Section 2.306 Site Specific Water Quality Study for Chloride, Sulfate, and TDS

Prepared for:

El Dorado Chemical Company 4500 Northwest Ave El Dorado, AR 71730

Prepared by:

GBM^c & Associates 219 Brown Lane Bryant, AR 72022

August 30, 2006

Contents

1.0		DUCTION	
		Background	
	1.2	Report Focus and Objective	3
~ ~			
2.0		ICANT FINDINGS AND RECOMMENDATIONS	
		Significant Findings	
	2.2	Recommendations	0
3 0	васк	GROUND	7
5.0		Introduction	
		Designated Uses	
		Domestic Water Supply Use	
		Outfall 001 Characteristics	
		3.4.1. Discharge Characteristics	
		3.4.2 Effluent Dissolved Mineral Characteristics	
	3.5	Description of Pollution Prevention Practices	.10
		3.5.1 Outfall 001	.11
	3.6	Current NPDES Permit Status	.12
		3.6.1 NPDES Permit Compliance	
		3.6.1.1 Discharge and Monitoring Requirements	
		3.6.1.2 Dissolved Minerals	
		3.6.2 Whole Effluent Toxicity (WET) Testing	.14
			4 -
4.0		FIC LIFE FIELD STUDY	
		Introduction Habitat Characterization	
	4.2	4.2.1 Introduction	
		4.2.1 Mitoduction	
		4.2.2 Methods	
		4.2.2.2 Instream Structure	
		4.2.2.3 Riparian Characteristics	
		4.2.3 Scoring and Analysis of Habitat Assessment Data	
		4.2.4 Results and Discussion	
		4.2.4.1 Habitat Quality	
		4.2.4.2 Reach UTC1	
		4.2.4.3 Reach UTB1	
		4.2.4.4 Reach UTB2	. 30
		4.2.4.5 Reach UTA1	. 31
		4.2.4.6 Reach UTA2	. 31
		4.2.4.7 Reach UTA3	
		4.2.4.8 Reach FC1	
		4.2.4.9 Reach FC2	
		4.2.5 Habitat Potential	
		4.2.6 Habitat Conclusions	
	4.3	Water Quality	
		4.3.1 Chemical Characteristics	
		4.3.2 Methods	.34

Contents (cont.)

		4.3.3 Results and Discussion	34
		4.3.4 Conclusions	35
	4.4	Benthic Macroinvertebrate Community	36
		4.4.1 Introduction	
		4.4.2 Methods	36
		4.4.3 Results and Discussion	37
		4.4.3.1 Overview	37
		4.4.3.2 Reach UTC1	37
		4.4.3.3 Reach UTB1	41
		4.4.3.4 Reach UTB2	41
		4.4.3.5 Reach UTA1	41
		4.4.3.6 Reach UTA2	41
		4.4.3.7 Reach UTA3	42
		4.4.3.8 Reach FC1	42
		4.4.3.9 Reach FC2	42
		4.4.4 Conclusions	43
	4.5	Fish Community	44
		4.5.1 Introduction	44
		4.5.2 Methods	45
		4.5.3 Results and Discussion	45
		4.5.3.1 Reach Comparisons	45
		4.5.4 Conclusions	50
	4.6	Summary	50
5.0	EXISTI	NG LOADINGS OF DISSOLVED MINERALS	51
	5.1	Chloride, Sulfate, and TDS Water Quality Criteria	51
	5.2	Mass Balance	51
		5.2.1 Methods	51
		5.2.2 Computations for UTB tributary (from Outfall 001 to Unnamed	50
		tributary of Flat Creek (UTA))	
		5.2.3 Computations for UTA tributary (from confluence with UTB to Flat Creek)	
		5.2.4 Computations for Flat Creek (from confluence with UTA to Salt Creek)	
		5.2.5 Computations for Haynes Creek (from confluence Flat Creek &	FF
		Salt Creek to Smackover Creek)	
6.0	ALTER	NATIVE ANALYSES	56
	6.1	No Action	56
	6.2	No Discharge	56
	6.3	Hydrograph Controlled Release (HCR)	57
		Treatment	
	6.5	Source Reduction/Pollution Prevention	57
	6.6	WQS Modifications	
		6.6.1 Designated Uses	58
		6.6.2 Existing Uses	58
		6.6.3 Attainability of the Domestic Water Supply Use	
	6.7	Selected Alternative	
7.0	REFE	RENCES	62

Figures

Figure 1.1	El Dorado Chemical Company property boundary, Outfall 001 and surrounding	_
	area	2
Figure 2.1	Study reaches, watershed boundaries and watershed sizes for stream segments	
	evaluated in association with the EDCC 3 rd party rulemaking. June 2006	5
Figure 3.1	Study reaches, watershed boundaries and watershed size.	8
Figure 3.2	Outfall 001 discharge characteristics from EDCC (POR: 46 months).	.10
Figure 3.3	Sulfate concnetrations in 001 effluent POR 4/01-6/06.	11
Figure 3.4	TDS concnetrations and final permit limits for 001 effluent. POR 6/04-4/06	11
Figure 3.5	Sumamry of water flea (Ceriodaphnia dubia) and fathead (Pimephales promelas)	
-	biomonitoring performance. POR 9/02-4/06	15
Figure 3.6	Sumamry of water flea (Ceriodaphnia dubia) and fathead (Pimephales promelas)	
-	sub-lethal WET tests performance. POR 9/02-4/06	15
Figure 4.1	Stream channel depicting bankfull stage	20
Figure 4.2	Approximate position of measurements across transect	22
Figure 6.1	Proposed stream segments in the Haynes Creek watershed for removal of	
-	domestic water supply use via 3rd party rule making	60

Tables

Table 2.1	Summary of Proposed WQS Modifications	6
Table 3.1	Summary of targeted mineral constituents in Outfall 001 discharge from EDCC facility	.10
Table 3.2	Current Final Discharge Limitations for EDCC, Outfall 001	.12
Table 3.3	Summary of dissolved mineral data from EDCC Outfall 001	.13
Table 4.1	Watershed size at each study reach evaluated during the EDCC aquatic life	
	field study	.17
Table 4.2	Summary of habitat characteristics of study reaches during seasonal flow	
	conditions. EDCC aquatic life field survey. Union Co. AR. April 2006	.29
Table 4.3	Semi-qualitative assessment of habitat potential. EDCC aquatic life field survey.	
		.32
Table 4.4	Summary of the water quality data from study reaches evaluated as part of the	
		34
Table 4.5	Macroinvertebrate community assemblage collected from EDCC aquatic life field	
		38
Table 4.6	Community metrics of macroinvertebrate assemblage collected during the	
		40
Table 4.7	Fish community structural analysis of reaches evaluated during the aquatic	
	life field study for EDCC, Union County, AR, April 2005.	46
Table 4.8	Fish community assemblages of reaches evaluated during the aquatic life field	
	study for EDCC, Union County, AR, April 2006.	.47
Table 5.1	Instream Waste Concentration (IWC) Calculation for UTB.	.53
Table 5.2	Instream Waste Concentration (IWC) Calculation for UTA.	.54
Table 5.3	Instream Waste Concentration (IWC) Calculation for Flat Creek	.54
Table 5.4	Instream Waste Concentration (IWC) Calculation for Flat Creek	.54
Table 6.1	Summary of proposed modifications to designated uses for UTB, UTA,	
	Flat Creek & Haynes Creek	.57

APPENDICES

- Appendix A Aquatic life field study Lion Oil
- Appendix B Agency documentation Appendix C Facility and DMR dissolved mineral data Appendix D Summary of Toxicity Testing data
- Appendix E Field data sheets
- Appendix F Photo of study reaches

1.0 INTRODUCTION

1.1 Background

This report presents the documentation developed in support of a proposed third-party rule making to address the existing final permit limits for dissolved minerals in the El Dorado Chemical Company's (EDCC) NPDES permit (AR0000752). The documentation was developed in accordance with the project study plan developed for the aquatic life field study and as submitted to ADEQ for their review and comment (Appendix A). This documentation is required by Section 2.306 of the Arkansas Water Quality Standards (WQS) in support of the proposed modifications of designated but non-existing and unattainable uses and associated water quality criteria for dissolved minerals (sulfates, SO₄; chlorides, Cl⁻ and total dissolved solids, TDS) as summarized in Section 2. This report also addresses the requirements of the 1994 Administrative Guidance Document of the ADEQ, which clarifies the Section 2.306 documentation process.

In addition, this report provides documentation regarding the attainability of the domestic water supply use from the perspective of the 40 CFR 131.10(g) rationale for use removal. The requirement for providing 40 CFR 131.10(g) documentation is to fulfill USEPA Region 6 requests for inclusion of use attainability information in the third party rule making process.

EDCC has operated a fertilizer and acid manufacturing, storage, and distribution center in, El Dorado, Arkansas, Union County since 1983 (Figure 1.1). Current production capacity is approximately 4,000 tons per day (tpd). Recent decreases in waste water effluent dissolved solids (especially SO₄ and TDS) have resulted from environmental improvements directed at process controls, waste prevention and recycle programs which were implemented by EDCC within the last three years. In addition, EDCC's ground water conservation initiative has resulted in further reductions in the Outfall 001 mineral concentrations. This conservation effort includes the use of river water rather than well water from the Sparta aquifer as the source for makeup to the process water supply. This conservation effort further decreases the TDS and CI loading to the wastewater treatment system.

EDCC has invested over \$2,000,000 in improvements and pollution prevention activities during the last fiscal year alone. In addition to reductions in the mineral constituents, reductions in other constituents (e.g. ammonia) have been recognized as a result of facility upgrades and improvements. These reductions are demonstrated in both the effluent concentrations and the routine whole effluent toxicity testing completed routinely on Outfall 001 effluent. (See Section 3). Within the last year, there has been no effluent lethality demonstrated for either two species tested at a critical dilution of 100% effluent.

However, since the wastewater treatment is not designed to remove dissolved minerals (and since there is no economical treatment technology available for the removal of dissolved minerals), the dissolved mineral concentration of the discharge from Outfall 001 will not meet the existing ecoregion criteria.

Despite the reductions realized through the implementation of site BMP and waste water treatment improvements (which are described in detail in Section 3.3.4), the existing NPDES final limitations for SO₄, Cl and TDS will not likely be attained through facility upgrades and improvements. Since the discharge from Outfall 001 is into an unnamed tributary in the Gulf Coastal Ecoregion, the final permit limitations are based on the ecoregion criteria and reflect the least disturbed gulf coastal ecosystem default values.

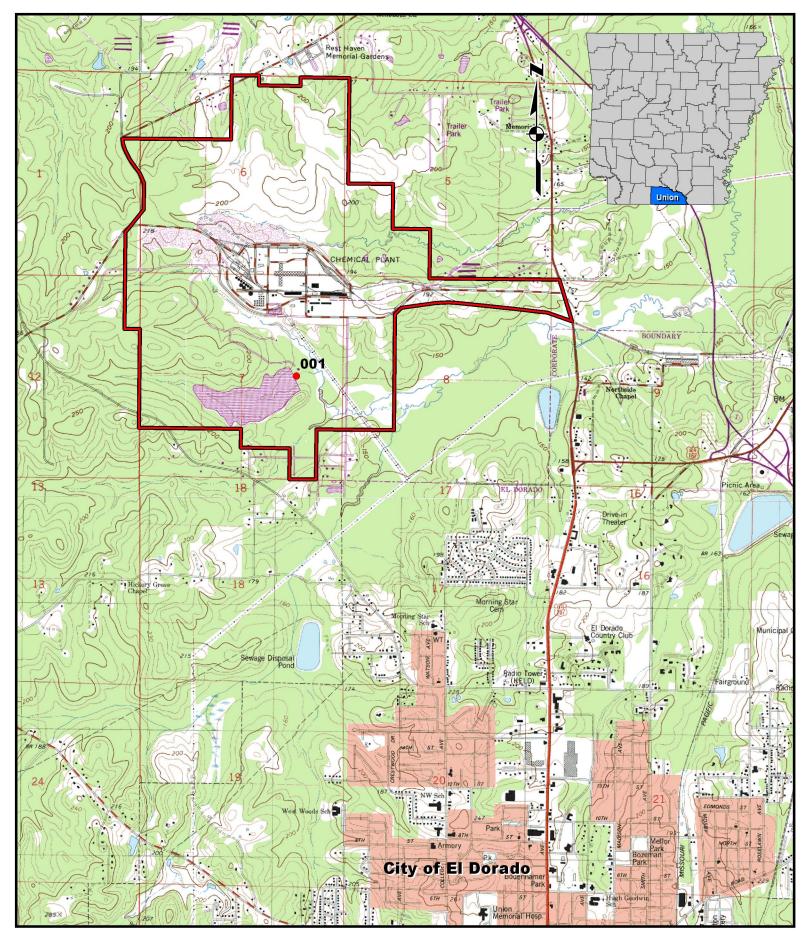


Figure 1.1. El Dorado Chemical Company property boundary, Outfall 001 and surrounding areas.

1.2 Report Focus and Objective

The focus of this report is the discharge from the treated process wastewater outfall (Outfall 001) covered under EDCC's current NPDES permit. The primary discharge (Outfall 001) is into an unnamed tributary (UTB) to Flat Creek. Outfall 001 contains or potentially contains concentrations of CI, SO₄, and TDS that are in excess of the existing ecoregion specific water quality criteria.

The primary report objectives are to:

- provide the required documentation to support a third-party rulemaking in accordance with Section 2.306 to remove the designated and unattainable domestic water supply use from the sections of unnamed tributary to Flat Creek, sections of Flat Creek, and Haynes Creek to the confluence with Smackover Creek and
- propose site-specific water quality criteria for dissolved minerals (Cl, SO₄, and TDS) that:
 - reflect the current discharge concentrations, (which have been reduced substantially from historical concentrations through extensive facility upgrades to BMP's and spill control and containment),
 - account for recent reductions in mineral concentrations related to site improvements, and
 - are shown to support the designated seasonal fishery use and the supporting biotic communities to maintain that use.

This documentation summarizes significant findings and provides recommendations (Section 2.0), provides a summary of the site's background information (Section 3.0), documents the physical, chemical, and biological characteristics of tributaries that receive the permitted discharges from the targeted outfalls (Section 4.0), and presents the mass balance modeling results (Section 5.0). Section 6.0 provides a review of alternatives to meet the existing ecoregion criteria or stream criteria for dissolved minerals as well as the attainability of the domestic water supply use of the unnamed tributary to Flat Creek, Flat Creek, and Haynes Creek, respectively. Section 7.0 provides the citation for documents referenced in this report.

2.0 SIGNIFICANT FINDINGS AND RECOMMENDATIONS

2.1 Significant Findings

The following findings are based on the information developed as part of the documentation in support of the proposed rule making and as directed by the aquatic life field survey (Appendix A).

- Recent process improvements, emissions control equipment, improvements to site BMPs and spill prevention, facility containment improvements, recycle of internal process waters, and the ground water conservation activities (moving from Sparta aquifer ground water to river water as a source water), have been responsible for the recent decreases in sulfates, CI and TDS in the treated effluent discharged through Outfall 001.
- 2. The facility manages water discharges under the NPDES permit AR0000752.
- 3. The historical and existing discharges have, on occasion, exceeded the water quality based ecoregion mineral criterion.
- 4. The facility certifies that it maintains a Storm Water Pollution Prevention Plan and a Spill Prevention Control and Countermeasure Plan and is updated on a routine basis.
- 5. The SWPPP and the SPCC plans are in the process of revision and updates will be implemented in the fall of 2006.
- 6. Despite the recent reductions realized by process and facility modifications, the final permit imitations for SO₄, CI and TDS will likely not be attained as a result of continued site improvements.
- 7. The final permit limitations for SO₄, CI and TDS are based on least disturbed ecoregion reference water quality criteria which do not reflect the receiving stream (Flat Creek) condition and the historical dissolved mineral residuals resulting from the oil and brine industry within the watershed.
- 8. As a result of the historical watershed activities, the ecoregion criteria for the Gulf Coastal ecoregion are exceeded by the "upstream" waters prior to the discharge from Outfall 001, as well as in Flat Creek above the mouth of the receiving stream into which the Outfall 001 occurs.
- 9. Historical exposures and existing land use within the Flat Creek watershed result in continuing dissolved mineral concentrations that are approximately 3 times that of the unnamed tributary, including the contribution for Outfall 001.
- 10. Outfall 001 discharges to an unnamed tributary to Flat Creek.
- 11. The water quality of the discharge from EDCC improves the water quality of the unnamed tributary and thus that of Flat Creek.
- 12. The watershed into which Outfall 001 discharges is approximately 2.5 square miles at the confluence with the unnamed tributary to Flat Creek. The watershed of the unnamed tributary at the mouth of Flat Creek is approximately 16 square miles (Figure 2.1).
- 13. During the aquatic life field survey, the unnamed tributary into which EDCC discharges maintains a seasonal fishery to the degree supported by the existing habitat and maintains an aquatic life use in downstream segments.
- 14. It is anticipated that the state resource agencies will confirm that the domestic water supply use is not an existing use, nor is it an attainable use on Flat Creek.
- 15. Proposed modifications to the mineral criteria will not preclude the attainment of the other designated and attainable uses.

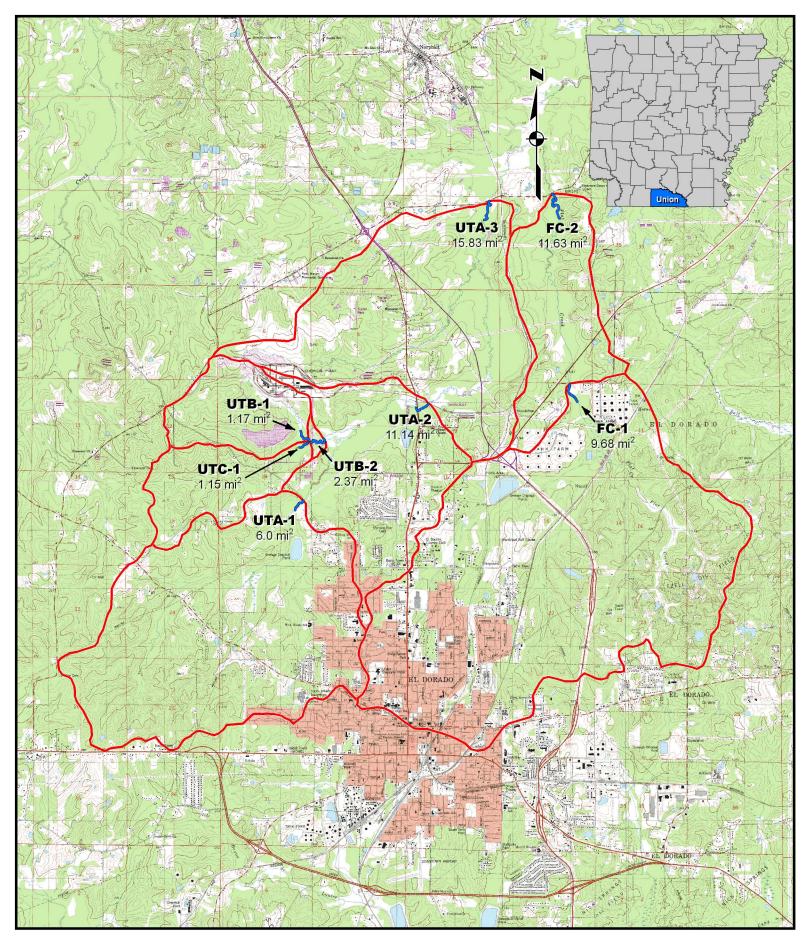


Figure 2.1. Study reaches, watershed boundaries and watershed sizes for stream segments evaluated in association with the EDCC 3rd party rulemaking. April 2006.

2.2 Recommendations

Based on the documentation presented herein, it is recommended that the designated domestic water supply use be removed from the following locations:

- Unnamed tributary to Flat Creek from the discharge from Outfall 001 downstream to its confluence with Flat Creek,
- Flat Creek to the mouth of Salt Creek, and
- Haynes Creek to its confluence with Smackover Creek.

Table 2.1 summarizes the recommended changes to designated uses and the water quality criteria for CI, SO_4 and TDS of individual streams segments evaluated.

Table 2.1. Summary of Proposed WQS Modifications.

Unnamed tributary to unnamed tributary to Flat Creek (UTB) – from EDCC 001 Discharge to the confluence with Unnamed tributary of Flat Creek (UTA)	Unnamed tributary to Flat Creek (UTA)– from confluence of UTB to the confluence with Flat Creek
Remove Designated Domestic Water Supply Use	Remove Designated Domestic Water Supply Use
Instream Criteria	Instream Criteria
Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 23 mg/L; Sulfate from 31	Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 16 mg/L; Sulfate from 31

Table 2.1 (cont). Summary of Proposed WQS Modifications

Flat Creek – from mouth of UTA tributary to the mouth of Haynes Creek	Haynes Creek from confluence of Flat and Salt Creeks, downstream to confluence with Smackover Creek
Remove Designated Domestic Water Supply Use	Remove Designated Domestic Water Supply Use
Instream Criteria	Instream Criteria
Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 165 mg/L; Sulfate from 31 mg/L to 67 mg/L, and TDS from 123 mg/L to 560 mg/L	Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 360 mg/L; Sulfate from 31 mg/L to 55 mg/L, and TDS from 123 mg/L to 855 mg/L

3.0 BACKGROUND

3.1 Introduction

EDCC operates a chemical and fertilizer manufacturing and distribution facility in Union County on the north side of El Dorado, Arkansas. The facility's single treated process wastewater outfall (Outfall 001) discharges to an ephemeral unnamed tributary (UTB) to Flat Creek (Figure 2.1). A detailed description of Outfall 001 and its' individual discharge characteristics are provided in Section 3.2. For the purpose of this report, only EDCC's Outfall 001 will be addressed. EDCC currently has additional NPDES permitted outfalls that are not considered as significant sources of minerals to the receiving streams due to their discharge locations, small/limited flows, or chemical characteristics. Current plans for continued facility upgrades and improvements include routing of all site storm water into catchment basins and ultimately routed through the primary Outfall 001 discharge. It is anticipated that all flows from the facility will ultimately be routed and discharged through Outfall 001.

The Arkansas Water Quality Standards - Regulation No. 2 (WQS) (ADEQ, 2004) allows modification of water quality standards under various conditions. Specifically, Section 2.306 of the WQS allows the removal of a designated use other than a fishable or swimmable use, and for establishment of less stringent water quality criteria without affecting fishable or swimmable uses. This project report documents the information required to amend Reg. 2 through third party rulemaking. The study areas are shown in Figure 3.1.

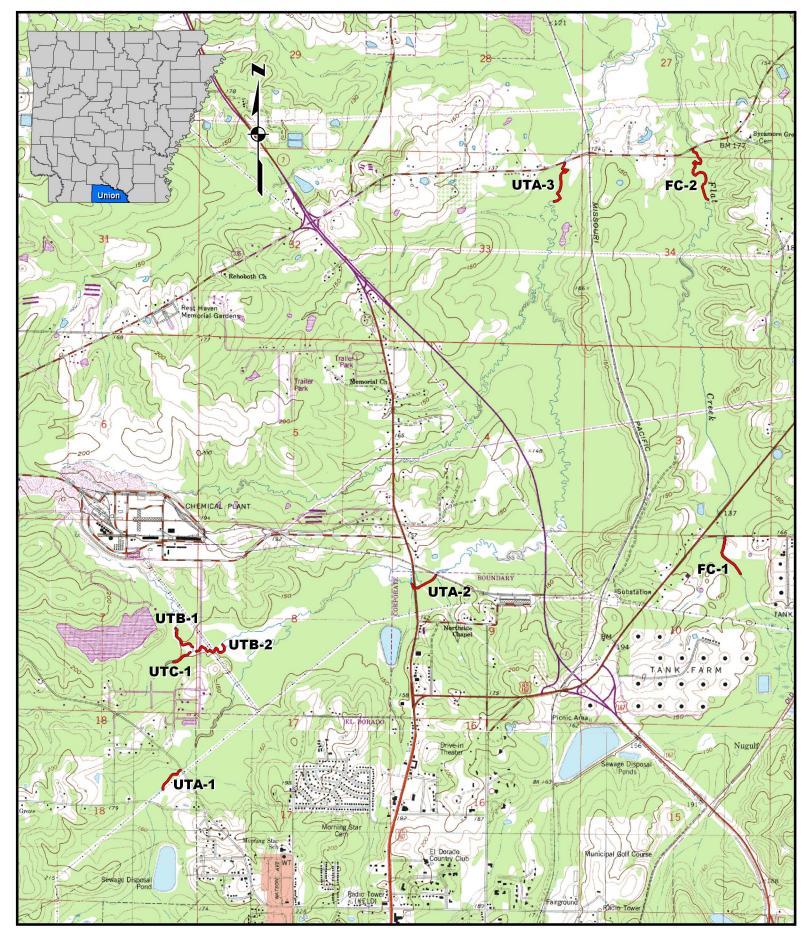


Figure 3.1. Study reaches for EDCC section 2.306 aquatic life field survey. Union County, AR. April 2006

3.2 Designated Uses

The designated uses for Unnamed tributary to unnamed tributary to Flat Creek (UTB), Unnamed tributary to Flat Creek (UTA), Flat Creek, and Haynes Creek are those listed in the WQS for Gulf Coastal Plain streams with watersheds less than 10 square miles. The designated uses are listed below. They are as follows:

UTB-Unnamed tributary to unnamed tributary to Flat Creek (above Hwy 7S)

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

UTA-Unnamed tributary to Flat Creek (below Hwy 7S)

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Flat Creek

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Haynes Creek

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

3.3 Domestic Water Supply Use

Based upon the anticipated documentation provided by the Arkansas Department of Health (ADHHS), UTB, UTA, Flat Creek, and Haynes Creek are neither an existing nor planned public water supply source. In addition, the Arkansas Department of Natural Resources (ADNR) has documented that the removal of the designated domestic water supply use from these stream reaches does not conflict with the Arkansas Water Plan. Letters requesting the current and anticipated domestic water supply use status have been submitted to the respective agencies. The letters to and from the ADHHS and ADNR are and will be provided in Appendix B.

3.4 Outfall 001 Characteristics

3.4.1. Discharge Characteristics

Figure 3.2 (and Appendix C) provides a summary of the discharge flow characteristics for Outfall 001 over the recent 46 month period. Outfall 001 has not discharged continually during this period. The discharge from Outfall 001 is typically reduced during the summer low flow period.

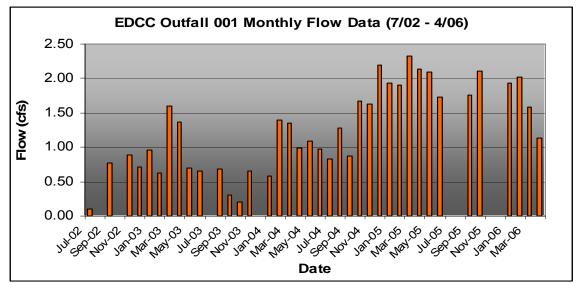


Figure 3.2. Outfall 001 discharge characteristics from EDCC (POR: 46 months).

3.4.2 Effluent Dissolved Mineral Characteristics

Table 3.1 presents the effluent characteristics of treated wastewater discharged through Outfall 001. This data represents available recent data. Documentation for the 95th percentile value is presented in Section 5.0. The percentile concentration values represent statistically calculated values based on methodologies outlined in *Statistical Methods for Environmental Pollution Monitoring* (Gilbert, 1987) which will be discussed in detail in Section 5.2.2.

Statistic*	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
(Data Characterization)	N=19	N=43	N=19
Maximum	54.0	408	1200
Minimum	27.0	71.0	510
Average	41.0	197	875
95 th percentile	55.0	309	1170
Median	43.0	188	890

Table 3.1. Summary of targeted mineral constituents in Outfall 001 discharge from EDCC facility.

3.5 Description of Pollution Prevention Practices

Areas where storm water and/or spills may leave the facility are identified in the facility's Spill Prevention Control and Countermeasures (SPCC) Plan and Storm Water Pollution Prevention Plans. These plans are currently being revised to update the individual plans to include recent site improvements. The SWPPP revision is scheduled for completion during the last summer/early fall of 2006 in accordance with the current NPDES permit requirements. The SPCC plan was last revised in 2002 (GBMc, 2002) and is required to be updated every 5 years, at a minimum. EDCC has initiated the SPCC revision ahead of regulatory schedule to incorporate the recent facility improvements. This revision should be completed and implemented by the end of 2006.

Best Management Practices (BMP's) as well as other secondary containment and treatments have been implemented to reduce contamination of storm water and prevent spill release. The SPCC and SWPPP provide the policies and procedures to limit storm water exposure to process waters and provides for the routine management of storm waters. EDCC has installed pollution prevention practices at the facility designed to reduce the potential of storm water contamination and to prevent spills from entering waters of the state.

EDCC currently discharges treated process wastewater and storm water through Outfall 001 into the UTB tributary. Within the last two year period, EDCC has implemented production modifications in response to energy conservation goals, process optimization and environmental control projects in an effort to reduce contaminant levels in the facility's storm water and process waste water as discharged through Outfall 001. These efforts have resulted in the reductions demonstrated over the recent history, especially for SO₄ and TDS (Figures 3.3 and 3.4)

EDCC continues investigating alternatives to the continued discharge of the treated process wastewater and contaminated storm water into the UTB tributary.

3.5.1 Outfall 001

Surface drainage and a storm water sewer system collect storm water and process water from the production of nitric acid, sulfuric acid, and ammonium nitrate (AN) from the Outfall 001 drainage area. The production process requires approximately 1.9 million gallons of process water per day, which is used for cooling tower make-up, hydrostatic testing, pump seal flushing, boiler feed water, and unit wash downs. The storm water and process water are directed through a neutralization treatment system, a one acre aeration basin, and then through a 50-acre equalization basin where additional aggressive biological treatment is carried out. Additionally, improvements of BMPs for storm water treatment have reduced the possibility of contaminated storm water reaching the treatment system. BMPs include: good housekeeping, strict controls on treatment chemicals, policies for storage, spill control, waste minimization, and clean up of wastewater treatment chemicals.

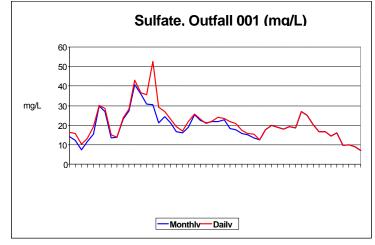


Figure 3.3 Monthly sulfate concentrations in 001 effluent. POR 4/01 to 6/06

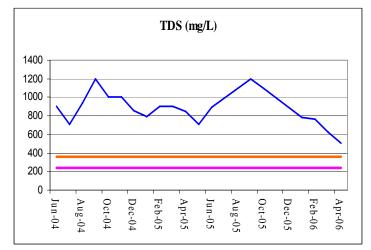


Figure 3.4 TDS concentrations and final permit limits for 001 effluent. POR 6/04 to 4/06

3.6 Current NPDES Permit Status

3.6.1 NPDES Permit Compliance

EDCC's current NPDES permit (Permit No. AR0000752) became effective on July 1, 2002. The permit remains in effect until midnight, June 30, 2007.

3.6.1.1 Discharge and Monitoring Requirements

EDCC is currently under interim effluent limitations at Outfall 001. Chloride (CI⁻), Sulfate (SO₄) and Total Dissolved Solids (TDS) fall under monitor and report limitations until the final permit limitations take effect June 1st, 2007. However, the potential for mineral concentrations to exceed ecoregion instream WQS in Unnamed tributary to the unnamed tributary to Flat Creek (UTB), Unnamed tributary to Flat Creek (UTA), Flat Creek, and Haynes Creek is possible during normal discharge operations through Outfall 001. The instream dissolved minerals WQS in UTB, UTA, Flat Creek, and Haynes Creek are based on the maintenance of the designated, but non-existing and unattainable domestic water supply use. The final discharge limitations and monitoring requirements for EDCC's Outfall 001 are summarized in Table 3.2.

Effluent Characteristic	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Frequency of Analysis
Flow (MGD)	N/A	NA	NA	NA	Daily*
Total Suspended Solids (TSS)	462 lbs/day	692 lbs/day	30 mg/L	45 mg/L	three/week
Ammonia Nitrogen (NH ₃ -N)	265.7 lbs/day	811.84 lbs/day	12 mg/L	18 mg/L	three/week
Nitrate Nitrogen (NO ₃)	405.02 lbs/day	1153.73 lbs/day	26.3 mg/L	74.9 mg/L	three/week
Dissolved Oxygen (May - Oct.) (Nov. – April)	N/A N/A	N/A N/A		. inst. Min . inst. Min	three/week three/week
Copper, Total	0.19 lbs/day	0.38 lbs/day	12.2 µg/L	24.48 µg/L	once/month
Selenium, Total	0.09 lbs/day	0.17 lbs/day	5.58 µg/L	11.2 µg/L	once/month
Zinc, Total	1.78 lbs/day	3.57 lbs/day	115.62 µg/L	231.99 µg/L	once/month
Sulfate (SO ₄)	Report	Report	81 mg/L	122 mg/L	once/month
Chlorides (CI)	Report	Report	38 mg/L	57 mg/L	once/month
Total Dissolved Solids (TDS)	Report	Report	237 mg/L	356 mg/L	once/month
Temperature	NA	NA	NA	86 °F inst. Max	once/month
pH (SU)	N/A	NA	*	*	continuous
Whole Effluent Toxicity	not < 100% (Daily Average Minimum)		not < 100% (7-Day Minimum)		once/month
** pH shall not be less than 6.0 standard units nor greater that 9.0 standard units					

Table 3.2. Current Final Discharge Limitations for EDCC, Outfall 001.

3.6.1.2 Dissolved Minerals

Dissolved minerals data from Outfall 001 (Cl⁻, SO₄, and TDS) has been collected and monitored monthly since June, 2004 (Cl⁻ and TDS), and well beyond that for SO₄. Table 3.3 summarizes the dissolved mineral concentration typical of a discharge from EDCC Outfall 001. Additional chloride, sulfate and TDS information is provided in Section 5.0. Outfall 001 dissolved mineral concentrations were used in the mass balance modeling to determine the proposed instream criteria.

Date	Chloride Monthly	Sulfate Monthly	TDS Monthly Average
	Average (mg/L)	Average (mg/L)	(mg/L)
Jan-02		136	
Feb-02		137	
Mar-02	ND	ND	ND
Apr-02		232	
May-02		272	
Jun-02		408	
Jul-02		359	
Aug-02	ND	ND	ND
Sep-02		309	
Oct-02	ND	ND	ND
Nov-02		306	
Dec-02		213	
Jan-03		245	
Feb-03		213	
Mar-03		166	
Apr-03		160	
May-03		189	
Jun-03		252	
Jul-03	ND	ND	ND
Aug-03		226	
Sep-03		213	
Oct-03		218	
Nov-03		219	
Dec-03	ND	ND	ND
Jan-04		229	
Feb-04		184	
Mar-04		176	
Apr-04		158	
May-04		150	
Jun-04	40.2	134.5	900
Jul-04	34.4	125	710
Aug-04	48.4	178	940
Sep-04	51.6	200	1200
Oct-04	50.8	188	1000
Nov-04	44.2	179	1000
Dec-04	32.2	193	860
Jan-05	30.2	187	790
Feb-05	27	268	900

Table 3.3. Summary of dissolved mineral data from EDCC Outfall 001.

Date	Chloride Monthly Average (mg/L)	Sulfate Monthly Average (mg/L)	TDS Monthly Average (mg/L)
Apr-05	32.1	203	850
May-05	29.2	166	710
Jun-05	42.8	167	890
Jul-05	ND	ND	ND
Aug-05	ND	ND	ND
Sep-05	46.2	143	1200
Oct-05	47.6	160	1100
Nov-05	ND	ND	ND
Dec-05	ND	ND	ND
Jan-06	46.5	97	780
Feb-06	47.2	99.2	760
Mar-06	53.6	90.4	630
Apr-06	38.8	70.7	510
	Summar	y Statistics	
Maximum	54.0	408	1200
Minimum	27.0	71.0	510
Average	41.0	197	875
95 th percentile*	55.0	309	1170
Median	43.0	188	890

Table 3.3 (cont'). Summary of dissolved mineral data from EDCC Outfall 001.

* See Section 5.0

• Note: ND = No Discharge

As indicated in Table 3.3 (Summary of dissolved mineral data from EDCC Outfall 001), there were no permit requirements to monitor and report chloride or TDS until June 2004.

3.6.2 Whole Effluent Toxicity (WET) Testing

Toxicity testing has been conducted on EDCC's primary discharge (Outfall 001) for over 10 years. During the previous permit cycle the whole effluent toxicity testing was required on a quarterly basis. Since the most recent permit renewal, the WET testing is required monthly. The interim requirement is a monitor and report only requirement. When the final permit limit becomes effective (June 1, 2007), the WET becomes a permit limit rather than a monitor and report requirement.

The most recent biomonitoring history demonstrates that the treated effluent is not toxic even under the critical dilutions reflective of critical Q 7-10 flow concentrations (e.g. 100% critical dilution). A summary of the last five year period of record for the biomonitoring is provided in Appendix D-1. The summary demonstrates that EDCC Outfall 001 currently passes both the lethality endpoints at the applicable critical dilution (100%). Although there have been issues with toxicity testing history, monthly testing since April 2005 have passed all WET test lethality endpoints, on both the water flea and fathead minnow. The record for no lethality effects to the water flea dates back to September 2004 without any test failures (Figure 3.5).

Figure 3.6 further illustrates the improved performance in WET testing. The sublethal endpoints (e.g. reproduction and growth, for the water flea and the fathead minnow, respectively) also demonstrate compliance with the critical dilutions the majority of the time since early 2005.

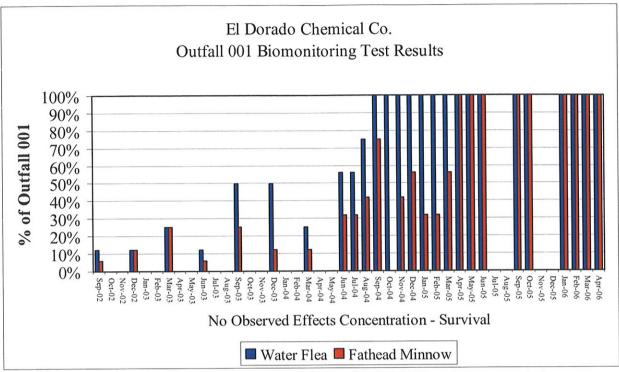
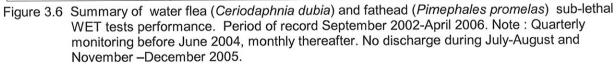



Figure 3.5 Summary of water flea (*Ceriodaphnia dubia*) and fathead (*Pimephales promelas*) biomonitoring performance. Period of record September 2002-April 2006. Note : Quarterly monitoring before June 2004, monthly thereafter. No discharge during July-August and November –December 2005.

The recent improvements to the waste water treatment process, increased production process controls, and improvements related to other BMP activities (including increased attention to spill prevention, control, and countermeasures; and containment to prevent exposure) are reflected in the improvements to the WET testing results. Figures 3.5 and 3.6 demonstrate the benefits of improved treatment and process modifications by the reduced variability in the chronic biomonitoring results.

Prior to April 2005, the biomonitoring history for EDCC indicated significant differences at concentrations less than 100% effluent. However, a more detailed review of the test results (Appendix D) indicates that the dissolved mineral concentration of the Outfall 001 effluent, as indicated by the effluent conductivity, was not likely responsible for the results demonstrated in the biomonitoring.

Although storm water discharges are also monitored during discharge events, ongoing site modifications and facility improvements will ultimately eliminate the discharge from storm water outfalls. The current plans call for the routing of all facility storm water into the current collection and treatment system with ultimate discharge through Outfall 001. The plans for site storm water management should be fully implemented by June 2007.

4.0 AQUATIC LIFE FIELD STUDY

4.1 Introduction

The objective of the aquatic life field study was to document whether the designated aquatic life use was being maintained in unnamed tributaries to Flat Creek and if the permitted discharges from EDCC are beneficial or detrimental to the maintenance of those uses.

To accomplish the study objective, the aquatic life field study included evaluations of the habitat conditions, water quality, aquatic macroinvertebrate community, and fish community assemblages. Studies reaches for the aquatic life field study are as follows:

- Reach UTC1: the unnamed tributary to Flat Creek upstream of any EDCC influence (reference site),
- Reach UTB1: the unnamed tributary to Flat Creek above the confluence with UTC watershed but below Outfall 001 (the primary discharge) and other inactive but permitted discharges (002, 004, 006/007);
- Reach UTB2: the unnamed tributary combining UTC and UTB watersheds (size approximately 2.37square. miles)
- Reach UTA1: the unnamed tributary to Flat Creek above any influence with discharge from EDCC.
- Reach UTA2: The unnamed tributary to Flat Creek downstream of Hwy 7S and the confluence with UTB (includes discharge from EDCC);
- Reach UTA3: The unnamed tributary to Flat Creek at O'Rear Road;
- Reach FC1: Flat Creek upstream of Hwy 167. Site is reference reach for UTA1; and
- Reach FC2: Flat Creek at O'Rear Road, site served as reference reach for UTA3. Figure 3.1

As indicated above several study reaches were also characterized by ADEQ in the 1996 TMDL report. The size of each watershed of unnamed tributary to Flat Creek at each study reach is provided in Table 4.1.

Union County. April 2006.		
Study Reach	Watershed Size, square. miles	
ÚTC UTC	1.15	
UTB1	1.17	
UTB2	2.37	
UTA1	6.0	
UTA2	11.14	
UTA3	15.83	
FC1	9.68	
FC2	11.63	

Table 4.1. Watershed size at each study reach evaluated during the EDCC aquatic life field study. Union County. April 2006. A summary of the aquatic life field study is presented in the following report sections. Appendix E provides the field data sheets, habitat characterization data sheets, analytical results, benthic field and tally sheets, and fish collection field and tally sheets. Appendix F provides the photographic documentation of the seasonal and low flow conditions.

4.2 Habitat Characterization

4.2.1 Introduction

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- 4) habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel-riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, instream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs. The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment (Semi-Quantitative), and include:

- 1) Channel Morphology
 - a) Reach Length Determination,
 - b) Riffle-Pool Sequence, and
 - c) Depth and Width Regime
- 2) Instream Structure
 - a) Epifaunal Substrate,
 - b) Instream Habitat,
 - c) Substrate Characterization,
 - d) Sediment Deposition, and
 - e) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
 - a) Canopy Cover,
 - b) Bank Stability and Slope,
 - c) Vegetative Protection, and
 - d) Riparian Vegetative Zone Width.

Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses.

These procedures are intended for evaluating physical habitat in wadeable streams, but may be adapted for use in larger streams as necessary. The field procedures applied to this characterization are most efficiently applied during low flow conditions and during times when terrestrial vegetation is active, but can also be applied during spring seasonal conditions with higher base flows. This collection of procedures is designed for monitoring applications where robust, quantitative or semi-quantitative descriptions of habitat are desired. This semi-quantitative habitat procedure is usually used in conjunction with the *General Physical Habitat Characterization* and the *Qualitative Habitat Assessment* to provide a detailed view of the streams habitat condition.

The habitat characterization protocol provided herein differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol summarized in this SOP is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000).

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width. The semi-quantitative habitat sampling reach length should coincide as much as possible with that of the fish and macroinvertebrate collection reaches. Measurements are taken in each of 10 sub-reaches, which are systematically placed at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.

4.2.2 Methods

The habitat assessment was conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat was characterized from measurements and observations of stream attributes made within 10 sub-reaches. The team assessing habitat moved along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rationale for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described below in the following sections.

4.2.2.1 Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences (i.e. a measure of the amount of riffles, runs and pools that occur in a given reach).

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 4.1). The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

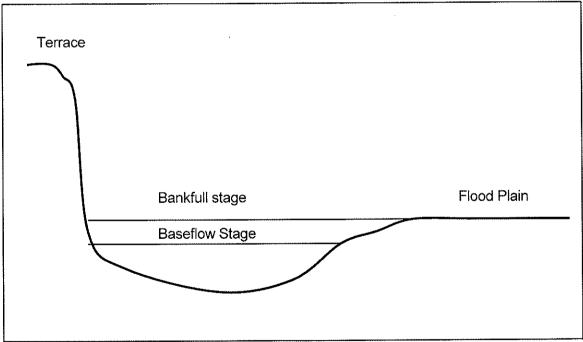


Figure 4.1. Stream channel depicting bankfull stage.

1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) was identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in each study reach. Then bankfull depth and width was determined from 5 stream transects and recorded on the record sheet. Transect locations was selected to include each prominent morphology type represented in the stream. Bankfull depths were measured to the nearest 1/10 foot and bankfull widths were measured to the nearest foot using a wading rod and tape measure, respectively. An average of the 5 bankfull widths was then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length was then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach began at the head of a given stream morphology (i.e. riffle, run or pool).

2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach was measured using a tape measure and recorded on the record sheet. The sequence of each morphological type was depicted on the record sheet using the provided notations so as to create a map to the location of each riffle, run or pool. The resulting measurements provided a quantitative measure of the percent of the study reach representing each stream morphological type (i.e. 40% riffle, 30% run, 30% pool, etc).

3) Depth and Width Regime

The average stream depth and width were estimated in riffles and pools in each subreach. Depths were measured along a transect, similar to that depicted in Figure 4.2, in a representative section of each riffle and pool in the sub-reach. Depths were generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach was derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this provided an accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths were measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach was recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this provided accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

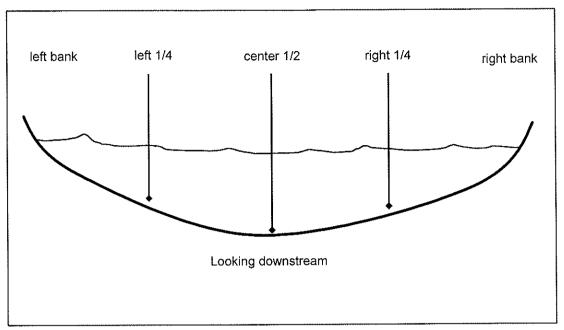


Figure 4.2. Approximate position of measurements across transect.

4.2.2.2 Instream Structure

Instream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of instream structure including some that is permanent and some that is mobile during high flow events.

1) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

2) Instream Habitat (Fish)

Instream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute substrates composed of

cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater) and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

3) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each subreach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity.

Particle are classified into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

i.	Bedrock	smooth or rough
ij.	Boulder	>25 cm
iii.	Cobble	6-25 cm
iv.	Coarse Gravel	1.6 – 6 cm
٧.	Fine Gravel	0.2 – 1.6 cm
vi.	Sand	<0.2 cm
vii.	Silt/Mud/Clay	fine, not gritty

Notations are made for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

4) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

5) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a subreach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

4.2.2.3 Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these streamside riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks from erosion, provides shading, inputs nutrients, provides materials as habitat (instream structure) and filters runoff entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses.

1) Canopy Cover

Canopy cover (percent stream shading) over the stream was determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates were made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point was estimated visually.

2) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reach's overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

Score 9-10 = Stable, little evidence of erosion, < 5% bank eroding Score 6-8 = Moderately stable, some evidence of new erosion, 5-29% bank eroding Score 3-5 = Moderately unstable, obvious new erosion, 30-59% bank eroding Score 1-2 = Unstable, most of bank actively eroding, 60-100% bank eroding

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, was recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

3) Vegetative Protection

Bank vegetative protection was measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) was assessed separately and the value recorded on the record sheet. Banks were assessed from the edge of the water to the top of the first terrace or normal top of bank. 4) Riparian Vegetative Zone Width

Riparian zone encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from runoff, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

4.2.3 Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment was utilized in two different ways. First, data collected for each attribute (assessment category) was used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, % riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean % canopy cover, etc. Second, the data collected during the assessment was used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies was incorporated into this intensive aquatic biota field study. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

1) Epifaunal Substrate/Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (Instream habitat) are combined into an overall average percent coverage and used to score this metric.

Rank	Optimal	Sub-Optimal	Marginal	Poor
% Coverage	>70%	40%-70%	20%-39%	<20%
Score	20 -16	15 -11	10 - 6	5 - 1

The following table presents the scoring criteria:

2) Pool Substrate Characterization

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

Rank	Ор	timal	Sub-Optimal	Marginal	Poor
Substrate	Cobble	or Gravel	Sand/Silt/Clay	Sand/Silt/Clay	Bedrock or Clay Only
Macrophytes Present	Yes	No	Yes	No	No
Score	20 - 18	17 - 16	15 - 11	10 - 6	5 - 1

3) Pool Variability

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

Pool Characteristic	Large-Deep	Large-Shallow	Small-Shallow		
Size	Length ≥ Width	Length ≥ Width	Length < Width	Length < Width	
Depth	≥3.2 feet	< 3.2 feet	≥3.2 feet	< 3.2 feet	

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

Rank	Optimal	Sub-Optimal	Poor	
% Bottom Affected	<5%	5%-30%	31%-50%	>50%
Score	20 -16	15 -11	10 - 6	5 - 1

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs. 7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semi-quantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semi-quantitative record sheet) is used directly to score this metric for the right and left bank.

Rank	Optimal	Sub-Optimal	Marginal	Poor
% Protected	>90%	70% - 90%	50% - 69%	<50%
Score	20 -16	15 -11	10 - 6	5 - 1

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e. an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such).

4.2.4 Results and Discussion

4.2.4.1 Habitat Quality

The aquatic life field study was completed during the week of April 17, 2006 during seasonal stream conditions. A summary of the physical attributes of all stations where physical data was collected is presented in Table 4.2. Each study reach was generally characteristic of Gulf Coastal Plain streams and/or seasonal wet-weather tributaries with small watersheds. Field sheets and the raw habitat data are provided in Appendix E. Reach by reach descriptions are presented in the following paragraphs.

4.2.4.2 Reach UTC1

As identified in Section 4.1, Reach UTC1 (watershed size of 1.15 square. miles) was used to represent an upstream reference condition to compare for UTB (watershed of 1.17 square. miles). UTB is the ditch into which Outfall 001 discharges. The upstream terminus of the Reach UTC1 was a point less than 100 yards upstream from the mouth, where no standing water was present for a distance equal to the reach below (approximately 100 yards). Clearly, the small water shed limited biotic community development even during the spring seasonal period. The flow was minimal and estimated at less than 0.01cfs. Although the reach was characterized as 50/50 run/pool, this complex existed only in the reach just above the confluence with UTB. The UTC1 reach differed from the UTB1 reach in three primary characteristics:

- flow 0.01 vs. 2.1 cfs in UTB1,
- run/pool complex, 50/50 vs. 84/16 in UTB and
- the lack of sediment deposition, 25% vs. 48% of stream bottom impacted in UTB1.

These characteristics provided a greater diversity of habitats for the development of the benthic and fish community in Reach UTC1: however, the lack of flow, even during the seasonal period limits the biotic potential and resulted in a reduced benthic diversity and limited fish community development (See Sections 4.4 and 4.5). Although there was minimal flow during the aquatic life field study, it is likely that flows from EDCC influence the lower reaches of UTC1 when a discharge occurs from Outfall 001 and there is no flow in UTC (Appendix F: Photos F1 and F2).

survey. Union Co. AR. April 2006.			Si	ample Loc	ation		19 (Self) 23	
				1178 3.4			504	500
Observation	UTC1	UTB1	UTB2	UTA1	UTA2	UTA3	FC1	FC2
Date	4/20	4/20	4/20	4/18	4/18	4/17	4/19	4/17
General Stream Characteristics:	· · · · · · · · · · · · · · · · · · ·		1				<u> </u>	10.1
Total Habitat Reach Length, ft	144	158	280	400	367	390	518	424
Average Bankfull Width, ft	7.2	7.9	10.4	20	18.3	19.5	25.9	21.2
Average Bankfull Depth, ft ¹	1.15	1.4	1.4	0	1.55	2,1	1.5	2.23
Average Velocity, fps	0.01	0.73	0.49	0	0.63	0.34	0.16	0.12
Flow, cfs	0.01	2.1	1.87	0	4.14	3.47	1.57	1.47
Morphology Regime						· · · · · · · · · · · · · · · · · · ·		
% Riffle	< 1	0	12	0	0	4	27	0
% Run	50	84	59	0	37	45	37	46
% Pool	50	16	29	100	63	50	35	54
Depth and Width Regime								
Average Riffle Depth, ft.	0.2	NA	0.6	0	NA	0.7	0.52	NA
Average Riffle Wetted Width, ft.	1	NA	8.75	0	NA	11	15.6	NA
Average Run Depth, ft.	0.5	1.2	0.83	0	1.44	1.3	0.86	1.6
Average Run Wetted Width, ft.	3.3	5.2	6.5	0	20.4	14.6	11.2	12.8
Average Pool Depth, ft.	0.9	1.2	1.4	3.8	2.19	2.94	2.6	3.3
Average Pool Wetted Width, ft	5.9	6.5	7.63	20.1	21.9	16	20.7	16.4
In-Stream Habitat (Percent Stable Habitat)						3000	
Epifaunal Substrate, Macroinvertebrates	30	38	32	46	34	36	37	37
In-Stream Cover, Fish	34	34	33	57	43	41	40	47
Substrate Characterization (Dominate Su	bstrate)						10 A 10 A	
Riffle	Silt/Clay	NA	Sand	NA	NA	Sand	Sand	NA
Run	Sand	Sand	Sand	NA	Sand	Sand	Sand	Sand
Pool	Sand	Sand	Sand	Silt/Clay	Sand	Sand	Sand	Silt/Clay
Sediment Deposition			10000	8 6 6 6 6	9-69-69-69-9	686860	10-0-0-0	
Average Percent of Bottom Affected	25	48	53	52	58	34	30	37
Aquatic Macrophytes and Periphyton (Pe	rcent Cove	A			e ne ne ne ne		900 C	
Riffle Macrophytes	0	NA	0	NA	NA	0	0	NA
Riffle Periphyton	0	NA	0	NA	NA	0	0	NA
Run Macrophytes	3	3	2	NA	0	0	0	0
Run Periphyton	0	0	0	NA	0	0	0	0
Pool Macrophytes	2	3	1	0	0	0	0	0
Pool Periphyton	0	0	0	5.5	0	0	0	0
Canopy Cover (Percent Stream Shading)		J	<u>~</u>	1	<u>. </u>	<u>.</u> -		
Stream Shading	27	7	22	39	45	53	52	74
Bank Stability and Slope	1 41	T 1	1	1	<u> </u>	<u> </u>	L	
Average Left Bank Stability	8	6	6	7	8	6	7	6
Average Left Bank Stability Average Left Bank Slope (degrees)	60	75	57	70	74	64	66	81
	7	6	7	70	8	6	6	7
Average Right Bank Stability			-	67	84	73	66	
Average Right Bank Slope (degrees)	65	79	77	10	04	13	00	83

Table 4.2. Summary of habitat characteristics of study reache	es during seasonal flow conditions. EDCC aquatic life field
survey. Union Co. AR. April 2006.	

Table 4.2 (cont).

Bank Vegetative Protection								
Average Left Bank Protection (percent)	51	48	52	59	52	47	41	61
Average Right Bank Protection (percent)	50	54	55	42	46	47	41	60
Riparian Vegetative Zone Width								1999 (MAR)
Left Bank Riparian Width	5	7	1	9	7	3	5	10
Right Bank Riparian Width	7	7	3	9	10	9	3	10

¹Average bankfull depth is calculated on riffles only

4.2.4.3 Reach UTB1

This reach is located within the patrolled area of the EDCC facility. The stream course is deeply incised with high stream channels, no over-story canopy, little instream fish habitat and consisted of almost 85% run (reflecting that there is limited substrate and stream morphological variability, no pools and riffle development). The stream morphology reflects the physical impacts of the routine discharge from Outfall 001 and the uniform velocities present when a discharge occurs. However, during periods of no discharge from EDCC, the available habitat was limited by reduced flow and exposed stream channel (Appendix F: Photos F-3-5). The low flow condition that occurs after discharge is eliminated (a seasonal occurrence for Outfall 001 limits the biotic development (Appendix F: Photo F-4 and F-5) (See Section 3.4). The physical stressors in Reach UTB1, which occur during both the spring seasonal period (during the Outfall 001, combine to limit the biotic development and attainable uses of Reach UTB1. These conditions would indicate that the biotic communities should have been limited when compared to a reference condition and downstream reaches (See Section 4.4 and 4.5).

Average velocity at UTB1 was 0.73 fps, while the flow recorded at this station was 2.1cfs (Appendix D). The reach's substrate was dominated by sand. Heavy amounts of sediments were found with the majority of the bottom sediments impacted (85% of the bottom affected). Stream shading along this reach was sparse (7%) reflecting the historical riparian disruption. Bank vegetative protection was adequate. However, the bank vegetation was predominately grasses, which has very little protective characteristics.

4.2.4.4 Reach UTB2

Reach UTB2 comprises both UTC and UTB watersheds (Figure 4.1). With the increase in watershed size to 2.37 square miles, Reach UTB2 demonstrated a slightly greater degree of stream morphology development and a wider variety and density of instream vegetation than any either of the previous two study reaches. However, the percent of fish cover and macroinvertebrate habitat within this reach was less than at any other study reach, even those with the smallest watersheds. The limited habitat reduces the potential for biotic community development. The stream width and canopy development reflects the doubling of the watershed size. However, the importance of the flow from Outfall 001 in maintaining wetted habitat (and therefore supporting the biotic development potential) is reflected in the difference between the presence and absence of discharge (Appendix F: Photos F-6 and F-7). Reach UTB2 was composed of approximately 59% shallow pools, 29% runs, and approximately 12% riffles (Table 4.2 and Appendix E).

4.2.4.5 Reach UTA1

Reach UTA1 (water shed approximately 6 square miles) is located upstream of the discharge from EDCC but had a watershed almost 3 times that of UTB2 (Figure 2.1). Despite the increased watershed, there was no measurable flow. The reach was comprised of 100% deep pools and was artificially maintained by beaver activity down stream of the study reach. The pool was deep and had areas which could not be assessed without boat access. This reach is atypical of gulf coastal streams with small watersheds. This was the only reach where periphyton growth was recorded. Additional evidence of enrichment was evident by the algae growth along the pool margins (Appendix F Photos F-8 and F-9).

4.2.4.6 Reach UTA2

Reach UTA2 (water shed approximately 11 square miles) is located downstream of the discharge from EDCC (Figure 2.1). The maximum flow recorded during the field survey was recorded at this reach. The reach was comprised of 60/40 mix of pools and runs but the available stream habitat was the smallest recorded from any stream reach except the smallest watersheds. The substrate was dominated by sand which was up to 3 ft deep in some locations (Appendix F: Photos F10-15).

4.2.4.7 Reach UTA3

Reach UTA3 (water shed approximately 15.83 square miles) is located downstream of the discharge from EDCC (Figure 2.1) and just upstream of Flat Creek. The riparian area adjacent to UTA in the reach is predominantly forested. The reach demonstrated a large degree of instream woody habitat development, however, sand and silts dominated the substrate. The reach was comprised with an equal mix of pools and runs. Like the upstream reach, the substrate was dominated by sand which was up to 3 ft deep in some locations. The habitat is sufficient to support the designated fisheries and aquatic life use even during low flow conditions (Appendix F Photos F16-21).

4.2.4.8 Reach FC1

Reach FC1 (water shed approximately 9.68 square miles) is not impacted by the discharge from EDCC. However, the watershed does receive discharge from the City of El Dorado north wastewater ponds and drains the north eastern portion of the City of El Dorado, including the Champagnolle oil and gas fields (Figure 2.1). The reach was comprised with an equal mix of pools, runs, and riffles, the only reach with a large riffle attribute (Appendix F Photos F-22 and F-23). The riparian area adjacent to FC1 in the reach is predominantly forested but is impacted by agricultural uses. The reach demonstrated a large degree of instream woody habitat development, however, sand and silts dominated the substrate. The habitat is sufficient to support the designated fisheries and aquatic life use.

4.2.4.9 Reach FC2

Reach FC2 (water shed approximately 11.63 square miles) is down stream of FC1 and was evaluated for comparison to UTA3 study reach. Like FC1, the watershed does receive discharge from the City of El Dorado north wastewater ponds and drains the north eastern portion of the City of El Dorado, including the Champagnolle oil and gas fields. EDCC (Figure 2.1). The reach was comprised with an equal mix of pools and runs, (Appendix F Photos F.24-26). The riparian area adjacent to FC2 in the reach is predominantly forested. The reach demonstrated a large degree of instream woody habitat development. The habitat is sufficient to support the designated fisheries and aquatic life use.

4.2.5 Habitat Potential

A qualitative assessment of habitat potential was completed at all study reaches. All reaches scored within a narrow range indicating sub-optional, bordering on marginal habitat, for the development and support of expected biotic communities. The assessment placed reaches UTB2, UTA2, and FC1 in the marginal category with mean scores of 10. However, this is at the top end of the category and just under the sub-marginal category where all other reaches were assessed (Table 4.3). Differences in the scores between reaches were demonstrated most significantly by differences in pool variability and channel sinuosity.

The results of the qualitative habitat assessment indicate the presence of habitat for fish and macroinvertebrates at all study reaches. However, none of the reaches were characterized by habitat that would facilitate diverse balanced biotic communities. Based on the assessment of habitat potential, the development of biotic communities would be expected to be less than that typical in least disturbed gulf coastal systems. The individual scoring forms are provided in Appendix E.

149.43	747. 7 pm 2000.				Reach				
	Parameters	UTC1	UTB1	UTB2	UTA1	UTA2	UTA3	FC1	FC2
1.	Epifaunal Substrate	11	11	11	15	11	12	13	13
2.	Pool Substrate	12	11	11	8	9	7	10	10
3.	Pool Variability	8	8	8	11	9	16	8	16
4.	Channel Alteration	17	11	10	15	11	16	14	18
5.	Sediment Deposition	15	11	10	10	7	13	13	13
6.	Channel Sinuosity	11	11	13	12	4	9	10	14
7.	Channel Flow Status	7	17	15	19	13	17	9	17
8.	Bank Stability								
	Left Bank	8	6	6	7	8	6	7	6
	Right Bank	7	6	7	7	8	6	6	7
9.	Vegetative Protection								
	Left Bank	3	2	3	7	3	2	2	4
	Right Bank	3	3	3	4	2	2	2	4

Table 4.3 Semi-qualitative assessment of habitat potential. EDCC aquatic life field survey. Union County, AR. April 2006.

10. Riparian Vegetative Zone Width	ar (ö. 15. 50 Sr						1. dan de si	
Left Bank	5	7	1	9	7	3	5	10
Right Bank	7	7	3	9	10	9	3	10
Score (Total)	114	111	101	133	102	118	102	142
Score Average	11	11	10	13	10	12	10	14
Ranking	S	S	M	S	M	S	M	S
Ranking	Range							
Optimal (O)	16-20							
Sub-optimal (S)	11-15							
Marginal (M)	6-10							
Poor (P)	0-5							

4.2.6 Habitat Conclusions

The habitat evaluation indicates that:

- 1. The habitat of the unnamed tributaries to Flat Creek provides some marginal to sub-optional level form and function to support a limited biotic community.
- 2. The unnamed tributaries to Flat Creek do not demonstrate the habitat potential for the development of a characteristic Gulf Coastal Seasonal biotic community. The limiting factors vary from study reach to study reach.
- 3. The flow (minimum even during the spring seasonal period) and stream morphology (no deep pools) of the small watersheds (UTC and UTB) limit the biotic community development.
- 4. The flows provided by the current discharge condition from EDCC provides a source of flow to allow increased community development when compared to upstream reference conditions.

4.3 Water Quality

4.3.1 Chemical Characteristics

This section presents the methods and results of the water quality characterization for *in-situ* and minerals analysis in all study reaches. The analytical methods followed procedures outlined in Standard Methods for the Examination of Water and Wastewater and appropriate EPA published methods as per the EDCC Aquatic Life Field Study Plan.

4.3.2 Methods

The water quality analysis was conducted during April 2005 to characterize instream conditions during spring seasonal period. Water quality analyses were taken within each study reach during the time of biological assessment. Water quality analyses consisted of *in-situ* measurements and grab samples for laboratory analysis of chloride, sulfate, and TDS. *In-situ* measurements for water temperature, dissolved oxygen (DO), and specific conductance were measured using a YSI Model 85 digital meter. The pH was measured using an Orion model 230A pH meter that was calibrated using the standard two point method. Turbidity was measured using a Hach 2100P turbidimeter. Grab samples were collected and preserved on ice for laboratory analysis of chloride, sulfate, and TDS. All field meters were calibrated the morning prior to use in the field. Calibration records, analytical results and chain of custodies are provided in Appendix E- Field Data Sheets.

4.3.3 Results and Discussion

The *in-situ* water quality data is presented in Table 4.4. DO ranged from 3.3 mg/L to 7.6 mg/L in the sampling reaches. The pH ranged between 6.43 and 7.36 s.u. along the three reaches evaluated. Specific conductivity was more than three times higher at downstream study reaches FC1 and FC2 (1919 μ S and 2249 μ S, respectively) when compared to all other reaches in the UTA watershed (maximum of 635 μ S). These increases reflect a result of residual effects from Flat Creek watershed and the oil and gas fields within that watershed.

In addition, the dissolved mineral concentrations of the upstream reaches, (UTC1 and UTA1), exceed the gulf coastal ecoregion standards.

	的资格的公			Sampling	Locations		10000	
Measurement	UTC1	UTB1	UTB2	UTA1	UTA2	UTA3	FC1	FC2
Temperature, C ^o	22.03	23.20	22.93	23.40	23.57	24.93	24.27	23.57
Dissolved Oxygen, mg/L	4.19	7.59	7.23	3.30	5.84	6.21	6.11	5.31
Specific Conductance, uS	326.60	631.87	635.67	258.80	446.43	407.13	2249.33	1919.67
pH, su	7.09	7.36	7.29	6.60	7.08	7.12	6.43	6.91
Turbidity, ntu	46.07	12.37	14.03	27.00	23.73	21.83	11.17	7.25
Total Dissolved Solids mg/L	256.00	420.67	403.33	192.33	303.33	286.67	1250.00	1183.33
Chloride mg/L	13.13	223.70	32.70	58.37	30.20	25.63	616.00	549.67
Sulfate mg/L	31.77	65.70	67.20	3.87	35.87	32.73	44.57	32.03

Table 4.4. Summary of the water quality data from study reaches evaluated as part of the EDCC aquatic life field study Union County, AR. April 2005.

Reported value is average of 3 measurements. Details of each individual measurement provided in Appendix D. Field data Sheets. Laboratory and in situ field data

4.3.4 Conclusions

- 1) The water quality of unnamed tributary to Flat Creek is sufficient to maintain the attainable fishery uses as long as habitat limitations (e.g. flow) do not prevent those uses.
- 2) The *in-situ* parameters measured during the study indicate that water quality supports the attainment of the designated aquatic life use and the development and maintenance of the biological integrity in stream reached evaluated.
- 3) Upstream (background) dissolved oxygen in the watershed of the unnamed tributary did not maintain the water quality standard for primary season Gulf Coast minimums.
- 4) The discharge from EDCC Outfall 001 provided the dissolved oxygen and flows to increase and maintain the seasonal minimums, enhancing the water quality of the unnamed tributary.
- 5) The background dissolved mineral concentrations exceeded the ecoregion based criteria for CI, SO₄ and TDS.
- 6) Although the EDCC 001 outfall further elevated the dissolved mineral concentrations in UTA, the chloride and TDS concentrations were approximately 3 times greater in area reference streams (i.e. Flat Creek) than in the unnamed tributary into which EDCC discharges. This area reference reach was in Flat Creek upstream of the confluence with the unnamed tributary into which EDCC discharges.

4.4 Benthic Macroinvertebrate Community

4.4.1 Introduction

The benthic macroinvertebrate community reflects the effects of habitat availability, and the long term exposure to physical and chemical properties of the water in which it develops and lives. The presence and diversity of the benthic macroinvertebrate community reflects a water body's biological integrity.

4.4.2 Methods

An assessment of the benthic macroinvertebrate community was performed using rapid bioassessment (RBA) techniques as detailed in ADEQ, 1988. The methods were modified to sample in pool habitats. As indicated in Section 4.1, three sampling stations associated with the discharges were evaluated. UTB1 and UTB2 were on the unnamed tributary into which EDCC discharges and prior to any other major contribution. Reaches UTC1 and UTA1 are background reference condition within the same watershed and FC1 and FC2 were assessed as alternative reference conditions for larger watersheds (e.g., UTA2 and UTA 3) (Figure 2.1).

Macroinvertebrates were sampled using a Turtox Indestructible[®] dip net. Each station was sampled for three minutes according to the RBA protocol. The three minute sample period included time spent actively sampling the selected microhabitat and did not include time moving from microhabitat to microhabitat and/or sorting large debris particles from the sample to be processed.

Each sample was placed in a bucket and condensed using multiple washings into a standard #30 sieve. The samples were preserved in the field and transported to the lab for further processing, sub-sampling, identification and enumeration. In the lab, each of the field preserved samples were sub-sampled at random, placed on a grid, white sorting tray from which the macroinvertebrates sub-sample was collected. The white tray, with a 10 X 10 grid, was used to randomly select a 100 organism sub-sample from the qualifiedly collected benthic sample. Numbered grids were selected at random, from which all insects were collected and ultimately identified. Collections from individual grids continued until 100 organisms were collected. The 100 organism sub-samples were preserved in Kaylee's solution or 70% ethanol as a voucher for verification. The remainder of the original sample was concentrated, large particles removed, preserved in Kaylee's 'solution and retained as a voucher for the sample picking techniques used. These voucher samples will be held at GBM^c for a period of 24 months or until the project is completed. After project completion the samples may be contributed to a university zoological collection.

The macroinvertebrate assemblages from each station were analyzed according to several benthic community biometrics. These include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), and species diversity as determined by the Shannon-Wiener diversity Index. The field data sheets and biometric score forms are provided in Appendix E.

4.4.3 Results and Discussion

4.4.3.1 Overview

The species diversity was greatest (4.18) at the downstream most station on UTA (UTA3), and lowest (2.89) in the reference reach above the EDCC discharge (UTC1), indicating that the benthic community was improved, and more diverse (both taxonomically and functionally) downstream of the discharge of the EDCC facility than they were upstream in the reference reaches (UTA1, FC1, and FC2). This measure of invertebrate community development reflects the impact of the urban disturbances and the limited watershed size upstream of the facility (Reaches UTC1, UTA1 and FC1). The flow, augmented by the treated discharge from Outfall 001, maintains a constant wetted habitat in the downstream reaches. The benthic macroinvertebrate community assemblages of the study reaches are presented in Table 4.5.

The community metric assessment demonstrated some level of community development with in all reaches thus supporting the aquatic life use designation. The community metrics illustrated how similar the reaches were in development and complexity. Diptera was a dominant order in every reach and Crustacea was a dominant order in all but one study reach. The range in diversity indices was relatively small (2.89 to 4.84), and the top 5 dominant taxa comprised 63 to 77% of the benthic community, in 6 of 8 reaches.

The relationship to watershed size was reflected in the total number of taxa where the larger watersheds had the greatest number of taxa (Reaches UTA1, UTA2, and UTA3 **vs.** UTC1, UTB1, and FC1). This relationship of community development to watershed size was also demonstrated in the presence of EPT taxa, where EPT taxa were a subdominant order in all watersheds greater than 5 square. miles, but absent from smaller watersheds (Table 4.6).

There are unique functional assemblages where predators dominated the feeding assemblage. Typically, the collector functional group dominate gulf coastal streams with watersheds of 10 square mile or less, as demonstrated by Reaches UTC1 and UTA1. Predators dominated the reaches in UTB and FC. However, the effects of the elevated flows and the persistent velocity (two physical attributes) resulting from the Outfall 001 discharge, shift in the functional assemblage from collector to predator dominated communities is in response to these physical changes.

4.4.3.2 Reach UTC1

The upstream community (UTC1) demonstrated the minimum community diversity of all study reaches. The limited community was dominated by representatives from the order Crustacea and the sub-dominant order was the Diptera (true flies). These two orders comprised 75 percent of the benthic assemblage. The limited community development is directly related to the very small watershed size and limited persistent wetted habitat.

Union Co. AR.	Metterster Westerster Act				UTB					
Taxa/Station I.D.	Trophic Group	UTC1	UTB1	UTB2	2*	UTA1	UTA2	UTA3	FC1	FC2
ANNELIDA	Gioup	0101	UIDI	<u>UIUE</u>	I		<u></u>			
Oligochaeta	GC	5	2			2	2	2		
Helobdella	PA	1				1	1	3		
PELECYPODA						-				
Corbicula	FC					1			3	3
	SC					1			2	
Physa CRUSTACEA									<u></u>	
	SH	3		3			9	8	3	1
Cambarinae	GC	32	7	5	21	17	14	4	9	4
Amphipoda				6	11	1	14	6	2	2
Isopoda	GC	18				1		3		
Palaemonetes	FC							<u> </u>		 /80/09/09/0
EPHEMEROPTERA							40	40		18
Caenis	GC					30	13	12	20	
Callibaetis	GC					1				
Stenacron	SC					1				
ODONATA			_						04	40
Argia	PR		2	6		8	5	6	21	18
Boyeria vinosa	PR					1				1
Calopteryx	PR					2		****	5	3
Enallagma	PR		9	3	1	5	2		14	6
Gomphus	PR						2			2
Hagenieus brevistylus	PR							1		1
Ophiogomphus	PR						1		2	9
Libellula	PR					1				
Macromia	PR			<u> </u>				2		2
Neurocordulia	PR					2		3		
Perithemis	PR					1				
HEMIPTERA										
Corixidae	PR	5	6	14	7		6			
Ranatra	PR						1			
MEGALOPTERA										
Sialis	PR							4		1
TRICHOPTERA										
Cheumatopsyche	PR			4	3			6	7	15
Polycentropus	PR							1		

Table	4.5	(conť).
-------	-----	---------

COLEOPTERA										
Ancyronyx	PR		3	5			2	2		
Berosus							1	4		
Dineutus (larvae)	PR	1	17	18	12					
Dineutus (adult)	PR		3	6	1		1			
Gyrinus	PR		6							
Hydrovatus	SH	4	1	6	3		1	1		
Peltodytes	SH					1	4	3		1
Stenelmis	PR		2	4	2					
Scrites	PR		3			4				
Tropisternus	PR				6					
Uvarus	PR	3		4	8					
DIPTERA		01-01-01-02								
Anopheles	FC	8					1	3		
Bittacomorprpha	SH	1								
Chaoborus	GC	7	27	17	14					
Chironominae	FC	7	6	8	5	10	6	10	6	2
Hexatoma	PR	2			1	1		5		
Orthocladiinae	PR	4	6	2				5	6	7
Probezzia	GC					11	2		1	4
Simulium	FC		3	3	6			3		
Tanypodinae	PR	5	4	2	5		4			1
Sum of Percentages		100	100	100	100	100	100	100	100	100
Total Abundance		106	108	116	106	103	93	97	101	101
Species Richness		16	18	18	16	22	21	23	14	20
Shannon-Wiener Divers	ity Index	2.89	3.60	3.03	2.78	3.41	3.67	4.18	3.05	3.22

study. Union Co. AR. April 2006.	24204-008-009	12.00.08.00							
Parameter				UTB2					
				Dupe					
COMMUNITY MEASURES	UTC1	UTB1	UTB2		UTA1	UTA2	UTA3	FC1	FC2
Total number of Taxa (Richness)	16	18	18	16	22	20	23	14	18
EPT Richness	0	0	1	1	3	1	3	2	2
EPT % Abundance	0	0	3.4	3.1	32	14.6	19	27	33
Diversity Indices (Shannon-Wiener)	2.89	3.60	3.03	2.78	3.41	3.67	4.18	3.05	3.22
Total % of 5 Dominant Taxa	69	66	63	66	75	57	42	71	67
PERCENTAGE OF THE 4 DOMINANT ORDINAL GROUPS									
Ephemeroptera					31.1	14	11.9	19.4	17,8
Coleoptera	8	32	37	30.2			13.9		
Diptera	25	43	28	29.2	21.4	12.9	22.8	12.6	13.9
Hemiptera	5		12	6.6					
Odonata	~~	10	8		19.4	10.8	11.9	40.8	41.6
Crustacea	50	6.5		30.2	18.4	40.9	20.8	13.6	6.9
RANK OF THE 4 DOMINANT ORDINAL GROUPS	100000						10.00	singer and	
Ephemeroptera					1	2	4	2	2
Coleoptera	3	2	1	1.5			3		
Diptera	2	1	2	3	2	3	1	4	3
Hemiptera	4		3	4					
Odonata		3	4		3	4		1	1
Crustacea	1	4		1.5	4	1	2	3	4
FUNCTIONAL FEEDING ASSEMBLAGES %					0.0000				6.0.6
Shredders	7.5	0.9	7.8	2.8	1.0	15.1	11.9	2.9	2.0
Scrapers	0.0	0.0	0.0	0.0	1.9	0.0	0.0	1.9	0.0
Filterers	14.0	8.3	9.5	10.4	11.7	11.8	23.8	14.6	12.9
Collectors	59.0	33.3	24.1	43.4	60.2	49.5	23.8	31.1	27.7
Predators	19.0	56.5	58.6	43.4	24.3	21.5	33.7	49.5	57.4
RANK OF FUNCTIONAL FEEDING ASSEMBLAGES								00000000	
Shredders	4	4	4	4		3	4	4	4
Scrapers					4				
Filterers	3	3	3	3	3	4	2.5	3	3
Collectors	1	2	2	1.5	1	1	2.5	2	2
Predators	2	1	1	1.5	2	2	1	1	1
Biometric Score*:			-9 40 m 41		0.00.00		1000	1.00000	

 Table 4.6. Community metrics of macroinvertebrate assemblage collected during the EDCC aquatic life field study. Union Co. AR. April 2006.

4.4.3.3 Reach UTB1

The aquatic life use is maintained in UTB1 during the seasonal period. The invertebrate community of Reach UTB1 demonstrated the 3rd highest diversity, despite having the 2nd smallest watershed. This benthic assemblage was directly supported by the flows from EDCC Outfall 001. There was no single dominant order. The co-dominants were Diptera (true flies) and Coleopteran (beetles). The feeding assemblage was atypical of expected gulf coastal assemblages in that predators dominated the benthic assemblage. This shift was also in response to the discharge from EDCC Outfall 001. The increased flows and associated hydraulics artificially increased the "functional" watershed size.

4.4.3.4 Reach UTB2

The aquatic life use is maintained in UTB during the seasonal period. As expected the benthic community in Reach UTB2 was very similar to that of UTB1. Although the diversity was reduced slightly, both had 18 taxa. Also, the co-dominate orders and the functional feeding assemblage were almost identical to that of UTB1. There were no taxa in the UTB2 assemblage that were not collected in other reaches.

4.4.3.5 Reach UTA1

As would be expected, the aquatic life use is maintained in Reach UTA1 during the seasonal period. The benthic community in Reach UTA1 represents the background condition. Although the flows were limited due to beaver activity, the increased watershed size of UTA1 is reflected in the diversity and increase in taxonomic richness, when compared to the smaller watershed reaches (UTB and UTC). The diversity was 3.41, with 2nd greatest taxonomic richness of all reaches evaluated.

The ordinal composition reflected the increased watershed and the habitat development of the reach. There were no dominant orders and 4 orders were collected in relatively the same percentage. These included mayflies, odonates (dragonflies and damselflies), diptera and crustacean. Mayflies and odonates were not present in significant numbers in any of the smaller study reaches.

The functional feeding assemblage also reflected the expected typical gulf coastal benthic composition where gathering collectors comprised approximately 2/3 of the group followed by predators and filtering collectors. There were no significant taxa in the UTA1 assemblage that were not collected in other reaches.

4.4.3.6 Reach UTA2

The aquatic life use is being maintained in Reach UTA2 during the seasonal period. Reach UTA2 is downstream of the mouth of UTB and includes flows from EDCC Outfall 001. The diversity was higher than that of the upstream reference despite having 2 less taxa. This increased diversity is reflected in the numerical abundance of the 5 dominant taxa identified from the benthic sample. At UTA2, the 5 dominant taxa comprised only 57% of the sub-sample, second smallest of the reaches evaluated. Typically, in small gulf coastal streams, the dominant 5 taxa will comprise 65 to 70 percent of the assemblage. The smaller the "dominants percentage", the more balanced the distribution of benthic organisms. The ordinal composition varied for the upstream reference and was dominated by Crustacea, reflecting a large crayfish population in the reach. The sub-dominate orders were the same as the upstream reference UTA1.

Although more evenly distributed amongst the various groups, the functional feeding assemblage also reflected the expected typical gulf coastal benthic composition where gathering collectors comprised the majority, followed by predators and then filtering collectors. There were no taxa in the UTA2 assemblage that were not collected in other reaches.

4.4.3.7 Reach UTA3

The aquatic life use is being maintained in Reach UTA3 during the seasonal period. Reach UTA3 is downstream of UTA2 and also includes flows from EDCC Outfall 001. The benthic community was found to be the most diverse at this study reach with 23 taxa identified. This increased diversity is also reflected in the numerical abundance of the 5 dominant taxa identified from the benthic sample. This metric at UTA3 was only 42% of the sub-sample, the lowest of the reaches evaluated. Typically the metric range from the mid 60's to low 70's. This indicates a balanced distribution of benthic organisms where no individual group of taxa dominates the assemblage.

The balance and diversity of the benthic community was further demonstrated in that there was no dominant ordinal group and that there were 5 co-dominant orders, only one of which exceeded 20% of the assemblage.

The functional feeding assemblage also reflected the high degree of diversity with the distribution more evenly distributed. There were no taxa in the UTA3 assemblage that were not collected in other reaches.

4.4.3.8 Reach FC1

The aquatic life use is being maintained in Reach FC1 during the seasonal period, despite the non-point and point source influences within the watershed. Reach FC1 is a reference reach and reflects a watershed similar to UTA1. This Reach had the lowest taxonomic richness of any reach evaluated, including the smallest watersheds (UTC1 and UTB1). Other than the reduced taxonomic richness, the benthic community reflected the characteristics (e.g. ordinal dominance and functional feeding assemblages) of the other reaches in the UTA watershed. There were no taxa in the FC1 assemblage that were not collected in other reaches.

4.4.3.9 Reach FC2

The aquatic life use is being maintained in Reach FC2 during the seasonal period, despite the non-point and point source influences within the watershed as illustrated in the water quality parameters measures (See Section 4.3.3). Reach FC2 is a reference reach and was evaluated to compare to Reach UTA3. The benthic community development of UTA3 demonstrated a more balanced and diverse assemblage that what was indicated in FC2, in most all measures endpoints (diversity, taxa richness, taxa dominance, ordinal composition and functional assemblage.

This comparison demonstrates that the discharge from EDCC Outfall 001 supports, and likely enhances, the benthic community development in UTA and maintains the aquatic life use despite the increased mineral concentrations that are present in the discharge. The dissolved

minerals are less in the Outfall 001 receiving stream (UTA) than in the adjacent watersheds (FC) that receive storm and other non-point source flows flow from developed oil and gas production areas.

4.4.4 Conclusions

Based on the analysis of the macroinvertebrate collection completed as part of the aquatic life field study to develop the required documentation, the following conclusions are provided:

- 1) The macroinvertebrate community is being fully maintained downstream of the EDCC 001 effluent discharge, as is the designated aquatic life use.
- 2) The aquatic life designated use is being maintained during the seasonal period in all reaches evaluated.
- 3) The macroinvertebrate communities observed at all study reaches are similar in the development of taxonomic diversity during the seasonal period.
- 4) Biometric comparisons indicate that there are minimal differences in the benthic communities.
- 5) The community structure (form and function) demonstrated minimal differences which could be attributed to differences in physical conditions of the individual stream reach evaluated.
- 6) The macroinvertebrate communities observed at the unnamed tributary (UTA) to Flat Creek reaches are similar in structure and composition to Gulf Coastal Plain ecoregion conditions for small watersheds. However, the complexity of the community was limited when compared to least disturbed streams, even in the reference site (UTA1).
- 7) Comparisons of the benthic community development from the UTA study reaches to those from the Flat Creek study reaches, indicate that the UTA benthic communities are more diverse and characteristic of typical gulf Coastal assemblages than those in the Flat Creek watershed.
- 8) The biological integrity of Unnamed tributary to Flat Creek is being supported by the existing discharge conditions, however, the biological integrity of UTB and to a lesser degree UTA downstream of the discharge, would be negatively impacted should the discharge from Outfall 001 be eliminated.

4.5 Fish Community

4.5.1 Introduction

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of a ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community. Backpack electrofishing equipment is used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect the capture of fish species. Other methods of fish sampling may be implemented when conditions are not adequate for backpack eletrofishing or seining; these may include, using boat electrofishing equipment and/or hook and line sampling equipment. Usually 2 - 4 team members will make up the sampling team involved in collecting the aquatic vertebrates.

Major factors that influence collecting include flows, water depth, instream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections was a Smith-Root backpack electroshocker. However, seines and block nets were utilized as necessary to adequately characterize a sampling reach. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the macroinvertebrate sample and habitat data.

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. The entire stream width within the sampling reach will be sampled. PDT time will continue for not less than 30 minutes unless the wetted habitat of any reach limits the PDT. In addition to the PDT, the total collection time will be recorded.

Unless specified in a project specific sampling analysis plan (SAP), there will not be a maximum time limit for the collection period; however the collections may be terminated when, in the opinion of the principal investigator, it is determined that a representative collection has been obtained. Sampling information is recorded on the Fish Community Collection Form, general comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on this form.

An effort to search for and collect fish will be completed at all reaches, even if the stream is extremely small, and it appears that sampling may not collect any specimens. If no specimens are collected, the "NONE COLLECTED" field on the Fish Collection Form will be completed and will provide an explanation in the comments section of the form.

4.5.2 Methods

An assessment of the fish community in unnamed tributaries to Flat Creek (UTC1, UTB1, UTB2, UTA1, UTA2, and UTA3) and 2 sites on Flat Creek was completed as per the aquatic life field study plan during the spring of 2006. Each reach was sampled using a Smith-Root backpack electroshocker. The shocker includes an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT).

Shocked fish were captured with hand held dip nets and held in buckets while the sampling continued. At the end of each sampling effort fish from both reaches were preserved in formalin for later identification in the lab. Fish identifications were made according to the Fishes of Arkansas (Robison, 1988) and The Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach were compared according to several biometrics including: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant family groups; percent of tolerant species; trophic structure; percent of hybrids; percent of diseased fish; and key and indicator species as listed in Reg. No. 2. In addition, the fish community was assessed using a Biocriteria method developed by ADEQ. This Biocriteria uses a scoring system by which the assemblage collected is compared to a reference stream in the same ecoregion using eight different metrics. The metric scores are totaled and the resulting sum is used to assess if a stream reach is in support of its assigned designated uses.

4.5.3 Results and Discussion

All study reaches were found to support a seasonal fish community demonstrating that the discharge from EDCC Outfall 001 does not preclude the seasonal use attainment. Table 4.7 provides a summary and assessment of the fish communities as identified from each study reach. The total number of species collected from any individual study reach varied from a low of 9 (FC1) to 20 (UTA2) and the catch per unit effort ranged from 1.40 (FC1) to 6.03 (UTC). Table 4.8 provides a summary of the individual fish species collected from each study reach and a summary of the community assemblage.

The community assessment indicates that UTA2 supports the most diverse community assemblage.

4.5.3.1 Reach Comparisons

The fish community assemblage indicates subtle differences in the fish community structure within each study reach. This variability is largely driven by the site flow mechanics and the resulting long term effect on habitat and the benthic community development.

Reach UTC1

A total of 11 species were collected from Reach UTC1. The sample effort resulted in the highest catch per unit effort with 6.03 fish collected per minute of PDT. This indicated that the habitat was sufficient to support the fish community during the seasonal period. However, the stream reach evaluated was limited (short) and the level of effort was lowest of any reach (10.1 minutes) due to lack of sustained wetted stream habitat. The only species collected from UTC1 that was not common to the watershed was the pirate perch. The only other reach the

pirate perch was collected was the upstream reference (UTA1). The fish assemblage for UTC1 included five Gulf Coastal ecoregion key and indicator species.

A biocriteria scoring system, as developed by ADEQ, was used to evaluate the fish community as it is compared to "least disturbed Gulf Coastal streams". The biocriteria assessment resulted in a total of 12 points out of 32 possible points at UTC1. This is considered low and falls in the biocriteria category of "Impaired" when compared to an ecoregion least disturbed reference site. The low score at UTC1 is directly affected by a small watershed (1.15 mi²), which causes UTC1 dry up during certain times of the year. Additional factors that contributed to the low scores were; the absence of sensitive species, catfishes, and darters, as well as an over abundance of sunfish representatives and low species diversity within the study reach. Biocriteria scoring sheets are provided in Appendix E.

Table 4.7. Fish community structural analysis of reaches evaluated during the aquatic life field study for EDCC, Union County, AR, April 2005.

PARAMETER	STUDY REACHES								
COMMUNITY MEASURES	UTC	UTB1	UTB2	UTA1	UTA2	UTA3	FC1	FC2	
Richness (Total Number of Taxa)	11	12	11	12	20	13	11	9	
Darter Richness (Number of Taxa)	0	2	0	1	2	1	0	0	
Sunfish Richness (Number of Taxa)	3	4	3	6	7	4	6	4	
% Pollution Tolerant Species	3.3	5.9	13.1	0	4.9	1 1	18.9	8.2	
% Pollution Intermediate Species	96.7	94	82.8	100	94.1	87	81.1	91.8	
% Pollution Intolerant Species	0.0	0	4	0	1	2	0	0	
Number of Key & Indicator Species (Taxa)	5	5	4	5	7	6	4	5	
Number of Key & Indicator Species (Individuals)	19	19	45	30	56	30.0	9	29	
% Key & Indicator Species numbers of total fish	31.1	55.9	45.5	34	18.4	30.0	12.2	47.5	
Diversity Indices (Shannon-Wiever)	2.84	2.86	2.91	3.35	2.67	2.99	2.42	2.67	
Abundance, fish collected/minute	6.03	2.8	3.44	3.33	5.26	2.31	1.76	1.4	
TROPHIC STRUCTURE			Sector (60-65-65-6		0.00			
% Herbivores	0	0	0	0	0	0	0	0	
% Omnivores	3.28	5.9	13.1	0	4.6	6	10.81	0	
% Insectivores	93.4	91	80.8	87.6	91.8	92.0	86.5	96.7	
% Piscivores	3.28	2.9	6.1	12.4	3.6	2.0	2.7	3.3	
PERCENT OF 5 DOMINANT FAMILY GROUPS									
Cyprinidae	21.3	47.1	44.4	5.6	15.1	19	10.8	16.4	
Poeciliidae	23	0	3	15.7	13.1	10	20.3	0	
Cyprinodontidae	8.2	8.8	0	4.5	1.3	1	0	0	
Esocidae	1.6	2.9	5.1	1.1	0.7	1.0	0	3.3	
Aphredoderidae	8.2	0	0	4.5	0	0	0	0	
Ictaluridae	0	0	1	0	0.3	5	1.4	8.2	
Centrarchidae	36.1	29.4	34.3	59.6	65.9	55	59.5	60.7	
Catostomidae	1.6	2.9	12.1	0	0.3	4.0	2.7	4.9	
Percidae	0	8.8	0	4.5	1.3	1	0	0	
Total % of 5 Dominant Groups	96.7	100	99	98.9	98.7	94	98.6	96.7	

* Total of 12 key and indicator species possible.

Union County, AR,	STUDY REACH	UTC1	UTB1	UTB2	UTA1	UTA2	UTA3	FC1	FC2
Scientific Name	Common Name	4/20	4/20	4/20	4/18	4/18	4/17	4/17	4/17
CYPRINIDAE	- Solendarde (State et al. a								
Lythrurus umbratilis ¹	redfin shiner	11	14	27	5	29	11		10
Cyprinella venusta	blacktail shiner					1	6		
Notemigonus crysoleucas	golden shiner			9		10			
Opsopoeodus emiliae	pugnose minnow			4		3	2		
Semotils atromaculatus	creek chub	2	2	4		3		8	
CATOSTOMIDAE				19-18-19-10-					
Erimyzon oblongus ²	creek chubsucker	1	1	12		1	4	2	3
POECILIIDAE									
Gambusia affinis	mosquitofish	14		3	14	40	10	15	
CYPRINODONTIDAE									
	blackspotted		_				_		-
Fundulus olivaceus	topminnow	4	2		8	9	5	1	5
Fundulus crysotus	golden topminnow	1	1			1			
ESOCIDAE									
Esox americanus ¹	grass pickerel	1	1	5	1	2	1		2
APHREDODERIDAE		4.6.6.2							
Aphredoderus sayanus ²	pirate perch	5			4				
ICTALURIDAE									
Ameiurus natalis ¹	yellow bullhead					1	5	4	4
Ameiurus melas	black bullhead			1					
CENTRARCHIDAE			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1.00				10.00.000	1965-970
Lepomis X Hybird	Sunfish							2	1
Lepomis cyanellus	green sunfish	5	3	11	7	25	9	2	4
Lepomis gulosus ¹	warmouth	1		1	7	8	1	2	
Lepomis punctatus ²	spotted sunfish		1		13	13	8	1	10
Lepomís macrochirus	bluegill sunfish		1		11	3		2	
Lepomis megalotis	longear sunfish	16	5	22	12	149	37	35	22
Centrarchus macropterus ²	flier					2			
Micropterus salmoides	largemouth bass				3	1			
PERCIDAE									
Etheostoma gracile ¹	slough darter		2						
Etheostoma proeliare	cypress darter					3			
Etheostoma chlorosomum	bluntnose darter		1		4	1	1		
Total No. Taxa Collected		11	12	11	12	20	13	11	9
Total Fish Collected		61	34	99	89	305	100	74	61
Level of Effort (Minutes) PD	T ³	10.1	12.2	28.8	26.8	58.0	43.3	42.1	43.7
Catch per Minute, PDT		6.03	2.80	3.44	3.33	5.26	2.31	1.76	1.40
Shannon-Wiever Diversity II	ndex	2.84	2.86	2.91	3.35	2.67	2.99	2.42	2.67

Table 4.8. Fish community assemblages of reaches evaluated during the aquatic life field study for EDCC, Union County, AR, April 2006.

 Shannon-viever biversity index

 Typical Gulf Coastal Ecoregion Key Species

 ² Typical Gulf Coastal Ecoregion Indicator Species

 ³ Pedal Down Time

Reach UTB1

A total of 12 species were collected from Reach UTB1. This indicated that although the habitat was the least developed of any reach evaluated, it existing habitat was sufficient to support the fish community during the seasonal period. However, the population density was low and the numerical abundance was the lowest of any reach evaluated. The community was overwhelmingly dominated be insectivores with cyprinids comprising almost 50 percent of the community. The fish assemblage for UTB1 included five Gulf Coastal ecoregion key and indicator species which comprised 56 percent of the specimens collected, and included 2 darter species

The biocriteria assessment resulted in a total of 14 points at UTB1. The 14 total points, out of a possible 32, placed UTB1 in the "Impaired" category when compared to an ecoregion least disturbed reference site. However, UTB1 which is the EDCC Outfall 001 discharge ditch, fell into the same biocriteria category as all of the reference sites evaluated during this study (UTC1, UTA1, FC1, & FC2). The low scores for UTB1 reflect the small watershed size (1.17 mi²), absence of sensitive species and catfishes, an over abundance of green sunfish in the total sunfish population of UTB1, and low species diversity within the study reach.

Reach UTB2

A total of 11 species were collected from Reach UTB2. The sample effort resulted in the 3rd highest catch per unit effort and the 2nd highest diversity indices. This indicated that the habitat was sufficient to support the fish community during the seasonal period. The fish assemblage for UTB2 included four gulf coastal ecoregion key and indicator species.

The biocriteria assessment resulted in a total of 16 points at UTB2. The 16 total points, out of a possible 32, placed UTB2 in the "Impaired" category when compared to an ecoregion least disturbed reference site. However, and more importantly, UTB2 fell into the same biocriteria category as any of the reference sites completed during this study (UTC1, UTA1, FC1, & FC2). The low scores for UTB2 reflect the small watershed size (2.37 mi²), absence of catfishes, darters, as well as an over abundance of green sunfish within the total sunfish population and low species diversity within the study reach.

Reach UTA1

A total of 12 species were collected from Reach UTA1. The sample effort resulted in the highest species diversity from any reach evaluated. The fish community was dominated by sunfish species. This fish assemblage indicated that the habitat was sufficient to support the fish community during the seasonal period. The only species collected from UTA1 that was not common to the watershed was the largemouth bass and the pirate perch. The fish assemblage for UTA1 included five Gulf Coastal Ecoregion key and indicator species.

The biocriteria assessment resulted in a total of 10 points at UTA1. This reach represents the upstream reference condition prior to any impact of the EDCC 001 discharge. The 6.0 mi² watershed also had a significant affect on the biocriteria score. The 10 total points, out of a possible 32, placed UTA1 in the "Impaired" category when compared to an ecoregion least disturbed reference site. This reach scored lower than any of the other reaches previously described. The low score at UTA1 reflects the small watershed size, absence of sensitive species, catfishes, darters, as well as an over abundance of sunfish species and low species diversity within the study reach.

Reach UTA2

A total of 20 species were collected from Reach UTA2, almost doubling that of any other reach evaluated. The level of effort resulted in the 2nd highest catch per unit effort (5.26 fish per minute of PDT) and the highest number of fish collected (more than 3 times that of any other study reach). The habitat was conducive to fish collections with wide shallow channel flow and developing habitat in a variety of habitat types. The habitat was sufficient to support a gulf coastal fish community during the seasonal period, and probably during the low flow critical season. The only species collected from UTA2 that was not common to the watershed were the largemouth bass and the cypress darter. The fish assemblage for UTA2 included eight (8) Gulf Costal Ecoregion key and indicator species, more than any other study reach.

The biocriteria assessment resulted in a total of 12 points at UTA2. The 12 total points, out of a possible 32, placed UTA2 in the "Impaired" category when compared to an ecoregion least disturbed reference site. However, and more importantly, UTA2 fell into the same biocriteria category as any of the reference sites completed during this study (UTC1, UTA1, FC1, & FC2). The low scores for UTA2 reflects the biocriteria development focus on "least disturbed" streams with watersheds that are significantly larger that those targeted within this watershed.

Reach UTA3

A total of 13 species were collected from Reach UTA3. The sample effort resulted in the 2nd highest diversity measure (2.99). This indicated that the habitat was sufficient to support the fish community during the seasonal period. However, the catch per unit effort was the lowest within the UTA watershed. The fish assemblage sampled from Reach UTA3 included six (6) Gulf Costal Ecoregion key and indicator species.

The biocriteria assessment resulted in a total of 18 points at UTB1, the highest of all stations studied during this project. The 18 total points, out of a possible 32, placed UTA3 in the "Generally Supporting" category and when compared to an ecoregion least disturbed reference site. However, UTA3 scored higher then any reference site evaluated during this study (UTC1, UTA1, FC1, & FC2).

Reach FC1

A total of 11 species were collected from Reach FC1. The sample effort resulted in the 2nd lowest catch per unit effort with 1.76 fish collected per minute of PDT. This indicated that the fish community of Flat Creek, while being maintained at a reduced level, was not characteristic of the surrounding watershed level of sustainability and that some factor was limiting the community development. FC1 is not impacted by the discharge from the EDCC facility and therefore does not receive any benefit from the sustained flows during the dry summer periods. Although sufficient to support the fish community during the seasonal period, the limited flow and the contributions from the watershed, limit the fish community development when compared to the fish community of UTA. The fish assemblage at FC1 included four Gulf Costal Ecoregion key and indicator species.

The biocriteria assessment resulted in a total of 12 points at FC1. The 12 total points, out of a possible 32, placed FC1 in the "Impaired" category when compared to an ecoregion least disturbed reference site.

Reach FC2

Only nine (9) species were collected from Reach FC2, lowest of any reach evaluated. The limited fish community development probably reflects the effect of non-point contributions from the developed oil and gas production field through which Flat Creek flows. The water quality measurements recorded during the aquatic life field study indicated conductivity and TDS values that were more than 3 times higher than that measured in the UTA watershed, even with the discharge from EDCC Outfall 001 (See Section 4.3.3). The fish assemblage for FC2 included five (5) Gulf Costal Ecoregion key and indicator species.

The biocriteria assessment resulted in a total of 16 points at FC2. The 16 total points, out of a possible 32, placed FC2 in the "Impaired" category when compared to an ecoregion least disturbed reference site. The low score at FC2 reflects the , absence of sensitive species, darters, as well as an over abundance of sunfish species and low species diversity within the study reach.

4.5.4 Conclusions

Based on the results of the fish collections, the following conclusions are provided:

- 1) The fish assemblages collected at all study reaches, upstream reference reaches and downstream of the EDCC Outfall 001, are similar in structure and function indicating that the biological integrity required to maintain the seasonal fishery is being supported.
- 2) The communities at all reaches, except the smallest watersheds, were found to be dominated by sunfish during the seasonal period.
- 3) The communities were similar to those expected in a gulf coastal plain streams of similar watershed size, therefore, the fishery downstream from the discharges is being maintained, as is the designated aquatic life use.
- 4) The numbers of fish and diversity collected downstream during the seasonal study exceeds and/or equals those collected in reference reaches.
- 5) All fish assemblages were found to contain at least 4 of the key and indicator species as listed by the water quality standards (Regulation No.2).
- 6) Applying the ADEQ fish community biocriteria to these study reaches resulted in all but one study reach scoring in the "impaired" category although each maintained a fish community that were characterized by multiple key and indicator species for the ecoregion. This approach exposes the limitations of categorizing communities in very small watersheds that receive some type of point-source discharge watersheds based on comparisons to fish communities in larger and least disturbed watershed. Although the fish community "scored" impaired, the communities frequently comprised a majority of the identified ecoregion sensitive and or Key species.

4.6 Summary

Based on the aquatic life field study, the designated aquatic life use (seasonal fishery) and the biological integrity of unnamed tributary to Flat Creek is maintained downstream of the existing water discharges from the EDCC facility. In fact, the augmentation of flow from the discharge serve to enhance the potential for community development as illustrated by the comparisons between the upstream reference condition and the downstream study reaches.

5.0 EXISTING LOADINGS OF DISSOLVED MINERALS

5.1 Chloride, Sulfate, and TDS Water Quality Criteria

Currently, the unnamed tributary to the unnamed tributary of Flat Creek (UTB), the unnamed tributary of Flat Creek (UTA), Flat Creek, and Haynes Creek's minerals water quality criteria are ecoregion based numbers. The existing ecoregion based chloride, sulfate and TDS water quality criteria for UTB, UTA, Flat Creek, and Haynes Creek is 14 mg/L, 31 mg/L, and 123 mg/L, respectively. Utilizing the applicable flows, background concentrations provided in the WQS and the applying the methods stipulated in the Continuous Planning Process (CPP), Outfall 001's discharge from the EDCC facility will not maintain the existing ecoregion based dissolved minerals criteria in UTB, UTA, Flat Creek, or Haynes Creek.

In addition to ecoregion based water quality criteria, the domestic water supply use designation for UTB, UTA, Flat Creek, or Haynes Creek results in a numeric criterion of 250 mg/L, 250 mg/L and 500 mg/L for chloride, sulfate and TDS, respectively. As discussed in Sections 3.2 and 3.3, the domestic water supply use is a designated, but not an existing use for UTB, UTA, Flat Creek, or Haynes Creek. Additionally, there are no plans to utilize any of these streams as a domestic water supply use.

In order to determine appropriate chloride, sulfate, and TDS criteria for UTB, UTA, Flat Creek, and Haynes Creek, mass balances were developed as described in the following sections.

5.2 Mass Balance

The following mass balance equation was used to calculate instream waste concentrations (IWC) for chloride, sulfate, and TDS:

$$IWC = [(Qb \times Cb) + (Qe \times Ce)] / (Qb + Qe)$$

Where:

- Qb = The background flow of the receiving stream
- Cb = The background concentration of chloride, sulfate, or TDS in the receiving stream
- Qe = The discharge flow of the effluent
- Ce = The effluent concentration of chloride, sulfate, or TDS

5.2.1 Methods

The procedure for evaluating instream concentrations and developing permit limits for dissolved minerals can be found in *ADEQ Discharge Permit, Toxic Control Implementation Procedure* in Arkansas' 1995 Continuing Planning Process (CPP). The value used for the background concentration in the UTB tributary, of chloride (5 mg/L), sulfate (13 mg/L), and TDS (67 mg/L), was the mean concentration for the Gulf Coastal Plain Ecoregion. The background values are listed in the CPP in Attachment XII, *Mineral Permitting Strategy*, for streams in the Gulf Coastal Plain with a 7Q-10 of less than 100 cfs. A background flow of 4 cfs was used in each stream, as allowed for determining instream mineral concentrations in the WQS. Outfall

001 effluent concentrations for chloride and TDS were derived from facility DMR data collected from June, 2004 through April, 2006. An effluent concentration for sulfate was derived from DMR data collected from January, 2002 through April, 2006 from Outfall 001. Instream concentrations were calculated for Unnamed tributary to unnamed tributary of Flat Creek (UTB), Unnamed tributary of Flat Creek (UTA), Flat Creek, and Haynes Creek.

5.2.2 Computations for UTB tributary (from Outfall 001 to Unnamed tributary of Flat Creek (UTA))

The Gulf Coastal Plain ecoregion background concentrations for chloride, sulfate, and TDS are 5 mg/L, 13 mg/L, and 67 mg/L, respectively. EDCC's reported highest monthly average flow for Outfall 001 from July 2002 through April 2006 is 1.499 mgd (2.319 cfs). The flow value used in the computations as the effluent flow at Outfall 001 selected as directed by Section D of ADEQ Discharge Permit, Toxic Control Implementation Procedure in the CPP. A concentration of 55.0 mg/L chloride, 309 mg/L sulfate, and 1170 mg/L TDS were used as the effluent concentrations. Each of these values is the 95th percentile of its respective data set. The method used to calculate the 95th percentile was a parametric (the data set was normally distributed) statistical technique, as outlined in Statistical Methods for Environmental Pollution Monitoring (Gilbert, 1987). A frequency histogram was prepared for each data set to characterize the distribution. Computations for pertinent minerals at Outfall 001 are presented below. A schematic depiction of the 95th percentile contributions of the respective mineral and flows used from each source utilized in the development of predicted instream waste concentration and the proposed water quality standard modification for each stream segment is provided in Appendix C. Additionally, frequency histograms of each data set were prepared so a visual check of its normality distribution could be made. The chloride, sulfate, and TDS data visually appeared to have a normal distribution. Therefore, the 95th percentile for the chloride, sulfate, and TDS data was calculated using a nonparametric technique (Gilbert, 1987) presented below:

 $X_{P} = \overline{\mathbf{x}} + (\mathbf{Z}_{p} * \mathbf{s})$

where:	X_P = desired percentile
	\overline{x} = sample mean of the mineral data set
	Z_p = statistical "look up value" for the standard normal distribution of the
	desired percentile
	s = standard deviation of the mineral data set

This method returns Z_p values of 1.64 for the 95th percentile, a standard deviation of 9, 68, & 179 for chloride, sulfate, and TDS data sets, respectively. The sample mean values for chloride, sulfate, and TDS data sets were 41, 197, and 875, respectively. This data returned 95th percentile values of 55, 309, and 1170 for chloride, sulfate, and TDS, respectively. Flow values used in the following calculations (1.499 mgd or 2.319 cfs) is the reported highest monthly average flow for a period from July 2002 through April 2006 at Outfall 001. Utilizing all the aforementioned data the IWC is calculated below. The summary of the mass balance data inputs are provided in Table 5.1 for UTB.

 $IWC_{chioride} = [(4.0 \text{ cfs x } 5.0 \text{ mg/L}) + (2.139 \text{ cfs x } 55 \text{ mg/L})] / (4.0 \text{ cfs } + 2.139 \text{ cfs})=23 \text{ mg/L},$

IWC_{sulfate} =

[(4.0 cfs x 13 mg/L) + (2.139 cfs x 309 mg/L)] / (4.0 cfs + 2.139 cfs) = 122 mg/L, say 125mg/L

IWC_{TDS} =

[(4.0 cfs x 67 mg/L) + (2.139 cfs x 1170 mg/L)] / (4.0 cfs + 2.139 cfs) = 472 mg/L, say 475mg/L

Parameters	Chloride	Sulfate	TDS
Ce, mg/L (projected 95 th %tile)	55	309	1170
Cb, mg/L	5.0	13.0	67.0
Qe, cfs	2.139	2.139	2.139
Qb, cfs	4.0	4.0	4.0
Projected IWC (mg/L)	23	122	472

	Table 5.1.	Instream Waste Concentra	ion (IWC) Calculation for UTB.
--	------------	--------------------------	----------	------------------------

Appendix C. provides a schematic of the 95th percentiles, flows, and IWC computations for the individual dissolved minerals.

5.2.3 Computations for UTA tributary (from confluence with UTB to Flat Creek)

The IWC computations for chloride, sulfate, and TDS for UTA tributary (from confluence with UTB to Flat Creek) were preformed utilizing the previously calculated IWCs and flows from UTB tributary (Section 5.2.2 above) as the "effluent concentration" and "effluent flows" for each respective mineral. The "effluent concentration" for chloride, sulfate, and TDS at UTA were 23, 122, & 472, respectively. "Effluent flow" values are the combined flows form UTB background flow (4 cfs) and Outfall 001's reported highest monthly average flow for a period from July 2002 through April 2006. The resulting "effluent flow" value used in the IWC computations was 6.319 cfs. The calculated IWC for chloride, sulfate, and TDS indicated higher concentrations than the current ecoregion based water quality criteria for UTA. Utilizing all the aforementioned data the following calculations were used to determine the IWC for each relevant mineral at UTA and summarized in Table 5.2.

 $\begin{aligned} & [WC_{chloride} = \\ & [(4.0 \text{ cfs x 5 mg/L}) + (6.319 \text{ cfs x 23 mg/L})] / (4.0 \text{ cfs + 6.139 cfs}) = 16 \text{ mg/L} \\ & [WC_{sulfate} = \\ & [(4.0 \text{ cfs x 13.0 mg/L}) + (6.319 \text{ cfs x 122 mg/L})] / (4.0 \text{ cfs + 6.139 cfs}) = 80 \text{ mg/L} \\ & [WC_{TDS} = \end{aligned}$

[(4.0 cfs x 67 mg/L) + (6.319 cfs x 472 mg/L)] / (4.0 cfs + 6.139 cfs) = 315 mg/L

Parameters	Chloride	Sulfate	TDS
Ce, mg/L	23	122	472
Cb, mg/L	5.0	13.0	67.0
Qe, cfs	6.319	6.319	6.319
Qb, cfs	4.0	4.0	4.0
Projected IWC (mg/L)	16	80	315

Table 5.2. Instream Waste Concentration (IWC) Calculation for UTA.

5.2.4 Computations for Flat Creek (from confluence with UTA to Salt Creek)

The IWC computations for chloride, sulfate, and TDS for Flat Creek (from confluence with UTA to Salt Creek) were preformed utilizing the previously calculated IWCs and flows from UTA tributary (Section 5.2.3 above) as the "effluent concentration" and "effluent flows" for each respective mineral. The "effluent concentration" for chloride, sulfate, and TDS in Flat Creek were 16, 80, & 315, respectively. "Effluent flow" values are the combined flows form UTB background flow (4 cfs), UTA background flow (4 cfs), and Outfall 001's reported highest monthly average flow for a period from July 2002 through April 2006. Flat Creek's resulting "effluent flow" value used in the IWC computations was 10.319 cfs. The background concentration used for Flat Creek is an average of instream dissolved minerals data collected from biological station FC-2 (upstream of the confluence with UTA tributary). Analytical laboratory reports and summarized data are provided in Appendix E. The calculated IWC for chloride, sulfate, and TDS indicated higher concentrations than the current ecoregion based water quality criteria for Flat Creek. Utilizing all the aforementioned data the IWC for Flat Creek is calculated below and summarized in Table 5.3.

 $IWC_{chloride} = [(4.0 \text{ cfs} \times 550 \text{ mg/L}) + (10.319 \text{ cfs} \times 16 \text{ mg/L})] / (4.0 \text{ cfs} + 10.139 \text{ cfs}) = 165 \text{ mg/L}]$

IWC_{sulfate} = [(4.0 cfs x 32 mg/L) + (10.319 cfs x 80 mg/L)] / (4.0 cfs + 10.139 cfs) = 67 mg/L

IWC_{TDS} = [(4.0 cfs x 1183 mg/L) + (10.319 cfs x 315 mg/L)] / (4.0 cfs + 10.139 cfs) = 557 mg/L, say 560mg/L

Parameters	Chloride	Sulfate	TDS
Ce, mg/L	16	80	315
Cb. mg/L	550	32	1183
Qe, cfs	10.319	10.319	10.319
Qb, cfs	4.0	4.0	4.0
Projected IWC (mg/L)	165	67	557

Table 5.3. Instream Waste Concentration (IWC) Calculation for Flat Creek.

5.2.5 Computations for Haynes Creek (from confluence Flat Creek & Salt Creek to Smackover Creek)

The IWC computations for chloride, sulfate, and TDS for Haynes Creek (from confluence Flat Creek & Salt Creek to Smackover Creek) were preformed utilizing the previously calculated IWCs and flows from Flat Creek (Section 5.2.4 above) as the "effluent concentration" and "effluent flows" for each respective mineral. The "effluent concentration" for chloride, sulfate, and TDS in Havnes Creek were 165, 67, & 557, respectively. "Effluent flow" values are the combined flows form UTB background flow (4 cfs), UTA background flow (4 cfs), Flat Creek background flow (4 cfs), and Outfall 001's reported highest monthly average flow for a period from July 2002 through April 2006. Haynes Creek's resulting "effluent flow" value used in the IWC computations was 14.319 cfs. The background concentration used for Haynes Creek is an average of instream dissolved minerals data collected from Salt Creek (background flow for Haynes Creek) during 1995 & 1996 and reported in an Arkansas Department of Environmental Quality's publication "TMDL Investigation of Water Quality Impairments to Unnamed Tributary to Flat Creek Union County, Arkansas", April 1998. Summarized data form this publication is provided in Appendix E. The calculated IWC for chloride, sulfate, and TDS indicated higher concentrations than the current ecoregion based water quality criteria for Haynes Creek. Utilizing all the aforementioned data the IWC for Haynes Creek is calculated below and summarized in Table 5.4.

IWC_{chloride} = [(4.0 cfs x 1054 mg/L) + (14.319 cfs x 165 mg/L)] / (4.0 cfs + 14.139 cfs) = 359mg/L, say 360mg/L

IWC_{sulfate} = [(4.0 cfs x 6.43 mg/L) + (14.319 cfs x 67 mg/L)] / (4.0 cfs + 14.139 cfs) = 54 mg/L, say 55mg/L

 $WC_{TDS} =$

[(4.0 cfs x 1932 mg/L) + (14.319 cfs x 557 mg/L)] / (4.0 cfs + 14.139 cfs) = 855 mg/L

Parameters	Chloride	Sulfate	TDS
Ce, mg/L	165	67	557
Cb, mg/L	1054	6.43	1923
Qe, cfs	14.319	14.319	14.319
Qb, cfs	4.0	4.0	4.0
Projected IWC (mg/L)	359	54	855

Table 5.4. Instream Waste Concentration (IWC) Calculation for Flat Creek.

6.0 ALTERNATIVE ANALYSES

This section summarizes the analyses of alternatives for the EDCC facility to maintain the WQS for the unnamed tributary to Flat Creek, Flat Creek and Haynes Creek. As seen in Section 5.0, the discharges from EDCC maintains protective criteria related to the existing uses; however, it does not maintain the protective criteria for chloride, sulfate, and TDS related to the designated (but not existing) Domestic Water Supply uses assigned to unnamed tributary to Flat Creek, Flat Creek and Haynes Creek. In addition, the current concentration of dissolved minerals is projected to cause instream exceedances under critical flow conditions.

Six alternatives were identified to address designated uses and the protective criteria for chloride and TDS. They are as follows:

- 1) no action,
- 2) no discharge,
- 3) hydrograph controlled release,
- 4) treatment
- 5) source reduction/Pollution Prevention
- 6) Water Quality Standards modification.

6.1 No Action

This alternative would maintain the current discharge situation. However, the chloride, sulfate, and TDS effluent concentrations would be exceeded at such time that the existing final permit limits become effective (June 1, 2007). In addition, it is projected that instream exceedances of the ecoregion chloride, sulfate and TDS criteria will occur even if no additional alternative is pursued. The potential for non-compliance with the proposed final permit limits is not an acceptable alternative for EDCC or ADEQ.

6.2 No Discharge

The no discharge alternative is not a realistic alternative and is not economically feasible. Although the EDCC facility operates a treated process wastewater outfall (Outfall 001), the cost and added volume of including all storm water runoff collected throughout the facility without the continued discharge through Outfall 001 would ultimately make it economically infeasible to continue operations.

EDCC employs approximately 160 employees and 60 on-site contractors with an annual payroll estimated at approximately \$9.5 million dollars. EDCC is a significant employer in Union County. The Company's annual impact on the local economy exceeds \$70 million dollars. In addition, EDCC pays approximately \$1.2 million in local and state taxes.

The no discharge alternative would require the cessation of operations at EDCC, an action which would greatly affect the local economy. This alternative is considered infeasible due to the socioeconomic effects to the local area.

6.3 Hydrograph Controlled Release (HCR)

The feasibility of a HCR was examined as an alternative for minimizing the impact of EDCC's discharges with elevated mineral concentrations. In EDCC's situation, an HCR system would not achieve compliance with the ecoregion dissolved minerals water quality criterion because the hydrology of the unnamed tributary to Flat Creek is impacted by limited watershed size (<2 square miles) at the mouth of the discharge tributary (UTB). The small watershed size, the urban development, and the beaver activity in the watershed has made storm water flows through the unnamed tributary to Flat Creek watershed highly variable with flash increases in response to storm events. In addition the EDCC facility comprises a large percent of the UTB watershed, further reducing the applicability for an HCR system to manage the dissolved minerals discharge for the facility. The timing of storm runoff, the development within the watershed upstream of the facility storm water discharges, and the proportion of facility storm water to watershed waters limits the application of an HCR system. The HCR discharge operational scenario is not considered to be feasible.

6.4 Treatment

EPA has no Best Available Technology (BAT) for removal of chloride, sulfate, or TDS from waste streams. While ion exchange (anion) and reverse osmosis treatment technologies exist, these methods currently are not cost effective on a large scale and are not typically recommended for treatment of storm waters prior to discharge. Also, the concentrated reject streams generated from such processes present their own unique set of potential environmental risks which can be much greater than the storm waters from which the minerals were extracted. In addition this advanced treatment places large burdens on the cost effectiveness of the facility and goods produced.

The technical limitations and uncertain environmental effects of concentrated waste streams generated from ion exchange and reverse osmosis treatment make the treatment alternative infeasible when other alternatives are considered.

6.5 Source Reduction/Pollution Prevention

The dissolved minerals in Outfall 001 are primarily contributed from process waste water and collected storm water from the site. Recent facility improvements to conserve energy resources, reduce storm water contamination, reduce and control spills, recycle process water streams, and ground water conservation activities (switching source water from Sparta ground water to surface water) have contributed to the decreases in dissolved minerals, in both the process waste water and the storm water. The facility has completed numerous site modifications and prevention activities to reduce storm water contamination as discussed in Section 3.5 (See Figures 3.4 and 3.5). Although there may be some additional incrementally small reductions, continued reductions through resource conservation is not likely to ultimately result in reductions sufficient to meet the water quality based ecoregion dissolved mineral concentration permit limits scheduled to become effective in June 2007.

6.6 WQS Modifications

The alternative to modify the dissolved mineral water quality criteria presents a viable alternative to attaining compliance with the permit limits while maintaining the existing and attainable uses. Discussions concerning the WQS modification alternative are presented below.

6.6.1 Designated Uses

As discussed in Section 3.2, the following designated uses have been assigned to unnamed tributary to Flat Creek, Flat Creek and Haynes Creek in the WQS.

UTB-Unnamed tributary to unnamed tributary to Flat Creek (above Hwy 7S)

- Secondary Contact Recreation,
- Seasonal Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

UTA-Unnamed tributary to Flat Creek (below Hwy 7S)

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Flat Creek

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

Haynes Creek

- Primary Contact Recreation,
- Secondary Contact Recreation,
- Perennial Gulf Coastal Fishery,
- Domestic Water Supply,
- Industrial Water Supply, and
- Agricultural Water Supply.

6.6.2 Existing Uses

The documented existing fishery use in unnamed tributary to Flat Creek, Flat Creek and Haynes Creek in the WQS is a seasonal gulf coastal fishery.

The primary contact recreation use was not documented as an existing use. The uses of agricultural and industrial water supply were also not documented as existing and may be limited due to water volume, but are not precluded due to water quality.

6.6.3 Attainability of the Domestic Water Supply Use

As previously noted and based on the anticipated documentation to be provided by ADH, the unnamed tributary to Flat Creek, Flat Creek and Haynes Creek are not an existing or planned public water supply source. In addition, it is anticipated that the ASWCC will verify that the removal of the designated domestic water supply use from unnamed tributary to Flat Creek, Flat Creek and Haynes Creek, does not conflict with the Arkansas Water Plan.

In addition to an evaluation of the existing and planned use of unnamed tributary to Flat Creek, Flat Creek and Haynes Creek as a domestic water supply, the USEPA Region 6 has requested that information concerning the attainability of the domestic water supply use on the basis of the regulatory criteria contained at 40 CFR 131.10(g) be included in use removal request documentation. Review of the project documentation considering the 40 CFR 131.10(g) criteria demonstrates that removing the designated, but not existing domestic water supply use is appropriate because the use is not attainable based on two of the 40 CFR 131.10(g) criteria. The first of these is criterion No. 2, which states:

"Natural, ephemeral, intermittent or low flow conditions or water levels prevent the attainment of the use, unless these conditions may be compensated for by the discharge of sufficient volume of effluent discharges without violating State water conservation requirements to enable uses to be met."

The unnamed tributary to Flat Creek and the Flat Creek watersheds are less than 15 square miles in size, the stream is intermittent in nature and does not have consistent base flows required to supply the volume of water necessary for the development and operation of a domestic water supply. In addition, because of the intermittent nature of the discharge from EDCC's storm water outfalls the increased flow supplied sporadically through effluent discharge is not sufficient to compensate for the small watershed size of UTB and UTA. Neither the stream system nor the discharge provides the consistent flow volume required for feasible attainment of a domestic water supply use.

The second applicable 40 CFR 131.10 (g) criterion is No. 5, which states:

"Physical conditions related to the natural features of the water body, such as the lack of a proper substrate, cover, flow, depth, pools, riffles, and the like, unrelated to water quality, preclude attainment of aquatic life protection uses"

As demonstrated in the documentation, the physical characteristics of the unnamed tributary to Flat Creek consist primarily of shallow pools and run areas, and will not support intake and storage areas necessary for the development of a domestic water supply system. As such, the extensive physical modifications required to develop intake and storage areas would result in the removal of riparian habitat and modification of Gulf Coastal fisheries habitats. Such modifications would impact the existing aquatic life use.

6.7 Selected Alternative

Based on the historical discharge presented, the recent historical biomonitoring record, the results of the aquatic life field assessment, the mass balance modeling and the assessment of alternatives presented above, the selected alternative is to remove the domestic water supply use from sections of unnamed tributary to Flat Creek (Figure 6.1) and modify the WQS for dissolved minerals as summarized in the following tables.

Table 6.1 Summary of Proposed Modifications to designated uses for UTB, UTA, Flat Creek, & Haynes Creek.

Unnamed tributary to Flat Creek (UTB) – from EDCC 001 Discharge to the confluence with Unnamed tributary of Flat Creek (UTA)	Unnamed tributary to Flat Creek (UTA)– from confluence of UTB to the confluence with Flat Creek
Remove Designated Domestic Water Supply Use	Remove Designated Domestic Water Supply Use
Instream Criteria	Instream Criteria
Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 23 mg/L; Sulfate from 31 mg/L to 125 mg/L, and TDS from 123 mg/L to 475mg/L	Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 16 mg/L; Sulfate from 31 mg/L to 80 mg/L, and TDS from 123 mg/L to 315 mg/L

Table 6.1 (cont). Summary of Proposed Modifications to designated uses for UTB, UTA, Flat Creek, & Haynes Creek.

Flat Creek – from mouth of UTA tributary to the mouth of Haynes Creek	Haynes Creek from confluence of Flat and Salt Creeks, downstream to confluence with Smackover Creek
Remove Designated Domestic Water Supply Use Instream Criteria	Remove Designated Domestic Water Supply Use
Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 165 mg/L; Sulfate from 31 mg/L to 67 mg/L, and TDS from 123 mg/L to 560 mg/L.	Amend ecoregion dissolved minerals criteria: Chloride from 14 mg/L to 360 mg/L; Sulfate from 31

These proposed modifications are supported by the documentation which meets the requirements of AWQS Section 2.306 as stipulated in the Administrative Guidance Document.

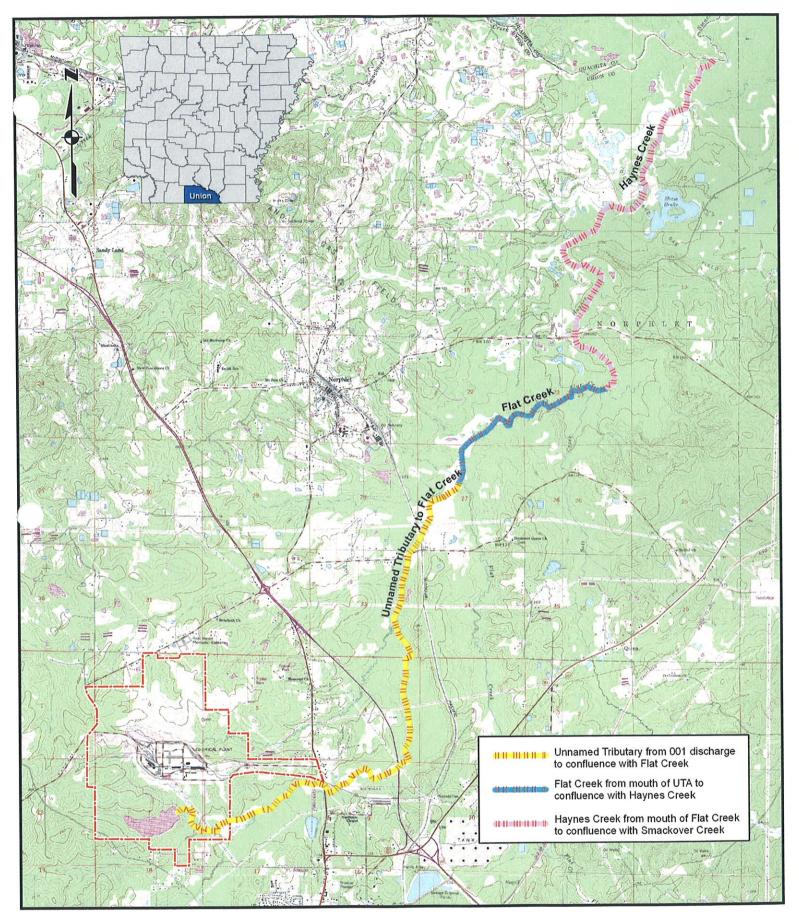


Figure 6.1. Proposed stream segments in the Haynes Creek watershed for removal of domestic water supply. EDCC 3rd party rule making. Union Co. AR. 2006.

7.0 REFERENCES

ADEQ, 1987. Rapid Bioassessment of Lotic Macroinvertebrate Communities: Biocriteria Development. 45 pp.

ADEQ, 1998. Regulation No. 2, As Amended: Regulation Establishing Water Quality Standards for Surface Waters of the State of Arkansas, January 1998 (Regulation No. 2).

ADEQ, 1995. State of Arkansas Continuing Planning Process, Update and Revisions, January 1995. ADEQ Water Division.

EPA, 1991. Technical Support Document for Water Quality Based Toxics Control. EPA/505/2-90-001. March 1991.

GBMc, 2006. Storm Water Pollution Prevention Plan, EDCC El Dorado AR. (in Draft). Developed for El Dorado Chemical Company.

GBMc, 2002. Spill Prevention Control and Countermeasure Plan. Developed for El Dorado Chemical Company.

Gilbert 1987. Methods for Environmental Pollution Monitoring

Merritt R and J.C. Cummings 1989. Aquatic insects of North America. 862 pp.

Pflieger, W. L., 1975. The Fishes of Missouri. Missouri Department of Conservation. 343 pp.

Robison, H. W. and T. M. Buchanan, 1988. Fishes of Arkansas. University of Arkansas Press. 536 pp.

Appendix A Section 2.306 [Formerly 4(g) Field Study Plan]

Section 2.306 Site Specific Water Quality Study Plan

Prepared for:

El Dorado Chemical Company 4500 Northwest Ave El Dorado, AR 71730

Prepared by:

GBM° & Associates 219 Brown Lane Bryant, AR 72022

April 10, 2006

CONTENTS

Ì

1.0	INTRODUCTION	
	1.1 Background	
2.0	QUALITY ASSURANCE/QUALITY CONTROL	
	2.1 Quality Control	
	2.2 Field Method QC	
	2.3 Data Review and Validation	
	2.4 QA/QC Checks Following Each Stream Visit	
3.0	WATERSHED CHARACTERIZATION	
	3.1 Study Reaches	
	3.2 Period of Study	
4.0	PHYSICAL HABITAT CHARACTERIZATION	
	4.1 Purpose 10	
•	4.2 Procedure	
	4.2.1 Channel Morphology	
	4.2.2 Instream Structure	
	4.2.4 Riparian Characteristics	
	4.3 Scoring and Analysis of Habitat Assessment Data	
	4.3.1 Fligh Gradient (riffle-pool stream complexes)	i
	4.0.4 Alleffiauve Metrics for Low Gradient Streams (pool dominated commission)	
5.0		
	3.3 Summary of Historical Water Quality	
6.0		
	o. I introduction	
	0.5 Sample Processing	
	0.0. Trapid bloassessment	
	0.3.2 Artificial substrate samples	
70		
7.0		
	28	
	7.2 Methods	
0 A	7.3 Sample Processing	
0.0	STUDY SCHEDULE	
	or religious and Documentation of Existing conditions	
	0.2 Data Assessment and Criteria Development	
a n	8.3 Report submittal and request for 3rd Party Rulemaking	
U.U	REFERENCES	

)

FIGURES

}

Figure 1.1. El Dorado Chemical Company property boundary and Outfall 001 location	2
Figure 1.2. EDCC Outfall 001 watershed boundary, outfall location, and proposed study	
reaches	4
Figure 3.1. Study Reaches for EDCC section 2.306 aquatic life field study.	8
Figure 3.2. UTB-1, Outfall 001 effluent ditch, upstream of confluence with UTC.	
Figure 3.3. UTB, EDCC effluent ditch downstream of confluence with UTC.	
Figure 3.4. UTC, upstream of confluence with EDCC outfall 001 effluent ditch (UTA).	
Figure 3.5. Midpoint of Reach UTA-2 downstream of Hwy 7S Bridge (in background)	
Figure 3.6. UTA upstream of Hwy 7S Bridge. View looking downstream to south along Hwy	78
Row.	.0
Figure 4.1. Stream channel depicting bankfull stage.	13
Figure 4.2. Approximate position of measurements across transect	14
Figure 4.3. Depiction of percent embedded characteristics.	10
Figure 6.1. Proposed locations for deployment of Artificial Substrate to monitor aquatic	
invertebrate community for EDCC section 2.306 aquatic live field study	26

1

1.0 Introduction

1.1 Background

A third-party rule making is being developed to address the existing final permit limits for dissolved minerals in the El Dorado Chemical Company (EDCC) NPDES permit (AR0000752). The current interim permit limits are monitor and report only. During the interim period, these parameters have been demonstrated to exceed the final permit limitations. In addition, discharges of treated wastewater from Outfalls 001, may not maintain the ecoregion mineral criteria stipulated for the unnamed tributaries of the Gulf Coastal Plain ecoregion in Regulation No. 2. The intermittent discharge from discharge from Outfall 001 could exceed the current ecoregion criteria for dissolved minerals of 14 mg/L (chloride), 31 mg/L (sulfate) and 123 mg/L (total dissolved solids, TDS). These criteria were developed using an ecoregion approach and were developed based on least disturbed streams but are applied on a water body specific basis.

Currently, the dissolved solids discharged through Outfall 001 (sulfate and TDS), will not consistently meet the final permit limits of 68 mg/L and 102 mg/L for monthly average and 86 mg/L and 129 mg/L for the daily maximum, respectively. Outfall 001 discharges directly to an unnamed tributary to Flat Creek (Figure 1.1) and includes process water as well as storm water.

The final permit limits are scheduled to become effective in June 2007, unless they are modified through the third-party rule making provision of the Arkansas Water Quality Standards (Regulation No. 2). The current final dissolved mineral permit limits were developed to maintain the existing ecoregion criteria based on a long term average background flow of 4 CFS. These permit limits are also protection of the designated but non-existing and unattainable drinking water uses through the application of criteria of 230 mg/L, 250mg/L, and 500 mg/L for chloride, sulfate and TDS, respectively.

The ADEQ recognizes that the application of the dissolved mineral criteria using long term average flows (rather than Q7-10 flows) do not necessarily preclude other designated uses (fishable/swimmable) and have provided for the application of long-term flows to determine site specific instream criteria once the drinking water uses are removed. This third-party rule making is accomplished through the application of Section 2.306 [formerly 4(g)] in Regulation No. 2.

1.2 Study Objective

The objective of the study plan is to complete the field documentation required to support a third-party rulemaking in accordance with Section 2.306 to remove the designated domestic water supply use and modifying the final permit limits for dissolved minerals that will allow maintenance of existing uses.

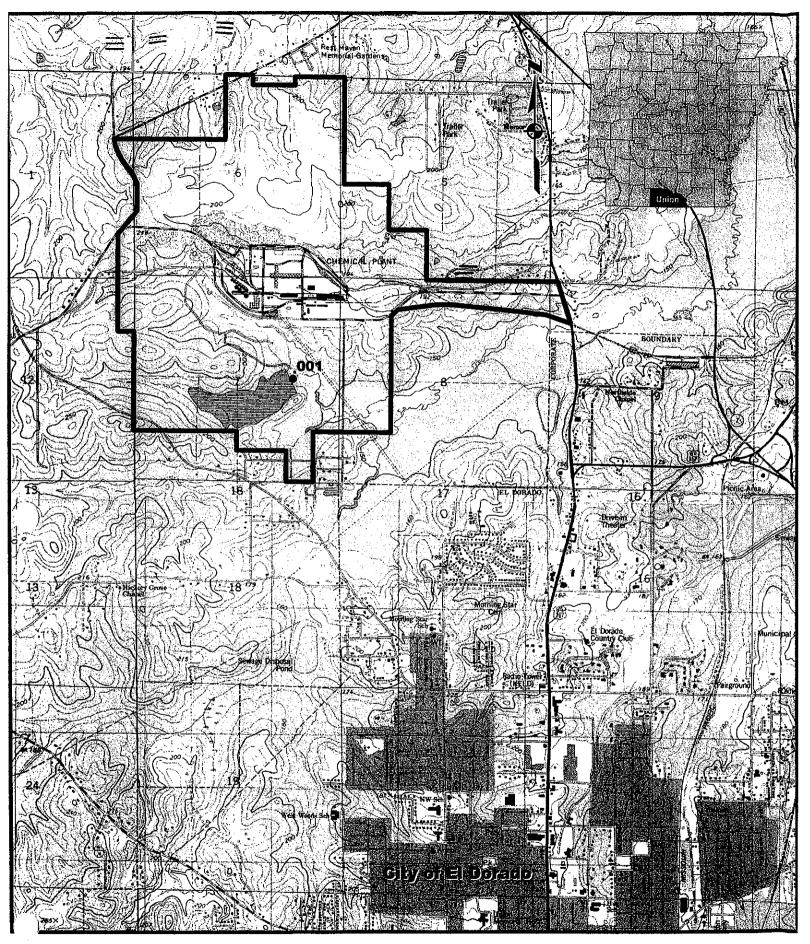


Figure 1.1. El Dorado Chemical Company property boundary and Outfall 001 location.

EDCC has developed and implemented best management practices (BMPs) to address and control storm water discharges and limit exposure of storm water. The facility is located on Highway 7S just outside the city limits of El Dorado, AR (Figure 1.1). EDCC is authorized to discharge treated process wastewater, storm water and other non-process waters under National Pollutant Discharge Elimination System (NPDES) permit No. AR0000752 into an unnamed tributary of Flat Creek. The watershed of the unnamed tributary into which EDCC discharges is less than 1 mile square at the point of discharge. The Flat Creek watershed is approximately 12 sq miles at the mouth of the UTA (Figure 1.2).

2.0 Quality Assurance/Quality Control

A complete and thorough Quality Assurance (QA) program with defined data quality objectives (DQO) is an essential part of any biological field study. The degree to which the study data meets the DQO dictates the quality and representativeness of the overall project.

2.1 Quality Control

The DQOs of this study are to attain data that meets the following quality control (QC) criteria:

- 1) Precision is a gauge of the ability of a measurement to be repeated acquiring similar results. The *in-situ* and analytical data will be checked for precision by use of duplicate samples at a minimum rate of 10%. An acceptable level of data precision will be based on the relative percent difference (RPD) between duplicate samples not to exceed 20%. The habitat, fish and macroinvertebrate portion of the study cannot be easily duplicated. Standard collection procedures will be used at each collection station to achieve the greatest degrees of reproducibility possible.
- 2) Representativeness is a gauge of the degree to which a measurement is representative of the true condition. Sampling reaches have been carefully selected as to best represent the conditions in that segment of the stream.
- 3) Comparability is a gauge of the ability of the resulting data to compare to data from similar measurements performed in the same study and in other studies. An effort to use standardized techniques based on EPA accepted methodologies was made to maximize comparability. Also, only experienced and trained personnel are performing the various measurements.
- 4) Completeness is a measure of the degrees of validity of the data collected. Completeness is evaluated by ongoing review of project data by team members to assure that all the necessary data will be collected and is reasonable.

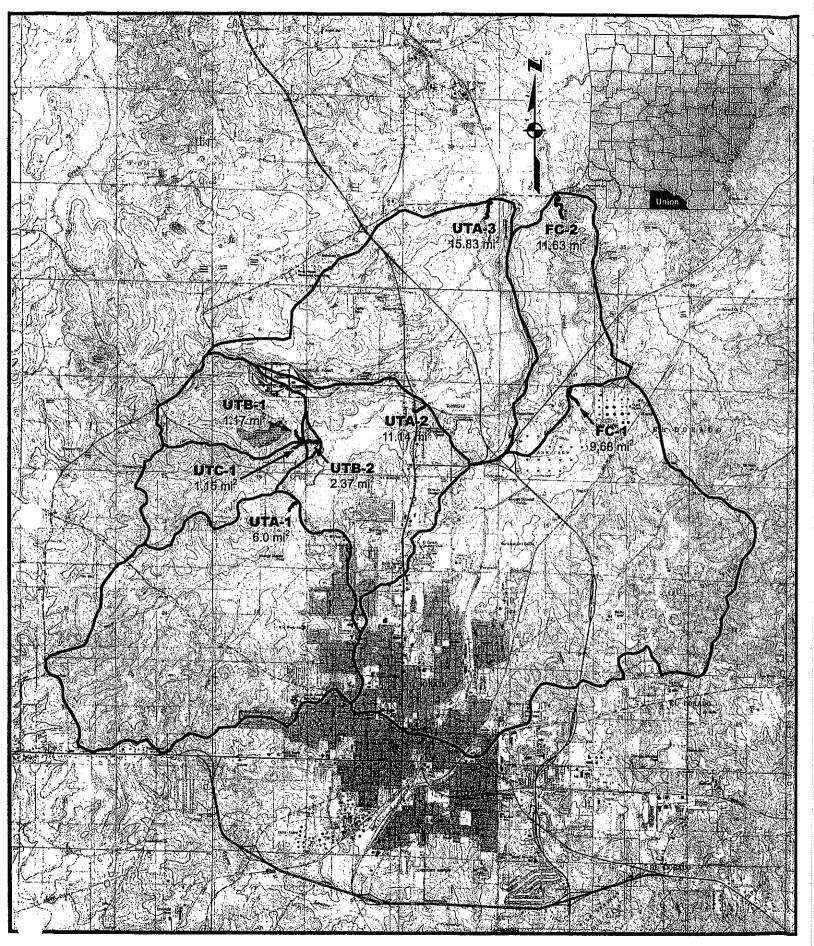


Figure 1.2. Study reaches, watershed boundaries and watershed sizes for EDCC section 2.306 aquatic life field survey. April 2006

- 5) Accuracy is a gauge of the degree of agreement between the measured value and the real value. Proper instrument calibrations and reference solution checks assure accuracy of *in-situ* data. All field equipment will be utilized and calibrated according to manufacturer's directions. Calibrations will be conducted daily prior to use. If any equipment fails to conform to known QA/QC manufacturers' specifications, the equipment will be replaced with duplicate equipment that will meet the specifications. Accuracy for biological collections/assessments is not quantifiable, since the true value is not known.
- 6) A chain of custody will be executed whenever samples are to be transferred between separate entities (e.g., water quality samples).

2.2 Field Method QC

The quality of data collected during this study will be further assured by the following QC measures:

- 1) A Field Equipment Checklist will be maintained and followed for all field trips. Use of the checklist helps ensure that all field equipment and forms are prepared and available for use in the field.
- 2) All methodologies used during this study will be based on approved and widely accepted EPA methodologies. An effort is continuously made to keep abreast of the most current methodologies and to adjust our program so as to be more comparable, representative and accurate.
- 3) Field data sheets are designed for each type of measurement (i.e., *in-situ*, benthos, fish, habitat, etc.). Field sheets contain the necessary information along with space to note anomalies or variances from standard procedures.
- 4) Trained and experienced field biologists will conduct the study. All crucial team members hold college level degrees in biological sciences or related fields. Continuing education is encouraged through short courses, scientific journal review, conference attendance, and readings in current text and manuals to assure up-to-date knowledge of the field.
- 5) Fish and aquatic macroinvertebrates will be identified to the lowest taxonomic level practicable. Taxonomic references will be those widely accepted in the scientific community. Identification checks will be made randomly by the project manager or other senior level scientists to verify the accuracy and of the identifications. This check will occur at a rate of approximately 10%.
- 6) Where analyses are quantifiable EPA approved test methods will be utilized. In these quantifiable cases MDLs will be established and adhered to along with all pertinent QC procedures (i.e., blanks, controls, spikes, and spike duplicates).

2.3 Data Review and Validation

It is necessary to establish QC guidelines for reviewing, validating, and if necessary correcting data following its measurement and analysis in the field or laboratory. This is accomplished by following the steps listed below.

- 1) All field record sheets, taxonomic identifications, community metrics, and analytical results will be reviewed for precision, representativeness, comparability, completeness, and accuracy.
- 2) When data quality problems are discovered the project manager and/or the senior scientist will determine the level of the problem and the corrective action, if any, necessary to eliminate the problem.
- 3) Corrective actions will vary along with the type of QC problem and the degree of the problem. Corrective action for a duplicate sample returning an RPD greater than 20% might result in a repeat of the analysis or even a repeat of the sampling event. Corrective action for a field record sheet being incomplete would likely result in a team meeting to facilitate the missing parameters being filled in correctly.

2.4 QA/QC Checks Following Each Stream Visit

Following the conclusion of all activities at each sample reach, the sample team will review all completed data forms and sample labels for accuracy, completeness, and legibility, and will conduct a final inspection of samples collected. If information is missing from the forms or labels, the team leader will make any corrections prior to proceeding to the next sample reach. The team leader will initial all data forms after review. Other team members will inspect and clean sampling equipment, inventory field supplies, prepare samples for shipment or storage as needed.

3.0 Watershed Characterization

3.1 Study Reaches

Ì

The watershed of the Flat Creek originates south of EDCC facility but within the city limits and urban development of El Dorado (Figure 3.1). The watershed size at the site of the discharge of Outfall 001 is approximately 2.2 mi². The total watershed of Flat Creek is less than 4 mi² at the mouth of UTA. As part of this third-party rulemaking, stream reaches on unnamed tributaries, both upstream and downstream of the facility and the discharge will be evaluated. As indicated by Figure 1.2, at a minimum, the individual study reaches will include:

1. UTA-1 Unnamed tributary upstream of the EDCC facility. The UTA is the receiving stream into which the Outfall 001 tributary (UTB) flows. This reach will be characterized to demonstrate the upstream condition of the UTA before mixing with the discharge from EDCC. The watershed above this location drains developed areas of El Dorado and served as a reference site utilized by ADEQ in the development of the 1998 TMDL.

- 2. UTB-1 This reach is located in the EDCC effluent ditch downstream of the discharge but upstream of the confluence with the UTA. This reach will be evaluated to characterize the conditions resulting from the water quality and quantity of the EDCC effluent (Figure 3.2).
- 3. UTB-2 The reach is located down stream of the confluence with the UTC and the mouth of UTB (the Outfall 001 effluent ditch). This reach will be characterized to demonstrate the instream condition of the UTA after the combined water quality and flows from the upstream conditions (UTA-1 and the EDCC effluent) (Figure 3.3).
- 4. UTC-1 The reach is located upstream of the confluence with the UTC and the mouth of UTB (the Outfall 001 effluent ditch). UTC is a 1st order intermittent tributary that contributes to UTB upstream of the confluence with UTA. This reach will be characterized to demonstrate the instream condition of the UTC before the combined water quality and flows from the upstream conditions (UTA-1 and the EDCC effluent) (Figure 3.4).
- 5. UTA-2 This reach is located downstream of the US Hwy 7S bridge. The watershed upstream of this location is approximately 10 square miles and represents the point at which perennial fishery use would be expected and is designated. This reach was sampled as part of the 1998 TMDL conducted by ADEQ and will provide an indication of recovery since the AMDL development (Figures 3.5 & 3.6).
- 6. UTA-3 This reach is located at the O'Rear Road crossing. The reach was also sampled as part of the ADEQ TMDL Survey.
- 7. FC-1 This reach is located on Flat creek upstream of the US Hwy 167 Bridge. The reach was sampled utilized as the reference condition for Flat Creek as part of the 1998 TMDL.
- 8. FC-2 This reach of Flat Creek is located just upstream of O'Rear Road and represents a least disturbed condition with a water shed that approximates that of the UTA at O'Rear road.

The physical, chemical, and biological characteristics of each of the above study reaches will be evaluated during the aquatic life field study through the implementation of the tasks as described in the following sections (4-7) of the Study Plan.

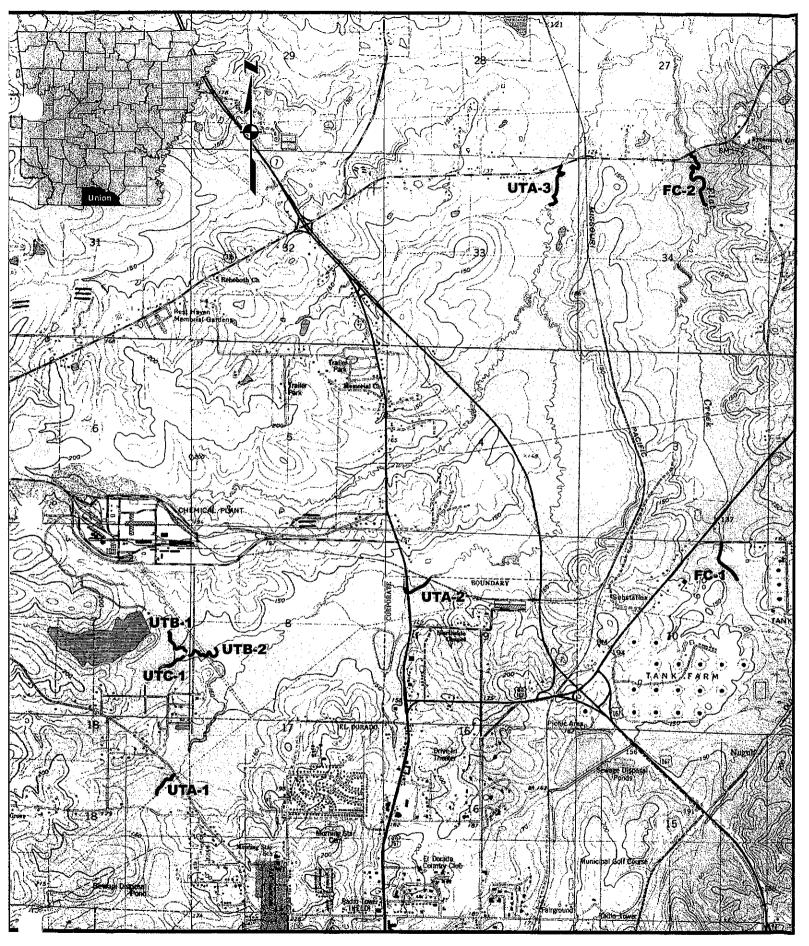


Figure 3.1. Study reaches for EDCC section 2.306 aquatic life field survey. April 2006

Figure 3.2. UTB-1, Outfall 001 effluent ditch upstream of confluence with UTC. Mach 2006.

Figure 3.5. Mid-point of Reach UTA-2 downstream of Hwy 7S Bridge (in background). March 2006.

Figure 3.3. UTB, EDCC effluent ditch downstream of confluence with UTC. March 2006.

Figure 3.6. UTA upstream of Hwy 7S Bridge. View looking downstream to south along Hwy 7S Road. March 2006.

Figure 3.4. UTC, upstream of confluence with EDCC Outfall 001 effluent ditch (UTA). March 2006.

April 10, 2006

)

1

3.2 Period of Study

-

Due to the limited watershed size (less than 10 mi²) of several of the study reaches and the nature of the discharge from EDCC (no discharge during critical season), data collection for the third-party rule making will occur during the spring seasonal period of the year during steady state flow conditions. It is currently proposed that field activities be completed during the month of April. Although not expected, summer time low flow sampling maybe required depending on the findings of the spring steady state condition assessment. Should summer low flow assessment be required, it would be proposed for completion during the July/August 2006 field period.

4.0 Physical Habitat Characterization

4.1 Purpose

Physical habitat in streams includes all those physical attributes that influence or provide sustenance to biological attributes, both botanical and zoological, within the stream. Stream physical habitat varies naturally, as do biological characteristics; thus, habitat conditions differ even in the absence of point and anthropogenic non-point disturbance. Within a given ecoregion, stream drainage area, stream gradient and the geology are likely to be strong natural determinants of many aspects of stream habitat, because of their influence on discharge, flood stage, and stream energy (both static and kinetic). Kaufmann (1993) identified seven general physical habitat attributes important in influencing stream ecology and the maintenance of biological integrity:

- 1) channel dimensions,
- 2) channel gradient,
- 3) channel substrate size and type,
- habitat complexity and cover,
- 5) riparian vegetation cover and structure,
- 6) anthropogenic alterations, and
- 7) channel-riparian interaction.

Land use activities can directly or indirectly alter any and/or all of these attributes. Nevertheless, the trends for each attribute will naturally vary with stream size (drainage area) and overall gradient. The relationships of specific physical habitat measurements described in this section to these seven attributes are discussed by Kaufmann (1993). Although they are actually biological measures, aquatic macrophytes, riparian vegetation, instream habitat and canopy cover are included in this and other physical habitat assessments because of their role in habitat structure and light inputs. The objectives of a habitat characterization are to:

- 1) assess the availability and quality of habitat for the development and maintenance of benthic invertebrate and fish communities, and
- 2) evaluate the role of habitat quality in relation to the attainment of designated uses and biological integrity.

There are three main headings for the components of the physical habitat characterization each with several categories. Measurements for each of the components (14 categories total) are recorded on copies of a two-page field form entitled Stream Habitat Assessment-Semi-Quantitative and include:

- 1) Channel Morphology
 - a) Reach Length Determination
 - b) Riffle-Pool Sequence
 - c) Depth and Width Regime
- 2) Instream Structure
 - a) Epifaunal Substrate
 - b) Instream Habitat
 - c) Substrate Characterization
 - d) Embeddedness
 - f) Sediment Deposition
 - g) Aquatic Macrophytes and Periphyton
- 3) Riparian Characteristics
 - a) Canopy Cover
 - b) Bank Stability and Slope
 - c) Vegetative Protection
 - d) Riparian Vegetative Zone Width
 - e) Land-use Stream Impacts

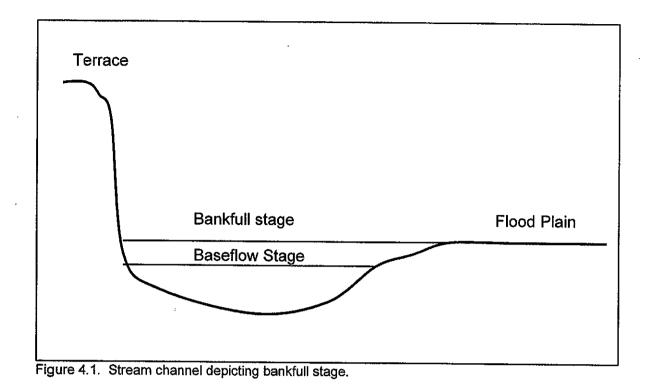
Field physical habitat measurements from a field habitat characterization are used in conjunction with water chemistry, temperature, macroinvertebrate and vertebrate (typically fish) community analyses, and other data sources to determine the status of the target streams attainment of designated uses and the water quality required to maintain those uses. The documentation of existing conditions are systematically tabulated using a variety of field data forms.

These procedures are intended for evaluating physical habitat in wadeable streams. The field procedures will be applied during spring seasonal conditions with steady base flows. This semi-quantitative habitat procedure will be applied in conjunction with the *General Physical Habitat Characterization* and the *Qualitative Habitat Assessment* to provide a detailed view of the streams habitat condition.

The habitat characterization protocol differs from other rapid habitat assessment approaches (e.g., Plafkin et al., 1989, Rankin, 1995) by employing a, systematic spatial sampling that minimizes bias in the placement and positioning of measurements. Measures are taken over defined channel areas and these sampling areas are placed systematically at spacing that is proportional to the length of the entire study reach. This systematic sampling design provides resolution appropriate to the length of the study reach. The habitat assessment protocol is based on those of USEPA in their EMAP and RBP procedures (Lazorchak, 1998 and Barbour, 1999), USGS NAWQA program (Fitzpatrick, 1998) and Missouri Department of Natural Resources ESP (Sarver, 2000). The protocol is objective and repeatable and employs previously developed methods to produce repeatable measures of physical habitat in place of estimation techniques wherever possible.

Two people will complete the specified assessment, including stream flow. The actual time required to complete the habitat characterization at each monitoring location can vary considerably with channel characteristics.

The procedures are employed on a sampling reach of length equal to 20 times the bankfull width, or at least 100 yards of instream distance. The semi-quantitative habitat sampling reach length will include to the extent possible the fish and macroinvertebrate collection reaches. Measurements will be taken in each of 10 subreaches, which are systematically placed, at intervals equal to approximately one tenth (1/10) the length of the represented study reach. Measurements and observations for each habitat characteristic are made in each of the sub-reaches as the assessment team moves along the stream channel. An average or total of the scores for each of the 10 sub-reaches is then calculated resulting in a mean value for each characteristic for the entire reach.


4.2 Procedure

The habitat assessment will be conducted within (or to the extent possible) the stream reach from which the benthic and fish communities are to be characterized. The physical habitat will be characterized from measurements and observations of stream attributes made within 10 sub-reaches. The field team assessing habitat should move along the stream channel (near the thalwag) observing habitat characteristics within each sub-reach. A description of and the rational for measuring each of the attributes are provided below. The details of how these attributes are recorded/evaluated are also described in the GBM^c QAP.

4.2.1 Channel Morphology

Channel morphology (or geomorphology) is a characterization of the shape of the stream channel including measurements and/or visual estimates of channel dimensions and riffle-pool sequences (i.e., a measure of the amount of riffles, runs and pools that occur in a given reach).

The channel observed includes that portion of the stream between the base flow wetted area and the top of the normal high water channel often referred to as the bankfull stage (Figure 4.1). The "bankfull" or "active" channel is defined as the channel that is filled by moderate-sized flood events that typically occur every one or two years. Such flow levels are on the verge of entering the flood plain and are believed to control channel dimensions in most streams.

1) Reach Length Determination

First, bankfull depth (depth from stream bottom in thalwag to bankfull stage on the bank) is identified in at least two separate riffles (or alternatively runs in streams not exhibiting riffle morphology) in the study reach. Then bankfull depth and width is determined from five (5) stream transects and recorded on the record sheet. Transect locations should be selected to include each prominent morphology type represented in the stream. Bankfull depths are measured to the nearest 1/10 foot and bankfull widths are measured to the nearest foot using a wading rod and tape measure/range finder, respectively. An average of the 5 bankfull widths is then calculated and multiplied times 20 to arrive at the total reach length for assessment. This total length is then divided by ten to determine the length of each of the ten sub-reaches. Analysis of the first sub-reach should begin at the head of a given stream morphology (i.e., riffle, run or pool).

2) Riffle-Pool Sequence

Stream morphology refers to the abundance and placement (sequencing) of riffles, runs, and pools in a stream system. This sequencing is an indicator of a streams hydrological regime and stability as well as a determinant of its potential to sustain diverse aquatic communities. Beginning at the head of a morphological type (riffle, run or pool) the length of each morphological type in the stream reach should be measured using a range finder or tape measure and recorded on the record sheet. The sequence of each morphological type should be depicted on the record sheet using the provided notations so as to create a

map to the location of each riffle, run or pool. The resulting measurements should provide a quantitative measure of the percent of the study reach representing each stream morphological type (i.e., 40% riffle, 30% run, 30% pool, etc.).

3) Depth and Width Regime

The average stream depth and width will be estimated in riffles (or runs in the absence of riffles) and pools in each sub-reach. Depths will be measured along a transect, similar to that depicted in Figure 4.2, in a representative section of each riffle and pool in the sub-reach. Depths are generally taken in the thalwag (deepest area in stream channel) and approximately half way between the thalwag and the left and right banks. An estimated average depth for riffles and pools occurring in a sub-reach is derived from the cross-sectional depth measurements and recorded on the record sheet to the nearest 1/10 foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool average depth and depth variability across the entire stream reach.

Stream wetted widths will be measured along a transect, in a representative section of each riffle and pool in the sub-reach. An estimated average width for each morphological type in a sub-reach should be recorded on the record sheet to the nearest foot. Once completed for all 10 sub-reaches this should provide accurate semi-quantitative measurements of riffle and pool widths across the entire stream reach.

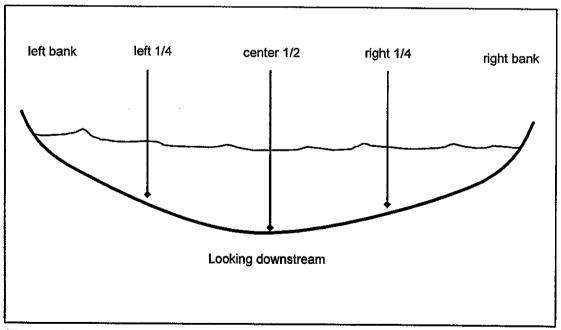


Figure 4.2. Approximate position of measurements across transect.

4.2.2 Instream Structure

Instream structure describes the characteristics of the stream within the wetted perimeter that makes up the habitat suitable for colonization of aquatic biota. This includes information about natural substrates (gravel, boulders, etc), aquatic plants and algae and debris that has been washed into or fallen into the stream, such as logs, leaves, etc. A stream capable of sustaining diverse aquatic communities will contain a variety of instream structure including some that is permanent and some that is mobile during high flow events.

4) Epifaunal Substrate (Macroinvertebrates)

Epifaunal substrate refers to the area on the bottom of the stream (entire wetted perimeter) where macroinvertebrates inhabit. This attribute is scored as a percentage of the stream bottom in a sub-reach which contains substrates suitable for macroinvertebrate colonization. Scoring for this attribute should rely heavily on the stability of the substrate, the size of the interstitial spaces, and the cleanliness (not covered in thick algae or sediment deposits) of the substrate. Cobbles and coarse gravel will score higher percentages as they contain larger interstitial spaces for colonization, while sand and silt would score lower since they provide little spaces. In addition, root wads along the bank would score higher as they are more stable features than would depositional areas or small woody debris.

5) Instream Habitat (Fish)

Instream habitat refers to the habitat features within the wetted perimeter of the stream sub-reach which are available for fish colonization. This attribute is scored as the percentage of the stream bottom (wetted perimeter) in a sub-reach which is covered with fish habitat. As with the epifaunal substrate attribute substrates composed of cobbles, coarse gravels and boulders score higher for fish cover as they provide better spaces for colonization. Other habitats that score high are large woody debris (individual logs with diameter >4 inches or complex woody structures composed of rootwads, logs, or limbs with diameter of 1.5 ft. or greater)and undercut banks. While habitats that score lower are those such as depositional areas, leaf packs, and fine sediments or sand.

6) Substrate Characterization

The dominant stream substrate size classification for riffles and pools within each sub-reach will be recorded on the record sheet. Only substrates within the wetted perimeter are evaluated. This information will be used to characterize the similarities and or differences in substrate structure and complexity in the riffles and pools of the study reach as it relates to the development and maintenance of the systems biological integrity. Classify the particle into one of the size classes listed on the Semi-Quantitative Habitat Assessment Field Form based on the size of the intermediate axis (median dimension) of its length, width, and depth. This "median" dimension is the sieve size through which the particle can pass.

Bedrock	smooth or rough
Boulder	>25 cm
Cobble	6-25 cm
Coarse Gravel	1.6 – 6 cm
Fine Gravel	0.2 – 1.6 cm
Sand	<0.2 cm
Silt/Mud/Clay	fine, not gritty

Always make notations for unusual substrates such as concrete or asphalt and denote these artificial substrates as "other" and describe them in the comments section of the field data form. Code and describe other artificial (such as large appliances, tires, car bodies, etc.) substrates in the same manner.

7) Embeddedness

Embeddedness is the fraction of a particle's surface that is surrounded by (embedded in) sand or finer sediments on the stream bottom. By definition, the embeddedness of sand, silt, clay, and muck is 100 percent and the embeddedness of hardpan and bedrock is 0 percent.

For this attribute estimations are not made per sub-reach but for the entire stream reach as a whole. An estimation of the "percent embedded" is recorded for coarse riffle substrates in the study reach. This is accomplished by removing 12 pieces of cobble, gravel, or small boulders in at least two different riffles (three maximum) and recording the percent embedded for each. Percent embedded can be visually observed as the darkened portion of the coarse substrate that was buried in the streams fine bed material. If the darkened area covers half the coarse substrates height than the percent embedded is 50%, etc. (Figure 4.3).

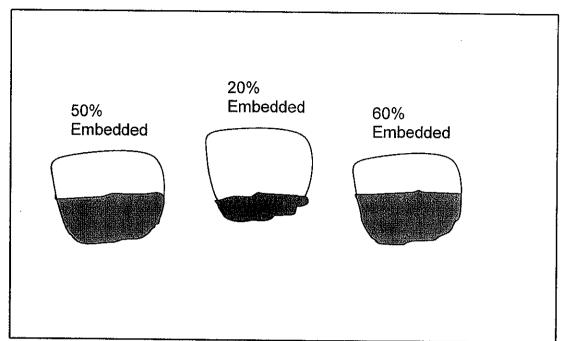


Figure 4.3. Depiction of percent embedded characteristics.

8) Sediment Deposition

The sediment deposition attribute refers to the amount of stream bottom (in the wetted perimeter) that is covered by fine sediments and/or particulate organic matter. This attribute is scored as a percentage of the bottom in each sub-reach which is covered by such loose materials.

9) Aquatic Macrophytes and Periphyton Coverage

An estimate of the percentage of area covered by macrophytes and periphyton in a sub-reach is made and recorded both for riffles and pools. Macrophytes refers to aquatic plants that grow in the stream (both emergent and submerged), and periphyton refers to algae that grows on fixed surfaces. This attribute helps biologists determine stream productivity from a nutrient enrichment perspective and also for the availability of food sources for aquatic biota.

4.2.4 Riparian Characteristics

The riparian area includes the area from the stream bank in a direction away from the stream into the upland areas. It is these stream-side riparian zones that ultimately help shape the stream and provide organic material as nutrients to the aquatic system. A well developed riparian area protects stream banks form erosion, provides shading, inputs nutrients, provides materials as habitat (instream structure) and filters runoff entering the stream. In the absence of well developed riparian zones the stream is more impacted by encroaching land-uses. 10) Canopy Cover

Canopy cover (percent stream shading) over the stream is determined for each of the sub-reaches. Estimates of cover are made by looking into the canopy over the stream channel. Estimates are made from mid-channel and each quarter channel to determine the average percent canopy cover for the width of the stream in the sub-reach. Percent canopy at each measurement point can be estimated visually or by use of a spherial densiometer.

11) Bank Stability and Slope

Bank stability is an important attribute that is an indication of a stream reaches overall hydrologic equilibrium. A bank's stability also determines its ability to provide stable habitat for biota and its propensity to release large sediment yields to the stream, which ultimately cause high turbidity and deposition in downstream reaches. The right and left banks are classified according to the following categories:

Score 9-10	=	Stable, little evidence of erosion, < 5% bank eroding
Score 6-8	Ξ	Moderately stable, some evidence of new erosion, 5-29% bank
		eroding
Score 3-5	=	Moderately unstable, obvious new erosion, 30-59% bank eroding
Score 1-2	=	Unstable, most of bank actively eroding, 60-100% bank eroding

Banks composed of sands and gravels are much less stable than banks composed of silt/mud/clay or cobbles. The density of well rooted (more permanent) vegetation and root structure also help to improve a banks stability.

Average bank slope (in degrees) in a sub-reach, is recorded for each bank (left and right). Bank slope affects the stability of a bank and is an indicator of past erosion. A gentle slope may average 30° while a steep or undercut bank may average 90° or 100°, respectively.

12) Vegetative Protection

Bank vegetative protection is measured as a percent of the bank surface area which is covered by stable riparian vegetation and their associated roots in a sub-reach. Each bank (right and left) is assessed separately and the value recorded on the record sheet. Banks are assessed from the edge of the water to the top of the first terrace or normal top of bank.

13) Riparian Vegetative Zone Width

Riparian zone with encompasses the area from the top of the normal stream bank outwards into the upland area. The broader the riparian vegetative zone width the more protected the stream banks are from alteration, the fewer pollutants will enter the stream from runoff, and the more available food sources there are to be deposited into the stream from the surrounding forest. Riparian zone width is scored for each bank in a sub-reach according to the following scale:

Score 9-10 = Riparian Zone Width > 18 meters Score 6-8 = Riparian Zone Width 18 - 12 meters Score 3-5 = Riparian Zone Width 11 - 6 meters Score 1-2 = Riparian Zone Width < 6 meters

14) Land-Use Stream Impacts

Significant Alteration of the land-uses in the immediate riparian area can have detrimental affects on the stream habitat and biota. Urban and agricultural activities are often considered the more prominent of those land-uses that may impact a stream. These impacts are assessed by indicting a specific land-use impact associated with a sub-reach (on either bank) on the record sheet and assigning a degree of impact score to the land-use. The following land-use categories and impact scoring system are provided:

Land-uses:

- C = Cattle
- R = Row crops
- U = Urban encroachment
- I = Industrial encroachment
- O = Other (noted on field form)

Scoring:

- 0 = no land-use impacts
- 1 = minor impacts
- 2 = moderate impacts
- 3 = major impacts

4.3 Scoring and Analysis of Habitat Assessment Data

Scores from the Semi-Quantitative Habitat Assessment can be utilized in two different ways. First, data collected for each attribute (assessment category) can be used independently to describe the study reach collectively. This method results in information such as: average riffle depth, average pool width, percent riffle in entire reach, average bank stability, average (median) substrate size class in pools and riffles, mean percent canopy cover, etc. Second, the data collected during the assessment can be used in conjunction with the Qualitative Habitat Assessment procedure to score each of the ten "qualitative" indices with near quantitative accuracy (semi-quantitative). A combination of the two methodologies should be incorporated into all intensive aquatic biota field studies where habitat assessment accuracy and repeatability is critical. The following sections outline the scoring of the qualitative habitat indices using the semi-quantitative data.

4.3.1 High Gradient (riffle-pool stream complexes)

1) Epifaunal Substrate / Available Fish Cover

Average values from semi-quantitative categories 4 (Epifaunal Substrate) and 5 (Instream Habitat) are combined into an overall average percent coverage and used to score this metric.

The following table presents the scoring criteria:

and Raink	Optimal	Sub-Optimalse	Marginal 2	Poor College
% Coverage	>70%	40%-70%	20%-39%	<20%
Score	20 -16	15 -11	10-6	5 - 1

2) Embeddedness

Reach average percent embedded (from category 7) is used directly to score this metric.

% Embedded Score	<u><25%</u> 20 -16	25%-50% 15 -11	49%-75%	>75%
Rank % Embedded	Optimal 25%	Sub-Optimal	Marginal	Poor and

3) Velocity / Depth Regime

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) along with flow and velocity data collected in the reach is used to score this metric. Use the following table to determine which regimes are present:

Rank	Slow-deep	Slow-shallow	Fast deep	Fastshallow
Velocity	<1 fps	<1 fps	>1 fps	>1 fps
Depth Regime	>1.6 feet	<1.6 feet	>1.6 feet	<1.6 feet
Typical Morphology	Deep pool	Shallow pool	run	riffle

If a reach has deep and shallow pools, and distinctive run and riffle morphology, then you have at least three regimes and possible all four regimes. Score each rank lower if shallow regimes are the missing regimes. Scoring is applied as per the following table.

	C Ontroelle	stilb optimates	a a determate se	2007
No. Regimes	Four regimes present	Three regimes present	Two regimes present	One regime present
Score	20 -16	15 -11	10 - 6	5 - 1

4) Channel Alteration

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

5) Sediment Deposition

Reach average percent bottom affected by deposition (from category 8) is used directly to score this metric.

EN EEN KEEL	Optimal week	Sinb-Optimal.	and Marginal Sea	Poor Poor
% Bottom Affected	<5%	5%-30%	31%-50%	>50%
Score	20 -16	15 -11	10 - 6	5 - 1

Utilize the lower end of each scale to represent reaches where recent sediment bar formation is evident.

6) Frequency of Riffles

Using semi-quantitative category 3 (Depth and Width Regime) the average width of the stream is determined as the average of riffle and pool widths combined. Using category 2 (Riffle-Pool Sequence) the distance between riffles can be calculated using the sequencing notations and the morphological lengths. The table presented below should be used to develop scores for this metric.

Example: a reach with an average width of 18 feet, with 4 riffles separated by a 50 foot pool, a 20 foot run, and a 100 foot pool would result in an average distance between riffles of 57 feet. Therefore, the ratio = 57/18 = 3.2 and would rank as Optimal (score @ 18).

Real Rank and	and lamite@	Sub-Optimale	Marginal	es es Poores and
Ratio (distance between riffles : stream width)	<7 : 1	7 – 15 : 1	16 -25 : 1	>25 : 1
Score	20 - 16	15 -11	10-6	5 - 1

In continuous riffle streams the consistent placement of boulders and logs provides scores in the highest range of the optimal category.

7) Channel Flow Status

Scored from visual assessment of entire reach. Not aided by semi-quantitative attributes.

8) Bank Stability

The average bank stability score for each represented bank from the semiquantitative assessment (category 11) is directly applied to the qualitative assessment scoring for this metric (i.e., an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

9) Vegetative Protection

Reach average percent bank protected (from category 12 of the semiquantitative record sheet) is used directly to score this metric for the right and left bank.

Protected >90% 70% 90% 50% 60%	Score	20.16	15-11	0070-0970	<u>\00%</u>
	% Protected	>90%	70% - 90%	50% - 69%	<50%

10) Riparian Vegetative Zone Width

The average riparian zone width score for each represented bank from the semiquantitative assessment (category 13) is directly applied to the qualitative assessment scoring for this metric (i.e., an average reach score of 8 for the right bank and 7 for the left bank gets transferred directly to the qualitative score sheet as such.)

4.3.2 Alternative Metrics for Low Gradient Streams (pool dominated complexes)

The individual metrics with alternatives for pool dominated stream complexes includes 2, 3, and 6, and are described as follows:

2) Pool Substrate Characterization (replacement for Embeddedness)

Using the Substrate Characterization data from the semi-quantitative assessment (category 6) and the aquatic vegetation assessment (category 9) the following table may be used to score this metric.

	0.000 (C) (D) e	and the second second the state of the second second second	s suce and such	and Marginal and	500
Substrate		or Gravel	Sand/Silt/Clay	Sand/Silt/Clay	Bedrock or Clay Only
Macrophytes Present	Yes	No	Yes	No	No
Score	20 - 18	17 - 16	15 - 11	10-6	5-1

3) Pool Variability (replacement for Velocity/Depth Regime)

Semi-Quantitative categories 2 (Riffle-Pool Sequence) and 3 (Depth and Width regime) are used to help score this metric. Use the following table to determine pool variability.

Size	Length ≥ Width	Length ≥ Width	Length < Width	Length < Width
Size	Length ≥ Width	Length ≥ Width	Length < Width	Length < Width
Depth	≥3.2 feet	< 3.2 feet	≥3.2 feet	< 3.2 feet

An equal balance of all four pool types achieves higher scores. A prevalence of shallow pools scores lower.

6) Channel Sinuosity (replacement for Frequency of Riffles)

This metric is assessed separately from the semi-quantitative data. It can be estimated in the field, measured during a longitudinal survey or calculated from current aerial photographs.

5.0 Water Quality

During the field study, water quality will be documented through *in-situ* measurements and sampling for laboratory analyses at each of the study reaches as identified in Section 3.1. The following sections present the parameters and documentation methods.

5.1 In-situ Measurements

The following parameters will be monitored at each of the study reaches:

1) temperature, C°

- 2) dissolved oxygen, mg/L
- 3) conductivity, μS
- 4) pH, su
- 5) flow, cfs

In accordance with Section 2.0 calibration will be performed and documented according to the manufacturer's recommendations.

The *in-situ* measurements are recorded on the second page of the Field Data Form. Other information recorded on the Field Data Forms will include:

- 1) general station location information,
- 2) the field crew completing the assessment,
- 3) current hydrologic conditions,

- 4) antecedent moisture conditions, and
- 5) identification of the meters utilized.

5.2 Water Chemistry

Grab samples for laboratory analysis of chloride, sulfate, TDS, and nitrates will be collected at each sample reach at the same time as *in-situ* measurements are obtained and in connection with the biotic assessment. In addition a single water quality collection set will be completed within a single 12 hour period to obtain a "snap shot" of the water quality as discharge occurs. This effort will coincide with the collection of effluent for a quarterly biomonitoring compliance at EDCC. Analytical results from the laboratory will be retained for use in project documentation. The instream concentrations will also be utilized in the development of the site specific water quality criteria for each receiving stream.

Water quality data will be utilized in conjunction with EDCC effluent data (most recent two year period of record), to model instream concentrations of the dissolved minerals and nitrate. In addition this data will be used to model and project instream waste concentrations required to maintain the attainable and existing uses as maintained by the historical discharge conditions.

5.3 Summary of Historical Water Quality.

The historical water quality of the receiving stream and the historical effluent water quality parameters will be will be evaluated and summarized to demonstrate compliance with existing water quality criteria. This evaluation will include an assessment of biomonitoring results and requirements to support the existing biotic communities and the attainable designated uses.

6.0 Benthic Macroinvertebrate Community

6.1 Introduction

The benthic macroinvertebrate protocol utilized in these field studies is intended to evaluate the biological integrity of wadeable streams for the purpose of detecting stresses on community structure, assessing the relative severity of these stresses, and determining the maintenance of the designated uses. The approach is based on the "Rapid Bioassessment Protocol III–Multi Habitat approach using an aquatic dip net as published by the U.S. Environmental Protection Agency (Barbour, M.I. et al., 1999) as adapted for use in pool dominated streams of the Gulf Coastal Plain Ecoregion.

The rapid bioassessment protocol is the preferred macroinvertebrate collecting method for pool dominated streams. The U.S. Geological Survey utilizes a similar

approach for their National Water-Quality Assessment Program (NAWQA; Cuffney et al., 1993). During this Project, the benthic community of each of the reaches described in Section 3.1 will be evaluated utilizing the rapid bioassessment protocols.

In response to the impact of habitat diversity and the variety of in stream habitat associated with the individual study reaches, artificial substrate will be deployed into the study reaches and allowed to colonize for a six week period (Figure 6.1). At the end of the colonization period, the artificial substrates will be collected, processed and the invertebrate community characterized using both semi-qualitative diversity measures and a quantitative assessment. The application of the artificial substrate removes the habitat variable and allows an assessment of the impact of the water quality in relation to the development of the benthic community assemblage.

6.2 Methods

Qualitative samples of the benthic macroinvertebrate assemblage will be collected over a predetermined period of time using an aquatic dip net and sampling all available microhabitats present within the stream reach.

Each station will be sampled for three minutes according to the RBA protocol. Each sample will be placed in a bucket and condensed with a series of washings through a series of sieves, the smallest of which will be a U.S. Standard #30 sieve.

The artificial substrate at each location will consist of a rock filled basket and /or a Hester-Dendy plated substrate. The artificial substrates will be deployed, and available of insect colonization for a 6 week period after which they will be retrieved and processed to identity the diversity and the quantity of invertebrate community. The artificial substrate will provide a comparison of invertebrate community development potential as allowed by the existing water quality and allow comparisons that are not impacted by variable habitat, but by water quality alone.

6.3 Sample Processing

6.3.1 Rapid bioassessment

Random sub-samples of the concentrated sample will be placed on a white sorting tray from which the macroinvertebrates will be removed. A 100 organism sub-sample will be randomly picked (according to the standardized RBA procedures) from the tray and field identified to the lowest possible taxon.

6.3.2 Artificial substrate samples

After a six week exposure period, the artificial substrates will be collected, insects removed either by repeated washings and/or manually. The insects will be preserved and a 100 organism sub-sample collected at random for identification. In addition, the numerical abundance of the colonized community will be determined either by a complete count or a volumetric estimation technique depending on the density of the colonization.

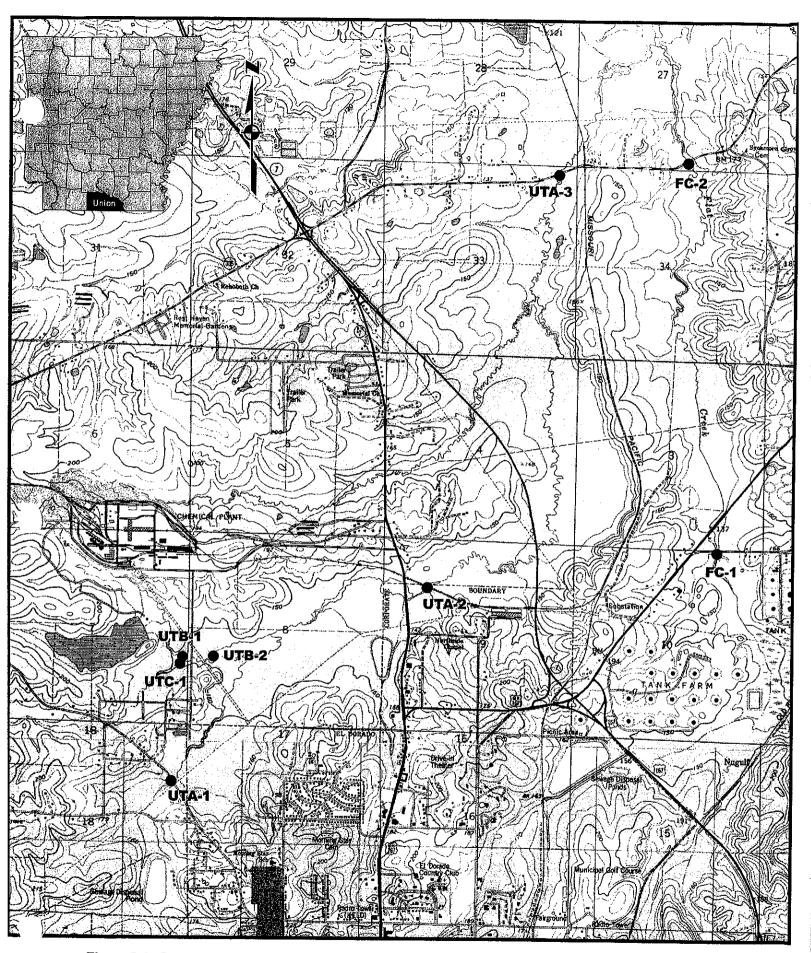


Figure 6.1. Proposed locations for deployment of Artificial Substrate to monitor aquatic invertebrate community for EDCC section 2.306 aquatic life field study. April 2006

6.3.3 Taxonomic Assemblage

The 100 organism sub-samples of both techniques will be preserved in 70% ethanol or Kayles solution for lab verification of field identifications and as a voucher to be used if more detailed analysis becomes necessary. Laboratory verification will be accomplished using general keys including but not limited to Merritt & Cummings, (1996); Pennak, (1989), and Unsinger (1963). In addition more taxa specific keys such as Mayflies of North and Central America (Edmunds et. al., 1976), Dragonflies of North America, (Needham & Westfall, 1975) or keys developed specifically for Arkansas may be utilized for the laboratory verification of the field identifications.

After the 100 organism random sample is collected, labeled and preserved, the larger debris items (e.g., leaves, sticks, rocks, etc.) in the collected sample will be examined for clinging benthic macroinvertebrates. Any organisms will be removed prior to the larger debris being discarded. The remainder of the original sample not utilized in the selection of the 100-organism sub-sample will be concentrated and retained as a voucher for the sample picking techniques used. The voucher samples will be held at GBM^c for a period of 24 months following the conclusion of the third party rulemaking at which time the samples may be submitted to an academic zoological collection. The macroinvertebrate assemblages from each station will be analyzed according to several benthic community biometrics. These will include richness (number of different taxa), EPT richness (number of different taxa represented in the orders Ephemeroptera, Plecoptera, and Trichoptera), and species diversity as determined by the Shannon-Wiener Diversity Index.

The analysis will also include the seven biometrics used by the State of Arkansas (ADPCE, 1988) in their RBA scoring system. This scoring system places a value (1 to 4, 1 = excessive differences, 4 = no differences) on each of the seven biometrics to achieve a final mean score. The biometric scoring will indicate the impacts to a benthic community when compared to the benthic community of different reaches, to demonstrate effects of point and or non-point source contributions between reaches.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the two-page field data sheets – Benthic Macroinvertebrates. The first page of the two-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1) time sampled,
- 2) relative abundance of aquatic tropic level communities,
- 3) percent of major habitats sampled,
- 4) percent of specific microhabitats sampled, and
- 5) relative abundance of the ordinal groups observed during sample collection.

The second page provides for the listing of the taxa comprising the 100 organism sub-sample and the field identifications and the numbers of each. Also included on page 2 are the general reach identifiers and preliminary summary sections to be used in the application of selected biometric scoring criteria.

7.0 Fish Community

7.1 Introduction

The fish community supported in a stream is in direct response to available habitat, food sources, and water quality of that particular stream. The presence of a certain level of species richness and diversity along with a community structure similar to that expected in typical streams of the ecoregion are indicators of aquatic ecosystem health.

The objective of the fish community characterization is to collect and identify a representative sample of all except very rare species in the assemblage reflective of the relative abundance within the community assemblage. Backpack electrofishing equipment will be used as the principal sampling gear supplemented by block netting and seining in habitats where flow, substrate and structure affect capture of benthic species. All team personnel will be involved in collecting fish.

Although most of the receiving streams into which the discharges occur are a fraction of the 10 square mile threshold for perennial fish community maintenance, the fish community of the reaches described in Section 3.1 will be evaluated during this project:

7.2 Methods

1

Major factors that influence collecting include flows, water depth, instream obstructions, water turbidity, temperature and conductivity. The primary tool utilized in the fish collections will be a Smith-Root backpack electroshocker. However, seines and block nets may be utilized as necessary to adequately characterize the reaches indicated.

Sampling fish species to determine their proportionate abundance will be conducted after all water quality parameters and/or samples are collected but prior to the collection of the benthic and habitat data as described in Sections 4 and 5.

Shocked fish will be captured with hand held dip nets and held in buckets while the sampling continues throughout the reach. The entire channel within the sampling reach will be sampled. Actual shocking time will continue for not less than 30 minutes unless the wetted habitat area of any reach is too small for 30 minutes of shocking time. The shocker is equipped with an automated timing mechanism which records the amount of time that electricity is actually being applied, or "pedal down time" (PDT). In addition to PDT, the total collection time will be recorded. There will not be a maximum time limit for the collection period, however the collections may be terminated when the principal investigator determines that additional collection time will not likely result in additional fish species. Sampling information will be recorded on the Field Data Sheets-Fish. General comments (perceived fishing efficiency, missed fish, and gear operation suggestions) will be recorded on the lines provided on the form. An effort to search for and collect fish will be completed at all reaches, even if the stream is extremely small, and it appears that sampling may not collect any specimens.

7.3 Sample Processing

١

Following collection, each sample of fish from a reach will be preserved in formalin for later processing. Sample processing will involve tallying and identifying fish, examining individual specimens for external anomalies, preparing voucher specimens for taxonomic confirmation and archival at a museum.

For each study site, a complete tabulation of taxa, numbers of individuals and their percent composition will be included on the two-page Field Data Sheets – Fish. The first page of the two-page data form will include general information identifying the sample reach and investigators as well as site observations to include:

- 1) time sampled,
- 2) Pedal Down Time (PDT),
- 3) relative abundance of aquatic tropic level communities,
- 4) percent of major habitats sampled,
- 5) percent of specific microhabitats sampled, and
- 6) relative abundance and scoring of substrate.

Ultimately, the fish identification will be verified in the lab using keys in the Fishes of Arkansas (Robison and Buchanan, 1988) and the Fishes of Missouri (Pflieger, 1975) to species level where possible.

The fish collections at each reach will be compared according to several biometrics including: species richness (number of taxa); sunfish richness; species diversity; abundance; dominant ordinal groups; percent of tolerant species; trophic structure; percent of hybrids; percent of diseased fish; and key indicator species as listed in Regulation No. 2 of the ADEQ.

In addition, the fish assemblage will be evaluated utilizing the fish community biocriteria and a comparison to typical Gulf Coastal Ecoregion least disturbed streams. The fish community biocriteria scoring was developed by the ADEQ and uses eight metrics to determine use support status.

8.0 Study Schedule

Ì

Jask	Description	Anticipated Schedule
Phased	Control State to Bat Time of the State	
Task 1	Work Plan development	March 20 – April 7, 2006
Task 2	Field Documentation	April 15 - June 15, 2006
Task3	Data evaluation & modeling	June 1 - September 31, 2006
Task 4	Project reporting	October 1 - December 31, 2006
Phase 2		自己的现在分词 网络拉克斯特拉克斯特拉斯特拉斯特 医心理检查的 网络拉拉斯特拉拉
Task 5	Rulemaking coordination	January 1- June 2007
Task 6	NPDES permit modification	June 2007

The following table provides an overview of the schedule anticipated to facilitate the proposed 3rd party rule making for EDCC.

8.1 Field Study and Documentation of Existing conditions

The spring seasonal biotic characterizations will be completed during April/ May 2006. This period corresponds to the seasonal fishery period as stipulated in ADEQ seasonal fishery designation. Depending on the results of the seasonal assessment, additional field activities may be required under summer low flow conditions at those sites which have watersheds greater than 10 square miles.

8.2 Data Assessment and Criteria Development

The status of existing biotic conditions and the development of the proposed criteria to support the seasonal fisheries use will be completed during the period form June – September 2006. Should the information developed during the seasonal aquatic life study require increased level of documentation due to the perennial fisheries use designation, additional field studies may be completed during summer low flow conditions (July & August 2006) in Study reaches that have a perennial fishery designation.

8.3 Report submittal and request for 3rd Party Rulemaking

The documentation supporting the initiation of the 3rd party rule making process will be submitted for staff review by November 15, 2006. After the 30 day review period, the documentation will be submitted to the ADEQ Commission for Rule making.

9.0 References

- Barbour, M.T. 1999. Rapid Bioassessment Protocols for use in wadeable streams and rivers. 2nd Edition USEPA 841-B-99-002.
- Cuffney, T.F., M.E. Gurtz, and M.R. Meador. 1993. Methods for Collecting Benthic Invertebrate Samples as Part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-406, Raleigh, North Carolina.
- Edmunds, G.F., Jr., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. Univ. Minnesota Press, Minneapolis, MN. 330 pp.
- Kaufmann, P.R. (ed.). 1993. Physical Habitat. pp. 59-69 IN: R.M. Hughes (ed.). Stream Indicator and Design Workshop.
- Merritt, R.W. and K.W. Cummins. 1984. An introduction to the aquatic insects of North America (Second edition). Kendall/Hunt Publishing Company, Dubuque, IA 52001.
- Needham, J.G. and M.J. Westfall, Jr. 1954. Dragonflies of North America. Univ. Calif. Press, Ithaca, NY. pp. 41-57.
- Pennak, R.W. 1989. Freshwater invertebrates of the United States Protozoa to Mollusca (Third edition). John Wiley and Sons, Inc., New York, NY. 628 pp.
- Pflieger, W.L, 1975. Fishes of Missouri. Missouri Department of Conservation. 343pp.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and rivers: Benthic Macroinvertebrates and Fish. EPA/440/4-89/001. U.S. Environmental Protection Agency, Assessment and Watershed Protection Division, Washington, D.C.
- Robison, H.W. and T.M. Buchanan, 1988. Fishes of Arkansas. University of Arkansas Press. 536 pp.
- Unsinger, R.L. 1963. Aquatic insects of California with keys to North American genera and California species. University of California Press, Berkley, CA.
- U.S. Environmental Protection Agency (EPA). 1983. Technical Support Manual: Waterbody Surveys and Assessments for Conducting Use Attainability Analyses.

)

Appendix B Agency documentation

Arkansas Natural Resources Commission

J. Randy Young, PE Executive Director 101 East Capitol, Suite 350 Little Rock, Arkansas 72201 http://www.anrc.arkansas.gov/ Phone: (501) 682-1611 Fax: (501) 682-3991 E-mail: anrc@arkansas.gov Mike Huckabee Governor

August 8, 2006

Mr. Vince Blubaugh Principal, CBM^e & Associates 219 Brown Lane Bryant, Arkansas 72022

RE: Review and Comments Removal of Designated Domestic Water Supply Use from ELCC Tributary of Flat Creek, Flat Creek and Haynes Creek in Union County, Arkansas

Dear Mr. Blubaugh:

Thank you for the opportunity to review and comment on the removal of the Designated Domestic Water Supply Use from an unnamed tributary of Flat Creek, Flat Creek and Haynes Creek to its confluence with Smackover Creek in Union County, Arkansas. This unnamed tributary appears to be ELCC Tributary, as identified on various ADEQ listings.

The removal of the Designated Domestic Water Supply Use from these reaches of Haynes Creek and its tributaries above Smackover Creek would not conflict with the Arkansas State Water Plan. If you need any further assistance, or have any questions, please contact Steve Loop at (501) 682-3959.

Sincerely. m m

Earl T. Smith, P.E., Chief Water Resources Division

Arkansas Department of Health and Human Services

Division of Health

Paul K. Halverson, DrPH, Director

Engineering Section - Environmental Health Branch - Center for Local Public Health

Postal Address P. U. Box 1437, Slot		1-501-661-2623	TDD: 1-800-234-4399
Physical Address for UPS or Fedex	4815 West Markham St., Slot H-37	Little Rock, AR 72205	Fax: 1-501-661-2032

July 24, 2006

Vance Blubaugh GBM^c & Associates 219 Brown Lane Bryant, AR 72022

Re: Domestic Water Supply Determination – Flat & Hayes Creek GMB^c No. 2042-06-070 Your letter dated June 21, 2006

Dear Mr. Blubaugh,

Unnamed Tributaries of Flat Creek, Flat Creek and Hayes Creek near El Dorado, Arkansas, have not been approved and are not being considered for use as a public water source.

Questions on whether these stream are used as a water source by private individuals should be directed to the Union County Sanitarian.

If there are any questions please contact me at 501.661.2623.

Sincerely,

5 Henr

Robert Hart Chief Engineer Engineer Section

RH:DT:WCH:wch

CC: Union County Sanitarian

219 Brown Lane

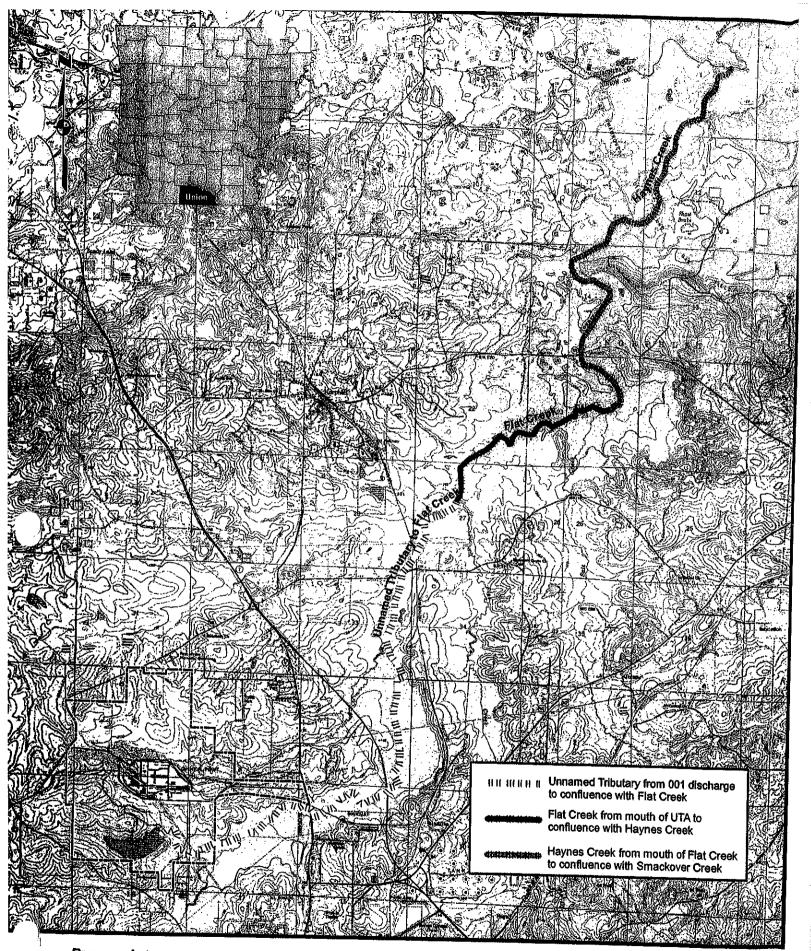
June 21, 2006

Mr. Earl T. Smith Chief Water Management Division Arkansas Soil and Water Conservation Commission 101 East Capital, Suite 350 Little Rock, AR 72201

Re: Domestic Water Supply Determination GBM^c No. 2042-06-070

Dear Mr. Smith:

GBM^c & Associates is developing documentation, pursuant to the Arkansas Water Quality Standards, to evaluate removal of the Designated Domestic Water Supply Uses from an unnamed tributary of Flat Creek, Flat Creek and Haynes Creek near El Dorado, Arkansas. Please see the attached map of the stream reaches.


Pursuant to ADEQ policy, we are requesting a determination as to whether removal of the Designated Domestic Water Supply Uses from these waterbodies would conflict with the Arkansas Water Plan.

Thank you for your attention to this request for information. If you have any questions or need additional information please contact me or Roland McDaniel at (501) 847-7077.

Respectfully submitted, GBM° & ASSOCIATES

Vince Blubaugh Principal

Attachment - Figure 1 – Map of Flat and Haynes Creeks

Proposed stream segments in the Haynes Creek watershed for removal of domestic water supply use via 3rd party rule making.

June 20, 2006

219 Brown Lane

June 21, 2006

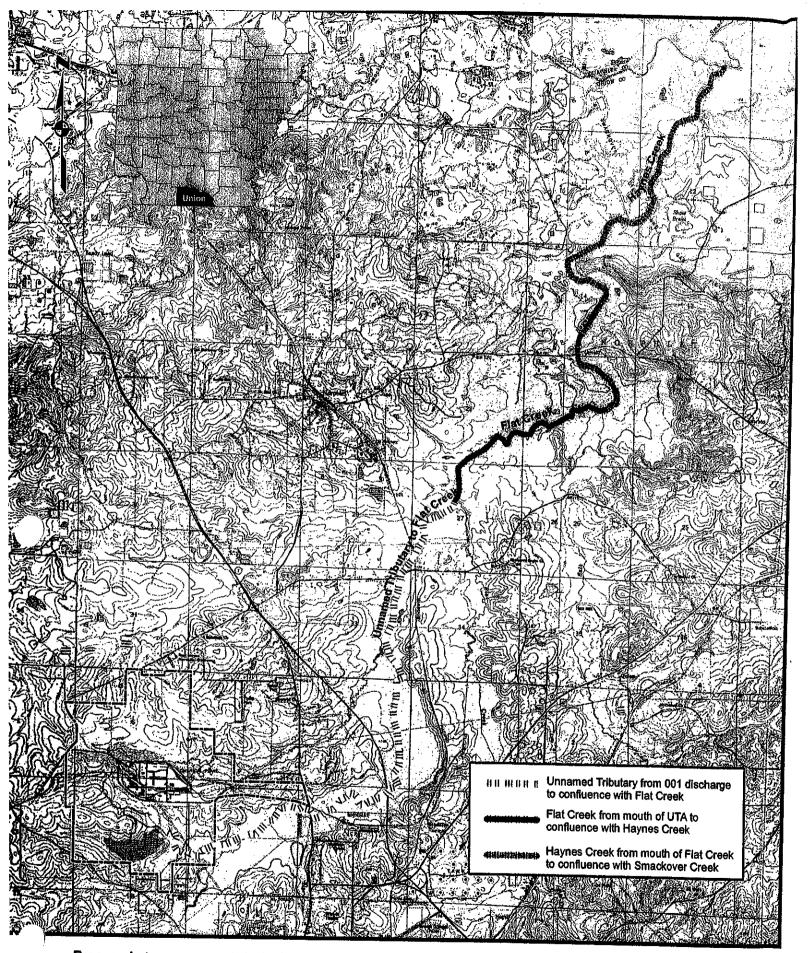
Mr. Robert Hart, P.E. Chief Engineer Arkansas Department of Health 4815 West Markham Street Little Rock, AR 72205-3867

Re: Domestic Water Supply Determination GBM^c No. 2042-06-070

Dear Mr. Hart:

GBM[°] & Associates is developing documentation, pursuant to the Arkansas Water Quality Standards, to evaluate removal of the Designated Domestic Water Supply Uses from an unnamed tributary of Flat Creek, Flat Creek and Haynes Creek near El Dorado, Arkansas. Please see the attached map of the stream reaches.

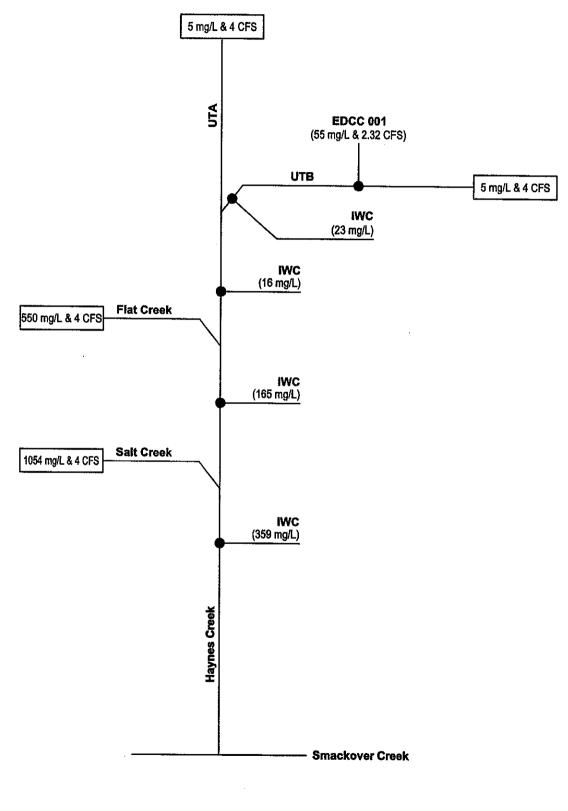
Pursuant to ADEQ policy, we are requesting a determination as to whether these have been approved, or are being considered for use, as domestic water supply sources.


Thank you for your attention to this request for information. If you have any questions or need additional information please contact me or Roland McDaniel at (501) 847-7077.

Respectfully submitted, GBM^c & ASSOCIATES

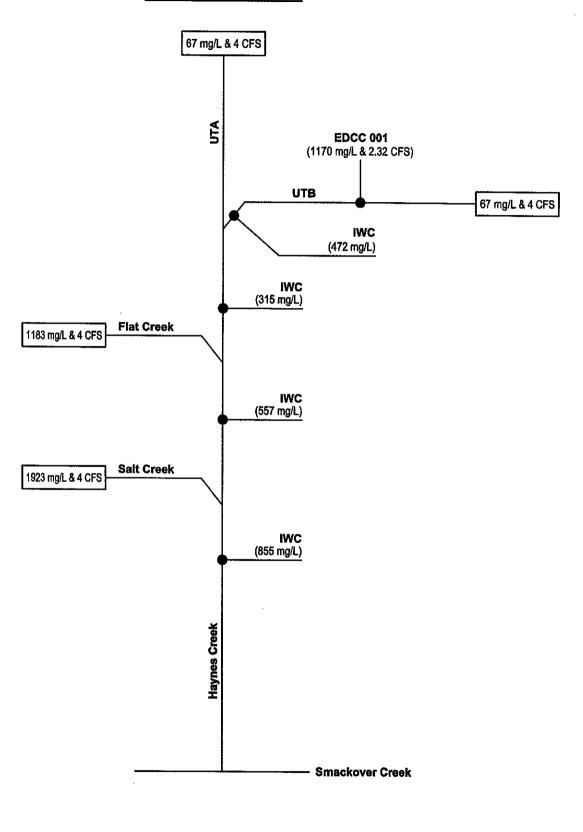
Vince Blubaugh Principal

Attachment: Figure 1 - Map of Flat and Haynes Creeks



Proposed stream segments in the Haynes Creek watershed for removal of domestic water supply use via 3rd party rule making.

Appendix C DMR and Outfall Specific Mineral Data with Statistical Assessment



)

TDS IWC Schematic

EDCC Outfail 001 DMR Flow Data 7/02 - 4/06

4

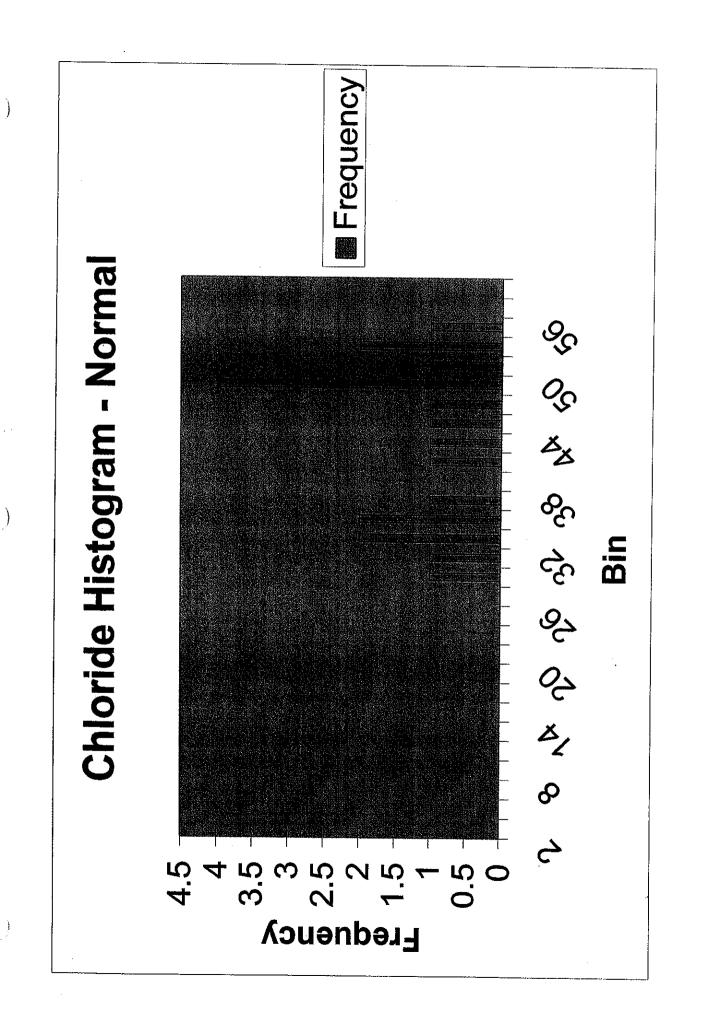
Flow (mgd) Mo Average	Date	Flow (cfs) Mo Average
0.0668	Jul-02	0.10
ND	Aug-02	ND
0.4967	Sep-02	0.77
ND	Oct-02	ND
0.5699	Nov-02	0.88
0.4562	Dec-02	0.71
0.6191	Jan-03	0.96
0.4015	Feb-03	0.62
1.0333	Mar-03	1.60
0.8786	Apr-03	1.36
0.449	May-03	0.69
0.4195	Jun-03	0.65
ND	Jul-03	ND
0.444	Aug-03	0.69
0.1927	Sep-03	0.30
0.1334	Oct-03	0.21
0.4225	Nov-03	0.65
ND	Dec-03	ND
0.3763	Jan-04	0.58
0.9064	Feb-04	1.40
0.8731	Mar-04	1.35
0.6358	Apr-04	0.98
0.7087	May-04	1.10
0.6252	Jun-04	0.97
0.5357	Jul-04	0.83
0.829	Aug-04	1.28
0.559	Sep-04	0.86
1.078	Oct-04	1.67
1.05	Nov-04	1.62
1.421	Dec-04	2.20
1.251	Jan-05	1.94
1.227	Feb-05	1.90
1.499	Mar-05	2.32
1.38	Apr-05	2.14
1.35	May-05	2.09
1.12	Jun-05	1.73
ND	Jul-05	ND
ND	Aug-05	ND
1.14	Sep-05	1.76
1.36	Oct-05	2.10
ND	Nov-05	ND
ND	Dec-05	ND
1.25	Jan-06	1.93
1.31	Feb-06	2.03
1.024	Mar-06	1.58
0.73	Apr-06	1.13
and the second second		
1.499	Maximum	2.319
0.811	Average	1.255
0.067	Minimum	0.103
38	Number	38

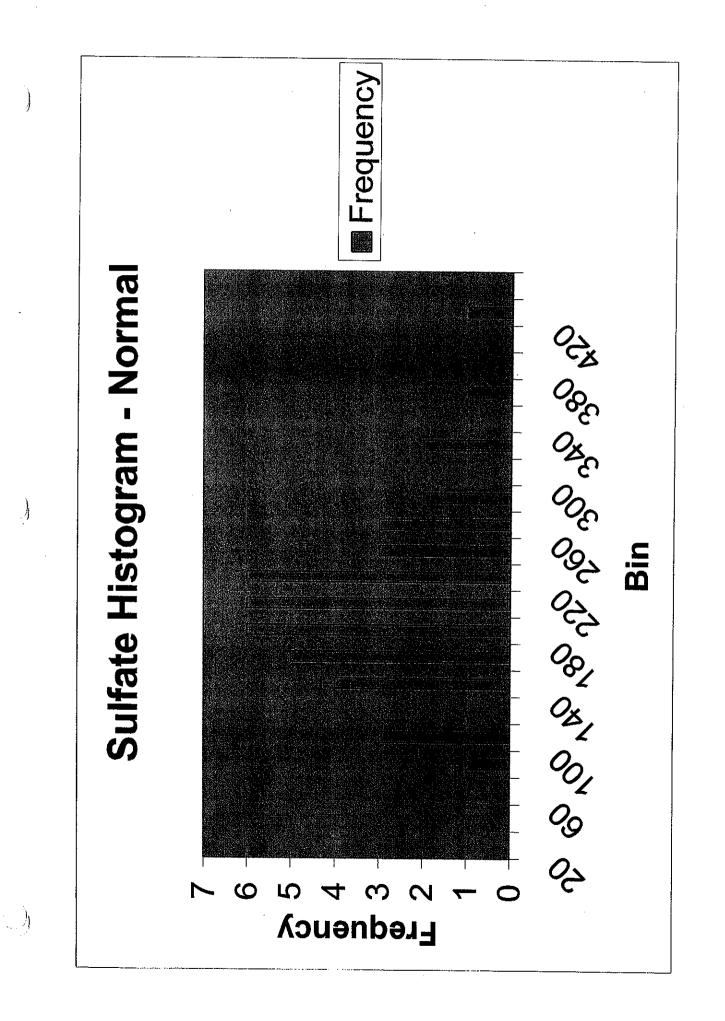
Summary of DMR monthly average values for Chloride, Sulfate, and TDS for EDCC Outfall 001.

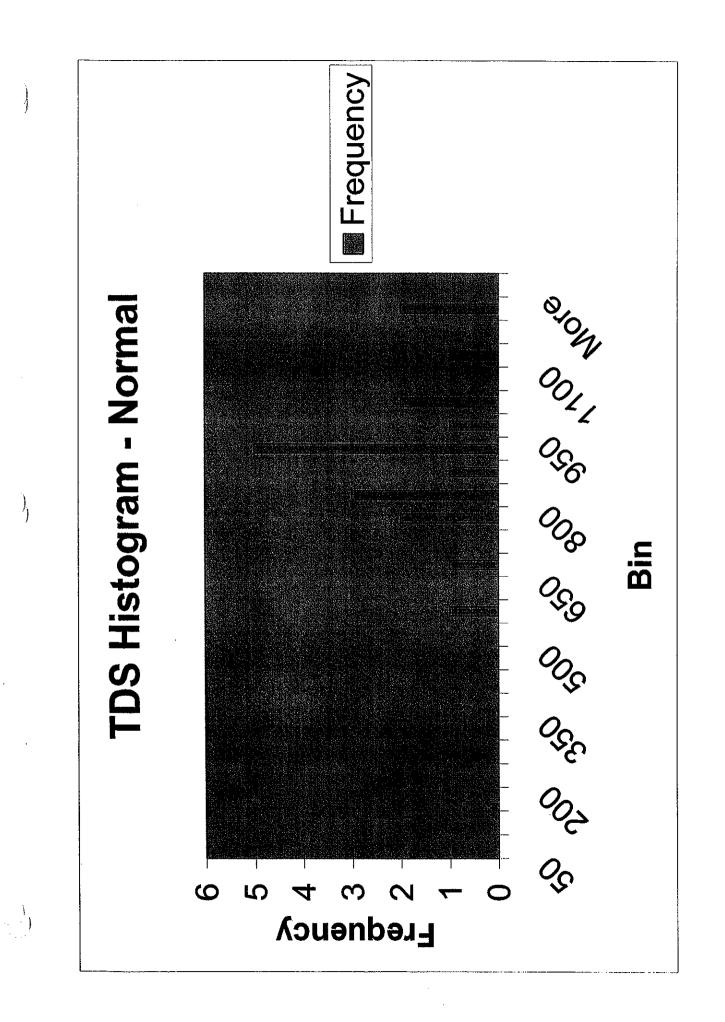
)

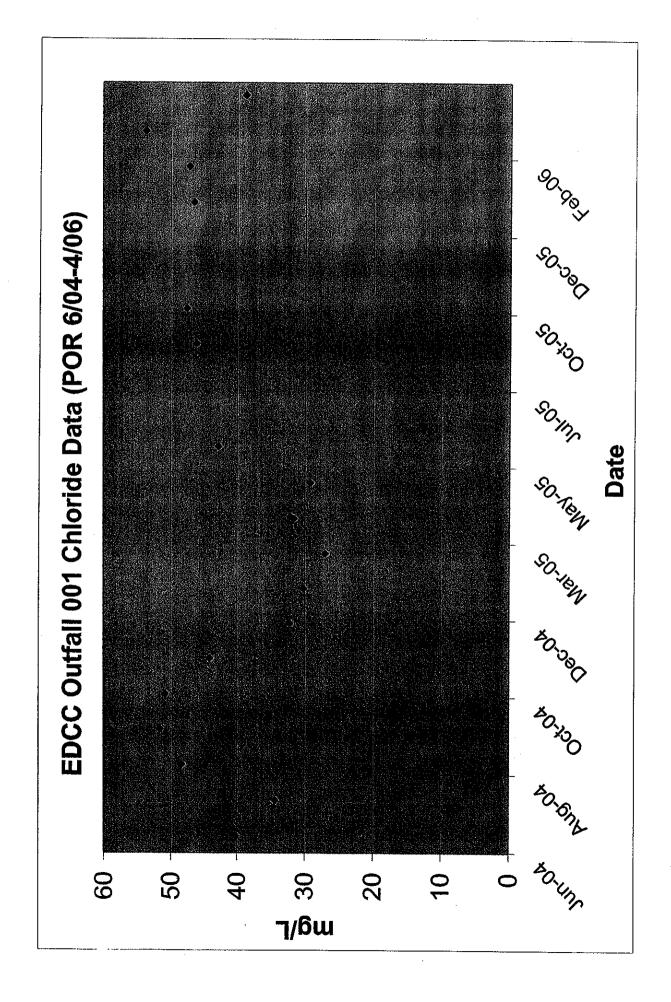
h

Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
Jan-02		136	i = 0 (iiigit)
Feb-02		137	
Apr-02		232	
May-02		272	
Jun-02		408	
Jul-02		359	
Sep-02		309	
Nov-02		306	
Dec-02		213	
Jan-03		245	
Feb-03		213	
Mar-03		166	
Apr-03		160	
May-03		189	
Jun-03		252	
Aug-03		226	
Sep-03		213	
Oct-03		218	
Nov-03		219	
Jan-04		229	
Feb-04		184	
Mar-04		176	
Apr-04		158	
May-04		150	
Jun-04	40.2	134.5	000
Jul-04	34.4	125	900
Aug-04	48.4	178	710
Sep-04	51.6	200	940
Oct-04	50.8	188	1400
Nov-04	44.2	179	1000
Dec-04	32.2	193	1000
Jan-05	30.2	187	860
Feb-05	27	268	790
Mar-05	31.6	250	900
Apr-05	32.1	203	900
May-05	29.2	166	850
Jun-05	42.8	167	710
Sep-05	46.2	143	890
Oct-05	47.6	143	1200
Jan-06	46.5	97	1100
Feb-06	47.2	99.2	780
Mar-06	53.6	99.2 90.4	760
Apr-06	38.8	70.7	630 510

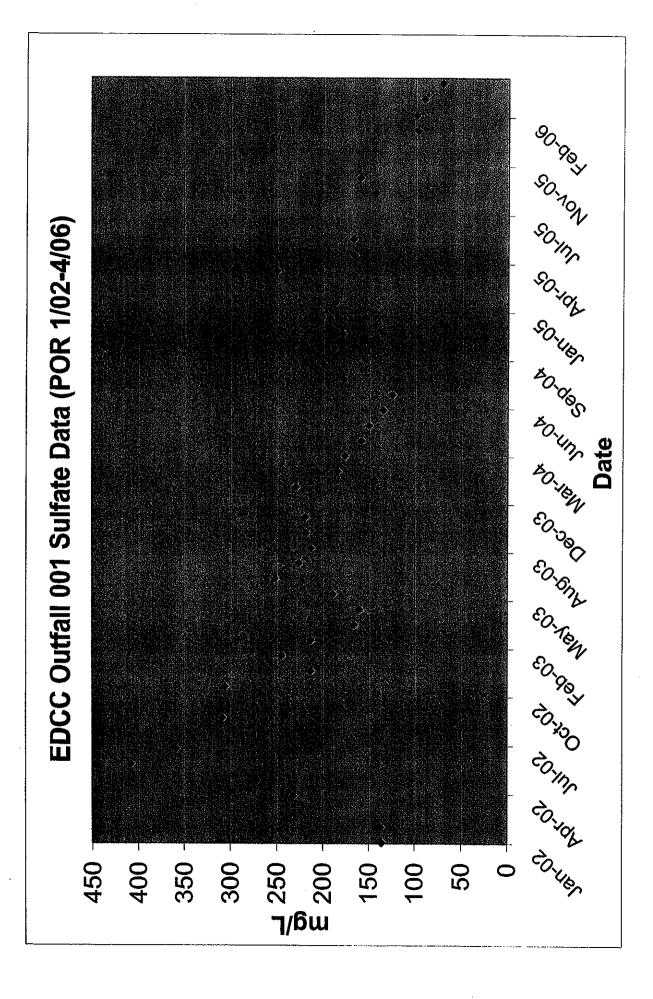

.


Summary of DMR monthl	y average values fo	Chloride, Sulfate, and TDS for EDCC Outfall 001,
Statistics	Chloridoo	


h


)

Data Characterization	Chlorides (mg/l)	Sulfate (mg/l)	TDS (mg/l)
		1874 100 1970 1970 1970	
modian count standard deviation CV Pn 99% 95% Z for 99 %tile Z for 95 %tile	19 9 0.21 0.78 0.99 0.95 2.33 1.64	43 68 0.35 0.90 0.99 0.95 2.33 1.64	19 179 0.20 0.78 0.99 0.95 2.33 1.64
	Normal Formula	Normal Formula	Normai Formula



)

.

)

		23. S.		199					8				315
		6.32	10.32	14.32	18.32		6.32	10.32	14.32	18.32	A CONTRACTOR OF A CONTRACTOR A	6.32	10.32
		4	4	4	4		4	4	4	4		4	4
	and a support	5	5	550	1054	0.6260160 110	13	13	32.0	6.43		67	67
tfall 001 - IWC Calcs - Final	DESIGNED AVAILABLE	2.32	6.32	10.32	14.32	DISCORE LEVENDED	2.32	6.32	10.32	14.32	DISCREETED VIEW	2.32	6.32
EDCC Outfall 001 - I	alisence active (me) and	55	23	16	165	DISC: COORD TIME	309	122	80	67	alsieneeseevereeneese		472
	CHERTERING		artisti an estatuenes at turnes contratations attentiones estatuenes at turnes contratations attentiones estatuenes estatuenes estatuenes estatuenes estatuenes			SINGRAPHIC		BERGER ALIVATION DE CARTAGORIA CONTRACTORIA Descritorio de la contractoria de la		Hastnessen and Article			

² U/S concentration is the average of data in an ADEQ publication "TMDL Investigation of Water Quality Impairments to Unnamed Tributary to Flat Creek Union County, Arkansas", April 1998. U/S concentration is the average of data collected at FC-2 (4/17,20/06, 5/31/06) during the time of the aquatic life investigation.

14.32

4

1183

10.32

315

S.F.

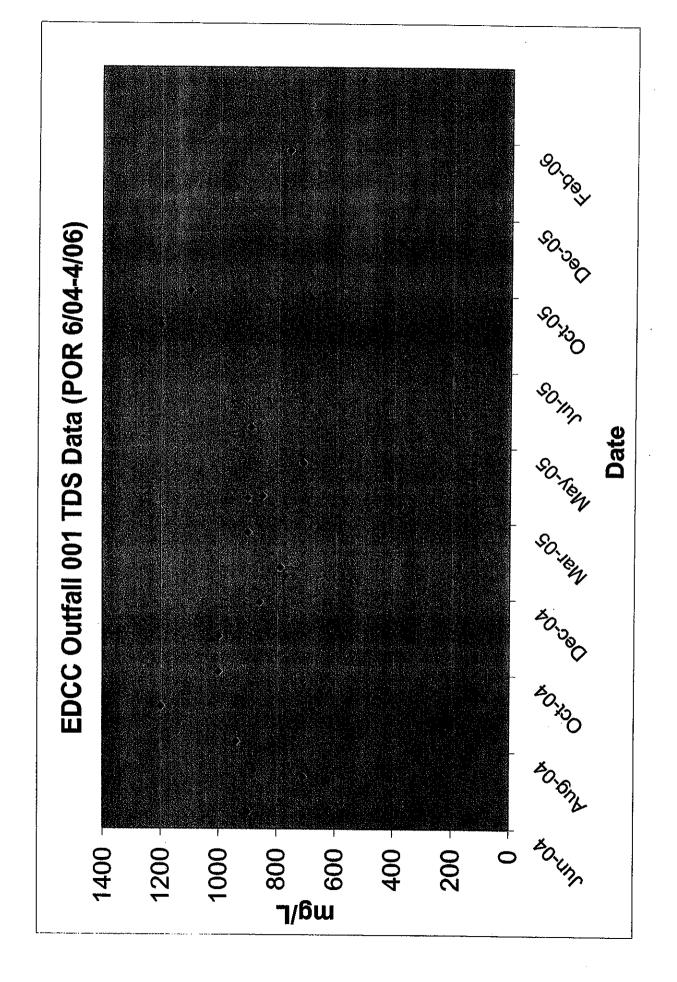
*

18.32

4

1923

14.32


557

Page 1

Ņ

))

^

))

))

(۱)

EDCC - Minerals IWC Calculations Final	Highest monthly average flow used 95th Percentile Data used Instream Background used	
UTB Tributary (form Outfall 001 to confluence of UTA Tributary) (4 cfs * 5 mg/L) + (2.319 cfs * 55 mg/L)) / (4 cfs + 2.319 cfs) 20 128 6.319 148 6.319	UTA Tributary (form confluence with UTB Tributary to confluence with Flat Creek) with Flat Creek) Definition ((4 cfs * 5 mg/L) + (6.319 cfs * 23 mg/L)) / (4 cfs + 6.3191.16 cfs) 20 145 10.319 165 10.319	Flat Creek (from confluence with UTA Tributary to confluence with Salt Creek) (4 dts * 550 mg/L) + (10.319 dts * 16 mg/L)) / (4 dts + 10.319 dts) 2200 165 14.319 2365 14.319
<pre>((4 cfs * 13 mg/L) + (2.319 cfs * 309 mg/L)) / (4 cfs + 2.319 cfs)</pre>	<pre>%************************************</pre>	Sume ((4 cfs * 32 mg/L) + (10.319 cfs * 80 mg/L)) / (4 cfs + 10.319 cfs) 128 826 14.319 954 14.319 67
(4 cfs * 67 mg/L) + (2.319 cfs * 1170 mg/L)) / (4 cfs + 2.319 cfs) 268 2713 6.319 2981 6.319	105 ((4 cfs * 67mg/L) + (6.319 cfs * 472 mg/L)) / (4 cfs + 6.3191.16 cfs) 268 2983 10.319 3251 10.319	(4 ds * 1183 mg/L) + (10.319 ds * 315 mg/L)) / (4 ds + 10.319 ds) 4732 3250 14.319 7982 14.319
Haynes Creek(from confluence of Flat & Salt Creeks to		

Ì

);

)

 Instruct Creation
 Instruction
 Instruction 18.319 6579

((4 cfs * 6.43 mg/L) + (14.319 cfs * 67 mg/L)) / (4 cfs + 14.319 cfs) 25.72

18.319 959 18.319 985 985

((4 cfs * 1923 mg/L) + (14.319 cfs * 557 mgL)) / (4 cfs + 14.319 cfs) 7692 7976 18.319 15668 18.319

IWC = [(Qb × Cb) + (Qe × Ce)] / (Qb + Qe)

Where:

- The background flow of the receiving stream The background concentration of chloride, sulfate, or TDS in the receiving stream " " පී පී

 - The discharge flow of the effluent The effluent concentration of chloride, sulfate or TDS ။ ။ ဗီဗီ

Appendix D Summary of Toxicity Testing Data

El Dorado Chemical Company - Critical Dilution = 100% Biomonitoring - No Observed Effect Concentrations for Survival

 ·	Out	Ifall 001
 Date	Water Flea	Fathead Minnow
A March Incession	0%	0%
s dim010 s s s	25%	25%
en en ser og og og ser	25%	25%
MEROPA STREET	12%	12%
a din in dia ka	25%	12%
》《·卡尔·古印记》》》	12%	6%
	12%	12%
	25%	25%
	12%	6%
	50%	25%
Bala (D) TREA PARAMETER	50%	12%
A Hereover	25%	12%
	56%	32%
	56%	32%
	75%	42%
s saodaa sood	100%	75%
Cici204	100%	0%
Self-Nov-04	100%	42%
Dec 04 server	100%	56%
and Jan 05 and a second	100%	32%
Peorla Peorla Peorla Peorla	100%	32%
ale Manqu5	100%	56%
	100%	100%
May 105 Person	100%	100%
	100%	100%
Avig 05		
105 (30) (30) (30)	100%	100%
Oct-05	100%	100%
din (Din Die Research	100%	100%
And Februic	100%	100%
	100%	100%
Apr-06	100%	100%

Appendix E Field Data Sheets

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: F	C-1	LOCATION:
STREAM NAME:	·····	RIVER BASIN:
LAT:	LONG:	PROJECT:
INVESTIGATORS:	SHITOBE DATE/TIME	: 4/ 19/66 (1130 FORM CHECKED BY:
WEATHER CONDITIONS	Now Pa storm (heavy rain) rain (steady rain) showers (intermittent) % % Cloud cover clear/sunny	st 24-hr Heavy rain in the last 7 days? Yest No Air Temperature 70 °C/°F
STREAM ATTRIBUTES	Montane, non-glacial	Spring-fed Catchment Area:mi ² Mixture of origins Stream Order: Other Other 5ft/mi) Moderate (10-24 ft/mi)
THE REPORT	High I Moderate Low	Flows Measured? Reach: Slope & Sinuosity None Yes No ft/mi
WATERSHED	Predominant Surrounding Lat Forest 6 Sub- Pasture 5 Com Row Crops % Indus Urban % Other	Urban Image: Constraint of the second stream o
RIPARIAN VEGETATION STREAM		nrub/Sapling <u>60</u> % XHerbs/Grasses <u>10</u> % Turf%
MORPHOLOGY STREAM DISTURBANCES	Riffle <u>/</u> % Run <u>4</u> Roads A Bridges D Pipeli Dams A Trash A Cattle	Ø_% X Pool <u>50</u> % nes ☐ Beaver Dams ☐ Point Source Access ☐ Mining ☐ ATV Crossing ☐ Other
WATER USSERVATIONS	Channelized:	Yes Some No None Minimal Moderate Heavy Aggrading Degrading Widening Headcutting Water Surface Oils
SECIMENT	Turbidity/Water Clarity (if not Clear Slightly t Opaque Stained Sediment Odor	urbid
DESERVATIONS	Normal Sewage Chemical Anaerobic Other	Petroleum Sludge None Sludge Oils Other

.

Stream Habitat Assessment (Semi-Quantitative)

Station #: FC-1	Stream: Flat Could	Date/Time: 4/19/06/0940-	Initials: SKH/JBB
u/s latitude:	d/s latitude:	u/s:	
u/s longitude:	d/s longitude:	d/s:	

1. Reach Length Determination

Bankfull Width 2-5' 24' 36% 44' 5/4 Average Length (ft) Length (ft) Bankfull Width 2-5' 24' 23.5 25.0' 82' 25.9 518' 51.8 Bankfull Depth 1.3 1.2' 7.5 25.0' 82' 25.9 518' 51.8	Placameter		least of this and	ANCIMUM AN	deneint Retein	16		I Dial Reaction	Sub-Reach
Bankfull Denth 1 2 1 77 635 636 67 67 518 31.8		1044	21 8		4. 18	57.3 3.4	Average	Lengthi (ft)	 Length² (ft)
Bankfull Depth 1 2 1 2		2.5'	24'	23.5	250'	82	25,9	518'	51.8
	Bankfull Depth	13	1.7			-	1.5	na	na

Average width times 20

² Total Length divided by 10

2. Riffle-Po	ol Sequ	ence												
Meripi						(ch)(Nide	ibor 2-14	<u>ficibilit</u> i	eel					
Riffie			8 28.6	9 15	7.0 /	57.8	220	10		9		/		27'
Run	218		<u> </u>		3.8	マー	29.8	29		X I	15	╞─┤	141.6	379
Pool	30.0	· · · · · · · · · · · · · · · · · · ·			/	$\overline{}$	V (. 0	12.8	51.8	51. 2	1-		183.2	35
Sequence			KYN OCON			XXXX	X XX		min			0.0 1	n/a	A
'Riffle="xxx",	Run=""	, Pool="~		<u>L</u>	I		L			<u></u>			Para	
3. Depth ar	nd Width	Reaim	نبري م	uBridge Influe	e	7					2	1.6	200	q '
Morph				1		9.259.00	inde De		NAIS GA					1
Type		2	3	4		1.00	6	7	3	9	10	A	verage	
Riffle Depth		04	102 0.61	0.2 0.Le	10.20	1010.2	0.410.2	05103	\mathbb{N}/\mathbb{N}		1		21,22	
Riffle Width		21	7 2	1.2 /1	1.0	151	15.0	10	\mathbf{X}	$\overline{\mathbf{N}}$				
Run Depth ³	1.01	0.8 1.0	10.8024	0.207	10.2	17	1.010.6	1.010.6		. 17	1.61		61.57	
Run Width	12		1' 12	Q 12		X	9.0	9.0	\mathbf{X}	-X -	10		1.2	
Pool Depth		18 10		1/1	\overline{V}	VZ	17		2.411.4	4.12			61.6	
Pool Width	29.	2 12	$\langle \rangle$	$\langle \cdot X$		\times	$\overline{\mathbf{X}}$	12.0	200	21.0			20.7	
Thalwag / /	Average	· /· -	~ 1		<u>`</u>			12.1		- 1.0		21-	00(
4. Epifauna	al Subet	rata Da	Shell Fromt Sta	- fin	J. 4-14 15-1	ong sand	7 Kildin							
Section 1		2 · · · ·						rates)			10	10.00 SC		
	<i>3</i> 6	717	7/5	20	57/) 3	$\mathcal{O} \mid \mathcal{I}$	ALCONTROL OF LODGE	-0 4	7		Aver 3	age 7 %	
								~			60	2	(10	
5. In-Stream	n Habita	at, Perce	ent Stabl	e Habitat	: (Avai	lable Fi	sh Cove	r in Wett	ed Perim	eter)				-
Section					Card.	vallabili	y ania Qu	lality of F	Shirebli	state product had been product				
% Area	40	36-	76	20	20							Aver		
	90	79	<u>()</u>		30	30)]3		07	0	60	39	.5%	
6. Substrat	e Chara	cterizat	lon (Dorr	linant Su										
ci∕i(e)reja⊖ieskes						iXX(oha)	inisilatini	Strie Start						
Riffle											0.00	AVIEN	- (• (-) - (-) - (-)	
Run	\leq	1/2	2.	2	2		·		<u>× </u>	\mathbf{X}	X	2	-	
Pool	2	· <u>2</u>	2	2	$\downarrow \mathcal{X}$	2			×		2	2		
	$\frac{2}{7}$				ĽŽ			2 2		2	2	.2	-	
BR=Bedrock	(7), BLD#	Boniaeu	o), COB≓(obble(5).	GC=GI	ravel Cós	arse(4), Gl	F=Gravel F	Fine(3) S=	Sand(2)	SC=Si	H/Clov/	1)	-

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Silt/Clay(1)

7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)

	% Embedded	
Ì		A 24 Store and a second of a 244 Store and a second s

8. Sediment Deposition (Percent of Bottom Affected)

%	10 30	20 10	10	20	30 4	40	40 40	30

Stream Habitat Assessment (Semi-Quantitative)

	Station #: $PC-($ Date/Time: $4/14/04$	Initials:
--	--	-----------

9. Aquatic Macrophytes and Periphyton (Percent Coverage)

Merch						FRIDAN	Part C R		veltalgier (
Riffle	Macrophytes		2	0				70		9		Average
	Periphyton	\times	0	0	D	$\frac{\partial}{\partial}$	0	0	$ \times$	\mathbf{X}	\downarrow	0
Run	Macrophytes	12	Õ	0	10		0	0			\overline{n}	6
	Periphyton	0	б	D -	()	X	0	0	1X-	$\overline{\mathbf{x}}$	\overline{O}	0
Pool	Macrophytes	0	\bigvee		$\mathbb{N}/$	$\overline{\mathbf{V}}$	$\mathbf{V}_{\mathbf{r}}$	0	0	0	0	0
	Periphyton	0	\land	\wedge	\times	\land	\land	0	0	0	Ō	6

10. Canopy Cover (Percent Stream Shading)

Saction		2455		acku 16 - 2	Percent 5	1%)/Sildia					Augente	
Shading	80	80	20	10	70	60	60	ω	30	50	52	<u>1</u>

11. Bank Stability (Score) and Slope (Degrees)

DB Section				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		60	P	8	91. 1	h10	Average
Score	7.	8	le	7	le	Q	6	7-	8	8	6.9
Slope (°)	45	55	65	45	leo	75	90	70	80	70	65.5
RE Section		2.500	9	4	5	6		8	9	10:33	Average
Score	7	5	le	7	5	6	8	6	5	るななななない	6.2
Slope (°)	70	90	50	50	80	80	65	35	60	60	(e6.0
Score $9-10 =$	core 9-10 = Stable, < 5% bank affected. Score 6-8 = Moderately stable, 5-29% of bank eroding										

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

12. Vegetative Protection (Percent Banks Protected)

1 = minor affect

Section		4		4	5	6		8	9	10	Average
%	40	40	50	30	20	35	40	40	40	50	40.5
RB Section		2	-3	4	5	6		8	9	10	Average
%	50	40	50	30	60	45.	40	40	20	30	40.5
13. Riparian Vegetative Zone Width Restruction											
Sector		2		4		6 •	$T_{cl} > 0$	- 3 (2) (2) (2) (2) (2)	9	10 .	Average/
Score	10/M	W/m	2/5,9	1/1	5/p	5/P.	5P	5/P	5/0	5/D	5.3
estério e al Estacione										0	
Score	9/55	9/55	2/55/9	1/9	3/,P	1/P	1/P	1 <i>1P</i>	1/2	1/2	2.9
Score 9-10 = Riparian Zone > 18 meters / Score 6-8 = Riparian Zone 18 - 12 meters / Note cover type: /m=mature forest, Score 3-5 = Riparian Zone 11 - 6 meters Score 1-2 = Riparian Zone < 6 meters Ss=shrub/sapling; g=native grass, p=pasture											
14. Land-U	lse Strea	m Impac	ts		B137	nces ·	4. 1997 (1973) - 1979 (1979) - 1979 - 1979 (1979)		Comparison of the International Comparison		•
Actel of Huga Special					nessister≍(n)s Literatori Literatori		2 전 전 전 경 전 전 전				
Impact	2,792	CTP12	0,392	es 12-							GF 12
C = Cattle	R = 1	Row Crops	U = Urt	an Encroad	chment	[= Industri	al Encroach	ment	0=0	Other Br.	den

3 = major affect

2 = moderate affect

Score 0 = none

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: FC-1	Client:
Stream name:	Date/Time: 4/19/06
Location:	Form Completed By:

Habitat Parameter		CATEGO	DRY	
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
<u>SCORE 13</u>	20 19 18 17 16	15 14 <i>(</i> 13)12 11	109876	54321
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
	20 19 18 17 16	15 14 13 12 11	10,9(8)76	54321
3. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE 4	20 19 18 17 16	15 14 13 12 11	10 9/8)7 6	54321
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
SCORE 4	20 19 18 17 16	15 (4/13 12 11	109876	54321
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
score <u>13</u>	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	54321

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: F(-(Date/Time: 4/19/66
Stream name:	Form Completed By:

Habitat Parameter		CATEC	GORY			
	Optimal	Suboptimal	Marginal	Poor		
6. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.		
SCORE	20 19 18 17 16	15 14 13 12 11	(10)9876	54321		
7. Channel Flow Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	20 19 18 17 16	15 14 13 12 11	10/9/8 7 6	54321		
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.		
	Left Bank 10 9	8 7 6	5 4 3	2 1		
SCORE 6 RB	Right Bank 10 9	8 7 (6)	5 4 3	2 1		
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Aimost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.		
	Left Bank 10 9	876	5:43	@ 1		
SCORE 2 RB	Right Bank 10 9	876	543	(2) 1		
10. Riparian Vegetati∨e Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of Tiparian zone <6 meters; little riparian vegetation to human activities.		
SCORE 5 LB	Left Bank 10 9	8 7 6	6 4 3	2 1		
SCORE 3 RB	Right Bank 10 9	8 7 6	5 4 (3)	2 1		

TOTAL SCORE: /072 AVERAGE SCORE: /072

ų

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D:	C-2	LOCATION:	l Pro A I
STREAM NAME:	Flat Creek	RIVER BASIN:	her Read
LAT:	LONG:	PROJECT: EDCC	- WI
INVESTIGATORS:	SUN ASN OOF DATE TIME:	1/17/66	FORM CHECKED BY:
WEATHER CONDITIONS 5	NowPaststorm (heavy rain)	_ <u>_</u>	n in the last 7 days? [] Yes, No erature °C/°F
AT BROKOEY	Stream Origin □ Glacial □ S □ Montane, non-glacial ○ N □ Swamp and bog □ C Stream Gradient: □ High (≥25ft)	Other (mi)	
	High Moderate Low N		Reach: Slope & Sinuosity ft/mi
WATGRSHED	Predominant Surrounding Land Forest 70 % Sub-Urt Pasture% Comme Row Crops% Industri Urbant 0% Other _	pan 2.02 C	al Watershed NPS Pollution No evidence [] Agricultural Industrial Storm Water <i>I.ML</i> Urban/Sub-Urban Storm Water <i>I.ML</i> North
RIPARIAN MEOBRATION SURVAN	Mature Forest <u>20</u> % Kshrut		bs/Grasses% 🔲 Turf%
MONUMOLOGY2 S STREAM	Riffle % Run 4/e	% Pool <u>54</u> %	
OL: TUREFAREVEN A TOTAL STREET	Roads Bridges Pipelines Dams Trash Cattle Ac Very 1.44c Strue Ac Channelized: Yes Yes Local Watershed Erosion: No Channel Dynamics: Ag Water Odors Sewage Petroleum Chemical Petroleum Other Other	ccess Mining ATV for Some S ne Minimal grading Degrading Water Surf Slick	No Moderate Heavy Widening Headcutting
	Turbidity/Water Clarity (if not means Clear Slightly turb Opaque Stained Sediment Odor	id	ent Deposits
		Petroleum 🔲 Slud None 🛛 🛛 Sano	lge 🗋 Sawdust 📋 Oils

		Sti	ream Habi	tat Asse	ssment	(Semi-Q	uantitativ	/e)	
	Station #: FC-2	Stream: Flat	+ Court		Date/Time:	4/17/06	1000-	Initials:	SEH JJJF
	u/s latitude:		d/s latitude:			u/s:	1147)	, interaction	521/001-
:	u/s longitude:	-	d/s longitud	e:		d/s:	·······		
þ.	1. Reach Lengt	h Dotormination		· · ·	<u>-</u>				<u></u>
,			ı. Məməndə Nivləri						
		2017.000-760-4.200		ni/10/1/2/2		743.015	Average	itoten Kas Lengto (chu seubra canh.
	Bankfull Width	20.0 2	4.0 15.	5 22	.0' 12	4.5	21.2	Hau	<u>98 elementa (198</u> 42.4
lison		2.1 /05 -	4.5 2.5	110 -	72.11	9/11	2,23	<u>/ ~ ~ ~ (</u>	na
NorATrib	¹ Average width times	s 20 160	² Total Length di	vided by 10	<u> </u>	· · ·	.1		
	2. Riffle-Pool Se	equence				Z.			·
	Menon est is	and a second		skikonsinii	sum one s		Belete energi		
0000	Riffle				005 1050			19	
		2.4 16,4	21.2 4	$\frac{1}{2}$		<u> </u>	$+\times$	X	X -
	Pool	× 26,0	$\frac{21.2}{21.2}$	24 4?		4 UZ.		X.	X 44
	Sequence ¹		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\leq \times$	12.	4/ 42.	1 42.4	42.4	42.4 54
L	"Riffle="xxx", Run="-					//	m	$\sim\sim$	∽n/a
	3. Depth and W	idth Regime	•				1	-	
	- Moleon - San Sa			PERMIN	/AV/@ifeieieie	Dolothy(ie)/	WHERE WAR		
	Riffle Depth ³				9016		8	0.2.3.1	0. Averager
	Riffle Width	$\times + \times +$	\times \times	$Z \downarrow V$	$\frac{1}{1}$	<u> </u>		$\sqrt{2}$	1/
		510.91210.8			ĻĻ	Δ	$ \Delta $	Δ	X =
-			1.511.0 151			<u>.5 V/</u>	$ \chi/ $	\leq	1.55 10.95
	Pool Depth ³	1/33/25	10 12	$\frac{7}{15}$	14	00014			12.8
р# ;+;	Pool Width	\times 12	16	\leftarrow	12	02.7118			61253:2712.13
L .	³ Thalwag / Avera	<u>_ / / / /</u>	10 11		14	/4	23	23 /	5 16.4
	4. Epifaunal Sul	strata Parcont	Stable Uchi	had (Sau Bla					
	SEGION PARTY	<u>interventer</u>		lat (for Ma	<u>croinven</u>	ebrates)			AVEIGGER
	% Area 45	20 30) 20	30	30		50 60		
. ·	5. In-Stream Hal	nitat Porcont St	abla Uabitat	/A					36.5
	5. In-Stream Hal				FISN CO	ver in wet	led Perime	ter)	
			849 (4) (100 A						AV-shajalar
	% Area (10)	20 4	5 30	30	40	40 (0 7:0		46.5
_	6. Substrate Cha	aracterization (D	ominant Su	bstrate)					
					- Definition	NU STREET			
	Riffle					7. se i se je je		- 14D -	
L	Burn -		\times \times	X	\times	X	K X		
	Pool 2	+1 - 2	2	2	2	X	$\times \ \times$		1.8
	BR=Bedrock(7), BL	D=Boulder(6) CO	X B=Cobble(5) ($\frac{2}{2}$	/		12	
							Fine(3), S=S	and(2), SC:	=Silt/Clay(1)
`	7. Embeddednes	ss (Gravel, Cobl	ole, Boulders		Embedde	d)	and the second		
	% Em bedded								
. L			<u> </u>						
	8. Sediment Dep	osition (Percen	t of Bottom	Affected)					· · · · · · · · · · · · · · · · · · ·
L	% 50	13 30) 40	30	40 :	30	40 30		

Stream Habitat Assessment (Semi-Quantitative)

Station #: FC-2 Date/Time: 4/12/06 1000-1145 Initials: 524
--

9. Aquatic Macrophytes and Periphyton (Percent Coverage)

同时中的影		6.12.1		行作动的	经济保 存	e ioin N	o shi ch	sont Co	(e) and e			
Riffle	Macrophytes				. 1		6					
	Periphyton	X	X	X	X	X	\mathbf{X}^{-}		\mathbf{X}	$+ \times -$	IX-	
Run	Macrophytes	Ð	0	0	0	Δ	0	17	$\overline{\langle}$	$\overline{\boldsymbol{\lambda}}$	\downarrow	A
	Periphyton	\mathcal{O}	0	0	0	0	0	\times	$\left \times\right $	\mathbf{X}	X	0
Pool	Macrophytes	\sim	0	0	$\sqrt{1}$	$\overline{\checkmark}$	0	$\overline{0}$	0	0	2	. 0
	Periphyton	\wedge	0	· O	\wedge	Λ.	0	\overline{O}	$\cdot \circ$	0	Õ	0

10. Canopy Cover (Percent Stream Shading)

Sh	ading		20	RA	an	70		an An			10.8	Averatieses
10	ading	20	180	180	70	140	$ I_0O $	90	90	チの	280	

11. Bank Stability (Score) and Slope (Degrees)

des					. Э.					koji (Secondriva) Statu se	Avanina
Score	5	2.	3	6	7_	7	7	8	7	7	Ca.4
Slope (°)	75	90	80	70	:85	75	80	80	80	90	80.5
N≊laini SielQt(c)ri											AVenages
Score	7	5	6		6	7-	7	7	ーチ	7	(2.5
Slope (°)	85	90	90	90	80	80	80	70	80	80	82.5
Score 9-10 =	Stable, < 5	% bank affe	cted.			Score 6-8 =	= Moderate	ly stable 5	20% of has	lk orodine	

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

12. Vegetative Protection (Percent Banks Protected)

	%	70	50	50	20	20	70.	60	·LD	60	60	(-0
	(Helife)			.		1973-1939 1935-1937-1		13/2019-541 6010-63-634	(8)		10, 20, 10 11, 10, 10, 10, 10, 10, 10, 10, 10, 10,	AVX Ərcicles Sources
	%	70	90	30	\mathcal{Q}	70	50	60	w	50	70	Cel
1.10.10	Sistellejji -											werage. A

13. Riparian Vegetative Zone Width

2010 2017 2017 2017						6), states ar				la shekasara. Sasara	
Score	10	10	10	[0	16	10	10	10	10	10	10
						8					And the second s
Score	10	10	10	W	10	10	[υ	0	10	1D	10

Score 9-10 = Riparian Zone > 18 meters Score 3-5 = Riparian Zone 11 - 6 meters Score 6-8 =Riparian Zone 18 - 12 meters Score 1-2 = Riparian Zone < 6 meters

Note cover type: m=mature forest, ss=shrub/sapling, g=native grass, p=pasture

14. Land-Use Stream Impacts

Impact	ð	'/								
C = Cattle Score $0 = nor$	ne		Row Crops = minor af	ban Encroa 2 = moderat	I = Industr3 = major a	hment	0=	Other <u>R</u>	DAN	

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: FC-2	Client: EDCC
Stream name: Flat Could	Date/Time: 4/17/01e
Location:	Form Completed By: 8KH JOF

.

Habitat Parameter		CATEG	ORY	
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
SCORE 12	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	54321
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
3. Pool Variability	20 19 18 17 16	15 14 13 12 11	10 978 7 6	54321
	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE 16	20 19 18 17(16)	15 14 13 12 11	10 9 8 7 6	54321
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
	20 19 18 17 16	15 14 13 12 11	109876	54321
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storiggents.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
SCORE <u>/ 2</u>	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	54321

÷

Page 1 of 3 (Pg.3 optional) GBMc Rev: 1.2

Ì

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station Stream	I.D:
Stream	name:

Habitat

Flat Creek

F1-

CATEGORY

Date/Time: 4/12/04

Form Completed By: SK4

אתה א

Parameter		CATE	GURT	
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinucsity	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	20 19 18 17 16 Water reaches base of	15/14/13/12/11	109876	54321
Status	both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
SCORE / /	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
8. Bank Stability	Banks stable, no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
SCORE <u>(</u> LB	Left Bank 10 9	876	5 4 3	2 1
SCORE 7 RB	Right Bank 10 9	8 (7) 6	5 4 3	2 1
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
SCORE 4 RB	Left Bank 10 9 Bight Bank 40 0	8 7 6	5 4 3	2 1
10. Riparlan Vegetative Zone Width	Right Bank 10 9 Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	8 7 6 Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	5 (4) 3 Width of riparian zone 6-12 meters; human activities have impacted a great deal.	2 1 Width of riparian zone <6 meters; little riparian vegetation to human activities.
SCORE <u>10</u> LB	Left Bank 10 9	876	5 4 3	2 1
SCORE <u>70</u> RB	Right Bank 10 9	876	5 4 3	2 1

TOTAL SCORE: AVERAGE SCORE:

14. 2

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: UT	A - 1 mand Job to Flat Cank LONG: SKy/REA/EXTERS DATE/TIME: 4	LOCATION: Redu	n 1782 St. & Brile
STREAM NAME: U	manul Arb to Flat Caul.	RIVER BASIN: Duce	h-h Run
LAT:	LONG:	PROJECT: EDCC	-46
INVESTIGATORS:	SKA REALEST ORS DATE/TIME: 4	18/00 1535	FORM CHECKED BY:
WEATHER CONDITIONS	☐ showers (intermittent) %☐ % cloud cover ☐ ☑ clear/sunny ☑		in in the last 7 days? ☐ Yes ☐ No perature°C/ºF
STREAM	Stream Subsystem ✓ Perennial Intermittent Stream Origin S Glacial S Montane, non-glacial ✓ Swamp and bog O Stream Gradient: High (≥25ft/m)	pring-fed lixture of origins ther mi)	
HYDROLOGY	Flows	Flows Measured	? Reach: Slope & Sinuosity □ – 𝗥D ft/mi
WATERSHED FEATURES	Predominant Surrounding Landu Forest Sub-Urb Pasture % Row Crops % Urban % Other	an <u>50</u> ½ [rcial% [al <u>10_</u> % ½	Industrial Storm Water
RIPARIAN VEGETATION STREAM MORRHOLDGY		/Sapling <u>90</u> % ⊠(+	erbs/Grasses 10 % 🔲 Turf%
STREAM DISTURBANCES	Roads Bridges Pipelines Dams Trash Cattle Ad Channelized: Pipelines Local Watershed Erosion: No	Beaver Dam Cocess I Mining A	TV Crossing 🗌 Other No Moderate 🔲 Heavy
VACEB	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other	Slick	urface Oils XSheen II Globs
SEDMENU DESERVATIONS		id ☐ Turbid	Iment Deposits Iudge ☐ Sawdust ☐ Oils Iand ☐ Relict shells Other_SiH/Chay

-

.

	Station #: UTA- 1 Stream: unr	and This to Flot Ck Date/Tim	e: 4/18/06 14 20-1520	Initials: SUH/SUT
	u/s latitude:	d/s latitude:	u/s:	
×	u/s longitude:	d/s longitude:	d/s:	······································
<u>)</u>))	NotE: Ho わ 1. Reach Length Determinatio	Deep to wak it must plice	« Most Manenet	eve echantes
. 11	Parameter Veas	unamanthumparanthum sagim		Total/Reaching SubaReach
M V	Bankfull Width			Length (ft) Length (ft)
Dri	Bankfull Width / 8	19.0 21.0 22	20 20	<u>400 40</u> na na
Your	Average width times 20	² Total Length divided by 10		
	2. Riffle-Pool Sequence	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	r .	Brider
7	Morph	Keach Number	A Denglindin Foen Stand	
5	Type 1 2			
			AAAA	nama "
(Pool 40			
)	Sequence'	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n/a
1 95	'Riffie="xxx", Run="", Pool=""	1	· · · · · · · · · · · · · · · · · · ·	
Print Mar	3. Depth and Width Regime			
Part	Morph: realized and realized an	3 4 A State	e Depth (t) / Wigth (f)	2 D Average
1 Vil	Riffle Depth ³			
64000	Riffle Width			
\mathcal{M}	Run Depth ³			
))	Run Width / / / / / / / / / / / / / / / / / / /	V V	1- 12-11- 120 1	27200010000000
<u>p</u>)	Pool Width 20' 25'	14.51 2.2 7451 2.5 74.51 2.5 3.80 18 20 20 14		
•	Thalwag / Average	1/0 20 14		1 le 3. Q. 20.
	4. Epifaunal Substrate. Perce	nt Stable Habitat (for Macroinvo	ertebrates	
	Section 1 3	4 5 6	7 8 9	10. Average
	% Area 10 40 5	D 100 60 40	30 40 4	0 20 46
	5. In-Stream Habitat, Percent	Stable Habitat (Available Fish (
. 4.	Section 1 2 1 3	Reach No - Availability ar	d Quality of Fish Habita	
		0 70 70 50	40 50 5	0 30 57
	6. Substrate Characterization	(Dominant Substrate) React Note Dom	hamsubsrac	
	计内容 公式 计不同 公式 计方面方面			Average .
	Riffle	A / / / /	AAA	AAAA
	Run VVV		YUVY	
		COB=Cobble(5), GC=Gravel Coarse	4), GF=Gravel Fine(3), S=	Sand(2), SC=Silt/Clav(1)
		obble, Boulders Rercent Embed		
	Merupi Cierto, C	Spore, pourders forcent princed		ANTI ATAL A INVERSE
	% Embedded		XUMUU	
þ			· · · · · · · · · · · · · · · · · · ·	
	8. Sectiment Deposition (Perc	εεπι οι βοπομ Απεςίεα)		A AVAPAGE AN
	% 40 UO	60 40 70 40	40 50 Le	0 80 52

Stream Habitat Assessment (Semi-Quantitative)

Stream Habitat Assessment (Semi-Quantitative)

Station #: UTA -	Date/Time:	Initials:	
00171			

9. Aquatic Macrophytes and Periphyton (Percent Coverage)

Norphis	ic macrophytes									eactin							11 A		
TYPE											G alles	2.1.1			(?).sj			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Riffle	Macrophytes			[]		\cap					1 /	h	V		Δ				
	Periphyton	17	7		7			/				1	1		$\forall \top$	17			
Run	Macrophytes	17	/		7		7			/	1	1		1		1			-
	Periphyton	V		∇			V.		t		/		\mathbf{T}	\checkmark		/		$\psi - \psi$	4
Pool	Macrophytes	0	2	Ċ	> •	C	5	0		\mathcal{O}	0	0	17	2	$\vec{\mathcal{S}}$	<u>ر</u>	\sum	0	
	Periphyton	C	>	Ċ)'	Z	\$ 5	5	•••••	5.	5	5	2	5	5	2	2	5.5	-

10. Canopy Cover (Percent Stream Shading)

Section 1		$\frac{1}{2}$	(76	iele stest. A statest	Percent 5	Renshiel Gestion			Chiain nail		Avan 18
Shading	30	ЦÒ	40	60	50	20	10	. 105	50	10	38.5

11. Bank Stability (Score) and Slope (Degrees)

NE Section (c)		2				0.5	14. k.	3. 			Avendula (S. 1) Sicelie
Score	7	7	8	8	7	8	8	8	7-	1 Le	7.4
Slope (°)	80	20	80	80	80	70	40	60	90	50	70
BB Section		2		4.5	51 de 16	6. S. S.	7	8	9.	10 g 3	Average Store
Score	7	8	8	7	5	4	te	7	8	le	6.8
Slope (°)	70	65	70	65	90	90	40	50	80	45	66.5
Score 9-10 =	Stable, $< 5^{\circ}$	% bank affe	ected.			Score 6-8 =	= Moderate	ly stable, 5	29% of bar	nk eroding	

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

12. Vegetative Protection (Percent Banks Protected)

%-	.55	40	40	55	45	40	30	-20	60	20 20	41.5
Section	el a ga Manadar	2	3	4	5	6		18	9		Average
%	65	le O ·	65	45	55	50	40	60	70	60	59
Section		É.		4	5.	61	$T_{-\infty}$	- 8	9	10	Average

13. Riparian Vegetative Zone Width

1 E Dector					3				5						3				10		Averege
Score	101	55	10	<u> </u> {5	10	155	16/	55	10,	155	10	55	10/	55	8	65	6	lζς	2,	V	8.(0
														Sec.							
Score	10/5	5	10/	55	10	55	W/	5	10/4	:5	11/5	:5	10/5	5	10/	8	10	ks	2/	1.	9.2
Score $9 - 10 = 10$	Ripari	an Z	one>	· 18 m	eters		Sc	ore 6-	8 = ' Rij	parie	ın Zon	e 18	- 12 me	ters		Not	e cov	er typ	e: m	=matu	ure forest,

Score 3-5 =Riparian Zone 11 - 6 meters

Score 1-2 = Riparian Zone < 6 meters

ss=shrub/sapling, g=native grass, p=pasture

	14.	Land-L	Jse Strean	n İmpacts
--	-----	--------	-------------------	-----------

Score $O = none$	1 = minor af	fect $2 = mo$	derate affect	3 = major a	ffect					
C = Cattle	R = Row Crops	U = Urban En	croachment	I = Industri	al Encroaci	nment	0=0	ther Si	6- 4+5×	····
Impact Q	1/1		·					-1-	01	
			医尿道 图 计计算	19 (\$ 10) - 5 (10)	melet sins					

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTA - 1	Client: EDCC
Stream name: unnamel trib to Flot cruck	Date/Time: 4/18/06 1530
Location:	Form Completed By:

Habitat		CATEG		
Parameter				
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
SCORE /S	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
SCORE	20 19 18 17 16	15 14 13 12	10 9(8)7 6	54321
3. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE //	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
	20 19 18 17 16	(15)14 13)12 11	109876	54321
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321

(-)

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

) Station I.D: UTA -

Stream name: unnard trib to Flot Cert

Date/Time: 4/18/66 Form Completed By: < X4

Habitat		CATE	GORY	
Parameter		·····	·	
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity SCORE 12	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
	20 19 18 17 16	15 14 13(12)11	19876	54321
7. Channel Flow Status SCORE /9	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE 7RB	Right Bank 10 9	8 7 6	5 4 3	2 1
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
SCORE LB	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE 4 RB	Right Bank 10 9	876	5 4 3	2 1
10. Riparian Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.
SCORE / LB	Left Bank 10 9	876	543	2 1
SCORE <u></u> RB	Right Bank 10 9	8 7 6	5 4 3	2 1

TOTAL SCORE: AVERAGE SCORE:

3.

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: U	TA-2		LOCATION	Just di	s at they 75	
)STREAM NAME: U	Innancer 77-5		RIVER BAS	IN: Ourch	sh.	
LAT:	LONG:	<u>, , , , , , , , , , , , , , , , , , , </u>	PROJECT:	EDC-		
INVESTIGATORS:	<14/375	DATE/TIME:	1/100	121200	FORM CHECKED BY:	
	······································		<u> </u>	I	<u> </u>	······································
WEATHER CONDITIONS	☐ rain (sto ☐ showers (% % clou	neavy rain) [eady rain) [intermittent) [ud cover [24-hr		in the last 7 days? □ Y	es∕≮_ No
STREAM ATTRIBUTES	Stream Gradient:	Intermittent	Spring-fed Mixture of orig Other <u>i∕o, a</u> t/mi) ∐ Mod	ins ۲۰۰۰ (۱۰ م. ۲۰ ۲۰۰۰) Prate (10-24	Stream Type Coldwater Warmwa Catchment Area: Stream Order:	mi²
	Flows		None 🛛	Aeasured? Yes 🗌 No	Reach: Slope &ft/mi	Sinuosity
WATERSHED	Predominant Sur	⊠ Sub-Ui ⊳ ⊊∕Comm _% ⊠(Industr	rban <u>20</u> ercial <u> /0</u> % rial <u>30</u> %		al Watershed NPS Pollutio No evidence	
BIPARIAN VEGETATION	Mature Forest	40% 🗹 Shru	ub/Sapling 53	_% X Her	bs/Grasses <u>5</u> % 🗌 Turf	%
MOREFOLGER	Riffle%	🛛 🕅 Run <u>35</u>		65%		
STREAM DISTUREANCES	Roads Brid	ges 🔲 Pipeline	es 🔄 Bea Access 🗌 Mir	ing ATV	Point Source / Crossing Other	×
WOLER DESERVATIONS	Channelized: Local Watershed Channel Dynamic Water Odors Normal/None	<u>≈s: □</u> A □ Sewage	lone XMinii ggrading 🗌	mal Degrading Water Suri	face Olis	ting
	Fishy	Chemical		Flecks	None Other	
	Turbidity/Water C	iarity (if not m Slightly tur Stained	bid 🔲	Turbid Other		
SEDMENT DESERVATIONS	Sediment Odor		⊈Petroleum]None			3

.

Stream Habitat Assessment (Semi-Quantitative)

	and Theb	Date/Time: 4/18/06	10 10 -1100 Initials: SKH /JDF
u/s latitude: Br.dy/thry75	d/s latitude:	u/s:	
u/s longitude: RR Brack	d/s longitude:	d/s:	

1. Reach Length Determination

Ratameter	Messuren en	(INNIMATIN	<u>Rai Ar</u> redi	1 8 Sec. 15		QCEIN A CIERRA	Suchassion	
Bankfull Width //. (, 15 <u><</u>	N N	19.0	5 2 1 6				
Bankfull Depth 1.6		- 18.0	1.5	<u></u>	1,55	na 1	<u></u>	HERE'S
Average width times 20	Total L	ength divided b	y 10 Just 1/5	S. R.R. BI	ity in Sheen	<u>, , , , , , , , , , , , , , , , , , , </u>	and the second s	

2. Riffle-Pool Sequence

Morph				R Star	CERTIN	lorene selec		Hel .			
Riffle		2	3	4	<u>15)</u>	6		844	9	10	Total
Run			X	$1\mathbf{X}$	×.		\prec		Å		
Pool		X	×	\perp X	7.7	367	36.7	16 7		26.7	134.5
	36.7	36.7	34.7	36.7	29.0	30002	<u> </u>	20,0	367	2	232.5
			ww	~~~~~	hun-				m		n/a

"Riffle="xxx", Run="-----", Pool="----

NUTE SKIPH Som

1

3. Depth and Width Regime

Morphic				Read	UNICE SAV	encicle De		Million			
Туре	1.	2 .	3.6		5	6	77		0	10	Average
Riffle Depth ³	$\sum /$	$\sqrt{2}$	$\lfloor /$	~		K	11	V/	1/	. 1/	/
Riffle Width	X	X	$\overline{\mathbf{X}}$				\times	X	\mathbf{X}	\times	· · · · · · · · · · · · · · · · · · ·
Run Depth ³	1.7	11		.17	0.910.9	1.5103	1:610.5	1.1108	$\left\{ \right\}$	1//10	1 ulad
Run Width	\mathbf{X}	X		\mathbf{X}	19	17	22	2 4		1. (21).0	1.4498
Pool Depth ³	2411.5	11112	241	2312.0	27118	17	11	19/10	00/10	20	20.4
Pool Width	22'	24	211	20	1.5.1.0	- X-	$-\sqrt{-}$		2.2/1.0	λ'	2.19/1.43
³ Theiwea / Av	and the second se	14	124	20	19	/		22	22	22	21.9

Thalwag / Average

4. Epifaunal Substrate, Percent Stable Habitat (for Macroinvertebrates)

Section 12 and	2 3	4.0151 5	15065 C. 1974	1.8	l Internet	
% Area 30	20 40	60 100	20 20	30 2	0 40	24
					\sim $-\iota$ -	57

5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted Perimeter)

Section 1	21.5	3 200	R(sa(e)ash	loi = Avrali E de servici	leibilitivieini 165-00-		alti əlsini Hi		h in se	Analasia	
% Area 40	30	50	70	70	30	2.Ő	35	35	50	43	5

6. Substrate Characterization (Dominant Substrate)

7 (7 (* (* 0) 4)) 2					1. (Social)	(cl.:, d Qiqiqa))	e di Serie	G REF.			
Riffle	X	X			メ	N N	×	7			
Run	X	×	X	X	2	2	2	2	×	2	2
Pool	2	2	2	2	2	X	X	2	2	*	2

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Sllt/Clay(1)

7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)

L		1
<u></u>	% Embedded	自己也有要求多少的意思。
11		
	\square	
	19	
1		
1	·	1

8. Sediment Deposition (Percent of Bottom Affected)

Harding and States and		
% 70 70	20 80 70	20 30 40 20 50 58

Station#: UTAZ	Date/Time: U	1/m/	1010	Initials: 5KH	WOTE

9. Aquati	c Macrophytes	and Pe	riphyto	n (Perce	ent Cov	erage)						
Marpha						05(6)0111	i sanar ing Sanar i				at pipeza Ke	
Type			2	200 A	21 see 15	E MAR	NS REAL	1	13101201	1291		ANE ALL MA
Riffle	Macrophytes	\searrow	\checkmark		~/			$\left(\right)$. / .			. /
	Periphyton		\square	\square		\overline{N}	X		X	1	X	
Run	Macrophytes	∇	\square		~1	O	0	0	Ô.		6	0
	Periphyton		$ \land $	\frown	\mathbf{X}	0	0	0	0	X	0	0
Pool	Macrophytes	0	0	U	0	0	7		0	0	.1	0
	Periphyton	0	0	0	D	0		\wedge	0	0	X	0

10. Canopy Cover (Percent Stream Shading)

					1.55		ែសស្ថាត់	(%))Shee	EFAMILI	n Shi oʻshi b	Channel	$0 = \{1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	
	Secuolos (2				5.0	6		3	0	(10)	
۰L	Shading	50	80	90	4	0	30	10	20	20	80	30	45
			•	•	7								

11. Bank Stability (Score) and Slope (Degrees)

									10 50	Nemice name
5	7	7	7	9	9	8	8	8.	7	7.5
75	80	70	70	45	70	80	65	80	90	73.5
	2,.	3	4		6		8	9	10	Average Score
7	8	7]	8	8 :	9	8	7	7	7	7.0
90	90	90/	80	90	75	80	75	85	80	83.5
	5 75 7 90	577 7580 780 78 90 90	5777 758070 7877 7877 909070	$\frac{5}{7} + \frac{7}{7} + \frac{7}$	5 7 7 7 9 75 80 70 70 65 7 8 7 8 8 90 90 90 80 90	5 7 7 7 9 9 75 80 70 70 65 70 7 8 7 8 8 9 90 90 90 80 90 75	5 7 7 7 9 9 8 75 80 70 70 65 70 80 7 8 7 8 8 9 8 90 90 90 80 80 90 75 80	5 7 7 7 9 9 8 8 75 80 70 70 65 70 80 65 7 8 7 8 8 9 8 9 8 90 90 90 80 80 75	5 7 7 7 9 9 8 8 8. 75 80 70 70 45 70 80 65 80 7 8 7 8 7 8 8 9 9 90 90 90 80 70 70 45 70 80 65 80 7 8 7 8 7 8 8 9 8 9 90 90 90 80 90 75 80 75 85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Score 9-10 = Stable, < 5% bank affected. Where the source of the source

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

12. Vegetative Protection (Percent Banks Protected)

.%	50	55	50	40	50.	40	30	40	35	45	45.5
Sedicito		2			6	-6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	7.00	8			Avelage
%	35	45	20	40	. 70	<i>90</i> .	75	70	30	50	51.5
LE. Dection	1	2	3	4	5	nG Santa M	7	8	9	10	Average

13. Riparian Vegetative Zone Width

	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	THE REPORT OF THE PROPERTY OF		difficient community and	1 March 7 March 10 1 March 10		A gable is an an an an an an an an an				
		2.00			5.		\overline{I}	8	9	10	No. Conception and
Score	3/55/	5/45	SKS	5/55	7/5	8/55	8./55	8/55	9/55	8/55	10.6
		2									
Score	é /55	9/m	10/m	10/m	10/m	10/m	10/m/ss	10/0/15	10/m	10m	9.5
Score 9-10 =	= Riparian Z	one > 18 m	eters	Score 6	-8 = Riparia	n Z6ne 18	- 12 meters	7 No	te cover ty	pe:/m=matu	ure forest.
Score 3-5 =	Riparian Zo	ne 11 - 6 m	eters		-2 = Riparia			86=	shrub/sanl	ing genativ	e grass, p-pasture
				+				00	un au oapi	116, 6 -1141 4	e grass, p-pasture
14. Land-	Use Strea	am Impac	ts							ing, g-nati v	e grass, p-pasture
14. Land-	Use Strea	am Impac	:ts					00		ing, g-nativ	e grass, p-pasture
14. Land-	Use Strea	am Impac	:ts					33			e grass, p-pasture
14. Land -	Use Strea II2	am Impac	$T^{\prime}2$	±12	I'2	I'2	II 12	1 2	I12	t 12	\mathcal{I}

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTA-2	Client: EUC
Stream name:	Date/Time: 4/12/06 1100
Location:	Form Completed By:

Habitat Parameter		CATEG	ORY	
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
SCORE //	20 19 18 17 16	15 14 13 12 11	109876	54321
Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
SCORE 1	20 19 18 17 16	15 14 13 12 11	109876	54321
3. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE (20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
SCORE //	20 19 18 17 16	15 14 13 12(11)	10 9 8 7 6	54321
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTA-2	Date/Time: 4/18/06 1100
Stream name:	Form Completed By: SKM/OUT

Habitat Parameter		CATE	GORY	
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	20 19 18 17 16	15 14 13 12 11	109876	5(4)3 2 1
Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
SCORE 2	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
SCORE <u>6</u> LB	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE S RB	Right Bank 10 9	876	5 4 3	2 1
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
	Left Bank 10 9	8 7 6	5 4 3	2 1 -
SCORE 🔀 RB	Right Bank 10 9	876	5 4 3	2 1
10. Riparian Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.
	Left Bank 10 9	876	5 4 3	2 1
SCORE <u>/O</u> RB	Right Bank 10 9	8 7 6	5 4 3	2 1

TOTAL SCORE: /02 AVERAGE SCORE: _/0.2

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: UTA-3 LOCATION:	<u> </u>
STREAM NAME: Unmand Tit RIVER BASIN: Q. River	······
LAT: LONG: PROJECT: ETKC	
INVESTIGATORS: DATE/TIME: 4/17/26 1715 FORM CHECKED BY:	
Now Past 24-hr Heavy rain in the last 7 days? Yes IDITIONS Istorm (heavy rain) Image: Air Temperature	⊡ No
Stream Subsystem Stream Type Perennial Intermittent Tidal Coldwater Warmwate Stream Origin Glacial Spring-fed Catchment Area: Montane, non-glacial Mixture of origins Stream Order: Swamp and bog Other Other Stream Gradient: High (≥25ft/mi) Moderate (10-24 ft/mi) Low (<10 ft/mi)	ļ
Flows Flows Measured? Reach: Slope & Sile High Moderate Low None Yes No	nuosity
Predominant Surrounding Landuse Local Watershed NPS Pollution IDRES Image: Stress for the stress	1.ttle
WestAND WATCHINE Mature Forest <u>40</u> % I Shrub/Sapling <u>30</u> % I Herbs/Grasses <u>40</u> % [] Turf	%
MCRAPHOLOGY Main Sector	
Channelized: Yes Some No Local Watershed Erosion: None Minimal Moderate Heavy Channel Dynamics: Aggrading Degrading Widening Heavy Water Odors Water Surface Oils Mormal/None Sewage Slick Sheen Globs Petroleum Chemical Flecks None Other	
Turbidity/Water Clarity (if not measured) Clear Slightly turbid Turbid Opaque Stained Other Sediment Odor Sediment Deposits Normal Sewage Petroleum Chemical Anaerobic None Sludge Sand Other Other Other Other	

١.

Station #: UTA -3 Stream: UNN	and Trib	Date/Time: 4/17/06 (1550)	Initials: STOLL DIF
u/s latitude:	d/s latitude:	u/s:	
u/s longitude:	d/s longitude:	d/s:	

1. Reach Length Determination

Parameter 1		GEISUIGINICIA	Nitionativa	and the second	IC NORMANN		Mastel average of the	Web St. C. Filmer
	14 17221 2	21 8 4 4	31 Last			Avenege	Lengia (n)	Length ² (ft)
Bankfull Width	22.5	17,8	18.5	211	17.4	19.5	390	39.0
Bankfull Depth			2.1		2:1	2.1	na	na
¹ Average width time	e 20	2 Total L	math divided b			·		

'Average width times 20

[]

Total Length divided by 10

2. Riffle-Pool Sequence

Maren				2010 AP	Coloran N 1617	locitisent?	ano Balance He			64.180.50 × 31	
Туре		200	3.9.68	4	5.00	$\{0\}_{i\in [m]}$			9	10100	
Riffle	\mathbf{X}	$ \mathcal{K} $	$ X_{\alpha} $	X	X	X	X	$\overline{\mathbf{V}}$	12!	5	17
Run	X	39	即10	X	391	391	20!	X	8'	121	177
Pool	39'	B X	25	39'	X	۲	19	39'	191	16	196
Sequence ¹	~~~~		NAIPO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • •			m	XXX		n/a

'Riffle="xxx", Run="-----", Pool="~----

SKiped Run halls

3. Depth and	Width Re	egime			10	ame char	in as lead	5			
Morrin:				e de ciach			olio Mije Ma				
Riffle Depth ³	\mathbf{X}	$\frac{2}{\sqrt{2}}$	3 - \ //	$\wedge \prime \prime$	\sim	D V/			9 0.8/0.5	10 \ / \	Average
Riffle Width	X	\times	X	X		X	$ $ \times	<u> </u>	10	12.	11
Run Depth ³	∇	1.318.8	1.3/0,8	\vee	1.011.0	1.0/0,6	1.0/0.6	∇	1.1 10.7	1.3/0.9	1.30.77
Run Width	1	13	15'	$\overline{\mathbf{X}}$	131	13'	16	1.	16	16T	14.6
Pool Depth ³	4.5128	V	3,0/1.8	2611.4	\bigvee	\mathbf{X}	2.1/1.3	3.6/2.0	2.7/1.4	2.2/1.7	2.9411.77
Pool Width	15'	\wedge	16'	19'	\wedge	\sim	16	14	18'	ाम'	16

³Thalwag / Average

4. Epifaunal Substrate, Percent Stable Habitat (for Macroinvertebrates)

Sector 1	2	3		5.	6	STORES	8	9	10	Average
% Area 25	10	20	50	25	40	50	60	.50	25	-35.S

5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted Perimeter)

% Area	40	15	20	45	30	40	50	70	60	35	40.5
Section		200		57.6520532			100	8	CP 10 1	1.176	AN A PROPERTY
Section				r (de lo in n	oversivan		al Classifi (V)	of Esit H	-bitatest		

6. Substrate Characterization (Dominant Substrate)

				S. Passara	Core of a star		લેકોમાં હેલાં કે	Si di la Pol			
0			8.0		90.20	50.05				IS Notes Se	NEW ENERGY ST
Riffle	$\downarrow X$		\times	$\downarrow V$	<u>X</u>	<u> </u>	X		2	2	2
Run		2	2	\square	2	2	2		2	2	2
Pool	2	X	2	2	X	X	2	2	2	2	2

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Silt/Clay(1)

7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)

- 1						8.99 S.S	deless			
	% Embedded	70	r-	\sim				\sim		I

8. Sediment Deposition (Percent of Bottom Affected)

100 A											
%	20	2D	25	30	60	30	35	4D	ЧD	33	33.5

Station #:	UTA-3	 Date/Time:	411	7/0	16	1550 -	-1715)	Initials:	JJE	

9. Aquatic Macrophytes and Periphyton (Percent Coverage)

Mariteide "Ka	i v starske biller bog store				N MAR	SE SHAN	o poperi	demil (Ofer	(else)ele			
TYPE .			2	3.4	4.62		6	12.2.3	6		KR & S	Man Conserver
Riffle	Macrophytes	1^{-1}	\perp	LV	<u> </u>	V			LV	6	Ø	9
	Periphyton	\wedge	$ \Lambda $	$ \wedge $	$ \wedge $	$ (\land "$	$ \land $	\square	X	0	0	0
Run	Macrophytes	\mathbf{V}	D	0	∇	\overline{O}	D	$\overline{\Delta}$	V	$\overline{\mathcal{D}}$	0	0
	Periphyton	$ \Lambda $	D	0	7	\hat{D}	\hat{O}	0	\wedge	ð	D	0
Pool	Macrophytes	0	V.	0	\bigcirc	V	Ň	0	:0	5	D,	ð
	Periphyton	$\Box 0$	\land	\mathcal{O}	\overline{O}	(0	D	Ð	D	0

10. Canopy Cover (Percent Stream Shading)

J

Sector -		2.0	i de Re	ach No.	URGIQUIT.	(?o) (State 6	ed Willia	i Shechi a	Staan neer Staat			\$7.0 SZ202
Shading	GD	50	85	20	10	ED.	66	76	20	45	53	4

11. Bank Stability (Score) and Slope (Degrees)

		4 -				C.		8	9		Average
Score	7	3	5.	8	6	6	6	8.	ų.	$\left \right\rangle$	6.1
Slope (°)	70	50	80	76	45	50	80	70.	HD	80	63.5
Section as		2	3.	4	o 5	6	73	8	9. Sector (1997)	10	Avenage Score
Score	8	7	6	5	3	5	8	4	6	Π	5.6
Slope (°)	60	45	8D	.85	75	75	75	70	90	75	73.0

Score 9-10 = Stable, < 5% bank affected.

Score 3-5 = Moderately unstable, 30-59% bank eroding.

Score 6-8 = Moderately stable, 5-29% of bank eroding Score 1-2 = Unstable, 60-100% bank eroding.

12. Vegetative Protection (Percent Banks Protected)

Section						v. 		21.00			Average
%	40	30	30	70	45	40	30	80	20	80	46.5
RB		2 .	3	4	5	6				10	Average
%	30	10	6D	40	55	50	50	30	80	60 ·	46.5

13. Riparian Vegetative Zone Width

13. Riparia	n Ve	geta	ative	Zon	<u>ie W</u>	idth											2	· .			
			2.5						5				6763			250 STO 37			RH		Average
astered of the se						ve de														1-1-1	
Score		<u>19</u>		9		q		90	1	gos	2	9	3	9	6	m	8	T.M.	8	Im	3.2
											ê. A				Stris. Niji						NAME OF SAME
Score	1	DIA	10	M	9	ΙM	9	A	Ø	44	lD	55	10	55	8	155	Ś	45	8	55	9.2
Score $9 - 10 = 1$	Rioari	an Z	one >	18 m	eters	1	Sc	one 6-8	$\mathbf{X} = \mathbf{R}$	inaria	n Zon	e 18	. 12 m	ietero		No	te or	Toe for			the second

Score 3-5 = Riparian Zone 11 - 6 meters

Score 6-8 = Riparian Zone 18 - 12 meters Score 1-2 = Riparian Zone < 6 meters

Note cover type: m=mature forest, ss=shrub/sapling, g=native grass, p=pasture

٩.,

14. Land-Use Stream Impacts

Score O = none	l = minor affect	2 = moderate affect	3 = major affect		uce trees
C = Cattle	R = Row Crops U =	Urban Encroachment	I = Industrial Encroachment	O = Other ma	intained field
Impact 🕖	120201	2012012	012 012 011	01 01	0 /1.7
			the state of the s		

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTA-3	Client:
Stream name: Unmed Til	Date/Time: 4/17/010 (1715)
Location:	Form Completed By:

Habitat Parameter	CATEGORY										
Farameter	Optimal	Suboptimal	Marginal	Poor							
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking							
SCORE / 2	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321							
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.							
3. Pool Variability	20 19 18 17 16	15 14 13 12 11	109876	54321							
	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.							
SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321							
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.							
5. Sediment	20 19 18 17(16)	15 14 13 12 11	10 9 8 7 6	54321							
Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily slited; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.							
SCORE <u>/ 2</u>	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321							

Δ

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTA-3	Date/Time: 4/17/06 (1715)
Stream name: 4 money Trib	Form Completed By:

Habitat		CATE		<u></u>
Parameter		CATE	JURI	
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	20 19 18 17 16	15 14 13 12 11	10(9)876	54321
Score 17	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	20 19 18 17 16	15 14 13 12 11	10.9876	54321
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE C RB 9. Vegetative Protection	Right Bank109More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.Left Bank109	8 7 6 70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	5 4 3 50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	2 1 Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
SCORE 7 RB		<u>876</u>	543.	2 1
10. Riparian Vegetative Zone Width	Right Bank 10 9 Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	8 7 6 Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	5 4 3 Width of riparian zone 6-12 meters; human activities have impacted a great deal.	2 1 Width of riparian zone <6 meters; little riparian vegetation to human activities.
	Left Bank 10 9	876	5 4 3	2 1
SCORE <u>7</u> RB	Right Bank 10 9	8 7 6	5 4 3	2 1

TOTAL SCORE: AVERAGE SCORE:

G 11.4

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: UI	+13-1	LOCATION:
STREAM NAME:		RIVER BASIN:
LAT:	LONG:	PROJECT:
INVESTIGATORS:	SKH JOF DATE/TIME:	4/20/06 1240 FORM CHECKED BY:
WEATHER CONDITIONS	□ storm (heavy rain) [□ rain (steady rain) [□ showers (intermittent) [%□ % cloud cover [☑ clear/sunny ½	
STREAM ATTRIBUTES	Glacial Montane, non-glacial Swamp and bog	Charlen Line Stream Type Tidal Coldwater Spring-fed Catchment Area:mi ² Mixture of origins Stream Order:mi ² Other Furth Surce t/mi) Moderate (10-24 ft/mi)
HYDROLOGY	Flows	Flows Measured? Reach: Slope & Sinuosity None Yes Noft/mi
WATERSHED FEATURES		rban Industrial Storm Water ercial% Urban/Sub-Urban Storm Water
RIPARIAN VEGETATION	Mature Forest <u>3</u> % Shru	ub/Sapling 85% Alterbs/Grasses () Turf%
	☐ Riffle% 又Run ZO ☐ Roads ☐ Bridges ☐ Pipeline ☐ Dams ☐ Trash ☐ Cattle A	_% 🛛 Pool <u>20</u> % es 🔲 Beaver Dams 🖾 Point Source Access 🗍 Mining 🗋 ATV Crossing 🗍 Other
	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Turbidity/Water Clarity (if not m	lone Minimal Moderate Heavy ggrading Degrading Widening Headcutting Water Surface Oils Slick Sheen Globs Flecks Mone Other easured)
SEQUIEN // DETERMATIONS	□ Clear □ Slightly tur □ Opaque ☑ Stained Sediment Odor ☑ ☑ Normal □ Sewage □ □ Chemical □ Anaerobic □ □ Other □ □	rbid ☐ Turbid

2-0

Station #: UTB-(Stream:		Date/Time: //	20/04	1200	Initials:
u/s latitude:	d/s latitude:	u/s:	i	230	
u/s longitude:	d/s longitude:	d/s:		· · · · · · · · · · · · · · · · · · ·	

1. Reach Length Determination

Retarreter		eastroment	Number	Achielen Stelen	ne			SUGERAN
	16 8 8 9	24 60 6	SI GOOD	Al (Zax		Average	-Length (ft)	Length: (ft)
Bankfull Width	8.4	10.0	8.4	6.5	6.0	7.9	158	15.8
Bankfull Depth	1,5		1.3		-	1.4	na	na
¹ Average width times	20	² Total Le	ngth divided b	y 10	ň	┻╍┶╸┈┦──╷┈	J	<u> </u>
					pe.	(p		

2. Riffle-Pool Sequence

Merola,				R Sec	ECRIMENT	loedeek.	letetta in the	enter de la companya			
iyee:		2.	3	4	5	6		1. 19 10 19	0	影情别感到	
Riffle	X		X	X	\mathbf{x}	X		X	×	<u> </u>	
Run	X	15.8	15.8	3.8	15.8	15.8	15.8	15.8	15,8	158	192.2
Pool	15.8		\mathbf{X}	10,0	×	X	X			<u>у</u>	25.4
Sequence	m			·~~-							n/a
"Riffle="vvv" P	"un="* Do	ol=""	• • • • • • • • • • • • • • • • • • • •		L	J			L		

'Riffle="xxx", Run="-----", Pool="~--

3. Depth and Width Regime

e Michola				l (ceicji	No Ay	encioles De		alidih (fili			
Type		2	3	4	5 1	6	7.	8	9	10	Avenage
Riffle Depth ³				$\left(\frac{1}{2} \right)$			\mathbf{X}'		<u>\</u>	<u>\/</u>	L
Riffle Width	$\left \begin{array}{c} \\ \\ \\ \end{array} \right $	\frown			X	X		\square	\mathbb{X}	X	-
Run Depth ³	$\downarrow \downarrow /$	\$ 0'0.5	0.9186	09 10.5	1307	140.9	1.411.1	1.610	1.0108	1310.8	1.21.77
Run Width		5.2	60	4-5	5.0	4.0	40	3.0	5.0	6.0	5.2
Pool Depth ³	1;0106	\neg		1.410.9		$\downarrow \downarrow / _$		12	$\sqrt{/}$	17	1.210.75
Pool Width	60	$ \land $	LA	7.0	\square			X_{-}		X	6.5

³Thalwag / Average

4. Epifaunal Substrate, Percent Stable Habitat (for Macroinvertebrates)

Section: 1.	2	3	4	3	6	7	8	9	10	
% Area 4/C	20	20	40	40	1,0	40	40	BO	30	3,80

5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted Perimeter)

Section		2	0.000	siste ajenny 1946 - Serie	0 - Avai				ibilici Si su	10	Average
% Area	40	25	20	40	20	40	50	30	30	30	33.5

6. Substrate Characterization (Dominant Substrate)

(16) (1)					NK SCHER	Cast Soli	in an loss of	- Trency and			
		200							0.		Seven and the
Riffle								X	X		·
Run		2	2	え	2	2	2	.2	2	2	2
Pool	2			2		X	X	ĿΧ		X	2

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Silt/Clay(1)

7. Embaddedness/(Gravel, Cobble, Boulders Percent/Embedded)

%	
6/Err	
ipedi	腹機
ded/	
1	
1	
$\overline{\bigcirc}$	
∇	
\square	TEAL COL
77	

8. Sediment Deposition (Percent of Bottom Affected)

CENTRE LE CARA		S S & S &	NY (1974					1		
% 50	50	80	60	50	35	30	40	35	50	48

		Strea	m Habita	t Assessi	ment (Sem	i-Quantitati	ive)	
Station #:	UTB-1		Date/Time:	4/20/00	2	Initials	· · · · · · · · · · · · · · · · · · ·	
9. Aquati	ic Macrophytes	and Perip	hyton (Per	cent Cover	ade)		······	
Maine Mage				No de Fe	chilNo Selfer	SHE VOVACIE		
Riffle	Macrophytes				в		<u>/ 9///0/</u> / / /	WWW.Wenteree
	Periphyton	Xi			\mathbf{X}	$X + \chi$	+X+X	
Run	Macrophytes	1/7	50	3	5 5	5 0	1013	2.8
	Periphyton	\boldsymbol{X}	0,0	0	D = O	00	00	0
Pool	Macrophytes Periphyton	5)	$\langle \rangle$	0.	$\sqrt{ }$		V	1 2.5
	Геприуюн	0 /	$ \downarrow / \searrow$	O	<u> </u>	$ \triangle \lambda $	$\Box \Delta \Delta$	0
10. Cano	py Cover (Perc						AMARINA SCOTTANT SCOTTANT	
Section			search noise 14			lin Sneam Ch 18	White a bire a transmission of the second seco	Average
Shading	20 30) 10	20,0	0	00	5	00	6.5
11. Bank	Stability (Score	e) and Slo	e (Degree:	s)			······································	
Section .						8 8		
Score	6 2	5 6	6	X	0 6	7-	23	6.2
Slope (°)	55 80	2 90	90		20 80	80 7	0 10	75
CRB Section	$(-1) \leq (-2)$	3		5		8.8		Average
Score	4 8	T B	7	8	CIF	- 7. 4	\leq	6.3
Slope (°)	90 90	2.80	US	45 8	0 90	90 6	10 90	79
	Stable, < 5% bank Moderately unstable		nk eroding	Sco	re $6-8 = Modera$	itely stable, 5-29%	6 of bank eroding	· L
	ative Protectio		•		ie 1-2 – Unstao	le, 60-100% bank	eroding.	
UB	alive i folectio			<u>tected)</u> 5 6	~ 7	8 8 0	10	Averace
Section	21 9	a Ho		70 -				
% RB		3	30	TO 17	25 76		50 20	Average A
Section								CVCIAGE 7
%	45 70	70	1.30	30 . (0 60	50 (e0 60	53.5
	an Vegetative	Zone Widt	h					
-11-B Signifiginit		na de						Averege (US)
Score	3/55 57	55 5/55	7/55	7/537	55 7/55	7/55 9/	55 9/55	6.6
Score	7/55 7/5	5. 3/55	7/10	7/55 7	55 7/55	2/00 1	Xsr 10/55	6.8
Score 9-10 =	= Riparian Zone > 1		Score 6-8	-Riparian Zo	ne 18 - 12 mete	rs Note co	ver type: m=matu	ire forest,
	Riparian Zone 11 -		Score 1-2	= Riparian Zo	one < 6 meters	ss=shru	b∕sapling, g≕nativ	e grass, p=pasture
14. Land-	<u>Use Stream Im</u>	pacts			Personal Second			
Impost								
Impact	F'31'	3+	+		/ /		4-1-1-1	I13
C=Cattle Score O=n	one $R = Row C$		Jrban Encroaci 2 = moderate		ndustrial Encro najor affect	achment	O = Other	· · · · · · · · · · · · · · · · · · ·

Point souven Duchy

Page 2 of 2 V 3.2

ŗ,

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTB-1	Client:
Stream name:	Date/Time: 4/2406 (1240)
Location:	Form Completed By:

Habitat		CATEG	ORY	
Parameter			·····	
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
SCORE //	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
SCORE //	20 19 18 17 16	15 14 13 12 11	109876	54321
3. Pool Variability	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE 208	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
SCORE //	20 19 18 17 16	15 14 13 12(11)	10 9 8 7 6	54321
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement during storm events.	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
SCORE / /	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTB-(Date/Time: 11/20106 (12 40)
Stream name:	

Habitat		CATE	GORY	
Parameter				
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity SCORE	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line.	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	20 19 18 17 16	15 14 13 12(11)	109876	54321
Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	20 19 18(17)16	15 14 13 12 11	10 9 8 7 6	54321
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
SCORE 6 LB	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE (O RB	Right Bank 10 9	8 7 6	5 4 3	2 1
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
	Left Bank 10 9	876	5 4 3	2 1
SCORE B RB 10. Riparian Vegetative Zone Width	Right Bank 10 9 Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	8 7 6 Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	5 4 3 Width of riparian zone 6-12 meters; human activities have impacted a great deal.	2 1 Width of riparian zone <6 meters; little riparian vegetation to human activities.
	Left Bank 10 9	876	5 4 3	2 1
SCORE 7 RB	Right Bank 10 9	876	5 4 3	2 1

TOTAL SCORE: AVERAGE SCORE:

)

11.

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D: UT	B-2		LOCATION	1: Durch	A. A. A	1	1-5
STREAM NAME:	innand Tris		RIVER BAS	SIN:	not Const	remore with	Ebcc orthill
	LONG:		PROJECT:				
INVESTIGATORS:	SXH/JBD	DATE/TIME:	4/20/06	1002	FORM CHE	CKED BY:	
WEATHER CONDITIONS	Now Storm (F rain (sto showers (24-hr		in the last 7 ature	′ days? 	Yes 🔀 No
STREAM ATTRIBUTES		/sunny	Tidal Spring-fed Mixture of ori	gins	Catchment Stream Orc	er 图 Warm Area: ler:	mi ²
HYDROLOGY	Flows	ate 🗹 Low 🗌 I	Flows None	Measured? Yes 🗌 No	Reach:	Slope & _ft/m	Sinuosity i
PEATURES	Predominant Sur Forest <u>30</u> % Pasture% Row Crops% Urban%	⊡ Sub-Ur ⊡ Comm _%)⊠ Industr	ban ercial% ial_ <u>40</u> %		No evidence ndustrial Sto	I NPS Polluti	ral
RIPARIAN VEGETATION STREAM MORPHOLOGY STREAM DISTURBANCES	Mature Forest		_% 🗹 Pool	25%		·······	
WATER DESERVATIONS	Channelized: Local Watershed Channel Dynamic Water Odors Mormal/None Petroleum Fishy	Erosion: 🗌 Ye	s XI Son	ne II imal II Degrading Water Surf	No Moderate Widenin ace Oils Sheen	☐ Heavy g	utting
SECOMENTA OPPER VATIONS	Turbidity/Water C Clear Opaque Sediment Odor Normal Chemical Other	Sewage				dust 🔲 O	ils -

Page 1 of 1 V2.1 April 2005

.

	eam: Unnard Ar.b	Date/Time: 4/2/06 (084 5 - Initials: 524/0817
u/s latitude:	d/s latitude:	u/s: 1000
u/s longitude:	d/s longitude:	d/s:

1. Reach Length Determination

	1/Hatl	21.04.1	f Nuinder I. Sie de alle	4.00	51+661	Averade	Length (ff)	Sub-Reach
Bankfull Width	11.5	9.5	12.0	9.0	10.0	10 4	2 PU	27()
Bankfull Depth		1.3		1.5		1.4	na	na
Average width times		² Total L	ength divided t	by 10		Şt	ppel fiph inc	Frez J

2. Riffle-Pool Sequence

Midifelt				S. S. S. F	each Non	1 biele i like	glo la bin a S				
Typice	1	2	3	A started	5	16	7		6	165	5
Riffle	$ \times $	X	4	Ιx	X	N			280		
Run	\mathbf{X}	15.0	22	80	780	28.0	9.0	200		286	27
Pool	280	13.0	X	20		X	19.0	$\overline{\nabla}$	$\overline{\mathbf{v}}$	$\sqrt{2}$	166
Sequence	prov	hr		-nn	h	+	-mi		XXXXX		<u> 80</u> n/a
Diffion"www" Di	I I I I	- 1. 2 #	L	1		<u> </u>		Ľ í	7 7 7 Y X		11/0

'Riffle="xxx", Run="-----", Pool="-----

3. Depth and Width Regime

Morph	2.0	-24 and -2		Regist	NO AA	erage De	plh (ft) / \	Midth (ft)			
		2	3	4	5	6	$7 \sim 1$	8	9	10	Average
Riffle Depth ³	$\lfloor \chi \rfloor /$	\searrow	07103	\square	<u>\/</u>	$\backslash /$	$\sqrt{1}$	トレ	0.510.3	$\nabla 7$	0.6 10.3
Riffle Width			9.0	\square	\times	\mathbf{X}	\mathbf{X}	$\overline{\mathbf{X}}$	85	\sim	8.75
Run Depth ³	L 1/	1.010.8	1.0108	0.00.4	0.8105	0.810.5	08105	0.9106	\$1/	D.HD.?	0,43 10.55
Run Width	X	6.0	60	7.0	70	6.01	8.0	80	\mathbf{X}	6.0	6.5
Pool Depth ³	1.511.0	1.6 10.8	11/	0.910.6	$\sqrt{1}$	∇	17114	.[)	,		·
Pool Width	8.5	6.0	X	80		$\overline{}$	0		-X-	<u>-</u>	1.43.0.7
Thohwar / Au			ني ك				$\mathbf{D} \cdot \mathbf{O}$				1.651

Thalwag / Average

4. Epifaunal Substrate, Percent Stable Habitat (for MacroInvertebrates)

Section 1 and 2 and 3 and	A 5 4 6	7 8 8		ł
% Area 50 60 40	3 0 20 35	30 45	10 10 32	

5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted Perimeter)

	Reach I	No - Availability	and Autality of Eish	Habilat	
Seculor S	3 2 4 4	6 6	7 8		Average
70 Alea 40 60	40 30	20 35	35 50	10 1	0 3.3

6. Substrate Characterization (Dominant Substrate)

Morphe. Type		2.5			i (filestin). Airtí	les strioini	nantsubs	uate			
Riffle	\mathbf{k}	X	2	X		X	X		2		
Run	X	2	2	2	2	2	2	7	X	\hat{i}	1.10
Pool	2	2		2	X	×	2	$\overline{\mathbf{v}}$	×.	X	2

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Silt/Clay(1)

7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)

EESCHOLES ASSAULT			WEIGHT BEITER	
* Embedded				
FEIIICCOGCO				$\mathbf{A} \mathbf{\nabla} \mathbf{I}$

8. Sediment Deposition (Percent of Bottom Affected)

		a
% 80 3 0 1	10 60 90 70 50 30 50 30 53	8

	Station #: (x+B-2			Date/Time	/		1845 - 10		$\frac{\text{(tative)}}{\text{(itials: } \leq k)}$	ut an	
	_9. Aquati	c Macros	hytes ar	nd Periph	nvton (Pr		{	017-10	<u>, , , , , , , , , , , , , , , , , , , </u>	intrais. S II.	<u>7 JBS</u>	
ý	Monthin . Type											
	Riffle	Macroph			1 0				0 /	9		Average
	Run	Periphyt Macroph		\mathcal{A}	0		X	X	X	X	δX	0
	TXIII	Periphyt	·	$\begin{pmatrix} c \\ c \\ c \end{pmatrix}$		<u> </u>	0	6	5	5	1 5	2.14
	Pool	Macroph		00		10	+ 0	O	5	0 12	$\frac{12}{2}$	0
		Periphyt	on (20			X	X	0)	$\not\leftarrow$	$\leftarrow \mid X$	1.25
	10. Cano	py Cover	(Percent	Stream	Shading	[)		• •			I <u></u> ,	
	Section		12	· 國家和國語	14 A A	Hercen	1 (%) She 0		in Stream	Channe	10 7 3	
	Shading	5	30	30	35	60	5	5	5	20	20	21.5
-	11. Bank	Stability	(Score) a	nd Slop	e (Degre	es)		1 Maharing and a same	N INFORMATION CONTINUES			
•	Section									9	10	Avérade Score
	Score Slope (°)	7-	45	8	5	80	4	4	4	6	le	5.7
		$\frac{1}{1}$		3	4	60	50	43	40	80	45	56.5 Average
	Section Score	6	8	6	12		2			7		score
· v	Slope (°)	80	90	80	80	65	XO	7	90	85	7	6.7
)	Score 9-10 = Score 3-5 =]	Stable, < 5 Moderately	% bank affe unstable, 3(cted.)-59% bank	eroding.		Score 6-8	= Moderate	ly stable, 5	-29% of bar ank eroding	k eroding	
	12. Vegeta				+	otected)		onstaole,		ulut	<u>z</u> .	
	LB Section		2		4	5	6		8	9	10	NVERAGE ST.
	% RB	60	65	55	70	40	30	40	40	60	60	52
	Section		2	33.00	45		6 1		8	9	THE REPORT OF THE PARTY OF THE	verage
	%	75	75	60.	55	60	50	30	40	40	45	55
1	<u>13. Riparia</u>	an Vegeta	ative Zon	e Width			2007-201-200-200-200					
	Deleteti(o))								6 	9	10	Verage COTE
	Score	1.155	144 55	1/55	1/55	1/55	1/55	1/55	<u>1/55</u>	1/5	1/25	1/55
		210	2	2								Verlage Cores
l	Score Score 9-10=	P/S Riparian Zo	one > 18 me	ters	2/55 Score 6-1	$1/\zeta \leq 8 \leq Riparian$	/ <u>\<u></u> 5 Zone 18 -</u>	$\frac{1}{2}$ meters	1/55 Not	6/55		2.7 55
	Score $3-5 = F$	tiparian Zor	ie 11 - 6 me	ters	Score 1-2	2 = Riparia	n Zone < 6	meters	88=8	hrub/saplin	: fn=mature f g, g=native gr	orest, ' ass, p=pasture
	14. Land-L	Jse Strea	m Impac	S								Marting and a communication
	Impact (迎13										A CONTRACTOR OF
) L	C=Cattle	R = F	low Crops	U = Urt	an Encroad		I = Industria	/				2/3
	Score $0 = not$		= minor affe		= moderat		s = major af	fect		0=0	ther <u>Prive</u> R.g	Lito way
		No	ti sky	a. 1	de la				Roll		.,	/
	Page 2 of 2 V 3.2	1	514	per l'	ppro. C	An anice A			Repetin Crossi	~~ ~~		
									C1079	9		

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: WTB-2	Client:
Stream name:	Date/Time: #/20/06 - 1000
	Form Completed By:

Habitat		CATEG	ORY	
Parameter		·		
1. Epifaunal	Optimal	Suboptimal	Marginal	Poor
Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking
SCORE //	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
SCORE	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.
3. Pool Variability	20 19 18 17 16	15 14 13 12 11	109876	54321
	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.
SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.
SCORE 10	20 19 18 17 16	15 14 13 12 11	(10 9 8 7 6	54321
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.
SCORE <u>/O</u>	20 19 18 17 16	15 14 13 12 11	during storm events. 10 9 8 7 6	54321

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

Station I.D: UTH-C	Date/Time: 4/20/06 1000
Stream name:	Form Completed By:

Habitat		CATE	GORY	
Parameter				
	Optimal	Suboptimal	Marginal	Poor
6. Channel Sinuosity SCORE	The bends in the stream increase the stream length 3 to 4 times longer than it if was in a straight line. 20 19 18 17 16	The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a distance.
7. Channel Flow	Water reaches base of	15 14 13 12 11	10 9 8 7 6	54321
Score 15	both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	20 19 18 17 16	(15)14 13 12 11	10 9 8 7 6	54321
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.
	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE 7 RB	Right Bank 10 9	876	5 4 3	2 1
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate ripartan zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.
	Left Bank 10 9	8 7 6	5 4 3	2 1
SCORE 3 RB	Right Bank 10 9	876	543	2 1
10. Riparian Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparlan zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.
SCORE LB	Left Bank 10 9	876	5 4 3	2 1
SCORE 3 RB	Right Bank 10 9	876	5 4 3	2 1

TOTAL SCORE: _____

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

GENERAL PHYSICAL CHARACTERIZATION FIELD FORM

STATION I.D:	tc-1		LOCATION:			
)STREAM NAME:	· .		RIVER BASI	N:		
LAT:	LQNG:		PROJECT:	······································		
INVESTIGATORS:	SHIDDE	DATE/TIME: ر	1/20/06		FORM CHECKED E	BY:
WEATHER CONDITIONS	☐ rain (ste ☐ showers (i %☐ % clou	eavy rain) [eady rain) [intermittent) [id cover [In the last 7 days? ratureº	ì
STREAM ATTRIBUTES	Stream Subsyster Perennial Stream Origin Glacial Montane, non-g Swamp and bog Stream Gradient:	Intermittent glacial ⊠ g □ High (≥25ft	Other i/mi) 🚺 Mode	ns erate (10-24	Stream Order:	mi²
HYOROLOGY	Flows	V-Rty Lo.	W Flows M	leasured?	Reach: Slope	& Sinuosity ft/mi
WATERSHED	Predominant Surr Forest <u>70</u> % Pasture% Row Crops% Urban%	☐ Sub-Ur ☐ Comm _% ⊠Industr	ban ercial% ial <i>_30_</i> %		al Watershed NPS Po No evidence	cultural Pr
RIPARIAN VEGETATION	Mature Forest	10% 🛛 Shru	b/Sapling 85	% Ø Her	bs/Grasses <u>) </u>] Turf%
MORPHOLOGY STREAM- DISTURBANCES	Riffle <u>2.5</u> % ☐ Roads ☐ Bridg ☐ Dams ☐ Tras	es Pipeline	s Bea	ver Dams	☐ Point So / Crossing ⊠ Other _(ource All'S Cutover
WATER DESERVATIONS	Channelized: Local Watershed Channel Dynamic Water Odors	☐ Ye Erosion: ☐ N s: ★ ▲	es Some one XMinin ggrading I	e X nal D Degrading Water Suri	No Moderate	/y eadcutting
	Normal/None	Sewage		Slick	Sheen Glob	
	Turbidity/Water C	Iarity (if not me Slightly tur Stained	bid 🕺	Furbid Other		
SEDMENTONS DESERVATIONS		Sewage [Anaerobic [] Petroleum]None		d Relict shells	Oils

Station #: UTC-(Stream:		Date/Time: 4/2010	1160	Initials: SELL JOF
u/s latitude:	d/s latitude:	u/s:	1145	1
u/s longitude:	d/s longitude:	d/s:		

1. Reach Length Determination

Patemeter	dele su la su l	Mandhikeoji	n(e st Vetal		Motel Reach	
Bankfull Width	4 7 1 D		5/1///202	Average	Length (ft)	Length? (ff)
Bankfull Depth	-12	5-0	5.5	7.2	149	14.4
Average width times 20	Total Length divide	ediby 10	1.0	1.75	na	па

2. Riffle-Pool Sequence

Moren					each/Nun	iter colle					
Riffle			3		5	6		收 运输器	9.46	10	8 70 M 19 C
	$\downarrow \neq _$				X	X	57d	01.0	$\overline{\nabla}$		1.0
Run		7	14.4	X	14.4	14.4	MAK	114		10	7110
Pool	14.4	74	X	14.4	X	X	124.24	2.0	14.4	14	71.0
Sequence ¹	hm	gon-		him		mm	- 0- 0-		~~~~	9.7	1107
¹ Ríffle="xxx", R	un="". Po	<u>.`</u>	I	L	L				1		n/a

3. Depth and Width Regime

Riffle Depth ³	7.1/	3	4	5	6	7.	8	O A BAS		
					1.17	1 1 1 /	0.1.7224141401774304-044	are an easy of the state of the		
Riffle Width X		+-X	\searrow	$ \vee $	<u>+√∕</u>	√⁄	0.210.1	\downarrow	11/	0.210.1
Run Depth ³	170	Invine	$\dot{\cdot}$	04/02	102	$\left \frac{1}{1} \right\rangle$	1.0			1.0
Run Width	40	UP	\mathbf{X}	25	203		0.310.		8.4102	0.52/0.3
Pool Depth ³ 1.01	0.50.610.4	1	0.5703	1	1.210.8	6.710.4	0.8104	10/11-	4.0	- 3.3 0.46 / 0.49
Pool Width 5.4	5 5	K	6.0		8.0	5.0	40	54	80	5.9

Thalwag / Average

4. Epifaunal Substrate, Percent Stable Habitat (for Macroinvertebrates)

Steletilet in the steletist	2.	3	4	5.	6	7	8	.	130	
% Area 🔫	0 30	20	30	50	30	150	10	25	25	30

5. In-Stream Habitat, Percent Stable Habitat (Available Fish Cover in Wetted Perimeter)

Section 1	Reach States 4	Nove/Avail	ability and Obr	illiy of Fish 4 18	albhan C	10 10	Average
% Area 30 30	20 90	40	50 50	\mathcal{D}	30	35	33.5

6. Substrate Characterization (Dominant Substrate)

Molena,					31.(-)=(0);(1)	lo é Don	llazings(ali	silater e			ing a start start of
Riffle											Avenade
Run	Î Â	2	2	$\overline{\mathbf{X}}$	3	3	$\overline{\mathbf{x}}$		+ X	2	9.2
Pool	2	2	L <u>y</u>	2	X	2	2	2	2	2	2

BR=Bedrock(7), BLD=Boulder(6), COB=Cobble(5), GC=Gravel Coarse(4), GF=Gravel Fine(3), S=Sand(2), SC=Silt/Clay(1)

7. Embeddedness (Gravel, Cobble, Boulders Percent Embedded)

~		2
7	1/0	19
	Em	
	Ьé	168
	dde	30×9
	bd	
	\mathbf{Y}^{-}	5
<u> </u>	\mathcal{I}	
		1.
	\overline{X}	
	7	
12	V	
	7	
1 · / .		
	7	
	/	
	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	712.00
		NS NT
1 1		新活
	┞	2

8. Sediment Deposition (Percent of Bottom Affected)

<u>%</u> 30 20 30 50 30 20 20 0 10 35 24.5			
	% 30 20	30 50 30	20 20 0 10 35 24.5

Station #:	UTC-1			Date/Time:	4/20/2	6		Ini	itials:	<u></u>	
9. Aquati	ic Macroph	vtes an	d Peripł	nvton (Pe	rcent Cov	verage)					
Morph Twie				Editor			i saneix	la de la contra			
Riffle	Macrophy	tes 🗛		1.			6 /				
	Periphytor	n /	$\langle \rangle$	$(\times$		X	X	\mathbf{V}^+	0	$\checkmark + \times$	0
Run	Macrophy		15	5		5	0	\mathbf{x}	0,	7 5	3.3
	Periphytor		2	\sim	A	0	0	Δ	0	$\langle 0$	0
Pool	Macrophy Periphytor	Ŭ	2	$ \downarrow \downarrow \checkmark$	<u> </u>	$ \downarrow $	0	0	· · · · · · · · · · · · · · · · · · ·	5 5	1.9
· · ·			\mathcal{I}				0	0	0 0	20	0
<u>10. Cano</u>	py Cover (Percent		Shading) each Now		1. Antoine	Ser Willia		Maist faist-	1	
Section		2000		4		6		8	9	10	Average
Shading	15	20	40	35	10	60	30	20	10	25	26.5
11. Bank	Stability (S	Score) a	ind Slop	e (Degree	es)						
Seignon											Score
Score	6	8	9	9	5	7	9	8.	7,0	7-	7.5
Siope (°)	85	60	45	30	90	45	60	60	-70	50	59.5
Section										1. IU	Average Score
Score	9	9	8	7-	8	3	5.	6	7,0) 7-	7.1
Slope (°)	<u> </u>	<u>45</u>	act of	90	45	80	90	75	70	70 ank eroding	65
Score $3-5 =$	Moderately u	nstable, 3	0-59% bar	ak eroding.		Score 1-2	= Unstable	, 60-100%	bank erodi	ng.	- -
12. Vegel	tative Prote	ection (F	Percent	Banks Pr	otected)						
LB Section		23.014	3.6	4	5	6	\mathbf{Z}_{+}	8	9	10	Average
%	65	80	40	20	35	20	75	50	30	50	50.5
rts) Stachor		2	3 3 000	4	5	6 1999 - 19999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999		8.4	19	10	Average
· %	$ \mathcal{D} $	55	50	170	50	BO	50	60.	30	40	49.5
13. Ripar	ian Vegeta	tive Zor	ne Width			**************************************	· · · · ·				L <u> (, , , , , , , , , , , , , , , , , , </u>
Elevelores Silicitate		2		4	5.4.5	6		8.	9	10.53	AVenderside
Score	2/11	7/1	2/50	3/3	12/12	Elcc	7/55	1/55	7/55	2/14	4.8/55
					800		1				
Section: Score	2/	~/~	2-10	7/5		7-155	7/10	7/10	5/22	13/11	
Score 9-10	= Riparian Zo	<u>)/(()</u> ne/>18 m	IT / 25 leters	Score 6-	1 - 7 - 7 S S -8 = / Riparia	n Zone 18		<u> </u>	te cover ty	<u> //S S</u> pe: m=matu	re forest,
	Riparian Zon			Score 1-	-2 = Riparia	n Zone < 6	meters				e grass, p=pasture
14. Land	-Use Strea	n Impac	cts								
S ollo S			ce ce	i den de Berei							
Impact	<i>‡'1</i>	\mathbb{Z}^{\prime}	\mathcal{I}'	11	±11.	11	±'1	±11	I'I	エリ	工11
C = Cattle Score $O = r$		low Crops = minor af		rban Encroa 2 = modera		I = Industr 3 = major s	ial Encroac	chment	0=	Other	······································
_ *	-	-						•			

Habitat Assessment Field Data Sheet (Low Gradient)

Station I.D: UTC-1	Client:
Stream name:	Date/Time: 4/20/04 (11 45)
Location:	Form Completed By:

Habitat Parameter	CATEGORY					
	Optimal	Suboptimal	Marginal	Poor		
1. Epifaunal Substrate / Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble, or other stable habitat; and at a stage to allow full colonization.	30-50% mix of stable habitat suited for colonization; adequate habitat for maintenance of population; some newfall may be present.	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed.	Less than 10% stable habitat; lack of habitat obvious; substrate lacking		
SCORE //	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321		
2. Pool Substrate Characterization SCORE	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay to sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root or vegetation.		
3. Pool Variability	20 19 18 17 16	15 14 13 12 11	109876	54321		
ŕ	Even mix of large-shallow, large-deep small-shallow, small deep pools present.	Majority of pools large deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small-shallow or absent.		
SCORE B	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	54321		
4. Channel Alteration	No channelization or dredging present. Stream channel normal.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging, (greater than past 20 yrs.) may be present, but recent channelization is not present.	Embankments present on both banks; channelization may be extensive, and 40%- 80% of steam reach channelized and disrupted.	Extensive channelization; shored with Gabon cement; heavily urbanized areas; in steam habitat greatly altered or removed entirely.		
5. Sediment	20 19 18(17)16	15 14 13 12 11	109876	54321		
5. Sediment Deposition	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of islands or point bars.	20-50% affected; some accumulation; substantial sediment movement only during major storm even; some new increase in bar formation.	50-80% affected; moderate deposition; pools shallow, moderately silted; embankments may be present on both banks; frequent and substantial sediment movement	Heavily silted; >80% affected; movement/shifting of bottom occurs frequently; pools nearly absent due to deposition.		
score <u>75</u>	20 19 18 17 16	15 14 13 12 11	during storm events. 10 9 8 7 6	54321		

Habitat Assessment Field Data Sheet (Low Gradient Cont.)

	1 1
Station I.D: UTC-/	Date/Time: 9/20/06 (1195
Stream name:	
ou our nume.	Form Completed By:

Habitat Parameter	CATEGORY							
raiameter	Optimal	Suboptimal	Régnalis et					
6. Channel Sinuosity	The bends in the	The bends in the stream	Marginal The bends in the	Poor Channel straight;				
SCORE //	stream increase the stream length 3 to 4 times longer than it if was in a straight line.	increase the stream length 2 to 3 times longer than if it was in a straight line.	stream increase the stream length 1 to 2 times longer than if it was in a straight line.	waterway has been channelized for a distance.				
7. Channel Flow	20 19 18 17 16	15 14 13 12(1)	109876	54321				
Status	Water reaches base of both lower banks and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or < 25% of channel substrate is exposed.	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
SCORE	20 19 18 17 16	15 14 13 12 11	10'987'8	54321				
8. Bank Stability	Banks stable; no evidence of erosion or bank failure. <5% affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5%-30% affected.	Moderately unstable; up to 30%-60% of banks in reach show areas of erosion. High erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; 60-100% of banks have erosion scars.				
SCORE <u>8</u> LB	Left Bank 10 9	8 7 6	5 4 3	2 1				
SCORE 7 RB	Right Bank 10 9	876	5 4 3	2 1				
9. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by vegetation. Vegetation disruption minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by vegetation. Disruption minimal or not evident; one group of plants likely not evident. Almost all plants allowed to grow naturally.	50-70% of the streambank surfaces covered by vegetation. Disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of streambank surfaces covered by vegetation. Disruption of stream bank vegetation very high; vegetation has been removed; 2 inches or less average stubble height.				
	Left Bank 10 9	876	5 4 3	2 1				
SCORE 3 RB	Right Bank 10 9	8 7 6	5 4 3	2 1				
10. Riparlan Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clearcuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted a great deal.	Width of riparian zone <6 meters; little riparian vegetation to human activities.				
SCORE <u>5</u> LB	Left Bank 10 9	876	5 4 3	2 1				
SCORE RB	Right Bank 10 9	876	5 4 3	2 1				

TOTAL SCORE: _

Barbour, M.T. et.al., 1999. Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.

Waterbody Na	me: <u></u>	at Creek	
Client: EDC	<u> </u>		
Project no: 20	042-06-0	070	
Investigators:	REM	. SKH	
,	JBB	<u></u>	•
Date Sample C	ollected: _	4/17/06	, ,

Habitat Forms Completed: (yes) / no

Ĭ

FC-Location: FC-2 Galt. Ecoregion: Coas Weather: Parthy cloudy mos

Form Completed By: <u>383</u>

Form Checked By: _

Fish Sampling Completed: yes/ no

Collection	Macroinvertebrate Qualitative Sample List				
Flar Creike	FC-1 Above Station	FC-Z Below Station	Таха	Above Station	Below Station
Poel une Sambal		5 min pol AAH	Annelida	1	Dolon Olaton
	RIGERINGER OF PARTY CONSTRUCT		Decapoda		
Periphyton:	0 234		Gastropoda		
Filamentous Algae:		01234	Pelecypoda		
Macrophytes:	0(1)2 3 4	01234	Hemiptera		
Slimes:		0 234	Coleoptera		·
Macroinvertebrates:	0.1 2 34	0 1 2 3 4	Lepidoptera		
Fish:	01234	0 1 2 3 4	Odonata		
Other:	01234	01234	Megaloptera		
			Diptera		
0=Not Observed, 1=Rare,	2=Common, 3=Abund	lant, 4=Dominant	Chironomidae		
Major PA	Dial Sempled (%		Plecoptera		
Riffle/Run:	25	10	Ephemeroptera		
Shallow Pool:	60	10 75	Trichoptera		
Deep Pool:		15	Amphipoda		
Backwaters:	5		······································		
Chanelized:					
aviltereditere	neesemped (%				
Woody Debris:	40	30	R≖Rare, C=Com	mon, A=Abundant, C	
Emergent Vegatation:				3-9, Abundant>10, [
Submerged Vegetation:			Site Descrin	tion and Obser	votional
Depositional Area:	10	30	Sampled all	hab at M	actions:
Overhanging Veg:			nonstly have	LAAN CLAN. D	auni
Root Wads:	25	15	in the	NO	W NYON F
Undercut Banks:	20	20	n	JULY JENEY.S	Jun
Filamentous algae:			ream any of the	council often a	FL CLOUP
Leafy Debris:		5	Site Descrip Sampled all Mostly have Instream n Run out of hu SAN 2 Cophison	phus), Odani	to f Clemine
Other				-	
	nmar Bryn				

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

242 Old Calib-Road Owner Eld 71730 STopped

		Rapid Bi	oassessme	ent Field	Sheet	
Point Source	e Houre R	Ference 2.7	he FC-Z	2	Doto	4/17/06 No multiple charl
Collector	REM San	nple Technique 4	C MAAH	Sediment		-1111-50
bitat Des	scription: ABOVE	SANDY - WIG	he stream b	el sto	en bonks	NO must de upon
Jold c	hame/ized ??				7 10 1-1-5	to machipic chines
3	BELOW	Abridant "	roody debi	ris, cla	, hard pair of	ominant a bstrate
mal	tiple drammels,	beaute dama			,	
Below	-	MACROI	NVERTEBRA	TE COMM	UNITY	
-ADOVE S		-	······	DELOW	Station # 5C-	1
<u>Cnt.</u>	Taxa	Tally		Cnt.	Taxa	Tally
<u>* (</u>	enallasma	44-1		14	ENAllAGMA	4++1-H1(11)
18	toge higia	HIT HIT M	<u>///</u>	21	Argi A Ophigomphus	HUTANT HIT HIT
-9	othis somphus	<u>HTT 1111</u>		2		11
18	(anis	HTT HI HIT	<u></u>	20	-CART'S CART'S	MITH WILLING
_4	Amplipoda	-////		<u> </u>	Amphipoda	MT[1]1
	hideopsyche	- HI HT 1-	-		Hydropsych	HT (Cheum Mopsyche)
	pettodytes Machionia		······································			
-10	Enfionomidae	Lunun		12	01	
	Calopteryx				Chironiom i due	
<u> </u>	La mphns	<u> </u>				
	Antia Sinhis				· · · ·	
/	Camperine	1		3	Comperine	111
4	Bezzia (Pro)	1111			Bezzialfra)	<u>-111</u>
	Hacenus				1220-010	<u> </u>
/	Aschna (Boyeria)	• .		<u> </u>	
1.15	Cheumatopsyche	MATTL	11		f	
3	(ocbicula	 	<u> </u>	<u> </u>		<u></u>
2	Isopata	7/		2	150000	11
	· · · · · · · · · · · · · · · · · · ·		·····	2	Stelemis	<u> </u>
				2	PhysA	<u>+1</u>
	`			2	DINTON TAXOI	11
<u> </u>				3	Cirbicula	111
<u></u>						
<u> </u>						
	<u> </u>					
<u></u>	······					
			·····		•	
19TH	:TOTAL:	100		19 Tx	:TOTAL:	10 OTAXA
			Community Str	ructure		
% Ephem	, ABOVE	BELO		Odan	ABOVE	BELOW
% Plecop		······		odon.	. .	
% Trichop				Cole.		
% EPT	J		%	Crustacea	a	
% Chir.			и	of Tours		
<u>% Diptera</u>	·			of Taxa:	•	
Commer			В	iotic Score	•	
	HG,				,	
					•	

ţ Ĵ

V1.2 05/28/02 Page 2 of 2

ļ

Waterbody Name: UTA	-/
---------------------	----

SKH

Client:______

Project no: 2042-06-070

Investigators: REM

Y

<u>JAB</u>. <u>JJF</u> Date Sample Collected: <u>4/14/09</u>

Habitat Forms Completed: Ves / no

Location: UTA-Ecoregion: _ Galt Coastal Weather: Cool Summy ,

Form Completed By: _____

Form Checked By: ____

Fish Sampling Completed ves / no

Collection	n Site Observatio	ns	Macroinvertebrate Qualitative Sample		
ne Felter Kimel Samolecter	Above Station	Below Station	Taxa Annelida	Above Station	
Relatives Alger	nicketnicketrol (s Algenie i i i s		Decapoda		······································
Periphyton:	01234	01234	Gastropoda		
Filamentous Algae:	01234	01234	Pelecypoda		
Macrophytes:	0 1 2 3 4	01234	Hemiptera		
Slimes:	6/1234	01234	Coleoptera		
Macroinvertebrates:	01234	01234	Lepidoptera	·····	
Fish:	012334	01234	Odonata		
Other:	01234	01234	Megaloptera		·
			Diptera		
0=Not Observed, 1=Rare,			Chironomidae		
and a second	Idial/Seimoled.(%)		Plecoptera		
Riffle/Run:			Ephemeroptera	· · · · · · · · · · · · · · · · · · ·	
Shallow Pool:			Trichoptera		
Deep Pool:	100 %		Amphipoda		
Backwaters:					
Chanelized:					
Vicional	ulatis Semijoled (%)				
Woody Debris:	16		R=Rare, C=Con	imon, A=Abundant, I	D=Dominant
Emergent Vegatation:				<u>3-9, Abundant>10, I</u>	
Submerged Vegetation:				otion and Obser	
Depositional Area:					
Overhanging Veg:					
Root Wads:	30				
Undercut Banks:	50				1
Filamentous algae:					
Leafy Debris:	10				
Other:					

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

Rapid	Bioassessment	Field	Sheet
-------	---------------	-------	-------

UTA-1

vint Source	^ +	nla Tashur!			Date	4/19/06
blector <u>REM</u> bitat Description		ple Technique _	5MAAL	Sediment_	Monee	set veretien finited
		og pols	LOURGANDAS	male in 1	Got wad 3, they	at repetation finited
<u> </u>	BELOW	·····		·····	· · · · · · · · · · · · · · · · · · ·	
				<u> </u>		
		MACROIN	VERTEBRA	TE COMMU	NITY	start stip
ABOVE Station #	UTA-1				Station #	
<u> </u>	Таха	Tally		Cnt.	Taxa	Tally
Boye	ia vinosa	1	<u></u>			
11 bea		HHHHI	······			
8. Araja	-	44 11				
30 Curre		Alt UN HIT	HUM LAN		······································	
	mda	HITH IN IN				
10 discond	medea	HIM	 	······		
1 Corda	and the second se	<u></u>		· · · · · · · · · · · · · · · · · · ·		•,,, <u></u> ,,,,
1 Hexati		1	<u> </u>			
S Enals			······		<u></u>	
4 Seint	Ra .					
	nail Clan	<u> </u>	<u> </u>	·		••• •••••
- Mys		1		}	<u> </u>	
<u> </u>	1.	-14	<u></u>			
Leec		<u> </u>	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	••••••••••••••••••••••••••••••••••••••
	tis			·		·
2 draich		4	······	·		
<i>M</i>	tetes	<i>I</i>				
	<u>celula</u>	-11		ļ		····
Cord		<u> </u>	<u> </u>	· ·		
1. falour				· .		
Isoped			<u> </u>	·	····	
- thing	ron 77			ļ		···
Hairy	<u> </u>	1				H
1 grame	aí	<u> </u>	,			
<u> </u>				ļ		
	,		-	ļ		
		- -				
30A :TOT	AL:				:TOTAL:	
			Community St	ructure		
•	ABOVE	BELOV	V .		ABOVE	BELOW
6 Ephem.	·····	······	%	odon.		
6 Plecop.			%	Cole.	- <u>-</u>	
Trichop.				Crustacea	······································	
6 EPT						
6 Chir. [—]			#	of Taxa:		
<u>6 Diptera</u>	· · · · · · · · · · · · · · · · · · ·			iotic Score:		·····
Comments:					<u></u>	······································

.

Waterbody Na	ne:(<u>TA-2</u>	Unnas	ed Trib
Client: ED	2			÷
Project no: 20	42-06-0	070		£
Investigators:	REM	<u>.</u>	SKH	- -
	JBB		<u> ত</u> ্য ন	<u> </u>
Date Sample C	collected:	4/19	406	

Habitat Forms Completed: (yes) / no

Location: <u>UTA-2</u> Ecoregion: <u>Gult Coastal</u> Weather: <u>Survey</u>, Hot

Form Completed By: <u>JBB</u>

Form Checked By: _____

INSTRON

Fish Sampling Completed: Veg / no

Collection Site Observations			Macroinvertebrate Qualitative Sample List				
	Above Station	Below Station	Таха	Above Station	Below Station		
Moclanne Sembled.		SMAAH	Annelida				
ા દિલ્લોની પ્રસંકારી છે.		(B)(B)(C)	Decapoda				
Periphyton:	01234	01234	Gastropoda				
Filamentous Algae:	01234	01234	Pelecypoda				
Macrophytes:	0 1 2 3 4	01234	Hemiptera				
Slimes:	(1 2 3 4	01234	Coleoptera				
Macroinvertebrates:	01234	01234	Lepidoptera				
Fish:	012(3)4	01234	Odonata				
Other:	01234	01234	Megaloptera				
			Diptera				
0=Not Observed, 1=Rare,			Chironomidae				
WEIDUH	abilarisamoled (%		Plecoptera				
Riffle/Run:	20		Ephemeroptera				
Shallow Pool:	-50 (5		Trichoptera				
Deep Pool:			Amphipoda		······································		
Backwaters:	Б						
Chanelized:							
Misrofiel	niers Sein deel (%						
Woody Debris:	30		R=Rare, C=Con	imon, A=Abundant,	D=Dominant		
Emergent Vegatation:	10		r i i i i i i i i i i i i i i i i i i i	3-9, Abundant>10,			
Submerged Vegetation:				otion and Obser			
Depositional Area:	20		1	IL]] #		
Overhanging Veg:	20		un 170 avidu	AFE-			
Root Wads:			Hany 76 Bridge 5 Ample collection From upstoon		H I		
Undercut Banks:	_ 2 0	· ·	Sample conten	1	<i>#</i>		
Filamentous algae:			of brink allow I				
Leafy Debris:			thus dig hole		Æ		
Other:			and is brad. Lors of sitt	and the second s	ŧ		
			sedimet - 6. Hichord	tot.	£		

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

		Rapid Bioassessm	ent Field	Sheet	
oint Source				Data	4/18/06
ollector REM	Sam	ble Technique SMAAIT	Sediment		
abitat Description:	ABOVE				
<u> </u>					
	_BELOW _	Sitt dominated, limited	habitat		
		, , , , , , , , , , , , , , , , , , , ,			
		MACROINVERTEBR	ATE COMMU	JNITY	Sturt 10:28
ABOVE Station #			BELOW	Station #U7	7-2
Cnt. T	axa	Tally	Cnt.	Таха	Tally
			.5	Africa	HUT
·······			15	Isopda	HITHITHIT
			2	Aneyponyx	11
				Raiatra	1
			10	dirovonidae	HIT LAT
			··· 1	Difisio	1
······································			0	Uvarias	UT)
			1+	Amphipoda	HH WAIIII
			••}	Difisid buffe 1	/
<u> </u>			9	ambarinare	44 [1]
			13	Cani 3	HH UK II
			2	Jeech	4 //
	<u></u>	· · · · · · · · · · · · · · · · · · ·	6	Corixidae	INTI
			1	Ophy gomphus	7
	<u> </u>		1	Dinnetus	1
			·2	Emattacna	7/
<u> </u>			4	Rethody tes	////
)				Berosus	/
<u> </u>			. 2	Nigocheafa	11
<u> </u>			· /	Gomphus	1
<u> </u>				Berria	11
<u> </u>			<u>`/</u>	Culiedae	1
<u> </u>					
		·			
				· · · · · · · · · · · · · · · · · · ·	
			<u> </u>		
			···		
TOTA					•
			100	:TOTAL:	22TryA
		Community S	<u>structure</u>		
% Ephem.	ABOVE	BELOW		ABOVE	BELOW
% Plecop.			% Odon.		
	·		% Cole.		
% Trichop.		·····	% Crustacea		
	· · · · · · · · · · · · · · · · · · ·		4	\ \	
% Chir.			# of Taxa:	N	
<u>% Diptera</u>		1	Biotic Score:		

. .

V1.2 05/28/02 Page 2 of 2

Waterbody Name: Unmound Trib UT.	<u> 4-3</u>
Client: <u>FDcc</u> .	
Project no: <u>2042-06-070</u>	
Investigators: <u>REM</u> <u>S</u> KH	
JEB JJF	

Date Sample Collected:

Habitat Forms Completed: ves) / no

21/17/06

Location:	UTA-3	<u> </u>
Ecoregion:	Jon H Coarstal	<u>.</u>
Weather: _	Sunny Hot	

Form Completed By: <u>JBB</u>

Form Checked By: ____

Fish Sampling Completed: yes/ no

Collection Site Observations			Macroinvertebrate Qualitative Sample List			
	Above Station	Below Station	Таха	Above Station	Below Station	
COP 31 OF STREET STREET			Annelida			
issian a sananya Aba	and developed of the		Decapoda			
Periphyton:	@ 1 2 3 4	01234	Gastropoda			
Filamentous Algae:	61234	01234	Pelecypoda			
Macrophytes:	0 1 2 3 4	01234	Hemiptera			
Slimes:	01234	01234	Coleoptera			
Macroinvertebrates:	01234	01234	Lepidoptera			
Fish:	012334	01234	Odonata			
Other:	01234	01234	Megaloptera			
			Diptera			
0=Not Observed, 1=Rare,	2=Common, 3=Abund	lant, 4=Dominant	Chironomidae			
Para a service Mellowiel	abileta Statistera W		Plecoptera			
Riffle/Run:	5%		Ephemeroptera		· · · · ·	
Shallow Pool:	80%		Trichoptera	•		
Deep Pool:	-		Amphipoda			
Backwaters:	15%					
Chanelized:						
and the second with the	gienessennalien (s.					
Woody Debris:	70		R=Rare, C=Con	nmon, A=Abundant,	D=Dominant	
Emergent Vegatation:			Rare<3, Commo	n 3-9, Abundant>10,	Dominant>50	
Submerged Vegetation:			Site Descri	ption and Obse	rvations:	
Depositional Area:	10		CUOM KNEES Aburdant	ſ		
Overhanging Veg:			CYPT RASES Aburdant Limited Root Words, Fish	ß		
Root Wads:	60		Thatitt Abuveant	(/	•	
Undercut Banks:	10		Depositioned and poor unds LAGY Portsonple sed and MOSTLY Sound/HPC.			
Filamentous algae:			sedind mostly some/HPC	0 7)		
Leafy Debris:	20		1	J		
Other:			-			
· · · · · ·		· · · · · · · · · · · · · · · · · · ·		- OI NAN	· Id	

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

Rapid	Bioassessment	Field Sheet
-------	---------------	-------------

llector 12	<u> </u>	nple Technique <u>5MAAH</u>	Sediment	Date	4/17/06
bitat Descr	iption: ABOVE		· · · · · · · · · · · · · · · · · · ·		
	BELOW	USA-2 - SALAH >	4 . 4		
	DELOW	UTA-3 - SMAAH D	just w/s o'per.	* KQ	
		MACROINVERTE	BRATE COMM		
	tion # <i>UTA-3</i>			/ Station #	
nt.	Taxa	Tally	Cnt.	Taxa	Tally
	mph.podA	<u>////</u>			·
<u> </u>	1 amointe	<u>)//</u>			
<u>6</u> 7	uch	UH1			
		11			
	ambarinae	1111			····
	lisuohatur	<u> 11</u>			<u>-,,,</u>
	lasanceis tinevistylis	<u>L</u>			
	Arrive	XII			
	nac romin	11		· ·	
	Joaknyc	M			
	IENIS	KA WAII			
	dulidae	III (Neurocordulia)			
	umharopsyche	1411		·	
	drophilidae (1)	1111 (Burosus)			
	vdrountus	1			
<u> </u>	dy centro pus	L			······
<u> </u>					
$\frac{3}{4}$ $\frac{R}{5}$	wordy tes	111			
<u>~</u>	welmis	ullf-			*
<u>2</u> <u>A</u> .	ucy sonyx	<u>II</u>			
<u> </u>	·		· ·		**************************************
<u>4 si</u>	Ni s	////		***************************************	
	ottin	#H-Re~			<u></u>
	exatomo	<u>1111</u>		······································	.
<u>15 (1</u>	hironomila	un unun			
	mulium	<u></u>		<u></u>	
<u>3</u> <u>C</u>	licidar	111 (Anopheles)			
	······································			······································	
	·				
	-				······
AA :	TOTAL:	102		:TOTAL:	
		Communi	y Structure		
	ABOVE	BELOW		ABOVE	BELOW
Ephem.			% Odon.	· _	
Plecop.			% Cole.		<u> </u>
Frichop.			% Crustacea		
PT		· · · · · · · · · · · · · · · · · · ·			
Chir.			# of Taxa:		
Diptera		·····	Biotic Score:		·····

.

V1.1 6/99 Page 2 of 3

. .

Waterbody Na	ne: <u> </u>	-1	
Client: FA	<u>د</u>		
Project no: 2	042-06	- 670 .	
Investigators:	REM	<u>. </u>	<u></u>
	JJF-	. JBB	<u>.</u>
Date Sample C	collected:	9/20/2006	_

Habitat Forms Completed: yes / no

Location:	Guis Conson/-
-----------	---------------

Ecoregion: 1

Weather: farthy claudy / nois threat.

Form Completed By: <u>*RE*</u> Form Checked By:

Fish Sampling Completed: yes / no

Collection Site Observations			Macroinvertebrate Qualitative Sample List		
	Above Station	Below Station	Таха	Above Station	
<u>Andell Endessidneeta</u>			Annelida		
Rokula Rokula Alau	ELENING OF AGUANIL	Ellore - Second	Decapoda		
Periphyton:	01234	01234	Gastropoda		
Filamentous Algae:	01234	01234	Pelecypoda		
Macrophytes:	0 (1) 2 3 4	01234	Hemiptera		
Slimes:	01234	01234	Coleoptera		
Macroinvertebrates:	01284	01234	Lepidoptera		· · · · · · · · · · · · · · · · · · ·
Fish:	01@34	01234	Odonata		
Other:	01234	01234	Megaloptera		
· · · · · · · · · · · · · · · · · · ·			Diptera		
0=Not Observed, 1=Rare,	2=Common, 3=Abund	ant, 4=Dominant	Chironomidae		
And Antonio and AMALOFUL	thitel Securiple of (24		Plecoptera		
Riffle/Run:	10090 Run		Ephemeroptera		
Shallow Pool:			Trichoptera		
Deep Pool:			Amphipoda		
Backwaters:					
Chanelized:					
	Males Sempled (2)				
Woody Debris:			R=Rare, C=Con	nmon, A=Abundant, I)=Dominant
Emergent Vegatation:	30			1 3-9, Abundant>10, I	
Submerged Vegetation:				ption and Obser	
Depositional Area:					
Overhanging Veg:	60		100 % rand. some Sample feach a 201	yds w/s of conflu	No -we UTC
Root Wads:	10		-NOTE NO to little	woody deliver. Gy	ALSOIMAL .
Undercut Banks:	· · ·				•
Filamentous algae:				1 Reall	- ypstream vorsh clay hardgar eth little instra-
Leafy Debris:			1 lin)) th	vouse clay hardgan
Other:				Lu lu	ith little instru-
•					- gass.

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

))

Point Sou	Irce <u>kunned</u>	tribulary to EDorode Che.	nich como dis	4m 60/ Data	Alzalas line
Jollector	<u> </u>	ample Technique <u>Smadul</u>	Sediment ?		
		E UTAY			
)	BELO	N			
	· · · · · · · · · · · · · · · · · · ·				
		MACROINVERTER	BRATE COMMUN	NITY	
ABOVE	Station #	/	_ BELOW S		
Cnt.	Taxa	Tally	Cnt.	Taxa	Tally
	Amphipada	<u></u> <u>[40]]</u>			
7.	Oligochitan Algia	//			**************************************
	Leiche	/			
9	Enallasma		—		
					······································
_6	Corxidue	H111			······································
				······································	
7	D. (latia)				
3	Diventus (larvau)	the second second second second			
3	Aucyconxy (lowar)				
2	Stevelmis (Invor)	<u>///</u>			
1	Dyficides	1 (Hydroca-thus)			
3	Seirles			······	
16	Gyrnus	MI .			
3	<u> </u>		_		
	Simulium				
		······································			
1	Charaborus	HTINTIN IN THE WEIT			
			<u>× </u>		······································
4	Thuypad. Non	1111			
0	Chirowomiwae	KT WH			
6	Ormoelidinku			·····	
	<u> </u>			· · · · · · · · · · · · · · · · · · ·	
Matalan a ang pangana ang	······································				
1.8	TOTAL: 102	· · · · · · · · · · · · · · · · · · ·	┓ ┝────────────────────────────────────		
		Community		OTAL:	*
_ .	ABOVE	BELOW		ABOVE	
Ephem	•		% Odon.		BELOW
Plecop			% Cole.	· · · · ·	<u> </u>
Trichop EPT). 		% Crustacea		
Chir.					
Diptera			# of Taxa:		
	ts:		Biotic Score:		

.

Y	1	•		6/	99	
P	a	g	e	2	of	3

Rapid Bloassessment Field Sheet

Date Sample Collected: 4/10/06

Habitat Forms Completed: yes / no

Location:

Ecoregion: <u>Guis Constal</u> Weather: <u>Party cloudy - vaid</u>

threat

Form Completed By: peru

Form Checked By: _____

Fish Sampling Completed: yes / no

Collection	tion Site Observations		Macroinvertebrate Qualitative Sample List		
n 1974 fan fan sjonegenne met fan er gegenne en er ser	Above Station	Below Station	Таха	Above Station	
Stell Mon Stellogi		UTB-2 dipe	Annelida		
CONTRACTOR SCIENCYCRYNU	intel a block of the Average (fit)		Decapoda		
Periphyton:	01234	@ 1 2 3 4	Gastropoda		
Filamentous Algae:	01234	06234	Pelecypoda		
Macrophytes:	20234	01234	Hemiptera		
Slimes:	01234	0 @ 2 3 4	Coleoptera		
Macroinvertebrates:	0 📿 3 4	01234	Lepidoptera		
Fish:	0 🗘 3 4	0 1 2 3 4	Odonata		
Other:	01234	01234	Megaloptera		
			Diptera		
0=Not Observed, 1=Rare,	2=Common, 3=Abund	ant, 4=Dominant	Chironomidae		
			Plecoptera		
Riffle/Run:	NA/100	80	Ephemeroptera		
Shallow Pool:		_ 20	Trichoptera		
Deep Pool:			Amphipoda		
Backwaters:					-
Chanelized:					
Millsrooaa	ultaisi Sian plate (24				
Woody Debris:		5	R=Rare, C=Common, A=Abundant, D=Dominant		
Emergent Vegatation:	5	5	Rare<3, Common 3-9, Abundant>10, Dominant>50		
Submerged Vegetation:			Site Description and Observations:		
Depositional Area:		10	une EDCC Frx, Lity		
Overhanging Veg:	10065pm	10		F (FAXIL	14
Root Wads:	20	10	WT 8-2 Pipe live eversity		
Undercut Banks:		· · ·		Pipe line	eversity
Filamentous algae:				₹ <u> </u>	
Leafy Debris:	10			Swar -	
Other:				(^{on}	
´				Set 1	
				-	

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

	Scription: ABOVE	ample Technique <u>SMA</u>				
	BELOV	EUT 6-2				
	······································	MACDONNER				
BOVE	Station #41B-2	2				
nt.	Taxa	Tally	Cnt.	BELOW Station # UTB-2 (dupo)		
5	Amphips da Compositan	- +117	21	Taxa	Tally	
3	Comboviran			Amphi poda	en HAMINA 1	
6	Iso pode	411/		Isopeda	all inde	
		···	<u></u>	se pan	NOT WAT	
63	Arin	<u>1111</u>				
<u> </u>	Evallagma	<u> </u>	/	Enallasma	1	
14	Conxidae				L	
<u> </u>	Voli XI Jae	111 1111		Corixidae	VAII	
6	Diventus	un11		-		
18	Divertus (larvie)	<u>un un un III</u>		Dincutus	411/1	
				Disentus Could	1	
4	UVANIS	////	6	Hydrophildo (Trophylord Uvaras	M/1	
<u>9 ·</u>	Oyticidae (TATURE)	HTILI CA	8	Dyticidan Clarina		
		·	·····	by icidas cipivitas	(11	
7	Charoborous	DATHE WEINT INT I		Cheoborus	111 1M 1111	
4				HEXATOMA	1	
<u>r</u>	Stonelyuss ANGYIONYX	<u>/// (</u> HTI	2	Scholmin	1	
4	Chermy describe	and the second				
	Cheumatopsyck	<u>////</u>	3	Cheumstopyches.		
3	Simulium	<u>H1</u>		<u> </u>		
2	Chironomidae			Simulium	ult I	
	Chsionominae	UM III	5	Chirostominia	WI	
	Orthoridinae	11			<u>wiii</u>	
	Transportinan	4		······································		
<u> </u>						
			 			
	:TOTAL:		╶─┑┝╌╼┱ー			
		Commu	nity Structure	:TOTAL:		
	ABOVE	BELOW	inty Structure			
phem.			% Odon.	ABOVE	BELOW	
lecop.			% Cole.	<u> </u>		
richop. PT		·····	% Crustacea			
hir.	······				·····	
iptera			# of Taxa:			
nment			Biotic Score:		· ·	

Waterbody Na		-1
Project no:		670
Investigators:	REm	. JKH .
	JSF	. 163 .
Date Sample C	Collected:	4/20/06

Habitat Forms Completed: ves/ no

Form Completed By: <u>*Rev.*</u>, <u>BO</u>. Form Checked By: _____. Fish Sampling Completed: <u>Fish Sampling Completed</u>: <u>Fish Sampling Com</u>

Collectio	Collection Site Observations			Macroinvertebrate Qualitative Sample List		
	Above Station	Below Station	Таха	Above Station		
		UT-B-2	Annelida			
	ARE DECKORACIONARIO		Decapoda			
Periphyton:	0 2 3 4	01234	Gastropoda			
Filamentous Algae:	00234	01234	Pelecypoda			
Macrophytes:	00234	01234	Hemiptera			
Slimes:	0 1 2 3 4	01234	Coleoptera			
Macroinvertebrates:	0 1 2 3 4		Lepidoptera			
Fish:	0 2 3 4	01234	Odonata			
Other:	01234	01234	Megaloptera			
		·	Diptera		· · · ·	
0=Not Observed, 1=Rare,			Chironomidae			
and a second welford	etollett Stein joreek (%	Aller	Plecoptera			
Riffle/Run:	20/10		Ephemeroptera			
Shallow Pool:	90		Trichoptera			
Deep Pool:			Amphipoda			
Backwaters:						
Chanelized:						
	alters Samplach?a					
Woody Debris:	40		R=Rare, C=Con	Imon. A=Abundant I	D=Dominant	
Emergent Vegatation:			R=Rare, C=Common, A=Abundant, D=Dominant Rare<3, Common 3-9, Abundant>10, Dominant>50			
Submerged Vegetation:			Site Description and Observations:			
Depositional Area:	10				rations.	
Overhanging Veg:	30		SAM Alcd From	Ŋ		
Root Wads;	10		mouth upstrom	·)]	, und	
Undercut Banks:			to point of smark			
Filamentous algae:			SAMpled From mouth upster- to point of stren depletion, 2 priming pools offs of drops			
Leafy Debris:	15	·····	2 primmy pools	17		
Other:			dis of drops	/		
· · · · · · · · · · · · · · · · · · ·			· clay So bitrate	('		

Revision 1.2 05/28/02 GBMc Assoc. Doc.2 Page 1 of 2

oint Source					Det	Alastani
ollector <u>Ren</u>		ple Technique 5MAAA	Sedimer	nt ?	Date_	4/20/2004
abitat Description	a: ABOVE_					2042-06-07
){ 2						2010000
lj	BELOW	UTC-1 - UNNAMED for	ibution above	HTB-		
ABOVE Station #	ŧ	MACROINVERTEB				
Cnt.	Таха	Tally	Cnt.	V Station # <u>//7</u>	.6-1	
			- <u>-</u>	Taxa		Tally
		* #####	18	<u>Amphipóda</u> Isopoda		MHIMIN MUMIKI
				Olicochieta		MIGNIH III
			3	CAMbariNac	<u> </u>	Ht (7)
	<u></u>		- 4	Dytividue (INVIN)		111 CZvolense
		· .		Corixidore		Wí
				Lown		1
	······			Diventus Claria)	l
				Avarus		1
	······································			0.11		
		······		Bittacamorpi		L
		· · · · · · · · · · · · · · · · · · ·	7	Hexatoman Chaborous		<u>//</u>
		· · · · · · · · · · · · · · · · · · ·		<u>CLANDOTOUS</u>		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u>1411/1</u>
	<u> </u>		8	Toytarcini Culicidue		
					^	
<u>}</u>		······································	4	Onthoolodina		w/1
······	<u> </u>					
······································						
			-			·
			-			
			-	r		
			·			
	·					
		······				
TOTA	1.		·			
		Community	I STATIXA	:TOTAL:		104
	ABOVE	<u>Community s</u> BELOW	DITUCTURE	A D ~ /~		
Ephem.			% Odon.	ABOVE		BELOW
Plecop.			% Cole.			·
Trichop.			% Crustacea			·····
EPT —						
Chir.			# of Taxa:			
Diptera mments:			Biotic Score:			

V1.1 6/99 Page 2 of 3

Waterbody Name: Flat Cuck Client: EDCC Project no: 2042-06-070 Investigators: <u>RER</u> TBS SILH JIE Date Sample Collected: 4/17/06

Location: FC-2 FC-1 Ecoregion: GULF COASTAL Weather: Partly Cloudy-mostly Olen

REV

Form Completed By:____ Form Checked By:____

Fish Sampling Completed: Nes / no

Habitat Forms Completed: ves / no

	Collection Site O		
	FCI	F-G-2	
	Above Station	Below Station	
and a reliable time server details			Additional
a to the second second second second	BelenizorAbenicentanionApplenicent		Observations:
Periphyton:	2 2 3 4	0_1 @ 3 4	
Filamentous Algae:	01234	6 2 3 4	
Macrophytes:	0(1)2 3 4	(D_{1234})	
Slimes:	01234	01234	
Macroinvertebrates:	0 1 (2) 3 4	01234	
Fish:	0(1234	0 (1 2 3 4	ĺ
Other:	01234	0 1 2 3 4	
0=Not Obs	erved, 1=Rare, 2=Common, 3=Abund	ant, 4=Dominant	4
	 Maliphone in the second se Second second se Second second s		
Riffle/Run:	15/60 Kes prin	10 (through woody deforis)	
Shallow Pool:	121 25	75	
Deep Pool:	· GMP	15	
Backwaters:			
Chanelized:			
	and a sublicitation of the second		
Woody debris:	90	75	FC-2: HAbitol Abundon Ful AbundAnce Ces HANN Expected
Emergent Vegatation:			E. I ALWARNE LES
Submerged Vegetation:			in a second
Depositional Area:			FGAN EXPLORE
Overhanging Veg:			
Root Wads:	5	15	
Undercut Banks:	5	5	10
Filamentous algae:			
Leafy debris:		······································	· //
	Sulvertesk÷ tyd⊋ sine, stevinige		
Substrate			
Bedrock:	Score	Adj. Score	
Lg. Boulder:	X 0.1		
Boulders:	X 1.0		Nevy and
Rubble:	X 1.0		Wert with and
Gravel:	<u> </u>		BD
Sand: C/A y-Hord PACK			· · · · · · · · · · · · · · · · · · ·
Mud/Silt: SKN.D Doning	X 0.1	60	4K
	205 85 X0.1	fe 30	DUT DUD
Score: A	bundant 11-15, Common 6-10, Sparce	1-5, Absent 0	PIDT: 2619

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

1

		FC2	d 72-1
1)	Sampling Gear Type: <u>Electrofishing</u> Unit of Effort: <u>Above</u> : 2524	Seine Gill nets Below: 2619 PDT	
)'	Quantity of Available Fish Cover:		
	Above Station: Very Abundant, Abundant	, Moderate, (Sparse) Absent	
	Below Station: Very Abundant, Abundant,		
	Site Description & Notes:		
	Above Station: Wide shallow now out bark - shallow	Standfilt dominant, C.	the rootwada
	Below Station: <u>See Sketch an</u>	arrive pres frat E	
fred .	upstriam to second	plit.	on over pop
Log H So	Fish Speci	es Observed	E1-1
LAS al	Above Station #	Below Station # F(- 2	Above station
0.		TC C	
Ð	Long Er Smitish	MIT HIT HET HET	111+26 35
Ð	Green 2 us external parasites	11	11 D I wal external parries.
()	Spotted	HHT HHT	
S.	Cover chubsucker	11 1 released	11 (2)
. / Ø	Yellow Bullhand	1/11	1111 (4)
ø	Bluegill Green hybrid	1/6	
Þ	Bluesill	//	
ī√	WARMOUTH .		11 (2) (D Hybrid
عر عد ک ب	Brass Pickerel	111 Released Observed	<u>x</u>
Noters		Htt 1. 111 - many observed	
	Creekchub	111 - Many observed. Common	(1) few observed
	Cam busia		
		(54) total	- HI HIT (
	45 collected		(71)
			1
· .	·		
	· · · · · · · · · · · · · · · · · · ·		
· · · -		· · · · · · · · · · · · · · · · · · ·	
	Revision 1.2 05/28/02		

...

GBM⁶ & Assoc. Doc. 1 Page 2 of 2

Waterbody	Mamaa	ITA-1	
vvateroodv	Name:	$\alpha \beta \gamma \gamma$	

Client: ESC

Project no: 2042-06-070

Investigators: _____

<u>JBB</u><u>JJF</u> Date Sample Collected: <u>4/16/16</u> Habitat Forms Completed: yes)/ no

skH

UTA-Location: Ecoregion: N 60.57 Weather: Sunny Ĺ'n

Form Completed By:_________

Form Checked By:_____ Fish Sampling Completed: (ves) / no

	Collection Site Obs	ervations	
Start Volt Line Sample dan seri	Above Station	Below Station	
2.000 0.000 0.000 0.00000000	NUCLEAR WORK BUTCHER OF THE TRANSPORT		Additional
Periphyton:	0 1/2)3 4	0 1 2 3 4	Observations:
Filamentous Algae:	0 1 (2) 3 4	0 1 2 3 4	
Macrophytes:	0 1 (2) 3 4	0 1 2 3 4	
Slimes:	(0)1234	01234	
Macroinvertebrates:	01234	01234	,
Fish:	0 1 2 3 4	0 1 2 3 4	
Other:	0 1 2 3 4	0 1 2 3 4	
0=Not Obse	rved, 1=Rare, 2=Common, 3=Abundant	4=Dominant	
In the second second second second	A STANLIGHT HEISING THE COMPANY OF		
Riffle/Run:			
Shallow Pool:	20		
Deep Pool:	40		
Backwaters:			
Chanelized:			
	Sa 21 Mineral altitudes Samalac 1980 actor		
Woody debris:	· 6 0		
Emergent Vegatation:			
Submerged Vegetation:			
Depositional Area:			
Overhanging Veg:			
Root Wads:	10		
Undercut Banks:	20		
Filamentous algae:			
Leafy debris:	10		
	en av subarrates registrations is many as an		
Substrate	Score	Adj. Score	
Bedrock:	X 0.1	<u>, , , , , , , , , , , , , , , , , , , </u>	
Lg. Boulder:	X1.0	······	•
Boulders:	X1.0	······································	
Rubble:	× 1.0		
Gravel:	X 0.5	· · · · · · · · · · · · · · · · · · ·	
Sand:	X 0.1		
Mud/Silt:	100 % X0.1		
Score: Ab	indant 11-15, Common 6-10, Sparce 1-	5 Absent 0	

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

Sampling Gear Type: Electr	rofishing Seine Gill nets
Unit of Effort: Above:	Below: 1605
Quantity of Available Fish Cover:	
Above Station: Very Abundant, Ab	oundant, Moderate, Sparse, Absent
	undant, Moderate, Sparse, Absent
Site Description & Notes:	
Above Station:	
Below Station:	frons, deep ports dominated reach
exfremely hard collec	stions, depports dominated reach
	h Species Observed
Above Station #	Below Station #
Largementh bass	111 3
Longear	MITHE HIT HIT HAT III (12) I external par
Green	(J)_(J)
Bluecill Warmon M	Att (1)
	Htt II Q Lexternal paras, ite
Sported Black Topminnow	<u> </u>
Tirater Porch	
Kambusia	
Spotted Smith	111 (14) 1111 16 Shim HAT (3) AU Circled
Antropies Species / Realt	in sim HHT (5) ho archer
-fit	A
Grass picturel	
Darter - Bluntnose UF spirla	
——————————————————————————————————————	
· · · · · · · · · · · · · · · · · · ·	
Revision 1.2 05/28/02	

UTA-1

GBM[®] & Assoc. Doc. 1 Page 2 of 2

,

 $\langle - \rangle$

)

.

Waterbody Name: UT4-2
Client: FUCC
Project no: 2042-06-070
Investigators: <u>REM</u> <u>SKH</u>
JOF. JOF
Date Sample Collected: 4/18/06

Ì

Habitat Forms Completed: (ves) / no

Location: UTA-R
Ecoregion: Gritt Coastal
Weather: Summer Hot

Form Completed By:_____B/3

Form Checked By:_____ Fish Sampling Completed: ves / no

	Collection Site Ob	oservations	
	Below		
	- Above Station	Below Station	
Salar Uptal Tima Salimpled 22 an			Additional
	New Relative Advinutarise of Advinute Eligi		Observations:
Periphyton:	0 1 2 3 4	01234	······································
Filamentous Algae:	@1234	01234	•
Macrophytes:	0 (1) 2 3 4	01234	
Slimes:	01234	01234	
Macroinvertebrates:	01234	01234	•
Fish:	0 1 2 (3) 4	01234	
Other:	01234	01234	
0=Not Obs	served, 1=Rare, 2=Common, 3=Abunda	nt, 4=Dominant	
New Oracle and the second s	sustassiuMalentalabilaitiSamjeleat(%) Set		
Riffle/Run:	10		
Shallow Pool:			
Deep Pool:	10		1
Backwaters:			
Chanelized:			
	Melababilats Samplen Conne		
Woody debris:			
Emergent Vegatation:			
Submerged Vegetation:			
Depositional Area:			
Overhanging Veg:	()		
Root Wads:	20		
Undercut Banks:	40		
Filamentous algae:			
Leafy debris:			
	Sineshelten fyresinner stearnig		
Substrate	Score	Adj. Score	
Bodrock: Hard Pan Clay	10% X0.1	Auj. Score	
Lg. Boulder:	X 1.0		
Boulders:	X 1.0		
Rubble:	X 1.0	· · · · · · · · · · · · · · · · · · ·	
Gravel:	10 % X 0.5		
Sand:	X 0.1	· · · ·	
Mud/Silt Sand/silt			
	bundant 11-15, Common 6-10, Sparce 1		

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

UTA -	2
-------	---

	Sampling Gear Type: Electrofishing Unit of Effort: Above:	Seine Gill nets		
)	Quantity of Available Fish Cover:			
	Above Station: Very Abundant, Abundant,	Moderate, Sparse, Absent		
	Below Station: Very Abundant, Abundant,			
	Site Description & Notes:		<u> </u>	
	Above Station:			_ ·
	Below Station:			-
	Fish Specie	es Observed	+29 132	
	Above Station #	Below Station # Att AH AHAM	HIT-HAT WCHITAH	-1 (149)
	Longear Sunfish	HIT HIT HET WIT MIT HET HIT H	HT.H. HI MI HHT.H.	FUHFAHT
	breen	HH HIT HIT	15	
	- Spitted		(13)	
	brass fickerel		$\underline{\mathcal{Q}}$	
	- Largemonth Bass	//	$\underline{\qquad}$	
	- Flyer		(2)	
	Criet Chubsucker			
	Redden Shines	MAN IN IN IN IN	R (6 Wexterm povasite
	Reddin Shiner Warnowth	Att Att Att Att Att Att I		,
		If III	(X)	
	<u>Ganbusia</u> <u>Bluecill</u>	APT ANT ANT ANT ANT IN		
	Black spotted pominnow	<u>-HAI WI HII WI WI WI WI I I</u> AHI III		
C	upress Dater			
on a ketan	X = Not-opis yreares 2 (black fin , welk	1/11	$-\frac{(s)}{(s)}$	•
Raching	Yelow bullhead	spot fail, march tominely soligne		
	Dollar Suntish ?	/		
	Motopisspecies 2 Pugnose himnow		2	
	Cillan Tophinno w		-	
	- Clerk Chub			
з ^і)	Bluntnose darter			
	Revision 1.2 05/28/02 GBM ^c & Assoc. Doc. 1 Page 2 of 2		Ford HS (Bhad had Lob Graded	
		$\langle \rangle$	los pri	

Waterbody Name: <u>UTA-3</u> .
Client: <u>EX(</u>
Project no: 2042-06-070
Investigators: <u>REM</u> SKH
JBB JJF
Date Sample Collected: 4/10/00

Location: $UTA-3$	
Ecoregion: Gulf Coastal	_
Weather: Sunny	
/	

Habitat Forms Completed: ves / no

 \dot{i}

Form Completed	Ву:	JBB
----------------	-----	-----

Form Checked By:____

Fish Sampling Completed: ves / no

Collection Site Observations			
	Above Station	Below Station	<u> </u>
	2597		Additional
	NERAL INTERACTION OF A DECEMPION		Observations:
Periphyton:	(2 1 2 3 4	01234	
Filamentous Algae:	01234	01234	
Macrophytes:	0 (1) 2 3 4	01234	
Slimes:	0/1234	01234	
Macroinvertebrates:	01234	01234	
Fish:	0 1 2 3 4	01234	
Other:	01234	0 1 2 3 4	
0=Not Obse	erved, 1≍Rare, 2=Common, 3=Abunda	nt, 4=Dominant	
	Major Habirat Sampled Pol		
Riffle/Run:	5%		
Shallow Pool:			
Deep Pool:	15%		
Backwaters:			
Chanelized:			
Man da la la la			
Woody debris:	60%		
Emergent Vegatation:			
Submerged Vegetation:			
Depositional Area:	· · · · · · · · · · · · · · · · · · ·		
Overhanging Veg:			
Root Wads:	30%		
Undercut Banks:	5%		· .
Filamentous algae:			
Leafy debris:	5%		
	Street, Streeten EveryterStreeting		
Substrate	Score	Adj. Score	
Bedrock:	X 0.1		
Lg. Boulder:	X 1.0		
Boulders:	X 1.0		
Rubble:	X 1.0		
Gravel:	X 0.5		
Sand: Hard Pan Clay	30 % X 0.1		
Mud/Silt:	70% X 0.1		
	bundant 11-15, Common 6-10, Sparce	1-5 Absent 0	

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

	The second se
Sampling Gear Type: Electrofishin	
Unit of Effort: <u>Above:</u>	Below: 2597
Quantity of Available Fish Cover:	
Above Station: Very Abundant, Abundan	
Below Station: Very Abundant, Abundant,	Moderate, Sparse, Absent
Site Description & Notes:	
Above Station:	
Below Station:	
Fish Spec	ies Observed
Above Station #	Below Station #
-potted	-HT 1 B
Geren	411 (9)
Notropis species / Blacktal Shin	er 1111 (
Yellow Bullhead	447 (5)
Creek Chubsneker	411 (4)
Warmonth	1/
Golden Topmimon	
Black spotfed Topminnon	111 (S)
Notropis Il Pugnose Minnow	HI HI HI HI HI HI HI HI
Gass Pickerel	
Gaubusia	LINT WIT TO
Remophayles notating	
Notropis III	11
Rection Shine	JHT (11)
Ethostoma Bluntnose durter	
	· · · · · · · · · · · · · · · · · · ·
Revision 1.2 05/28/02 GBM ^c & Assoc. Doc. 1	Kind have the
Page 2 of 2	(1 b Contract

Callestia

Waterbody Name: UTB-/
Client: EDC
Project no: 2042-04-070
Investigators: <u>LEM</u> JBB
Stt. JJF.
Date Sample Collected: 4/20/04

Location:	UTB-1	ł	
Ecoregion:_	Guff	Coasta)	;
Weather:	Borth, 1	Cloudy,	Hot.
	1	7	

JBB

Form Completed By:___

Form Checked By:_

Fish Sampling Completed: (yes) / no

Habitat Forms Completed: Ves / no

Г

)

}

		servations	
e se toricime singlet	Above Station	Below Station	
	en Crelative Augustance of Actuario Bio		Additional
Periphyton:		0 1 2 3 4	Observations:
Filamentous Algae:	0 1 (2) 3 4	0 1 2 3 4	
Macrophytes:	0 1 2 3 4	0 1 2 3 4	
Slimes:	(0) 1 2 3 4	0 1 2 3 4	
Macroinvertebrates:	01234)	0 1 2 3 4	
Fish:	0 1 (2) 3 4	0 1 2 3 4	
Other:	0 1 2 3 4	0 1 2 3 4	
0=Not Obs	erved, 1=Rare, 2=Common, 3=Abunda	nt, 4=Dominant	
	Man Hakites angles (%)		
Riffle/Run:	75%		
Shallow Pool:	25%		
Deep Pool:		· · · · · · · · · · · · · · · · · · ·	
Backwaters:			
Chanelized:			
	as a stabile for an least some least (%)		
Woody debris:			
Emergent Vegatation:			
Submerged Vegetation:			
Depositional Area:	20		
Overhanging Veg:	15	······································	
Root Wads:			
Undercut Banks:	10		-
Filamentous algae:			
Leafy debrist Sand Run	55		
	Manual Sucsimicant Summer Source		
Substrate	Score	Adj. Score	
Bedrock:	X 0.1	110:00010	
Lg. Boulder:	X 1.0		
Boulders:	X 1.0		
Rubbie:	X 1.0		
Gravel:	X 0.5		· · ·
Sand:	70 % X0.1		
Mud/sill: Clay	10 % X 0.1		
Score: A	bundant 11-15, Common 6-10, Sparce	1-5, Absent 0	

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

	UTI
Sampling Gear Type: Ele	Seine Gill nets
Quantity of Available Fish Cov	'er:
Above Station: Very Abundant,	Abundant, Moderate, Sparse Absent
	Abundant, Moderate, Sparse, Absent
Site Description & Notes:	
Above Station: <u>Mac</u> pools at outside	mender bends, 3-test width, 6 in dept
Below Station:	
F	Fish Species Observed
Above Station # UTB-1	Below Station #
Grass Picture	
Crock Chubsucker	
Redfin Shiver	IM IM 1111 (14)
Green Sunfish	111 (3)
Black Spotted Topminnow	(2)
Longen Sunfish	<u>5</u> 5
<u>Coldien Topninnum</u>	
Spoted Sunfish	
Bluegill	
clock chub	
Blustnoge darter	
Revision 1.2 05/28/02 GBM° & Assoc. Doc. 1 Page 2 of 2	(Fund Attack Lab Current

)

.

Waterbody Name: UTB-2	
Client: EBCC	
Project no: 2042-06-070	
Investigators: <u>Ren</u>	SKH
JOF	JBR
Date Sample Collected: 4/2	0/06

Ì

ľ

Location:	LoB-	2	
Ecoregion:_	bulf	Coastal	
Weather:	Path	Clouchy	, Hot

Form Completed By: SKH

Form Checked By:_____

Fish Sampling Completed: 1 no

Habitat Forms Completed: yes no

	Collection Site Ob	servations	
	UTB-2 Above Station		1
		Below Station	
	A Relative Abindance of Aqualicitation		Additional
Periphyton:	0 (1) 2 3 4	01234	Observations:
Filamentous Algae:	(0)1234	0 1 2 3 4	
Macrophytes:	01234	0 1 2 3 4	
Slimes:	01234	0 1 2 3 4	
Macroinvertebrates:	0 1 2 3 4	0 1 2 3 4	
Fish:	01234	0 1 2 3 4	
Other:	01234	0 1 2 2 4	
0=Not Obs	erved, 1=Rare, 2=Common, 3=Abunda	nt, 4=Dominant	
	 DEPORTED (Control of 22.5) 		
Riffle/Run:	60 Y		2 2
Shallow Pool:	4D 1.		1
Deep Pool:			1
Backwaters:			1
Chanelized:			· ·
Woody debris:			
	20		
Emergent Vegatation:			1
Submerged Vegetation:			
Depositional Area:	10		
Overhanging Veg:	iQ		
Root Wads:	10		1
Undercut Banks:	15		· ·
Eilamentous algae: Sond Run	20		
_eafy debris:	10		1
	Still Still Still Still States		
Substrate	Score	Adj. Score	
Bedrock:	X 0.1		
g. Boulder:	X 1.0		
Boulders:	X 1.0		
Rubble:	X 1.0		
Bravel:	X 0.5		
Sand:	90 X 0.1	·	
Wud/Silt: Clas	10 X 0.1		

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

i i	Sampling Gear Type: Unit of Effort: <u>Above:</u>	Electrofishing Seine Gill nets Below:
y	Quantity of Available Fish	Cover:
	Above Station: Very Abunda	ant, Abundant, Moderate, Sparse, Absent
		nt, Abundant, Moderate, Sparse> Absent
	Site Description & Notes:	
	Above Station:	
	Below Station: UT	8-2
		Fish Species Observed
	Above Station #	Below Station # LTB-Z
	· · · · · · · · · · · · · · · · · · ·	Green SunFish 1411 - relayed 1 10 + released 1
	·	Black Buillhard - 1 D
		Longear - 25 (2)
	<u>.</u>	Creek Chub 5 (4)
)		Gambusa - 3 (3)
ŕ		Grass Rickeral - 5 (5)
		kedfinghiner 29 (27)
		Crech Chub Sucker - HT HT 1 @
,		
		Pugnose minusu D
		(99)
. 1		
```)		
	Revision 1.2 05/28/02 GBM ^c & Assoc. Doc. 1 Page 2 of 2	(Lob Croked

Waterbody Name: UTC-/
Client: EDCC
Project no: 2042-06-070
Investigators: <u>REM</u> SKH
JBB. JJF.
Date Sample Collected: 4/20/06

Location: UTC Ecoregion:_ Weather: Inder

Habitat Forms Completed: Ves / no

Form Completed By: 563 Form Checked By:_

Fish Sampling Completed: ves/ no

	Collection Site Obser	vations	
Local Local Ruine Sampled	Above Station	Below Station	
Contraction of the second s	si San Relative Abanden Satz America Biona		Additional
Periphyton:			Observations:
Filamentous Algae:	0 0 2 3 4	01234	
Macrophytes:	0 1 2 3 4	01234	
Slimes:	(0) 1 2 3 4	01234 01234	
Macroinvertebrates:	0 1 2 (3 4)	01234	
Fish:	0 1 (2) 3 4	01234	
Other:	01234	01234	
0=Not Ob	served, 1=Rare, 2=Common, 3=Abundant, 4		
	Major Hajor Habitat Santolea (2019)		
Riffle/Run:			
Shallow Pool:	90		
Deep Pool:	5		
Backwaters:			
Chanelized:			
	Microinabilates Schooled (%)		
Woody debris:			
Emergent Vegatation:		······································	
Submerged Vegetation:			
Depositional Area:	75		
Overhanging Veg:			
Root Wads:	5		
Undercut Banks:	-20 15		
Filamentous algae:			
eafy debris:			
	A CONSTRUCTION OF SOME		
Substrate	Score	Adj. Score	
Bedrock:	X 0.1	7 NJ. OWIE	
.g. Boulder:	X 1.0		
Boulders:	X 1.0		
Rubble:	X 1.0		
Gravel:	5 % X 0.5		
Sand:	85% X0.1		
Hudsilt. Clay	10 % X0.1		

Revision 1.2 05/28/02 GBMc Assoc. Doc.1 Page 1 of 2

Sampling Gear Type:	Electrofishing	Seine	Gill nets	
Unit of Effort: Above:	607	Below:		
Quantity of Available F	ish Cover:			
Above Station: Very Ab	undant, Abundant, Mod	erate, Spars	Absent	
Below Station: Very Abu	indant, Abundant, Mode	erate, Sparse	, Absent	
Site Description & Notes				
Above Station: 	No How, stains within 100 yds of	ed water confluence,	Jery shallow	pools upstream, 10 fish
Below Station:	, 		1	
	Fish Species OI	oserved	· · · · · · · · · · · · · · · · · · ·	

UTZ-1

Above Station #	Below Station #	
Longear	HT IN HIT HIT II (16	
Green	<u> </u>	
Creek chubsucter		
Der nonth		
brass P		
Pirate Perch	HT G	
Redtin Shiner	$\frac{\mu}{11}$	
Golden Topminnow		
black spotted Topminnow	HT D	
Gumbusia	MT ATT (111 (14)	
_ creek chilo		
·	-	
	1 26 1	
Revision 1.2 05/28/02 GBM ^c & Assoc. Doc. 1 Page 2 of 2	Low Brite	

)

)

)

.

						ľ				
Station: UTC-/	-		(1) Distance	(2) Width	(3) Depth	iher (s)	(4) Avg.	Method Depth	(5) Area	(6) Discharge
Waterbody:			from initial	, ,	•	nction Sks, o	Velocity At Point	200		
Date: $\eta po/d$			point	Ŵ	ę	s, roc	Ś	or 80	(9)	(0)
Crew:	Start Time: 1025	Recorder: Sharef	R 3	())	sfol) IO			2	i.
	End Time:	GH, Chanoe:	ہ ن	5-0	0 1 1		(N)			
	6501	u	01	0.5	0, J		0.05			
	Staff/Gage:	hrs.		5	ю М		2,			
Width: 3.6	Area:	Velocity:	200	× 4	77		20.0			
Disch/Flow:	Method:	No Secs:	0	0.0	0.2		N N			
Meter No:	Max Vel:	Min Vel:	v o	Y Ó	1.0		ą			
ORIENTATION:										
Wading Boat. Upstre	Upstream. Downstream. Side Bridge	dae ft/mi.								
n woled										
ļ	Ì		-							
Measurement rated: excellent good	Hent good tair poor based on the following	on the following								
conditions: Cross section)									
Flow	Weather				_		-			
Other	Air °F@									
Gage										
Ohsenier				-						
Control							-			
						· 				
Remarks						-				
			TOTALS					-		
								•		

V1.0 1096

Reviewed by_

Checked by_

Completed By_

			date	4/20/2006		Start Stop	1025 1030
Station:	UTC1					7	1000
Waterbody	1					4	
Crew:	REM/SKH/	BB/JJF				-	
Width (ft):	3.5	Area:	0.8	Max Vel:	0.05	-	
Flow (cfs):		Velocity:		Min Vel:			
· · · · · · · · · · · · · · · · · · ·						1	
					Press of the second second	11 7	
			Deposition International				
unitel lattici			eyes Avdelse Wellochuzzh				
	S.W. Hales	Daoli	atolinis.	and the other	Disignation		
0.5	0.5	0.2	0	0.1	0		
1.0	0.5	0.3	0.05	0.15	0.0075	1	
1.5	0.5	0.3	0	0.15	0	1	
2.0	0.5	0.2	0.02	0.1	0.002	1	
2.5	0.5	0.2	0.02	0.1	0.002		
3.0	0.5	0.2	0	0.1	0	1	
3.5	0.5	0.1	0	0.05	0	1	
							-
			<u></u>				
·							
Mater							
seu stanicje				0.25	01 01 00 000		

• ·

)

)

)

.

			(1) Distance	(2) Width	(3) Depth	other)	(4) Avg.	Method Depth	(5) Area	(6) Discharge
sody:			from Initial			·	Velocity At Point	(0.2 0.6,		
Date: 4/20/06			point	VAN	Ę	' LOI	80	or		ę
Crew: SUI/107313 S	Start Time: 1030	Recorder:	57	(m) -	5	sɓoj) łO	()	(8.U	₹.	<u>ĵ</u>
	End Time:	GH. Change:	. 05	5.0	0.3		0 63			
		i	0 (†)	/	S S O		073			
S	Staff/Gage:	hrs.	 V		ي. م		9.4.0			
Width:	Area:	Velocity:			M Č		1 4.00			
Disch/Flow:	Method:	No Secs:			1.0		0.06 2.84			
Meter No: M	Max Vel:	Min Vel:	9(9(0	b.t		401			
ORIENTATION:			→ √ ý ý	240	hy OC		1.04			
Wading, Boat, Upstream	Upstream. Downstream. Side Bridge	de ft/mi	10.01		0.4		1			
n moled	·		6.5		0.2		24.5			
	1.1		Ъč S	4	0.0		6 R			
Measurement rated: excellent good	It good fair poor based on the following	on the following								
conditions: Cross section	×* *				<u> </u>					
Flow	Weather									•
Other	Air °F@					-				
Gage										
Ohsenver										
				- . 			_			
Control										
		-					-			
Remarks						_				
			TOTALS		-	-				E 1 2

)

)

.

V1.0 1096

Reviewed by

Checked by_

Completed By_

Ť

			date	4/20/2006		Start Stop	1030 1040
Station:	UTB1					٦ ٦	1040
Waterbody						-	
Crew:	REM/SKH	/JBB/JJF				4	
Width (ft):	7.0	Area:	2.4	Max Vel:	1.07	-	
Flow (cfs):		Velocity:	0.73	Min Vel:	0	-	
· · · · · · · · · · · · · · · · · · ·		<u></u>			V	4	
a liste pages a				i paga da s			
			welfoicily a				
·····································	a an Aisime	Deptines	(c) (c) (e) (c)	Area a	DECHTOR	-	
			e (interaction				
0.5	0.5	0.3	0.68	0.15	0.102]	
1.0	0.5	0.3	0.73	0.15	0.1095]	
1.5	0.5	0.3	0.76	0.15	0.114		
2.0	0.5	0.3	0.67	0.15	0.1005]	
2.5	0.5	0.3	0.86	0.15	0.129		
3.0	0.5	0.4	0.84	0.2	0.168		
4.0	1.0	0.4	1.07	0.4	0.428]	
5.0	1.0	0.5	1.04	0.5	0.52		
5.5 6.0	0.5	0.5	0.99	0.25	0.2475		
6.5	<u>0.5</u> 0.5	0.4	0.68	0.2	0.136		
7.0	0.5	0.2	0.45 0	0.1	0.045	-	
1.0	0,5		0	0	0		
					· · ·	-	
						ł	
		<u> </u>		┫━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━		4	
	·	 				1	
		No. Concern					
લાયલગાલન	i i i		1007/3107	2400 set			
	er men en er er en staar kan de staar de staar.					I	

.

.

`}

)

o at			(1)	(2)	(3)	sı)	(4)	Method	(2)	(9)
Station: U/B-C			Distance	Width	Depth	oqia (s)	Avg.	Depth	Area	Discharge
Waterbody: un gamech			from			ks, c	Velocity At Point	2 0 0 0		
Date: 1//20/06			point			, roc		})ъ (
Crew: CLH/J2B	Start Time: 1010	Recorder: SXH	RG	(M)	<u>a</u>	sɓoj) QO	ε	0.8)	₹ ₹	(<u>)</u>
	End Time:	GH. Change:	50	50	0.2		10			
	020	<u>e</u>	0~1.		Sio		58.0			
	Staff/Gage:	Pile	5.1.		50		0.46			
Width:	Area:	Velocity:	010 010		90		0.60			
Disch/Flow:	Method:	No Secs:			0.4		060			
Meter No:	Max Vei:	Min Vel:	<u>8</u> 3		d t	Η	56.0			
ORIENTATION:			2		41	<u> </u>	200	-		
Madin Boat I Instra	Boat Hostream Downstream Side Bridge	that the factor of the factor	e V		0.4		27			
£			SS		70		0.28			
above, below gage,	and		9 9		9	0	51.			
Measurement rated: excellent good	lent good fair poor based on the following	on the following	5.9	-]	0:0		<i>dN</i>			
conditions: Cross section		-								
Flow	Weather	-								
Other	Air °F@									
Gage	er -									
Observer						-				
								-		
Control										
	, , , , , , , , , , , , , , , , , , ,								-	
Remarks										
*			TOTALS							
			I OI AFO					_		
		•								

V1.0 1096

Reviewed by__

Checked by___

Completed By___

			date	4/20/2006		Start Stop	1010 1020
Station:	UTB2		······································]	,020
Waterbody	/		· · · · · · · · · · · · · · · · · · ·			1	
Crew:	REM/SKH/	JBB/JJF			· ·	1	
Width (ft):	6.5	Årea:	3.1	Max Vel:	0.9		
	1,87	Velocity:	0.49	Min Vet:	0]	
						_	
			less (? Sv(c)[erc][v(s)]				
					District Rela		
		a strate for much as the first of the state	(files (c))				
0.5	0.5	0.2	0.11	0.1	0.011	1	
1.0	0.5	0.5	0.83	0.25	0.2075	1	-
1.5	0.5	0.5	0.46	0.25	0.115	1	
<u>2.</u> 0	0.5	0.6	0.6	0.3	0.18		
2.5	0.5	0.7	0.65	0.35	0.2275	1	
3.0	0.5	0.7	0.9	0.35	0.315		
3.5	0.5	0.7	0.72	0.35	0.252		
4.0	0.5	0.7	0.83	0.35	0.2905]	
4.5	0.5	0.5	0.45	0.25	0.1125		
5.0	0.5	0.4	0.46	0.2	0.092		
5.5	0.5	0.4	0.28	0.2	0.056		
6.0	0.5	0.2	0.13	0.1	0.013		
6.5	0.5	0	0	0	0		
						1	
						{	
વાનો છે. તેન્ઝ	COSTRA-S	(5)(1(<u>0</u>))	nen i daare	1979 (1915). Alexandre (1915). Alexandre (1915).	and every and in the state of and a land		
Nel (Slave)	N 516)C		çi 4(c)		ê î î î		

.

Ì

)

.

)

)

V1.0 1096

___ Checked by__

Completed By_

.

Reviewed by__

Pool Flow ND		date	4/18/2006		Start
Station: UTA1					Stop J
Waterbody					-
Crew: REM/SKH/	JBB/JJF		······································		-
Width (ft):	Area:	0.0	Max Vel:	0	1
Flow (cfs): 0000	Velocity:	#DIV/0!	Min Vel:	0	
		. You have not been as made on the survey	1 19 19 March 199		_
entralizi - Santaria Gantaria - Santaria Gantaria - Withig					
erini Widin	263054				
			0	0	
		*	0	0	
			0	0	
			0	0	
			0	0	
				<u>.</u>	
				·	
States and States and States Version and States and States			0.010		
					_

.

•

ý

Station: UTX -2			(1) Distance	(2) · Width	(3) Denth		(4) Ava.	Method Denth	(5) Area	(6) Discharge
Waterbody: curved	725		from				Velocity			
Date: c///3/06			point	1	 į		At Point	o b	2	
Crew:	Start Time: // # 5	Recorder: 5724	e'a	(M)	(<u>a</u>)	's6oj) 90'	ŝ	0.8)	<u>୧</u>	ð
	End Time:	GH. Change:	1.0	1:0	12.0		5			
• • •		<u>c</u>	20		0.5		5.66			
	Staff/Gage:	hrs.	20		90		85.0			
Width: ju)	Area:	Velocity:	0 V V	-	it cl		5.98	 ,		
	Method:	No Secs:	0.7		14		00			ľ
Meter No:	Max Vel:	Min Vel:	· 00		40		20			
ORIENTATION:			9.0		A 0 0	- · .	2 Xix			
Wading, Boat, Upstrea	Boat, Upstream, Downstream, Side Bridge	dae ft/mi.	10.01	-1	0.0		22			
	٠.									
eme	ent cond fair noor hased on	on the following		•					_	
conditioner Cruce contion		R								
Flow	Weather	•								
Other	AirF@									
Gage	Water °F @									x
Observer										
5.55		1.25						-		
						-			-	
Control		· · ·					: 			
								- (* 7		
Domarke										
			 						Ň,	
			TOTALS							
							·	ι,	(
						•				
· .				-					<u>з</u>	r

.'

Discharge/Flow Measurement Form

ļ

V1.0 1096

Reviewed by_

Checked by

Completed By____

		ł	date	4/18/2006		Start	1105
tation:	UTA2					Stop 1	1115
Vaterbody							
rew:	REM/SKH/J	BB/JJE				-	
Vidth (ft):	10.0	Area:	5.7	Max Vel:	1.09	-	
	4 14	Velocity:	0.63	Min Vel:	0		
1011 (010).		volooity.	0.00	Will VOI.		1	
				1			
		Sector from the sector of the					
dana.			1				
an a fraitean			107 Valio Shvedi				
	Ver massi	3) 301 -			lindin at		
			ាល់ ភេទលោ	a sub- sub- sub- sub- sub- sub- sub- sub-	A HOLE VI		
1.0	1.0	0.4	0.33	0.4	0.132	1	
2.0	1.0	0.5	0.66	0.5	0.33	1	
3.0	1.0	0.6	0.78	0.6	0.468	1	
4.0	1.0	0.7	0.98	0.7	0.686	1	
5.0	1.0	0.7	1.06	0.7	0.742	1	
6.0	1.0	0.7	1.09	0.7	0.763	1	
7.0	1.0	0.7	0.85	0.7	0.595	1	
8.0	1.0	0.8	0.53	0.8	0.424		
9.0	1.0	0.6	0	0.6	0		
10.0	1.0	0	0	0	0	· ·	
				<u> </u>			
			-	<u> </u>			
·				 	<u> </u>		
CRAP ST			and a state				
10211			0.6,5) 0.6,5)				

)

)

.

þ

.

Station: UN-3			(1) Dietanca	(Z)	(2) (3)	per ber	(Method	(c)	(9)
Waterbody: Unin	Trub		from		Inden	tion(:	Velocity	(0.2) (0.2)	Area	uiscnarge
Date: 4/19/64			point			struc struc	At Point	6) 5		
Crew: SHI DT	Start Time: 1740	Recorder:	517	(W)	()	ʻsɓoj) qO	Ś	0.8)	(ð
~	End Time: ,) 2 2 ,	GH. Change:	1.0	1.0	10		0.16			
	C2 4 1	i	2.0	Û,Û	1.0		じょう			
	Staff/Gage:	hrs.	0	э. -	5.		0,49			
Width: //). 7	Area:	Velocity:			<u>,</u>	-	50			
Disch/Flow:	Method:	No Secs:	0.0				0.43			
Meter No:	Max Vel:	Min Vel:	0 4		1.0		5 3 C			
			6 Å	/	0.8	,	0% 0			
ORIENTATION:			\$. 0	4-	0.6		C (33			
(Wading) Boat, Upstr	Upstream, Downstream, Side Bridge	tae tt/mi.	0.0/	0	0.31		0.16			:
halow c			10.5	0.5			AD VD			
12828 12022 1202										
Measurement rated: excellent good	ellent good fair poor based on the following	on the following								
conditions: Cross section										
Flow	Weather					-				
Other	Air °F@									
Gage	Je L	,								
Observer										
	- SA 1 - 4									
									-	
Remarks							5			
			TOTALS							

)

)

})

V1.0 1096

4.

Reviewed by__

Checked by___

Completed By___

• ..

			date	4/17/2006		Start Stop	1740 1745
Station:	UTA3	·				Т 1	1740
Waterbody	,						
Crew:	REM/SKH/	JBB/JJF				-	
Width (ft):	10.5	Area:	8.9	Max Vel:	0.5	1	
Flow (cfs):	3.47	Velocity:	0.34	Min Vel:	0		
						-	
						ġ.	
in the second			achteriazza				
	WIGHOS	A CONTRACT OF A PARTY OF A PARTY OF A	CLUDO IN CO.	a service and the service of the ser	ansi di tangan tang		
Contraction of the second states of the second stat						<u>.</u>	
1.0	1.0	1	0.16		0.16		
2.0	1.0	1	0.46	1	0.46		
3.0	1.0	1	0.49	1	0.49		
4.0	1.0	1	0.5	1	0.5	_	
5.0	1.0	1.1	0.43	1.1	0.473	1	
6.0	1.0	1.1	0.4	1.1	0.44		
7.0	1.0	1	0.38	1	0.38	-	
8.0	1.0	0.8	0.4	0.8	0.32	1	
9.0	1.0	0.6	0.33	0.6	0.198		
10.0	1.0	0.3	0.16	0.3	0.048		
10.5	0.5	0	0	0	0		
				<u> </u>			
				<u> </u>			
				 _		_	
				╉━┉┈╴╍───┨┉	·	4	
		Contraction of the					
						.	

.

.

. ,

)

							-			
Station: TC-			(1) Nietanaa	(2) Milder	(3)	uer)	(7)	Method	(2)	(9) (
Waterbody: FLET C	reek.		from		Indan	10 's	Avg. Velocity	Ueptn (0.2,	Area	Ulscharge
Date: 4 / 19 / ひく			point				At Point	0.6, or		
Crew: 11 F/R EM	Start Time: (0) 3 (p	Recorder: JF		ŝ	ê	ʻsɓoj SQO	ε	0.8)	<u>₹</u>	(Q)
	End Time:	GH. Change:	205	ø	0.10)	۲ ک			
		E	7		0, 5 2		ΥP			
	Staff/Gage:	hrs.	Μ		9 0		0.07			
Width: 🕽 🗲	Area:	Velocity:	44		(- 0 0		0,11			
Disch/Flów:	Method:	No Secs:	هـ ۱				V.15	_		
Meter No:	Max Vel:	Min Vel:	~	I	0.9		0,41			
			ð	_	0.7		0.41			
			5	-	9 0		0,33			
Wading, Boat, Upstream,	Downstream,)	Side Bridge 75 ft ft/mi,	01		و		0,21			
ahove helow rade		 		-	ہ م		0,24			
	2		4	_	м. 0		0,05			
Measurement rated: excellent good	ant good fair poor based on the following		_	-	0, 2		Q N			
conditions: Cross section			0 15	ત	0.2		N0			
Flow	Weather									
Other										
				-		ł				
cage .	Water F@.									
Observer 115/ ALC		-							-	
•				14						
Control										
		-								
Remarks					-					
			IOIALS			-	_			

Reviewed by___

,•

Completed By RW

Checked by___

V1.0 1096

÷

			date	4/19/2006		Start	1036
Station:	FC1					Stop	1046
Waterbody						4	
Crew:	REM/SKH/		·····			-	
Width (ft):	14.0					-	
	14.0	Area:	8.2	Max Vel:	0.41	4	
11000 (015).	Sector 1907 Sector	Velocity:	0.16	Min Vel:	0	_	
·····				.1			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		K: NU (1877-4)				
		Depthysi	a pionel com				
				Bern ik	Streets with the state of the second		
0.0	0.0	0	0	0	0		
2.0	2.0	0.5	0	1	0	1	
3.0	1.0	0.6	0.07	0.6	0.042		
<u>4.0</u> 5.0	1.0	0.7	0.11	0.7	0.077	ļ	
	1.0	0.8	0.15	0.8	0.12		
6.0	1.0	0.9	0.24	0.9	0.216	1	
7.0	1.0	0.9	0.41	0.9	0.369		
8.0	1.0	0.7	0.41	0.7	0.287		
<u>9.0</u> 10.0	1.0	0.6	0.33	0.6	0.198	Į	
10.0	1.0	0.6	0.21	0.6	0.126		
12.0	<u>1.0</u> 1.0	0.5	0.24	0.5	0.12		
13.0		0.3	0.05	0.3	0.015		
15.0	1.0	0.2	0	0.2	0		
10.0	2.0	0.2	0	0.4	0		
	<u> </u>						
1211	13,00 %						

.

.

.

))

)

Waterbody: Kert K. Date: V/17/OK (12.55) Crew: Start Time: 25.55 Crew: Start Time: 25.55 Crew: Start Time: 25.55 Recorder: 27.47 Crew: Start Time: 25.55 Width: 20.0 Area: Disch/Flow: Meter No: No Secs: ORIENTATION: Meter No: Min Vel: Wading Boat, Upstream, Downstream, Side Bridge T/mi, <tr< th=""><th>Distance Freeorder: From Freeorder: From Freeorder: From From Intra GH. Change: In GH. Change: In From In Min Vel: In Min Vel: In Min Vel: In Min Vel: In In 20 In 20 In 20</th><th></th><th>Pepth 2000000000000000000000000000000000000</th><th>Destruction(s)</th><th>Avg. At Point Velocity V V V V V V V V V V V V V V V V V V V</th><th>Depth (0.2, 1, 0.6, 0.8)</th><th>Area (A)</th><th>Discharge (Q)</th><th>_</th></tr<>	Distance Freeorder: From Freeorder: From Freeorder: From From Intra GH. Change: In GH. Change: In From In Min Vel: In Min Vel: In Min Vel: In Min Vel: In In 20 In 20 In 20		Pepth 2000000000000000000000000000000000000	Destruction(s)	Avg. At Point Velocity V V V V V V V V V V V V V V V V V V V	Depth (0.2, 1, 0.6, 0.8)	Area (A)	Discharge (Q)	_
W/Tr/Ck 12.55 Start Time: Start Time: End Time: 2.55 End Time: 2.55 Do. o Staff/Gage: Do. o Area: W: Method: W: Max Vel: Most vel: ATION: Boat, Upstream, Downstream, Side Bridg below gage, and	ecorder: S24/ H. Change: in hrs. in slocity: hrs. 5 Secs: in to Vei: hrs.	─── ┨┼┼┼╎┼┽┼╷┼╷ ┤		Destruct	At Point At Point 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.22	0.6, 0.3)	રે	(a)	-
Start Time: /2.55 End Time: /2.55 End Time: Staff/Gage: Staff/Gage: 20.0 Area: Method: Max Vel: ATION: Boat, Upstream, Downstream, Side Bridg below gage, and	ecorder: <i>C</i> 24/ H. Change: in hrs. hrs. 5 Secs: 5 5 Secs: 6 1 Vel: 1 1 Vel:	── ┨ ╶╄╴┾╴ ┥┥┥┥┥┥┥			0000 0000 3	0.8)	Ê	(Ċ)	-
End Time: GH. Chang Staff/Gage: Staff/Gage: ZO. O Area: W: Area: W: Method: W: Method: No Secs: Min Vel: ATION: Boat, Upstream, Downstream, Side Bridge below gage, and	H. Change: in hrs. hrs. hrs. hrs. hrs. hrs. hrs. hrs.	┠╼╪╼┾╌┼╌┼╌┽╌┼╌┽╌┤┈┽╌╎		the second se	0.022 0.222 0.022 0.022 0.022 0.022 0.022 0.022 0.022				
Z.O., O Staff/Gage: X.O., O Area: W: Area: W: Method: W: Method: No Secs: No No Staff/Gage: Min Vel: ATION: below gage, and	allocity: hrs. 5 Secs: 5 5 Proving formi, 10 Proving 10				0.022				
Z.O. o Area: Velocity: wr: Method: Volocity: wr: Method: No Secs: r: Max Vel: Min Vel: r: Max Vel: Min Vel: ATION: Ation: Min Vel: below gage, and below Side Bridge	elocity: 5 Secs: in Vel: ft/mi, he following		1:00 6 Mt		0.43				
w:: Method: No Secs: Max Vel: Min Vel: ATION: Boat, Upstream, Downstream, Side Bridge below gage, and	o Secs: In Vel: ft/mi, he following		1.00		0.000				
: Min Vel: Min Vel: ATION: Boat, Upstream, Downstream, Side Bridge below gage, and	In Vel: ft/mi, he following		1.0		6.0				
ATION: Boat, Upstream, Downstream, Side Bridge below gage, and	ft/mi, he following		1.0		•				
Boat, Upstream, Downstream, Side Bridge	ft/mi, he following		1.0		0.00	- -			
below gage, and	he followi			-		+			
	n the following								
Measurement rated: excellent good (fair poor based on the following	, ,								
)					- Colline 1.		-		
Flow Weather									
OtherAir					· · ·				
GageWater°F@									
Observer									
			-						
Control									
	•								
Remarks									
	TOTALS	- S							
						-]	
	Ę						· .		
	;				1				
V1.0 1096 Completed By Checked	Checked by	Reviewed by	ed by		1	۰. -	¥.		

			date	4/17/2006		Start	1255
Station:	FC2				·	Stop 7	1305
Waterbody			<u></u>			-	
Crew:	REM/SKH/	JBB/JJF				1	
Width (ft):	20.0	Area:	15.0	Max Vel:	0.43	1	
Flow (cfs):	1 47	Velocity:	0.12	Min Vel:	0	1	
						_	
	50 A		4.V.).				
and the second	an an the state of	Department	volacity a Science	The second states of the second second			
		きゅうえいちいちゃっ とんちょく かくしょうかんち あいれい 正					
2.0	2.0	0.6	0	1.2	0		
4.0	2.0	0.6	0.22	1.2	0.264	4	
6.0	2.0	0.8	0.23	1.6	0.368	1	
8.0	2.0	0.4	0.43	0.8	0.344	1	
10.0	2.0	0.3	0.16	0.6	0.096	1	
12.0	2.0	0.6	0.03	1.2	0.036]	
14.0	2.0	1	0.08	2	0.16		
16.0	2.0	1.2	0.05	2.4	0.12	_	
18.0	2.0	1	0.04	2	0.08	4	
20.0	2.0	1	0	2	0	-	
				<u> </u>		4	
_							
••••••				·}		-	
				<u>†</u> †		1	
	·			1		1	
ulai sassis	2 20.000 a		Sec. 2482	1			
IVE PERCIP		(6) 7/5]					

. .

.

·

).					5).		•	a F	Page of	
	<i>:</i>					Field Data Form	ata For	ŕĘ				
FIELD MEASUREMENT RECORD (Date	SUREME	NT RE	cord (I	Date 4	4/17/06	(1240				REVIEWED BY:) BY:	I
Station/Depth	Date	Time	Field Crew	C° C	DO mg/l	Sp. Cond. uS	ns Hq	Turb. (ntu)	Sample # of Containers S=Sed. W=V	Sample # of Containers sed. W=Wat.	Notes	
× 72-2	0.121 m/u/h	0121	がたっ	23.0	5.5 mlk	2771	08.7	4.0	1	-	SOU, (2-, 7-DS, NO2	2
1174-3	00/11 ndu/2	09/1/	Jec.	25.0	203	(m4) 520	26.97	R	l	-		
12-11-D	4/1/2/06	280	N.	22.4	1.92	522	4.71 × 19.3	4.11.Y		1		
1-11-1	4/1/	080	Kit	22 3	19.51	158	6.53	1.2	1.	/		
1-25	SHLO DO/billt	SHLO	•	23.6°	5.47	2612	6.06	5:14				
MB-2	11/1/00/11-50	1/50	SK4	23.2	74	782	7.19	13.8				
utc-1	4/19/06	1215	1990	0 22 280	4.11 1.14	350	6.92	20.2				
1-8HU	1/1/10/ 1220	1220	24 JUB	-23.1	7.4	787	7.45	1.7		· ~		
wt8-2	4/20/06 0830	0830	SEH/	22.3	16.50	btt	动	1 21				
1-2121	Hpoloco of the	5450	ACT.	21 4	3.67	380.5		21.3				
ut 6-1	4/20/06	5101		23.3	10.25 (79.9	181	7.32	14.8	1			
			`.	``````````````````````````````````````								
* Indicates calibration check was made	ration che	ck was	made									

}

V1.2 04/18/2004

 of (~AN		1		77						
Page _	•	BY:	Notes	TDS CR SQ,	k .	1								
		REVIEWED BY:			~		~							
,			Sample # of Containers Sed/Soil Wate		(₽.					-		
	E	•	Turb. (ntu)	F. 81	<i>1</i> 8, 0	25.7	6.26	3.94e						
)	ata For		ns Hq	QLin	10%	7.07	6.4	69.7		•				
	Field Data Form		Sp. Cond. uS	197.8	602	515	1724	753,2323						
•		50/00	DO mg/l	285 1240h'h		69.00 ()	4.7	6.75.0						
		ate <u>H</u>	Temp C°	24.3	245	25.1	24.2	7:4	-					
		SORD (D	Field Crew	skt/W8 Juf /een	ĥ	11	h	11						
,		NT REC	Time		S/ħ/	1430	Zypy	1500						
		UREME	Date	H 50/00 1355	4/20/04	1 20/44 1420	4 polor 1445	10/00/1-			÷			ation che
		FIELD MEASUREMENT RECORD (Date 1/20/04	Station/Depth	ध्यन्त-।	UTA-2	WA-3	FC-2	FC-1					• •	* Indicates calibration check was made

V1.3 08/04/2005

¢`

ŀ

		۰.				Field D	Field Data Form						
FIELD MEASUREMENT RECORD (Date 5/3//00	UREMEI	NT REC	:ORD (D	hate 5/	31/00			•	R	REVIEWED BY:	D BY:		
Station/Depth	Date	Time	Field Crew	ປິ ບິ	DO mg/l	Sp. Cond. uS	pH su	· Turb. (ntu)	Sample # of Containers Sed./Soil Wate	e # of iners Water	Notes		
2-2	5/3/0, 0915		ALTAN JOIS	5:22	5.74	1264	N.W	11.5					
1743	5/21	09.55	PEN,	1.12	66 H	136.4	732	6.3	1	/			
CTA-2	5/31/00 1030	1030	JEU1 585	23.4	6.40	215.3	7.30	33.5	1	1			
12-8-2		1105	at M	23.3	7.64	346.0	7.26	14.2	l	~			
1-8-1		0///		23,2	3.51	327.6	7,30	(0. 0)	(-	÷		
JC-1		1115		22.7	4.21	249.3	7:37	80.0	1	*	Α.		
1-1-2		1210		23. 8	5.30	2233-	6.53	2404	(.		•	₩.	
T-4-1		ohci'		23.6	5.74	9,020	6.56	N.S.	(· ·	<u> </u>
9							4						
					3								
	1. Sec.	L.	·										··
					-								
 Indicates calibration check was made 	ation che	ck was r	nade										

. . .

)

1

V1.3 08/04/2005

の時代の手

EDCC 4G - Instream Minerals Data

.

	UT	A-1	
Date	Cl (mg/L)	SO₄ (mg/L)	TDS (mg/L)
4/17/06	24.4	3.00	124
4/20/06		3.06	153
5/31/2006	115	5.54	300
v viel - g			

UTC-1			
Date	Cl ⁻ (mg/L)	SO4 (mg/L)	TDS (mg/L)
4/19/06	13.2	32.1	258
4/20/06	13.2	34.0	304
5/31/2006	13	29.2	206

UTA-2			
Date	CI (mg/L)	SO₄ (mg/L)	TDS (mg/L)
4/17/06	31.0	44.5	362
4/20/06	32.7	52.0	406
5/31/2006	26.9	11.1	142

UTB-1			
Date	Cl ⁻ (mg/L)	SO ₄ (mg/L)	TDS (mg/L)
4/19/06		73.2	560
4/20/06		74.4	524
5/31/2006	18.7	49.5	178
A Statics (vice)			

UTA-3			
Date	CI ⁻ (mg/L)	SO₄ (mg/L)	TDS (mg/L)
4/17/06	27.2	41.5	358
4/20/06	29.9	45.0	372
5/31/2006	19.8	11.7	130
AV. Phyloge - 1			

UTB-2			
Date	Cl ⁻ (mg/L)	SO₄ (mg/L)	TDS (mg/L)
4/19/06			492
4/20/06	38.6	74.4	512
5/31/2006	19.6	51.8	206
AMERICA		3444-404676720	2

FC-1			
	Cl [*] (mg/L)	SO₄ (mg/L)	TDS (mg/L)
4/19/06	568		1160
4/20/06		64.8	1410
4/20/06 (dup)	553	62	1370
5/31/2006		5.9	1200
A STATISTIC AS	SIDE		

FC-2			
Date	Cl ⁻ (mg/L)	SO₄ (mg/L)	TDS (mg/L)
4/17/06		24.0	1740
4/20/06		56.3	1100
5/31/2006	375	15.8	710

ECOREGION NUMBERS (CI, SO4, &TDS): 14 mg/L, 31 mg/L, & 123 mg/L

Ana-Lab Corporate Laboratory P.O. Box 9000 Kilgore, TX 75663

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Printed: 04/25/2006 Page 1 of 3 Reportion Project Kyle Hathcote **GBMc & Associates** 219 Brown Lane Bryant, AR 72022-**Results for Client GBMH** Parameter Results Units RL Flags CAS Bottle 821581 FC-2 Received: 04/18/2006 Liquid Aqueous Collected by: Client Affiliation: GBMc & Associates 04/17/2006 1235 EPA 160.1 Analyzed: CLH 04/20/2006 0930 QCgroup 179517 Total Dissolved Solids 1740 mg/L 50 01 EPA 300.0 Analyzed: GDG 04/19/2006 1003 179611 QCgroup Sulfate 24.0 mg/L 3.00 01 EPA Method 300.0 Analyzed: GDG 04/19/2006 1003 **OCgroup** 179611 Nitrate-Nitrogen, Total 0.371 0.100 mg/L 01 EPA Method 300.0 Analyzed: GDG 04/19/2006 1343 QCgroup 179611 Chloride 777 mg/L 150 01 The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136. 821582 UTA-3 Received: 04/18/2006 Liquid Aqueous Collected by: Client Affiliation: GBMc & Associates 04/17/2006 1405 EPA 160.1 Analyzed: CLH 04/20/2006 0930 QCgroup 179517 **Total Dissolved Solids** 358 mg/L 10 01 EPA 300.0 Analyzed: GDG 04/19/2006 1023 QCgroup 179611 Sulfate 41.5 mg/L 3.00 01 EPA Method 300.0 Analyzed: GDG 04/19/2006 1023 179611 QCgroup Chloride 27.2 mg/L 3.00 01 Nitrate-Nitrogen, Total 24.1 mg/L 0 100 01 The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136. 821583 UTA-2 Received: 04/18/2006 Liquid Aqueous Collected by: Client Affiliation: **GBMc & Associates** 04/18/2006 0825 EPA 160.1 Analyzed: CLH 04/20/2006 0930 QCgroup 179517 **Total Dissolved Solids** 362 mg/L 10 01 EPA 300.0 Analyzed: GDG 04/19/2006 1043 QCgroup 179611 Sulfate 44.5 3.00 mg/L 01 EPA Method 300.0 Analyzed: GDG 04/19/2006 1043 QCgroup 179611 Chloride 31.0 mg/L 3.00 01 Nitrate-Nitrogen, Total 23,4 0.100 mg/L 01 Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662 Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105 M 8 6 A

ISO-17025 #0637-01 LDSClient v2.0.5 02/01/2006

www.ana-lab.com

2004 Seal of Excellence

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP

b.com NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-				Printed: Pro	04/25/20	The second s	2 of 3
	Results i	for Client	GBMH				
Parameter	Results	Units	RL	Flags	CAS	Bot	tle
The above methods that we used this method under 40 CFR 136.	d are approved for NPDES rep	borning as listed	IN 40 CFR 136 Tabl	e 1B or Ana-			
584 UTA-1	d are approved for NPDES rep	in and the second second second	Affiliation:			eceived: 0	om EPA to 1 4/18/2006 06 ~0850
584 UTA-1 Liquid Aqueous		in and the second second second		GBMc &	R Associates	eceived: 0	4/18/2006
584 UTA-1 Liquid Aqueous EPA 160.1	Collected E	www.execution.com	Affiliation: Analyzed: CLH	GBMc & 04/20/2006	R Associates 0930	eceived: 0 04/18/20 QCgroup	4/18/2006 06 ~0850

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

-

. .

NELAP-accredited #02008

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Form rptPROJRES Created 10/13/2004 v1.2

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Report to

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-Oualifiers:

E - Estimated Value B - Analyte detected in the associated method blank

! - Lab MDL > Target

J - Analyte detected below quantitation limit

S - Standard reads lower than desired

- ND in the results column is not detected above SQL

Unless otherwise noted, testing was performed at Ana-lab's corporate laboratory that holds the following Federal and State certificates: Texas Department of Health Lead Firm Certificate 2110076, EPA National Lead Laboratory Accreditation Program #637.01, Texas Department of Agriculture Soil Import Permit S-37592, Texas Department of Health Drinking Water Laboratory Certificate TX219, Oklahoma Department of Environmental Quality Drinking Water Certification Lab ID# D9913, EPA Lab Number TX00063, USEPA Approved Perchlorate Testing Lab, Oklahoma Department of Environmental Quality Laboratory Certificate 8125, Arkansas Department of Environmental Quality Certification #03-070-0, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) # LA030020, Delaware Health and Social Services (ODW) Drinking Water Approved, US Department of Energy Approved, Entidad Mexicana de Acreditacion, A.C. (EMA, in renewal as of 6/18/2004) Agua Ag-014-003/03 and Fuentes Fijas, Residuos y Ambiente Laroral FRA-013-005/03, State of Kansas Department of Health and Environment Waste Water and Solid/Hazardous Waste Cert. E-10365, Alabama Department of Environmental Management Drinking Water #41540. Ana-Lab is also accredited to the international ISO-17025 standard by the American Association for Laboratory Accreditation (A2LA Certificate # 0637-01).

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number.

Roy White, MS, Quality Manager

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

ISO-17025 # 0637-01 LDSClient v2.0.5 02/01/2006

1.1.1

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Reportion

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Project Quality Control

Page 1 of 3

Printed 04/25/2006

29611 0 Liquid Aqueous EPA Method 300.0 Blank Parameter PrepSet Units Reading MDL MOL Out File Bromide 179611 ND 3.91 50,0 ug/L 0002640228 Chloride 179611 ND 53,4 300 ug/L 0002640228 Fluoride 179611 ND 2.28 100 ug/L 0002640228 Nitrate-Nitrite Nitrogen 179611 ND 3,21 20.0 ug/L 0002640228 Nitrate-Nitrogen, Total 179611 ND 2.35 10.0 ug/L 0002640228 Nitrite-Nitrogen, Total 179611 ND 1.76 10.0 ug/L 0002640228 Ortho - Phosphate as P 179611 ND 6.47 10,0 ug/L 0002640228 Sulfate 179611 ND 55.3 300 ug/L 0002640228 CCV Parameter Reading Known Units Recover% Limits% Out File Bromide 9830 10000 ug/L 98.3 90.0 - 110 0002640254 Bromide ug/L 9890 10000 98.9 90.0 - 110 0002640243 Bromide 9910 10000 ug/L 99.1 90.0 - 110 0002640225 Chloride 10300 10000 ug/L 103 90.0 - 110 0002640254 Chloride 9800 10000 ug/L 98.0 90.0 - 110 0002640225 Chloride 9850 10000 ug/L 98.5 90.0 - 110 0002640243 Fluoride 9570 10000 ug/L 95.7 90.0 - 110 0002640254 Fluoride 9680 10000 ug/L 96.8 90.0 - 110 0002640243 Fluoride 9700 10000 ug/L 97.0 90.0 - 110 0002640225 Nitrate-Nitrite Nitrogen 5170 5300 ug/L 97.5 90.0 - 110 0002640254 Nitrate-Nitrite Nitrogen 5270 5300 ug/L 99.4 90.0 - 110 0002640225 Nitrate-Nitrite Nitrogen 5300 5300 ug/L 100 90.0 - 110 0002640243 Nitrate-Nitrogen, Total 2190 2260 ug/L 96.9 90.0 - 110 0002640254 Nitrate-Nitrogen, Total 2220 2260 ug/L 98.2 90.0 - 110 0002640225 Nitrate-Nitrogen, Total 2220 2260 ug/L 98.2 90.0 - 110 0002640243 Nitrite-Nitrogen, Total 2980 3040 ug/L 98.0 90.0 - 110 0002640254 Nitrite-Nitrogen, Total 3050 3040 100 ug/L 90.0 - 110 0002640225 Nitrite-Nitrogen, Total 3080 3040 ug/L 101 90.0 - 110 0002640243 Ortho - Phosphate as P 3000 3260 ug/L 92.0 90.0 - 110 0002640243 Ortho - Phosphate as P 3030 3260 ug/L 92,9 90.0 - 110 0002640254 Ortho - Phosphate as P 3120 3260 ug/L 95.7 90.0 - 110 0002640225 Sulfate 10000 10000 ug/L 100 90.0 - 110 0002640225 Sulfate 10200 10000 ug/L 102 90.0 - 110 0002640254 Sulfate 9930 10000 ug/L 99.3 90.0 - 110 0002640243 LCS Parameter PrepSet Reading Known Units Recover% Limits File Out Bromide ug/L 179611 1020 1000 102 90.0 - 110 0002640227 Chloride 179611 953 1000 ug/L 95.3 90.0 - 110 0002640227

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

,1

21

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022Printed 04/25/2006 Page 2 of 3

Project

Quality Control

3179611	0 L	iquid Aqu	eous	EPA	Methoo	1 300.0					an na an a
				LCS	1. UM 2						
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	File	Out		
Fluoride	179611	1040		1000	ug/L	104	90.0 - 110		Out		
Nitrate-Nitrite Nitrogen	179611	555		530	ug/L	105	90.0 - 110	0002640227			
Nitrate-Nitrogen, Total	179611	236		226	ug/L	104	90.0 - 110	0002640227			
Nitrite-Nitrogen, Total	179611	319		304	ug/L	105	90.0 - 110	0002640227			
Ortho - Phosphate as P	179611	330		326	ug/L	101	90.0 - 110	0002640227			
Sulfate	179611	1020		1000	ug/L	102	90.0 - 110	0002640227			
				LCS Du	-		20.0 110	0002040227			
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	F 774-		
Bromide	179611	1020	1060		1000	90.0 - 110	102		Units	RPD	Limit%
Chloride	179611	953	972		1000	90.0 - 110 90.0 - 110	95,3	106	ug/L	3.85	20.0
Fluoride	179611	1040	1050		1000	90.0 - 110 90.0 - 110	99.5 104	97.2 105	ug/L	1.97	20.0
	179611	555	566		530	90.0 - 110 90.0 - 110	104		ug/L	0.957	20.0
)Nitrate-Nitrogen, Total	179611	236	243		226	90.0 - 110 90.0 - 110	103	107	ug/L	1.89	20.0
Nitrite-Nitrogen, Total	179611	319	323		304	90.0 - 110 90.0 - 110	104	108	ug/L	3.77	20.0
Ortho - Phosphate as P	179611	330	358		326	90.0 - 110 90.0 - 110		106	ug/L	0.948	20.0
Sulfate	179611	1020	1090		1000	90.0 - 110 90.0 - 110	101 102	110	ug/L	8.53	20.0
	175011	1020	10,0	MS	1000	90.0-110	102	109	ug/L	6.64	20.0
Parameter	Sample	MS	MSD	UNK		T Junida	B.600/				
Bromide	821495	95700	101000	ND	<i>Кпо</i> жп 100000	<i>Limits</i> 80.0 - 120	MS%	MSD%	Units	RPD	Limit%
Chloride	821495	205000	206000	122000	100000		95.7	101	ug/L	5.39	30.0
Fluoride	821495	205000 91700	200000 90100	ND	100000	80.0 - 120	83.0	84.0	ug/L	1.20	30,0
Nitrate-Nitrite Nitrogen	821495	49900	51900	923	53000	80.0 - 120	91.7	90.1	ug/L	1.76	30.0
Nitrate-Nitrogen, Total	821495	21200	21800	923 923		80.0 - 120	92.4	96.2	ug/L	4.03	30.0
Nitrite-Nitrogen, Total	821495	28700			22600	80.0 - 120	89.7	92.4	ug/L	2.97	30.0
Ortho - Phosphate as P	821495 821495	30000	30100	ND	30400	80.0 - 120	94.4	99.0	ug/L	4.76	30.0
Sulfate	821495 821495	191000	31200	ND	32600	80.0 - 120	92.0	95.7	ug/L	3.94	30.0
Bromide	821493	483000	195000	95000	100000	80.0 - 120	96.0	100	ug/L	4.08	30.0
Chloride			495000	ND	500000	80.0 - 120	96.6	99.0	ug/L	2.45	30.0
Fluoride	821678	1390000	1370000	947000	500000	80.0 - 120	88.6	84.6	ug/L	4,62	30 .0
	821678	441000	433000	ND	500000	80.0 - 120	88.2	86.6	ug/L	1.83	30.0
Nitrate-Nitrite Nitrogen	821678	258000	256000	5450	265000	80.0 - 120	95.3	94.5	ug/L	0.843	30.0
Nitrate-Nitrogen, Total	821678	110000	108000	5450	113000	80.0 - 120	92,5	90.8	ug/L	1.85	30,0
Nitrite-Nitrogen, Total	821678	148000	147000	ND	152000	80.0 - 120	97.4	96.7	ug/L	0.721	30,0
Ortho - Phosphate as P	821678	144000	143000	ND	163000	80.0 ~ 120	88.3	87.7	ug/L	0.682	30.0
Sulfaie	821678	2240000	2260000	1780000	500000	80.0 ~ 120	92 .0	96.0	ug/L	4.26	30.0
11/25178	W L	iquid Aqu	eous	EPA	160.1						
				Blank							
Parameter		Type	Result		<u> </u>		Unit				
Corporate Shipping: 2	600 Dudley	Rd. Kilgore. I	FX 75662			A	rk-La-Miss Ra	gion: 3100 Knigh	t Streat #2	Shrayanan	AT & 9140
And house on the house of the							#./94"-17ABJUE #NCI				

NELAP-accredited #02008

2004 Seal of Excellence

LDSClient v2. 0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Kyle Hathcote **GBMc & Associates** 219 Brown Lane Bryant, AR 72022-

Printed 04/25/2006 Page 3 of 3 Project

Quality Control

179517	W Li	iquid Aqı	leous	EPA 160.1			
				Blank			
Parameter		Туре	Result		Unit		
Total Dissolved Solids		Blank	-0.00020		grams		
Fotal Dissolved Solids		Blank	0.0000		grams		
				Duplicate	-		
Parameter	Sample	Type	Result	Duplicate	Unit	RPD	Limit%
Fotal Dissolved Solids	820735	Duplicate	1240	1220	mg/L	1.63	25
			1	LCS	-		
Parameter		Туре	Result	Known	Unit	Recover%	í
otal Dissolved Solids	W11714	LCS	192	200	mg/L	96.0	75 - 125
fotal Dissolved Solids	W11714	LCS	200	200	mg/L	100	75 - 125
				Standard			
Parameter		Туре	Result	Known	Unit	Recover%	Limits%
otal Dissolved Solids		Standard	104	100	mg/L	104	90 - 110

RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

NELAP-accredited #02008

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105 MEMBER

2004 Seal of Excellence

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

312733 CoC Print Group 001 of 001

Page 1 of 2

Kyle Hathcot OBMc & Ass 219 Brown L Bryant, AR 7	ociales anc	GBM I 111 <i>EDCC 40</i>				501/847-707 501/847-794		<u>X Y</u>
mad Nama K. T.	Hillico le April	tation G+B1	Matrix;	Liquid Aqu				
Ita M		Plastic 1/2 g Representation 1/2 g Representation 1/2 g	al (Whi en Method		Signasure	-J-Co-	<u> Asla</u>	
	ulfate	EPA 300.						
	hloride	ËPA Med	hod 300.0	k.				
	litrato-Nitrogen, Total	EPA Med	hod 300.0) .1				
						12662 217		
8451)	FC-2			4/12/04	1235			
	USTA-3			11.01.	1405			
PLISYY	UTA-2 WTA-1			1118/04	0825			
ILISTI			1	411.94	~ 20			
and the second secon	an innerski gener Asserter som over en skylge og teken men som skiller og		1			and the second state of th		
		·····	-					
		<u></u>						
	~**			-				
								ili sa miling
****			1					
			<u> </u>	1				
0637		NELAP-		are a	-La-Miss Re	ion: 3109 Knigi	at Street #2 Shravep M E 2004 Seal of J	
9901km v 2. 0. 5 02/01	22400	****	.esa-lab	com		Morne P	accorprof Createst &	72/2004 ¥J_7

14

LDSClient v2.0.5 02/01/2006

2004 Seal of Excellence

www.ana-lab.com

Form Created 6/22/2004 v1.1

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

312733 CoC Print Group 001 of 001

	D7		84-0551 FAX 903/984-5914			AP-accredited #02008
THE COMPLETE SER		Unai	n of Custo	-	04/11/	2006 Page 2 of 2
Kapon in Kyle Haho	-		GBMH	Lab Phon	Number e 501/847-7077	· · · · · · · · · · · · · · · · · · ·
GBMc & A 219 Brown	issociates Lane		111	Гак	501/847-7943	
Bryant, AR Amblent Conditio			EDCC 4G			
Comments						an ang ang ang ang ang ang ang ang ang a
1/ the stor	Printed Hear	= Kyk He	the te romation / B.M. *	Printed Name	LLINGS	Addition of prop 2 A.P
1 1-1 (30) 1	Signature	74-	the for the second seco	storiours R	10 Marta	
110/04 1730	Printed Nag	BILLIN	1 VA A VANTAGE AVE TO A	P. Frinted Manne	A CONTRACTOR OF THE	Application
	Signature Frinted Nan	<u>sellma</u>	Affiliation	Signature	YEANNE	and a second
Y10/ 1 0 4-		S Second Sec	Control of the second s	Frinted Nafe	a to a	Monthantion 1 - 5
	Printed Non	4C	Affiliation	Printed Name	In B OC	Affiliation
e ge van de se	Signature	2		Signature		
Sauple Recieved		No M	iethod of Shipment: [] UPS	Bar D Fred	Lone Stor	land Delivered
Cooler/Sample S	iecisre?	-764 🗍 No 🕇	racking/Shipping #		ēra	Ther
Continents	• •					
			13			
			6			
. •	· ·					.*
	•					
· • • • •				• •		
· · · · · · · · · · · · · · · · · · ·				•		
				• • • •		
				••••		
Carporate # Supplage	2000 Endley R	ki Kliper, TX 7	1462	Avit-La-Dit	ak Réglan: 3100 Perigne	Trocifit Chromosout EA, 71105
	2600 Dudley R	ki Klipec, TX 7	All the Attack	Avit-La-Doit	na Régian: 3104: 4048gin: 5	troolet Chronopoor EA. 71105
80-17025 ¥ 963	7-01	di Kligore, TX 7	1662 NRLAP-socredited			
80-17025 ¥ 963	7-01	di Kligore, TX 7	A STISTED	#02008		Anorial diarrangeous EA. 71105 M. Royal I. 2004 Scal of Excellence repret Created 5/22/2024 y/ 7
	7-01	kl. Kligare, TX 7	NRLAP-uscratilied	#02008		

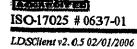
۲.

er

2004 Seal of Excellence

Page 2 of 2

LDSClient v2.0.5 02/01/2006


www.ana-lab.com

Form Created 6/22/2004 v1.1

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Kandhulta				Printed:	04/25/20	006 Page 1	of 3
				Pro	iect		
Kyle Hathcote GBMc & Associates				τų	jeet		
219 Brown Lane							
Bryant, AR 72022-							
	Results f	for Client (FBMH				
Parameter	Results	Units	RL	Flags	CAS	Bott	e
22229 FC-1		an a				_	/20/2006
Liquid Aqueous	Collected b	y: Kyle Hathcot	e Affiliation:	GBMc &	Associates	04/19/200	
EPA 160.1			Analyzed: LLW	04/21/2006	1220	QCgroup	179803
Total Dissolved Solids	1160	mg/L	50			01	177005
EPA 300.0			Analyzed: GDG	04/21/2006	005	QCgroup	179792
Suifate	64.4	mg/L	3.00			01	
EPA Method 300.0			Analyzed: GDG	04/21/2006	005	QCgroup	1797 92
Nitrate-Nitrogen, Total	0.925	mg/L	0,100	1		01	
EPA Method 300.0 Chloride	<i></i>		Analyzed: GDG	04/21/2006	1225	QCgroup	179792
Unonge	568	mg/L	30,0			01	
this method under 40 CFR 136. 2230 UTB-2 Liquid Aqueous	Collected b	y: Kyle Hathcot	e Affiliation:	GBMc &	R R Associates	eceived: 04/ 04/19/2006	
							1100
EPA 160.1 Total Dissolved Solids			Analyzed: LLW	04/21/2006	1220	QCgroup	179803
	492	mg/L	20			01	
EPA 300.0 Sulfate	85 4	-	Analyzed: GDG	04/20/2006	2245	QCgroup	179792
	75.4	mg/L	3.00			01	
EPA Method 300.0 Chloride	39,9		Analyzed: GDG	04/20/2006	2245	QCgroup	179792
Nitrate-Nitrogen, Total	42.5	mg/L mg/L	3.00 0.100			01 01	
The above methods that we used are this method under 40 CFR 136.	approved for NPDES rep	-	40 CFR 136 Table	1B or Ana-L	ab has speci		1 EPA to u
2231 UTC-1		BY NY UNIVERSITY OF A CALL OF A			R.	eceived: 04/	20/2006
Liquid Aqueous	Collected b	y: Kyle Hathcota	e Affiliation:	GBMc & A		04/19/2006	
EPA 160.1	1	****	Analyzed: LLW	04/21/2006	1220	QCgroup	179803
Total Dissolved Solids	258	mg/L	10			90.970.00 01	172003
EPA 300.0 Sulfate	32.1	mg/L	Analyzed: GDG 3.00	04/20/2006	2305	QCgroup 01	179792
EPA Method 300.0			Analyzed: GDG	04/20/2006	2305	QCgroup	179792
Chloride Nitesta Nitescon Totai	13.2	mg/L	3.00			01	
Nitrate-Nitrogen, Totai	10.7	mg/L	0.100			01	
porate Shipping: 2600 Dudley Rd. Kilgore, TX	75662		Ark-La-Miss	Region: 310	0 Knight St	treet #2 Shrevep	ort LA 71
		18 APCO.				ME	MBE
		Taxa Car	n E				\mathcal{I}
-17025 # 0637-01	<u> </u>		12			- A	
		waannaa Hi	12000				

NELAP-accredited #02008

Form rptPROJRES Created 10/13/2004 v1.2

2004 Seal of Excellence

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane				Printed: Proj	04/25/20	06 Page 2	of 3
Bryant, AR 72022-							
• ,	Results fo	r Client G	BMH				
Parameter	Results	Units	RL	Flags	CAS	Bottle	
The above methods that we use this method under 40 CFR 136. 232 UTB-1					n an		
IIIS MELIOO UNDER 40 CFR 136.		Kyle Hathcote			n an		20/2006
232 UTB-1				GBMc &	Ri Associates	eceived: 04/ 04/19/2006	20/2006 1220
232 UTB-1 Liquid Aqueous			Affiliation:	GBMc &	R Associates	eceived: 04/	20/2006
EPA 160.1 Total Dissolved Solids EPA 300.0	Collected by:	Kyle Hathcote	Affiliation: Analyzed: LLW	GBMc & 04/21/2006	R. Associates 1220	eceived: 04/ 04/19/2006 QCgroup 01	20/2006 1220
EPA 160.1 Total Dissolved Solids	Collected by:	Kyle Hathcote	Affiliation: Analyzed: LLW 20	GBMc & 04/21/2006	R. Associates 1220	eceived: 04/ 04/19/2006 QCgroup	20/2006 1220 179803
EPA 160.1 Total Dissolved Solids EPA 300.0 Sulfate	Collected by: 560	Kyle Hathcote mg/L mg/L	Affiliation: Analyzed: LLW 20 Analyzed: GDG	GBMc & 04/21/2006 04/20/2006	R. Associates 1220 2345	eceived: 04/ 04/19/2006 QCgroup 01 QCgroup 01	20/2006 1220 179803
EPA 160.1 Total Dissolved Solids EPA 300.0	Collected by: 560	Kyle Hathcote mg/L mg/L	Affiliation: Analyzed: LLW 20 Analyzed: GDG 3.00	GBMc & 04/21/2006 04/20/2006	R. Associates 1220 2345	eceived: 04/ 04/19/2006 QCgroup 01 QCgroup	20/2006 1220 179803 179792

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

);

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Rentopic Dress

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-Oualifiers:

E - Estimated Value

B - Analyte detected in the associated method blank

! - Lab MDL > Target

J - Analyte detected below quantitation limit

S - Standard reads lower than desired

- ND in the results column is not detected above SQL

Unless otherwise noted, testing was performed at Ana-lab's corporate laboratory that holds the following Federal and State certificates: Texas Department of Health Lead Firm Certificate 2110076, EPA National Lead Laboratory Accreditation Program #637.01, Texas Department of Agriculture Soil Import Permit S-37592, Texas Department of Health Drinking Water Laboratory Certificate TX219, Oklahoma Department of Environmental Quality Drinking Water Certification Lab ID# D9913, EPA Lab Number TX00063, USEPA Approved Perchlorate Testing Lab, Oklahoma Department of Environmental Quality Laboratory Certificate 8125, Arkansas Department of Environmental Quality Certification #03-070-0, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) # LA030020, Delaware Health and Social Services (ODW) Drinking Water Approved, US Department of Energy Approved, Entidad Mexicana de Acreditacion, A.C. (EMA, in renewal as of \$/18/2004) Agua Ag-014-003/03 and Fuentes Fijas, Residuos y Ambiente Laroral FRA-013-005/03, State of Kansas Department of Health and Environment Waste Water and Solid/Hazardous Waste Cert. E-10365, Alabama Department of Environmental Management Drinking Water #41540. Ana-Lab is also accredited to the international ISO-17025 standard by the American Association for Laboratory Accreditation (A2LA Certificate # 0637-01).

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical

Abstract Service number.

1hite

Roy White, MS, Quality Manager

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

11

NELAP-accredited #02008

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Form rptPROJRES Created 10/13/2004 v1.2

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Report to:

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022Printed 04/25/2006 Page 1 of 3

Project

Quality Control

119702		iquid Aq			Method	300.0			
				Blank					
Parameter	PrepSet	Reading	MDL	MQL	Units		Out	File	
Chloride	179792	165	53.4	300	ug/L			0002642824	
Fluoride	179792	ND	2,28	100	ug/L			0002642824	
Nitrate-Nitrite Nitrogen	179792	ND	3.21	20.0	ug/L			0002642824	
Nitrate-Nitrogen, Total	179792	ND	2,35	10,0	ug/L			0002642824	
Nitrite-Nitrogen, Total	179792	ND	1.76	10.0	ug/L			0002642824	
Ortho - Phosphate as P	179792	ND	6.47	10.0	ug/L			0002642824	
Sulfate	179792	ND	55.3	300	ug/L			0002642824	
				CCV				0002042024	
Parameter		Reading	Known	Units	Recover%	Limits%	Out	File	
Chloride		9160	10000	ug/L	91.6	90.0 - 110		0002642851	
Chloride		9270	10000	ug/L	92,7	90.0 - 110		0002642821	
Chloride		9310	10000	ug/L	93.1	90.0 - 110		0002642837	
Fluoride		10000	10000	ug/L	100	90.0 - 110		0002642851	
Fluoride		9830	10000	ug/L	98.3	90.0 - 110		0002642821	
Fluoride		9840	10000	ug/L	98.4	90.0 - 110		0002642837	
Nitrate-Nitrite Nitrogen		5160	5300	ug/L	97.4	90.0 - 110		0002642851	
Nitrate-Nitrite Nitrogen		5320	5300	ug/L	100	90.0 - 110		0002642821	
Nitrate-Nitrite Nitrogen	l	5360	5300	ug/L	101	90.0 - 110		0002642837	
Nitrate-Nitrogen, Total		2200	226 0	ug/L	97.3	90.0 - 110		0002642851	
Nitrate-Nitrogen, Total		2250	2260	ug/L	99.6	90.0 - 110		0002642821	
Nitrate-Nitrogen, Total		2260	2260	ug/L	100	90.0 - 110		0002642837	
Nitrite-Nitrogen, Total		2960	3040	ug/L	97.4	90.0 - 110		0002642851	
Nitrite-Nitrogen, Total		3070	3040	ug/L	101	90.0 - 110		0002642821	
Nitrite-Nitrogen, Total		3100	3040	ug/L	102	90.0 - 110		0002642837	
Ortho - Phosphate as P		3160	3260	ug/L	96.9	90.0 - 110		0002642821	
Ortho - Phosphate as P		3180	3260	ug/L	97.5	90.0 - 110		0002642837	
Ortho - Phosphate as P		3290	3260	ug/L	101	90.0 - 110		0002642851	
Sulfate Sulfate		9540	10000	ug/L	95.4	90.0 - 110		0002642851	
Sulfate		9550	10000	ug/L	95.5	90.0 - 110		0002642821	
Suitaie		9600	10000	ug/L	96.0	90.0 - 110		0002642837	
_				LCS					
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	Flle	Out
Chloride	179792	976		1000	ug/L	97.6	90.0 - 110	0002642822	
Fluoride	179792	929		1000	ug/L	92.9	90.0 - 110	0002642822	
Nitrate-Nitrite Nitrogen		521		530	ug/L	98,3	90.0 - 110	0002642822	
Nitrate-Nitrogen, Total	179792	231		226	ug/L	102	90.0 - 110	0002642822	
Nitrite-Nitrogen, Total	179792	290		304	ug/L	95.4	90.0 - 110	0002642822	
Ortho - Phosphate as P	179792	316		326	ug/L	96.9	90.0 - 110	0002642822	

Corporate Shipping: 2600 Dudiey Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Repondence

ISO-17025 #0637-01

LDSClient v2.0.5 02/01/2006

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022Printed 04/25/2006 Page 2 of 3

Project

Quality Control

179792	O L	iquid Aqı	ieous	EP.	A Metho		********				
				LCS							
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	File	Out		
Sulfate	179792	1020		1000	ug/L	102	90.0 - 110	0002642822	Out		
				LCS D				00020 (2022			
Parameter	PrepSet	LCS	LCSD		Known	F 1	F (7004/	1.000.01	/		
Chloride	179792	976	974		1000	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Fluoride	179792	929	931		1000	90.0 - 110 90.0 - 110	97.6 02.0	97.4	ug/L	0.205	20.0
Nitrate-Nitrite Nitrogen		521	522		530	90.0 - 110 90.0 - 110	92.9	93.1	ug/L	0.215	20.0
Nitrate-Nitrogen, Total		231	234		226	90.0 - 110 90.0 - 110	98.3 102	98.5	ug/L	0.203	20.0
Nitrite-Nitrogen, Total	179792	290	288		304	90.0 - 110 90.0 - 110	95,4	104	ug/L	1.94	20.0
Ortho - Phosphate as P	179792	316	330		326	90.0 - 110 90.0 - 110	93.4 96.9	94.7	ug/L	0.736	20,0
Sulfate	179792	1020	1030		1000	90.0 - 110 90.0 - 110	102	101	ug/L	4.14	20.0
Durrato	175752	1020	1050	MS	1000	90.0 - 110	102	103	ug/L	0.976	20.0
	- ·										
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Fluoride	822076	5240	5250	586	5000	80.0 - 120	93.1	93.3	ug/L	0.215	30.0
Nitrate-Nitrite Nitroger		2780	2810	630	2650	80.0 - 120	81.1	82.3	ug/L	1.47	30.0
Nitrate-Nitrogen, Total		1450	1480	415	1130	80.0 - 120	91.6	94.2	ug/L	2.80	30.0
Nitrite-Nitrogen, Total	822076	1320	1340	218	1520	80.0 - 120	72.5 *	73.8 *	ug/L	1.78	30,0
Ortho - Phosphate as P	822076	1660	1580	139	1630	80.0 - 120	93.3	88.4	ug/L	5.39	30.0
Chloride	822089	45300	45400	36400	10000	80.0 - 120	89 .0	90.0	ug/L	1.12	30.0
Fluoride	822089	9200	9110	359	10000	80.0 - 120	88.4	87.5	ug/L	1.02	30.0
Nitrate-Nitrite Nitroger		4920	4960	7.45	5300	80.0 - 120	92.7	93.4	ug/L	0.752	30.0
Nitrate-Nitrogen, Total		2170	2160	7.45	2260	80.0 - 120	95.7	95.2	ug/L	0.524	30.0
Nitrite-Nitrogen, Total	822089	2750	2800	ND	3040	80.0 - 120	90,5	92.1	ug/L	1.75	30.0
Ortho - Phosphate as P	822089	2450	2450	ND	3260	80.0 - 120	75.2 *	75.2 *	ug/L	0	30.0
Sulfate	822089	80300	79800	70700	10000	80.0 - 120	96.0	91.0	ug/L	5.35	30.0
17/9303	W L	iquid Aqı	leous	EP/	A 160.1						
				Blank	•						
Parameter		Type	Result	· · ·			Unit				
Total Dissolved Solids		Blank	-0.00020								
Total Dissolved Solids		Blank	0.00050				grams				
20 m 2/1000/100 Doll(15		Dialik	0.00050	Duplica			grams				
_				Dupite	110						
Parameter	Sample	Туре	Result	Duplicate	?		Unit		RPD	Limit%	
Total Dissolved Solids	822420	Duplicate	152	156			mg/L		2.60	25	
				LCS	1						
Parameter		Туре	Result	Known			Unit		Recover%	e	
Total Dissolved Solids	W11714	LCS	198	200			mg/L		99.0	, 75 - 125	
Corporate Shipping:	2600 Dudley	Rd. Kilgore,	TX 75662		150 1	AVEBRO	Ark-La-Miss Ro	egion: 3100 Knigh	t Street #2 S		LA 71105
Anna Aleman					S.					$\wedge c$	·
ACABRE DIFER					F					1.	
ISO-17025 #0627					TT AD DOOR	11. 1. 100000					

2004 Seal of Excellence

www.ana-lab.com

NELAP-accredited #02008

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

INSTRUCTION OF

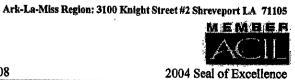
Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Printed 04/25/2006 Page 3 of 3

Project

Quality Control

				Contraction of the second s	· 22 · 42 · 42 · 54 · 54 · 54 · 54 · 54		
RPD	is Relative	Percent Di	fference:	abs(r1-r2)	/ mean(r	1,r2) * 1	100%


Recover% is Recovery Percent: result / known * 100%

CONTRACTOR OF CONTRACTOR

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

NELAP-accredited #02008

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

313045 CoC Print Group 001 of 001

Kyle Hathcote GBMo & Associates 219 Brown Lane	0551 FAX 903/984-5914 1 of Custo 68MH 111		Lah Numb Phone	04/13/2006	edited #02008 Page 1 of 2
Bryant, AR 72022-	EDCC 4G			analataininititititititititititititi	
wet Nume Kill It. A.		x: Liquid Aqu			
K	Advision 2. RAC		Segrecture	<u>Allen and and a second /u>	
The Anna L	Benericd Test Link		Ç		
1941. Solfate	EPA 160,1 EPA 300,0				
ICIL Chloride	EPA Method 30). 0			
INSE. Nitrato-Nitrogen, Total	EPA Method 300	.0			
A Pil 7 Stone I Passas					
22229 FC-1		4/19/4	0750		
22230 UTR-2		4/11/04	1150	ні	
2223/ Utc-1	,	diala	1215		
22232 UTR-1	1	Histor	1220		
				Mennement and the Marine design of the Source of the second second second second second second second second s	
					<u></u>
		1			
				· · · · · · · · · · · · · · · · · · ·	
den het i det eine der gester der eine der					

150-17025 # 0637-01 LOSCitere v2.0_1 02/01/2006

www.ana-lab.com

Form rescorery Created 6/22/2004 v).7

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

)|

}

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

Page 1 of 2

LDSClient v2.0.5 02/01/2006

Form Created 6/22/2004 v1.1

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

313045 CoC Print Group 001 of 001

Page 2 of 2

Fax 501/1 Printed Harris (12 2) Printed Harris (12 2) Printed States Starstate Accole	er Ana-Lat	Cen
Fix 501/1 Standard Hange // - / Standard Scane Standard Scane Standard Scane Standard Scane Physical Scane Physical Scane Standard Standa	surrange market market surran market surran market surran market surran ana-Lait Agmun	Cen
Printed Name Starnston <u>2000</u> Printed Stanse Starnston <u>ACCOle</u> PKCALDY LAIV Starnafor Phinted Name Starnafor Starnafor Starnafor Starnafor Starnafor Starnafor Starnafor Starnafor	Agillant	Cen
Sternstor 2000 Privatel Mayos Sternstor Accele PKathy Tarv Sternstor Ethnicol Mame Sternstor	rated er Ana-Lat	Cen
Sternstor 2000 Privatel Mayos Sternstor Accele PKathy Tarv Sternstor Ethnicol Mame Sternstor	rated er Ana-Lat	Cen
Sternstor 2000 Privatel Mayos Sternstor Accele PKathy Tarv Sternstor Ethnicol Mame Sternstor	rated er Ana-Lat	Cen
Sternstor 2000 Privatel Mayos Sternstor Accele PKathy Tarv Sternstor Ethnicol Mame Sternstor	rated er Ana-Lat	Cen
Prinsed Norma Sternitur Accele PKatny lary Storeby Printed Name Storeby Storeby	rated er Ana-Lat)
Stervine Accele PKathy Tary Stervery Evented Name Stervery	rated er Ana-Lat)
PKatoy Tarv Stonghy Evenesi Name Stonature	er Ana-Lat	
Storafby Construction	D	
Elintest Name Stenature		
	s Stor D Hand Delivered	
	e Sear 🔲 Hand Delivered	
	-	
Ark-La-Min Review	3100 Kulijin Sweet #2 Shry	eveneré F.a #F165
		EMAEN
		ACU.
402008	2004 Seal Form optocoprat Creat	of Excellence
icom .	e oo ay e historika zhe e e e e e e e e e e e e e e e e e e	RE 1846724098 9217
	ion: 3100 Knight Street i	#2 Shrevenort LA
Ark-La-Miss Reg		MEMBI
		ΔC^{1}
	Ark-La-Miss Regi	Ark-La-Miss Region: 3100 Knight Street

LDSClient v2.0.5 O2/01/2006

www.ana-lab.com

Form Created 6/22/2004 v1.1

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-				Printed: Proj		06 Page 1	of 5
	Results fo	or Client	GBMH				
Parameter .	Results	Units	RL	Flags	CAS	Bottle	
822653 UTB-2					R	eceived: 04/	21/2006
Líquid Aqueous	Collected by	Client	Affiliation:	GBMc &	Associates	04/20/2006	0830
EPA 160.1	**************************************		Analyzed: LLW	04/24/2006	1050	QCgroup	179974
Total Dissolved Solids	512	mg/L	20			01	
EPA 300.0			Analyzed: GDG	04/22/2006	0125	QCgroup	179995
Sulfate	74.4	mg/L	3.00			01	······
EPA Method 300.0			Analyzed: GDG	04/22/2006	0125	QCgroup	179995
Chloride Nitrate-Nitrogen, Total	38.6 40.8	mg/L mg/L	3.00 0.100			01 01	
822654 UTC-1 Liquid Aqueous	Collected by	: Client	Affiliation:	GBMc & A		eceived: 04/ 04/20/2006	21/2006 0945
EPA 160.1 Total Dissolved Solids	304	mg/L	Analyzed: LLW 10	04/24/2006	1050	QCgroup 01	179974
EPA 300.0 Sulfate	. 34.0	mg/L	Analyzed: GDG 3.00	04/22/2006	0145	QCgroup 01	179995
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	13.2 11.1	mg/L mg/L	Analyzed: GDG 3.00 0.100	04/22/2006	0145	<i>QCgroup</i> 01 01	179995
The above methods that we used an this method under 40 CFR 136.	re approved for NPDES repo	orting as listed i	n 40 CFR 136 Table	e 1B or Ana-L	ab has speci	fic approval from	EPA to use
822655 UTB-1				CALL AND	Re	ceived: 04/	21/2006
Liquíd Aqueous	Collected by	Client	Affiliation:	GBMc & A	Associates	04/20/2006	1015
EPA 160.1 Total Dissolved Solids	524	mg/L	Analyzed: LLW 20	04/24/2006	1050	QCgroup 01	179974
EPA 300.0 Sulfate	74.4	mg/L	Analyzed: GDG 3.00	04/22/2006	0205	QCgroup 01	179995
EPA Methoof 300.0 Chloride Nitrate-Nitrogen, Totai	38.1 40.5	mg/L mg/L	Analyzed: GDG 3.00 0.100	04/22/2006	0205	<i>QCgroup</i> 01 01	179995

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

4000₈₀ 9 NELAP-accredited #02008

LDSClient v2. 0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Printed: 05/01/2006 Page 2 of 5 Reportion Project Kyle Hathcote **GBMc & Associates** 219 Brown Lane Bryant, AR 72022-**Results for Client GBMH** Parameter Results Units RL Flags CAS Bottle 822656 UTA-1 Received: 04/21/2006 Liquid Aqueous Collected by: Client Affiliation: GBMc & Associates 04/20/2006 1355 EPA 160.1 Analyzed: LLW 04/24/2006 1050 QCgroup 179974 **Total Dissolved Solids** 153 mg/L 5 01 EPA 300.0 Analyzed: GDG 04/22/2006 0225 QCgroup 179995 Sulfate 3.06 mg/L 3.00 01 EPA Method 300.0 Analyzed: GDG 04/22/2006 0225 QCgroup 179995 Chloride 35.7 3.00 mg/L 01 Nitrate-Nitrogen, Total NÐ 0.100 mg/L 01 The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136. 822657 UTA-2 Received: 04/21/2006 Liquid Aqueous Collected by: Client Affiliation: GBMc & Associates 04/20/2006 1415 EPA 160.1 Analyzed: LLW 04/24/2006 1050 QCgroup 179974 **Total Dissolved Solids** 406 mg/L 10 01 EPA 300.0 Analyzed: GDG 04/22/2006 0245 QCgroup 179995 Sulfate 52.0 mg/L 3.00 01 EPA Method 300.0 Analyzed: GDG 04/22/2006 0245 QCgroup 179995 Chloride 32.7 3.00 mg/L 01 Nitrate-Nitrogen, Total 29.2 mg/L 0.100 01

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

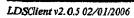
2658	UTA-3					Re	eceived: 04	/21/2006
Liquid Aq	lucous	Collected	by: Client	Affiliation:	GBMc & As	sociates	04/20/200	5 1430
EPA 160 Total	.1 Dissolved Solids	372	mg/L	Analyzed: LLW 10	04/24/2006	1050	QCgroup 01	179974
EPA 300 Sulfa		45.0	mg/L	Analyzed: GDG 3.00	04/22/2006	0305	QCgroup 01	179995
Chlo	<i>thod 300.0</i> ride te-Nitrogen, Total	29.9 25.3	mg/L mg/L	Analyzed: GDG 3.00 0.100	04/22/2006	0305	QCgroup 01 01	179995

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

NELAP-accredited #02008


LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

	Kyle Hathcote				Printed: Pro		C DOS CONTRACTOR	of 5
	GBMc & Associates			-				
	219 Brown Lane							
	Bryant, AR 72022-							
		Results for	or Client	GBMH				
_	Parameter	Results	Units	RL	Flags	CAS	Bottle	;
82	2659 FC-2					1	Received: 04/	21/20
	Liquid Aqueous	Collected by	v: Client	Affiliation:	GBMc &	Associates	04/20/2006	144
	EPA 160.1	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Analyzed: LLW	04/26/2006	0900	QCgroup	18023
	Total Dissolved Solids	1100	mg/L	50			01	
	EPA 300.0 Sulfate	56.3	mg/L	Analyzed: GDG 3.00	04/22/2006	0325	QCgroup 01	17999
	EPA Method 300.0			Analyzed: GDG	04/22/2006	0325	QCgroup	17999
	Chloride	497	mg/L	3.00			20group 01	
	Nitrate-Nitrogen, Total	0.629	mg/L	0.100			01	
	The above methods that we used are approv this method under 40 CFR 136.	ed for NPDES repo	orting as listed	in 40 CFR 136 Table	B or Ana-I	ab has spec	cific approval from	n EPA t
82	2660 FC-1					F	Received: 04/	21/20
))	Liquid Aqueous	Collected by	v: Client	Affiliation:	GBMc &	Associates	04/20/2006	150
	EPA 160.1			Analyzed: LLW	04/26/2006	0900	QCgroup	18023
	Total Dissolved Solids	1410	mg/L	50			01	
	EPA 300.0 Sulfate	64.8	mg/L	Analyzed: GDG 3.00	04/22/2006	0345	QCgroup 01	17999
	EPA Method 300.0			Analyzed: GDG	04/22/2006	0345	QCgroup	17999
	Nitrate-Nitrogen, Total	1.11	mg/L	0.100			01	
	EPA Method 300.0	······		Analyzed: GDG	04/28/2006	1330	QCgroup	18082
	Chioride	629	mg/L	60,0			01	
	The above methods that we used are approv this method under 40 CFR 136.	ed for NPDES repo	orting as listed	in 40 CFR 136 Table	1B or Ana-L	ab has spec	ific approval from	EPA to
82	2661 FC-0			ander konkernen henderen konkenden.		F.	Received: 04/2	21/200
	Liquid Aqueous	Collected by	v: Client	Affiliation:	GBMc & .	Associates	04/20/2006	1515
	EPA 160.1			Analyzed: LLW	04/26/2006	0900	QCgroup	18023
	Total Dissolved Solids	1370	mg/L	50			01	
	EPA 300.0 Sulfate	62.0	mg/L	Analyzed: GDG 3.00	04/22/2006	0405	QCgroup 01	17999
	EPA Method 300.0		J	Analyzed: GDG	04/22/2006	0405	QCgroup	17999
	Nitrate-Nitrogen, Total	1.01	mg/L	0.100	5-11 a di a 000	0705	QCgroup 01	* / 777
	EPA Method 300.0	****		Analyzed: GDG	04/28/2006	1748	QCgroup	18082
						0 Knight S	Street #2 Shrevep	
Соп	porate Shipping: 2600 Dudley Rd. Kilgore, TX 75662			2 XE 61"-AAG-112135	-		•	
	porate Shipping: 2600 Dudley Rd. Kilgore, TX 75662		150 15 ADCORD		-		-	

))

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

EPA Method 300.0 Chloride	553	mg/L	Analyzed: GDG 60.0	04/28/2006	1748	QCgroup 01	180829
822661 FC-0 Liquid Aqueous	Collected by	»: Client	Affiliation:	GBMc & A		Received: 04 04/20/200	
Parameter	Results	Units	RL	Flags	CAS	Bott	le
	Results for	or Client (GBMH				
Bryant, AR 72022-							·
GBMc & Associates 219 Brown Lane							
Kyle Hathcote				Proj	eci		
Kebon fol				Printed:		STREET, CARLES	C 10

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Oualifiers:

E - Estimated Value

B - Analyte detected in the associated method blank

! ~ Lab MDL > Target

J - Analyte detected below quantitation limit

S - Standard reads lower than desired

- ND in the results column is not detected above SOL

Unless otherwise noted, testing was performed at Ana-lab's corporate laboratory that holds the following Federal and State certificates: Texas Department of Health Lead Firm Certificate 2110076, EPA National Lead Laboratory Accreditation Program #637.01, Texas Department of Agriculture Soil Import Permit S-37592, Texas Department of Health Drinking Water Laboratory Certificate TX219. Oklahoma Department of Environmental Quality Drinking Water Certification Lab ID# D9913, EPA Lab Number TX00063, USEPA Approved Perchlorate Testing Lab, Oklahoma Department of Environmental Quality Laboratory Certificate 8125, Arkansas Department of Environmental Quality Certification #03-070-0, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) # LA030020, Delaware Health and Social Services (ODW) Drinking Water Approved, US Department of Energy Approved, Entidad Mexicana de Acreditacion, A.C. (EMA, in renewal as of 6/18/2004) Agua Ag-014-003/03 and Fuentes Fijas, Residuos y Ambiente Laroral FRA-013-005/03, State of Kansas Department of Health and Environment Waste Water and Solid/Hazardous Waste Cert. E-10365, Alabama Department of Environmental Management Drinking Water #41540. Ana-Lab is also accredited to the international ISO-17025 standard by the American Association for Laboratory Accreditation (A2LA Certificate # 0637-01).

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Form rptPROJRES Created 10/13/2004 v1.2

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Renord I to .

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

M. WILLE

C. H. Whiteside, Ph.D., President

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

LDSClient v2.0.5 02/01/2006

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

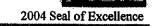
16000000000

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Printed 05/01/2006 Page 1 of 5

Project

Quality Control


170995	O Li	iquid Aqu	ieous	EPA	A Method	300.0					
				Blank							
Parameter	PrepSet	Reading	MDL	MQL	Units		Out	File			
Chloride	179995	178	53,4	300	ug/L		041	0002645822			
Fluoride	179995	ND	2.28	100	ug/L			0002645822			
Nitrate-Nitrite Nitrogen		ND	3.21	20.0	ug/L			0002645822			
Nitrate-Nitrogen, Total		ND	2.35	10.0	ug/L			0002645822			
Sulfate	179995	ND	55.3	300	ug/L			0002645822			
			20.0	CCV				0002043622			
Parameter		Reading	Known	Units	Recover%	Limits%	Out	File			
Chloride		9260	10000	ug/L	92.6	90.0 - 110		0002645846			
Chloride		9300	10000	ug/L	93.0	90.0 - 110		0002645819			
Chloride		9320	10000	ug/L	93,2	90.0 - 110		0002645833			
Fluoride		9780	10000	ug/L	97.8	90.0 - 110		0002645846			
Fluoride		9800	10000	ug/L	98.0	90.0 - 110		0002645833			
Fluoride		9860	10000	ug/L	98.6	90.0 - 110		0002645819			
"Nitrate-Nitrite Nitrogen	L	5270	5300	ug/L	99.4	90.0 - 110		0002645833			
Nitrate-Nitrite Nitrogen	1	530 0	5300	ug/L	100	90.0 - 110		0002645846			
Nitrate-Nitrite Nitrogen	Ł	5350	5300	ug/L	101	90.0 - 11 0		0002645819			
Nitrate-Nitrogen, Total		2220	2260	ug/L	98.2	90.0 - 110		0002645833			
Nitrate-Nitrogen, Total		2240	2260	ug/L	99.1	90.0 - 110		0002645846			
Nitrate-Nitrogen, Total		2250	2260	ug/L	99.6	90.0 - 110		0002645819			
Sulfate		9460	10000	ug/L	94.6	90.0 - 110		0002645846			
Sulfate		9490	10000	ug/L	94.9	90.0 - 1 10		0002645833			
Sulfate		9520	10000	ug/L	95.2	90.0 - 110		0002645819			
				LCS							
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	File	Out		
Chloride	179995	97 6		1000	ug/L	97.6	90.0 - 110	0002645820			
Fluoride	179995	922		1000	ug/L	92.2	90.0 - 110	0002645820			
Nitrate-Nitrite Nitroger	n 179995	507		530	ug/L	95.7	90.0 - 110	0002645820			
Nitrate-Nitrogen, Total	179995	225		226	ug/L	99.6	90.0 - 110	0002645820			
Sulfate	179995	997		1000	ug/L	99.7	90.0 - 110	0002645820			
				LCS Di	ıp						
Parameter	PrepSet	LCS	LCSD	h	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chloride	179995	976	978		1000	90.0 - 11 0	97.6	97.8	ug/L	0.205	20.0
Fluoride	179995	922	922		1000	90.0 - 110	92.2	92.2	ug/L	0	20.0
Nitrate-Nitrite Nitroger	a 179995	507	509		530	90.0 - 110	95.7	96,0	-g∽ ug/L	0.313	20.0
Nitrate-Nitrogen, Total		225	227		226	90.0 - 110	99.6	100	ug/L	0.401	20.0
Sulfate	179995	997	998		1000	90,0 - 110	99.7	99.8	ug/L	0.100	20.0

Corporate Shipping: 2600 Dudley Rd. Kligore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

M EM BER

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Report Iron

Ņ

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Printed 05/01/2006 Page 2 of 5

Project

Quality Control

to be only an end of the second s		quid Aqı			A Method	300.0		a man di kanan mangan kanan kana			
				MS							
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Chloride	822076	648000	653000	533000	100000	80.0 - 120	115	120	ug/L	4,26	30.0
Fluoride	822076	87800	88600	ND	100000	80.0 - 120	87.8	88,6	ug/L	0.907	30.0
Nitrate-Nitrite Nitrogen	822076	50100	53100	826	53000	80.0 - 120	93.0	98.6	ug/L	5.85	30.0
Nitrate-Nitrogen, Total	822076	21700	22000	ND	22600	80.0 - 120	96.0	97.3	ug/L	1.35	30.0
Sulfate	822076	206000	210000	117000	100000	80.0 - 120	89,0	93.0	ug/L	4.40	30.0
Chloride	822593	280000	280000	202000	100000	80.0 - 120	78.0 *	78.0 *	ug/L	0	30.0
Fluoride	822593	115000	114000	21600	100000	80.0 - 120	93.4	92.4	ug/L	1.08	30.0
Nitrate-Nitrite Nitrogen	822593	51800	51200	ND	53000	80.0 - 120	97.7	96,6	ug/L	1.13	30,0
Nitrate-Nitrogen, Total	822593	22300	21800	ND	22600	80.0 - 120	98,7	96.5	ug/L	2.25	30.0
Sulfate	822593	106000	102000	13400	100000	80.0 - 120	92 .6	88.6	ug/L	4.42	30,0
5130829	O Li	iquid Aqu	ueous	EPA	A Method	300.0			-		
)				Blank							
Parameter	PrepSet	Reading	MDL	MQL	Units		Out	File			
Chloride	180829	204	53.4	300	ug/L			0002657498			
Fluoride	180829	ND	2.28	100	ug/L			0002657498			
Nitrate	180829	ND	10.3	50.0	ug/L			0002657498			
Nitrate-Nitrite Nitrogen	180829	ND	3.21	20.0	ug/L			0002657498			
Nitrate-Nitrogen, Total	180829	ND	2.35	10.0	ug/L			0002657498			
Nitrite	180829	ND	5.49	50.0	ug/L			0002657498			
Nitrite-Nitrogen, Total	180829	ND	1.76	10.0	ug/L			0002657498			
Ortho - Phosphate as P	180829	ND	6.47	10.0	ug/L			0002657498			
Sulfate	180829	ND	55.3	300	ug/L			0002657498			
				CCV							
Parameter		Reading	Known	Units	Recover%	Limits%	Out	File			
Chloride		9260	10000	ug/L	92.6	90.0 - 110		0002657510			
Chloride		9310	10000	ug/L	93.1	9 0.0 - 110		0002657497			
Chloride		9310	10000	ug/L	93.1	90.0 - 110		0002657523			
Fluoride		10100	10000	ug/L	101	90.0 - 110		0002657497			
Fluoride		10100	10000	ug/L	101	90.0 - 110		0002657510			
Fluoride		10100	10000	ug/L	101	90.0 - 110		0002657523			
Nitrate		9870	10000	ug/L	98.7	90:0 - 110		0002657497			
Nitrate		9900	10000	ug/L	99.0	90,0 - 110		0002657510			
Nitrate		994 0	10000	ug/L	99,4	90,0 - 110		0002657523			
Nitrate-Nitrite Nitroger	n	5290	5300	ug/L	99.8	90,0 - 110		0002657510			
Nitrate-Nitrite Nitroger		5300	5300	ug/L	100	90.0 - 110		0002657497			
				-							
Nitrate-Nitrite Nitroger	n	5350	5300	ug/L	101	90.0 - 110		0002657523			

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

2004 Seal of Excelience

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

NELAP-accredited #02008

CONTRACTOR

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Printed 05/01/2006 Page 3 of 5

Project

Quality Control

180829	0 1	Liquid Aq	ueous	EPA	A Method	300.0					
				CCV							
Parameter		Reading	Known	Units	Recover%	Limits%	Out	File			
Nitrate-Nitrogen, Total		2230	2260	ug/L	98.7		• • • •	0002657510			
Nitrate-Nitrogen, Total		2240	2260	ug/L	99 .1	90.0 - 110		0002657523			
Nitrite		10000	10000	ug/L	100	90,0 - 110		0002657510			
Nitrite		10100	10000	ug/L	101	90.0 - 110		0002657497			
Nitrite		10200	10000	ug/L	102	90.0 - 110		0002657523			
Nitrite-Nitrogen, Total		3060	3040	ug/L	101	90.0 - 110		0002657510			
Nitrite-Nitrogen, Total		3070	3040	ug/L	101	90.0 - 110		0002657497			
Nitrite-Nitrogen, Total		3110	3040	ug/L	102	90.0 - 110		0002657523			
Ortho - Phosphate as P		3150	3260	ug/L	96.6	90,0 - 110		0002657497			
Ortho - Phosphate as P		3180	3260	ug/L	97.5	90.0 - 110		0002657510			
Ortho - Phosphate as P		3180	3260	ug/L	97.5	90.0 - 110		0002657523			
Sulfate		9550	10000	ug/L	95.5	90.0 - 110		0002657510			
Sulfate		957 0	10000	ug/L	95.7	90.0 - 110		0002657497			
Bulfate		9580	10000	ug/L	95.8	90.0 - 110		0002657523			
1				LCS				0002007020			
Parameter	PrepSet	Reading		Known	Units	Recover% .	Limits	File	Out		
Chloride	180829	992		1000	ug/L	99.2	90.0 - 110	0002657499			
Fluoride	180829	1090		1000	ug/L	109	90.0 - 110	0002657499			
Nitrate	180829	1050		1000	ug/L	105	90.0 - 110	0002657499			
Nitrate-Nitrite Nitrogen	180829	534		530	ug/L	101	90.0 - 110	0002657499			
Nitrate-Nitrogen, Total	180829	237		226	ug/L	105	90.0 - 110	0002657499			
Nitrite	180829	974		1000	ug/L	97.4	90.0 - 110	0002657499			
Nitrite-Nitrogen, Total	180829	297		304	ug/L	97.7	90.0 - 110	0002657499			
Ortho - Phosphate as P	180829	336		326	ug/L	103	90.0 - 110	0002657499			
Sulfate	180829	1070		1000	ug/L	107	90.0 - 110	0002657499			
				LCS Du	ıp 🛛						
Parameter	PrepSet	LCS	LCSD	· ·	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chloride	180829	992	1000		1000	90.0 - 110	99.2	100	ug/L	0.803	20.0
Nitrate	180829	1050	1050		1000	90.0 - 110	105	105	ug/L	0	20.0
Nitrate-Nitrite Nitrogen	ı 1 8082 9	534	536		530	90.0 - 110	101	101	ug/L	0	20.0
Nitrate-Nitrogen, Total	180829	237	236		226	90.0 - 110	105	104	ug/L	0.957	20.0
Nitrite	180829	974	984		1000	90.0 - 110	97.4	98.4	ug/L	1.02	20,0
Nitrite-Nitrogen, Total	180829	297	300		304	90.0 - 110	97.7	98.7	ug/L	1.02	20.0
Ortho - Phosphate as P	180829	336	310		326	90.0 - 110	103	95.1	ug/L	7.98	20.0
Sulfate	180829	1070	1060		1000	90.0 - 110	107	106	ug/L	0.939	20.0
				MS					_		
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClient v2.0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Page 4 of 5

Report to

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Printed 05/01/2006 F

Quality Control

180829	O Li	quid Aqu	eous	EPA	A Method	1 300.0					
				MS							
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit?
Chloride	822660	781000	783000	629000	200000	80.0 - 120	76.0 *	77.0 *	ug/L	1.31	30,0
Fluoride	822660	209000	210000	ND	200000	80.0 - 120	104	105	ug/L	0.957	30.0
Nitrate	822660	199000	191000	ND	200000	80.0 - 120	99.5	95.5	ug/L	4,10	30.0
Nitrate-Nitrite Nitrogen	822660	101000	98200	ND	106000	80.0 - 120	95.3	92.6	ug/L	2.87	30.0
Nitrate-Nitrogen, Total	822660	44800	43000	ND	45 2 00	80.0 - 120	99.1	95.1	ug/L	4.12	30.0
Nitrite	822660	184000	181000	ND	200000	80.0 - 120	92.0	90.5	ug/L	1.64	30.0
Nitrite-Nitrogen, Total	822660	56200	55200	ND	60800	80.0 - 120	92,4	90.8	ug/L	1.75	30.0
Ortho - Phosphate as P	822660	63400	61600	ND	65200	80.0 - 120	97.2	94.5	ug/L	2.82	30.0
Sulfate	822660	277000	277000	85700	200000	80.0 - 120	95.6	95,6	ug/L	0	30.0
Chloride	822661	714000	708000	553000	200000	80.0 - 120	80.5	77.5 *	ug/L	3,80	30.0
Fluoride	822661	201000	205000	ND	200000	80.0 - 120	100	102	ug/L	1.98	30.0
Nitrate	822661	201000	195000	ND	200000	80.0 - 120	100	97.5	ug/L	2.53	30.0
Nitrate-Nitrite Nitrogen		101000	101000	ND	106000	80.0 - 120	95.3	95.3	ug/L	0	30.0
Nitrate-Nitrogen, Total	822661	45400	44200	ND	45200	80.0 - 120	100	97.8	ug/L	2.22	30.0
Nitrite	822661	184000	186000	ND	200000	80.0 - 120	92.0	93.0	ug/L	1.08	30.0
Nitrite-Nitrogen, Total	822661	56000	56600	ND	60800	80.0 - 120	92 .1	93 .1	ug/L	1.08	30.0
Ortho - Phosphate as P	822661	59400	58000	ND	65200	80.0 - 120	91.1	89.0	ug/L	2.33	30.0
Sulfate	822661	275000	265000	82600	200000	80.0 - 120	96.2	91.2	ug/L	5.34	30.0
179974	W Li	quid Aqu	leous	EPA	A 160.1						
				Blank							
Parameter		Туре	Result	L			Unit				
Total Dissolved Solids		Blank	0.00040				grams				
Total Dissolved Solids		Blank	0.00050				grams				
				Duplice	ite		Ū				
Parameter	Sample	Type	Result	Duplicate			Unit		RPD	Limit%	
Fotal Dissolved Solids	822468	Duplicate	4220	4300			mg/L		1.88	25	
				LCS							
Parameter		Type	Result	Known			Unit		Recover	%	
Total Dissolved Solids	W11714	LCS	208	200			mg/L		104	75 - 125	
				Standa	rd						
Parameter		Type	Result	Known			Unit		Recover	% Limits%	
Total Dissolved Solids		Standard	96.0	100			mg/L		96.0	90 - 110	
ST 1309263 1888	W Li	iquid Aqu	ieous	EPA	A 160.1						
				Blank	····						
Parameter		Туре	Result	l			Unit				
Corporate Shipping:	2600 Dudlev	Rd. Kilgore.	TX 75662	2			Ark-La-Miss	Region: 3100 Kni	oht Street #7	Shrevenor	LA 711
				-	- IA	AUGORO		Broat CAUC ISI	Burn Del Ant UN		

LDSClient v2.0.5 02/01/2006

NELAP-accredited #02008 www.ana-lab.com

Form rptPROJQCGrpt Created 01/27/2005 v1.0

2004 Seal of Excellence

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Report for

Kyle Hathcote **GBMc & Associates** 219 Brown Lane Bryant, AR 72022-

Printed 05/01/2006 Page 5 of 5

Project

Quality Control

480231	W L	iquid Aqu	ieous	EPA 160.1			
				Blank			
Parameter		Туре	Result	l	Unit		
otal Dissolved Solids		Blank	-0.00020		grams		
otal Dissolved Solids		Blank	0.00030		grams		
				Duplicate	Ū.		
arameter	Sample	Type	Result	Duplicate	Unit	RPD	Limit%
otal Dissolved Solids	822659	Duplicate	1060	1150 LCS	mg/L	8,14	25
arameter		Туре	Result	Known	Unit	D A	
otal Dissolved Solids	W11714	LCS	202	200		Recover%	
olai Dissolved Bolicis	W11/14	LCS	202	Standard	mg/L	101	75 - 125
arameter		Туре	Result	Known	Unit	Recover%	l imite%
otal Dissolved Solicis		Standard	90.0	100	mg/L	90.0	90 - 110

RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105 -NELAP-accredited #02008

LDSClient v2. 0.5 02/01/2006

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com N

NELAP-accredited #02008

Page 1 of 2

313245 CoC Print Group 001 of 001

Kyle Hathcote	Chair		MH		Lab Nuz	aber		
OBMo & Associates 219 Brown Lanc	·	111	ŀ		Phone Fax	501/847 501/847		
Bryant, AR 72022-		EDC	C 46					· ·
astame "Jan Kom K			Matrix	: Liquid Aqı	HR OUS			· · · · · ·
Contraction of the second s	TOLLAR		BM C		Signature	<u></u>	the p	
Test Maine] *Plastic 1	/Z gal (Wh Med Tex Merco			4		
TDS Total Dissoi	red Solids	EPA	160,1					
1941. Sulfate	• •	EPA	300.0					
ICIL. Chloride		BPA.	Method 300.	0				
INSL Nitrate-Nitro	gen, Total	BPA :	Method 300.	0				
Line and the second second			e innens		ARA -	1.10		
20252 UT	62		11	4/selay	0830			
mes 4 UT	-2-1	·	1	21/20/04	0945			· · · · · · · · · · · · · · · · · · ·
uss 117	B-1		1	4/20/44	1015			
rece UT.	4-1	· · ·		Hacloc.	1355			
22-653 47-	4-7			4/20/04				
aices UT	<u> </u>			1/20/00	1415			
	.2			420/04	1430			
-23.454 FC.		······			1445			
rach- Inc	<u>-1</u>			1/20/04	1500			•
	<u>~0</u>			4/20/46	1515			
	e e è							
					, and the second second			
Notice 1		· · · · · · · · · · · · · · · · · · ·						
	5977 - 2951000 - 97700313037783000							
			y and the second	<u> </u>	<u>I</u>		·	

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

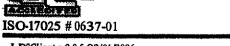
1)

LDSClient v2.0.5 02/01/2006

ACIL

2004 Seal of Excellence

www.ana-lab.com


Form Created 6/22/2004 v1.1

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

313245 CoC Print Group 001 of 001

Page 2 of 2

Kyle Hathcot		nam of	Custoc GBMH	Lah Nu Phone			2 of 2
GBMc & Ass 219 Brown La Bryant, AR. 7	anç 2022-		111 EDCC 49	Fan	501/847-7		
Ambient Condition: Comments	s			······			
1/20/00 15-25	Printed Name 301-	from Levela A	Marion Colome	Eringed Nanger	L MAR	M. (H) Attitudes.	
	Signature 45	to fin-		Steranore Cell	mari	2	
	Printed Nating 12 1	MARVIN	Manon AWALAL	Frinad Name		Affiliation	-
1/16 1530	Stemature LIC	Martin		Signature A		erated	
21 10 11045	Printed Name	eeleraf	Minitor	Printed Nag	Hoiss	ANG-L Digitization	
CX 1473	Signature Printed Name		filenon	Signature A	<u>ik X</u>	in	
	Signature	-3	lleren ens.	Printed Name Signature		Afiliation	
Compleits				·			
Conxplents		. 1	¢				
Conxsients	.* * .		Ô			: •	· · · · · · · · · · · · · · · · · · ·
Conxelents							
Conxsients							
Conxelents							· · · ·
	2000 Dudley No. sciego	4. TX 75662		Ark-La-Misa s		Mighi Sireet #2 Shreweg	
		4, TX 75662			izgion: 3800 KO		
Corporate Shifpping: 1	01	4. TX 75662		¥02008			MURANE SI Keellense

NELAP-accredited #02008

2004 Seal of Excellence Form Created 6/22/2004 v1.1

LDSClient v2.0.5 O2/01/2006

ļ

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Results for Client GBMH

Parameter	Results	Units	RL	Flags	CAS	Botti	e
FC-2 Liquid Aqueous	Collected by:		Affiliation:	GBMc & .		eceived: 06 05/31/2000	
EPA 160.1 Total Dissolved Solids	710	mg/L	Analyzed: LLW 50	06/02/2006	0940	QCgroup 01	184659
EPA 300.0 Sulfate	15.8	mg/L	Analyzed: GDG 3.00	06/02/2006	0324	QCgroup 01	184848
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	375 0.433	mg/L mg/L	Analyzed: GDG 3.00 0.100	06/02/2006	0324	QCgroup 01 01	184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

UTA-3					R		/01/2006
Liquid Aqueous	Collected	by: J Brown	Affiliation:	GBMc & Asso	ciates	05/31/2000	5 0955
EPA 160.1 Total Dissolved Solids	130	mg/L	Analyzed: LLW 5	06/02/2006	0940	QCgroup 01	184659
EPA 300.0 Sulfate	11.7	mg/L	Analyzed: GDG 3.00	06/02/2006 (3 46	QCgroup 01	184848
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	19.8 1.13	mg/L mg/L	Analyzed: GDG 3.00 0.100	06/02/2006 ()346	QCgroup 01 01	184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

UTA-2	•				Ŕ	eceived: 06	/01/2006
Líquid Aqueous	Collected b	y: JBrown	Affiliation	r GBMc & A	ssociates	05/31/200	6 1030
EPA 160.1 Total Dissolved Solids	142	mg/L	Analyzed: LLW 10	06/02/2006	0940	QCgroup 01	184659
EPA 300.0 Sulfate	11.1	mg/L	Analyzed: GD 3.00	G 06/02/2006	0407	QCgroup 01	184848
EPA Method 300. 0 Chloride Nitrate-Nitrogen, Total	26.9 1.98	mg/L mg/L	Analyzed: GD 3.00 0.100	3 06/02/2006	0407	QCgroup 01 01	184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Comprate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClientv2.0.6 04/12/2006

Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Results for Client GBMH

Parameter	Results	Units	RL	Flags	CAS	Bottl	e
UTB-2 Liquid Aqueous	Collected by:	J Brown	Affiliation:		Associates		/01/2006 5 1105
EPA 160.1 Total Dissolved Solids	206	mg/L	Analyzed: LLW 10	06/02/2006	0940	QCgroup 01	184659
EPA 300.0 Sulfate	51.8	mg/L	Analyzed: GDG 3.00	0 6/02/2006	0428	QCgroup 01	184848
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	19.6 16.9	mg/L mg/L	Analyzed: GDG 3.00 0.100	06/02/2006	0428	QCgroup 01 01	184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

UTB-1					R	eceived: 06	/01/2006
Liquid Aqueous	Collected	by: J Brown	Affiliation	GBM¢ & As	ssociates	05/31/200	6 1110
EPA 160.1 Total Dissolved Solids	178	mg/L	Analyzed: LLW 10	06/02/2006	0940	QCgroup 01	184659
EPA 300.0 Sulfate	49.5	mg/L	Analyzed: GDG 3.00	06/02/2006	0450	QCgroup 01	184848
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	18.7 15.1	mg/L mg/L	Analyzed: GDG 3.00 0.100	06/02/2006	0450	QCgroup 01 01	184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

UTC-1					R	eceived: 06	/01/2006
Liquid Aqueous	Collected	Affiliation:	GBMc & Asso	ociates	05/31/200	6 1115	
EPA 160.1 Total Dissolved Solids	206	mg/L	Analyzed: LLW 10	06/02/2006	0940	QCgroup 01	184659
EPA 300.0 Sulfate	29.2	mg/L	Analyzed: GDG 3.00	06/02/2006	0511	QCgroup 01	184848
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	13.0 1.57	mg/L mg/L	Analyzed: GDG 3.00 0.100	06/02/2006	0511	QCgroup 01 01	184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use this method under 40 CFR 136.

Comparate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

ISO-17025# 0637-01

LDSClient v2.0.6 04/12/2006

www.ana-lab.com

Form rptPROJRES Created 10/13/2004 v1.2

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

Ana-Lab Corp.	P.O. Box 9000	Kilgora	тv	75662
		INHYOFE.	- I A	/ 106 1

NELAP-accredited #02008

Kyle Hathcote **GBMc & Associates** 219 Brown Lane Bryant, AR 72022-

Parameter	Results	Units	RL	Flags	CAS	Bott	ie
FC-1 Liquid Aqueous	Collected b	y: JBrown	Affiliation	r GBMc &	R Associates	eceived: 0(05/31/200	
EPA 160.1 Total Dissolved Solids	1290	mg/L	Analyzed: LLW 50	06/02/2006	0940	QCgroup 01	18465
EPA 300.0 Sulfate	5.90	mg/L	Analyzed: GD0 3.00	G 06/02/2006	0532	QCgroup 01	184848
EPA Method 300.0 Nitrate-Nitrogen, Total	0.217	mg/L	Analyzed: GDC 0.100	G 06/02/2006	0532	QCgroup 01	184848
EPA Method 300.0 Chloride	689	mg/L	Analyzed: KLB 150	06/02/2006	1546	QCgroup 01	184878

758 UTA-1						06/01/2006
Liquid Aqueous	Collected	lby: J Brown	Affiliation	GBMc & Associa		
EPA 160.1 Total Dissolved Solids	300	mg/L	Analyzed: LLW 10	06/05/2006 09	200.04	
EPA 300.0 Sulfate	5.54	mg/L	Analyzed: GDG 3.00	06/02/2006 07	0 19 QCgroup 0	184848
EPA Method 300.0 Chloride Nitrate-Nitrogen, Total	115 ND	mg/L mg/L	Analyzed: GDG 3.00 0.100	06/02/2006 07		184848

The above methods that we used are approved for NPDES reporting as listed in 40 CFR 136 Table 1B or Ana-Lab has specific approval from EPA to use

Cornorate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClient v2.0.6 04/12/2006

NELAP-accredited #02008 www.ana-lab.com

N ADCO.

Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Page 4 of 4

Printed: 06/12/2006

Project

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Qualifiers:

E - Estimated Value

B - Analyte detected in the associated method blank

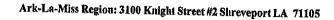
! - Lab MDL > Target

J - Analyte detected below quantitation limit

S - Standard reads lower than desired

- ND in the results column is not detected above SQL

Unless otherwise noted, testing was performed at Ana-lab's corporate laboratory that holds the following Federal and State certificates: Texas Department of Health Lead Firm Certificate 2110076, EPA National Lead Laboratory Accreditation Program #637.01, Texas Department of Agriculture Soil Import Permit S-37592, Texas Department of Health Drinking Water Laboratory Certificate TX219, Oklahoma Department of Environmental Quality Drinking Water Certification Lab II# D9913, EPA Lab Number TX00063, USEPA Approved Perchlorate Testing Lab, Oklahoma Department of Environmental Quality Laboratory Certificate8125, Arkansas Department of Environmental Quality Certification#03-070-0, Louisiana Department of Environmental Quality Laboratory Certification(NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) # LA030020, Delaware Health and Social Services (ODW) Drinking Water Approved, US Department of Energy Approved, Entidad Mexicana de Acreditacion, A.C. (EMA, in renewal as of 6/18/2004) Agua Ag-014-003/03 and Fuentes Fijas, Residuos y Ambiente Laroral FRA-013-005/03, State of Kansas Department of Health Environment Waste Water and Solid/Hazardous Waste Cert. E-10365, Alabama Department of Environmental Management Drinking Water #41540. Ana-Lab is also accredited to the international ISO-17025 standard by the American Association for Laboratory Accreditation (A2LA Certificate # 0637-01).


These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number.

CH. WItute

C. H. Whiteside, Ph.D., President

Cr. Vate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

NELAP-accredited #02008

LDSClient v2.0.6 04/12/2006

www.ana-lab.com

Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

NELAP-accredited #02008

Page 1 of 2

317393 CoC Print Group 001 of 001

Ana-Lab Corporate Laboratory P.O. Box 9000 Kilgore, TX 75663 Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com NELAP-accredited #02008 Chain of Custody 05/25/2006 Page 1 of 2 ETE SERVIC Report To GBMH Lab Number **Kyle Hathcote** Phone 501/847-7077 111 **GBMc & Associates** Fax 501/847-7943 219 Brown Lane Bryant, AR 72022-EDCC 4G Matrix: Liquid Aqueous **Printed Name** Jonatha Brown Affiliation GBMC Signature *Plastic 1/2 gal (White) Test Name Requested Test Methods TDS Total Dissolved Solids **EPA 160.1 !S4L** Sulfate EPA 300.0 !CIL Chloride EPA Method 300.0 **!N3L** Nitrate-Nitrogen, Total EPA Method 300.0 a fine of the letter. 1. 1. 16. Hime 5/01/00 0915 5731/04 1 0955 573164 I 1030 5/31/04 1105 5/31/04 1110 1 5757/06 1115 • 5/31/06 1210 5/31/04 1240 -Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662 Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105 A0007 MEMBER

LDSClient v2.0. 6 04/1 2/2006

COMPLETE SERVICE LAB

www.ana-lab.com

Form spicooproj Created 6/22/2004 vi.7

ACONTOTED ISO-17025 # 0637-01 Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClientv2.0.6 04/12/2006

www.ana-lab.com

NELAP-accredited #02008

Form Created 6/22/2004 v1.1

<form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form><form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form></form>			b Corp. P.O. Box 90		
	NADA	Phone 903/98	4-0551 FAX 903/984-5914 e-N	lail corp@ana-lab.com NELAP-accree	lited #(
Note State State State State State State Corporting and -lab.com NELAR-decredited (#03000 Chain of Custody Dispisor Dispisor Chain of Custody Dispisor Dispisor King State III Place State By and An 2000 Dispisor Dispisor By and An 2000 Custom Dispisor By and An 2000 Dispisor Dispisor By and An 2000 Custom Dispisor By and An 2000 Dispisor Anticology By and An 2000 Dispisor Anticology By and An 2000 Dispisor Anticology By and Anticology Anticology Dispisor By and Anticology Anticology Dispisor By and Anticology Anticology Dispisor By and Anticology Anticology Dispisor <		AVICE LAB	nt Group 001 of 001	F	age 2 o
Industry 2003/06-1911 & X 90/396-2914 & Mail corp@jana-lab.com NELAP-accredited #02000 Chain of Custom Display 2003 Page 2012 Chain of Custom GBMH Lab Number Kype Hathcore GBMH Lab Number By Bathcore 111 Page 2012 By Bathcore 111 Bathcore Bathcore By Bathcore 111 Bathcore Bathcore Bathcore By Bathcore 111 Bathcore Bathcore Bathcore By Bathcore 111 Bathcore Bathcore Bathcore By Bathcore Bathcore Bathcore <		Ana-Lat	Corporate Laboratory		
Kurde Halvoore GBMH Lab Number Style Halvoore 111 Plone 501/847-7073 Style Halvoore 111 Plone 501/847-7073 Brynn AR, 72022 EDCC 46 Amerita Difference Name Constrained Name Market Standard Market Market Standard Market Market Market <thmarket< th=""> Market</thmarket<>	NAUA	1 Filotte 903/984-	-0551 FAX 903/984-5914 e-Mail	corp@ana-lab.com NELAP-accredited #02	
Kyde Hathecter 111 Phone S01/847-7073 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 EDCC46 By an AR 72022 By an AR 72022 By an AR 72022 By an AR 72022 By an AR 72022			-		2
219 Brown Lane First 301/847-7943 Brynaut, AR. 7002- EDCC 40 Dect Colspan="2">EDCC 40 Dect Colspan="2">Dect A0 Dect Colspan="2">Dect A0 Dect A0	GBMc & A	sociates		Phone 501/847-7077	
Anner15 More Printed Name Jonathian Borns Milliotion Gender Printed Name Billioning of Gala More Printed Name Jonathian Borns Milliotion Gender Printed Name Billioning of Gala More Printed Name Jonathian Billioning of Gala Billioning of Gala More Printed Name Allication Bignature Allication Printed Name Vellocity Bignature Millioning Allication Printed Name Vellocity Bignature Gignature Millionin Signature Vellocity Bignature Gignature Gignature Bignature Vellocity Bignature Gignature Gignature Bignature Vellocity Bignature Gignature Gignature Bignature Interking/Shipping # Cost HonelDubrored Gibra Bignature More Tracking/Shipping # Interking Gibra Bignature More More Sternet More Gibra Bignature More More Gibra Gibra B	Bryant, AR	. 72022-	, EDCC 4G	Fax 501/847-7943	
We 1310 Printed Name Journal Hum Million of the start of		ms <u>Overcast</u> humi	<u>d</u>		
Image: Signature Signatur	./	and the second of the second of the second se			
eventses Allitation Allitation Allitation eventses Allitation Friende Name Allitation genature Velocity Allitation Friende Name Allitation genature Velocity Signature Signature Allitation genature Printed Name Allitation Friende Name Allitation genature Signature Signature Signature Allitation genature Printed Name Allitation Fried Name Allitation genature Signature Signature Bignature Allitation genature No Tracking/Shipping # I one Star Head Delivered genature No Tracking/Shipping # I one Signature genature No Tracking/Shipping # I one Signature genature Signature Signature I one	104 1310	1.4-	l	AIMANON	AR
v 13.5 Signature Signature Signature Signature Affiliation v 19.4 ≤ Signature Velocity Iffiliation Affiliation Affiliation v 19.4 ≤ Signature Velocity Signature Affiliation Affiliation Velocity Printed Name Affiliation Printed Name Affiliation Signature Signature Signature Signature Affiliation Signature Signature Signature Affiliation Affiliation Signature Signature Signature Affiliation Affiliation Signature Signature Signature Affiliation Affiliation Signature Signature Signature Other Bill Affiliation Signature No Tracking/Shipping # User Differ Other ments Signature Signature Signature Signature Signature No Tracking/Shipping # User Ark-La-Miss Region: 3100 Kaight Street #2 Shreeport LA 71105 Signate No No N	ala una			and Name	
	1830		d-	Velocu	
		- Velocit	Affiliation Prin	ted Name Affiliation	
Signature Signature ple Recieved on Lec? Ker No Method of Shipment: UPS Bus FedEx Lone Star Hand Delivered ter/Sample Secure? Tes No Tracking/Shipping #			2 AM 1	ature Con ton h	
pile Received on Ice? her/Sample Secure? ho Tracking/Shipping # (12) Hand Delivered Cother		Signature		Agnuation	
Ark-La-Miss Region: 3100 Kulght Street #2 Shreveport LA 71105 MEM B E R NELAP-accredited #02008 2005 Seal of Excellence		ecure? [] ^{-Yes} [] ^{No} Trac	king/Shipping #	Giher	
Image: State of the state o			()	2)	
Image: Street #2 Shreveport LA 71105 Image: Street					
Reference MEMBER Reference MEMBER Reference MEMBER Reference MEMBER Reference MEMBER Reference 2005 Seal of Excellence					
Reading the Addate M E M B E R And Street M E M B E R And Street M E M B E R And Street M E M B E R M E M B E R A C III NELAP-accredited #02008 2005 Seal of Excellence					
Restruction MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER MODIL MEMBER MEMBER MEMBER <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
Image: Store of the store o					
Image: State of the state o			_		
Image: Store of the store o			,		
lient v2.0.604/12/2005 2005 Seal of Excellence	rate Shipping:	2600 Dudley Rd. Kligore, TX 75662	8	Arks a-Miss Perions 2100 V. L. C. C.	
rom rpicooprof Created 6/22/2004 v1.7					71105 E #1
	17025 # 0637	-01	NELAP-accredited #02008	2005 Seal of Excelle	
	2.0.604/12	-01	NELAP-accredited #02008 www.ana-lab.com	2005 Seal of Excelle	nce

NELAP-accredited #02008

2005 Seal of Excellence Form Created 6/22/2004 v1.1

MEMBER

www.ana-lab.com

NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Printed 06/12/2006 Page 1 of 4

Project

Quality Control

	0 I	Liquid Aq		El	PA Method				
				Blank					
Parameter	PrepSet	Reading	MDL	MQL	Units		0		
Chloride	184848	118	53.4	300	ug/L		Out	File	
Fluoride	184848	ND	2.28	100	ug/L			0002717929	
Nitrate	184848	ND	10.3	50.0	ug/L			0002717929	
Nitrate-Nitrite Nitrogen	184848	ND	3.21	20.0	ug/L			0002717929	
Nitrate-Nitrogen, Total	184848	ND	2.35	10.0	ug/L			0002717929	
Nitrite	184848	ND	5.49	50.0	ug/L			0002717929	
Nitrite-Nitrogen, Total	184848	ND	1.76	10.0	ug/L			0002717929	
Ortho - Phosphate as P	184848	ND	6.47	10.0	ug/L			0002717929	
Sulfate	184848	ND	55.3	300	ug/L		1.1	0002717929	
				MC GN				0002717929	
Parameter				State State					
Chloride		Reading	Known	Units	Recover%	Limits%	Out	File	
Ch'~tide		10100	10000	ug/L	101	90.0 - 110		0002717926	
de		10100	10000	ug/L	101	90.0 - 110		0002717942	
Fluoride		10200	10000	ug/L	102	90.0 - 110		0002717954	
Fluoride		10100	10000	ug/L	101	90.0 - 110		0002717926	
Fluoride		10200	10000	ug/L	102	90.0 - 110		0002717942	
Nitrate		10200	10000	ug/L	102	90.0 - 110		0002717954	
Nitrate		10300	10000	ug/L	103	90.0 - 110		0002717926	
Nitrate		10300	10000	ug/L	103	90.0 - 110		0002717942	
Nitrate-Nitrite Nitrogen		10400	10000	ug/L	104	90.0 - 110		0002717954	
Nitrate-Nitrite Nitrogen		5440	5300	ug/L	103	90.0 - 110		0002717926	
Nitrate-Nitrite Nitrogen		5500	5300	ug/L	104	90.0 - 110		0002717942	
Nitrate-Nitrogen, Total		5510	5300	ug/L	104	90.0 - 110		0002717954	
Nitrate-Nitrogen, Total		2320	2260	ug/L	103	90.0 - 110		0002717926	
Nitrate-Nitrogen, Total		2340	2260	ug/L	104	90.0 - 110		0002717942	
Nitrite		2360	2260	ug/L	104	90.0 - 110		0002717954	
Nitrite		10200	10000	ug/L	102	90.0 - 110		0002717926	
Nitrite		10300	10000	ug/L	103	90.0 - 110		0002717954	
Nitrite-Nitrogen, Total		10400	10000	ug/L	104	90.0 - 11 0		0002717942	
Nitrite-Nitrogen, Total		3120	3040	ug/L	103	90:0 - 110		0002717926	
Nitrite-Nitrogen, Total		3150	3040	ug/L	104	90.0 - 110		0002717954	
Ortho - Phosphate as P		3160	3040	ug/L	104	90.0 - 110		0002717942	
Ortho - Phosphate as P		3340	3260	ug/L	102	90.0 - 110		0002717926	
Ortho - Phosphate as P		3380	3260	ug/L	104	90.0 - 110		0002717942	
Sulfate		3390	3260	ug/L	104	90.0 - 110		0002717954	
Sulfate		10400	10000	ug/L	104	90.0 - 110		0002717926	
Sulfate		10400	10000	ug/L	104	90.0 - 110		0002717942	
		10400	10000	ug/L	104	90.0 - 110		0002717954	

C jate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

NELAP-accredited #02008

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClient v2.0.6 04/12/2006

www.ana-lab.com

NELAP-accredited #02008

Kyle Hathcote **GBMc & Associates** 219 Brown Lane Bryant, AR 72022Printed 06/12/2006

Page 2 of 4

Project

Quality Control

		iquid Aq.			A Metho	1 300.0					
				LCS							
Parameter	PrepSet	Reading		Known	Units	Recover%	Limits	1511 F	_		
Chloride	184848	996		1000	ug/L	99.6	90.0 - 110	File	Out		
luoride	184848	1010		1000	ug/L	101	90.0 - 110 90.0 - 110	0002717927			
Vitrate	184848	981		1000	ug/L	98.1	90.0 - 110 90.0 - 110	0002717927			
Vitrate-Nitrite Nitrogen	184848	509		530	ug/L	96.0	90.0 - 110 90.0 - 110	0002717927			
litrate-Nitrogen, Total	184848	221		226	ug/L	97,8	90.0 - 110 90.0 - 110	0002717927			
litrite	184848	945		1000	ug/L	94.5	90.0 - 110 90.0 - 110	0002717927			
litrite-Nitrogen, Total	184848	288		304	ug/L	94.7	90.0 - 110 90.0 - 110	0002717927			
ortho - Phosphate as P	184848	341		326	ug/L	105		0002717927			
ulfate	184848	931		1000	ug/L	93.1	90.0 - 110	0002717927			
				LICS D		75.1	90.0 - 110	0002717927			
			•								
<i>arameter</i> hloride	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	000	
nornae '- "de	184848	996	1030		1000	90.0 - 110	99.6	103	ug/L	RPD 3.36	Limit%
de	184848	1010	1010		1000	90.0 - 110	101	101	ug/L ug/L		20.0
	184848	981	99 0		1000	90.0 - 110	98.1	99.0	ug/L	0	20.0
itrate-Nitrite Nitrogen	184848	509	532		530	90.0 - 110	96.0	100	ug/L ug/L	0.913	20.0
itrate-Nitrogen, Total	184848	221	224		226	90.0 - 110	97.8	99.1	ug/L	4.08	20.0
-	184848	945	1010		1000	90.0 - 110	94.5	101	ug/L ug/L	1.32	20.0
itrite-Nitrogen, Total	184848	288	308		304	90.0 - 11 0	94.7	101	-	6.65	20.0
rtho - Phosphate as P	184848	341	321		326	90.0 - 110	105	98.5	ug/L	6.44	20.0
lfate	184848	931	922		1000	90.0 - 110	93.1	92.2	ug/L	6.39	20.0
				MS.				7 6 .2	ug/L	0.971	20.0
rameter	Sample	MS	MSD	UNK	Known	Limits	1 6/24 /				
loride	831513	171000	171000	126000	50000		MS%	MSD%	Units	RPD	Limit%
voride	831513	47900	48700	ND	50000	80.0 - 120	90.0	90.0	ug/L	0	30.0
trate	831513	50100	48300	ND	50000	80.0 - 120	95.8	97.4	ug/L	1.66	30 .0
trate-Nitrite Nitrogen	831513	26400	25800	ND	26500	80.0 - 120	100	96.6	ug/L	3.46	30.0
trate-Nitrogen, Total	831513	11300	10900	ND	11300	80.0 - 120	99 .6	97.4	úg/L	2.23	30.0
trite	831513	49600	48600	ND	50000	80.0 - 120	100	96.5	ug/L	3.56	30.0
trite-Nitrogen, Total	831513	15100	14800	ND		80.0 - 120	99.2	97.2	ug/L	2.04	30.0
tho - Phosphate as P	831513	15900	15200	ND	15200	, 80.0 - 120	99.3	97.4	ug/L	1.93	30.0
lfate	831513	57100	54900		16300	80.0 - 120	97.5	93.3	ug/L	4.40	30.0
loride	831756	21800	21900	4970	50000	80.0 - 120	104	99.9	ug/L	4.02	30.0
loride	831756	21800 9930	21900 9910	13000	10000	80.0 - 120	88.0	89.0	ug/L	1.13	30.0
irate	831756	17000		ND	10000	80.0 - 120	99.3	99.1	ug/L	0.202	30.0
	831756	7100	16900	6980	10000	80.0 - 120	100	99.2	ug/L	0.803	30.0
	831756 831756		6900 2010	1570	5300	80.0 - 120	104	101	ug/L	2.93	30.0
•.		3840	3810	1570	2260	80.0 - 120	100	99.1	ug/L	0.904	30.0
1	831756 831756	10700	10100	ND	10000	80.0 - 120	107	101	ug/L	5.77	30.0
A GROWTAN THE REPORT OF THE PARTY OF THE PAR	A 31/36	3260	3090	ND	3040	80.0 - 120	107			~ • • • •	-JU.U

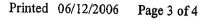
ate Shipping: 2600 Dudley Rd. Kligore, TX 75662

LDSClient v2.0.6 04/12/2006

¢

NELAP-accredited #02008

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105



H LOCOA

NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Project

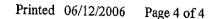
Quality Control

· 184.0012	0	Liquid Aq	ueous	EP	A Method	300.0					
				MS	1						
Parameter	Samp	le MS	MSD	UNK	Known	Limits	MS%				
Ortho - Phosphate as P			3220	ND	3260	80.0 - 120	93.3	MSD%	Units	RPD	Limit%
Sulfate	83175		38700	29200	10000	80.0 - 120	95.5 91.0	98.8 95.0	ug/L	5.73	30.0
	0	Liquid Aq	ueous		A Method		J1.0	95.0	ug/L	4.30	30.0
a and the second s				BISNK							
Parameter	PrepS	Set Reading	MDL	MQL	Units		Out	File			
Chloride	18487	-	16.3	100	ug/L		UHI	0002718370			
				CCY				0002710370			
Parameter		Reading	Known	Units	Recover%	Limits%	Out	File			
Chloride		10400	10000	ug/L	104	90.0 - 110		0002718379			
Chloride		10500	10000	ug/L	105	90.0 - 110		0002718368			
				LCS							
eter	PrepS	et Reading		Known	Units	Recover%	Limits	1717 -	. .		
Chloride	18487	-		1000	ug/L	108	90.0 - 110	<i>Füe</i> 0002718369	Out		
				LCSD		100	20.0 - 110	0002710309			
Parameter	PrepS	et LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	F *
Chloride	18487	8 1080	1080		1000	90.0 - 110	108	108	ug/L	0 0	Limit% 20.0
				MIS S					-92	v	20.0
Parameter	Samp	le MS	MSD	UNK	Known	Limits	MS%	MSD%	** •.		
Chloride	83175	7 1210000	1240000		500000	80.0 - 120	104	110	Units	RPD	Limit%
	W	Liquid Aqu	leons	EPA	160.1		101	110	ug/L	5.61	30.0
		11.		Blank							
Parameter		Туре	Result				VF A .				
Total Dissolved Solids		Blank	-0.00010				Unit				
			0.00010	Dinghen	0.8 2		grams				
Parameter	Sampl	le Type	Result	Duplicate			Unit		22 00	F 1 1.4.4	
Total Dissolved Solids	83146	**	102	101			mg/L		<i>RPD</i> 0.985	Limit%	
		-		FIGSWE					0.965	25	
Parameter		Туре	Result	Known			Unit		Berner	17	
Total Dissolved Solids	W119		202	200			mg/L		Recover: 101	-	
				Static					101	75 - 125	
Parameter		Type	Result	Known			Unit		D		
Total Dissolved Solids		Standard	106	100			mg/L			4 Limits%	
							B. L.		106	90 - 110	

rate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

NELAP-accredited #02008

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105



LDSClient v2.0.604/12/2006

NELAP-accredited #02008

Kyle Hathcote GBMc & Associates 219 Brown Lane Bryant, AR 72022-

Project

Quality Control

	WI	Liquid Aqu	ueous	EPA 160.1			
				Blank			
arameter		Туре	Result		Unit		
otal Dissolved Solids		Blank	0.00010		grams		
otal Dissolved Solids		Blank	0.00030		-		,
				Dirolicane	grams		
arameter	Sample	Type	Result	Duplicate	Unit		
tal Dissolved Solids	831758	Duplicate	304	302		RPD	Limit%
		*		LOS	mg/L	0.660	25
rameter		Туре	Result	Known	Unit	D	
tal Dissolved Solids	W11947	LCS	192	200	mg/L	Recover	
otal Dissolved Solids	W11947	LCS	196	200	-	96.0	75 - 125
				Standard	mg/L	98.0	75 - 125
rameler		Tuna	Danule				
"Dissolved Solids		Type	Result	Known	Unit	Recover	% Limits%
Prisouved 20110s		Standard	94.0	100	mg/L	94.0	90 - 110

CPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Ark-La-Miss Region: 3100 Knight Street #2 Shreveport LA 71105

LDSClientv2.0.604/12/2006

www.ana-lab.com

NELAP-accredited #02008

IN ADOD

Date	Cľ (mg/L)	SO ₄ (mg/L)	TDS (mg/L)	
1/24/1995	170.1	10.6	780	
3/21/1995	594	7.4	1136	
4/4/1995	876	1.0	1724	
9/5/1995	2970	2.3	5231	
1/8/1996	1020	11.6	1704	
2/6/1996	1040	7.6	1681	
3/26/1996	650	5.4	1114	
4/30/1996	642	8	871	
5/28/96	1160	3.4	2242	
6/18/96	1340	7.5	2714	
7/16/1996	1130	5.9	1961	

ADEQ data from "TMDL Investigation of Water Quality Impairments to Unnamed Tributary to Flat Creek Union County, Arkansas", April 1998.

ECOREGION NUMBERS (CI, SO4, &TDS): 14 mg/L, 31 mg/L, & 123 mg/L

)

Appendix F Photos of Study Reaches

 Confluence of UTB (right of picture) and UTC (left of picture) during seasonal flows. Note difference in color of two inflows. Flow on left of picture from UTC watershed. Flow from right discharge from EDCC 001.

4. UTB-1 View of UTB upstream of UTC. Summer low flow without 001 discharge flows.

2. Confluence of UTB and UTC, summer low flow period.

5. UTB-1. View of UTB during low flow period, very narrow channel width. Note exposed channel bottom. No flow.

3. UTB-1. View of UTB upstream of UTC. Seasonal discharge 001 flow.

6. UTB-2 Reach UTB view downstream of confluence with UTC. Seasonal flow.

7. UTB-2 Reach of UTB downstream of confluence with UTC. Low flow conditions. Note minimal flow and very shallow pools.

 UTA-2 Study reach, seasonal period view upstream to Hwy 7S Bridge. Note water level mid-way of pipe crossing creek.

8. UTA-1 Reach UTA-1 from bridge view upstream. Seasonal conditions.

11. UTA-2 Study reach, summer low flow period. Note reduced water level below pipeline crossing.

 UTA-1 Reach UTA-1 view downstream from bridge. Note algae growth along stream margins. Location upstream of EDCC discharge.

12. UTA-2 Study reach view downstream, measuring cross sectional habitat. Note stream width and exposed left descending bank.

13. UTA-2 Study reach, view downstream during low flow conditions. Note exposed left descending bank and habitat composition.

 UTA-3. Study reach, seasonal period flow conditions. View to O'rear Road Bridge. Note water level from bank to bank.

14. UTA-2 Documentation of habitat quality. Note extensive buildup of sediment (sand) and shallow water within Reach UTB-2.

17. UTA-3 Study reach, low flow conditions. View d/s to O'rear Road Bridge. Note exposed banks and instream woody debris.

15. UTA-2 Railroad trestle at downstream end of UTA-2 reach. Note flow during spring seasonal period and buildup of woody debris along pipeline.

18. UTA-3 Study reach, view upstream seasonal period. Note stream banks. No exposed debris.

19. UTA-3 Study reach view upstream, low flow period note exposed woody debris and reduced stream channel.

22. FC-1 Reach FC-1. View upstream of reach. Note flow during seasonal period.

20. UTA-3 View upstream mid reach of UTA-3. Note agricultural use.

23. FC-1 Reach FC-1. View downstream of reach. Note shallow pool with abundant woody habitat.

21. UTA-3 Documentation of fish community assemblage in reach UTA-3. Note shallow pool conditions except at root balls and under at banks.

24. Flat Creek-2 (FC-2) Study reach. Note woody fish habitat and deep pools seasonal period.

25. Flat Creek-2 (FC-2) Study reach. Note exposed woody debris summer low flow period.

26. FC-2 Documentation of fish community assemblage in Reach FC-2. Note channel development and pool depth during spring seasonal condition.