300.0	960	2	mg/l	S15746	Ď
Chloride	EPA 300.0	1800 22 0	10 2	mg/l mg/l	W13817 S15746	D
Analyte Total Dissolved Solids	Method EPA 160.1	Result	RL _	Units	Batch	Qualifier
AIC No. 89880-5 Sample Identification: LC-2 4-28-05 104	5					
Sulfate	EPA 300.0	4.4	0.2	mg/l mg/l	S15746 S15746	
Total Dissolved Solids Chloride	EPA 160.1 EPA 300.0	190 70	10 0.2	mg/l	W13817	
Analyte	Method	Result	RL	Units	Batch	Qualifier
AIC No. 89880-4 Sample Identification: LC-1 4-28-05 (14)	10)					
Cleate	EPA 300.0	11	20 0.2	mg/l mg/l	S15746 S15746	D
Total Dissolved Solids Chloride	EPA 160.1 EPA 300.0	2000 1200	10	mg/l	W13814	
AIC No. 89880-3 Sample Identification: UTA-4 4-27-05 (1 Analyte	Method	Result	RL	Units	Batch	Qualifier
Sulfate	EPA 300.0	15	0.2	mg/l	S15746	
Total Dissolved Solids Chloride	EPA 160.1 EPA 300.0	300 100	10 2	mg/l mg/l	W13814 S15746	D
Analyte	Method	Result	RL	Units	Batch	Qualifier
AIC No. 89880-2 Sample Identification: UTA-3 4-27-05 (1	F05\					
Sulfate	EPA 300.0	79 12	0.2 0.2	mg/l mg/l	S15746 S15746	
Total Dissolved Solids Chloride	EPA 160.1 EPA 300.0	280	10	mg/l	W13814	
Analyte	Method	Result	RL	Units	Batch	Qualifier

Mc & Associates, Inc Brown Lane Bryant, AR 72022

SAMPLE PREPARATION REPORT

AIC No. 89880-1	Date/Time	Data (T			
Analyte	Prepared By	Date/Time Analyzed By	Dilution	n-1.1	0 44
Total Dissolved Solids		03MAY05 0926 223	Dilution		Qualifier
Chloride	29APR05 1557 252			W13814 S15746	
Sulfate	29APR05 1557 252			\$15746 \$15746	
AIC No. 89880-2	D-t- (T'				
Analyte	Date/Time	Date/Time			
Total Dissolved Solids	Prepared By	Analyzed By	<u>Dilution</u>	Batch	Qualifier
Chloride	20ADD06 4557 050	03MAY05 0926 223		W13814	
Sulfate	29APR05 1557 252 29APR05 1557 252	29APR05 2132 252 29APR05 2148 252	10	S15746 S15746	D
AIC No. 89880-3				0,0140	
	Date/Time	Date/Time			
Analyte	Prepared By	Analyzed By	Dilution	Batch	Qualifier
Total Dissolved Solids Chloride	-	03MAY05 0926 223		W13814	<u> </u>
Sulfate	29APR05 1557 252	02MAY05 0956 252	100	S15746	D
Culate	29APR05 1557 252	29APR05 2219 252		S15746	
AIC No. 89880-4	Detection	- . - .			
lyte	Date/Time Prepared By	Date/Time	-		
July Dissolved Solids	r repared by	Analyzed By	Dilution	Batch	Qualifier
Chloride	29APR05 1557 252	03MAY05 1246 223 29APR05 2345 252		W13817	
Sulfate	29APR05 1557 252	29APR05 2345 252		S15746 S15746	
Alohi sasa-				- 101 10	
AIC No. 89880-5	Date/Time	Date/Time			
Analyte	Prepared By	Analyzed By	Dilution	Batch	Qualifier
Total Dissolved Solids	-	03MAY05 1246 223		W13817	Qualifici
Chloride Sulfate	29APR05 1557 252	30APR05 0001 252	10	S15746	D
Sunate	29APR05 1557 252	30APR05 0001 252	10	S15746	Ď
AIC No. 898 80-6	P 1 - PP!	<u>.</u>			
Analyte	Date/Time	Date/Time			
Total Dissolved Solids	Prepared By		Dilution	_Batch_	Qualifier
Chloride	29APR05 1557 252	03MAY05 1246 223 30APR05 0032 252		W13817	_
Sulfate		30APR05 0032 252 30APR05 0032 252	10	S15746	D
		20/11 1100 0002 20Z	10	S15746	Ð

Mc & Associates, Inc. Brown Lane Bryant, AR 72022

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike ———Amount	% Recovery	% Recovery Limits	RPD	RPD Limit	Batch (Qualifier
Total Dissolved Solids Total Dissolved Solids Chloride Sulfate	250 mg/l 250 mg/l 10 mg/l 30 mg/l	101/102 104/103 97 1/95.2 99.8/100	85-115 85-115 90-110 90-110	0.791 0.193 2.01 0.180	10 10 10 10	W13814 W13817 S15746 S15746	<u>quamer</u>

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Amount	% Recovery	% Recovery Limits	RPD	RPD Limit	Batch	Qualifier
Chloride	10 mg/l	94 5/97.5	80-120	2.64	10	\$15746	Qualifier
Sulfate	30 mg/l	97.9/98.2	80-120	0.322	10	\$15746	

LABORATORY BLANK RESULTS

Analyte	Method	Result	Units	RL	QC Sample	Qualifier
Dissolved Solids La Dissolved Solids Chloride Sulfate	EPA 160.1 EPA 160.1 EPA 300.0 EPA 300.0	< 10 < 10 < 0.2 < 0.2	mg/l mg/l mg/l mg/l	10 10 0.2 0.2	W13814-1 W13817-1 S15746-1 S15746-1	

Mc & Associates, Inc. Brown Lane Bryant, AR 72022

QUALITY CONTROL PREPARATION REPORT

LABORATORY CONTROL SAMPLES

		07 WILL ELS					
Analyte	Date/Time Prepared By	Date/Time Analyzed By	QC Dilution Sample of the	.			
Total Dissolved Solids	- 		<u>Dilution</u> Sample Qualit	fier			
Total Dissolved Solids	•	03MAY05 0926 223	******				
Total Dissolved Solids	-	03MAY05 0926 223	** (• •) • •				
Total Dissolved Solids	-	03MAY05 1246 223	W13817-2				
Chloride	-	03MAY05 1246 223	W13817-3				
Chloride	29APR05 1132 252	29APR05 1333 252	S15746-2				
	29APR05 1132 252	29APR05 1400 252	S15746-3				
Sulfate	29APR05 1132 252	29APR05 1333 252	S15746-2				
Sulfate	29APR05 1132 252	29APR05 1400 252	S15746-3				
	MATRIX SPIKE SAMI	PLES					
	Date/Time	Date/Time	QC				
Analyte	Prepared By	Analyzed By	Dill di Comunity	ine			
Chloride	29APR05 1132 252	29APR05 1427 252	S15746-4	161			
Chloride	29APR05 1132 252	29APR05 1459 252					
Sulfate	29APR05 1132 252	29APR05 1427 252	\$15746-5 \$15746-4				
Sulfate	29APR05 1132 252	29APR05 1459 252	S15746-4 S15746-5				
_							
	LABORATORY BLANKS						
A1-4	Date/Time	Date/Time	QC				
Analyte	Prepared By	Analyzed By	Dilution Sample Qualifi	ior			
Total Dissolved Solids		03MAY05 0926 223	W13814-1	<u>C1</u>			
Total Dissolved Solids	-	03MAY05 1246 223	W13817-1				
Chloride	29APR05 1132 252	29APR05 1319 252					
Sulfate	29APR05 1132 252	29APR05 1319 252	S15746-1				
		20/11/100 1018 202	S15746-1				

Chain of Custody

89880

			4	BIEILING INFO	RMATION		VT SPECIAL I	NSTRUCTIONS/PRE	CAUTIONS:
Сотрапу:	GBN & A	suciates	Bill To:				Contact	Brad Phillips	or Kyle
Project Name			Company:	See			Hathcots U	vith any quest)	ms. ©
Send Report			Address:	Clixe	opt.		501-847-	7077	
Address:	214 Arown			Infor	mation		Paran	eters for Analysis/M	ethods
	Bryont AR		Phone No.:						
Phone/Fax N			Fax No.:]. ¬		
Sample ID	Sample Description	Date	Time	Matrix S=Sed/Soil W≕Water	Number of Containers	Composite or Grab	Cl., 504 TOS		
4TA-2		4/27/05	0740	ω	1	G	X		
UTA-3		4/27/05	1505	ω		G	X		
418-4		4/27/05	1140	W		G	X		
12C-1		4/28/05	1410	ω		G	Χ		
LC-2		4/28/05	1045	W	1	6	X		
LC-3		4/28/65	0800	W		. G	χ		
			-						
		1							
Preservative	(Sulfuric acid	t=S, Nitric	acid =N, Na	OH =B, Ice	=1)	<u> </u>	7		
Sampler(s):	TP/SKH/TB	Shipment Me	ethod: GBN	C felisery	Turnaro	ound Time R	equired: Norm	иа/	
	od by Miller [Date: 4/3	<u> </u>	me: <u>/230</u>	COC CI	hecked by:	SALAND.	Date: 4/29/05	Time: <u>/235</u>
Relinguished b	y: Broth of Miles o	Date: 4/7	<u>9/05</u> Tir	ne: <u>/3/5</u>	Receive	ed by:		Date:	Time:
Relinquished b	processing the process of the control of the second of the	Date:		ne:			Kelst Swedy	Date: 4-29-05	Time: <u> 315</u>
	(1950) NY 1821 185	amples Rec	lived On Ice	Y-A-W-YES	For NC		Sample T	emperature:	

Mc & Associates, Inc. 19 Brown Lane Bryant, AR 72022

ANALYTICAL RESULTS

AIC No. 90507-1

Sample Identification: LCB-1 5/23/05 (1640)

Analyte	Method	Result	RL	Units	Batch	Qualifier
Total Dissolved Solids	EPA 160.1	140	10	mg/l	W13959	addinior
Chloride	EPA 300.0	12	0.2	mg/l	S15910	
Sulfate	EPA 300.0	4.4	0.2	mg/l	S15910	

AIC No. 90507-2

Sample Identification: LCB-2 5/24/05 1000

Analyte	Method	Result	RL	Units	Batch	Qualifier
Total Dissolved Solids Chloride	EPA 160.1 EPA 300.0	220	10	mg/l	W13959	
Sulfate	EPA 300.0	62 21	0.2 0.2	mg/l ma/l	S15910 S15910	

Mc & Associates, inc. 219 Brown Lane Bryant, AR 72022

SAMPLE PREPARATION REPORT

AIC No 90507-1 Analyte	Date/Time Prepared By	Date/Time Analyzed By	Dilution	Batch Qualifier
Total Dissolved Solids Chloride Sulfate	25MAY05 1331 252 25MAY05 1331 252	26MAY05 1400 223 25MAY05 1741 252 25MAY05 1741 252		W13959 S15910 S15910
AIC No. 90507-2 Analyte	Date/Time Prepared By	Date/Time Analyzed By	Dilution	BatchQualifier
Total Dissolved Solids Chloride Sulfate	25MAY05 1331 252 25MAY05 1331 252	26MAY05 1400 223 25MAY05 1757 252 25MAY05 1757 252		W13959 S15910 S15910

Mc & Associates, Inc. 9 Brown Lane Bryant, AR 72022

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	% Recovery	% Recovery Limits	RPD	RPD Limit	Batch	Qualifier
Chloride	10 mg/l	97.0/96 5	90-110	0.507	10	S15910	4444
Sulfate	30 mg/l	101/101	90-110	0.0132	10	S15910	

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Amount	% Recovery	% Recovery Limits	RPD	RPD Limit	Batch	Qualifier
Chloride	10 mg/l	98.6/104	80-120	1.75	10	S15910	<u>QCQIIIICI</u>
Sulfate	30 mg/l	99.2/98.7	80-120	0.237	10	S15910	

LABORATORY BLANK RESULTS

Analyte	Method	Result	Units	RL	QC Sample	Qualifier
Chloride Ifate	EPA 300.0 EPA 300.0	< 0.2 < 0.2	mg/l mg/l	0.2 0.2	S15910-1 S15910-1	

Mc & Associates, Inc. 219 Brown Lane Bryant, AR 72022

QUALITY CONTROL PREPARATION REPORT

LABORATORY CONTROL SAMPLES

Analyte Chloride Chloride Sulfate Sulfate	Date/Time Prepared By 25MAY05 1331 252 25MAY05 1331 252 25MAY05 1331 252 25MAY05 1331 252	Date/Time Analyzed By 25MAY05 1425 252 25MAY05 1439 252 25MAY05 1439 252 25MAY05 1439 252	Dilution	QC Sample S15910-2 S15910-3 S15910-3	Qualifier
	MATRIX SPIKE SAMI	PLES			
Analyte	Date/Time Prepared By	Date/Time Analyzed By	Dilution	QC Sample	Qualifier
Chloride Chloride Sulfate Sulfate	25MAY05 1331 252 25MAY05 1331 252 25MAY05 1331 252 25MAY05 1331 252	25MAY05 1453 252 25MAY05 1508 252 25MAY05 1453 252 25MAY05 1508 252	<u>Diadori</u>	\$15910-4 \$15910-5 \$15910-4 \$15910-5	Qualine
	LABORATORY BLAN	<u>iks</u>			
alyte bride Sulfate	Date/Time Prepared By 25MAY05 1331 252 25MAY05 1331 252	Date/Time Analyzed By 25MAY05 1412 252 25MAY05 1412 252	<u>Dilution</u>	QC Sample S15910-1 S15910-1	Qualifier

219 Brown Ln. Bryant, AR 72022 (501) 847-7077 Fax (501) 847-7943

Chain of Custody

90507

e v. or som upskom mender store	লা লেণ্ড্ৰোটাৰ্ট <u>ক্ৰিট্</u> টি টেটাৰ পূৰি				##SPE	CIALINST	RUCTIO	NS/PRE	CAUTIONS	• 100 mm (47,000 mm)		
Client:	GBMC & ASSOCIET	45					·-····					
Company:	2072-05-070		<u> </u>		,,							
Address:	219 Brown Lane	: 										
	Boyant, AR 72	622	braju si u	Project Na	je/Numbe	art - Lauri	1974	Param	eters for <i>i</i>	Analysis/M	ethods	
Phone No.:	501-847-7077			2072-05-	070			:				
Fax No.:	501-847-7943						10 S				i	ļ
Sample ID	Sample Description	Date .	Time	Matrix S=Sed/Soil W=Water	Number of Containers	Composite or Grab	750					
LCB-1	,	5/23/05	1640	w	1	6	X					
LC6-2		5/24/05	1000	W	1	6	X					
				-								
						<u></u>						
					7.000							
		1						-				
Preservative	(Sulfuric aci	d =S, Nitric a	cid =N, N	laOH =B, Ice	=1)							+
Sampler(s): 🔏	,			ime belivery		und Time Re	equired:	Norma	1	I	<u> </u>	1
COC Complete	ed by: 388			ime: <u>/5</u> :20		necked by:	geff.	test	5 Date: <u>5/</u>	24/05	Time: 15	-90
Relinguished b	y: froth kn	Date: <u>5/54/</u> 6	95 1	ime: <u>/6 : 3</u>	1		7 *	-1-,	Date:		Time:	
Relinquished b	y: <u>#/</u>	Date:		ïme:		d in lab by: <u> </u>	Kalit	Stack	/Date: <u>5</u> -	ZY-09-	Time: 16	33
	responenting	amples Rêcei	ved On Ic	9?: YES	or NO			Sample T	emperature	; 1°C		

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

/ NID: 7	1TA-2 LOCATION: EAST of they is I there makes a
REAM NAME:	LOCATION: East of they 15 & becc came on
LAT: 79 11 0	LONG: 92 41 56.7 PROJECT: LICE WAR SK4/BJD DATE/TIME: 4/24/05 FORM CHECKED BY:
INVESTIGATORS:	10. 92 41 56.7 PROJECT: LICE WAR
LITTED TION ONS.	SK4/COD DATE/TIME: 4/29/05 FORM CHECKED BY:
AWINATER ENGINE	
SEBNO FIBRE	
	storm (heavy rain) rain (steady rain) showers (intermittent)
	■ % % cloud cover
	clear/sunny
E/A Ú	Stream Subsystem Stream Type
A COLOR GOOD IN THE	Perennial Intermittent Tidal Coldwater NZ Warrant
	g Gudan Ongn
	Montane, non-glacial Mixture of origins / Stream Order:
	Glacial Spring-fed Catchment Area: mi² Montane, non-glacial Mixture of origins Stream Order: 1 Swamp and bog Stream Gradient: High (>25ft/mi)
. Young in	Stream Gradient: ☐ High (≥25ft/mi) ☐ Moderate (10-24 ft/mi) ☐ Low (<10 ft/mi)
	Flows Heasured? Reach: Slope & Sinuosity High Moderate Low None Dyes Noft/mi
WASSELLED OF	M Daniel 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	\(\tau_{\\ \tau_{\tau_{\\ \tau_{\tau_{\\ \tau_{\\ \\ \tau_{\\ \\ \\ \tau_{\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	Doct.
	☐ Urban/Sub-Urban Storm Water ☐ Urban% ☐ Urban/Sub-Urban Storm Water
ar malayi 💮 📆	
A SERVINA	Mature Forest % Shrub/Sapling 20% Herbs/Grasses 0 % Turf%
11. 11. 12. 12. 12. 12. 12. 12. 12. 12.	
27 18 AW	Dead Day % Nation 10 %
कारत इस्ताता है	☐ Roads ☐ Bridges ☐ Pipelines ☐ Beaver Dams ☐ Point Source (sfor Late) ☐ Dams ☐ Trash ☐ Cattle Access ☐ Mining ☐ ATV Crossing ☑ Other ∠anguage
	Channelized: Yes Some No Local Watershed Erosion: None Minimal Moderate Heavy
	Channel Dynamics: Aggrading Degrading Widening Headcutting
Can Alletter	Water Surface Oils
	Petroleum Chemical Flecks None Other
	☐ Fishy ☐ Other
The state of the s	Turbidity/Water Clarity (If not measured) 12.2 WTW
	☐ Clear ☐ Slightly turbid ☐ Turbid
SECTION 1	<u> </u>
6 1 3 1 1 1 1 1	Normal Courses Detailed
	☐ Chemical ☐ Anaerobic ☐ None ☑ Sand ☐ Relict shells
	OtherOther

Stream Habitat Assessment (Semi-Quantitative)

Station#: UTA-2	Stream: UT Od	C. Bajon de Loute	Date/Time: 4/2	7/65 Analyst:	SKH/BJI>
	Location: (AM)		(0830 - 10	· / 	SKILDOI
1. Reach Length De	() and	1 PS 1/c	1. +: 33'11' 4"	WIT THE 1 G	+: 33 11 2.1 qui
			-7: 92° 41 56"	342 4/5	
		<i>[2][6]</i>	TOPETTO A	## # ∦CotaleRez Vējāge Lenginij	(t) Dength (ft)
	2 78	8.1' 83'	6.91	7) (154	/ /
	0' 2.0	14 25	1 1.4'	7) na	na
Average width times	= 0.3 1.01	ength divided by 1	0 10.7		
2. Riffle-Pool Seque	nce				
Aleion S Section		i de la company de la comp La company de la company d	nosos de inglodina	ur estate e	10 M 10 M
Riffle X60		9.4'			日の課金 対記 15点 / 33.4 / 23 /
Run					<u>\$0'</u> <u>83.4'</u> 22%
Pool 9.4	15.4' 2,4'	6.0' 15.4'	15.4 15.4	15.4' 13.4'	10.4' 10.6 78V.
Total					
Sequence xxx	- Andrews	apricin y		m	× × × × × × × × × × × × × × × × × × ×
¹Rifffe="xxx", Run="-				•	
3. Depth and Width	Regime				
i de la companya de La companya de la co	- 14	i Geren Ne Ay I also sa an an	ejraleje Djeja (ha(ii) 784) Ta	(lelentet) van 1855. Geboure	
Riffle Depth 0.1	- 02	0.1 -		~	0.2 0.15
Riffle Width 3.51	_ 2.5	2.01 -	_ \		1.5' 2.4'
Pool Depth 0.71	1.0' O.le	0.4' 0.4'	0.4' O.le' (26'06 0	.5 0.57
Pool Width 5.5'	5.0' 4.0'	4.0' 5.0'	5.5' 5.5' 7	8.0' 50' 4	15' 5.2'
4. Epifaurial Substra	ate, Percent Stable	Habitat (for Macr	oinvertebrates)		
25-9000000000000000000000000000000000000		60	7,85,65,65		A Selection of the Control of the Co
% Area /5%	30% 50% 4	10x 304 10	1. 10% 2	01 30% 20	11. 25.5%
5. In-Stream Habitat	Percent Stable H	abitat (Available F	ish Cover in Wette	d Perimeter)	
Nielolión IIII		tejoja į Niai – "rykaiteityl	Walio Qualify of th	Replatities (Section 2)	
0/ 4	35% 20% 1	51 301 5	40.00	2 9 0 7 1 C	
			7. 10%. 20	07. 30%. 15	7. 19 V.
6. Substrate Charac	terization (Domina	ant Substrate)	(depositional Actionism)		Walter Str. 70 - 100 - 1
(10)			Action 150 Personal	Proceedings of the State of the Control of	dW stratto
Riffle 65(3)	- GF(3) 61	= (3)			2) 2.8
Pool 5 (2)	5(2) $5(2)$ 5	(2) 5(2) 5	(2) S(2) S	(2) \$ (2) \$	1) 0 10
BR=Bedrock(7), BLD=E	Soulder(6), COB=Cob	ble(5), GC=Gravel Čc	arse(4), GF=Gravel F	ine(3), S=Sand(2), SC	C=Silt/Clay(1)
7. Embeddedness (Gravel, Cobble, Bo				
Control of			STATE BOATER		A State of the sta
// Embedded					
8. Sediment Deposi	tion (Percent of Bo	ottom Affected)			
A SHOP OF THE STATE OF					No Aspragn
	51 51 5	y. 104. 5	1. 54 10	1/ 101. 5	
Page 1 of 2					· · · · · · · · · · · · · · · · · · ·

Page : V 2.1

Stream Habitat Assessment (Semi-Quantitative)

Station#:	WTA-	2-		Date/T	ime: 4/	127/05		Ir	itials:	5 KH/B	TD
). Aquat	ic Macroph	ytes and	d Periphy	rton (Per	rcent Co	verage)					
vlohen; ividek			0.4			Kristojni) I T	0/5-0-46 FOR	antigoyar	icie i si u	S 1	
₹iffle	Macrophy	tes 🔿	У <i>О</i> У	/		-			_		
	Periphytor					_	-	_			0/
200	Macrophy			· —							0 %
	Periphytor	0)	1. 07				-	_			0%
0. Cand	py Cover (Percent	Stream !	Shading)	,						
is i dileisis.				SINIE (S)				in Situaria	(Charge	ľ	
hading	95×	95 Y.	914	\$ 07.	601.	90%	807,	801.	90%	910	Wei you
						1707.	001,	1 00%.	1 /0/-	907	82.5%
1. Banı	Stability (ocore) a	nd Slope	(Degree	s)	Pa 7.37			16		A fisterious
oggada.											Science of
Score	7	le so	5	6	to	7-	17_	5	2	5	5.6
lope (°)	80°	800	700	800	70	70°	70 %	(d)	80°	75	7-5.5°
inicidien.											1 (24/2) (2 3 (2) (2) (3)
core	3	5	5	7	7	7	2	1	7	5	4.9
lope (°)	$ 80^{\circ} $ = Stable, < 5%	80°	60	70°	70°	80°	90°	900	60°	nk eroding	74.00
	tative Prot			141.30		67 4 57				(a)	Aveteger
6 28	40%	۷۵۷۰)	50%	60%	50 y.	1,0%	60%	307	20%	50%	50.0%
isolog						A COLUMN					A AVEIR (GE)
6	80%	50%	30%	70%	70%	GOY.	30%	10%	Ge01.	25%	43.5%
3. Ripa	rian Vegeta	tive Zor	e Width								,
i i i i i i i i i i i i i i i i i i i		2		# 46.7		6.5		8	St. E	10	Numbriejel Sonic
core	10	9	10	9	7	8	9	8	3	5	7.2
• 1										1 20 - 1	Somegra e
Score	10	9	10	10	1/)	10	10	10	10	10	9.9
core 9-1	= Riparian Z		> 18 meters	3		= Riparia	n Zone Wid	th 18 - 12 m	eters	1 '0	1 1
00mg 3 5	= Riparian Zor	ne Width 1	1 - 6 meters	S	Score 1-2	! = Riparia	n Zone Wid	lth < 6 meter	-8		
COTC 23-2		m Imna	nts			المناكورين					,
	d-Use Strea	in impa					Car at 1983				
	d-Use Strea	iii anpa		1	त्रते अस्य स						1 No. 11 Processing
4. Lan	d-Use Strea	: 1		0 • 0	0 1	0. 1	01	01	01	6/	0.10
4. Lan	-0, 00 R=	O, 0.0	(1) 0.00 s U = Ut	rban Encros	O I	O, I = Indust	O / rial/Encroso affect		O=	6, / Other	0.6
Mpact C = Cattle	P = 1	O, 0.0 Row Crops = minor as	(1) 0.00 s U = Ut	rban Encros	O I	O, I = Indust	affect	chinent	O=	-	i

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D:	UTA-002	2	Client:	
	Upparmed of	rito of fazon de lanka	Date/Time: 4/2-7	10.5
Location:	legar am	4	Form Completed By:	< KH
		/	L	

Habitat Parameter	CATEGORY				
	Optimal	Suboptimal	Marginal	Poor	
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat habitat habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking	
SCORE 4	20 19 18 17 16	15 14 13 12 11	10/9/876	5 4 3 2 1	
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.	
SCORE . 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	
3. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.	
SCORE_O	20 19 18 17 16	15 14 13 12 11	10/9876	5 4 3 2 1	
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.	
SCORE /G	20 19 18 17/16	15 14 13 12 11	10 9 8 7 6	54321	
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.	
SCORE/9	20 (19)18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTA-2	Date/Time: 4/27/06
Stream name: Unmed for of Rda C	
or date	Form Completed By: Skill

Habitat		CATE	CORV		
Parameter	CATEGORY				
	Optimal	Suboptimal	Marginal	Poor	
6. Channel Sinuosity SCORE	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line. 20 19 18 17 16	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.	
7. Channel Flow	Water reaches base of	15 14 13 12 (11) Water fills >75% of the	10 9 8 7 6	54321	
Status	both lower banks and minimal amount of channel substrate is exposed.	avallable channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
SCORE / 6 8. Bank Stability	20 19 18 17 6	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	
	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.	
SCORE & LB	Left Bank 10 9	<u>(8)</u> 7 6	5 4 3	2 1	
9. Vegetative Protection	Right Bank 10 9 More than 90% of the	8 7 6 70-90% of the	5) 4 3 50-70% of the	2 1 Less than 50% of	
	streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.	
SCORE 4 LB	Left Bank 10 9	8 7 6	5 (4) 3	2 1	
SCORE ? RB	Right Bank 10 9	8 7 6	5 4 (3)	2 1	
10. Riparlam Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparlan zone <6 meters; little riparlan vegetation to human activities.	
SCORE 7 LB	Left Bank 10 9	8 🕖 6	5 4 3	2 1	
SCORE 9 RB	Right Bank 10 (9)	8 7 6	5 4 3	2 1	

TOTAL SCORE: 132 AVERAGE SCORE: 13.2

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

Page 2 of 3 (Pg.3 optional) GBMc Rev: 1.2

Discharge/Flow Measurement Form

Station: UTA - 2						
Waterbody: General This of from & Loute						
Date: 64/27/05						
Crew: 5/44/85P	Start Time: 1/10	Recorder: 524				
	End Time: [/15	GH. Change:				
	Staff/Gage:	hrs.				
Width: 2,7'	Area:	Velocity:				
Disch/Flow:	Method:	No Secs:				
Meter No:	Max Vel:	Min Vel:				
ORIENTATION: Wadjing, Boait, Opstream, Downstream, Side Bridgeft/mi, above, below gage, and						
Measurement rated: excellent good fair poor based on the following conditions: Cross section						
Flow Weather						
Other	Other Air F @					
Gage Water °F @						
Observer						
Control						
Remarks						

0.5	0.2		0.04		0-1	0.004
05	0.2					
05	0-1					0.009
05					0.1	0 015
0.7	0.0		0.12		0.05	0.006
			ND		0	D
	Т					
						
						
						
		·				
··						
				+		
						
						
						
				 -		
						
	•			208	085	0.03
					0-08	Q-07 Q-3 5

completed By SUL Checked by Reviewed by

V1.0 1096

FIELD DATA SHEETS - FISH

Waterbody Name: UTR 2	Location: d/s outRA/1002
Client: Great Lakes	Ecoregion: bull Control Ecoregien
Project no: 2012-05-070	Weather: Shray - clear
Investigators: RET	midd
SCH BPP	Form Completed By: REM/TBB.
Date Sample Collected: 4/27/05	Form Checked By:
Habitat Forms Completed: (yes) / no	Fish Sampling Completed: yes / no

	Collection Site Observ	ations	
	UTA 2 Above Station	иТА 4 Below Station	
A SATotal Time Sampled;	PDT 1868 1 62		Additional
SALUENS LAND STEINE DE LESSE DES	E RelauvelAbundance of Adulatic Biole vic		Observations:
Periphyton:	021234	0 1 2 3 4	020017440113
ilamentous Algae:	0/1 2 3 4	0 1 2 3 4]
Macrophytes:	20234	0 1 2 3 4	
Slimes:	(6)1234	0 1 2 3 4	
Macroinvertebrates:	0 1 2 3 (4)	0 1 2 3 4	
Fish:	0 1 2 (3) 4	0 1 2 3 4	
Other:	0 1 2 3 4	0 1 2 3 4	
0=Not Obs	served, 1=Rare, 2=Common, 3=Abundant, 4	=Dominant	
Riffle/Run:	a sour Major Habitet Sampled (77)		
kime/kun: Shalfow Pool:	10/40		
лаком Роок Deep Poot:	50		
Backwaters:			
Chanelized:			
] See Microsoldinis Sample (126) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Voody debris:	35		
mergenty egatation:	3.0		
Submerged Vegetation:			
Depositional Area:	01		
Overhanging Veg:			
Root Wads:	20		
Indercut Banks:	20		
ilamkntous algae:			
eafy debris:	5		
	As a Sidestrate Lyre, and Secological		
Substrate	Score	a thairm 1971 a tha ann an Airm an Airm an Airm an Airm an Airm ann an Airm an Airm an Airm an Airm an Airm a	
edrock:	X 0.1	Adj. Score	
g. Boulder:	X 1.0		
outders:	X 1.0		
tubble:	X 1.0		
Gravel:	30 X 0.5	····	
and:	60 ×0.1		
fud/Silt:	1.D X0.1		

	Sampling Gear Type: Electrofishing	Seine Gill nets
	Unit of Effort: Above: 1868 PDT /63m.	
	Quantity of Available Fish Cover: UT1 — Above Station: Very Abundant, Abundant,	Moderate Sparse Absent
	Below Station: Very Abundant, Abundant,	
	Site Description & Notes: A Site Description & Notes: A Site Description & Notes: A Site Description & Notes:	my 15, began ~ 0/2 miles de éshares
(Sa)	Below Station:	
١٩١٤ كالمعلمة	Fish Specie	es Observed
	Above Station# UTA 2	Below Station #
(<u>9</u>)—	Banded Pygmie Suntish HIT	
(2)-	Stoneh Darter 111	I w/ internal parasite
(30)-	Mosquito Fish IM IM IM IN 1111	
• •	Grass Pickerel HHT HTI	
23	- Crack Chubsicker HI HY HOTHI	<u> </u>
(2)-	who month III	<u> </u>
(Z)-	Longear Suntish HILL 111 -1	Vender Herry
	Yellow Bullhed attach 1	
(3)-	Pirate Perch 11	
	-Golden Shine, 1	
(13)	Green Suntish HTI Black Billerad Suntish Cathish	
U -3	Crede Barter HHT	
_	Softer 7 11	
7-	Cold Ships Date	
		1
, ,		

Revision 1.2 05/28/02 GBM^c & Assoc. Doc. 1 Page 2 of 2

FIELD DATA SHEETS - BENTHIC INVERTEBRATES

Waterbody Name:	UTA 2	Location:	out-11 002		
Olient: Great ha	Ken	Location:	ult coastal		
Project no: 2072	05-070	Weather: Sunny Clear Mild			
Investigators: REM			m	ild	_
	5 <i>6</i> 6		Form Complete	ed By: <u>569</u> 2/2£	<u>-</u>
Date Sample Collected	+ 4/27/0				
		<u></u>		By:	
Habitat Forms Comple	ited: yes / no		Fish Sampling	Completed: ye	s <i>)I</i> no
Collection	Site Observatio	ns	Macroinverte	orate Qualitative	Sample List
	UTAZ	D-1 0(-1)		UTA 2	
Alega (alega en la	Abelia Station	Below Station	Taxa Annelida	Assistant	Below Statio
\$\\\	Hefstrici s sere Aleibistic	Salcies		C	
Periphyton:	(0)1234	0 1 2 3 4	Gastropoda		
Filamentous Algae:	Ø1234		Pelecypoda		
Macrophytes:	0/0234	01234	Hemiptera		
Slimes:	1234	01234	Coleoptera	R	
Macroinvertebrates:	0123(1)	01234	Lepidoptera		
Fish:	0 1 2 (3) 4	01234	Odonata	D	
Other:	01234	01234	Megaloptera	Presit	
			Diptera	Prest	
0=Not Observed, 1=Rare,			Chironomidae		
a Svejoče	lojje i Sam oled (2		Plecoptera		
Riffle/Run:	10/40		Ephemeroptera		
Shallow Pool:	50		Trichoptera		
Deep Pool:			Amphipoda		
Backwaters:					
Chanelized:					
Microiet	ojtatši Šieliniklies (47%				
Woody Debris:	10		R=Rare, C=Co	mmon, A≃Abundant,	D=Dominant
Emergent Vegatation:			Rare<3, Commo	n 3-9, Abundant>10,	Dominant>50
Submerged Vegetation:			Site Descr	iption and Obse	rvations:
Depositional Area:	10	·	Corda respected (1) Corda respected (1) Cophisomphies (1) Su Fish of white soul	(A LZ)	
Overhanging Veg:			Ophigomphics ((XI)	
Root Wads:	20		Su Fish a wite said	levanel !	
Undercut Banks:	60		Com	<i>'</i>	
Filamentous algae:				\	
Leafy Debris:					
Other:			7		

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

Rapid Bloassessment Field Sheet

Point Sou	IICE <u>STORM WATE</u>	discharges from	Ancou Dos	المحاط ال	
Collector	Rem Sa	ample Technique 3 m Ro	Sedimor	Date	
Habitat De	escription: ABOVE	Outfall OUZ diky -	d/cat par	11 ! DONE CONCELL	<u></u>
_/			•		
	BELOW	Outfall bot ditch	· d/s 4500 #		
-					
AROVE	Otation 4 Aver 1	MACROINVERTE	BRATE COM	MUNITY	
Cnt.	Station # Dat Fall	cor ditch	BELO	N Station #_ Outfe	Surat ditel
7	Taxa	Tally	Cnt.	Taxa	Tally
/-	Combarina	4111		Combonina	art
	Hynlolk Azton		13	Hyplella netus	
	Isopoda	IN MINUMINAM	10	Iso poda	
	Digochator	417/	14	1/ J # :	WY MT
				<u> </u>	MINIMINI

		<u> </u>		<u></u>	
			5	Cordulia	447
	Cordularter	201411/11			477
	Comphus	//			
	Cheumatopychie	MIMON	/	Chrumo Basgele	·
1-	C			The state of the s	<u>/</u>
12	Chiromonidae	MIMI			
4	h/a)			Trophic liveres	7
	Nex A forma	211	8	Hexatoma	417/11
1.7	TIPHIA	1		Tipula	1
	Bittacomospha	UNII	3	Bittocomorpha	ш
y	Storelmis (lavua)	1111		Topul, Zan	Hn II
/	Horemerodroma	1		7	4///
2	Colum	(spring Tail)	_		
	Simuloum	11		Tend Bus 1	
			6	Dipton ?? IM	
				7	
·			28	Christman del	
				AWARDS W114	11/1
				Chrow MIII	
				Tompodonice 417	
	:TOTAL:				
	.IOIAL.			:TOTAL:	
	ABOVE	Community	y Structure		
6 Ephem.	ABOVE.	BELOW		ABOVE	BELOW
6 Plecop.	***************************************		% Odon.	••••••••••••••••••••••••••••••••••••••	. - - • •
6 Trichop			% Cole.		
6 EPT			% Crustacea		
6 Chir.					
Diptera		28	# of Taxa:	15	17
nment			Biotic Score:	······································	

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: UTR 4	LOCATION:
STREAM NAME: UNNAMED Tributary LAT: LONG:	RIVER BASIN:
LAT: LONG:	PROJECT:
INVESTIGATORS: REMISHAL PROJER DATE/TIME:	1/27/05 12:39 FORM CHECKED BY:
Now Past	24-hr Heavy rain in the last 7 days? Yes No Alinh Air Temperature 70° °CFF 7/00 % Other
☐ Montane, non-glacial ☐ Montane in the second in the sec	Spring-fed Catchment Area: 0, 4 mi ² Stream Order: 1st Moderate (10-24 ft/mi) Low (<10 ft/mi)
☐ High ☐ Moderate ☐ Low ☐ N	
Predominant Surrounding Landu ☐ Forest 20 % ☐ Sub-Urb ☐ Pasture % ☐ Comme ☐ Row Crops % ☐ Industria ☐ Urban % ☐ Other	rcial%
WINDLOSOY Riffle % 17/Pun 15	/Sapling%
Roads Bridges Pipelines	
Channelized: Yes Local Watershed Erosion: No Channel Dynamics: Age Water Odors Normal/None Sewage Petroleum Chemical	ne
☐ Fishy ☐ Other Turbidity/Water Clarity (if not mea	Flecks None Other or distribute of sediments
☐ Clear ☐ Slightly turbi☐ Opaque ☐ Stained	d Turbid Other
	Sediment Deposits Petroleum Sludge Sawdust Olis John Sand Relict shells Other

Stream Habitat Assessment (Semi-Quantitative)

Station#: CUTA-4 Stream: Undowned from to hand		
		Analyst: Sx-4/3J7P
Cocamon What Comy	1150 - 1255 33°11'19.11 92° 41'55-4"	
1. Reach Length Determination are all lot ing	92° 41′ 55-6"	15 Lung : 92° 41'54.
and the state of t		Walkeau Schoffeau
Bankfull Width	AVelage N	Leadin (file following file)
Bankfull Depth I a d I I I I I I I I I I I I I I I I I	6 5 56	112' 11.2'
Average width times 20 2 Total Length divided by 10	71.1 1.0(e)	na na
\mathcal{O} . \mathcal{A}	(0) booker	
2. Riffle-Pool Sequence	Pro V- KYN	
1/1 and 1/2 an	Janes Landining Frank (St. 1042-1865) 78-38-41	
Riffle & 30' 10'	4.0	- 72 /0
Run 3,2	5.2'	9.2 4.0
Pool 8.0 8.1 10.2 11.2 11.2 Total	11.2 11.2	20 7.2 50
Sequence www.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		
1000	V V V V V V V V V V V V V V V V V V V	
3. Depth and Width Regime To Com		
Type, Later Leave James Later State	-KSS - CA-FILT (II) / I / Mielle pr	
Riffle Depth - O.I O.Z	- 0.1	13
Riffle Width - 1.5' 1.5'	- 20'	- 1.7
		.8 0.5 .62
Pool Width 5.5' 2.8' 50' 5.5' 6.75	1.5 60 32 4	1.0 4.2 47
4. Epifaunal Substrate, Percent Stable Habitat (for Macroir	ıvertebrates)	
		Professor (CAN)
Most HATIMIT IS LEEF Packs of Small words	40 10 30	1/0 33
5. In-Stream Habitat, Percent Stable Habitat (Available Fish	debr. (Cover in Wetted Perimet	er)
Gestion I 12 12 13	and Quality of Meraticionar	
V Arac 2 - 2 - 2 -		AV-96:00 ST
6. Substrate Characterization (Dominant Substrate)	40 10 30) 40 28.5
5 Substrate Characterization / Danishank Kalanda 3		
Phonois Annual Mir Ch	medan dipakata	
Riffle - 5(2) 5(2)	atrantin dipolikoja Z	Approx. 5/22
Riffle - $5(2)$ $5(2)$	- S(2)	(5/2)
Riffle $ S(2)$ $S(2)$ $ -$	- S(2)	(5/2)
Riffle - S(2) S(2) Pool SC(1) S(4) S(2) S(2) S(2) S(2) BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coars 7. Embed dedness (Gravel, Cobble, Boulders Percent Embeds	- \$(2) -) \$(2) \$(2) \$(2) se(4), GF=Gravel Fine(3), S=Sa	(5/2)
Riffle - S(2) S(2)	- \$(2) -) \$(2) \$(2) \$(2) se(4), GF=Gravel Fine(3), S=Sa) \$(2) s(1,8) ind(2), \$C=Silt/Clay(1)
Riffle - S(2) S(2)	- 5(2)) S(2) (1.8) Ind(2), SC=Sllt/Clay(1)
Riffle - S(2) S(2)	- 5(2)) \$(2) s(1,8) ind(2), \$C=\$llt/Clay(1)
Riffle - S(2) S(2)	- \$(2) -) \$(2) \$(2) \$(2) se(4), GF=Gravel Fine(3), S=Sa edded)) <u>s(u)</u> (1.8) and(2), sc=slit/clay(1)
Riffle - S(2) S(2)	- \$(2) -) \$(2) \$(2) \$(2) se(4), GF=Gravel Fine(3), S=Sa edded)) S(u) (1.8) ind(2), SC=Silt/Clay(1)

Appendix F Photos of Study Reaches

Appendix F Photo Log

- F-1 UT002: UT002 view upstream through study reach. Note: depth of cut channel, 3-4 ft into flood plains
- F-2 UT002: UT002 view downstream through study reach. Note: channel width approximately 3 ft., depth less than 3 inches.
- F-3 UT004: UT004 study reach substrate clay. Channel depth 1 ft or less. Note: isolated pools only during seasonal period.
- F-4 UT004: UT004 study reach. Note: very shallow pool with trickle flow through isolated pools.
- F-5 UT004: Downstream terminus of UT004. Large wetland complex.
- F-6 UT004: Upstream of UT004 mouth into large wetland complex.
- F-7 UT003: Mid-reach of UT003. Shallow channel with no flow.
- F-8 UT003: Mid-reach of UT003. Collecting stream habitat data.
- F-9 UT003: Downstream end of UT003 reach.
- F-10 UTLCB-1: Mid-reach view upstream. Note pooled area and depths of channel development. No flow. Exposed streambed sand and gravel.
- F-11 UTLCB-1: Mid-reach view downstream. Continued pool with exposed stream bed silt and sand.
- F-12 UTLCB-1: Downstream end of reach. Wider stream channel. Edges of stream bed exposed.
- F-13 UTLCB-2: View mid-reach upstream to Hwy 15 Bridge, Note pooled condition with developed organic surface film.
- F-14 UTLCB-2: Study reach view upstream. Wide stagnant deep pool. Note: development of organic surface film.
- F-15 UTLCB-2: Stream bank interface. Note: pool level reduced after recent rains. Pool remains Bank full.

